
www.dialogic.com

Dialogic® PowerMedia™ IP Media Server
Release 3.1.0

Application Developer’s Guide

February 2011 64-0531-02

Application Developer’s Guide 2

Copyright and Legal Notice

Copyright © 2000-2011 Dialogic Inc. All Rights Reserved. You may not
reproduce this document in whole or in part without permission in writing from
Dialogic Inc. at the address provided below.

All contents of this document are furnished for informational use only and are
subject to change without notice and do not represent a commitment on the
part of Dialogic Inc. and its affiliates or subsidiaries ("Dialogic"). Reasonable
effort is made to ensure the accuracy of the information contained in the
document. However, Dialogic does not warrant the accuracy of this information
and cannot accept responsibility for errors, inaccuracies or omissions that may
be contained in this document.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH
DIALOGIC® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. EXCEPT AS PROVIDED IN A SIGNED AGREEMENT BETWEEN YOU
AND DIALOGIC, DIALOGIC ASSUMES NO LIABILITY WHATSOEVER, AND
DIALOGIC DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF DIALOGIC PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY INTELLECTUAL PROPERTY
RIGHT OF A THIRD PARTY.

Dialogic products are not intended for use in medical, life saving, life sustaining,
critical control or safety systems, or in nuclear facility applications.

Due to differing national regulations and approval requirements, certain
Dialogic products may be suitable for use only in specific countries, and thus
may not function properly in other countries. You are responsible for ensuring
that your use of such products occurs only in the countries where such use is
suitable. For information on specific products, contact Dialogic Inc. at the
address indicated below or on the web at www.dialogic.com.

It is possible that the use or implementation of any one of the concepts,
applications, or ideas described in this document, in marketing collateral
produced by or on web pages maintained by Dialogic may infringe one or more
patents or other intellectual property rights owned by third parties. Dialogic
does not provide any intellectual property licenses with the sale of Dialogic
products other than a license to use such product in accordance with intellectual
property owned or validly licensed by Dialogic and no such licenses are provided
except pursuant to a signed agreement with Dialogic. More detailed information
about such intellectual property is available from Dialogic's legal department at
926 Rock Avenue, San Jose, California 95131 USA. Dialogic encourages all
users of its products to procure all necessary intellectual property licenses
required to implement any concepts or applications and does not condone or
encourage any intellectual property infringement and disclaims any
responsibility related thereto. These intellectual property licenses may differ
from country to country and it is the responsibility of those who develop the
concepts or applications to be aware of and comply with different national
license requirements.

Dialogic, Dialogic Pro, Dialogic Blue, Veraz, Brooktrout, Diva, Diva ISDN, Making
Innovation Thrive, Video is the New Voice, Diastar, Cantata, TruFax, SwitchKit,
SnowShore, Eicon, Eicon Networks, NMS Communications, NMS (stylized),
Eiconcard, SIPcontrol, TrustedVideo, Exnet, EXS, Connecting to Growth, Fusion,
Vision, PowerMedia, PacketMedia, BorderNet, inCloud9, I-Gate, Hi-Gate,
NaturalAccess, NaturalCallControl, NaturalConference, NaturalFax and Shiva,

Application Developer’s Guide 3

among others as well as related logos, are either registered trademarks or
trademarks of Dialogic Inc. and its affiliates or subsidiaries. Dialogic's
trademarks may be used publicly only with permission from Dialogic. Such
permission may only be granted by Dialogic's legal department at 926 Rock
Avenue, San Jose, California 95131 USA. Any authorized use of Dialogic's
trademarks will be subject to full respect of the trademark guidelines published
by Dialogic from time to time and any use of Dialogic's trademarks requires
proper acknowledgement.

The names of actual companies and products mentioned herein are the
trademarks of their respective owners.

Application Developer’s Guide 4

Hardware Limited Warranty

Please refer to the following Dialogic web site for information on hardware
warranty information, which applies unless different terms have been agreed to
in a signed agreement between yourself and Dialogic Corporation or its
subsidiaries. The listed hardware warranty periods and terms are subject to
change without notice. For purchases not made directly from Dialogic please
contact your direct vendor in connection with the warranty period and terms
that they offer.

http://www.dialogic.com/warranties

Application Developer’s Guide 5

Contents

About this Publication. 20
Using this Publication .21

Audience and Purpose .21
Documentation Set .21
Document Conventions .21

Notes, Cautions, and Warnings .21
Links in PDF .22

Contacting Dialogic Technical Services and Support .23
Ordering Licenses .23

1 - Introduction. .24
Control Protocols and Services. .25
Call Control Protocols .26

Session Initiation Protocol (SIP) .27
Session .27
Service Indicators .27

Session Description Protocol (SDP) .27
Media Server Control Markup Language (MSCML) .28

SIP Methods with MSCML .28
VoiceXML .29

Media Storage, Processing, and Supported Codecs. .30
Audio .30

Audio Content Storage .32
Video. .32
Mixed Audio/Video .32

WAV-based .32
3GPP and 3GPP2 .33
Mixed Audio/Video Content Storage .33

File Storage and Retrieval .33
Network File System (NFS) .33
HTTP .33
Real Time Streaming Protocol (RTSP) .34

DTMF. .34
In-Band Busy Tone Detection and Reporting. .34

Services .35
Network Announcements .35

Application Developer’s Guide 6

Simple Announcements .35
Announcement Sequences and Variable Content Announcements36

Conferences .36
Simple Conferences .37
Advanced Conferences .37

Interactive Voice Response (IVR) .37
Dialog (VoiceXML). .37

Advanced Video Features .38
Video Transcoding .39

Video Transcoder Settings .39
Video Transcoder Automatic Setting Rules .39
Video Transcoder Restrictions .40

Image Overlays and Text Overlays. .41
Real Time Streaming Protocol (RTSP) .42

Configuring Session Keep Alive. .42

2 - Session Initiation Protocol (SIP). .44
Conformance. .45
Media Server Availability. .46
SIP Description .47

SIP User Agents .47
SIP Message. .47
SIP Transaction. .47
URLs .48
Service Indicators .48
SIP Message Body Types .49

SIP Requests. .50
Request Line .50
Headers. .51
Session Descriptor .51

SIP Methods .52
INVITE .52

Headers in an INVITE .53
ACK. .54

Headers in an ACK .54
CANCEL .54

Headers in CANCEL .55
OPTIONS .56

Headers in OPTIONS .56
BYE .57

Headers in BYE .57
INFO .58

Headers in INFO .58
PRACK. .59

Headers in a PRACK .59
SIP Headers .60

Format and Syntax .61
Supported Headers .61

Accept .61
Call-ID (i) .62
Contact (m) .62
Content-Length (l) .62
Content-Type (c) .63
CSeq .63
From (f) .63
Max-Forwards .63

Application Developer’s Guide 7

Record-Route .64
Require .64
Route .64
Session-Expires .64
Server .64
Subject .64
Supported .65
To (t) .65
Unsupported .65
User-Agent .65
Via (v) .65

SIP Responses. .67
SIP Provisional Response Configuration .67
SIP Return Codes .67

Session Description Protocol .71
Session Description Headers .71
Time Description Headers .72
Media Description Headers .73

Header Action Classes .73
Header Definitions .73

m= (Media information) .74
c= (Connection data) .74
a= (Attribute Lines) .75

Ports .76
SIP .76
RTP .76
Reliability of Provisional Responses .77
Syntax and Escaping .78
Syntax and MSCML Body .80
IP Media Server Behavior When Hold Media is Presented81

About Hold SDP .81
Hold Behavior for the Various Media Services .81

Using AMR-NB .84
Media Description Header .84
Dynamic Payload Type. .84
Format Specific Parameters .85
Optional Format Parameters. .87

Packet Time .87
Maximum Packet Time .87

3 - Announcement Service API .88
Overview .89

File Retrieval .89
Network File System (NFS) .89
HTTP .89

Announcement Types .89
Announcement Service Indicator and Request URI .89

Simple Announcements .91
Announcement Sequences .92

Variable-Content Announcements .92
Implementation .92

SIP Request Parameters for Announcements .94
Variable Types and Subtypes .96

4 - Conferencing API .99
Simple Conferencing . 101

Application Developer’s Guide 8

How SIP Manages Conferences . 101
Creating a Simple Conference . 101
Adding a Participant to a Simple Conference . 101
Ending a Simple Conference . 101

Attributes for Simple Conferences and Participants . 102
DTMF Clamping . 102
Managing Video Switching . 102

Call Flow and Sample Code Examples . 104
Code for Creating a Simple Conference . 105

Advanced Conferencing . 106
Using MSCML for Advanced Conferencing. 106

<configure_conference> . 106
<configure_leg> . 106

MSCML Attributes and Elements for <configure_conference>. 106
MSCML Attributes and Elements for <configure_leg> . 107
MSCML Attributes for <managecontent> . 109

<managecontent> Examples . 110
Creating an Advanced Conference. 111
Modifying an Advanced Conference . 112
Ending an Advanced Conference . 113
Joining Participants (Legs) to an Advanced Conference 113
Modifying a Conference Participant . 114
Removing Participants From a Conference . 114
Conference Subsetting. 114
Active Talker Events . 115

IVR Operations during a Conference. 116
Playing and Recording Within the Entire Conference . 116

Playing to the Conference . 117
Recording the Conference Output . 117

Video Conferencing Enhancements . 118
MSCML Changes . 118

IVR Operations on Participant Legs . 118
Detecting DTMF Digits On A Conference Leg . 118
Playing Audio to a Participant Leg . 121

Detecting and Reporting Busy Call Progress Tones in MSCML 121
Simultaneous Play and Record. 124

Creating an Internal Conference Leg . 124
Recording a Conference . 124

MSCML Conferencing Requests . 125
Conferencing Request Elements and Attributes. 125

configure_conference . 125
In INFO Message . 126
configure_leg . 127

Coached Conferencing . 129
Overview . 129
MSCML Elements and Attributes of Coached Conferencing 130

configure_team . 130
Configuring a Coached Conference . 131

Creating the Conference . 131
Joining and Configuring the Coach . 132
Joining and Configuring the Agent . 132
Joining and Configuring the Client . 133
Supervisor Query for Number of Team Members . 134
Exiting the Conference . 134
Using SIP INFO . 135

MSCML Conferencing Reference. 136
MSCML Elements . 136

Application Developer’s Guide 9

activetalkers . 136
configure_team . 136
dtmf . 136
events . 137
keypress . 137
notification . 137
signal . 137
subscribe . 137
teammate . 137

MSCML Attributes . 137
action . 138
dtmfclamp . 138
id . 138
mixmode . 139
repeat . 139
report . 140
reserveconfmedia . 140
reservedtalkers . 141
toneclamp . 141
type . 141

5 - IVR with MSCML. .143
IVR Service . 144

Call Progress Tones . 145
Playing Announcements . 147

Elements and Attributes . 147
Responses . 147

Collecting DTMF Digits . 148
Prompting . 148
Digit Buffering . 148
Star and Pound Keys . 149
Timing Attributes . 149
Responses . 149

Recording Audio. 151
Playrecord Attributes. 151
Playrecord Process . 151

Timing Attributes . 152
Additional Attributes . 152
Responses . 152
Handling of Content Retrieval Errors . 153

Stopping an IVR Request in Progress . 154
ID Attribute . 154
Response . 154

MSCML MRCP Session Management . 155
Overview of MRCP Session Management . 155

Features Enabled . 155
Process . 156

MSCML Requests . 157
Create session request format . 158
Create session response format . 158
Terminate session request format . 159
Terminate session response format . 160
Sample Call Flow . 160

MSCML IVR Reference . 161
IVR Elements . 161
IVR Prompt Block . 162

Application Developer’s Guide 10

Prompt Elements . 163
IVR Attributes. 163

barge . 163
baseurl . 164
beep . 164
cleardigits . 164
delay . 164
duration . 164
encoding . 165
endsilence . 165
endwarning . 165
escapekey . 165
extradigittimer . 166
firstdigittimer . 166
id . 166
interdigittimer . 166
initsilence . 166
locale . 167
maskdigits . 167
maxdigits . 168
mode . 168
offset . 168
promptencoding . 168
recstopmask . 169
recurl . 169
recencoding . 169
repeat . 169
report . 170
returnkey . 170
stop_on_error . 170
subtype . 171
type . 171
url . 172
value . 172
warnurl . 172

IVR Response Elements and Attributes . 173
Response Elements . 173
error_info . 173
id . 173
Response Attributes . 174
code . 174
digits . 174
playduration . 174
reason . 174
reclength . 175
text . 175

6 - VoiceXML Version 2.0 and Dialog Service .176
About VoiceXML. 177

VoiceXML Interpreter. 177
Dialog Service Indicator and Request URI . 177
VoiceXML Launcher . 178
Default Script . 178
VoiceXML Concepts . 178

Syntax . 178
Scope . 178

Application Developer’s Guide 11

Resource Fetching . 179
VoiceXML Application and Its Documents . 179

Dialogs . 179
Scripting . 180
DTMF Grammars Guidelines . 180
<grammar> . 180
<tag> . 181
<ruleref> . 181
<rule> . 181
MRCP . 181
Session Variables . 181

File Storage and Retrieval . 182
Media Content Recovery Extension . 182

VoiceXML Elements Reference . 183
<assign> . 183
<audio> . 183
<block> . 184
<catch> . 184
<choice> . 185
<clear> . 186
<content> . 187
<data> . 188
<disconnect> . 189
<else> . 189
<elseif> . 189
<enumerate> . 189
<error> . 190
<exit> . 190
<field> . 190
<filled> . 191
 . 192
<form> . 193
<goto> . 193
<grammar> . 194
<help> . 196
<if> . 196
<initial> . 197
<link> . 197
<log> . 199
<menu> . 199
<meta> . 200
<noinput> . 200
<nomatch> . 201
<object> . 201
<option> . 201
<overlay> . 202
<param> . 203
<prompt> . 204
<property> . 205
<record> . 205
<reprompt> . 206
<return> . 206
<say-as> . 207
<script> . 208
<scroll> . 208
<subdialog> . 209
<submit> . 210

Application Developer’s Guide 12

<throw> . 211
<transfer> . 212
<value> . 215
<var> . 215
<vxml> . 216

VoiceXML Properties . 217
com.snowshore.criticaldigit_timer . 217
MIME Types Supported . 218

ECMAScript Functionality . 220
VoiceXML Extended Session Variables . 223

VoiceXML 2.0 Recommendations. 223
Dialogic® Extensions . 223
Example . 224

RTP Codec Selection Using the <transfer> Element . 226
Image Overlay and Text Overlay Functionality. 227

Overlay Overview . 227
Characteristics of Image Overlay . 227
Characteristics of Text Overlay . 228
Text Overlay Restrictions . 228
Installing Font Files . 228
Dynamic Fonts . 229
Cached Fonts . 229

trcr.cfg Description . 229
Sample trcr.cfg . 231

Overlay Demos. 231

7 - Sample Code and Call Flows .232
Announcements Sample Code and Call Flows . 233

Play an Announcement as Early Media. 233
Call Flow for an Early Media Announcement . 235
Playing an Announcement as Normal Media . 236
Call Flow for a Normal Media Announcement . 238
Stopping Media—Hold . 239
Call Flow for Stopping Media—Hold . 241
Repeating the Audio . 242

Conferences Sample Code and Call Flows . 243
Creating a Simple Conference . 243
Call Flow for a Simple Conference (Normal Media) . 244
Creating an Advanced Conference. 245
Call Flow to Set up an Advanced Conference . 247
Modifying Conference Using Subscribe. 248
Providing Communication for Participant in an Advanced Conference. 249
Joining a Participant Using Special Attributes . 250
Suspending Communications within a Conference. 251

Response to Mute a Conference Participant . 252
Playing Audio to Conference Participant . 253

Changing Mixmode to Parked . 253
Response to Parked . 254
Playing the Audio . 254
Response to Message to Play Audio . 255
Changing Participant Mixmode Back to Full . 255
Response to Mixmode Change . 256

Playcollect and Playrecord in a Conference. 256
Changing Participant Mixmode to Parked . 256
Response to Parked . 257
PlayCollect . 257

Application Developer’s Guide 13

Response to PlayCollect . 258
Sending PlayRecord . 258
Response to PlayRecord . 259
Changing Participant Back to Full . 259
Response to Full . 259

Coached Conferencing . 260
IVR with MSCML Sample Code and Call Flows . 271

Playing a Simple Announcement . 271
Play Payload . 271
Expected Response . 271

Playing a Sequenced Announcement . 271
Play Payload . 271

Stopping a Play Command . 271
Request 1 Payload . 271
Request 2 Payload . 272
Expected Response to Request 1 Payload . 272
Expected Response to Request 2 Payload . 272

PlayCollect . 273
Payload . 273
Expected Response . 273

Playing a Recording. 273
Payload . 273
Expected Response . 273

Stopping a Recording . 273
Request 1 Payload . 273
Request 2 Payload . 274
Expected Response Request 1 Payload . 274
Expected Response Request 2 Payload . 274

Asynchronous DTMF . 275
Subscribing to Standard Digit Events . 275
Subscribing to Long Digit Events . 275
Subscribing to Both Standard and Long Digit Events 275
Turning Off Digit Event Reporting . 276
Example Responses . 276

Call Flow for IVR with MSCML . 278
Call Flow for PIN Collection, IVR with MCSCML . 279

Explanation of Call Flow . 279
Call Flow for Recording a Message, IVR with MSCML . 281

Explanation of Call Flow . 282
Call Flow for MSCML MRCP Session Management . 283

Scenario . 283
Call Flow . 283

VoiceXML Sample Code and Call Flows . 289
Playing an Announcement . 289
PIN Collection. 289
Call Flow for VoiceXML. 291
Transferring a Call. 292
T.30 Fax Detection . 294

Fax Call Transfer Call Flow . 294
CNG Tone Detection and Event Notification . 296
VoiceXML Implementation . 296
VoiceXML Properties . 297
Fax Detection—Example Script . 297

T.38 Fax Detection, Termination, and Initiation . 299
Detection and Termination . 299
Initiation (Email to Fax) . 299
snowshore.cfg Parameters . 299

Application Developer’s Guide 14

Fax Call Termination Call Flow . 300
CNG Tone Detection and Event Notification . 301
VoiceXML Implementation . 301
Fax Detection—Example VXML Script . 302
VXML Fax Record . 303
Call Record - Example VXML Script . 303

Using VCR and Gain Controls . 304
Image Overlay and Text Overlay. 308

Simple Text Overlay . 308
Scrolling Text Overlay . 308
Image Overlay . 309

Late Media Sample Code. 310

A - Audio Library . 312

Sound Library . 313
Phrases and Messages. 313
Numbers . 316

Dates and Ordinal Numbers . 317
Letters. 318
Time and Money . 319
Press Keys . 319
Quantities . 321
Miscellaneous Words . 322

Generic Audio Files. 324

B - VoiceXML Version 1.0 and Dialog Service. 326

About VoiceXML. 327
VoiceXML Interpreter. 327
Dialog Service Indicator and Request URI . 327
VoiceXML Launcher . 328
VoiceXML Concepts . 328

Syntax . 328
Scope . 328
Resource Fetching . 328

VoiceXML Application and Its Documents . 328
Dialogs . 329
Grammar and Scripting . 329

Session Variables . 330
File Storage and Retrieval . 330
Media Content Recovery Extension . 330

VoiceXML Elements Reference . 332
<assign> . 332
<audio> . 332
<block> . 333
<break> . 333
<catch> . 333
<choice> . 334
<clear> . 334
<data> . 335
<disconnect> . 336
<dtmf> . 336
<else> . 336
<elseif> . 337
<error> . 337
<exit> . 337

Application Developer’s Guide 15

<field> . 338
<filled> . 338
<form> . 339
<goto> . 339
<grammar> . 340
<help> . 340
<if> . 340
<initial> . 341
<link> . 341
<log> . 342
<menu> . 342
<meta> . 343
<noinput> . 343
<nomatch> . 343
<param> . 344
<prompt> . 344
<property> . 345
<record> . 345
<reprompt> . 346
<return> . 346
<sayas> . 346
<script> . 347
<subdialog> . 347
<submit> . 348
<throw> . 348
<transfer> . 349
<value> . 351
<var> . 351
<vxml> . 352

VoiceXML Attributes Reference . 353
application . 353
bargein . 353
bargeintype . 353
base . 353
beep . 353
bridge . 354
class . 354
cond . 355
connect-timeout . 355
content . 355
count . 355
dest . 355
destexpr . 356
dtmf . 356
dtmfterm . 356
event . 356
expr . 356
expritem . 357
finalsilence . 357
http-equiv . 357
id . 357
longdigit . 357
max-time . 357
method . 357
modal . 358
mode . 358
msecs . 358

Application Developer’s Guide 16

name . 358
namelist . 358
next . 359
nextitem . 359
recsrc . 359
reqUri . 359
scope . 359
size . 359
slot . 360
src . 360
srcexpr . 360
stopdigits . 360
timeout . 360
transfer-audio . 361
type . 361
value . 361
valuetype . 361
version . 362
VCR . 362
video . 362

VoiceXML Properties . 363
com.snowshore.criticaldigit_timer . 363
MIME Recording Encoding Types . 363

ECMAScript Functionality . 365
Support for VoiceXML Extended Session Variables . 368

VoiceXML 2.0 Recommendations. 368
Dialogic® Extensions . 368
Example . 369

C - MSCML Schema . 371

D - Dial Pulse Detection . 381

Overview . 382
Dial Pulse Detection and DTMF . 382

Consistency . 382
MSCML and VXML 1.0/2.0 Support . 382

Configuration . 383
Parameters . 383

Description of Dial Pulse Detection Algorithm . 385

Index. 386

Application Developer’s Guide 17

List of Figures

Figure 1. Call Control Architecture . 26
Figure 2. Network Announcements . 35
Figure 3. Role of the IP Media Server with RTSP Server. 42
Figure 4. Call Flow: SIP Provisional Response . 78
Figure 5. Playing an Announcement Sequence . 93
Figure 6. Call Flow for Simple Conference (Normal Media). 104
Figure 7. MRCP Session Management . 156
Figure 8. Sharing of Root Document in VoiceXML Application 179
Figure 9. Call Flow: Announcement, Early Media . 235
Figure 10. Call Flow: Announcement, Normal Media . 238
Figure 11. Call Flow: Stopping Media Using Hold . 241
Figure 12. Call Flow: Simple Conference . 244
Figure 13. Call Flow: Advanced Conference . 247
Figure 14. Call Flow: IVR with MSCML . 278
Figure 15. Call Flow: PIN Collection, IVR with MSCML. 279
Figure 16. Call Flow: Recording, IVR with MSCML. 281
Figure 17. Call Flow: VoiceXML . 291
Figure 18. T.30 Fax Call Transfer . 294
Figure 19. T.38 Fax Call Transfer . 300
Figure 20. Sharing of Root Document in VoiceXML Application 329
Figure 21. Dial Pulse Detection Parameters . 385

Application Developer’s Guide 18

List of Tables

Table 1. SIP Service Indicators . 27
Table 2. MSCML Conferencing and MSCML IVR Requests 28
Table 3. Functionality Supported by VoiceXML 1.0 and VoiceXML 2.0. 29
Table 4. Supported Audio Codecs . 30
Table 5. Supported Video Codecs . 30
Table 6. Audio Encoding and File Storage Formats . 32
Table 7. Multimedia Encoding and File Storage Formats 33
Table 8. Application Service Indicators. 48
Table 9. Valid Content (MIME) Types . 49
Table 10. Supported SIP Methods . 52
Table 11. SIP Headers in an INVITE . 53
Table 12. SIP Headers in an ACK Method . 54
Table 13. SIP Headers in a CANCEL Method . 55
Table 14. SIP Headers in an OPTIONS Method . 56
Table 15. SIP Headers in a BYE Method . 57
Table 16. SIP Headers in an INFO Method . 58
Table 17. SIP Headers in a PRACK Method . 59
Table 18. Supported SIP Headers . 60
Table 19. SIP Return Codes Generated by the IP Media Server 68
Table 20. SDP Description Headers . 71
Table 21. SDP Time Description Headers . 72
Table 22. SDP Media Description Headers . 73
Table 23. Action Classes . 73
Table 24. Unreserved Characters in SIP Request. 79
Table 25. Unreserved Characters in User Portion . 79
Table 26. Unreserved Characters for Parameters . 80
Table 27. Simple Conference Attributes . 102
Table 28. Advanced Conferencing Attributes. 107
Table 29. Subscribe Element . 107
Table 30. Attributes for Participant Legs in Advanced Conference 107
Table 31. Subscribe Element for Participant Legs . 108

Application Developer’s Guide 19

Table 32. Attributes for <managecontent> in an Advanced Conference 109
Table 33. Configure_Leg Attributes in Advanced Conference 113
Table 34. Configure_Conference Attributes in INVITE Message 125
Table 35. Subscribe Element in INVITE with Configure_Conference. 126
Table 36. Configure_Conference Attributes in INFO Message 126
Table 37. Subscribe Element in INFO with Configure_Conference 127
Table 38. Configure_Leg Attributes . 127
Table 39. Subscribe Element for Configure_Leg . 128
Table 40. Configure_Team Attributes. 130
Table 41. MSCML Elements and Attributes for Creating Coached Conferencing . . 131
Table 42. Timing Attributes . 152
Table 43. Additional Attributes of PlayRecord . 152
Table 44. Description of MRCP Session Management Topology 157
Table 45. Attributes of mrcp_create_session . 158
Table 46. Attributes of mrcp_session_response . 159
Table 47. Attributes of mrcp_terminate_session_request 160
Table 48. MSCML Elements for IVR . 161
Table 49. Supported MIME Types, Formats, and Audio Encodings 218
Table 50. Audio Codec Parameter Values . 218
Table 51. Supported MIME Types, Formats, and Video Encodings 219
Table 52. ECMAScript Functionality . 220
Table 53. SDP Offer Sent in Outbound SIP INVITE . 226
Table 54. T.38 Fax Parameters . 299
Table 55. VCR and Gain Controls Support for RTSP in VoiceXML 2.0 304
Table 56. Prompt Library: Standard Phrases. 313
Table 57. Prompt Library: Cardinal Numbers . 316
Table 58. Prompt Library: Dates and Ordinal Numbers 317
Table 59. Prompt Library: Time and Money Phrases . 319
Table 60. Prompt Library: Press Key Phrases . 320
Table 61. Prompt Library: Quantities . 321
Table 62. Prompt Library: Miscellaneous Words . 322
Table 63. Generic Prompt Phrases. 324
Table 64. Supported MIME Types, Formats, and Audio Encodings 363
Table 65. Accepted WAVE Format Specifiers . 364
Table 66. Codec Parameter Values . 364
Table 67. ECMAScript Functionality . 365
Table 68. Dial Pulse Detection Parameters . 383

Application Developer’s Guide 20

About this Publication

The Dialogic® PowerMedia™ IP Media Server (which is also referred to herein
as "IP Media Server", "IPMS", or "Media Server") is a standards-based SIP,
VoiceXML, and MSCML server that performs a wide variety of media processing
functions.

The IP Media Server is also an economical and scalable IP media option, as it
can power a broad range of voice and video services for next generation
wireline, wireless, and broadband services.

This section covers the following topics:

Using this Publication

Contacting Dialogic Technical Services and Support

Using this Publication

Application Developer’s Guide 21

Using this Publication

Audience and Purpose

This manual is for application developers who choose to use or employ the IP
Media Server to deploy network announcements, conferences, Interactive Voice
Response (IVR) and more in a voice over IP environment. Appendix A, “Audio
Library”, describes the IP Media Server’s preconfigured sound library (audio
files), which consists of phrases and messages, numbers, time and money,
quantities, and miscellaneous words.

Documentation Set

Dialogic provides the following publications for the IP Media Server:

The Software Quick Start Guide describes how to install and configure Red
Hat Enterprise Linux and IP Media Server software, configure a softphone,
and run a demo.

The Installation and Operations Guide provides instructions for configuring,
administering, and maintaining the IP Media Server.

The Application Developer’s Guide provides information for application
developers who choose to use the IP Media Server to deploy network
announcements, conferences, and Interactive Voice Response (IVR) in a
voice over IP (VoIP) environment.

The Command Line Interface Reference Guide describes the CLI utility which
can be used to configure and troubleshoot the IP Media Server.

Installing Red Hat Enterprise Linux 5 for the IP Media Server describes how
to install and configure Red Hat Enterprise Linux 5 if you are installing the
licensed software version of the IP Media Server.

The License Activation Guide describes how to activate the license for your
IP Media Server.

Upgrading from Release 3.0.0 to 3.1.0 on Red Hat Enterprise Linux Platform
provides information and instructions for upgrading to the current IP Media
Server release from the previous release on platforms running Red Hat
Enterprise Linux. It also includes instructions for downgrading in the event
that you need to restore your previous configuration.

These publications, as well as Release Notes, are available in PDF format at
http://www.dialogic.com/manuals.

Document Conventions

Conventions used in this document are described here.

Notes, Cautions, and Warnings

Notes contain information of general interest.

Cautions and warnings appear when appropriate throughout the manual.

Cautions alert you to situations that can make system administration less
effective or compromise system performance or security. For example:

http://www.dialogic.com/manuals

Using this Publication

Application Developer’s Guide 22

Before changing the configuration of a running system, always back up
the current configuration using the System>Config command.

Warnings alert you to situations that could cause physical harm to an operator
or damage to the IP Media Server. For example:

If an interface is deactivated, all traffic on that interface will be dropped.

Links in PDF

Hypertext links in the PDF version of this manual are blue. You can click on a
cross-reference link to move to the information it references.

Index entries and Table of Contents listings are also clickable links in the PDF
format. After you jump to a link, use the Back button on the Acrobat Reader
toolbar to return to your prior location.

Contacting Dialogic Technical Services and Support

Application Developer’s Guide 23

Contacting Dialogic Technical Services and Support

For more information, refer to the Dialogic Technical Services and Support site:

http://www.dialogic.com/support/

When reporting an issue to Technical Services and Support, be prepared to
provide the following information:

Full description of the issue.

Version of the IP Media Server software you are using.

IP Media Server log files.

Whether the issue is reproducible; the steps that you took.

Please note that the latest software update and release notes are available from
the Dialogic support page.

Ordering Licenses

You must have a software license to use the IP Media Server. For directions on
how to acquire licenses, see the IP Media Server License Activation Guide.

Application Developer’s Guide 24

1 - Introduction

This chapter provides an overview of the features and functionality of the
Dialogic® PowerMedia™ IP Media Server (also referred to in this document as
“IP Media Server”, “IPMS”, or “Media Server”).

This chapter includes the following sections:

Control Protocols and Services

Call Control Protocols

Media Storage, Processing, and Supported Codecs

Services

Advanced Video Features

Video Transcoding

Image Overlays and Text Overlays

Real Time Streaming Protocol (RTSP)

Control Protocols and Services

Application Developer’s Guide 25

Control Protocols and Services

This section introduces the Session Initiation Protocol (SIP) and XML-based APIs
that allow the IP Media Server to perform in an IP network, explains the call-
related resources, and defines the supported application services.

The IP Media Server can perform a specialized role in the IP network by
providing high-capacity, real-time packet processing for network
announcements, conferencing, and Interactive Voice Response (IVR) functions.
The IP Media Server can also provide video solutions such as Interactive Voice
and Video Response (IVVR), multimedia ringback tone (MRBT), video portal,
video mail, and video advertisements.

This section contains the following major topics:

Call Control Protocols

Media Storage, Processing, and Supported Codecs

Services

Call Control Protocols

Application Developer’s Guide 26

Call Control Protocols

A control agent, such as a softswitch or an application server, can use a call
control (signaling) protocol to request a service from the IP Media Server and
to set up media streams between the IP Media Server and SIP-enabled endpoint
devices. SIP (Session Initiation Protocol) is the signaling protocol currently used
for call control on the IP Media Server.

In the course of signaling, the application server can perform the following:

Request the service

Set up the connection

Modify the connection, if necessary

Tear down the connection

If such a connection is established, the IP Media Server is directly engaged with
the endpoint devices in the media plane through third party call control. The IP
Media Server, however, is not visible to the endpoint devices in the signaling
plane.

Figure 1 illustrates the call control relationship.

Figure 1. Call Control Architecture

The external application specifies what constitutes a call, not the IP Media
Server. Upon receiving a request, the IP Media Server call control engages the
correct application for processing.

The IP Media Server is controlled by the following major control protocols and
scripting languages:

Session Initiation Protocol (SIP)

Session Description Protocol (SDP)

Media Server Control Markup Language (MSCML)

VoiceXML

SIP

SIP UAC

Dialogic® IP Media Server

Application Server

RTP

SIP UAC

SIP UAC

SIP

SIP

SIP

RTP

RTP

Call Control Protocols

Application Developer’s Guide 27

Session Initiation Protocol (SIP)

SIP is a peer-to-peer signaling protocol that employs a request and response
model to create, manage, and tear down single or multiple concurrent sessions
for the delivery of services.

Session

A session is defined as having at least two endpoints with one or more bi-
directional IP streams to, from, or within the IP Media Server.

A control agent can initiate and control the following services with SIP
messages:

Network Announcements

Conferences

IVR

VoiceXML

Service Indicators

The IP Media Server employs a service indicator in the user address portion of
the Request URI. This indicator specifies the service to which a request is being
addressed and can be one of the values listed in Table 1.

Table 1. SIP Service Indicators

If the user address portion of the service indicator is not one of the supported
service indicators, the default service, dialog, is invoked. You can configure the
default application on the SIP page of the Web User Interface (Web UI).

The IP Media Server takes advantage of the inherent flexibility provided by the
SIP URI conventions and by SIP’s acceptance of message-body payloads. For
example, when SIP is extended with the MSCML scripting language, SIP
requests enable control of advanced conferences as well as Interactive Voice
Response (IVR) through the ivr service.

For details about SIP, see Chapter 2, “Session Initiation Protocol (SIP)”.

Session Description Protocol (SDP)

SIP uses the Session Description Protocol (SDP) to convey information about
media streams. The IP Media Server supports parsing and formatting for SDP
mandatory elements, as well as several optional elements.

For more details about SDP, see “Session Description Protocol” (page 71).

Service
Indicator

Definition

annc Announcements

conf Conferencing (simple and advanced with
MSCML)

ivr IVR with MSCML

dialog VoiceXML

Call Control Protocols

Application Developer’s Guide 28

Media Server Control Markup Language (MSCML)

Media Server Control Markup Language (MSCML) is a Dialogic-developed
markup language used to extend SIP requests for IVR and advanced
conferencing functions.

There are six types of MSCML requests which are grouped into two basic
categories:

Requests that support advanced conferencing
(conf service)

Requests that support interactive voice response
(ivr service)

Table 2 lists both the MSCML conferencing requests and the MSCML IVR
requests, and also shows the pages where these requests are defined.

For details about these MSCML requests and services, see Chapter 4,
“Conferencing API”.

SIP Methods with MSCML

The SIP INVITE method is used to convey the desired session parameters from
the application server to the IP Media Server.

For mid-call changes, the XML payload is sent using SIP INFO.

Note: To provide that XML payloads are delivered in the correct order, the
application server must support sequenced INFO messages for MSCML (see
“CSeq” (page 63)).

Payload

The size of the MSCML payload is relatively small and is appropriate for inclusion
in the SIP body. Each MSCML payload contains a single request or response, and
each SIP INVITE or INFO carries, at most, one MSCML body part.

Most MSCML request attributes have default values or are defined as #IMPLIED.
MSCML attributes can be omitted from the request if they are not needed.

For further details, see “MSCML Schema” (page 371).

The Multi-Internet Message Extension (MIME) type used to describe MSCML
content is application/mediaservercontrol+xml.

Table 2. MSCML Conferencing and MSCML IVR Requests

MSCML Conferencing MSCML IVR Requests

configure_conference (page 125) play (page 161)

configure_leg (page 127) playcollect (page 161)

playrecord (page 161)

stop (page 162)

Call Control Protocols

Application Developer’s Guide 29

Responses

MSCML responses are carried back to the application server in the body of the
SIP request message. Responses to MSCML requests are also defined in the
Document Type Description (DTD) using a simple form of XML. The response is
easy to process and does not require a full XML parser on the application server.

Events

Applications subscribe to activetalker and asynchronous Dual Tone Multi-
Frequency (DTMF) event notifications through MSCML directives. Events are
reported within the SIP session that subscribed to the event.

Note: For details on creating advanced conferences with MSCML, see
Chapter 4, “Conferencing API” and Chapter 5, “IVR with MSCML”.

VoiceXML

Voice Extensible Markup Language (VoiceXML) is designed specifically for
speech-based telephony and video applications. VoiceXML audio dialog scripts
can include a mix of digitized audio clips and DTMF inputs.

A SIP INVITE request directed to the dialog service directs the VoiceXML
interpreter to retrieve a URI-specified VoiceXML script and translate the script-
directed commands.

The IP Media Server supports VoiceXML 1.0 and VoiceXML 2.0.

The following table presents the IP Media Server functionality supported by
VoiceXML 1.0 and VoiceXML 2.0.

Table 3. Functionality Supported by VoiceXML 1.0 and VoiceXML 2.0

For further details about VoiceXML 1.0, see “VoiceXML Version 1.0 and Dialog
Service” (page 326). For further details about VoiceXML 2.0, see Chapter 6,
“VoiceXML Version 2.0 and Dialog Service”.

Functionality VoiceXML 1.0 VoiceXML 2.0

MRCP 1.0 for Automated Speech
Recognition (ASR)

No Yes

MRCP 1.0 for Text to Speech
(TTS)

No Yes

RTSP No Yes

T.30 fax detection Yes Yes

T.38 fax detection, termination,
and initiation

Yes Yes

Text overlay and image overlay No Yes

Media Storage, Processing, and Supported Codecs

Application Developer’s Guide 30

Media Storage, Processing, and Supported Codecs

The IP Media Server supports several audio and video codecs, and stores and
retrieves content in several encodings and file formats. Supported audio codecs
are summarized in Table 4.

Supported video codecs are summarized in Table 5.

Audio

For all services, the IP Media Server can receive and transmit RTP voice packets
encoded as G.711µ-law, G.711a-law, G.726, G.729AB, and AMR-NB. See
Table 4 (page 30).

Table 4. Supported Audio Codecs

Codec RTP payload
type

Mode Bandwidth
(Kbps)

Packet time
(ms)

AMR-NB 96... 127 0 4.75 20, 40

1 5.15

2 5.9

3 6.7

4 7.4

5 7.95

6 10.2

7 12.2

G.711 ulaw 0 N/A 64 10, 20, 30

G.711 alaw 8 N/A 64 10, 20, 30

G.726 2 N/A 32 10, 20, 30

G.729 18 N/A 8 10, 20, 30

Table 5. Supported Video Codecs

Codec RTP
Payload

Type

Profile and Level Maximum
bit rate
(Kbps)

Maximum
frame

rate (fps)

Frame
size

H.263 34 Baseline (0) Level
10, 20, 30

384 30 CIF, QCIF

H.263-1998
(H.263+)

96...127 Baseline (0) Level
10, 20, 30

384 30 CIF, QCIF

H.263-2000
(H.263++)

96...127 Baseline (0) Level
10, 20, 30, 45

384 30 CIF, QCIF

H.264 96...127 Baseline Level 1,
1b, 1.1, 1.2, 1.3

768 30 CIF, QCIF

Media Storage, Processing, and Supported Codecs

Application Developer’s Guide 31

You can license the G.726, G.729AB, and AMR-NB codecs to run on the host.

G.729 The IP Media Server supports G.729AB as an RTP codec. (G.729A for
encode/decode. G.729AB for decode only.)

The IP Media Server automatically converts (transcodes) stored content
accessed via file://// or http:// URLs from the content encoding to the RTP
encoding. Any of the available content encodings can be played or recorded
using any of the available RTP codecs.

G.726 The IP Media Server supports G.726 at 32 Kbps as an RTP codec.

AMR-NB The IP Media Server supports AMR-NB (Adaptive Multi-Rate Narrow Band) as an
RTP codec. The IP Media Server supports the following features of AMR-NB:

Octet-alignment: Bandwidth Efficient (bit-aligned) mode or Octet-aligned
(byte-aligned) mode

Mode-set: 0 to 7 (bit rates between 4.75 and 12.2 Kbps)

Simple payload sorting

One channel per session

The host-based AMR-NB codec supports true adaptive rates. These rates can be
controlled during an active bidrectional AMR-NB session by Codec Mode
Requests (CMR) in the AMR-NB media received from the remote device, so you
can specify the mode-set and the far end can select from that list when
choosing a CMR value. The far end may opt to send a CMR value of 15,
indicating no preference.

When the IP Media Server receives a CMR embedded in the incoming AMR-NB
data, it changes its AMR-NB output bit rate to comply with the request;
however, it will always output a CMR value of 15 (No Mode Request Present) in
its outgoing AMR-NB data.

The following features are not supported by the IP Media Server:

Unequal Bit-error Detection (UED) and Unequal Bit-error Protection (UEP),
along with the associated checksums and or frame CRCs. (Refer to section
3.6 in rfc3267.)

Forward Error Correction (FEC) or frame interleaving / redundant
transmission. (Refer to section 3.7 in rfc3267.)

Robust Sorting.

Interleaving.

For more information on using AMR-NB, see “Using AMR-NB” (page 84).

Media Storage, Processing, and Supported Codecs

Application Developer’s Guide 32

Audio Content Storage

The IP Media Server can retrieve and play audio files with content encoding and
file storage formats shown in Table 6.

Raw (headerless) G.711 a-law/µ-law content is represented as *.alaw and
*.ulaw. Raw (headerless) MSGSM content is represented as *.msgsm or
*.ms_gsm.

Note: If the file format is unknown or unspecified, the IP Media Server assumes
headerless µ-law.

Video

The IP Media Server can transmit and receive RTP video packets encoded in
H.263, H.263+, and H.264. See Table 5 (page 30).

Video is currently supported by the MSCML (conf) and VoiceXML (dialog) services.

Video transcoding is only supported by VoiceXML, and only during playback; it
is not supported for recording. Video recordings are done natively. For more
information about video transcoding, see “Video Transcoding” (page 39).

Mixed Audio/Video

Note: The IP Media Server will not play a video file that is not accompanied by
audio. If a file has video that extends beyond the end of the audio track, the
playback will be terminated at the end of the audio track.

WAV-based

Mixed audio and video content is supported using a proprietary WAV-based
format identified by the MIME type video/x-wav. Files of this type can contain a
G.711 audio track and an H.263, H.263+, H.263++, or H.264 video track.

This content type is currently supported by the MSCML (conf) and VoiceXML
(dialog) service.

Table 6. Audio Encoding and File Storage Formats

Content Encoding File Storage Formats

G.711 raw, .wav, .au

MSGSM raw, .wav

3GPP (AMR-NB) .3gp

3GPP2 (AMR-NB) .3g2

Media Storage, Processing, and Supported Codecs

Application Developer’s Guide 33

3GPP and 3GPP2

The IP Media Server supports playback of an associated video and audio stream
of 3rd Generation Partnership Project (3GPP) and 3rd Generation Partnership
Project 2 (3GPP2) file formats, provided that the video stream is stored in an
H.263+, H.263++ or H.264 video track, and the audio stream is stored in a
separate AMR-NB audio track.

On playback, the IP Media Server packetizes the video track into RTP streams,
and the audio track into RTP packets in one of the supported RTP encodings
(G.711, G.726, G.729, AMR-NB).

The IP Media Server also supports recording in the 3GPP file format (it does not
currently support recording in 3GPP2). For an example of how to do this in
VoiceXML 2.0, see “MIME Types Supported” (page 218).

The MIME type for 3GPP is video/3gpp. The MIME type for 3GPP2 is video/3gpp2.

The 3GPP and 3GPP2 file formats are currently supported by the MSCML (conf)
and VoiceXML (dialog) services.

Mixed Audio/Video Content Storage

The IP Media Server can retrieve and play multimedia files with content
encoding and file storage formats shown in Table 7.

File Storage and Retrieval

The IP Media Server can process files using NFS, HTTP, or RTSP.

Network File System (NFS)

The IP Media Server can retrieve, play, store, and record data files using the
Network File System (NFS) protocol, as defined in RFC 1094 and RFC 1813.

HTTP

The IP Media Server can retrieve and play data files using HTTP/1.0 (RFC 1945)
and HTTP/1.1 (RFC 2068) servers.

Table 7. Multimedia Encoding and File Storage Formats

Content
Encoding

File Storage
Formats Notes

3GPP .3gp Audio: AMR-NB
Video: H.263+, H.263++, or
H.264

3GPP2 .3g2 Audio: AMR-NB
Video: H.263+, H.263++, or
H.264

WAV-based .wav Audio: G.711
Video: H.263, H.263+,
H.263++, or H.264

Media Storage, Processing, and Supported Codecs

Application Developer’s Guide 34

Real Time Streaming Protocol (RTSP)

The IP Media Server can retrieve and play files stored on a Real Time Streaming
Protocol (RTSP) server, as defined in RFC 2326. The files stored on the RTSP
server must have audio and video codecs that are supported by the local IP
Media Server file playback; see Table 4 (page 30) and Table 5 (page 30).

DTMF

The IP Media Server supports the in-band tone detection of the DTMF digit set
(0-9, #, *, A-D), as defined in ITU recommendations Q.23 and Q.24, and
according to RFC 2833, "RTP Payload for DTMF Digits, Telephony Tones and
Telephony Signals".

For more information about DTMF and its use with MSCML, see “IVR Operations
on Participant Legs” (page 118).

In-Band Busy Tone Detection and Reporting

The IP Media Server supports in-band busy tone detection and reporting. This
feature allows you to monitor outbound calls that can terminate on a PBX.

Services

Application Developer’s Guide 35

Services

The IP Media Server supports the following SIP services:

Network Announcements

Conferences

Interactive Voice Response (IVR)

Dialog (VoiceXML)

Network Announcements

Announcement play-out happens when the IP Media Server retrieves stored
media and plays it out in an RTP audio stream.

Announcement files are stored at a location accessible by the IP Media Server.
The SIP INVITE message that plays an announcement includes the path for the
audio file in the play= parameter.

Example:

INVITE sip:annc@MS_IP;
play=file:////opt/snowshore/prompts/generic/
en_us/susan/circuit_busy.ulaw SIP/2.0

Figure 2. Network Announcements

The IP Media Server is factory-equipped with a library of generic audio
segments (see “Audio Library” (page 312)).

Simple Announcements

Simple announcements are audio files of fixed content that require no user
interaction. (For example, a message such as: “All circuits are busy. Please try
your call again later.”)

Simple announcements can be stored in a location that is accessible to the IP
Media Server and can be in the file://// scheme retrieved by NFS or the
http:// scheme retrieved by HTTP.

Dialogic® IP Media Server

Application Server

SIP UAC

SIPSIP

NFSRTP

Audio Files
(Web Content)

Audio Files
(Network Content)

HTTP

Services

Application Developer’s Guide 36

You can use the Web UI to configure a default location for audio files that play
as simple announcements. Once you configure this setting, the IP Media Server
prepends it to the play= parameter in the SIP message when there is no scheme
(file, http) specified between play= and the filename.

For example, if you set your default URL to this:

file:////opt/snowshore/prompts/generic/

then the IP Media Server interprets this request:

INVITE sip:annc@MS_IP;play=circuit_busy.ulaw SIP/2.0

as:

INVITE sip:annc@MS_IP;play=file:////opt/snowshore/prompts/
generic/circuit_busy.ulaw SIP/2.0

Announcement Sequences and Variable Content
Announcements

Announcement sequences are multiple audio files delivered in a single play-out.
Each portion of the sequence is a separate file that can be reused in another
sequence. In the following example, each sentence can be a separate file that
can also be used in other sequences:

”Thank you for calling Media Services. The office is currently closed. Our normal
business hours are Monday through Saturday, 10AM to 5PM.”

Sequences can also contain variables that are evaluated at run-time. For
example, the series of variables

<num_dial.wav>, <var1> <changed.wav> <new_num.wav> <var2>

becomes

“The number you have dialed, 555-122-2222, has been changed. The new
number is 555-122-3333.”

Conferences

Conferences are categorized in the following way:

Simple

Advanced

Conferencing requires that two or more RTP streams are mixed so that speakers
are heard in the output RTP stream. Input and output channels may be selected
from any supported RTP codec. The number of input channels per session
ranges from two to the available IP Media Server capacity. The output channels
generate a mix representing the inputs for a maximum of three active speakers.

The conference sessions mix the input media streams, creating a set of output
streams of mixed media. Advanced conference sessions additionally allow
operations on individual inputs and outputs to and from the conference mixer.
These operations include:

Tone detection

Tone generation

Tone suppression

Services

Application Developer’s Guide 37

Simple Conferences

The SIP interface supports simple conferencing with no control or special mixing
directives. Standard SIP methods create the conference, manage participant
access, and delete the conference. Based on IP Media Server capacity,
participants can listen and talk, with a maximum of three active talkers.

The number of participants per simple conference is dynamically allocated.

The URI in the SIP INVITE contains a conference service indicator (conf) with
a unique instance identifier. For example:

sip:conf=conference1@MS_IP SIP/2.0

The conference service creates a conference for the first instance of the unique
service instance identifier. The IP Media Server places subsequent requests with
the same service instance identifier into that conference.

Advanced Conferences

Enhanced SIP (inclusion of MSCML) supports the following:

Advanced conferencing with call control

IVR prompting

Mixing directives

Event notification

For example, you can set parameters on a per-conference basis to record the
conference and play announcements to all participants.

Interactive Voice Response (IVR)

The IVR service supports interactive voice response applications with functions
for playing prompts, collecting DTMF digits, and recording. This service uses
Media Server Control Markup Language (MSCML) to enable application control
of these functions.

Dialog (VoiceXML)

The Dialog service supports interactive voice response and video applications
written in VoiceXML. VoiceXML 2.0 and 1.0 are supported on the IP Media
Server.

Refer to “VoiceXML Version 2.0 and Dialog Service” (page 176) for information
about VoiceXML 2.0.

Refer to “VoiceXML Version 1.0 and Dialog Service” (page 326) for information
about VoiceXML 1.0.

Advanced Video Features

Application Developer’s Guide 38

Advanced Video Features

This section describes the advanced video features supported by the IP Media
Server:

Video Transcoding

Image Overlays and Text Overlays

Video Transcoding

Application Developer’s Guide 39

Video Transcoding

Video transcoding is the process of converting video media from one video
codec type to another (for example, from H.264 to H.263) between two
endpoints to suit the requirements of the device at each endpoint. Transcoding
involves decoding and encoding each frame of a video stream.

In the process of transcoding, features such as frame rate conversion, bit rate
control, image resizing, and text and image overlay can be applied. These
features are not applicable if video transcoding is not being used.

Video transrating adjusts the number of video frames per second between two
endpoints to suit the requirements of the device at each endpoint.

Bit rate control limits the video input bit rate to a lesser value at the output
while applying the algorithms to control video quality.

Image resizing converts video from one image size to another (for example,
from CIF to QCIF) between two endpoints to suit the requirements of the device
at each endpoint.

In this document, the term video transcoding or video transcoder encompasses
video transcoding, video transrating, bit rate control, and image resizing.

For a list of video codecs supported by the video transcoder, see Table 5
(page 30).

Note: Use of the video transcoder requires an advanced video license from
Dialogic. Each license supports a half-duplex (unidirectional) video transcoding
session.

Video Transcoder Settings

The video transcoder supports the following settings, which are configured in
the Web UI, Configure SIP page:

Auto

Automatically enables or disables video transcoding on each video
connection according to a set of rules (see Video Transcoder Automatic
Setting Rules). This is the default setting.

Force

Enables video transcoding for each video connection. This option supports
as many video connections as there are video transcoding licenses.

Turn off

Disables video transcoding for each video connection.

Video Transcoder Automatic Setting Rules

The automatic (auto) setting for video transcoding allows the IP Media Server
to determine when video transcoding is required on a video connection and
enable it as needed. This setting results in optimal use of video transcoding
resources.

Video Transcoding

Application Developer’s Guide 40

A video transcoding license is consumed and video transcoding is enabled for
the automatic setting when any of the following conditions is true:

The source codec does not match the target codec.

The source image size does not match the target image size.

The source frame rate is greater than the target frame rate.

The source bit rate is greater than the target bit rate.

A text overlay or image overlay is being applied to the video stream.

The video transcoding license is released and video transcoding is disabled
when all of these conditions are false.

Video Transcoder Restrictions

If a session without transcoding is in progress, and playback begins of a new
video file whose header indicates that it is not compatible with the endpoint, the
IP Media Server continues streaming the video without transcoding.

Image Overlays and Text Overlays

Application Developer’s Guide 41

Image Overlays and Text Overlays

An image overlay provides the ability to superimpose one or more images
(graphics) over a video stream. A text overlay provides the ability to
superimpose one or more text elements over a video stream. The resulting
video stream contains both the overlay elements and the original video stream.

Overlay elements can be of varying sizes, and in the case of text elements, also
of varying fonts and colors. These elements can be inserted in real time. For
example, you can create an interactive menu or display a corporate logo as an
overlay over a video stream.

Overlay functionality is implemented in VoiceXML 2.0.

The IP Media Server supports the following file types for image overlay:

JPEG

PNG

The IP Media Server supports the following text formats for text overlay:

ASCII

UTF-8 as defined in IETF RFC 3629

GB18030 as defined in the Chinese National Standard GB 18030-2005

For more information on overlays, see “Image Overlay and Text Overlay
Functionality” (page 227).

Note: Use of a text overlay or image overlay requires an advanced video license
from Dialogic.

Real Time Streaming Protocol (RTSP)

Application Developer’s Guide 42

Real Time Streaming Protocol (RTSP)

The IP Media Server supports the Real Time Streaming Protocol (RTSP) as a
client, as defined in RFC 2326. RTSP is a network control protocol used by RTSP
clients to control streaming media servers.

The IP Media Server provides the capability to stream media from RTSP servers
to SIP endpoints. This capability is implemented through the RTSP client stack
included with the IP Media Server (the RTSP server stack is not included). The
SIP endpoints can control playback of the media stream from the RTSP server.

Applications for RTSP include large-scale broadcasts, video voice-mail, and
audio/video-on-demand streaming.

RTSP provides a means to choose and establish delivery channels, such as UDP,
and to control media sessions between endpoints. RTSP clients can control
playback of media using pause, fast forward, and rewind commands. The IP
Media Server does not support recording to an RTSP server.

RTSP functionality is supported with VoiceXML 2.0. Properties provided in the
VoiceXML 2.0 browser are used to pause, fast forward, and rewind audio and
video playback from an RTSP server. For more information, see “Using VCR and
Gain Controls” (page 304).

Figure 3 illustrates the role of the IP Media Server in streaming media from an
RTSP server to a SIP endpoint.

Figure 3. Role of the IP Media Server with RTSP Server

Configuring Session Keep Alive

The IP Media Server assumes that RTSP servers use RTCP RR (Receiver
Reports) for session keep alive.

If an RTSP server uses a different method (listed below) for session keep alive,
you will need to specify and configure the following parameters in
snowshore.cfg for the RTSP client:

RtspSetParam

Enable or disable SET_PARAMETER method. Values are: 0=auto, 1=enable,
2=disable. Default value is 2.

RtspGetParam

Enable or disable GET_PARAMETER method. Values are: 0=auto,
1=enable, 2=disable. Default value is 2.

IP Media ServerSIP Endpoint

Application Servers

SIP

RTSP Servers
RTSPRTP

Real Time Streaming Protocol (RTSP)

Application Developer’s Guide 43

RtspPingFlag

Enable or disable PING flag. This flag controls a ping option used by some
servers with GET_PARAMETER method. Values are: 0=disable, 1=enable.
Default value is 0.

RtspOptionsFlag

Enable or disable OPTIONS flag. Values are: 0=disable, 1=enable. Default
value is 0.

The following parameter is used to change the time value for keep alive.

RtspKeepAliveTimeValue

Time interval in seconds between successive sessions keep alive. Default
value is 30 seconds.

Application Developer’s Guide 44

2 - Session Initiation Protocol (SIP)

This chapter explains in detail the Session Initiation Protocol (SIP) methods,
headers, and response codes that the IP Media Server currently supports.

This chapter includes the following major sections:

Conformance

Media Server Availability
SIP Description
SIP Requests
SIP Methods
SIP Headers
SIP Responses
Session Description Protocol
Ports
Using AMR-NB

Conformance

Application Developer’s Guide 45

Conformance

The IP Media Server currently conforms to the following SIP and SDP (Session
Description Protocol) specifications:

[1] IETF RFC 2327, “SDP: Session Description Protocol”, M. Handley et al., April
1998.

[2] IETF RFC 2543, “SIP: Session Initiation Protocol”, M. Handley, H.
Schulzrinne, E. Schooler, J. Rosenberg, March 1999.

[3] draft-ietf-sip-rfc2543bis-03 “SIP: Session Initiation Protocol”, M. Handley, H
Schulzrinne, E. Schooler, J. Rosenberg, March 1999. (Partial conformance for
methods, headers, and return codes, as indicated on pages 52, 60, and 67
respectively.)

[4] IETF RFC 2976, “The SIP INFO Method”, S. Donovan, October 2000.

[5] draft-ietf-sip-100rel-03, “Reliability of Provisional Responses in SIP”, J.
Rosenberg, H. Schulzrinne, March 2001, work in progress.

[6] draft-ietf-sip-session-timer-04, “SIP Session Timer”, S. Donovan, J.
Rosenberg, November 2000.

[7] draft-ietf-sipping-netann-06, “Basic Network Media Services with SIP”, E.
Burger and J. Van Dyke, July 2003, work in progress.

[8] IETF RFC 2045 and 2046, “Multipurpose Internet Mail Extensions (MIME)
Part One: Format of Internet Message Bodies” and “Multipurpose Internet Mail
Extensions (MIME) Part Two: Media Types”, Borenstein and Freed, November
1996.

[9] IETF RFC 5022, “Media Server Control Markup Language (MSCML) and
Protocol”, J. Van Dyke, E. Burger, A. Spitzer, September 2007.

[10] IETF RFC 2833, “RTP Payload for DTMF Digits, Telephony Tones and
Telephony Signals”, H. Schulzrinne, S. Petrack, May 2000.

[11] IETF RFC 3261, “SIP: Session Initiation Protocol”, J. Rosenberg et al., June
2002.

[12] IETF RFC 3264, “SIP: Session Initiation Protocol”, J. Rosenberg et al., June
2002.

Media Server Availability

Application Developer’s Guide 46

Media Server Availability

The IP Media Server supports SIP OPTIONS, which allows an endpoint to query
the supported methods, content types, extensions, and codecs without
establishing a call with the IP Media Server.

Please contact Dialogic Technical Support if you need to enable this feature.

SIP Description

Application Developer’s Guide 47

SIP Description

SIP (Session Initiation Protocol) is an IP telephony signaling protocol developed
by the IETF. Generally used for voice over IP (VoIP) calls, SIP can also be used
for video or any media type; for example, SIP has been used to set up multi-
player games.

SIP is a text-based protocol based on HTTP and MIME, which makes it suitable
for integrated voice-data applications. Its addressing scheme uses URLs and is
human readable; for example: sip:john.doe@company.com.

SIP relies on the Session Description Protocol (SDP) for session description and
the Real-time Transport Protocol (RTP) for actual transport.

SIP handles the initiation, modification, and teardown of multimedia sessions
through the transmission of messages between clients and servers. Messages
specify the network path and session description and can also include other
payloads, and expected or required options.

SIP allows for the inclusion of parameters and encoded documents in the
INVITE message as well as content in the message body. See “SIP Message
Body Types” (page 49) for the list of accepted message body types supported
in this release.

SIP User Agents

SIP User Agents are participants in a SIP session.

A User-Agent Client (UAC) is a logical entity that issues requests and waits
for responses.

A User-Agent Server (UAS) is a logical entity that listens for and responds
to a SIP request by either accepting or rejecting the request.

UAC and UAS functions change during the course of a call. For example, when
playing an announcement, the application server acts as the UAS when it is
directly engaged in SIP signaling with UACs such as SIP phones that use media
services.

SIP Message

A SIP message is either a request from a UAC to a UAS identifying a desired
service and providing a context for interpreting the request, or a response
(status message) from the UAS to the UAC.

Messages employ a text-based protocol, using ISO 10646 character set in UTF-
8 encoding. Unless otherwise stated, parameter names and values are case-
insensitive.

SIP Transaction

A SIP transaction consists of the messages from the first request sent by the
UAC to the corresponding, final response sent from the UAS. A sequence
number (for example, CSeq:2) defines the transactions.

SIP Description

Application Developer’s Guide 48

URLs

Universal Resource Locators (URLs) are used in SIP messages to indicate the
originator (From), the routed destination (Request-URI), and final recipient (To)
of a SIP request, and also to specify redirection addresses (Contact).

Both dotted IP addresses and fully-qualified domain names are accepted
network addresses.

A SIP URL follows the guidelines of RFC 2396 and takes a form similar to a mail
to or Telnet URL; for example, user@host.

Service Indicators

Service indicators in the initial SIP INVITE request direct how the IP Media
Server processes the request.

In the context of SIP control, the IP Media Server substitutes a service indicator
for the user component on the left-hand side of the URI. For example, a SIP
request for an announcement takes the form sip:annc@MS_IP.

The IP Media Server, upon receiving the INVITE, notes the service indicator and
interprets the request accordingly.

Table 8 lists the SIP services and associated indicators.

Default Application Service

If no service indicator appears in the SIP message, the default application is
VoiceXML (the dialog service indicator). You can change this default application
through the Web User Interface as follows:

1 Select Media Server > Configure > SIP menu

2 Set the Default Application under the SIP Parameters section.

3 The default version of VXML is 2.0 which you can configure from the Media
Server > Configure > VOICEXML menu.

Table 8. Application Service Indicators

Service Indicator Example* Page

Announcements annc INVITE sip:annc@MS_IP;
play=(etc.) SIP/2.0

82

Conferencing conf INVITE sip:conf=confid@MS_IP
SIP/2.0

99

IVR ivr INFO sip:ivr@MS_IP SIP/2.0 82

VoiceXML dialog INVITE sip:dialog@MS_IP;
voicexml=http://path/
filename.vxml SIP/2.0

82 and 177

SIP Description

Application Developer’s Guide 49

SIP Message Body Types

Table 9 lists the valid message body content types.

The maximum inbound SIP message size is 2900 bytes. This size prevents
buffer overflow caused by proprietary SIP message headers used by some
third-party network elements.

Table 9. Valid Content (MIME) Types

Service / Return Type Content Type

All services application/sdp

Advanced conferences (conf= with
MSCML)

ivr service

application/mediaservercontrol+xml

Advanced conferences (conf= with
MSCML)

multipart/mixed

Two pieces to the Return Type:

Media Server Licensed Feature Set

Media Server Processes and Status

application/media_server_usage+xml

SIP Requests

Application Developer’s Guide 50

SIP Requests

A SIP Request begins with a request line, followed by one or more headers. An
empty line [a carriage return line feed (CRLF) followed by another carriage
return line feed] marks the end of the header lines, and can be followed by an
optional message body, which can contain a Session Description Protocol (SDP)
body.

Example 1. SIP Message

SIP Request INVITE sip:annc@192.168.12.155:5060;
play=file:////opt/snowshore/prompts/generic/

circuit_busy.ulaw;early=no SIP/2.0

SIP Headers Via: SIP/2.0/UDP 192.168.1.150:6100
To: <sip:annc@192.168.12.155:5060>
From: <sip:test0@192.168.12.153:5060>
Call-ID: 27103@192.168.1.150
Contact: sip:192.168.1.150:6100
CSeq: 2 INVITE
Content-Type: application/sdp
Supported: timer
Supported: 100rel
Session-Expires: 60
Content-Length: 15

Message
Body

v=0
o=SnowShoreUaV1 14250 3757 IN IP4 192.168.1.150
s=SnowShore Sdp
t=0 0
m=audio 6000/1 RTP/AVP 0
c=IN IP4 192.168.12.154
a=sendrecv
a=ptime:10

Request Line

The request line consists of the following elements:

Method, encoded by ASCII characters, which describes the action requested
(INVITE, shown in the above example)

Request-URI, which indicates the user or service receiving the request
(sip:annc@192.168.12.155:5060, shown in the example)

SIP version (SIP/2.0)
Parameters and attributes (such as play= and early =), shown in the following
example.

SIP Requests

Application Developer’s Guide 51

Example 2. SIP Parameters and Attributes

INVITE sip:annc@192.168.12.155:5060;
play=file:////opt/snowshore/prompts/generic/en_us/

susan/circuit_busy.ulaw;
early=no SIP/2.0

Headers

A SIP header consists of the header name, followed by a colon, followed by a
space and the header value, for example, Supported: 100rel.

There are four types of SIP headers:

General

Request

Response

Entity

The order of headers is not significant in the SIP Request. See “Session
Description Headers” (page 71) for more information on SDP headers.

Session Descriptor

The session descriptor is encoded in conformance with the Session Description
Protocol (RFC 2327) and contains a value or a range of values, such as a media
description field and the connection-type attribute.

For details concerning the Session Description Protocol, see “Session
Description Protocol” (page 71).

SIP Methods

Application Developer’s Guide 52

SIP Methods

The IP Media Server supports five methods from the SIP core protocol, as well
as two methods—INFO and PRACK—that have been defined as extensions.

These methods are described in the following sections, including a list of
Dialogic-supported headers for each one. (The headers are described in “SIP
Headers” (page 60).)

INVITE

The INVITE method initiates or modifies a session. For example, an INVITE is
sent to the IP Media Server requesting that the server participate in a call. An
INVITE is followed by an ACK.

SIP INVITEs can also be initiated by the IP Media Server by a VoiceXML script.
The IP Media Server typically does not initiate SIP INVITEs, but can act as a
refresher for SIP session timers. When the IP Media Server acts as a refresher
(user agent client), it sends session timer update messages during a SIP
session. (The only other exception is VoiceXML <transfer>.) For details on the
Session Timer, refer to “Basic Network Media Services with SIP” listed in
“Conformance” (page 45).

Note: The IP Media Server supports session timers in compliance with “Basic
Network Media Services with SIP”. There is no session timer if early=yes, as a
stable session is not established.

The INVITE can include the SDP offer. If not present in the INVITE, the IP Media
Server provides the SDP in the final response and the client must answer in the
ACK.

Table 10. Supported SIP Methods

Method Description Page

INVITE Establishes a session or modifies a session. 52

ACK Acknowledges final responses to INVITE requests. 54

CANCEL Cancels a pending INVITE that terminates an
unestablished call.

54

OPTIONS Queries the IP Media Server on capabilities and current
availability.

56

BYE Ends a session. 57

INFO Used for mid-call application requests, responses, and
events. (RFC 2976, “SIP INFO Method”)

57

PRACK Acknowledges receipt of a provisional response.
(draft-ietf-sip-100rel-03, “Reliability of Provisional
Responses in SIP”)

59

SIP Methods

Application Developer’s Guide 53

A re-INVITE renegotiates the media capabilities of an existing session and
supports session timers. The re-INVITE must have a higher CSeq than any
previous request from the UAC to the IP Media Server.

See the SIP request parameters “SIP Request Parameters for Announcements”
(page 94) for more information.

Headers in an INVITE

Table 11 lists the mandatory and optional headers in a SIP INVITE method.

Table 11. SIP Headers in an INVITE

Header Page

Mandatory Call-ID (i) 62

CSeq 63

From (f) 63

To (t) 65

Via (v) 65

Contact (m) 62

Optional Accept 61

Content-Length (l) 62

Record-Route 64

Require 64

Route 64

Session-Expires 64

Subject 64

Supported 65

Unsupported 65

SIP Methods

Application Developer’s Guide 54

ACK

The ACK method acknowledges the receipt of a final response to an INVITE. An
ACK functions as follows:

Used only with INVITE requests

Issued by the party that sent the INVITE

Does not generate a response

The ACK request has the same CSeq number as the corresponding INVITE
request but comprises a transaction of its own.

The ACK can include SDP information only if the INVITE request did not. A UAC
must not send an updated session description in an ACK response, if it has
already sent one in the INVITE request.

Headers in an ACK

Table 12 lists the mandatory and optional headers in a SIP ACK method.

CANCEL

The CANCEL method is a request from the UAC to cancel a pending request with
the same Call-ID, To, From, Via header, Request-URI, and CSeq (sequence
number only). The IP Media Server ignores a CANCEL request if it arrives after
the final response has been sent.

Table 12. SIP Headers in an ACK Method

Header Page

Mandatory Call-ID (i) 62

CSeq 63

From (f) 63

To (t) 65

Via (v) 65

Optional Content-Length (l) 62

Content-Type (c) 63

Record-Route 64

Require 64

Route 64

Supported 65

Unsupported 65

SIP Methods

Application Developer’s Guide 55

Headers in CANCEL

Table 13 lists the mandatory and optional headers in a SIP CANCEL method.

Table 13. SIP Headers in a CANCEL Method

Header Page

Mandatory Call-ID (i) 62

CSeq 63

From (f) 63

To (t) 65

Via (v) 65

Optional Accept 61

Content-Length (l) 62

Record-Route 64

Require 64

Supported 65

Unsupported 65

SIP Methods

Application Developer’s Guide 56

OPTIONS

The OPTIONS method is a request from the UAC for information from the IP
Media Server about the SIP methods supported. The response contains
supported methods, content types, and extensions.

Headers in OPTIONS

Table 14 lists the mandatory and optional headers in a SIP OPTIONS method.

Table 14. SIP Headers in an OPTIONS Method

Header Page

Mandatory Call-ID (i) 62

CSeq 63

From (f) 63

To (t) 65

Via (v) 65

Optional Accept 61

Content-Length (l) 62

Record-Route 64

Require 64

Supported 65

Unsupported 65

SIP Methods

Application Developer’s Guide 57

BYE

The BYE method terminates a session by indicating that either the application
server or the IP Media Server wants to end the connection.

Note: BYEs are sent only when a stable session exists.

Headers in BYE

Table 15 lists the mandatory and optional headers in a SIP BYE method.

Table 15. SIP Headers in a BYE Method

Header Page

Mandatory Call-ID (i) 62

CSeq 63

From (f) 63

To (t) 65

Via (v) 65

Optional Accept 61

Content-Length (l) 62

Content-Type (c) 63

Record-Route 64

Require 64

Route 64

Supported 65

Unsupported 65

SIP Methods

Application Developer’s Guide 58

INFO

The INFO method is used during a session to convey application-specific
information and events and to communicate mid-session signaling information
that does not affect session state.

Headers in INFO

Table 16 lists the mandatory and optional headers in a SIP INFO method.

Table 16. SIP Headers in an INFO Method

Header Page

Mandatory Call-ID (i) 62

CSeq 63

From (f) 63

To (t) 65

Via (v) 65

Optional Accept 61

Content-Length (l) 62

Content-Type (c) 63

Record-Route 64

Require 64

Supported 65

Unsupported 65

SIP Methods

Application Developer’s Guide 59

PRACK

The PRACK method acknowledges receipt of a provisional response. Like ACK,
it is used only with INVITE requests and is issued by the party that sent the
INVITE. The IP Media Server does not issue this request, but responds with 200
OK to UACs who require or support [5] draft-ietf-sip-100rel-04, “Reliability of
Provisional Responses in SIP”.

Figure 4 (page 78) shows a call flow for a provisional response.

Headers in a PRACK

Table 17 lists the SIP headers in a PRACK Method.

Table 17. SIP Headers in a PRACK Method

Header Page

Mandatory Call-ID (i) 62

CSeq 63

From (f) 63

To (t) 65

Via (v) 65

Optional Accept 61

Content-Length (l) 62

Record-Route 64

Require 64

Supported 65

Unsupported 65

SIP Headers

Application Developer’s Guide 60

SIP Headers

There are four types of SIP headers:

General headers, used in both requests and responses.

Request headers, used for request messages to provide additional
information about the request or the UAC.

Response headers, which are added to responses to give information that
supplements the response code and reason phrase.

Entity headers, used to provide additional information about the message
body or resource requested.

Table 18 lists the SIP headers that the IP Media Server supports. The headers
are described in “Supported Headers” (page 61). Unsupported headers are
parsed syntactically, but then discarded.

Table 18. Supported SIP Headers

SIP Header Description Page

Accept Indicates acceptable message types. 61

Call-ID (i)

(Mandatory)

Identifies a session or a call. 62

Contact (m) URL where the user can be reached. 62

Content-Length
(l)

size of message body. 62

Content-Type (c)

(Mandatory)

Media type in the message. 63

CSeq

(Mandatory)

Orders different requests within the same
session and matches requests against
responses.

63

From (f)

(Mandatory)

Initiator of the request (name and SIP
URL).

63

Max-Forwards

(Mandatory)

Upper limit on the number of intermediary
proxies.

63

Record-Route Forces routing through a proxy. 64

Require Options that must be supported. 64

Route Forces routing. 64

Session-Expires Serves as watchdog time out. 64

Server Provides MS identifying information in IP
Media Server request messages.

64

Subject Indicates client or server. 64

Supported One or more options. 65

SIP Headers

Application Developer’s Guide 61

Format and Syntax

SIP headers appear after the request line in Requests and after the status line
in Responses.

A header line takes the syntax headername: headervalue. Allowed values can
be a single numeric value, a hex string, or a comma-separated list of values.
Values are not case sensitive.

Unsupported headers, malformed headers, and disallowed characters in
supported headers do not generate a specific response. They may be ignored,
or they may generate a 4xx error (final response indicating client error).

Supported Headers

This section lists and describes the supported headers in alphabetical order.

Common headers also have a compact form, which appears in parentheses
after the header name; for example, From (f), Contact (m).

Accept

The Accept Header is used in the OPTIONS message to indicate to the Media
Server that it would like to request the MS Usage. The format is as follows:

Accept: application/media_server_usage+xml

Optional in BYE, CANCEL, INVITE, and OPTIONS requests.

Optional in response to BYE, CANCEL, INVITE, and OPTIONS requests.

Values

Internet media (MIME types of the format type/subtype). See the accepted
MIME types in Table 9 (page 49).

To (t)

(Mandatory)

Recipient of the request (name and SIP
URL).

65

Unsupported

(Mandatory)

Features not supported by the server. 65

User-Agent Provides IP Media Server identifying
information in IP Media Server response
messages.

65

Via (v)

(Mandatory)

Records the route taken by a request. 65

Table 18. Supported SIP Headers

SIP Header Description Page

SIP Headers

Application Developer’s Guide 62

Call-ID (i)

This general header is created by the UAC to identify a call. It must be globally
and chronologically unique across all calls, because it is used to keep track of
the SIP session.

The combination of the To, From, and Call-ID headers completely defines a
peer-to-peer SIP relationship (referred to in draft-ietf-sip-rfc2543bis-03 “SIP:
Session Initiation Protocol”) as a call leg and in [4b] as a dialog.

The Call-ID is never modified by the IP Media Server.

Mandatory in all requests and all responses.

Values

A random identifier (case-sensitive string) that is globally and chronologically
unique.

A common method of generating Call-IDs is to append the current time and host
IP address to a random number.

For example, this identifier is not guaranteed to be unique in the network:

Call-ID: 123456.

In this example, this identifier is guaranteed to be unique in the network:

Call-ID: 20031120105449192.168.15.91@my.com (random number:20031120105; time:
4:49; IP address: 192.168.15.91).

Contact (m)

This general header contains the URL to which the IP Media Server directs
requests in a dialog.

Mandatory for ACK, INVITE, and OPTIONS requests.

Mandatory in response to INVITE and OPTIONS requests.

Values

All URL parameters are allowed.

Content-Length (l)

This entity header indicates the size of the message-body sent to the recipient.
This header is optional. However, if Content Type is present, the octet count of
the message body value must be correct.

Optional for all except CANCEL requests (for which it is N/A).

Optional for all responses.

Values

Decimal number of octets. Any value greater than or equal to 0 is valid.

SIP Headers

Application Developer’s Guide 63

Content-Type (c)

This entity header specifies the Internet media (MIME) type in the message
body. If an Accept header was listed in the request, the response Content-Type
must be listed in the Accept.

Mandatory when a message body is present in the method. Otherwise, optional
in all requests and responses and not applicable for CANCEL requests.

Values

Internet media types of the format type/subtype:

application/sdp for all services.

application/mediaservercontrol+xml for advanced conferences and IVR.

multipart/mixed when both application/sdp and
application/mediaservercontrol+xml are present.

application/mediaserverusage+xml for IP Media Server licensed feature set and
IP Media Server processes and status

CSeq

This general header serves to uniquely identify and order SIP transactions
within the same session.

This header contains a 32-bit unsigned integer that increases with every
request, except for ACK and CANCEL requests, which use the CSeq number of
the INVITE to which they correlate.

A response must contain the CSeq value from the request.

Mandatory in all requests and all responses.

Values

A decimal number followed by the method name.

From (f)

This general header indicates the originator of the message and is one of two
addresses used to identify the call leg (the other is To:).

Per draft-ietf-sip-rfc2543bis-03, requests and responses must contain a From
general-header field indicating the initiator of the message.

Mandatory in all requests and all responses.

Values

All URL parameters are allowed.
URL is enclosed in <> when a display name is present.

Max-Forwards

This request header specifies an upper limit on the number of intermediary
proxies.

SIP Headers

Application Developer’s Guide 64

Record-Route

This request header forces routing through a proxy. The proxy puts a Record-
Route in the request, so that the response is routed back to the proxy.

Optional in all requests and all responses.

Values

The URL for the required route.

Require

This request header specifies options the UAC expects the IP Media Server to
support. The IP Media Server can also use the Require header in a response.

Optional in all requests and all responses.

Values

Takes the value of the option(s).

Route

This request header describes routing for a request.

Optional in all requests and all responses.

Values

URL parameters for the route.

Session-Expires

This request header defines a session timer refresh interval.

Optional in INVITE requests.

Optional in 200 OK responses to INVITE requests.

Values

Takes a timer value (in seconds).

Server

This general header field contains information about the software used by the
UAS to handle the request.

Subject

This general header field provides a summary or indicates the nature of the call
and allows call filtering without having to parse the session description. The
session description does not have to use the same subject indication as the
invitation.

Optional in all responses.

SIP Headers

Application Developer’s Guide 65

Supported

This general header enumerates the capabilities (options) of the client or server.

Optional in BYE, CANCEL, INVITE, and OPTIONS requests.

Optional in response to BYE, CANCEL, INVITE, and OPTIONS requests.

Values

Takes the values of the supported options.

To (t)

This general header indicates the final destination (recipient) of the message.

Per draft-ietf-sip-rfc2543bis-03 “SIP: Session Initiation Protocol”, requests and
responses must contain a To: general-header field, indicating the desired
recipient of the request.

Note: This header is not used for routing; the Request-URI is used for routing.

Mandatory in all requests and all responses.

Values

All URL parameters are allowed.
URL is enclosed in <> when a display name is present.

Unsupported

This general response header indicates features that are not supported by the
server.

Optional in all responses.

Values

Takes the values of the unsupported options.

User-Agent

This general header contains information about the UAC originating the request.
The purpose of User-Agent is to collect statistics, trace protocol violations, and
automatically recognize user agents for tailoring responses to avoid particular
user-agent limitations. User-agents should include this field with requests. The
field can contain multiple product tokens and comments identifying the agent
and any subproducts that form a significant part of the user-agent.

Via (v)

This general header records the route taken by a request. It contains the
protocol name and version, type of transport, host name and address, and port
number.

Mandatory in all requests and all responses.

SIP Headers

Application Developer’s Guide 66

Values

All URL parameters are allowed.
URL is enclosed in <> when a display name is present.

SIP Responses

Application Developer’s Guide 67

SIP Responses

Responses are returned for most requests. They consist of a status line, several
headers, an empty line, and an optional message body.

A response status line consists of three elements:

Protocol version

Return code

Reason phrase (The phrase associated with each code, for example:
“SIP/2.0 100 Trying”.)

SIP Provisional Response Configuration

The IP Media Server can be configured to generate 180 or 183 SIP provisional
responses. This feature provides flexibility to address the interoperability
requirements of various SIP implementations.

Note: A provisional response configuration item does not affect the behavior of
early media announcements, which by definition, require a 183 to be sent.

SIP Return Codes

All SIP requests other than ACKs are acknowledged with a return code in the
response header. Codes are grouped in the following classes:

100-199 indicates a provisional response.

200-299 is a final response indicating success.

400-499 is a final response indicating client error.

500-599 is a final response indicating server error.

600-699 is a final response indicating a global error.

Note: The IP Media Server does not send redirection responses (class 3xx).

SIP Responses

Application Developer’s Guide 68

Table 19 lists the return codes that can be sent in responses from the IP Media
Server, and notes when and why they are sent.

Table 19. SIP Return Codes Generated by the IP Media Server

Code Code
Classes

Reason
Phrase

Examples of When / Why

100 Provisional Trying INVITE received.

183 Provisional Session
progress

Early media requested in INVITE for
announcement (annc with
early=yes).

200 Success OK Request accepted.

CANCEL and BYE received.

400 Client Error Bad request Error detected with a message body
(such as the failure to execute an
XML script).

Request received to create a
conference that already exists.

Request received, but the session is
not stable.

Request cannot be decoded by the
SIP parser.

INVITE is improperly formatted.
Response is set to the destination
indicated by the Via header, if it can
be parsed. Otherwise, it is sent to
the source IP address:port that
generated the request. The
Request-URI cannot contain any
errors in order for the response to
be generated.

401 Client Error Unauthorized Request missing required headers.

403 Client Error Forbidden Requested SDP is not supported; for
example, G.729a is requested for a
conference.

404 Client Error File not Found Announcement content not found

405 Client Error Method not
allowed

Stable session established, but UAC
attempts to perform an
unsupported method.

415 Client Error Unsupported
media type

Requested SDP contains
unsupported media type.

SIP Responses

Application Developer’s Guide 69

420 Client Error Bad Extension INVITE contains Require header
specifying an unsupported
extension. The only supported
extensions are “100rel” (Reliable
Provisional Response) and “timer”
(SIP Session Timer). The response
contains a Supported header that
lists these extensions.

480 Client Error Temporarily
unavailable

Resource cannot be allocated.

Layer of stack not available for
processing.

The IP Media Server exceeded the
number of RTP licenses.

486 Client Error Busy Here Contact was successful, but the
callee is not willing or able to take
the call.

Cannot add leg to valid conference.

487 Client Error Request
terminated

Early media requested in an INVITE
when announcement has
completed. (This is the default
response code to end of
announcement when early=yes.)

Re-INVITE sent while session is
being torn down.

INVITE sent when CANCEL has been
received and processed with a non-
stable session.

488 Client Error Not
acceptable
here

Received SDP information that
cannot be processed.

The 488 response contains a
warning header that describes the
details of the SDP negotiation
issues, such as an SDP offer
containing codecs that are
unsupported by the IP Media Server
or requests for a media type other
than audio.

500 Server Error Internal error Hardware or software error, or
system resources are fully utilized.

Internal error processing a request
(such as memory allocation or
errors from SIP parser API).
Maximum concurrent sessions are
in use.

Table 19. SIP Return Codes Generated by the IP Media Server (continued)

Code Code
Classes

Reason
Phrase

Examples of When / Why

SIP Responses

Application Developer’s Guide 70

503 Server Error Service
Unavailable

System is shutting down.

The system has been placed in an
operational state in which no new
calls are accepted.

606 Global Error Not
acceptable

The user wants to communicate,
but cannot adequately support the
session described. Even though the
user’s agent was contacted
successfully, some aspects of the
session description, such as
requested media, bandwidth, or
addressing style were not
acceptable. The 606 response might
contain a list of reasons in a warning
header field, indicating why the
session cannot be supported.

Table 19. SIP Return Codes Generated by the IP Media Server (continued)

Code Code
Classes

Reason
Phrase

Examples of When / Why

Session Description Protocol

Application Developer’s Guide 71

Session Description Protocol

The Session Description Protocol (SDP) provides a text-based format
(field=value) for describing how a session is encoded.

SDP supports many types of sessions, from simple audio conversations to multi-
media conferences with video and whiteboard support.

SDP content includes session-level information beginning with the v= header
line, followed by media-level information, which begins with the
m= header.

SDP requires that fields appear in a certain order. Table 20 lists and defines the
SDP headers in the required order. Values are case-sensitive.

Examples of uses of SDP in SIP include the following:

Version

Origin

Session

Connection

Media attributes

Because the type of media session and codec are part of connection negotiation,
SIP uses the SDP to specify multiple media types, and can selectively accept or
decline each type.

Note: All SDP must be compliant with ABNF as defined in RFC 2327. Syntax
errors are rejected, even when they are present in SDP headers that the IP
Media Server ignores.

Session Description Headers

Table 20 describes the SDP description headers and the action taken when they
are either received or sent. Headers with a * next to them are defined as
optional in RFC 2327. Actions are described further in Table 23 (page 73).

Table 20. SDP Description Headers

Header Description Action (When
Received/When Sent)

v Protocol version which is
indicated by ‘v=0’.

Ignored/Static

Protocol version header is
ignored when received in an
offer and set to zero on a
created offer or response.

o Owner/creator and session
identifier.

o=<username> <session id>
<version> <network type>
<address type> <address>

Ignored/Static

The origin header is ignored
when received as an offer and
set to static and created
values.

Session Description Protocol

Application Developer’s Guide 72

Time Description Headers

Table 21 lists and defines the SDP time description headers.

s Session name (one per session
description)

Ignored/Static

Ignored when offered. Static
value set to "SnowShore SDP"
when created.

*i Session information Ignored

*u URI of description Ignored

*e Email address Ignored

*p Phone number Ignored

*c Connection information.
c=<network type> <address
type> <connection address>

Not required if included in all
media descriptions. See “c=
(Connection data)” (page 74)
for details.

Extracted/Static/Created

Extracted when offered.

Static when not.

Created for late media.

*b Bandwidth information Ignored

*z Time zone adjustments Ignored

*k Encryption key Ignored

*a Zero or more attribute lines.
See page 75 for details.

Extracted/Static/Created

Table 21. SDP Time Description Headers

Header Description Action (When
Received/When Sent)

t Time the session is active. Ignored

*r Zero or more repeat times. Ignored

Table 20. SDP Description Headers (continued)

Header Description Action (When
Received/When Sent)

Session Description Protocol

Application Developer’s Guide 73

Media Description Headers

Table 22 lists and defines SDP media description headers.

Header Action Classes

Table 23 lists and defines the four different types of SDP header action classes
associated with the SDP headers.

Header Definitions

The following sections describe the SDP headers and their respective attributes.

Table 22. SDP Media Description Headers

Header Description Action (When
Received/When Sent)

m Media name and transport
address. m=<media> <port>
<transport> <fmt list>

See “m= (Media information)”
(page 74) for details.

Extracted/Static/Created

*i Media title Ignored

*c Connection information.
Optional if included at session
level. See “c= (Connection
data)” (page 74) for details.

Extracted/Static/Created

*b Bandwidth information Ignored

*k Encryption key Ignored

*a Zero or more attribute lines.
See page 75 for details.

Extracted/Static/Created

Table 23. Action Classes

Header Definition

Ignored The header and/or header fields are ignored.

Static The header and/or header fields are static within the
session control stack.

Extracted The header and/or header fields are extracted from the
parsed SIP method or SDP.

Created The header and/or header fields are dynamic.

Session Description Protocol

Application Developer’s Guide 74

m= (Media information)

m=<media> <port> <transport> <fmt list>

c= (Connection data)

c=<network type> <address type> <connection_address>

Connection address setting of 0.0.0.0 is used to specify Hold (suspend audio) on
an RTP session. See “IP Media Server Behavior When Hold Media is Presented”
(page 81) for additional information on Hold.

Note: The IP Media Server does not support multicast.
A Time-to-Live (TTL) value in the c= field generates an error.

Attribute Description

<media>
<port>

Media type is set to audio or video when offered, followed by
the starting port number.

All other media types are ignored.

<transport> Transport protocol is always set to RTP/AV.

<fmt list> Static or dynamic payload codec type(s).

Note: For a list of supported media formats, see “Media
Storage, Processing, and Supported Codecs” (page 30) and
Table 4 (page 30).

Multiple codecs offered to the IP Media Server will result in a
single codec accepted. The choice normally is made from left
to right, based on what the IP Media Server can accept.
There must be at least one matching codec. Every code can
be augmented by RFC 2833 payload type.

The IP Media Server-offered codecs (one audio, one video)
are configurable through the Web User Interface. G.711 µ-
law is the default audio code.

Use the SIP parameters: Prefer Offer Codec or Require Offer
Codec to modify the audio codec selection algorithm. Refer to
the Installation and Operations Guide to configure these SIP
parameters.

The payload type for telephone events in the SDP offer is
configurable through the Web User Interface. The default
payload type is 101.

Attribute Description

Network type IN

Address type IP4

Connection
address

IP address is set to the
address designated for the
media stream

Session Description Protocol

Application Developer’s Guide 75

a= (Attribute Lines)

Optional attribute headers enable the inclusion of additional information and
can be specified at the session level, media level, or both. A single SDP section
can contain multiple attribute fields. The meaning of an attribute is position-
dependent:

If the a= appears before the first m= field, it is a session-level attribute.

If the a= appears after a given m= field, it applies to that media type.

The following attributes are extracted from the SDP body and can also be
defined for a session:

Attribute Description

direction The direction of a media stream. Possible values include:
sendrecv, sendonly, recvonly.

Parsed and reported when present and included within
formatted SDP with a default value of sendrecv.

The offered direction is configurable through the Web UI.

packet time
(ptime)

The length of time in milliseconds per packet. Always
included with formatted SDP and defaults to 20 ms if not
present.

The offered ptime is configurable through the Web UI.

dynamic
payload type
(rtpmap)

Defines a mapping between a codec and a dynamic payload
type number. Only supported for RFC 2833 events. All other
codecs must use the associated static payload type.

Ports

Application Developer’s Guide 76

Ports

SIP

The IP Media Server listens for incoming SIP messages on the default port,
5060. This port is configurable through the Web User Interface.

RTP

You can set a starting port number, which is the low value in the range allowed
for RTP port negotiation on the IP Media Server. The starting port number is set
using the parameter RtpPortLow in the snowshore.cfg file. RtpPortLow can take
even-number values from 6000 (the default) to a maximum of 40,000. RTP
Ports are allocated on even number ports so you must allow for the addition of
two times the number of licensed ports available – not to exceed 40,000. If the
parameter is set to a value that falls outside the allowable range, RrpPortLow
will be set to the default value (6000).

Note: Changes take effect only after an IP Media Server reset.

Ports

Application Developer’s Guide 77

Reliability of Provisional Responses

Reliability of Provisional Responses, known as 100 reliability [100rel], is the
exchange of acknowledgements for 1xx (greater than 100) class responses
(provisional).

The Session Control Stack (SC) asserts 100rel when an initial INVITE method
contains the Supported header with the value 100rel, as illustrated in Example 3.

Example 3. Supported Header with 100 Reliability

The IP Media Server responds with the Require and RSeq headers in any 1xx class
method (excluding the 100 Trying method).

Once 100rel is negotiated, all subsequent 1xx class methods are acknowledged
by the User Agent Client (UAC) with the PRACK method, to which the User
Agent Server (UAS) responds with a 200 OK.

INVITE
sip:annc@192.168.1.150:5079;
play= file:////net/server/hello.wav SIP/2.0

Via: SIP/2.0/UDP 192.168.1.150:5078
To: <sip:annc@192.168.1.150:5079>
From: <sip:abc@192.168.1.150:5078>
Call-ID: 1944@192.168.1.150
Contact: sip:192.168.1.150:5078
CSeq: 18042 INVITE
Content-Type: application/sdp
Supported: timer
Supported: 100rel
Session-Expires: 60
Content-Length: 147

v=0
o=SnowShoreUaV1 12411 30414 IN IP4 192.168.1.150
s=SnowShore Sdp
t=0 0
m=audio 8000/1 RTP/AVP 0
c=IN IP4 1.1.1.1
a=sendrecv
a=ptime:20

SIP/2.0 183 Session Progress
Contact: sip:192.168.1.150:5079
Via: SIP/2.0/UDP 192.168.1.150:5078
To: <sip:annc@192.168.1.150:5079>;tag=1001356403
From: <sip:abc@192.168.1.150:5078>
Call-ID: 1944@192.168.1.150
CSeq: 18042 INVITE
Require: 100rel
RSeq: 32163
Content-Length: 0

Ports

Application Developer’s Guide 78

Figure 4 shows the call flow with a SIP provisional response. The numbers that
follow indicate their respective sections listed inside Figure 4.

1 Initial INVITE request contains Supported header with 100rel.
2 1xx response contains required 100rel and Rseq headers.

3 Each 1xx response requires the UAC to return a PRACK request which makes
the Media Server send a 200 OK response.

Figure 4. Call Flow: SIP Provisional Response

Syntax and Escaping

Various sections of the SIP message are permitted to contain different sets of
characters. See the SIP specification (RFC 2543) reference for the full
description of reserved and unreserved characters allowed in each field. All
fields allow the full alphanumeric character set. For convenience, the following
tables show which non-alphanumeric characters are considered to be
unreserved in the respective fields and headers. Unreserved characters do not
need to be escaped.

UAC Media Server

INVITE

TRYING

1xx

PRACK

200 OK to PRACK

1xx

PRACK

200 OK to PRACK

1xx

PRACK

200 OK to PRACK

200 OK to INVITE

ACK

1

2

3

Ports

Application Developer’s Guide 79

Table 24 lists the characters that are unreserved in a SIP request, as defined in
RFC 2976.

Table 25 lists the characters that are unreserved in the user portion (before the
@ sign).

Table 24. Unreserved Characters in SIP Request

Symbol Name

- hyphen

_ underscore

. period

! exclamation point

~ tilde

* asterisk

‘ single quote

() parentheses

/ forward slash

Table 25. Unreserved Characters in User Portion

Symbol Name

& ampersand

= equal sign

+ plus sign

$ dollar sign

, comma

; semi-colon

? question mark

/ forward slash

Ports

Application Developer’s Guide 80

Table 26 lists the characters that are unreserved for parameters.

Syntax and MSCML Body

In compliance with RFC 1341 (MIME), there must be a blank line (CRLF)
following the boundary marker. A CRLF must also separate each line in the
multipart/mixed MSCML body. Example 4 represents the correct syntax.

Example 4. Syntax for MSCML Multi-Part, Mixed Body

INVITE sip:conf=123456@10.10.140.1 SIP/2.0
Call-Id: call-12351-1.4.snowshore_conf.5@10.10.221.21
Contact: sip:snow_conf@10.10.221.25
CSeq: 1 INVITE
Expires: 180
From: sip:1.4.snowshore_conf.5@10.10.221.21
Record-Route: <sip:10.10.221.22>
To: sip:conf=123456@10.10.140.1
Via: SIP/2.0/UDP 10.10.221.21:5060
Content-Type: multipart/mixed;boundary=snow-bound

--snow-bound
Content-Type: application/mediaserver+xml

<?xml version=”1.0”?>
<MediaServerControl version=”1.0”>
<request>
<configure_conference/>
</request>
</MediaServerControl>

--snow-bound
Content-Type: application/sdp

v=0
o=Pingtel 5 5 IN IP4 10.10.221.21
s=phone-call
c=IN IP4 10.10.221.21
t=0 0

Table 26. Unreserved Characters for Parameters

Symbol Name

[] brackets

/ forward slash

: colon

& ampersand

+ plus sign

$ dollar sign

Ports

Application Developer’s Guide 81

m=audio 8766 RTP/AVP 0 96 8
a=rtpmap:0 pcmu/8000/1
a=rtpmap:96 telephone-event/8000/1
a=rtpmap:8 pcma/8000/1

--snow-bound--

IP Media Server Behavior When Hold Media is
Presented

About Hold SDP

A SIP INVITE/ACK that contains a Hold SDP is a request for the other participant
in the call (in this context, the IP Media Server) to cease sending RTP. The IP
Media Server recognizes Hold SDP whether it arrives as an SDP offer in the
INVITE request or as an SDP response in the ACK request.

Note that, the IP Media Server does not transmit any media streams while on
hold.

The IP Media Server remains on hold until a subsequent INVITE/ACK arrives
that contains SDP other than Hold SDP.

Hold SDP (as defined in RFC 2543) contains a connection address consisting of
(c=0.0.0.0).

Example 5. Hold SDP

v=0
o=SnowShoreUaV1 12853 17864 IN IP4 192.168.12.155
s=SnowShore Sdp
t=0 0
c=IN IP4 0.0.0.0
m=audio 4556 RTP/AVP 0
a=sendrecv
a=ptime:20

Each participant in the call negotiates Hold independently. The IP Media Server
does not automatically answer with Hold SDP when the IP Media Server receives
the Hold.

However, when the IP Media Server responds to the initial INVITE to establish
a conference Control Leg for an advanced conference, it automatically answers
with a HOLD SDP. See “Advanced Conferencing (SIP with MSCML)” (page 82).

For all services, if the initial INVITE/ACK handshake that establishes a session
contains Hold SDP, the IP Media Server does not start any media-related activity
until a subsequent INVITE/ACK arrives that contains other than Hold SDP.

Hold Behavior for the Various Media Services

The following sections describe the Hold behavior for various media services.

Ports

Application Developer’s Guide 82

Announcement Service (annc)

After receiving a re-INVITE with Hold SDP, the IP Media Server does not play
the announcement immediately. When a subsequent re-INVITE with a valid
destination IP address and port number arrives, the IP Media Server plays the
announcement.

Note: This behavior is reliable only when playing content from NFS servers.
HTTP retrievals timeout if the Hold duration value exceeds the HTTP’s timeout
value (fetch value). HOLD is not allowed during early media (early=yes)
announcement requests.

Simple Conferencing (SIP)

A participant leg can accept Hold SDP in the initial INVITE/ACK. The session will
not be connected to the conference until a subsequent INVITE/ACK is received
with other than Hold SDP.

After receiving a re-INVITE with Hold SDP, the IP Media Server removes the
session from the conference and stops sending RTP packets.

When the IP Media Server receives a subsequent re-INVITE with a valid
destination IP address and port number, RTP is re-established as indicated in a
new SDP section and the session is reconnected to the conference.

Advanced Conferencing (SIP with MSCML)

The initial INVITE that establishes a conference control leg and creates a
conference should contain Hold SDP because the control leg has no associated
RTP streams. This INVITE has an MSCML <configure_conference/> request in
the SIP body. The IP Media Server always returns Hold SDP on the control leg,
regardless of whether SDP was sent in the offer.

A participant (or a non-control) leg can accept Hold SDP in the initial
INVITE/ACK. The session will not be connected to the conference until a
subsequent INVITE/ACK is received with other than Hold SDP.

After receiving a re-INVITE with Hold SDP, the IP Media Server sends a response
to any currently executing <play>, <playcollect> or <playrecord> request, indicating
reason=stopped.

If the IP Media Server receives a subsequent re-INVITE with a valid IP address
and port number, the IP Media Server restores the connection to the conference
and resumes sending RTP packets to the IP address and port specified.

During Hold, the behavior of any media-related MSCML request received by the
IP Media Server is undefined. The configure_leg request is independent of the
state of the media streams and operates normally while on Hold. The
subscription state for asynchronous DTMF and busy events is maintained across
Hold/Retrieve transitions.

IVR Service (SIP with MSCML)

If a re-INVITE with Hold SDP is sent, the IP Media Server sends a response to
any currently executing <play>, <playcollect> or <playrecord> request, indicating
reason=stopped.

Ports

Application Developer’s Guide 83

If the IP Media Server receives a subsequent re-INVITE with a valid IP address
and port number, the IP Media Server resumes sending RTP packets to the IP
address and port specified.

During Hold, the behavior of any media-related MSCML request received by the
IP Media Server is undefined. The configure_leg request is independent of the
state of the media streams and operates normally while on Hold. The
subscription state for asynchronous DTMF and busy event is maintained across
Hold/Retrieve transmissions.

Dialog Service (VoiceXML)

For the dialog (VoiceXML) service, the initial script is not retrieved until the IP
Media Server receives an INVITE/ACK with non-hold SDP. The startup script is
then invoked and VoiceXML processing starts.

The Hold function in a re-INVITE causes the IP Media Server to stop any media-
related activity. This function causes the VoiceXML script to block at the next
media-related request. The script is paused during Hold and all timers and
event processing are disabled.

If the IP Media Server receives a re-INVITE with non-Hold SDP, VoiceXML script
execution is restarted at the point where the Hold was received. Any play,
record, or collect operation in progress when the Hold was received is also
restarted from the point of interruption.

Using AMR-NB

Application Developer’s Guide 84

Using AMR-NB

To use AMR-NB encoded media with your application, send a SIP INVITE request
to the IP Media Server including an SDP section that describes the requested
AMR-NB session.

The following example is a typical SDP description for an AMR-NB session:

m=audio 49120 RTP/AVP 97
a=rtpmap:97 AMR/8000
a=fmtp:97 mode-set=0,2,5,7; octet-align=1
a=maxptime:20

The component lines of an SDP description are described in the following
sections.

Note: Only the first two lines (m= and a=rtpmap:) are required.

Media Description Header

The “m=” media description header specifies the media name and transport
address.

m=<media> <port> <transport> <fmt list>

For example, the line m=audio 49120 RTP/AVP 97 indicates the following:

audio = audio media

49120 = using port number 49120

RTP/AVP = IETF's Realtime Transport Protocol using the Audio/Video Profile
carried over UDP

97 = RTP dynamic payload type ID

Dynamic Payload Type

The “a= rtpmap:” attribute line defines a mapping between a codec and a
dynamic payload type number. The following description for the “a= rtpmap:”
attribute line shows how AMR-specific information is provided.

a=rtpmap:<payload type> <encoding name>/
<clock rate>[/<encoding parameters>]

Parameter Description

media “audio”

port Port number

transport “RTP/AVP”

fmt list RTP dynamic payload type (number from 96–127)

Using AMR-NB

Application Developer’s Guide 85

For example, the attribute line a=rtpmap:97 AMR/8000/1 indicates the
following:

97= RTP dynamic payload type ID (97)

AMR = Encoding type (name) is “AMR”.

8000 = Clock rate of 8000 samples per second

1 = Using 1 channel (optional value).

Format Specific Parameters

The “a= ftmp:” attribute line specifies the characteristics of the AMR
connection. The following description for the “a= ftmp:” attribute line shows
how AMR-specific information is provided.

a=fmtp:<dpt> <format specific parameters>

The AMR-specific parameters that can be received via the a=fmtp: line are
described in the following table.

Parameter Description

payload type RTP dynamic payload type specified in the m= line

encoding name AMR

clock rate 8000

encoding parameters Number of channels (Default:1)

Parameter Description

octet-align=X Whether data is octet aligned.

1 = Octet-aligned (byte-aligned) operation.

0 (default) = Bandwidth efficient (bit-aligned)
operation.

mode-set=X Requested set of AMR modes; restricts the set of
active codec modes to a subset of all modes.
Possible values are a comma-separated list of
modes from the set: 0,...,7 (representing the 8
possible bit rates from lowest to highest).
(Default: all.)

The IP Media Server always employs the highest
transmission rate available for sending AMR-
encoded audio, except when overridden by AMR-
NB Codec Mode Requests received in AMR-NB
audio from the receiver.

Using AMR-NB

Application Developer’s Guide 86

mode-change-period=N Interval (number of frames) at which codec mode
changes are allowed. The initial phase of the
interval is arbitrary, but changes must be
separated by multiples of N frames. If this
parameter is not present, mode changes are
allowed at any time during the session.

Note: The IP Media Server never initiates a mode
change.

mode-change-
neighbor=X

Whether mode changes are allowed to the
neighboring modes in the active codec mode set.
Neighboring modes are the ones closest in bit rate
to the current mode, either the next higher or
next lower rate.

1= Mode changes are allowed only to the
neighboring modes in the active codec mode set.

0 (default) = Change is allowed between any two
modes in the active codec mode set.

Note: The IP Media Server never initiates a mode
change.

crc=X Whether CRCs are included in the payload.

1 = Frame CRCs may be included in the payload.
crc=1 implies that octet-aligned operation must be
used for the session.

0 (default) = Frame CRCs shall not be included in
the payload.

Note: The IP Media Server does not support
including CRSCs in the payload. The IP Media
Server rejects the call if the far end (caller)
specifies that CRC information is included in the
AMR payload.

robust-sorting=X Whether the IP Media Server supports robust
sorting.

1 = The payload uses robust sorting.
robust-sorting=1 implies that octet-aligned
operation must be used for the session.
0 (default) = The payload uses simple payload
sorting.

Note: The IP Media Server does not support
robust payload sorting. The IP Media Server
rejects the call if the far end (caller) specifies
robust sorting.

interleaving= ? Note: The IP Media Server does not support
interleaving. The IP Media Server rejects the call
if the far end (caller) specifies interleaving.

channels= Number of audio channels. (Default: 1.)

The IP Media Server supports only a value of 1.

Parameter Description

Using AMR-NB

Application Developer’s Guide 87

For example, the attribute line a=fmtp:97 mode-set=0,2,5,7; octet-align=1
indicates the following:

97= RTP dynamic payload type ID (97)

mode-set=0,2,5,7 = Available AMR modes are modes 0, 2, 5, and 7.

octet-align=1 = AMR data is byte (octet) aligned.

Optional Format Parameters

Additional optional attribute lines may also be included in the SDP section, for
example:

Packet Time

a=ptime:<milliseconds>

Length of time represented by the media in a packet, in milliseconds. This is
probably only meaningful for audio data. It should not be necessary to know
ptime to decode RTP audio, and it is intended as a recommendation for the
encoding / packetization of audio.

Maximum Packet Time

a=maxptime:20

Maximum amount of media that can be encapsulated in a payload packet,
expressed as time in milliseconds. The time is calculated as the total time
represented by the media present in the packet. The time should be a multiple
of the frame size. If this parameter is not present, the sender MAY encapsulate
a maximum of 16 encoded frames into one RTP packet. This is a media
attribute, and is not dependent on charset.

Values supported by the IP Media Server: 20 (the desired value), 40 (the
maximum value).

Application Developer’s Guide 88

3 - Announcement Service API

This chapter describes the differences between simple and sequenced
announcements, and outlines the use of variables.

For general information on SIP, see Chapter 2, “Session Initiation Protocol
(SIP)”. For examples and call flows, see Chapter 7, “Sample Code and Call
Flows”.

This chapter includes the following major sections:

Overview

Simple Announcements

Announcement Sequences

SIP Request Parameters for Announcements

Overview

Application Developer’s Guide 89

Overview

Upon receipt of a SIP request from an application server, softswitch, or proxy
server, the IP Media Server uses the Announcement Server API to deliver
network announcements.

The Announcement Server API performs the following steps:

1 Listens for incoming SIP messages on port 5060. (The default port is
configurable through the Web User Interface.)

2 Retrieves the files referenced by the play= parameter in the SIP request.

3 Encodes the retrieved data in an RTP stream.

4 Sends the RTP data stream to the destination indicated in the offered SDP.

File Retrieval

The URI identifies audio files, and these files can be stored anywhere accessible
by the IP Media Server, using NFS or HTTP.

Network File System (NFS)

The IP Media Server stores and retrieves data files on the Network File System
server (RFC 1094 and RFC 1813).

Audio files retrieved by NFS must use the file://// scheme.

To access Dialogic prompts, the request must reference the following directory
on the IP Media Server: /opt/snowshore/prompts/generic/.

HTTP

The IP Media Server retrieves data from HTTP/1.0 (RFC 1945) and HTTP/1.1
(RFC 2068) servers.

Audio files retrieved by HTTP must use the http:// scheme.

Announcement Types

The IP Media Server can process two types of announcements:

Simple Announcements, which are single audio files with fixed content:
“Your call did not go through. Please hang up and try again”.

Announcement Sequences, which are a grouping of audio files identified by
a single name. They comprise a series of fixed audio files delivered in a
single play-out: “Welcome to Dialogic Corporation. <welcome.wav> How may
I direct your call? <direct.wav>”.

Sequences can also contain variables that are evaluated at run-time. For
example, “The number you have dialed <num_dial.wav>, 555-122-2222 <var1>, has
been changed. <changed.wav> The new number is <new_num.wav> 555-122-3333
<var2>”.

Announcement Service Indicator and Request URI

The announcement service indicator is annc.

Overview

Application Developer’s Guide 90

INVITE sip:annc@MS_IP;play=URLname

For simple announcements, the Request-URI in the SIP INVITE points directly
to the audio file to retrieve and play.

INVITE sip:annc@MS_IP;play=file:////opt/snowshore/
prompts/generic/circuit_busy.ulaw

If you have configured a default location for all audio files for simple
announcements, the SIP Request-URI will point directly to the file, as shown

INVITE sip:annc@MS_IP;play=wrong_number.ulaw

Simple Announcements

Application Developer’s Guide 91

Simple Announcements

Simple announcements are single audio files that have no variables to resolve;
for example:

INVITE sip:annc@MS_IP;play=http://server/path/
hangup.wav

A simple announcement can be any length. It is termed simple because this
type of announcement only requires a basic fetch-and-play operation. For
examples and call flows, see Chapter 7, “Sample Code and Call Flows”.

The SIP INVITE that initiates a simple announcement is directed to the
announcement service on the IP Media Server, as indicated by the presence of
annc (the announcement service indicator) in the Request-URI.

There are several “SIP Request Parameters for Announcements” (page 94). The
only required parameter is play, which points to the audio file. Other
parameters are early, repeat, delay, and duration.

Announcement Sequences

Application Developer’s Guide 92

Announcement Sequences

An announcement sequence is a series of audio files played back-to-back
without interruption. Each part of a sequence is a unit of recorded information
that can be reused in another context.

These units can be a single sound or word (“two”, “hello”), a phrase (“You have
selected...”), or one or more sentences (“Our office will be closed today, Friday
July 4th. We reopen for business on Monday the 7th.”)

Variable-Content Announcements

Variable-content announcements are a special type of sequenced
announcements that incorporate variables, evaluated at run-time. In addition
to listing the audio files to be included in the data stream, the specification for
a variable-content announcement references the manner for rendering the
variables.

Implementation

The IP Media Server can process both single audio segments and lists of audio
segments which are identified by the MIME type text/uri-list.
Announcement sequences rely on the IP Media Server's ability to play these
arbitrary lists.

The application server (or another application component) provides a Web
interface for generating the announcement sequence and returning it to the IP
Media Server. The following example shows an application having a small audio
segment library which consists of the following files:

When a call arrives after business hours, the following message plays: “You
have reached the Museum of Transportation. The Museum is currently closed.
Our normal business hours are 9 AM to 6 PM.” This message can be delivered
by the sequence:

reached.wav
name.wav
closed.wav
hours.wav

File Contents

welcome.wav Welcome to...

reached.wav You have reached...

hours.wav Our normal business hours are 9AM to 6PM.

name.wav The Museum of Transportation

closed.wav The museum is currently closed.

current.wav We are now offering an exhibit of vintage motorcycles.

website.wav For a preview of this exhibit, visit our Website:
www.transport.com.

Announcement Sequences

Application Developer’s Guide 93

For explanatory purposes, this portion of the code can be termed the afterhours
sequence. The SIP request required to play this announcement would look like:

sip:annc@MS_IP;play=http://appserver.carrier.net;prompt=afterhours

The IP Media Server first retrieves the sequence of URLs from the application
server and then fetches the audio files. The audio file list must include the URL
scheme and the full path to the files. For example, if the files are stored on a
centralized NFS server in the /var/prompts directory and accessed via NFS, the
audio file list would look like this:

file:////net/nfsserver.carrier.net/var/prompts/reached.wav
file:////net/nfsserver.carrier.net/var/prompts/name.wav
file:////net/nfsserver.carrier.net/var/prompts/closed.wav
file:////net/nfsserver.carrier.net/var/prompts/hours.wav

The following diagram illustrates an example of a sequenced announcement
process. The IP Media Server includes an NFS automounter, so there is no need
to explicitly set mount points for prompt directories.

Figure 5. Playing an Announcement Sequence

Sequences can also contain variables by including URL(s) to the IP Media
Server’s onboard phrase server in the returned list. These URLs are of the form:

http://localhost/snowshore/phrase.cgi;
locale=xxxxx&type=yyy&subtype=zzz&value=1234

where the URL parameters control what is spoken. For details on supported
variables, see “Variable Types and Subtypes” (page 96).

SIP Request Parameters for Announcements

Application Developer’s Guide 94

SIP Request Parameters for Announcements

The Request-URI contains parameters specifying the audio segment to play and
the associated parameter values. Parameters can appear in any order and are
separated by semi-colons.

Play is required to reference the audio file. The early parameter is optional, but
is also the default.

Repeat, delay, and duration are optional parameters and can be used when
appropriate.

play This parameter specifies the audio resource as a URL. The URL must resolve to
a physical audio file or to an HTTP server process, for example servlet that
returns a list of audio files using the MIME type text/uri-list. This parameter
is required. Files are not retrieved unless this parameter is present.

Values

Examples

play=file:////net/nfsserver.carrier.net/prompts/intro.wav

play=http://path/audio/allcircuitsbusy.ulaw

play=http://audioserver.carrier.com;prompt=18

Value Description

URI The complete path for the audio prompt file or servlet, including
parameters. Accepts NFS syntax (file:////) or HTTP syntax
(http://).

SIP Request Parameters for Announcements

Application Developer’s Guide 95

early This optional parameter specifies whether or not the announcement is to play
before the session is completely established.

Values

Example

early=no

SIPAnnc404

If the Early parameter above is set to No, you must configure the following
parameter in the snowshore.cfg file.

Values

repeat This optional parameter specifies the number of times the announcement or the
elements of a sequence should be played in a loop.

Values

The allowed range is 1 to 250. Default: 1.

Example

repeat=2

delay This optional parameter defines the delay between repeat plays in milliseconds.
It has meaning to the IP Media Server only if the repeat parameter is present;
otherwise, it is ignored.

Values

The allowed range is 0 to 30,000 ms in 100 ms increments. Default: 0 [no
delay].

Value Description

yes

(default)

The message is played when the media streams are
connected, but before the final response (487) is sent. See
“Call Flow for an Early Media Announcement” (page 235) for
a call flow example.

no The announcement plays only after 200 OK.

Value Description

yes For regular announcements, if the announcement file is
not found, the IP Media Server will return a SIP 404
Response to the INVITE method.

no (default) Usual behavior

SIP Request Parameters for Announcements

Application Developer’s Guide 96

Example

delay=20000

duration This optional parameter defines the maximum duration for the sequence in
seconds. Once this amount of time has elapsed, the sequence stops playing. If
this is not defined (duration=0), the sequence plays to completion.

Values

The allowed range is 0 to 6000 seconds in increments of 1 second. Default: 0 [no
duration limit].

Example

duration=1000

Variable Types and Subtypes

Many standard phrases or items can be referred to using variables. Standard
variables are described in this section.

The URI of the desired variable can be specified explicitly in the play parameter
or can be included as an item in a text/uri-list returned by a Web server
process.

date The value is spoken as a date in the form specified by the subtype. The value
is always specified as YYYYMMDD (per ISO 8601, International Date and Time
Notation).

Subtypes

digit The value is spoken as a string of digits, one at a time, with one of two
phrasings.

Value Description

mdy 20021015 is spoken as “October Fifteenth Two Thousand Two”.

dmy 20021015 is spoken as “Fifteen October Two Thousand Two”.

ymd 20021015 is spoken as “Two Thousand Two October Fifteen”.

SIP Request Parameters for Announcements

Application Developer’s Guide 97

Subtypes

duration Duration is specified in seconds and is spoken in one or more units of time as
appropriate. For example:

money Currency value in USD, spoken in dollars and cents.

Subtype

USD (Format: $$¢¢)

Examples

month The specified month in MM format, with 01 denoting January, 02 denoting
February, 10 denoting October, and so forth.

number A number in cardinal or ordinal form, spoken with one of two phrasings.

Value Description

ndn is spoken with North American dialing phone number
phrasing (NPA-NXX-XXXX), with appropriate pauses.

gen is spoken as generic digits (one, five, zero).

Value Description

3600 is spoken as “one hour”.

3660 is spoken as “one hour and one minute”.

3661 is spoken as “one hour, one minute, and one second”.

Value Description

2500 is spoken as “25 dollars”.

25 is spoken as “25 cents”.

1 is spoken as “1 cent”.

100 is spoken as ”one dollar”.

101 is spoken as “one dollar and one cent”.

1025 is spoken as “ten dollars and twenty five cents”.

SIP Request Parameters for Announcements

Application Developer’s Guide 98

Subtypes

silence Plays a specified period of silence as indicated by the duration value in
milliseconds. For example, the following generates one second of silence:

silence:duration=1000

string Each character of the string is spoken. For example, “a34bc” is spoken as “A,
three, four, B, C.”

Valid characters are a-z, A-Z, 0-9, #, and *.

time Spoken as a time of day in either twelve or twenty-four hour HHMM format
according to ISO 8601, International Data and Time.

Subtypes

weekday Spoken as the day of the week. Days are specified as single digits, with 1
denoting Sunday, 2 denoting Monday, and so forth.

Value Description

crd 1 is spoken as “one”.

ord 1 is spoken as “first”.

Value Description

t12 1700 is spoken as “five p.m.”

t24 1700 is spoken as “seventeen hundred hours”.

Application Developer’s Guide 99

4 - Conferencing API

This chapter provides information about simple and advanced (enhanced)
conferencing.

Simple conferences are controlled and released with standard SIP INVITE and
BYE requests. In contrast, advanced conferences are developed by extending
SIP with Media Server Control Markup Language (MSCML). This chapter also
includes information about MSCML elements and attributes that enable
advanced conferencing.

This chapter includes the following sections:

Simple Conferencing

Advanced Conferencing

IVR Operations during a Conference

Simultaneous Play and Record

MSCML Conferencing Requests

Coached Conferencing

MSCML Conferencing Reference

Note: If you opt to perform the operations in this chapter, familiarize yourself
with the SIP concepts and operations explained in Chapter 2, “Session Initiation
Protocol (SIP)”.

The conference service indicator is conf. An equals sign (=) separates the
conference service indicator from a URI or ID that uniquely identifies a
conference session, for example: conf=confid@MS_IP.

SIP request URIs identify individual conferences. The URI can be any value
compliant with the SIP URI specification, as detailed in RFC 2543. The
conference control application must be configured to make sure that the
identifier is unique within the scope of any potential conflict.

If the INVITE is directed to a URI that does not already exist on the IP Media
Server and if the requested resources are available, the IP Media Server creates
a new conference.

Application Developer’s Guide 100

If the INVITE is directed to an existing URI, the IP Media Server interprets the
INVITE as a request to join the conference represented by that URI.

Note: The conference URI shared between the application server and IP Media
Server can be different from the conference URI visible to participants. This
difference provides enhanced security and also simplifies resource management
by allowing a specific IP Media Server to be assigned.

Simple Conferencing

Application Developer’s Guide 101

Simple Conferencing

The standard SIP Interface (with no MSCML) supports simple conferencing,
suitable for calls that do not require the following:

In-conference Interactive Voice Response (IVR)

Explicit control of mixing mode

Event reporting

How SIP Manages Conferences

Using SIP to manage conferences involves the following methods:

The INVITE method to create the conference and join participants to it.

The BYE method to remove participants from a conference and delete the
conference.

Table 27 (page 102) lists the attributes and default values for simple
conferences.

Creating a Simple Conference

A simple conference is created dynamically if the IP Media Server receives a SIP
INVITE request to create a conference using the request URI. For example:

INVITE sip:conf=confid@MS_IP

If the SIP INVITE lacks an MSCML payload, the IP Media Server sets up a simple
conference.

Adding a Participant to a Simple Conference

To add a participant to a simple conference, direct the INVITE request to the
existing conference URI.

While a conference is in progress, participants can leave and rejoin the
conference.

The IP Media Server imposes no restrictions on the size of a conference other
than the total capacity of the server. If a request to join a conference exceeds
the capacity of the IP Media Server, the IP Media Server sends the response:
480 temporarily not available.

Ending a Simple Conference

A simple conference remains allocated as long as there is at least one SIP
session joined to it. When all participants have left the conference, as indicated
by the SIP BYE method, the IP Media Server terminates the conference.

Simple Conferencing

Application Developer’s Guide 102

Attributes for Simple Conferences and Participants

The following table describes the attributes that are used to create simple
conferences for either the entire conference or an individual participant of a
conference.

Note: In simple conferences, these attributes take only their default values.

DTMF Clamping

In a conference leg with DTMF clamping set to no, detected 2833 events are
regenerated (mixed) to all other conference participants. To receive a 2833
event payload, you must first set up a channel for 2833 mode.

Transmitting 2833 events through conferences is implemented with the concept
of a single 2833 talker; only one leg can send 2833 at a time. The leg that first
detects 2833 and is not clamped becomes the 2833 talker and has that 2833
event transmitted to completion. Once that event completes, another leg can
become the 2833 talker. This scheme prevents mixing of simultaneous 2833
events from different sources thereby confusing the recipients. However, it
allows for any leg to send 2833 in the conference, but not simultaneously.

In addition, if a non-2833 leg detects DTMF (and is not clamped), a matching
2833 is sent for each 2833 leg in that conference. However, the reverse is not
the case—non-2833 legs will not have DTMF tone inserted on them when 2833
is in the mix.

Managing Video Switching

The video conferencing service operates as a simple conference which has both
audio and video or just audio. The service indicator (conf) used for a video
conference is the same as for a simple audio conference. An equals sign (=)
separates conf from a URI or ID that uniquely identifies an instance of a
conference session, for example:

conf=confid@192.168.12.153

Table 27. Simple Conference Attributes

Attribute Default
Value

Description

type talker All participants (legs) are talkers.

mixmode full All audio is mixed.

toneclamp no Audio is not removed (clamped) when
the IP Media Server detects certain
repetitive, non-voice signals.

dtmfclamp no Detected DTMF digits are not removed
from audio for all participants. See the
following section for a detailed
description concerning dtmfclamp
used in a conference leg.

Simple Conferencing

Application Developer’s Guide 103

where 192.168.12.153 is the IP address or the fully qualified domain name of
the IP Media Server.

The only difference in an INVITE between joining an audio-only participant to
the conference and an audio/video participant is in the SDP section. The
audio/video participant's SDP contains a description of both the audio stream
and the video stream, for example, m=video 4028 RTP/AVP 34.

Switching Rules

Switching in the conference is based on audio streams. The IP Media Server
detects the three loudest talkers from the participants in the conference. The
audio mix for the conference is a combination of these three active talkers. The
video stream is selected and switched based on these audio active talkers as
follows:

The first participant to enter a conference is sent video silence (currently an
image of a spinning snowflake).

After other participants join, the video stream of the loudest talker (with
some hysteresis) is sent to all other compatible participants (those using the
same video codec). The loudest talker continues to receive the video stream
he/she was previously receiving.

When a conference is starting up and only one participant has been the
loudest talker, every other participant sees the loudest participant. As long
as the first participant remains the loudest talker, he/she sees video silence,
because there is no previous loudest talker.

When a second participant becomes the loudest talker, the first talker then
sees that participant, and the new loudest talker sees the previous loudest
talker.

Refresh Frames

Video streams switch only when a special type of frame referred to as a refresh
frame (‘intra’ frame in H.263 and H.263+; ‘IDR’ frame in H.264) is received by
the IP Media Server from the new loudest talker. A refresh frame contains all of
the video information required to decode that frame (there is no dependency
on data from previous video frames).

Different Client Types

The IP Media Server supports conferences among clients of different types.

Conferencing between video-enabled devices and audio-only devices.
Video is never sent to the audio-only device. If an audio-only device becomes
the active talker in a conference, each video-enabled devices receives the
“video silence” stream (currently a looping video clip of a spinning snowflake)
in its encoding (H.263, H.263+, H.264).

Conferencing between H.263, H.263+, and H.264 participants.
Participants only receive a video stream when that stream is of the same
encoding type. That is, H.263 endpoints receive only H.263 video streams,

Simple Conferencing

Application Developer’s Guide 104

H.264 endpoints receive only H.264 video streams, and H.263+ endpoints
receive only H.263+ video streams. If the video stream normally sent to an
endpoint is not compatible, that endpoint receives only an audio stream.

Note: For some video clients, when the Media Server stops sending video
packets (for example, when an incompatible endpoint becomes the active
talker), the video displayed may freeze on the last frame received.

Call Flow and Sample Code Examples

For many types of code samples and call flows for simple conferences, see
“Sample Code and Call Flows” (page 232).

The following example shows the call flow for creating a simple conference
(normal media).

Figure 6. Call Flow for Simple Conference (Normal Media)

Participant 1 Control Agent Media ServerParticipant 2 Participant 3

SIP INVITE To Public Conf. URI
SIP INVITE To MS Conf.

URI
200 OK

200 OK

ACK

RTP Session with Participant 1

SIP INVITE To Public Conf. URI
SIP INVITE To MS Conf.

URI
200 OK

200 OK

ACK

ACK

RTP Session with Participant 2

SIP INVITE To Public Conf.
URI SIP INVITE To MS Conf.

URI
200 OK

200 OK

ACK
ACK

RTP Session with Participant 3

BYE

BYE

200 OK

200 OK

BYE

BYE

200 OK

200 OK

BYE

BYE

200 OK

200 OK

ACK

Simple Conferencing

Application Developer’s Guide 105

Code for Creating a Simple Conference

The following sample code illustrates a simple conference.

Example 6. Creating a Simple Conference

INVITE sip:conf=1234@192.168.12.153 SIP/2.0
From: sip:threepcc@192.168.1.126;tag=1as8ut
To: sip:conf=1234@192.168.12.153
Call-ID: 1031579120515@192.168.1.126
CSeq: 1327320033 INVITE
Content-Length: 201
Content-Type: application/sdp
Contact: <sip:192.168.1.126:5060;

transport=udp>
Via: SIP/2.0/UDP 192.168.1.126:5060

v=0
o=Pingtel 5 5 IN IP4 192.168.12.109
s=phone-call
c=IN IP4 192.168.12.109
t=0 0
m=audio 8770 RTP/AVP 0 96 8
a=rtpmap:0 pcmu/8000/1
a=rtpmap:96 telephone-event/8000/1
a=rtpmap:8 pcma/8000/1

SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.1.126:5060
To: sip:conf=1234@192.168.12.153;tag=1031665657
From: sip:threepcc@192.168.1.126;tag=1as8ut
Call-ID: 1031579120515@192.168.1.126
CSeq: 1327320033 INVITE
Contact: sip:192.168.12.153:5060
Content-Type:application/sdp
Session-Expires:120
Content-Length: 153
a=ptime:20

v=0
o=SnowShoreUaV1 22263 30720 IN IP4 192.168.12.153
s=SnowShore Sdp
t=0 0
m=audio 4202 RTP/AVP 0
c=IN IP4 192.168.12.154
a=sendrecv

Advanced Conferencing

Application Developer’s Guide 106

Advanced Conferencing

Extending SIP with MSCML allows developers to create complex conferencing
applications.

Advanced (also called enhanced) conferencing allows an application to do the
following:

Set unique attributes for each participant

Play announcements to the conference as a whole

Create personalized mixes for each participant

Record the conference

Subscribe to conference events

Using MSCML for Advanced Conferencing

Advanced conferences are controlled by MSCML payloads sent in SIP requests.
Each SIP INVITE/INFO method contains at most one MSCML body.

The Multipurpose Internet Messaging Extension (MIME) type used to describe
the MSCML content is application/mediaservercontrol+xml. See “MSCML Schema”
(page 371) for the formal definition of the MSCML grammar.

The two major MSCML elements for advanced conference functions are the
following:

<configure_conference>

<configure_leg>

<configure_conference>

When sent in an INVITE message to conf=confid@MS_IP, this payload:

Creates the conference

Determines whether the conference subscribes to Active Talker events
(Default: No)

When sent in an INFO message to an existing conference, a configure_conference
message modifies the properties and event subscriptions for that conference.

<configure_leg>

When sent in an INVITE message to conf=confid@MS_IP, this payload joins a
participant when the default attributes for the conference are not suitable for
that participant.

When sent in an INFO message to the Call ID of a leg, a configure_leg message
modifies attributes for that participant.

MSCML Attributes and Elements for
<configure_conference>

The <configure_conference> element can control the following elements and
attributes:

Advanced Conferencing

Application Developer’s Guide 107

reservedtalkers and reserveconfmedia are set in the initial <configure_conference>
INVITE message and are the only attributes specified in that message.

reservedtalkers and subscribe for the entire conference can be modified in
subsequent <configure_conference> INFO requests directed to the URI
representing the conference.

subscribe element can also be sent in the initial INVITE.

The following table describes the attributes and default values for advanced
conferences.

The following table describes the subscribe element for advanced conferencing.

Note: Configurable input gain is not currently supported on the IP Media
Server.

MSCML Attributes and Elements for <configure_leg>

The following table describes the attributes and their default values for
participant legs in an advanced conference. You can modify the following
attributes and element for individual participants using the <configure_leg>
INVITE/INFO request.

Table 28. Advanced Conferencing Attributes

Attribute Default
Value

Description See
Page

reserveconfmedia yes Allocates resources to play or record
audio to or from the entire
conference.

140

reservedtalkers N/A Indicates the maximum number of
conference participants (legs).

141

Table 29. Subscribe Element

Element Default Description See
Page

subscribe Empty, meaning no event subscriptions are active. 137

Table 30. Attributes for Participant Legs in Advanced Conference

Attribute Default
Value

Description See
Page

mixmode full Audio from all talker participants is
mixed.

139

Advanced Conferencing

Application Developer’s Guide 108

The following table describes the subscribe element for participant legs.

dtmfclamp yes Detected DTMF digits are removed from
audio for all participants.

138

toneclamp yes Audio is removed (clamped) when the
IP Media Server detects certain
repetitive, non-voice signals.

141

type talker All participants are talker participants. 141

Table 31. Subscribe Element for Participant Legs

Element Default Description

subscribe Empty, meaning no event subscriptions are active.

Table 30. Attributes for Participant Legs in Advanced Conference

Attribute Default
Value

Description See
Page

Advanced Conferencing

Application Developer’s Guide 109

MSCML Attributes for <managecontent>

The <managecontent> element is used to move recorded content from the IP
Media Server to remote locations using the HTTP protocol. This is a store and
forward model, which requires the local temporary recording to be completed
before it can be sent to the Web server (i.e., <playrecord>). There is currently
no provision for streaming the recording to the Web server while it is being
recorded.

The following table describes the attributes of the <managecontent> element.

Table 32. Attributes for <managecontent> in an Advanced Conference

Attribute Description

src Source to be copied, then deleted by the IP Media Server.
The URL scheme must be file:////. This attribute is
mandatory. It must be in the directory /var/snowshore and
must be owned by the user.

Dest Destination URL. The URL scheme must be http://. This
attribute is not needed when the Action attribute =’delete’.

Action Operation to be carried out. This option can be either
‘move’ or ‘delete’; ‘move’ is the default. The ‘delete’
operates on the local source file. After a successful move or
delete, the source file is deleted from the IP Media Server
If the request is unsuccessful, the source file is not deleted.

Httpmethod HTTP protocol method to be used in request. Only ‘post’ or
‘put’ are allowed. The ‘post’ is the default.

Name Field name for the content in the form when using the ‘post’
method. This is not to be confused with the src or dest
attributes. It must be provided when using ‘post’. There is
no default.

mimetype MIME type of content being transferred. If not provided,
the IP Media Server tries to infer it based on the following
mappings:

If the content does not match one of the above, the
mimetype attribute must be populated.

fetchtimeout Maximum time permitted for operation in milliseconds.
(Default: 10000 ms.)

Extension MIME Type

alaw audio/x-alaw-basic

.ulaw audio/basic

.msgsm audio/ms-gsm

.wav audio/x-wav

Advanced Conferencing

Application Developer’s Guide 110

<managecontent> Examples

When the caller is satisfied with the recording, the application commits it to
persistent remote storage using <managecontent>.

The application sends:
.
.
.

<managecontent
id=”102”
src=”file:////var/snowshore/rec/6A5GH49B.ulaw”
dest="http://server.carrier.net/recordings/

myrecording.ulaw"
action="move"
method="put"

/>
.
.
.

Note: The application can change the temporary file name assigned by the
IP Media Server as part of this operation, as shown.

To which the IP Media Server responds:
.
.
.

<response>
id=”102”
request=”managecontent”
code=”200”
text=”OK”

</response>

If the request is ambiguous, the IP Media Server returns code=”4nn”.

If the IP Media Server is unable to perform the request, it returns
code=”5nn”. For example, if the file to be deleted either is not in
/var/snowshore or is not writable by the IP Media Server, the IP Media
Server returns the following:

<response>
id=”102”
request="managecontent"
code="500"
text="Bad Request"
reason=" Delete not permitted."

</response>.

If there is a network or remote server error, the response shows the remote
error within the successful IP Media Server response.

<response>
id=”102”
request=”managecontent”
code=”200”
text=”OK”
<error_info>

code=”503”

Advanced Conferencing

Application Developer’s Guide 111

text=”Service Unavailable”
context=”http://server.carrier.net/recordings/

myrecording.ulaw”
</error_info>

</response>

Creating an Advanced Conference

All advanced conferences contain a control participant (leg). The SIP session
which creates the conference is known as the control leg.

The control leg performs the following:

Creates the conference and determines its lifetime. (An advanced
conference exists as long as the control leg is present. If the control leg is
disconnected, the IP Media Server sends BYEs to all remaining legs,
terminating the conference.)

Records audio from the entire conference.

Plays audio to the entire conference.

If reserveconfmedia is set to yes, the control leg consumes one leg resource.

The conference control leg is used for conference-wide functions such as active
talker reports and playing to or recording from the full conference. It is not used
for conference participants; therefore RTP streams are not associated with the
conference control leg. Because full conference play and record functionality are
internally handled by the media sever, RTP is not involved.

If the application establishes the conference control leg with a SIP INVITE, it
must contain "hold" SDP or no SDP. Either of these explicitly states that no RTP
streams are associated with the control leg SIP session.

Note: No RTP is expected on the conference control leg. Therefore, the
application should send a hold request (c=0.0.0.0), if it prefers sending any SDP.
The application does not need to send any SDP.

For further details concerning Hold, see “IP Media Server Behavior When Hold
Media is Presented” (page 81).

As with simple conferences, advanced conferences are created dynamically by
sending a SIP INVITE to the URI representing the conference. The form is:
sip:conf=confid@MS_IP.

When the initial SIP INVITE contains an MSCML <configure_conference>
payload in the message body, the IP Media Server creates an advanced
conference that can be modified with MSCML requests.

If the URI does not already exist on the IP Media Server, but resources are
available, the request creates a new conference.

The configure_conference message contains the following attributes and
elements that control characteristics of the entire conference:

reservedtalkers (attribute), which sets the maximum number of conference
participants.

reserveconfmedia (attribute), which allocates resources for playing or
recording audio to or from the entire conference. (Default: Yes.)

Advanced Conferencing

Application Developer’s Guide 112

subscribe (element), which is used if the conference subscribes to
activetalker events.

The <configure_conference> payload sets the reserveconfmedia attribute in
the initial INVITE message. This attribute cannot be changed.

To create a conference with 20 reserved talkers, the application specifies the
reservedtalkers attributes in the initial INVITE.

<request>
<configure_conference reservedtalkers= "20"

reserveconfmedia="no">
</configure_conference>

</request>

Note: The reservedtalkers attribute is currently ignored by the IP Media
Server; so the conference size is not limited by the value of reservedtalkers.

Modifying an Advanced Conference

The initial INVITE with a <configure_conference> request defines conference-wide
attributes.

The server can change the event subscriptions for the conference. To do this,
send a SIP INFO to the URI representing the existing conference. In that SIP
request, include a <configure_conference> message body with values for the
element subscribe. For a detailed definition of the subscribe element, see page
137.

The following example shows a request to modify an activetalkers event
subscription by changing the default to yes with an interval value of 10
seconds.

Example 7. MSCML Request to Modify Conference Event Subscription

<?xml version="1.0"?>
<MediaServerControl version="1.0">

<request>
<configure_conference>

<subscribe>
<events>

<activetalkers report="yes interval=10”/>
</events>

</subscribe>
</configure_conference>
</request>

</MediaServerControl>

The following example shows the response to the subscription request.

Advanced Conferencing

Application Developer’s Guide 113

Example 8. Response to Modify Request

<?xml version="1.0"?>
<MediaServerControl version="1.0">

<response request="configure_conference"
code="200" text="OK"/>

</MediaServerControl>

Ending an Advanced Conference

The IP Media Server ends the conference when the control leg receives a BYE
method from the controlling application.

Normally, an application server removes all conference participants before
deleting the conference.

If one or more participants are still joined to the conference when the control
leg receives a BYE, the IP Media Server removes the participants by issuing
BYEs on any remaining participant legs to the application server, and then ends
the conference.

Joining Participants (Legs) to an Advanced
Conference

To join participants to an existing conference, the application directs a SIP
INVITE to that conference URI.

If the default attributes listed in the following table are acceptable, the message
body can consist of SDP only.

If additional features are required for a participant, the application server sends
an INVITE to the conference URI with an MSCML <configure_leg> request that
specifies the desired features.

The following table describes the advanced conference attributes and their
default values in the <configure_leg> message.

Table 33. Configure_Leg Attributes in Advanced Conference

Attribute Value Default Description

dtmfclamp {yes | no} Yes Removes the audio when a
DTMF digit is detected.

mixmode {full | private |
preferred |
listen | parked}

Full Specifies the mode for mixing
audio from this leg.

type {talker |
listener |
internal}

talker Identifies the participant for
this conference leg as a talker.

toneclamp {yes | no} Yes Removes (clamps) audio when
the IP Media Server detects
non-voice signals.

Advanced Conferencing

Application Developer’s Guide 114

The following example shows a configure_leg message body that changes the
defaults for mixmode and toneclamp to parked and no, respectively.

Example 9. Joining a Participant with Non-standard Attributes

<?xml version="1.0"?>
<MediaServerControl version="1.0">

<request>
<configure_leg mixmode="parked" toneclamp="no"/>

</request>
</MediaServerControl>

Modifying a Conference Participant

Make changes to an existing participant by using a SIP INFO request on the
selected call leg that contains a <configure_leg> request, indicating the desired
attribute. The following example shows a configure_leg request that mutes the
leg.

Example 10. Modifying a Conference Leg

<?xml version="1.0"?>
<MediaServerControl version="1.0">

<request>
<configure_leg mixmode="mute"/>

</request>
</MediaServerControl>

Removing Participants From a Conference

Remove conference participants from a conference when a SIP BYE is received
on the corresponding call leg. No MSCML message body is required or expected.
The IP Media Server ignores any message body in a SIP BYE request.

Conference Subsetting

To transfer participants from Conference A to Conference B, while still holding
their place in Conference A, create a subset of the existing conference.

To subset an existing conference:

1 Create a second conference.

2 Put the selected participants on hold.

3 Re-INVITE the selected participants to the second conference.

Conference subsetting requires SIP third-party call control operations, but does
not require explicit support in MSCML.

To return the participants to the original conference, the application reverses
the operation.

Advanced Conferencing

Application Developer’s Guide 115

Active Talker Events

The IP Media Server supports active talker events. These are conference-level
events requested using the <activetalkers> element, which takes two attributes:

report

interval

By default, the report attribute is set to No, and advanced conferences do not
subscribe to active talker events.

To subscribe or turn on active talker events, the application sends a SIP INFO
message with report set to a yes value. For a detailed example, see “Modifying
Conference Using Subscribe” (page 248).

With report set to yes, the active talker event contains the number of talkers in
the mix. The event identifies talker participants by their SIP Call IDs, which
must be globally unique per SIP [3].

The supported notification method is SIP INFO. The following example shows
how the XML is generated by the active talker event.

Example 11. Notification of Active Talker Events

<?xml version="1.0"?>
<MediaServerControl version="1.0">

<notification>
<conference uniqueID="ab34h76z" numtalkers=”3”

<activetalkers>
<talker callID="123"/>
<talker callID="456"/>
<talker callID="789"/>

</activetalkers>
</conference>

</notification>
</MediaServerControl>

IVR Operations during a Conference

Application Developer’s Guide 116

IVR Operations during a Conference

Media Server Control Markup Language supports Interactive Voice Response
(IVR) operations such as prompting, DTMF digit collection, and recording. These
operations can be used, for example, in conjunction with other advanced
conferencing features to create complete conferencing applications.

For a detailed description of IVR features and how they are used with MSCML,
see “IVR with MSCML” (page 143).

The application can perform IVR operations on either the conference control leg
or an individual participant leg. To do this, the application sends INFO requests
with the following MSCML commands:

<play>
<playcollect>
<playrecord>
<managecontent>

If sending an IVR request within the context of a conference, for example when
sending a <play> or <playcollect> message to a participant leg, the application
must first send an INFO to that leg, changing its mixmode to parked. After the
IVR operation, the application resends an INFO to the leg, changing its
mixmode back to full.

In this situation, the application server must wait for the IP Media Server's
response to one INFO before sending the next.

Note: In the above-mentioned scenario, the application server must wait for
the IP Media Server's <playcollect> response before sending the
<configure_leg> request. Otherwise, the <playcollect> operation may be
stopped prematurely.

Note: The MSCML message bodies for play, playcollect, playrecord, and stop can be
interrupted.This can occur as a result of an explicit <stop> or if a new MSCML
request is sent while the previous one is still executing.

Note: It is not necessary to park a conference leg for asynchronous DTMF
reporting to function.

Playing and Recording Within the Entire Conference

To play announcements to the entire conference or record the conference
output, enable the reserveconfmedia attribute and set it to yes (default). You set
this default value in the <configure_conference> request that creates the
conference in the initial INVITE.

IVR Operations during a Conference

Application Developer’s Guide 117

In every conference:

The conference control leg is configured for media handling/recording.

If you wish to play media into a conference you are also recording, you can
create a separate internal leg for that purpose. For information on how to
do this, see “Simultaneous Play and Record” (page 124)

Only the conference control leg or a special internal leg can play or record
audio in the conference. The conference control leg is counted when
calculating the capacity of the IP Media Server.

Set the mixmode attribute to preferred for this type of playing. Set the mixmode
to preferred to make sure that the audio placed on the conference control leg is
always mixed into the conference output.

Playing to the Conference

The <play> request is typically used to inject audio into a conference; for
example, to announce the name of a new participant.

The client application issues this request in a SIP INFO request, using the
<prompt> element to specify the audio files to be played.

Recording the Conference Output

To record, use the <playrecord> request. The key attribute of this request is the
recurl, a URL reference to the target location for the recorded audio. The
recording can be preceded as can occur by optional prompt.

There are three timer attributes for the <playrecord> request that control when
and if a recording is terminated by the absence of speech. These timer
attributes are as follows:

initsilence
endsilence
duration

Note: When recording the output of a conference, these timers generally are
disabled, by setting their values to -1.

You can also use the <managecontent> element to move recorded content from
the IP Media Server to remote locations using the HTTP protocol.

IVR Operations during a Conference

Application Developer’s Guide 118

Video Conferencing Enhancements

IP Media Server gives application developers greater control over the media mix
that is delivered to conference participants. Specifically, a lecture mode feature
is available which specifies that input media from the lecturer is always sent to
all participants. Developers may choose whether the lecture properties are
applied to the audio input, video input or both.

In addition, it is possible to mute the audio and video inputs from a participant
independently. Both features apply equally to live input or pre-recorded
content. These enhancements can be utilized, for example, in so-called “video
sharing” applications where a pre-recorded video clip is played to the
conference participants.

Refer to “mixmode” (page 139) for the Configure_Leg mixmode variations that
support these enhancements.

MSCML Changes

Application developers may now control the output gain on conference legs
through MSCML. See the mixmode variants highlighted below.

configure_leg Attribute - Mixmode
<!-- The list of current talkers is used only when sending -->
 <!-- notifications to the calling application. It should

never -->
 <!-- be set when subscribing. -->
 <!ELEMENT configure_leg (inputgain?, outputgain?)>
 <!ATTLIST configure_leg
 id CDATA #IMPLIED
 type (talker | listener | internal) #IMPLIED
 mixmode (full | mute | preferred | parked | private |

mute_video | mute_audio | lecture | lecture_video |
lecture_audio) #IMPLIED

 dtmfclamp (yes | no) #IMPLIED

IVR Operations on Participant Legs

Interactive Voice Response (IVR) operations on participant legs include the
following requests:

<play>
<playrecord>
<playcollect>

Detecting DTMF Digits On A Conference Leg

In most cases, a participant leg must be parked before an IVR operation can be
executed on that leg. The two exceptions to this are asynchronous DTMF and
<playcollect> when no prompt attribute is specified.

IVR Operations during a Conference

Application Developer’s Guide 119

Using Playcollect

Conferencing applications often want to detect DTMF input on a conference leg
to trigger some feature, such as dial-out or help. The <playcollect> request
collects DTMF digits with or without prompting.

This request causes the IP Media Server to process any digits previously input
and possibly wait for additional digits, depending on the attributes supplied.
One can use the cleardigits attribute to indicate whether the application should
remove buffered digits.

Setting the firstdigittimer attribute of <playcollect> to -1 causes the IP Media Server
to wait forever for user input. Any buffered digits that were issued prior to the
request will be processed.

When digits matching the request specification are detected, a <response> is
sent to the application. The response contains the collected digits. If the
application wants to detect additional DTMF input, another <playcollect> request
must be issued.

Using Asynchronous DTMF

For applications where immediate digit-by-digit notification is desired, the IP
Media Server provides asynchronous DTMF event reporting. If using
asynchronous DTMF, the application must manage all timers, pattern matching,
etc. The asynchronous DTMF feature is used instead of <playcollect>.

Note: Dialogic does not recommend mixing asynchronous DTMF and
<playcollect> for DTMF reporting.

To enable asynchronous keypress reporting, send the following MSCML
payload (shown in the following example) to the IVR or conference leg on the
IP Media Server in a SIP INFO message. This payload is sent for each leg on
which digit reporting is desired. Unlike activetalker reports, keypress reports are
not directed to the conference control leg.

Example 12. Asynchronous Keypress Reporting

<?xml version="1.0"?>
<MediaServerControl version="1.0">

<request>
<configure_leg>

<subscribe>
<events>

<keypress report="standard|long|both|none"
 maskdigits=”yes|no”/>

</events>
</subscribe>

</configure_leg>
</request>

</MediaServerControl>

The report values are the following:

Value Description

None Do not report anything (disable reporting if enabled).

IVR Operations during a Conference

Application Developer’s Guide 120

The maskdigits values are:

Example 13. Keypress Response Attributes and Values

<?xml version="1.0"?>
<MediaServerControl version=”1.0”>

<notification>
<keypress digit="[0-9]|[A-D]|#|*”

length="standard|long"
method=”standard|long|double"
interdigittime="{mS}">
<status command=”idle|play|collect|record"

duration={seconds}/>
</keypress>

</notification>
</MediaServerControl>

The keypress response (in the previous example) contains the following
attributes (and the <status> element):

Standard Report digits as they are detected.

Long Report long digits as they are detected. A long digit is defined
as a single key press held down for more than one second or
two distinct key presses (a double) of the same digit that occur
within two seconds of each other with no other intervening
digits.

Both Report both types of digits. Because a long digit consists of one
or more normal digits, a single long duration key press
generates one standard event and one long event.

A double keypress creates two standard events and one long
event.The notification events are sent in a SIP INFO method to
the last contact address of record for the session.

Value Description

Yes Disables Clear Text Logging. DTMF data that is normally
written into the IP Media Server log files is masked
(replaced with asterisks) or discarded.

No

(default)

Enables Clear Text Logging.

Attribute Description

digit Digit that was detected. Possible values are: 0–9, A—D, #,*

length Digit length. Values: standard, long.

method Method used to collect digits. Values:

standard - normal digits

long - long duration digits (more than 1 second)

Value Description

IVR Operations during a Conference

Application Developer’s Guide 121

The <status> element has the following attributes:

Status information can be used to determine if a digit occurred during a play or
a record, or was part of a collect.

Playing Audio to a Participant Leg

The <play> and <playcollect> requests deliver prompts and optionally collect DTMF
input on participant legs. These functions normally occur after the user has
made a feature request through some DTMF input, as described in the previous
section.

To reduce the end-to-end signaling and setup time, the conference interface
allows these IVR operations to occur while the user is joined to the conference
URI. To turn on this feature, use the mixmode attribute of the <configure_leg>
request.

When set to parked, the mixmode attribute isolates the user's audio input and
output so IVR operations can occur. After the IVR operation is completed, the
user's mixmode is returned to its previous setting with an additional
<configure_leg> request.

Detecting and Reporting Busy Call Progress Tones in
MSCML

The IP Media Server can detect busy call progress tones and notify the
application if they occur. This capability is exposed through MSCML's generic
event subscription and notification model. The feature can be used, for example
to augment SIP signaling mechanisms when determining if a call has been
connected. For example, calls that terminate on a PBX might appear to be
connected from a SIP perspective, that is, a 200 final response was generated,
but the end device might not have been picked up.

As in the case of other event types, subscriptions and notifications for busy
events are transported in SIP INFO messages within an INVITE created dialog.
The SIP dialog provides the context and scope for the specific call to which the
event subscription pertains.

Busy events are supported by the IVR (ivr) and advanced (enhanced)
conferencing (conf) services. To subscribe to busy events, as shown in the
following code sample, send the indicated MSCML payload within the
appropriate SIP dialog.

<?xml version="1.0"?>

interdigittime Time in milliseconds (ms) since the end of the previous digit
to the start of this digit (interdigittime). If there is no previous
digit, the interdigittime is 0.

Attribute Description

command Command the IP Media Server was executing at the time
the digit was entered. Values: idle, play, collect, record.

duration How long the IP Media Server has been processing the
command (in seconds).

Attribute Description

IVR Operations during a Conference

Application Developer’s Guide 122

<MediaServerControl version="1.0">
<request>

<configure_leg>
<subscribe>

<events>
<signal type="busy" report="yes|no"/>

</events>
</subscribe>

</configure_leg>
</request>

</MediaServerControl>

For performance purposes, the IP Media Server executes the busy tone
detection algorithm only when the application has subscribed to this event. The
application server subscribes to busy events only when they are needed and
unsubscribes when they are not. Because this particular signal is useful only
during the call setup phase, expect subscriptions to be short, for example, less
than 30 seconds.

Busy notifications are sent in the same manner as all other MSCML events.
However, the difference between busy events and MSCML events is the MSCML
event child element, <signal/>. The IP Media Server sends a busy event
notification <notification/> message after detecting the start of the busy tone.

Note: Only North American busy tones are currently supported.

The following example shows the busy event subscription, response and event
notification process.

Example 14. Busy Event Subscription, Response, and Notification Process

Request

<?xml version="1.0"?>
<MediaServerControl version="1.0">

<request>
<configure_leg>

<subscribe>
<events>

<signal type="busy" report="yes"/>
</events>

</subscribe>
</configure_leg>

</request>
</MediaServerControl>

Response

<?xml version="1.0"?>
<MediaServerControl version="1.0">

<response request="configure_leg" code="200"
text=OK"/>

</MediaServerControl>

Notification

<?xml version="1.0"?>
<MediaServerControl version="1.0">

IVR Operations during a Conference

Application Developer’s Guide 123

<notification>
<signal type="busy"/>

</notification>
</MediaServerControl>

Un-subscribe to busy events and response request

<?xml version="1.0"?>
<MediaServerControl version="1.0">

<request>
<configure_leg>

<subscribe>
<events>

<signal type="busy" report="no"/>
</events>

</subscribe>
</configure_leg>

</request>
</MediaServerControl>

Response

<?xml version="1.0"?>
<MediaServerControl version="1.0">

<response request="configure_leg" code="200"
text="OK"/>

</MediaServerControl>

For details concerning the elements, attributes, and values associated with busy
event subscription and reporting, see “MSCML Conferencing Reference” (page
136). This reference is an alphabetical listing in tabular format.

Simultaneous Play and Record

Application Developer’s Guide 124

Simultaneous Play and Record

You can record a conference while a media stream is being played to it. To do
this, use the configure_leg method attribute type to create an ‘internal’ leg. That
leg can record the conference while another leg is playing to the conference, or
vice versa.

Creating an Internal Conference Leg

To create the internal leg on which to record the conference, send a SIP INVITE
request using the MSCML element configure_leg with the attribute
type=internal. When the internal leg is created, you can use it to record the
conference.

Recording a Conference

To record a conference using the internal leg, send an INFO message to the
internal leg with the MSCML command playrecord, for example:

<?xml version='1.0'?>
<MediaServerControl version='1.0'>

<request>
<playrecord

recurl='file:////var/snowshore/rec/temp.ulaw'
recencoding='ulaw' initsilence=”infinite”
endsilence=”infinite/>

</request>
</MediaServerControl>

The <playrecord> MSCML command that initiates the recording must be
accompanied by specific command line arguments in order for the recording to
take place properly. The ‘initsilence=”infinite”’ and ‘endsilence=”infinite”’
attributes must accompany the <playrecord> request, so that the recording
does not begin or end based on the characteristics of the audio stream. The
‘duration=”infinite”’ attribute may accompany the <playrecord> request, so
that the recording does not end before the end of the conference.

The recording ends when either the MSCML <stop> request is received or the
conference is removed from the IP Media Server, whichever occurs first.

MSCML Conferencing Requests

Application Developer’s Guide 125

MSCML Conferencing Requests

This section describes the MSCML request parent and child elements and
attributes that support the conferencing service (conf=).

For a complete formal definition of the MSCML grammar, see “MSCML Schema”
(page 371).

Conferencing Request Elements and Attributes

This section describes the MSCML conferencing request elements and their
attributes.

configure_conference

The <configure_conference> element can appear in the INVITE or the INFO
message.

In INVITE Message

The MSCML in the initial INVITE that creates the conference sets the
reserveconfmedia and reserved talkers attributes.

Note: The reserveconfmedia attribute cannot be changed. Sending the
reserveconfmedia in subsequent <configure_conference> requests to the same
conference ID generates a 4xx client error response.

A <configure_conference> request must always be sent to establish an enhanced
conference even if the <configure_conference> request does not have any
additional attributes.

Note: The reservedtalkers attribute is currently ignored by the IP Media Server,
so the conference size is not limited by the value of reservedtalkers.

The following table describes the attributes for an <configure_conference>
element in an INVITE message.

Table 34. Configure_Conference Attributes in INVITE Message

Attribute Values Default Description

reservedtalkers 2 -available
IP Media
Server
capacity

Specifies the number of
legs allocated when the
conference is created.

MSCML Conferencing Requests

Application Developer’s Guide 126

The following table describes the subscribe element.

In INFO Message

A <configure_conference> element sent in a SIP INFO request to an existing
conference can modify the conference size and the subscribe element for the
conference. See Modifying an Advanced Conference on page 112 for more
information.

The following table describes the attributes for an <configure_conference>
element in an INFO message.

reserveconfmedia (yes | no) Yes Enables the application to
record the conference and
to play to the entire
conference.

A Yes setting allocates one
of the available talker ports
as the play leg and sets the
mixmode for that leg to
preferred. These settings
ensure that conference
announcements are mixed
into the output as the
loudest audio.

Table 35. Subscribe Element in INVITE with Configure_Conference

Element Description

subscribe Used when subscribing and unsubscribing to active
talker events.

Table 36. Configure_Conference Attributes in INFO Message

Attribute Values Description

reservedtalkers 2-
available
IP Media
Server
capacity

Specifies the number of legs allocated
when the conference is created.

Table 34. Configure_Conference Attributes in INVITE Message

Attribute Values Default Description

MSCML Conferencing Requests

Application Developer’s Guide 127

The following table describes the subscribe element.

configure_leg

To set the properties for individual conference legs and modify asynchronous
DTMF event subscriptions, use the configure_leg request element. This element
can be sent in the following ways:

In an INVITE to join a participant whose properties differ from the properties
established for the conference as a whole.

In an INFO to change the properties for an existing leg.

The following table lists and describes the attributes for the configure_leg
element.

Table 37. Subscribe Element in INFO with Configure_Conference

Element Description

subscribe Used when subscribing and unsubscribing to active
talker events.

Table 38. Configure_Leg Attributes

Attribute Value Default Description

dtmfclamp {yes | no} Yes Removes the audio when a
DTMF digit is detected.

mixmode {full | private |
preferred | listen |
parked |
mute_video |
mute_audio |
lecture |
lecture_video |
lecture_audio}

Full Specifies the mode for
mixing audio from this leg.

type {talker | listener |
internal}

talker Identifies the participant for
this conference leg as a
talker.

toneclamp {yes | no} Yes Removes (clamps) audio
when the IP Media Server
detects non-voice signals.

outputgain Integer between
-12dB and 18dB.

The attribute value is an
integer indicating a decibel
level change. For example
+10 is louder. -10 is lower. 0
is no change.

MSCML Conferencing Requests

Application Developer’s Guide 128

 The following table describes the subscribe element.

Table 39. Subscribe Element for Configure_Leg

Element Description

subscribe Used when subscribing and unsubscribing to asynchronous
DTMF events.

Coached Conferencing

Application Developer’s Guide 129

Coached Conferencing

The IP Media Server enables applications to create personalized mixes for
participants through the MSCML <configure_team/> element. A common use of
this feature is to support coaching of one participant by another.

The coaching scenario includes three participants:

Coach (supervisor) who coaches the agent

Agent who interacts with the client

Client (customer) who receives advice from the agent.

A coached conference is a 3-way conference call where the coach monitors the
call between the company’s agent and the external client. The coach hears both
the agent and the client speaking; the coach can speak to the agent, but the
client cannot hear the coach.

Overview

To create an application that supports the coaching scenario where the client
cannot hear the coach, one would need to identify the relationships among the
participants.

You create personalized mixes by manipulating two MSCML objects:

The list of team members (<teammate/> elements) set using <configure_team/>
The mixmode attribute set through <configure_leg/>

The IP Media Server uses the values of these objects to determine which audio
inputs to combine for output to the participant.

In a normal conference, each participant hears the conference mix minus their
own input, if they are part of the mixed output. The team list enables the
application to specify other participants who can be heard in addition to the
normal mixed output. For example, in the coaching scenario, the coach and the
agent are configured as part of the team. As a result, the agent can hear the
coach as well as the conference mix.

Team relationships are implicitly symmetric. If the application sets the coach as
a team member of the agent, then the agent is automatically set as a team
member for the coach.

One can use the id attribute set through <configure_leg/> to identify the various
participants. Each participant must have a unique ID to use personalized
mixing.

By itself, the team list only defines those participants that can be heard. The
mixmode attribute of each team member determines whether their audio input
is actually included in the personalized mix. If the teammate’s mixmode is set to
private, then it is included; if the mixmode is set to any other value, it is not.
Returning to the coaching scenario, the coach’s mixmode must be set to private
to enable the coach’s input to be heard only by the agent (student).

Coached Conferencing

Application Developer’s Guide 130

MSCML Elements and Attributes of Coached
Conferencing

Coached conferencing requires the <configure_conference> element and depends
on two other major MSCML elements:

<configure_leg> (parent element) with its new value for the mixmode
attribute (mixmode=private)

<configure_team> (child element of configure_leg)

For information about these MSCML elements, see “configure_conference”
(page 125) and “configure_leg” (page 127).

configure_team

The configure_team element allows the user to make the participants members
of a team within a specific conference.

The configure_team element is a child of the configure_leg parent element.

The configure_team can be sent in either a SIP INVITE message or in an INFO
message depending on your application needs.

The configure_team request can be used in the following situations:

In an INVITE message to add a participant whose properties differ from the
properties established for the conference as a whole.

In an INFO message to change the properties for an existing leg.

The following table describes the attributes for the configure_team element.

Table 40. Configure_Team Attributes

Attribute Value Default Description

action add|delete|query|set query Allows the user to modify the team list
by using one of the following values:

add—adds a teammate.

delete—deletes a teammate.

query—returns the teammate list.

set—creates a team list when followed
by <teammate id= "n"> and also removes
all the teammates from the team list, for
example, when the creator (originator)
of the team list on that specific
conference leg wants to remove all of the
teammates from the team. If the set
operation removes all teammates from a
participant, that participant hears the
full conference mix.

Coached Conferencing

Application Developer’s Guide 131

Configuring a Coached Conference

To configure coached conferencing:

1 Join each leg to the conference, being certain to include a unique ID in the
<configure_leg/> request.

Note: The leg ID needs to be unique only within the scope of the conference
it belongs to.

2 Configure the teammate list and mixmode of each participant as required.

The following table summarizes how MSCML elements and attributes are used
to create a coached conferencing configuration and the expected results.

It is often possible to combine both actions (step 1 and 2) in a single MSCML
request.

The following sections describe how to create coached conferencing in a step-
by-step approach.

Creating the Conference

Before joining any participants, the application must create the conference by
sending a SIP INVITE which contains an MSCML <configure_conference/> request
with a unique conference identifier.

 id alphanumeric
characters; must be
less than 64

 unique ID
(within the
conference
)

Identifies each participant uniquely in a
coached conference.

Note: If the MSCML configure_team
specifies an invalid ID, the IP Media
Server ignores the invalid ID and turns
the action into a query.

Table 40. Configure_Team Attributes (continued)

Attribute Value Default Description

Table 41. MSCML Elements and Attributes for Creating Coached
Conferencing

Participant ID Team
Members

Mixmode Hears

Supervisor supervisor Agent Private Customer +Agent

Agent agent Supervisor Full Customer+
Supervisor

Customer customer None Full Agent

Coached Conferencing

Application Developer’s Guide 132

Joining and Configuring the Coach

Join the coach leg to the conference and configure its desired properties by
sending a SIP INVITE containing a <configure_leg/> request. The <configure_leg/>
element sets the leg’s unique ID to supervisor and its mixmode to private.

The corresponding MSCML request is as follows:

<?xml version=”1.0”?>
<MediaServerControl version=?1.0”>

<request>
<configure_leg id=”supervisor” mixmode=”private”/>

</request>
</MediaServerControl>

The IP Media Server responds as follows:

<?xml version=”1.0”?>
<MediaServerControl version=?1.0”>

<response request=”configure_leg” code=”200”
text=”OK”/>

</MediaServerControl>

After this step, the conference looks like this:

Note: You cannot configure the teammate list for the coach yet because there
are no other participants in the conference. A participant must be joined to the
conference before it can be added as a teammate for another leg.

Joining and Configuring the Agent

Join the agent leg to the conference and configure its desired properties by
sending a SIP INVITE containing a <configure_leg/> request. The <configure_leg/>
element sets the leg’s unique ID to agent and sets the supervisor as a team
member of the agent. Because team member relationships are symmetric, this
action also adds the agent as a team member for the coach.

The corresponding MSCML request is as follows:

<?xml version=”1.0”?>
<MediaServerControl version=?1.0”>

<request>
<configure_leg id=”agent”/>

<configure_team action=”set”>
<teammate id=”supervisor”/>

</configure_team>
</configure_leg>

</request>
</MediaServerControl>

Note: Because the desired mixmode for this leg is full, which is the default
value, there is no need to set it explicitly.

The IP Media Server responds as follows:

<?xml version=”1.0”?>

Participant ID Team Members Mixmode Hears

Supervisor supervisor None Private Silence

Coached Conferencing

Application Developer’s Guide 133

<MediaServerControl version=?1.0”>
<response request=”configure_leg” code=”200”

text=”OK”>
<team numteam=”1”>

<teammate id=”supervisor”/>
</team>

</response>
</MediaServerControl>

After this step, the conference looks like this:

Joining and Configuring the Client

Join the client leg to the conference and configure its desired properties by
sending a SIP INVITE containing a <configure_leg/> request. The <configure_leg/>
element simply sets the leg’s unique ID to customer. No further configuration is
required because the desired mixmode, full is the default and the customer has
no team members.

The corresponding MSCML request is as follows:

<?xml version=”1.0”?>
<MediaServerControl version=?1.0”>

<request>
<configure_leg id=”customer”/>

</request>
</MediaServerControl>

Note: Strictly speaking, it is not a requirement that the customer leg be given
a unique ID, because it will not be specified as a team member. However, when
using coached conferencing, it can be beneficial for each leg to be assigned a
unique ID in the initial INVITE request. Assigning a unique ID eliminates the
need to set it later by sending a SIP INFO if personalized mixing for the
customer leg is desired.

Participant ID Team
Members

Mixmode Hears

Supervisor supervisor Agent Private Agent

Agent agent Supervisor Full Supervisor

Coached Conferencing

Application Developer’s Guide 134

After the previous MSCML request is sent, the IP Media Server responds as
follows:

<?xml version=”1.0”?>
<MediaServerControl version=?1.0”>

<response request=”configure_leg” code=”200”
text=”OK”/>

</MediaServerControl>

After this last step, the conference configuration is complete and should look
like:

Supervisor Query for Number of Team Members

The IP Media Server responds to a query from the supervisor using numteam to
indicate how many members are on the team. The following example shows
that there are two members on the team, including the requester.

Example 15. Shows Two Members on the Team

<?xml version="1.0"?>
<MediaServerControl version="1.0">

<response request="configure_leg" code="200"
text="OK">

<team id="super" numteam="1">
<teammate id="agent"/>

</team>
</response>

</MediaServerControl>

Exiting the Conference

If the agent hangs up, the application removes the agent’s leg from the
supervisor’s team list and from the entire conference. This process works
exactly like the BYE method—no message is sent to other members of the
conference.

For details concerning the BYE method and how a conference is torn down, see
“Ending an Advanced Conference” (page 113).

Note: The IP Media Server does not keep track of old team lists or names of old
team lists. Former team members must re-join using the MSCML configure_team
element as initially stated.

For sample code and call flows associated with coach conferencing, see
“Coached Conferencing” (page 260)”.

Participant ID Team
Members

Mixmode Hears

Supervisor supervisor Agent Private Customer +
Agent

Agent agent Supervisor Full Customer+
Supervisor

Customer customer None Full Agent

Coached Conferencing

Application Developer’s Guide 135

Using SIP INFO

Coached conferencing can be achieved by sending MSCML <configure_team/>
elements in SIP INVITE requests. However, if the desired call flow is different or
if the initial settings require changes, use SIP INFO to carry the desired MSCML
payload.

MSCML Conferencing Reference

Application Developer’s Guide 136

MSCML Conferencing Reference

This section describes each of the MSCML conferencing elements and attributes.

MSCML Elements

This section describes the MSCML conferencing elements (listed in alphabetical
order).

Note: The values for the specific call progress tones are listed under the Type
attribute.

activetalkers

Subscribes to activetalker events.

Parent: events

Note: When subscription events are configured for reporting (report=), an
updated report is issued only when the activetalkers change, regardless of the
interval. If the interval is set to 60 seconds, and the same three participants
talk for 119 seconds, there is no new report until the second 60-second interval.

configure_team

Configures the team list for a conference participant to enable personalized
mixes.

Note: The personalized mix is not activated unless the participant’s mixmode is
set to private.

Parent: configure_leg

dtmf

Allows the IP Media Server to send DTMF and/or RFC2833 packets provided in
the digits attribute.

Parent: prompt

Attributes:

Example

<?xml version="1.0" encoding="utf-8"?><MediaServerControl
version="1.0"><request><play><prompt><dtmf digits="123"
ontime="200" /></prompt></play></request> </MediaServerControl>

Attribute Description

digits The numbers to play back.

ontime The amount of time (in milliseconds) that each digit is
held.

MSCML Conferencing Reference

Application Developer’s Guide 137

events

Contains a list of events whose subscription state is to be modified.

Parent: subscribe

Child Elements: activetalkers, signal, keypress

keypress

Subscribes to asynchronous DTMF events.

Parent: events, notification

notification

Sent by the IP Media Server to notify the client application when an event is
detected.

Parent: None

Child Elements: signal, keypress, conference

signal

Used to subscribe for notification of specific call progress tones.

For example, the IP Media Server detects an in-band busy signal and reports
this event to the application, so that false connects are eliminated.

Note: The signal element is also used in the IP Media Server’s implementation
for Interactive Voice Response (IVR).

Parent: event, notification

Values: busy*, dial*, CED, CNG, PVD_PAMD, PVD, PAMD, interrupt, ring*, 400

* North American busy tone

subscribe

Parent element required for busy event subscription, response, and event
notification. To unsubscribe to busy events and response requests, set the signal
attribute report to no.

Parents: configure_conference, configure_leg

Child Elements: events

teammate

Sets up and identifies the team list <teammate id=" "> of team participant(s) in
coached conferencing. Used with the ID attribute.

Parents: configure_team, configure_leg

MSCML Attributes

This section describes the MSCML conferencing attributes (listed in alphabetical
order).

MSCML Conferencing Reference

Application Developer’s Guide 138

action

Operation to be performed on the team list.

Attribute of: configure_team

Values

dtmfclamp

Whether the audio from the leg is removed (clamped) from the conference mix
when a DTMF digit is detected.

In a conference leg with DTMF clamping set to no, detected 2833 events are re-
generated (mixed) to all other conference participants. To receive a 2833 event
payload, you must first set up a channel for 2833 mode.

Transmitting 2833 events through conferences is implemented with the concept
of a single 2833 talker; only one leg can send 2833 at a time. The leg that first
detects 2833 and is not clamped becomes the 2833 talker and has that 2833
event transmitted to completion. Once that event completes, another leg can
become the 2833 talker. This scheme prevents mixing of simultaneous 2833
events from different sources thereby confusing the recipients. However, it
allows for any leg to send 2833 in the conference, but not simultaneously.

Attribute of: configure_leg

Values:

id

Alphanumeric characters that uniquely identify the three participants in
coached conferencing. Number of characters cannot exceed 64.

Attribute of: configure_team

Example: id=supervisor1

Value Description

add Adds a teammate.

delete Deletes a teammate.

query

(default)

Returns the teammate list.

set Creates a team list when followed by <teammate id= "n"> and also
removes all the teammates from the team list, for example, when
the creator (originator) of the team list on that specific conference
leg wants to remove all of the teammates from the team. If the set
operation removes all teammates from a participant, that
participant hears the full conference mix.

Value Description

yes

(default)

Audio from leg is removed when a DTMF digit is detected. The
default should be modified by applications only on rare
occasions.

no Detection of DTMF does not clamp the audio from this leg.

MSCML Conferencing Reference

Application Developer’s Guide 139

mixmode

Mode for mixing audio from and to this leg.

Attribute of: configure_leg

Values:

repeat

Provides the client application with a way of repeating tone and prompts for a
given number of times with the ability to limit the duration to a given length of
time, if desired. The user can set the duration for an infinite length of time, or
the repeating can be terminated by an interrupt.

Attribute of: prompt

Values: 0 - infinite (Default: 1.)

Value Description

full

(default)

Audio is mixed, but not as the loudest leg.

preferred The input audio from a leg with mixmode set to preferred is
assigned a higher weight than legs set to full when
determining who is included in the mix. With reasonable
input levels from conference participants, this setting causes
the preferred leg to be part of the mix. This setting overrides
the default selection of mix inputs based strictly on loudness.

parked Complete isolation from conference input and output. Used to
isolate user audio input and output so IVR operations can
occur. After IVR operation is complete, returns the user's
mixmode to previous setting with an additional
<configure_leg> request.

private The leg’s audio input is sent only to its teammates rather than
to the full conference. The participant still hears the regular
conference audio.

mute_video Suppresses only the video feed of the participant and allows
the audio to be fed into the conference mixer. If the leg with
mute_video variation is the loudest talker, then no video is
sent to the other participants.

mute_audio Suppresses only the audio from the participant and allows
the video to be received from a participant.

lecture Makes that leg the lecturer for the conference. All non-lecture
participants have the audio and video muted.

lecture_video Makes that leg the video lecturer for the conference. All non-
lecture participants have the video muted once any
participant becomes the lecturer_video.

lecture_audio Makes that leg the audio lecturer for the conference. All non-
lecture participants have the audio muted once any
participant becomes lecture_audio.

MSCML Conferencing Reference

Application Developer’s Guide 140

report

Enables and disables notification for events. Report is an attribute of
activetalkers, signal, and keypress.

Attribute of: activetalkers, signal

Values:

Attribute of: keypress

Values:

reserveconfmedia

Allocates a control leg resource for playing or recording audio to or from the
entire conference.

Attribute of: <configure_conference>

Values:

Value Description

yes Enables reporting of the associated event.

no

(default)

Disables reporting of the associated event.

Value Description

normal Reports normal digits.

long Reports long digits.

both Reports both manual and long digits.

none

(default)

Disables asynchronous DTMF reporting.

Value Description

yes

(default)

Must be set to yes for the application to play to or record the
conference. The yes value consumes one of the available talker
ports (as set by reservedtalkers) for the conference and sets the
mixmode for the virtual conference leg to preferred, which ensures
that conference announcements are mixed into the output as the
loudest audio.

no Does not play to or record the conference.

MSCML Conferencing Reference

Application Developer’s Guide 141

reservedtalkers

How many talker legs are allocated when the conference is created.

Audio from talker legs is processed by the mixing algorithm to produce the
conference output.

This attribute can be carried in the initial SIP INVITE that creates the conference
or in mid-call INFO request to resize an existing conference.

Note: The reservedtalkers attribute is currently ignored by the IP Media
Server, so the conference size is not limited by the value of reservedtalkers.

Attribute of: <configure_conference>

Values are numbers in the range of 2 to available media sever capacity.

toneclamp

Removes (clamps) audio when non-voice signals are present in the media
stream.

Attribute of: <configure_leg>

Values:

type

Attribute of config_leg and signal.

The type of participant for this conference leg.

Attribute of: <configure_leg>

Values:

Attribute for: signal (required)

Identifies the type of signal to be reported.

Value Description

yes

(default)

Audio is clamped when tones are
detected.

no Audio is not clamped.

Value Description

talker

(default)

The audio input from the participant is processed by a
mixing algorithm to create the conference output.

listener Audio input from the participant is not included in the
conference mix

internal A conference leg used for playing to or recording from a
conference.

MSCML Conferencing Reference

Application Developer’s Guide 142

Values:

Value Description

busy Far end busy tone (also fast busy)

dial Dial tone

CED Fax calling tone

CNG Fax called station identifier

PVD_PAMD Registering for the PVD_PAMD signaling
detection registers the application for both
Positive Voice Detection (PVD) and Positive
Answering Machine Detection (PAMD). These
do not need to be turned off. The detector runs
until either PVD or PAMD is detected and then
the PVD_PAMD detection is automatically
disabled.

An MSCML application does not need to stop
the call progress signal detection prior to the
completion of the call.

PVD The IP Media Server sends notification
regarding the PVD. Detection of the event
stops the detector.

PAMD The IP Media Server sends notification
regarding the PAMD. Detection of the event
stops the detector.

interrupt Call interrupted (call waiting)

ring Far end ring tone

400 tone used in Japan

Application Developer’s Guide 143

5 - IVR with MSCML

This chapter explains the IP Media Server’s implementation for Interactive
Voice Response (IVR) using the ivr service indicator.

The IP Media Server offers two interfaces for those choosing to develop
IVR/DTMF applications: IVR with MSCML and VoiceXML. For more information
about VoiceXML, see “VoiceXML Version 2.0 and Dialog Service” (page 176),
and “VoiceXML Version 1.0 and Dialog Service” (page 326).

This chapter includes the following major sections:

IVR Service

Playing Announcements

Collecting DTMF Digits

Recording Audio

Stopping an IVR Request in Progress

MSCML MRCP Session Management

MSCML IVR Reference

IVR Service

Application Developer’s Guide 144

IVR Service

The IVR service (ivr) supports basic Interactive Voice Response functions, such
as:

Playing announcements

Collecting DTMF digits

Recording audio

These functions are based on MSCML elements that are added to the message
body of a SIP request.

Example 16. IVR Service Indicator with MSCML Elements

To: sip:ivr@192.168.12.153;tag=1031666918
Call-ID: 1031580381757@192.168.1.126
CSeq: 1066407027 INFO
Content-Length: 237
Content-Type: application/mediaservercontrol+xml
Via: SIP/2.0/UDP 192.168.1.126:5060
<?xml version='1.0'?>
<MediaServerControl version='1.0'>

<request>
<playcollect barge='yes' cleardigits='yes'

maxdigits='4'>
<prompt>

<audio url='http://192.168.1.126:8013/app/
audio/askauthcode.raw'/>

</prompt>
</playcollect>

</request>
 </MediaServerControl>

Response to INFO request from the IP Media Server:
 SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.1.126:5060
From: sip:appserver@192.168.1.126;tag=oi32zw
To: sip:ivr@192.168.12.153;tag=1031666918
Call-ID: 1031580381757@192.168.1.126
CSeq: 1066407027 INFO

The request payload (block or stream of data/information) for IVR can be
located in either the initial SIP INVITE or in INFO requests.

Your application must use the INFO method for mid-call requests.

The application server must support sequenced INFOs per draft-ietf-sip-
rfc2543bis-03 “SIP: Session Initiation Protocol”.

The IP Media Server notifies the application that the command has completed
by sending a response message containing final status information and data
such as collected DTMF digits. See “IVR Response Elements and Attributes”
(page 173) for details on IVR responses.

IVR Service

Application Developer’s Guide 145

IVR requests are not queued. If the application receives a request while another
is in progress, the first operation is stopped and the new request is carried out.
The IP Media Server generates a <response/> message for the first request and
returns any data collected up to that point. If an application stops a request in
progress, but does not initiate another operation, the IP Media Server issues a
<stop> request and generates a <response/> message.

The IP Media Server treats a SIP re-INVITE with Hold media (c=0.0.0.0) as an
implicit <stop/> request, immediately terminating the running <play/>,
<playcollect/> or <playrecord/> request and sending a <response/> to the running
request indicating reason=stopped. See IP Media Server “IP Media Server
Behavior When Hold Media is Presented” (page 81)for additional information on
Hold media.

The IVR service indicator is ivr.

INVITE sip:ivr@MS_IP

There are five MSCML directives for IVR functions:

<play/>
<playcollect/>
<playrecord/>
<stop/>
<managecontent/>

The MSCML reference for these directives begins on page 118. See “MSCML
Schema” (page 371) for the complete MSCML grammar.

See “Sample Code and Call Flows” (page 232) for code samples and call flow
diagrams.

Call Progress Tones

The IP Media Server supports the following call progress tones in MSCML to
allow call centers to quickly classify calls as successful or not.

busy
dial
CED
CNG
PVD_PAMD
interrupt
ring
400

Note: These call progress tones in MSCML can also be used in the IP Media
Server’s conferencing implementations.

Third party systems can subscribe for these call progress events early in the call
setup to quickly detect any of the call progress signal/tones.

The type attribute value of PVD_PAMD is used to register for both PVD and
PAMD notification events.

IVR Service

Application Developer’s Guide 146

The following is an example MSCML subscription for PVD and PAMD notification
events.

 <?xml version="1.0"?>
 <MediaServerControl version="1.0">
 <request>
 <configure_leg>
 <subscribe>
 <events>
 <signal type="PVD_PAMD" report="yes"/>
 </events>
 </subscribe>
 </configure_leg>
 </request>
 </MediaServerControl>

The following is an example MSCML signal notification.

 <?xml version="1.0"?>
 <MediaServerControl version="1.0">
 <notification>
 <signal type="PVD"/>
 </notification>
 </MediaServerControl>

Playing Announcements

Application Developer’s Guide 147

Playing Announcements

To play an announcement without interruption and with no digit collection, use
the <play/> request. For example, use this request to announce the name of a
new participant to the entire conference.

To immediately halt the current request and trap any content retrieval errors,
use the Stop on Error feature. For further details, see “Handling of Content
Retrieval Errors” (page 153)

Elements and Attributes

In the body of the request, the <prompt/> element specifies the announcement
to play.

The attribute id (optional) is an application-defined request identifier that
correlates the asynchronous response with its original request and echoes back
to the application in the IP Media Server's response.

The prompturl, promptencoding, and offset attributes have been deprecated.
Applications should use the <prompt/> element instead.

For further details concerning IVR attributes, see “IVR Attributes” (page 163).

Responses

When the announcement has finished playing, the IP Media Server sends a
<response> payload to the application in a SIP INFO message.

The response contains the following with some examples noted in parenthesis:

Return code (200)

Return text (ok)
Reason (EOF)

Actual duration of the prompt

ID, if one was provided

For more information about responses to <play>, see “IVR Response Elements
and Attributes” (page 173).

Collecting DTMF Digits

Application Developer’s Guide 148

Collecting DTMF Digits

To collect DTMF digits, use the <playcollect/> request.

This request has multiple attributes, all of which are optional. For a detailed
description of the attributes, see “MSCML IVR Reference” (page 161).

Prompting

The presence or absence of the <prompt/> element controls whether to initiate
an announcement or only collect digits. The following is an example of how the
<prompt/> element works.

<prompt baseurl="file:////opt/snowshore/prompts/conf/">
<audio url="please_enter.wav"/>
<variable type="silence" value="1"/>
<audio url="your.wav"/>
<variable type="silence" value="1"/>
<audio url="pin_number.wav"/>

</prompt>

For additional information about the prompt element, see “prompt” (page 125).

Digit Buffering

The ivr service automatically detects and buffers DTMF digits. When the IP Media
Server receives a <playcollect/> request, it begins to examine the DTMF digits
buffer.

To determine whether immediate action is required, the IP Media Server
compares any previously buffered digits for a match with the following
attributes:

returnkey
escapekey
maxdigits

This examination provides the type-ahead behavior for menu traversal and
other types of IVR interactions.

The application can override type-ahead behavior by setting the cleardigits
attribute to yes, removing all previously-buffered digits. As a result, the
application only considers user input that occurs after the request.

Caution: If cleardigits is set to no, previously-buffered digits may result in
the prompt being interrupted (barged into) immediately. As a result,
prompt play does not begin and digit collection starts immediately.

The default for barge is yes. If the barge attribute is set to no, cleardigits is
implicitly understood to have a value of yes. This value provides that the
application clears any DTMF input occurring before the current collection after
the request completes.

Collecting DTMF Digits

Application Developer’s Guide 149

Star and Pound Keys

The application can set two special keys to a single DTMF digit to invoke special
processing when detected.

The escapekey (defaults to *) indicates that the user intends to terminate the
current operation without saving any input collected up to that point. Detection
of the specified escapekey digit terminates the request immediately and
generates a response.

The returnkey (defaults to #) indicates that the user has completed the input and
wants to return all collected digits to the application. If the IP Media Server
detects a returnkey, the IP Media Server immediately terminates collection and
returns the collected digits to the application in the <response> message.

The IP Media Server allows you to trap any content retrieval errors and
immediately halt the current request by using the stop_on_error attribute. For
further details, see “Handling of Content Retrieval Errors” (page 153).

Timing Attributes

Several attributes control how long the IP Media Server waits for digits in the
input sequence. All timer values are expressed in milliseconds. The timers
include the following:

firstdigittimer controls how long the IP Media Server waits for the initial DTMF
input.

interdigittimer controls how long the IP Media Server waits between DTMF
inputs.

extradigittimer controls how long the IP Media Server waits for additional user
input after the specified number of digits (maxdigits) have been collected.

The extradigitimer attribute enables the returnkey input to be associated with the
current collection. For example, if maxdigits is set to 3 and the returnkey is set to
#, the user can enter x#, xx#, or xxx#, where x represents a DTMF digit.

If the IP Media Server detects the returnkey pattern during the extradigit interval,
the collected digits are returned to the application and as a result, the returnkey
is removed from the digit buffer.

If this were not the case, and considering the above example, the application
would receive xxx and leave the terminating # in the digit buffer to be processed
by the next <playcollect/> request. This could result in unintentionally terminating
the prompt that immediately follows.

Note: The extradigittimer has no effect unless returnkey has been defined.

Responses

When the <playcollect/> has finished playing, the IP Media Server sends a
<response> payload to the application in a SIP INFO message.

The <response> consists of the following, with some examples noted in
parenthesis:

Return code (200)

Return text (OK)

Collecting DTMF Digits

Application Developer’s Guide 150

Reason (timeout)
Actual duration of the prompt (playduration)

Collected digits

ID, if one was provided (application-defined)

For further details, see “IVR Response Elements and Attributes” (page 173).

Recording Audio

Application Developer’s Guide 151

Recording Audio

To record an audio request, use the <playrecord/> request.

The <playrecord/> request directs the IP Media Server to capture a real-time
audio stream (Real-Time Transport Protocol) and deliver the resulting content
to a URL specified by the controlling application. You can only specify file
scheme URLs (NFS transport).

Playrecord Attributes

This request directive contains multiple attributes. The recurl attribute is
required, because it identifies the URL for the recorded audio. All other
attributes are optional.

The presence or absence of the <prompt> element controls whether or not a
prompt plays before recording begins.

Playrecord Process

When the IP Media Server requests a prompt, <playrecord/> has two stages.

The first is essentially a <playcollect/> operation. The application can set the
prompt phase to be interrupted by DTMF input and can also specify an escapekey
that will terminate the <playcollect/> request before the recording phase begins.
The escapekey applies only to <playcollect/> and has no effect once recording
starts.

When the escapekey is pressed, the IP Media Server generates a response
message and the operation ends immediately. If any other keys are pressed and
if the prompt has been set as interruptible (barge=yes), play stops immediately
and the recording phase begins.

Any digits collected in the prompt phase, with the exception of those specified
by the recstopmask attribute, are buffered and returned in the response.

If the request proceeds to the recording phase, the application discards any
digits from the collection phase from the buffer to eliminate unintended
termination of the recording.

The application compares digits detected during the recording phase to the
digits specified in the recstopmask to determine if the digits should terminate
recording.

Digits not present in the recstopmask are ignored and passed into the recording.
If the recording is terminated because of a DTMF input, the collected digits are
returned to the application in the <response>.

Once recording begins, the application writes the audio to the specified recurl
URL, no matter what DTMF events are detected. The application must examine
the DTMF input returned in the <response> message to determine whether the
audio file should be saved or deleted and then re-recorded.

You have the option of trapping any content retrieval errors and immediately
halting the current request by using the stop_on_error attribute. See “Handling
of Content Retrieval Errors” (page 153) for more information.

Recording Audio

Application Developer’s Guide 152

Timing Attributes

The initsilence and endsilence timing attributes control how long the IP Media
Server waits for the start of speech to begin the recording and the absence of
speech to end the recording.

Table 42 describes these timing attributes.

Additional Attributes

Table 43 describes additional attributes associated with <playrecord>.

For details on all IVR attributes, see “IVR Attributes” (page 163).

Responses

When the IP Media Server has finished recording, it generates a <response>
message and sends it to the application in a SIP INFO message.

The response contains the following with some examples noted in parenthesis:

Table 42. Timing Attributes

Attribute Definition

initsilence How long to wait for initial speech input before
terminating (canceling) the recording. This attribute
can be a positive integer value in milliseconds, or
can be set to -1, which directs the IP Media Server
to wait indefinitely.

The default is 3000 ms (3 seconds).

endsilence How long the IP Media Server waits after speech has
ended to stop the recording. This parameter takes a
positive integer value in milliseconds, or can be set
to -1. With a value of -1, the recording continues
indefinitely after speech has ended, but may
terminate due to a DTMF keypress or because the
maximum desired duration has been reached. The
default maximum duration is 4000 ms (4 seconds). If
the endsilence timer expires, the IP Media Server
trims the end of the recorded audio by an amount
equal to the endsilence parameter.

Table 43. Additional Attributes of PlayRecord

Attribute Definition

mode Whether the recording overwrites or appends.

recencoding Specifies the content codec to use.

duration Specifies the time in ms for the entire recording.

beep Specifies whether a beep signifies the start of
recording.

Recording Audio

Application Developer’s Guide 153

Return code (200)

Return text (ok)

Reason (endsilence)

Actual duration of the prompt (playduration)

Collected digits

ID, if one was provided (application-defined)

For further details, see “IVR Response Elements and Attributes” (page 173).

Handling of Content Retrieval Errors

Applications can control the IP Media Server's behavior when a content retrieval
error occurs and capture detailed information regarding what happened. This
feature is controlled through the stop_on_error attribute, which pertains to the
<prompt/> tag. The <prompt /> tag appears in <play/>, <playcollect/>, and
<playrecord/> requests. This attribute takes the following values:

Details of the issue are returned in the <error_info/> element in the MSCML
response. This element has three attributes: code, text and context. The code and
text attributes are similar to their counterparts in the MSCML response;
however, these attributes contain the error code and text received from the
content server. The context attribute holds the URL that the IP Media Server was
attempting to retrieve when the error occurred.

Value Description

yes The IP Media Server stops the request if a fetch error
occurs.

no

(default)

Original MSCML behavior; fetch errors do not stop the
request. For compatibility reasons, this is the default.

Stopping an IVR Request in Progress

Application Developer’s Guide 154

Stopping an IVR Request in Progress

The application issues a <stop/> request to stop a request in progress and not
initiate another operation. This request generates a <response/> message from
the IP Media Server.

ID Attribute

The id attribute is application-defined. This optional attribute is the only
attribute related to the <stop> request.

This application-defined request ID correlates the asynchronous response with
its original request and echoes back to the application through the IP Media
Server's response.

Response

The response carries the following:

Return code (200)

Return text (OK)

ID, if one was provided (application-defined)

MSCML MRCP Session Management

Application Developer’s Guide 155

MSCML MRCP Session Management

This section describes MRCP Session Management and includes the following
topics:

Overview of MRCP Session Management

MSCML Requests

Create session request format

Create session response format

Terminate session request format

Terminate session response format

Sample Call Flow

Overview of MRCP Session Management

Applications that include Automated Speech Recognition (ASR) and Text-to-
Speech (TTS) features are most commonly written in VoiceXML. However,
certain applications may require ASR and TTS capabilities which are not
exposed through existing versions of the VoiceXML standard. Further, some
developers may not wish to write or rewrite their applications using VoiceXML.

To address these situations, the IP Media Server supports MSCML extensions to
create and terminate MRCP v2 sessions on behalf of the application.

The application is responsible for implementing all required MRCP client
functions. The IP Media Server's role is simply to manage the MRCP session and
associated media streams.

Note: MRCP Session Management is supported with the following packages:
Nuance OSR MRCP 3.0.10 and SWMS 4.0 running under Linux.

Features Enabled

MRCP Session Management enables the following features:

speech synthesis

speech recognition

speech recording

MSCML MRCP Session Management

Application Developer’s Guide 156

Process

Figure 7 outlines the MRCP Session Management process. Each stage is
explained in the table following the figure.

Figure 7. MRCP Session Management

MSCML MRCP Session Management

Application Developer’s Guide 157

Table 44. Description of MRCP Session Management Topology

MSCML Requests

The following MSCML requests support MRCP Session Management. The
formats and attributes of each are provided below.

mrcp_session_create

mrcp_session_terminate

These MSCML requests are scoped to the SIP dialog in which the requests are
sent and apply to the dialog's associated RTP streams. Any usage of MRCP
resources will create at least one new SIP dialog with the desired MRCP
resource.

If multiple resource types are supported on a single MRCP server, the media
server may reuse the existing dialog and simply send a re-INVITE with the SDP
that describes the additional resource desired. However, different resources
such as ASR and TTS are often deployed on separate servers for performance
reasons so a separate SIP dialog will get established for each MRCP resource
type in this configuration. The SDP for that dialog contains a single resource
type.

The lifetimes of any SIP dialogs with MRCP resources are tied to the original SIP
dialog with the application server. The media server must clean up any MRCP
related SIP dialogs when the original SIP dialog is terminated. Standard session
timers apply to MRCP dialogs.

Stage Description

1 SIP session between a caller and the application server that
invokes the application.

2 SIP session between the application server and IP Media
Server used to set up RTP communication between the caller
and IP Media Server and to control media processing. The
application server uses this session to send MSCML
<mrcp_session_create> and <mrcp_session_terminate>
requests.

3 RTP session with caller. This is normally full duplex, as shown.

4 SIP session between the IP Media Server and the ASR/TTS
server, which supports MRCP V2.

5 RTP session between the IP Media Server and the ASR/TTS
server. This is normally half-duplex, since ASR and TTS rarely
reside on the same server. In this example, media is sent
from the IP Media Server to an ASR server, which performs
speech recognition.

6 MRCP session between the application server and the
ASR/TTS server. The application server uses the information
contained in the IP Media Server’s response to the
<mrcp_session_create> request to establish this connection.
Once the connection is established, the application server
communicates directly with the ASR/TTS server using MRCP
and starts a recognition session.

MSCML MRCP Session Management

Application Developer’s Guide 158

Established MRCP sessions can only be ended by the
<mrcp_session_terminate> request or termination of the parent SIP dialog as
described above. Unlike the <play>, <playrecord> and <playcollect> requests,
the MRCP sessions are not stopped when another MSCML request is received.

Note: MSCML mrcp_session_create works only with the conference service.

Create session request format

The following is the MSCML format of the mrcp_session_create request.

<?xml version="1.0" encoding="UTF-8"?>

<MediaServerControl version="1.0">
<request>
 <mrcp_session_create id="1234" resource="speechrecog"
 url="sip:mrcpserver_address" proto=”TCP/MRCPv2”

rtpdirection=”sendonly”/>
<request>
</MediaServerControl>

The following are the attributes of the mrcp_create_session request.

Table 45. Attributes of mrcp_create_session

Create session response format

The following is the MSCML format of the mrcp_session_response request.

Attribute Mandatory Description

id No An application-provided transaction identifier.

resource Yes The resource to be provided by the MRCP server.

url Yes The complete SIP URL of the MRCP server. Note
that in actual deployments this will most likely be
a SIP proxy, which will select a specific server and
forward the request.

proto No The transport protocol to be used for the MRCP
session. Alternatives are “TCP/MRCPv2” (default)
and “TCP/TLS/MRCPv2”. This value is treated as
case-sensitive in SDP and will be treated likewise
here.

rtpdirection No The value to be used in the direction attribute of
the SDP offer created by the media server. The
attribute is interpreted from the perspective of the
media server. This value is treated as case-
sensitive in SDP and will be treated likewise here.

If this attribute is not set the SDP, offer will be
based on the resource required. For example the
RTP stream to a “speechrecog” resource is send-
only from the perspective of the media server.

MSCML MRCP Session Management

Application Developer’s Guide 159

<?xml version="1.0" encoding="UTF-8"?>
 <MediaServerControl version="1.0">
 <response id="1234" request="mrcp_session_create"

code="200" text="OK"
 connection="192.168.16.2" port="32416"

proto=”TCP/MRCPv2”
 channel="32AECB234338@speechrecog"/>
 </MediaServerControl>

Table 46. Attributes of mrcp_session_response

Terminate session request format

<?xml version="1.0" encoding="UTF-8"?>
 <MediaServerControl version="1.0">
 <mrcp_session_terminate id="1234"

channel=”32AECB234338@speechrecog"/>
 </MediaServerControl>

Attribute Required Description

id No An application-provided transaction
identifier.

connection Yes The IP address of the MRCP server the client
connects to.

port Yes The port of the MRCP server that the client
connects to.

proto Yes The transport protocol to be used for the
MRCP session. Alternatives are
“TCP/MRCPv2” and “TCP/TLS/MRCPv2”.

connectiontype Yes The value of the “a=connection” attribute
associated with the MRCP control channel
from the MRCP server’s SDP answer.
Alternatives are “new” and “existing.” There
is no MSCML default value - the MRCP server
is required to provide this information in its
SDP answer.

channel Yes The channel identifier returned from the
MRCP server. The client uses it to
communicate with the server.

MSCML MRCP Session Management

Application Developer’s Guide 160

Table 47. Attributes of mrcp_terminate_session_request

Terminate session response format

<?xml version="1.0" encoding="UTF-8"?>
 <MediaServerControl version="1.0">
 <response id="1234" request="mrcp_session_terminate"

code="200" text="OK"/>
 </MediaServerControl>

An <error_info> element will be included in the response if the MRCP server
returns an error. This enables the MRCP server error code and text, as well as
the target URL that generated the error, to be returned to the application.

Sample Call Flow

For MRCP sample call flow, see “Call Flow for MSCML MRCP Session
Management” (page 283).

Attribute Required Description

id No An application-provided transaction identifier.

channel Yes The channel identifier returned from the
MRCP server. The client uses it to
communicate with the server.

MSCML IVR Reference

Application Developer’s Guide 161

MSCML IVR Reference

This section lists the MSCML elements and attributes that support the IVR
service (ivr).

For the complete MSCML grammar, see “MSCML Schema” (page 371).

IVR Elements

Table 48 summarizes MSCML elements that support IVR.

Table 48. MSCML Elements for IVR

Element Attributes Response
Attributes

Description

managecontent src, dest, action,
httpmethod, name,
mimetype, fetchtimeout

N/A Moves recorded content from
the IP Media Server to remote
locations using the HTTP
protocol. This is a store and
forward model, which requires
the local temporary recording
to be completed before it can
be sent to the Web server (i.e.,
<playrecord/>). There is no
provision for streaming the
recording to the Web server
while it is being recorded.

play delay, duration, id, locale,
offset, prompt,
promptencoding, repeat,
stop_on_error

code, id,
playduration,
reason, text

Plays an announcement that
cannot be interrupted by DTMF
input and does not require digit
collection. Specifies the
announcement to be played by
creating a <prompt> element
in the body of the request.

playcollect barge, cleardigits, delay,
duration, escapekey,
extradigittimer,
firstdigittimer, id,
interdigittimer, locale,
maskdigits, maxdigits,
offset, prompt,
promptencoding,
repeat, returnkey

code, digits, id,
playduration,
reason, text

Collects user input or DTMF
digits when an announcement
might be interrupted. The
announcement is optional, and
if not set, the result is digit
collection only.

playrecord barge, beep, cleardigits,
delay, duration,
endsilence, escapekey,
id, initsilence, locale,
mode, offset, prompt,
promptencoding,
recencoding,
recstopmask, recurl,
repeat

code, digits, id,
playduration,
reason,
reclength,
text

Request used when recording
audio to set the properties the
IP Media Server uses to capture
RTP and deliver it to a URL
specified by the controlling
application. The application can
specify an optional prompt to
play prior to the recording.

MSCML IVR Reference

Application Developer’s Guide 162

IVR Prompt Block

The prompt block in the body of the play, playcollect, or playrecord request contains
one or more references to physical audio files, provisioned sequences, or
attributes that are played in the order in which they appear.

Note: The play queue that can be encased within the <prompt> and
</prompt> keywords can only be 16 files deep. If you send a play request with
more than 16 files, only the first 16 are played and a successful return code is
generated.

Attributes: baseurl, locale, stop_on_error, repeat, duration, offset, delay

The following examples (17–19) illustrate several uses of the prompt block.

Example 17. Prompt Block

<prompt baseurl="file:////opt/snowshore/
prompts/conf/">

<audio url="please_enter.wav"/>
<variable type="silence" value="1"/>
<audio url="your.wav"/>
<variable type="silence" value="1"/>
<audio url="pin_number.wav"/>

</prompt>

Using the repeat, duration, delay and offset attributes, the application can repeat
prompts for a given number of times with the ability to limit the duration to a
given length, if desired. The user can set the duration attribute for an infinite
length of time or the application can terminate repetition using an interrupt
<stop/>. The following examples illustrate these attributes.

Example 18. Prompt Block with Repeat for Single File

<request>
<play id=212>

<prompt repeat="infinite" duration="infinite"
offset=”1” delay=”10”>
<audio url="file:////opt/snowshore/prompts/

generic/10.ulaw"/>
</prompt>

</play>
</request>

stop id code, id, text Stops a request in progress and
does not initiate another
operation.

Table 48. MSCML Elements for IVR (continued)

Element Attributes Response
Attributes

Description

MSCML IVR Reference

Application Developer’s Guide 163

Example 19. Prompt Block with Repeat for Several Files

<request>
<play id=21212>

<prompt baseurl="file:////opt/snowshore/prompts/
generic/" locale="en_US" repeat="infinite"
duration="infinite" offset=”0” delay=”2000”>

<audio url="num_changed.wav"/>
<audio url="new_number.wav"/>
<variable type="dig" subtype="ndn"

value="9725551212"/>
<audio url="make_note.wav"/>

</prompt>
</play>
</request>

Prompt Elements

The VoiceVML prompt element takes two elements to specify the file to be
played: <audio> and <variable>.

<audio>

Each audio element in a <prompt/> block refers to a physical audio file or
sequence to be played. Audio files are played in the order in which they are
listed in the block.

Attributes: encoding, url, src

<variable>

A symbol or string of symbols whose value changes.

Attributes: subtype, type, value

IVR Attributes

Attributes are listed in alphabetical order. All attributes are optional unless
otherwise noted.

barge

Whether a prompt gets interrupted when any DTMF digit is detected.

Attribute for: playcollect, playrecord

Values:

Value Description

yes

(default)

DTMF digit detection interrupts the prompt.

Note: Any digit barges in. There is no barge mask.

MSCML IVR Reference

Application Developer’s Guide 164

baseurl

Base URL to be placed in front of the url attribute of any <audio/> tags that do
not match a supported scheme (file:////, http://). This is a notational
convenience to reduce the size of the MSCML payload.

Attribute for: prompt

beep

Whether a beep is played to signify the start of a recording.

Attribute for: playrecord

Values:

cleardigits

Whether the application removes previously collected digits from the buffer
before the command starts. For type-ahead, set cleardigits to no.

Attribute for: playcollect, playrecord

Values:

delay

Time between plays for the entire sequence (in milliseconds).

Attribute for: prompt

Values range from 0 – infinite. (Default: 0).

duration

Number of milliseconds that the entire recording can span. Recordings continue
until an ending condition (such as a digit or ending silence) is detected or until
the recording media is full.

no DTMF digit does not interrupt prompt. Any digits that arrive
during the prompt are discarded. The digits are not saved
for processing during the collection portion of playcollect.

Value Description

yes

(default)

The IP Media Server plays a tone to signify the start of
a recording. The beep is an 880 Hz tone 250ms in
duration.

no No tone is played at the start of a recording.

Value Description

yes Digits are flushed.

no

(default)

Digits are not flushed.

Value Description

MSCML IVR Reference

Application Developer’s Guide 165

Attribute for: playrecord

Values: 0 - infinite (Default: infinite.) A value of -1 means no limit is imposed.

encoding

Content encoding of physical audio files that are not in self-describing .wav or
.au formats.

Attribute for: audio

Values:

There is no default.

endsilence

Number of milliseconds of trailing silence that can elapse before terminating the
recording. The IP Media Server reduces the recording by an amount equal to
the endsilence value if endsilence is set.

Attribute for: playrecord

Values: a number in milliseconds. (Default: 4000 ms.) To disable the setting, use
a value of -1, which indicates that no endsilence timer should be applied.

endwarning

Number of milliseconds at the end of the recording to play warnurl.

Attribute for: playrecord

Values: a number in milliseconds.

escapekey

A digit that is used to terminate the current operation.

When this digit is pressed, the command terminates and the digit buffer is
cleared. No digits are returned to the application, and the reason escapekey is
returned with the <response/> event.

If detected in the play phase, the prompt stops immediately, and the command
completes without entering the record phase.

Attribute for: playcollect, playrecord

Values:

Default is * (star key). If no escapekey is desired or if you want to collect * as
a digit, you can set escapekey to be empty using two consecutive double
quotes, for example, escapekey"".

Value Description

µlaw G.711 µlaw encoding.

alaw G.711 alaw encoding.

MSCML IVR Reference

Application Developer’s Guide 166

extradigittimer

Amount of time allowed for the user to enter an additional digit after the desired
number of digits has been collected. This attribute is typically used when
collecting variable-length inputs with a returnkey parameter defined. If this timer
elapses, the command completes with the reason=timer.

Attribute for: playcollect

Values: A number in milliseconds.(Default: 1000 ms.) A value of -1 directs the
IP Media Server to wait indefinitely for additional input.

Note: If the extra digit detected is the returnkey, then all collected digits are
returned.

firstdigittimer

Amount of time allowed for the user to enter the first DTMF digit. If the timer
elapses, the command completes with the reason nodigits.

Attribute for: playcollect

Values: A number in milliseconds. (Default: 5000 ms.) A value of -1 directs the
IP Media Server to wait indefinitely for the first input. Using this setting for
conferences ensures that user input is not ignored.

id

An application-defined request identifier that correlates the asynchronous
response with its original request. The provided ID is returned back to the
application in the IP Media Server's response.

Optional.

Attribute for: play, playcollect, playrecord, stop

interdigittimer

Amount of time allowed for the user to enter additional digits before the desired
number of digits have been collected. If this timer elapses, the command
completes with the reason timer.

Attribute for: playcollect

Values: A number in milliseconds. (Default: 2000 ms.) A value of -1 directs the
IP Media Server to wait indefinitely for additional input.

initsilence

Number of milliseconds of initial silence that can elapse before the recording is
terminated. If speech is detected in this interval, recording proceeds.

Attribute for: playrecord

Values: A number in milliseconds. (Default: 3000ms.) A value of -1 indicates
that no initial silence period is desired or alternately that the IP Media Server
should wait forever for the start of speech. The value of -1 effectively disables
the setting.

MSCML IVR Reference

Application Developer’s Guide 167

locale

Language and country variant to be used when resolving variables contained in
the <prompt> block. The language is defined as a two-letter code per ISO 639.
The country variant is also defined as a two-letter code per ISO 3166. These
elements are concatenated with a single underscore (%x5F) character.

Attribute for: prompt

Example: locale=en_US

maskdigits

Manages clear text logging.

Attribute for: playcollect, event report, report keypress

Values:

Value Description

Yes Sensitive data is not be logged in clear text. DTMF data that is
normally written to the IP Media Server log files is masked or
discarded.

Masked DTMF data appears as a ‘-’ character in the log files.
Discarded DTMF is indicated by the text string <?Sensitive Data?>
in the log files.

No

(default)

DTMF data is recorded and written to the IP Media Server log files.

MSCML IVR Reference

Application Developer’s Guide 168

maxdigits

Maximum number of digits to be collected and returned by the IP Media Server.

Attribute for: playcollect

Values: 1–62. (Default: 1.)

mode

Whether the recording overwrites or appends to the supplied URL.

Note: This attribute only affects file://// scheme URLs.

Attribute for: playrecord

Values:

offset

Position in a prompt or sequence where play begins. The value of this attribute
is expressed in milliseconds with 0 indicating the start of the prompt or
sequence.

Offset can be either outside or inside the prompt block. The offset outside the
prompt block supports existing code and refers to the offset in a single set. If
the offset is included inside the prompt block, it works the same way, but only
on the first set of repeats.

The IP Media Server supports both positive (skip forward) and negative (skip
back) values. Offsets apply to sequences as well as files. If the specified offset
cannot be reached in the current segment, the next one is processed until the
desired offset is reached.

Attribute for: prompt, play, playcollect, playrecord

Values: 0 - infinite (Default: 0.)

promptencoding

Encoding of physical audio files that are not in self-describing .wav or .au
formats.

Note: This attribute only affects file://// scheme URLs.

When using a physical audio file, the encoding a-law or µ-law must be specified
in the file header, in the extension, or by using this attribute.

Attribute for: play, playcollect, playrecord

Value Description

overwrite

(default)

 Recording overwrites the contents
of the URL.

append Recording is appended to the
contents of the URL.

MSCML IVR Reference

Application Developer’s Guide 169

Values:

If not specified, the promptencoding is determined from either the file extension,
or if the first four bytes of the file indicate the presence of a RIFF or .snd header.

recstopmask

DTMF digits that terminate the recording. Input digits not contained in the mask
are ignored and passed into the recording. The terminating DTMF digit is
returned to the application in the <response/> event.

Attribute for: playrecord

Values: 0 1 2 3 4 5 6 7 8 9 * #

recurl

Target for the recording. Only NFS (file:////) is supported for recording.
Filenames ending in .au or .wav produce files written in those formats.
Required.

Attribute for: playrecord

recencoding

Encoding used for the recording.

Attribute for: playrecord

Values:

repeat

Provides the client application with a way of repeating tones and prompts for a
given number of times with the ability to limit the duration to a given length of
time, if desired. The user can set the duration for an infinite length of time or
the repeating can be terminated by an interrupt <stop/>.

Attribute for: prompt

Values: 0 - infinite (Default: 1.)

Note: The value infinite means the prompt should be repeated indefinitely.

Value Description

ulaw G.711 µ-law encoding.

alaw G.711 a-law encoding.

msgsm MSGSM

Value Description

ulaw
(default)

G.711 µ-law encoding.

alaw G.711 a-law encoding.

ms_gsm MSGSM

MSCML IVR Reference

Application Developer’s Guide 170

report

Enables or disables notification for events. Report is an attribute for both signal
and keypress.

Attribute for: signal

Values:

Attribute for: keypress

Values:

returnkey

Digit that signifies the end of the collection process.

When this digit is pressed, the command terminates. All collected digits are sent
to the application, and the reason returnkey is returned in the <response> event
with the collected digits.

Attribute for: playcollect

Values: 0 1 2 3 4 5 6 7 8 9 * # A, B, C, D

The default is # (the pound key).

If the returnkey is not required or if you want to collect # as a digit, set the
returnkey to be empty by using two consecutive double quotes for example,
returnkey="".

stop_on_error

Controls IP Media Server handling and reporting of errors encountered when
retrieving remote content.

Attribute for: prompt

Values:

Value Description

yes Enables reporting of the associated event.

no

(default)

Disables reporting of the associated
event.

Value Description

normal Reports normal digits.

long Reports long digits.

both Reports both manual and long digits.

none

(default)

Disables asynchronous DTMF reporting.

Value Description

yes The IP Media Server stops the request if a
fetch error occurs.

MSCML IVR Reference

Application Developer’s Guide 171

subtype

Minor or subtype values describing how to render a variable as audio.

Attribute for: variable

Values:

For detailed descriptions of subtype values, see “Variable Types and Subtypes”
(page 96).

type

Type is an attribute for signal and variable.

Attribute for: signal (required)

Identifies the type of signal to be reported.

Values:

no

(default)

Original MSCML behavior; fetch errors do not
stop the request. The default is no for
compatibility reasons.

Value Spoken as...

mdy 20021015 “October Fifteenth Two Thousand Two”

ymd 20021015 “Two Thousand Two October Fifteen”

ndn North American dialing phone number phrasing (NPA-
NXX-XXXX), with appropriate pauses

dmy 20021015 is spoken as “Fifteen October Two
Thousand Two”.

t12 1700 “Five p.m.”

t24 1700 “Seventeen hundred hours”

gen generic digits (for example: “one”, “five”, “zero”)

crd “one”

ord “first”

Value Description

busy Far end busy tone (also fast busy)

dial Dial tone

CED Fax calling tone

CNG Fax called station identifier

Value Description

MSCML IVR Reference

Application Developer’s Guide 172

Attribute for: variable (required)

Identifies the type of variable to be rendered as audio.

Values: date, digit, duration, money, month, number, silence, string, time, weekday.

For detailed descriptions of subtype values, see “Variable Types and Subtypes”
(page 96).

url

URL of the audio to be played. Can resolve to a physical file or a provisioned
sequence.

Attribute for: audio (required)

value

String value for conversion to audio according to its type and subtype for
example, 12/25/02.

Attribute for: variable (required)

warnurl

Specifies the target URL for the warning message.

Attribute for: playrecord

PVD_PAMD Registering for the PVD_PAMD signaling
detection registers the application for both
Positive Voice Detection (PVD) and Positive
Answering Machine Detection (PAMD). These
do not need to be turned off. The detector runs
until either PVD or PAMD is detected and then
the PVD_PAMD detection is automatically
disabled.

An MSCML application does not need to stop
the call progress signal detection prior to the
completion of the call.

PVD The IP Media Server sends notification
regarding the PVD. Detection of the event
stops the detector.

PAMD The IP Media Server sends notification
regarding the PAMD. Detection of the event
stops the detector.

interrupt Call interrupted (call waiting)

ring Far end ring tone

400 tone used in Japan

Value Description

MSCML IVR Reference

Application Developer’s Guide 173

IVR Response Elements and Attributes

The IP Media Server acknowledges receipt of an application request by sending
a response of either 200 OK or 415 BAD MEDIA TYPE. (The IP Media Server sends
the 415 BAD MEDIA TYPE response when the SIP request contains a content type
other than application/sdp or application/mediaservercontrol+xml).

The <response> message is transported in a SIP INFO request.

If there is an error in the request or the request cannot be completed, the
<response> message is sent shortly after receiving the request. If the request is
able to proceed, the <response> contains final status information.

Response Elements

The following elements are used in response messages.

error_info

Contains details of remote content retrieval errors, if enabled by the
stop_on_error attribute of <prompt/>.

Response for: play, playcollect, playrecord

Values: Contains code, text, and context attributes that contain specific
error information.

id

If an application-defined ID was specified in the request, that ID is returned to
the application in the response.

Response for: play, playcollect, playrecord, stop

MSCML IVR Reference

Application Developer’s Guide 174

Response Attributes

code

Status of command.

Response for: play, playcollect, playrecord, stop

Values:

digits

Collected digits, if any.

Response for: playcollect, playrecord

playduration

Elapsed play time (in milliseconds) of a prompt or sequence before the request
completed due to user intervention or end of sequence.

Response for: play, playcollect, playrecord, stop

reason

Cause for ending the play, playcollect, or playrecord command.

Response for: play

Values:

Response for: playcollect

Values:

Value Description

200 Command completed.

400 For playrecord: command not accepted due to error. The
text attribute describes the cause of the error.

501 For playrecord: error because the URL type specified was
not supported.

Value Description

EOF The play was completed when the end of file was
reached.

stopped A stop command, another command, or a SIP re-INVITE
with hold media stopped the play.

Value Description

match A digit was detected.

timeout No digit was received in time.

returnkey The return key terminated the operation.

MSCML IVR Reference

Application Developer’s Guide 175

Response for: playrecord

Values:

reclength

Length of the recording in bytes.

Response for: playrecord

text

Whether the command succeeded.

Response for: play, playcollect, playrecord, stop

Error opening file for <playrecord> indicates requested record destination URL file
could not be opened.

URL type is not implemented for <playrecord>. Indicates that the requested
record destination URL file type is not supported.

escapekey The escape key terminated the operation.

interrupted Another request was received before the current
one could finish.

stopped A stop command, another command, of a SIP re-
INVITE with hold media stopped the play.

Value Description

digit A digit was detected.

endsilence Trailing silence was detected.

init_silence No voice (initial silence) was detected.

max_duration Time for recording was complete.

stopped A stop command, another command, or a SIP re-INVITE
with hold media stopped the play.

escapekey The escape key was entered either in the play mode or in
the record mode. The application terminated the
recording.

error The operation failed.

Value Description

Application Developer’s Guide 176

6 - VoiceXML Version 2.0 and Dialog Service

This chapter explains the basics of VoiceXML (VXML) Version 2.0, lists the
supported VoiceXML elements and attributes, and describes ECMAScript
language functionality.

The dialog service is one of two interfaces that the IP Media Server offers for
developing IVR/DTMF/Voice applications. The other service is ivr through which
SIP requests are enhanced by MSCML message bodies for play, playcollect, and
playrecord. For details on IVR, see Chapter 5, “IVR with MSCML”.

This chapter includes the following sections:

About VoiceXML
VoiceXML Interpreter
Dialog Service Indicator and Request URI
VoiceXML Launcher
Default Script
VoiceXML Concepts
VoiceXML Application and Its Documents
File Storage and Retrieval
Media Content Recovery Extension

VoiceXML Elements Reference

VoiceXML Properties

ECMAScript Functionality

VoiceXML Extended Session Variables

RTP Codec Selection Using the <transfer> Element

Image Overlay and Text Overlay Functionality

About VoiceXML

Application Developer’s Guide 177

About VoiceXML

VoiceXML is a W3C standard scripting language for playing text to speech and
audio prompts, and for collecting DTMF and voice input.

The interpreter executes VoiceXML dialogs on an RTP stream. Each dialog
represents an announcement, menu, or other IVR script. The dialogs finish
when they have posted information to a Web server or returned a namelist back
to the command that invoked the browser. If additional dialogs are needed, then
the application runs another script.

VoiceXML Interpreter

The IP Media Server includes interpreters for VoiceXML 1.0 and VoiceXML 2.0.

If the IP Media Server receives a SIP INVITE request directed to the dialog
service, a VoiceXML session begins. The VoiceXML session initially gets
(fetches) and executes the VoiceXML script that is specified in the SIP Request-
URI parameter, voicexml.

Once specified, a VoiceXML script URI remains in effect until it completes
execution or the session is stopped.

Dialog Service Indicator and Request URI

Through the dialog service (dialog), the IP Media Server executes VoiceXML
documents to offer IVR scripting with DTMF and voice input and recorded audio
output.

The application references the initial VoiceXML script using the Request-URI
parameter voicexml. The following SIP Request-URI directs the IP Media Server
to retrieve and execute script1.vxml from the server app1.carrier.com.

INVITE sip:dialog@MS_IP;voicexml=http://
app1.carrier.com/path/
script1.vxml;

With Resource Parameter:

INVITE sip:dialog@MS_IP;voicexml=http://
app1.carrier.com/path/
script1.vxml;resource=asr+tts

The VoiceXML 2.0 browser also supports an optional resource parameter. It
indicates to the browser which MRCP resources are required by the VoiceXML
script. It supports the values, asr, tts, and asr+tts to indicate if an ASR, or a
TTS, or both an ASR and TTS resource are needed by the script respectively.
Providing this parameter ensures the VoiceXML browser attempts to reserve the
specified resources as the call is being established as opposed to the browser
requesting the resource as needed in the middle of the dialog.

It is common for the HTTP URI referencing the VoiceXML script to be a query
that contains its own parameters so the script can be dynamically generated.
For example, the following HTTP URI provides a subscriber ID so the VoiceXML
script can be appropriately personalized.

About VoiceXML

Application Developer’s Guide 178

INVITE sip:dialog@MS_IP;voicexml=http://
app1.carrier.com/cgi/bin/
genvxml.pl?subscriberid=34590087

If a query HTTP URI is used, be careful to replace characters that are reserved
in SIP with their hexadecimal equivalents preceded by a percent (%) character.
This substitution is called escaping. In particular, the question mark (?) and
equals sign (=) must be escaped to conform with SIP standards. The following
example shows the escaped form of the previous example.

INVITE sip:dialog@MS_IP;voicexml=http://
app1.carrier.com/cgi/bin/
genvxml.pl%3Fsubscriberid%3D34590087

The SIP URI must be escaped, as described in “Syntax and Escaping” (page 78).

VoiceXML Launcher

If a SIP INVITE to the IP Media Server is directed to the dialog service but does
not specify a file (voicexml=), then the IP Media Server launches the dialog
service and runs a default script configured by the system administrator using
the Web UI Media Server > VoiceXML menu.

Default Script

The IP Media Server supports the following default script which is loaded prior
to the VoiceXML script supplied in the SIP URI:

/opt/snowshore/htdocs/defaults.xml

This script provides several default properties, default <catch> blocks, and
prompts that application developers can modify for their own deployment.

Please use caution when modifying the script because it affects how the
VoiceXML browser behaves. Refer to the W3C Voice Extensible Markup
Language specification for detailed information.

VoiceXML Concepts

Syntax

VoiceXML (VXML) is an eXtensible Markup Language for the creation of IVR and
Automated Speech Recognition (ASR) applications. Based on XML tag/attribute
format, its syntax involves enclosing instructions (items) within a tag structure.
For example:

<element_nameattribute_name="attribute_value">
…contained items….
</element_name>

Generic XML concepts remain unchanged in VoiceXML. For example, any
character data must be escaped as per the XML specification.

Scope

As for all XML, VoiceXML observes a hierarchical structure and applies the
construct of scope to define the range within the source where a variable, event
handler, or other element is applicable.

About VoiceXML

Application Developer’s Guide 179

Resource Fetching

VoiceXML defines several attributes to qualify properties relevant to the caching
and fetching of documents and other resources.

Note: The IP Media Server does not currently support these attributes.

VoiceXML Application and Its Documents

A VoiceXML application is a set of VoiceXML scripts that share the same root
document. The application consists of one or more text files called documents.
Document files are identified by a .vxml extension and are retrieved using HTTP,
NFS (Network File System), or RTSP (Real Time Streaming Protocol).

If a VoiceXML application includes multiple documents, one of these can be the
application root document. The application shares the root document among all
other documents. Sharing root documents occurs when the script author
explicitly sets the root document to be the same in multiple VoiceXML scripts.
The IP Media Server’s VoiceXML browser supports the VoiceXML standard’s use
of root documents.

Whenever a user interacts with a document in an application, the corresponding
root document is also loaded. The root document is unloaded when a user
transitions to a document not in the application.

While the root document is loaded, the application root document's variables
are available to other documents as application variables. Grammars defined in
the root document also remain active for the duration of the application.

Figure 8 shows how a root document is shared in a VoiceXML application.

Figure 8. Sharing of Root Document in VoiceXML Application

Dialogs

A VoiceXML document contains dialogs or conversations between a prompting
VoiceXML interpreter and a responding caller.

Conversational building blocks are as follows:

Prompts (in the IP Media Server context for playing audio). If a script
requires only playing recorded prompts and uses DTMF recognition, you do
not need an ASR and/or a TTS resource.

Root
Document

doc1.vxml doc2.vxml doc3.vxml

About VoiceXML

Application Developer’s Guide 180

The grammar that specifies the range of acceptable user responses to a
prompt

Transitions (to the URI of the next prompt/response exchange)

Conversational constructs are as follows:

Forms that collect an input or event, process it, and select the next form to
visit.

Menus for organization and navigation (multiple-choice options, with a
transition for each).

Links that execute a transaction or throw an event.

Scripting

The IP Media Server supports ECMA tags that involve the scripting capabilities
of the VoiceXML interpreter. See “ECMAScript Functionality” (page 220).

However, executing complex ECMAScript on the IP Media Server can affect its
ability to perform real-time media processing. To conserve processing capacity
and memory, limit the use of ECMAscripting on the IP Media Server.

Scripting Guidelines

The following guidelines provide good practices for writing VoiceXML scripts.

Defining grammars is the first step in the MRCP recognition process. Once
you define a grammar, VXML tags such as filled are used to trigger the MRCP
recognition processing.

You can define grammars in the VXML script or they can be pre-compiled,
stored on the MRCP server, and referenced with a URI. Pre-compiled
grammar improves the performance of the application.

Tuning the grammar is a key step in getting the best performance from a
VXML script. Vendors offer commercial tools to help analyze and refine
grammars.

You can define grammar as part of the recognition command but there is a
performance impact.

Finding a grammar command in a VXML script triggers the creation of a
MRCP ASR session when the VXML script is loaded and parsed.

VoiceXML 2.0 requires that a grammar be either a voice or a DTMF grammar.
A single grammar can not be both voice and DTMF. A script can have
multiple grammars. VXML 2.1 will allow a single grammar to be both voice
and DTMF.

DTMF Grammars Guidelines

The IP Media Server locally supports DTMF grammars. The following are some
guidelines and limitations associated with this support:

<grammar>
DTMF SRGS grammars must have the type attribute set to
application/srgs+xml and a mode attribute set to dtmf.

The IP Media Server supports the semantics/1.0 value for the tag-format
attribute of DTMF SRGS grammars.

About VoiceXML

Application Developer’s Guide 181

<tag>
SRGS DTMF grammars can use <tag> elements for semantic interpretation.
However only one <tag> element will be used for semantic interpretation
for a matched grammar.

The format of the <tag> content should be as follows:

<tag>maincourse='pizza';</tag>

 Where maincourse is the variable to be filled.

<ruleref>
The IP Media Server does not support SRGS DTMF grammars that have
external references. Specifically this means that the ‘uri’ attribute of the
<ruleref> element is only supported if it starts with the character "#". The
‘#’ character indicates that the ‘uri’ is a reference to a <rule> in the current
SRGS grammar that is being parsed.

The ‘special’ attribute of the <ruleref> element is not supported. Equivalent
behavior can be supported with the use of the <item> element’s repeat
attribute.

<rule>
DTMF digit content as direct descendant of the <rule> element is not
supported. The equivalent grammar behavior can be accomplished by
having an <item> element that contains the DTMF digit content as the
direct descendant to the <rule> element.

MRCP

VoiceXML 2.0 supports Media Resource Control Protocol (MRCP) version 2.0.
MRCP controls media service resources such as speech synthesizers,
recognizers, and verifiers over a network. This protocol is designed to work with
signaling protocol SIP which is used to establish control connections to MRCP
servers. Requests are then made to the MRCP server to stream media or to
perform recognition on specific media streams set to it. Media streamed both
to and from the MRCP server is sent as RTP (Real Time Protocol) packets. MRCP
integrates speech recognition and text to speech engines from Nuance
eliminating the need for proprietary APIs. Speech recognition software
applications that listen to words spoken over a telephone and recognize these
words can pass the recognized words as text to a Text-To-Speech (TTS)
software application that synthesizes speech from application text for playback
over a telephone. Recognition and text to speech capabilities can be
implemented using VXML 2.0 scripts using the Dialogic® VoiceXML 2.0
integrated with MRCP 2.0.

Session Variables

VoiceXML provides a facility, called session variables, to pass signaling
information to VoiceXML scripts. The IP Media Server supports the standard
VoiceXML session variables as well as extensions which capture additional
information from the SIP INVITE. See “VoiceXML Extended Session Variables”
(page 223) for further details.

About VoiceXML

Application Developer’s Guide 182

File Storage and Retrieval

You can access VoiceXML scripts through the network using NFS and HTTP
protocols. Audio and video content can be retrieved and stored using HTTP and
NFS as well.

Note: The VoiceXML files can be located anywhere as long as the VoiceXML
interpreter can access them.

Media Content Recovery Extension

The Media Content Recovery mechanism has been extended such that there can
be increased reliability of recorded content delivery from VoiceXML applications.

"Next-generation" application architectures such as SIP and VoiceXML are
highly distributed in nature and rely on multiple components and network
communication protocols to function. In the case of VoiceXML applications, the
link between the VoiceXML browser (the IP Media Server) and the application
server, which provides the scripts and content, is critical.

Now that SIP and VoiceXML applications have been successfully deployed,
carriers expect reliability and behavior similar to the legacy applications that are
being replaced. In most situations, it is acceptable for a subscriber to call back
and establish a new VoiceXML session if a failure occurs. The notable exception
is when the caller has successfully recorded a message and expects for it to be
sent. If the failure occurs before the message can be transmitted, there is no
way to inform the user of the issue and there is nothing the user can do about
it. The Media Content Recovery extension provides a solution to the specific
issue of reliable content delivery.

Recording is implemented in VoiceXML through the <record> element. When a
<record> element is processed, the IP Media Server creates a temporary file with
a locally unique identifier name.

The IP Media Server VoiceXML 2.0 browser maintains a list of the temporary
files created during each call and deletes them when the VoiceXML script
terminates. The browser also deletes any temporary files upon startup. When
the Media Content Recovery mechanism is used, temporary recordings that are
left over after a failure will be processed. At startup, a recovery daemon detects
temporary files that have been tagged for recovery.

The Media Content Recovery extension utilizes the <data> element to enable
the application to associate recovery data with specific recorded content. The
browser supports recovery data in the form of a completely specified HTTP URI.
It is the VoiceXML application's responsibility to make sure the URI is correct
and contains the information needed to deliver the content to the ultimate
recipient.

If the Media Content Recovery extensions are not used, the IP Media Server
processes the recording in accordance with standard VoiceXML. If the VoiceXML
Media Content Recovery extensions are present in the VoiceXML script, then the
recovery feature is used. A VoiceXML script that provides the user with a
confirmation probably should not include the VoiceXML extensions due to the
possibility that the recording could be recovered and sent without the user
providing confirmation.

Refer to the <data> element for detailed information.

VoiceXML Elements Reference

Application Developer’s Guide 183

VoiceXML Elements Reference

This section describes the VoiceXML elements (tags) supported by the IP Media
Server.

<assign>

Assigns a value to a variable.

The value of this tag must be empty.

Parents: <block>, <catch>, <error>, <filled>, <help>, <if>, <noinput>,
<nomatch>

Attributes:

<audio>

Plays pre-recorded audio, video or multimedia, and accesses the media file from
the URI, which is specified by the src attribute.

The audio encoding is determined from the file header when .wav or .au formats
are used. Otherwise, the audio encoding is implied by the file extension
according to the following table.

If the encoding cannot be determined by the extension, it is assumed to be
G.711 µ-law.

The value of this tag can be empty or can contain one or more of the children
listed below.

Parents: <audio>, <emphasis>, <enumerate>, <paragraph>, <p>,
<prompt>, <prosody>, <sentence>, <s>, <speak>, <voice>

Attribut
e

Description

name Name of the variable being assigned to a value.
Required.

expr ECMAScript expression that, when evaluated, is
assigned as the new value of the variable. It must be
a valid ECMA value.

Required.

Extension Encoding

ulaw G.711µ-law

alaw G.711 A law

msgsm Microsoft® GSM

3gp or 3gpp 3GPP

3g2 or 3gpp2 3GPP2

VoiceXML Elements Reference

Application Developer’s Guide 184

Children: <audio>, <catch>, <emphasis>, <mark>, <paragraph>, <p>,
<phonename>, <prosody>, <say-as>, <sentence>, <s>,

<sub>,
<voice>

Attributes:

Note: The pre-recorded audio identified by the “src” attribute is played using
the IP Media Server resources unless it is a child of any of the listed parent to
the TTS server for processing.

<block>

Defines a container for non-interactive executable content such as welcome
prompts.

The value can be empty or can contain one or more of the children listed below.

Parent: <form>

Children: <assign>, <audio>, <clear>, <disconnect>, <exit>, <goto>,
<if>,

<log>, <prompt>, <reprompt>, <return>, <script>,
<submit>,

<throw>, <value>, <var>

Attributes:

<catch>

Defines an event handler within the current scope.

The value can be empty or can contain one or more of the children listed below.

Parents: <field>, <form>, <initial>, <menu>, <record>,
<subdialog>,<transfer> <vxml>

Attribute Description

src String literal containing the URI for the
audio. Required.

Attribut
e

Description

cond Boolean value of TRUE or FALSE. Defaults to TRUE. When
FALSE, the tag is ignored or skipped; the form is not visited.

expr Initial value of the form-item variable; the default is
ECMAScript undefined. If initialized to a value, then the
form item is not visited unless the form-item variable is
cleared.

name Name of the form-item variable used to track whether this
block can be executed. Defaults to an inaccessible
internal variable.

VoiceXML Elements Reference

Application Developer’s Guide 185

Children: <audio>, <clear>, <data>, <disconnect>, <enumerate>,
<exit>,

<foreach>, <goto>, <if>, <log>, <prompt>, <reprompt>,
<return>, <script>, <submit>, <throw>, <value>, <var>,

Attributes:

<choice>

Defines a menu item by specifying one choice in the menu. It can specify a
grammar fragment or the URI to go to when the choice is selected. When the
choice is made, the tag either transitions to a new dialog or throws an event.

Parent: <menu>

Children: <audio>, <grammar>, <say-as>, <value>

Attributes:

Attribut
e

Description

event Event or events to catch. If the attribute is not provided,
all events should be caught.

count The occurrence of the event. (Default: 1.) The count
allows you to handle different occurrences of the same
event differently. Each form item and <menu> maintains a
counter for each event that occurs while it is being
visited; these counters are reset each time the <menu> or
form item's <form> is re-entered.

For prompts, the minimum count for the prompt to be
played. Set to zero when dialog is initialized. Increases by
one each time user is prompted. The <clear> tag resets
it to zero.

For event handlers, the minimum count for the handler to
be eligible to handle an event. Set to zero at initialization
and increased by one each time event is triggered.

cond Boolean value of TRUE or FALSE. (Default: TRUE). When
FALSE, the tag is ignored or skipped; the form is not
visited.

Attribute Description

dtmf DTMF sequence for the choice.

accept Overrides the setting for the accept attribute in <menu>.
Optional. (Defaults to exact.)

exact - The text contained in the <choice> element defines
the exact phrase to be recognized.

approximate - The text contained in the <choice> element
defines an approximate recognition phrase. A subset of the
words in the phrase can be matched. For example, "hello
world" can be matched with "hello world", "hello", or
"world".

event An event to be thrown instead of going to ext.

VoiceXML Elements Reference

Application Developer’s Guide 186

To indicate the action to take, set one of the following: next, expr, or event.

<clear>

Resets one or more form items to its initial state, including setting the form item
variable to ECMAScript undefined and re-initializing the prompt counter and the
event counters for the form item.

The value of this tag must be empty.

Parents: <block>, <catch>, <error>, <filled>, <help>, <if>, <noinput>,
<nomatch>

eventexpr An ECMAScript expression to be evaluated and used as
the name of the event to be thrown when this choice is
selected. Exactly one of next, expr, event, or eventexpr
must be specified; next and expr have precedence over
this attribute.

fetchaudio The URI of audio to play while waiting for the document
to be fetched. Optional.

fetchhint Defines when the next document should be fetched.
Optional.

safe - only load the next document when needed.

fetchtimeout The length of time to wait for the next document to be
fetched before throwing an error.badfetch event.
Optional.

maxage Indicates that this document is willing to use a cached
copy of the next document only while the age of the
cached copy is less than or equal to the number of
seconds specified by this attribute. Optional.

maxstale Indicates that this document is willing to use a cached
copy of the next document that has exceeded its
expiration time by as much as the number of seconds
specified by this attribute. Optional.

message A message string providing additional context about the
event being thrown. The message will be available as a
variable within the scope of the <catch> element.
Optional. (Can only be used if event or eventexpr is
specified; only one of message or messageexpr can be
specified.)

messageexpr An ECMAScript expression to be evaluated and used as a
message string, as documented under message, above.
Optional. (Can only be used if event or eventexpr is
specified; only one of message or messageexpr can be
specified.)

expr Expression to evaluate instead of going to next.

next URI of next dialog or document.

Attribute Description

VoiceXML Elements Reference

Application Developer’s Guide 187

Attributes:

<content>

Specifies the content of an overlay used in a video stream. For examples of
overlays, see “Image Overlay and Text Overlay” (page 308). For more on
overlays, see “Image Overlay and Text Overlay Functionality” (page 227).

Parents: <overlay>

Children: , <scroll>

Attributes:

Attribute Description

namelist List of items to clear. (When not specified, the application
clears all form items in the current form.) Required.

Attribute Description

src Source URL of the image or text file.

For image overlays, you must specify the source URL.

For text overlays, you can specify this attribute or omit
this attribute and specify inline content (that is, text
strings placed in the element). One or the other must be
specified.

For example, to use GB18030 encoding, you must
specify a local file:

<content
src=”file:////opt/snowshore/htdocs/vxml/
demos/media/pizza.gb” encoding=”GB18030”>

type Used with src. The MIME type of the src.

Default value is plain/text, indicating text overlay.

For image overlays, values are: image/png, image/jpeg.

encoding The encoding type of the text. Values are: UTF8, ASCII,
or GB18030.

Default value is ASCII.

This attribute is ignored for image overlays.

halign Horizontal alignment of the text in the overlay area.
Values are: left, right, and center.

Default value is left.

This attribute is ignored for image overlays.

wordwrap Specifies whether to wrap text to the next line in the
overlay area. Values are: on or off.

Default value is off.

This attribute is ignored for image overlays.

VoiceXML Elements Reference

Application Developer’s Guide 188

<data>

Enables Media Content Recovery Extension. The Media Content Recovery
feature is triggered by a <data> element with either of the following set:

The src property set to builtin:persist.
or

The srcexpr property evaluates to the ECMA string builtin:persist.

An error.semantic event is generated if the <data> element is encountered with
src or srcexpr set to anything but builtin:persist.

An error.semantic is generated if the <data> tag has any of the following
attributes set with the builtin:persist data submission:

method, enctype, fetchaudio, fetchint, fetchtimeout, maxage, maxstale

A valid <data> tag causes the recovery file to be created. If the recovery file
cannot be written, an error.semantic event is generated.

The <data> tag is controlled entirely by its namelist attribute.

The namelist attribute must have one and only one variable name that is the
same as the <record> element to be protected by the Media Content Recovery
feature. The <record> input item must be in the same <form> element. If it is not,
an error.semantic event is generated.

The namelist attribute must have one and only one recovery_uri variable name
that evaluates to a defined ECMA value that is not an array or an object. Without
the recovery_uri variable name the recovery file will not be written. The recovery
daemon attempts content recovery by executing an HTTP POST method to the
HTTP URI specified in the recovery information. When a file is being recovered,
the recovery daemon uses the recording_name variable as the name of the
content in the HTTP POST.

The recovery file is deleted if a new <data> element is encountered that does
not have the recovery_uri name in the namelist. This allows an application to
immediately disable the recovery feature if the user confirms that he does not
want the message sent.

Note: Other uses of <data> as part of VoiceXML 2.1 are not supported.

Parents: <block>, <if>, <filled>, <form>, <noinput>

The <data> tag must be a descendant of a <form> tag that contains the
associated <record> tag.

Children: None.

Attributes:

Note: The Media Content Recovery extension currently supports audio content
only.

Attribute Description

namelist See above.

VoiceXML Elements Reference

Application Developer’s Guide 189

<disconnect>

Causes the interpreter context to disconnect from the user. As a result, the
interpreter context generates an event (telephone.disconnected.hangup). Upon
receiving the event, the application then performs a cleanup.

<disconnect> is the only supported VoiceXML call control tag (the same effect as
<exit>).

The value of this tag must be empty.

Parents: <block>, <catch>, <error>, <filled>, <help>, <if>, <noinput>,
<nomatch>

Children: None

Attributes: None.

<else>

Marks the beginning of content to be executed when the parent <if> tag and
all <elseif> tags at the same level of nesting have conditions that evaluate to
false. Ends at the closing <if>.

The value of this tag must be empty.

Parent: <if>

Attributes: None.

<elseif>

Marks the beginning of content to be executed when the parent <if> and all
<elseif> tags evaluate to false and the cond attribute evaluates to true. Ends at
the next <elseif/> or <else> or closing <if> tag, whichever comes first.

The value of this tag must be empty.

Parent: <if>

Attributes:

<enumerate>

The <enumerate> element is an automatically generated description of the
choices available to the user. It specifies a template that is applied to each
choice in the order they appear in the <menu> element, or in the <field>
element that contains <option> elements.

Note that the <enumerate> element may only be used within the prompts and
the catch elements associated with <menu> elements and with <field>
elements that contain <option> elements.

Parent: <audio>, <catch>, <error>, <field>, <help>, <if>, <menu>,
<noinput>, <nomatch>, <prompt>

Children: <audio>, <value>

Attribute Description

cond Boolean value of TRUE or FALSE. Defaults to TRUE. When
FALSE, the tag is ignored or skipped; the form is not
visited.

VoiceXML Elements Reference

Application Developer’s Guide 190

Attributes: None.

<error>

This element receives (catches) an error event. It is shorthand for <catch
event="error"> and receives all events of type ‘error’.

The value can be empty or can contain one or more children listed below where
the element is either parsed text or the tag.

Parents: <field>, <form>, <initial>, <menu>, <record>, <subdialog>,
<transfer>, <vxml>

Children: <assign>, <audio>, <clear>, <disconnect>, <enumerate>,
<exit>,

<goto>, <if>, <prompt>, <reprompt>, <return>, <script>,
<submit>, <throw>, <value>, <var>

Attributes:

<exit>

Halts all loaded documents and returns control to the interpreter context. Once
<exit> returns control to the interpreter context, the interpreter context is free
to do as it wishes. For example, it can play a top level menu for the user, drop
the call, or the user to an operator.

The value of this tag must be empty.

Parents: <block>, <catch>, <error>, <filled>, <help>, <if>, <noinput>,
<nomatch>

Attributes: The IP Media Server returns no values and ignores the values
specified in the expr or namelist attributes if they are supplied.

<field>

An input field that collects prompt-solicited user input within a form. Acceptable
input is specified by type.

The value can be empty or can contain one or more of the children listed below.

Parent: <form>

Children: <audio>, <catch>, <enumerate>, <error>, <filled>, <help>,
<if>,

<link>, <noinput>, <nomatch>, <prompt>, <property>,
<value>

Attribute Description

cond Boolean value of TRUE or FALSE. Defaults to TRUE. When
FALSE, the tag is ignored or skipped; the form is not
visited.

count The occurrence of the event. (Default is 1.) The count
allows you to handle different occurrences of the same
event differently. Each form item and <menu> maintains a
counter for each event that occurs while it is being
visited; these counters are reset each time the <menu> or
form item's <form> is re-entered.

VoiceXML Elements Reference

Application Developer’s Guide 191

Attributes:

Note: An error event may be thrown if a reserved ECMAScript word is used as
the name. If the type attribute references an invalid builtin type, the
error.unsupported.builtin event is thrown at runtime.

<filled>

Specifies an action to perform when some combination of fields are filled by
user input.

The value can be empty or can contain one or more of the children listed below.

Parents: <field>, <form>, <record>, <subdialog>, <transfer>

Children: <assign>, <audio>, <clear>, <disconnect>, <exit>, <goto>,
<if>,

<log>, <prompt>, <reprompt>, <return>, <script>,
<submit>,

<throw>, <value>, <var>

Attribute Description

cond Boolean value of TRUE or FALSE. Defaults to TRUE. When
FALSE, the tag is ignored or skipped; the form is not
visited

expr Initial value of the form-item variable; the default is
ECMAScript undefined. If initialized to a value, then the
form item is not visited unless the form-item variable is
cleared.

modal If FALSE (default), all active grammars are turned on
while collecting this field. If TRUE, only the fieldís
grammars are enabled: all others are temporarily
disabled.

name Field-item variable in the dialog scope that holds the
result.

slot Name of the grammar slot used to populate the variable.
If it is absent, it defaults to the variable name.

Name of the grammar slot used to populate the variable.
If the grammar slot is absent, it defaults to the variable
name. This attribute is useful when the grammar format
being used has a mechanism for returning sets of
slot/value pairs and the slot names differ from the field
item variable names. If the grammar returns only one
slot, as do the built-in type grammars like Boolean, then
no matter what the slot's name, the field item variable
gets the value of that slot.

type Type of field, for example digits, currency, phone, date,
Boolean, number, time. If not present, <grammar>
and/or <dtmf> elements can be specified instead.

VoiceXML Elements Reference

Application Developer’s Guide 192

Attributes:

Note: An error.badfetch event is thrown if mode or namelist is specified for a
<filled> within an input item (ex. in a <field>).

Specifies the font used in a text overlay. For an example of a text overlay, see
“Image Overlay and Text Overlay” (page 308). For more on text overlay, see
“Image Overlay and Text Overlay Functionality” (page 227).

This element is not used for image overlays.

Parents: <content>

Children: none

Attributes:

Attribute Description

mode Any or all (default). If any, action is executed when any
field is filled by last user input, If all, action executes when
all fields are filled.

namelist The input items on which to trigger. It defaults to the
names of the form’s field items.

Attribute Description

name Name of the font. Specify the URL to the font file using this
format: font:///usr/share/fonts/....

Or for cached fonts, specify the name defined in trcr.cfg.

The default value is
font:///usr/share/fonts/liberation/LiberationSans-
Regular.ttf.

size Font size. The default value is 14.

style Used by cached fonts only, which are defined in trcr.cfg. For
dynamic fonts, the style is defined in the font file.

One or more attributes to apply to the text. Values are:
normal, bold, italic, underlined, and outlined.

The default value is normal.

VoiceXML Elements Reference

Application Developer’s Guide 193

<form>

One of two kinds of dialogs for collecting user input. The other is <menu>.

The value of this tag can be empty or can contain one or more of the child tags
listed below.

Parent: <vxml>

Children: <block>, <catch>, <error>, <field>, <filled>, <grammar>,
<help>, <initial>, <link>, <noinput>, <nomatch>, <object>
<property>, <record>, <subdialog>, <var>

Attributes:

Note: An error.badfetch event is thrown if multiple forms have the same id (on
the same page).

<goto>

Used in executable content to cause a transition to another form item in the
current form, another dialog in the current document, or another document.

The value of this tag must be empty.

Parents: <block>, <catch>, <error>, <filled>, <help>, <if>, <noinput>,
<nomatch>

Attributes: One of the following values must be specified:

fgcolor Color of text. Values are: red, blue, green, yellow, magenta,
cyan, white, black, transparent or an unsigned integer.

If a color enumeration is specified, the color will be opaque.

If an integer is specified, use the format 0xRRGGBBTT,
where RR is a 2-digit hexadecimal value for the red
component, GG is for the green component, BB is for the
blue component, and TT is the value for the transparency
component.

Transparent can be used as a color or specified in the TT of
the bitmask.

The default value is white.

For background color of text, see <overlay> element.

Attribute Description

id Name of the form.

scope The scope of the form’s grammar. Defaults to the
dialog scope.

Attribute Description

expr ECMAScript expression that yields the target URI.

Attribute Description

VoiceXML Elements Reference

Application Developer’s Guide 194

<grammar>

Defines a grammar for speech or DTMF recognition. The IP Media Server
supports the XML Form of the W3C Speech Recognition Grammar Specification
(SRGS).

Parents: <choice>, <field>, <form>, <link>, <record>, <transfer>

expritem ECMAScript expression that yields the name of the target
form item.

next URL to which to transition.

nextitem Name of the next form item in the current form.

fetchaudio The URI of audio to play while waiting for the document
to be fetched. Optional.

fetchtimeout The length of time to wait for the next document to be
fetched before throwing an error.badfetch event.
Optional.

Attribute Description

VoiceXML Elements Reference

Application Developer’s Guide 195

Attributes:

Attribute Description

xml:lang The language identifier of the grammar. The list of
supported values for this attribute depends on the ASR
engine being used. Optional.

src The URI specifying the location of the grammar file. The
URI can be one of the following formats:

External grammar file: URL of the grammar file

Built-in grammars: builtin:grammar/type (refer to <field>
element for built-in types)

scope The scope of the grammar. This attribute can be defined
only if the <grammar> element is the child of a <form> or
<menu> element. Optional. (Defaults to dialog.)

dialog - This grammar is only active within the form.

document - This grammar is active throughout the document.
If the current page is an application root document, then the
grammar is active throughout the application.

type The MIME type of the grammar format. The IP Media Server
supports the "application/srgs+xml " MIME type.

mode The mode of the grammar. Optional. (Defaults to voice.)

voice - voice input

dtmf - DTMF input (replaces the <dtmf> element)

root The root rule of the grammar. The default value depends on
the ASR engine being used. Optional.

version The version of the grammar. Optional. (Defaults to 1.0.)

weight Specifies the weight of the grammar.

tag-format The format that will be used to define tags, for slot filling.
Support for this attribute depends on the ASR engine being
used.

xml:base Declares the base URI from which relative URIs in the
grammar are resolved. This base declaration has
precedence over the <vxml> base URI declaration.
Optional.

fetchhint Defines when the grammar file should be fetched. Optional.

prefetch - grammar file may be downloaded when the page is
loaded

safe - only load the grammar file when needed

fetchtimeout The length of time to wait for the grammar file to be
fetched before throwing an error.badfetch event. Optional.

maxage Indicates that this document is willing to use a cached copy
of the grammar file only while the age of the cached copy
is less than or equal to the number of seconds specified by
this attribute. Optional.

VoiceXML Elements Reference

Application Developer’s Guide 196

Note: Referencing an unsupported built-in grammar will result in an
error.unsupported.builtin being thrown.

Speech grammars require an ASR resource to be configured and available or
else an error.noresource event will be thrown.

DTMF grammars are handled local to the IP Media Server and do not required
an ASR resource. Refer to DTMF Grammars Guidelines on page 180 for more
information.

<help>

Receives a help event, and is shorthand for <catch event="help">. The value can
be empty or can contain one or more of the children listed below.

Parents: <field>, <form>, <initial>, <menu>, <record>, <subdialog>,
<transfer>, <vxml>

Children: <assign>, <audio>, <clear>, <disconnect>, <exit>, <goto>,
<if>,

<log>, <prompt>, <reprompt>, <return>, <script>,
<submit>,

<throw>, <value>, <var>

Attributes:

<if>

Used for conditional logic. It has optional <else> and <elseif> elements.

The value can be empty or can contain one or more of the children listed below.

Parents: <block>, <catch>, <error>, <filled>, <help>, <if>, <noinput>,
<nomatch>

maxstale Indicates that this document is willing to use a cached copy
of the grammar file that has exceeded its expiration time
by as much as the number of seconds specified by this
attribute. Optional.

Attribute Description

count The occurrence of the event. (Default is 1.) The count
allows you to handle different occurrences of the same
event differently. Each form item and <menu> maintains
a counter for each event that occurs while it is being
visited; these counters are reset each time the <menu>
or form item’s <form> is re-entered.

cond Boolean value of TRUE or FALSE. Defaults to TRUE. When
FALSE, the tag is ignored or skipped; the form is not
visited.

Attribute Description

VoiceXML Elements Reference

Application Developer’s Guide 197

Children: <assign>, <audio>, <clear>, <disconnect>, <else>, <elseif>,
<exit>, <goto>, <if>, <log>, <prompt>, <reprompt>,

<return>,
<script>, <submit>, <throw>, <value>, <var>

Attributes:

<initial>

Declares initial logic upon entry into a mixed-initiative form.

The value can be empty or can contain one or more of the children listed below.

Parent: <form>

Children: <audio>, <catch>, <error>, <help>, <link>, <noinput>,
<nomatch>, <prompt>, <property>, <value>

Attributes:

Note: An error event may be thrown if a reserved ECMAScript word is used as
the name.

<link>

Specifies a destination for a transition or an event to be thrown when input
matches.

The value of this tag can be empty or can contain one or more grammar tags.

Parents: <field>, <form>, <initial>, <vxml>

Children: <grammar>

Attribute Description

cond Boolean value of TRUE or FALSE. Defaults to TRUE. When
FALSE, the tag is ignored or skipped; the form is not
visited.

Attribute Description

cond Boolean value of TRUE or FALSE. Defaults to TRUE. When
FALSE, the tag is ignored or skipped; the form is not
visited.

expr Initial value of the form-item variable; the default is
ECMAScript undefined. If initialized to a value, then the
form item is not visited unless the form-item variable is
cleared.

name The name of a form-item variable used to track whether
the <initial> is eligible to execute; defaults to an
inaccessible internal variable.

VoiceXML Elements Reference

Application Developer’s Guide 198

Attributes: Must specify one of next, expr, or event.

Note: The event specified by event/eventexpr is thrown based on the scope of
the active dialog (ie. <field>, <menu>, etc., where the user was when the link
grammar was matched). All attribute values that are ECMAScript expressions

Attribute Description

next URI to go to. Either a document (perhaps with an anchor
to specify the starting dialog), or a dialog in the current
document (just a bare anchor).

expr Like next, except that the URI is dynamically determined
by evaluating the given ECMAScript expression.

event The event to generate when the user matches one of the
link grammars.

eventexpr An ECMAScript expression to be evaluated and used as
the name of the event to be thrown when the user input
matches one of the link grammars. Exactly one of next,
expr, event, or eventexpr must be specified.

fetchtimeout Interval to wait for the content to be returned before
generating an error.badfetch event. If not specified, a
value derived from the innermost fetchtimeout property
is used.

dtmf The DTMF sequence for this link. It is equivalent to a
simple DTMF grammar. This attribute can be used at the
same time as other grammars: the link is activated when
user input matches either a link grammar or this DTMF
sequence. Optional.

fetchaudio The URI of audio to play while waiting for the document
to be fetched. Optional.

maxage Indicates that this document is willing to use a cached
copy of the next document only while the age of the
cached copy is less than or equal to the number of
seconds specified by this attribute. Optional.

maxstale Indicates that this document is willing to use a cached
copy of the next document that has exceeded its
expiration time by as much as the number of seconds
specified by this attribute. Optional.

message A message string providing additional context about the
event being thrown. The message will be available as a
variable within the scope of the <catch> element.
Optional. (Can only be used if event or eventexpr is
specified; only one of message and messageexpr can be
specified.)

messageexpr An ECMAScript expression to be evaluated and used as a
message string, as documented under message, above.
Optional. (Can only be used if event or eventexpr is
specified; only one of message and messageexpr can be
specified.

VoiceXML Elements Reference

Application Developer’s Guide 199

are evaluated based on variables from the scope of the active dialog (ie.
<field>, <menu>, etc., where the user was when the link grammar was
matched). An error.badfetch event is thrown if more or less than one of next,
expr, event, and eventexpr are specified.

<log>

The <log> element allows the application to generate messages for debugging.

Parents: <log>, <catch>, <error>, <filled>, <help>, <if>, <noinput>,
<nomatch>

Children: <value>

Attributes:

<menu>

Dialog for making a selection among choices.

The value can be empty or can contain one or more of the children listed below.

Parents: <vxml>

Children: <audio>, <catch>, <choice>, <enumerate>, <error>, <help>,
<noinput>, <nomatch>, <prompt>, <property>, <value>

Attributes:

Attribute Description

dest When set to SNMP, this instructs the browser to send out
the msVXMLCriticalError trap to all SNMP trap hosts
configured on the IP Media Server.

The text value of the <log> element can be used to
contain the details about the error. This content is placed
in the msVXMLLastCriticalError object. This object is passed
as a varbind of the msVXMLCriticalError trap. (Default:
none.)

Following is an example <log> tag with the trap extension:

<log dest="snmp">Unable to contact VoiceXML
application server.</log>

expr An ECMAScript expression of which the evaluated value
will be appended to the <log> element content and label
attribute value. Optional.

label A string label that will be appended to the <log> element
content before the value of the expr attribute is
appended. Optional.

Attributes Description

id Identifier of the menu. It allows the menu to be the target
of a <goto> or a <submit>.

scope Menu’s grammar scope. Either dialog (default) or
document.

VoiceXML Elements Reference

Application Developer’s Guide 200

<meta>

Page properties as meta-data, as in HTML.

Note: This is ignored by the VoiceXML Interpreter.

The value of this tag must be empty.

Parent: <vxml>

Attributes:

<noinput>

A type of catch element event used when the user does not respond within the
required timeout interval. For example, <noinput> Shorthand for <catch
event="noinput">. See <catch>.

The value can be empty or can contain one or more of the children listed below.

Parents: <field>, <form>, <initial>, <menu>, <record>, <subdialog>,
<transfer>, <vxml>

Children: <assign>, <audio>, <clear>, <disconnect>, <enumerate>,
<exit>,

<goto>, <if>, <prompt>, <reprompt>, <return>, <script>,
<submit>, <throw>, <value>, <var>

dtmf TRUE or FALSE. When TRUE, any choices that do not have
explicit DTMF elements are given implicit ones: 1, 2, etc.

When FALSE, touch-tone digits not assigned.

accept Specifies how to generate the default grammar for each
<choice> element. Optional. (Defaults to exact.)

exact - The text contained in the <choice> element defines
the exact phrase to be recognized.

approximate - The text contained in the <choice> element
defines an approximate recognition phrase. A subset of the
words in the phrase expression can be matched. For
example, "hello world" can be matched with "hello world",
"hello", or "world".

Attribute Description

name Name of the meta-data property.

http-equiv Name of an HTTP response header. Either name or http-
equiv must be specified, but not both.

content Value of the meta-data property. Required.

Attributes Description

VoiceXML Elements Reference

Application Developer’s Guide 201

Attributes:

<nomatch>

Used to catch a nomatch event. Shorthand for <catch event="nomatch">. See
“<catch>” (page 184).

The value can be empty or can contain one or more of the children listed below.

Parents: <field>, <form>, <initial>, <menu>, <object>, <record>,
<subdialog>, <transfer>, <vxml>

Children: <assign>, <audio>, <clear>, <disconnect>, <enumerate>,
<exit>,

<goto>, <if>, <log>, <prompt>, <reprompt>, <return>,
<script>,

<submit>, <throw>, <value>, <var>

Attributes:

<object>

No IP Media Server platform-specific objects are currently defined. Therefore,
any use of <object> will result in the following error thrown:

error.unsupported.objectname

Objectname is a fixed string; it is not substituted with the name of the object.

<option>

Specifies an option in a <field>. It is a convenient way to specify a list of choices
in a field without specifying a grammar. The grammar is generated
automatically from the text contained in each <option> and the optionally
specified dtmf sequence in each <option>.

Parent: <field>

Attribute Description

cond Boolean value of TRUE or FALSE. Defaults to TRUE. When
FALSE, the tag is ignored or skipped; the form is not
visited.

count A number that allows you to issue different prompts if the
user is doing something repeatedly. If omitted, it defaults
to 1.

Attribut
e

Description

cond Boolean value of TRUE or FALSE. Defaults to TRUE. When
FALSE, the tag is ignored or skipped; the form is not
visited.

count A number that allows you to issue different prompts if the
user is doing something repeatedly. If omitted, it defaults
to 1.

VoiceXML Elements Reference

Application Developer’s Guide 202

Attributes:

<overlay>

Specifies an overlay for a video stream. For examples of overlays, see “Image
Overlay and Text Overlay” (page 308). For more on overlays, see “Image
Overlay and Text Overlay Functionality” (page 227).

Parent: <prompt>

Children: <content>

Attributes:

Attribute Description

dtmf A DTMF sequence to select this option. Optional.

accept Specifies how to generate the grammar for this <option>
element. Optional. (Defaults to exact.)

exact - The text contained in the <option> element defines
the exact phrase to be recognized.

approximate - The text contained in the <option> element
defines an approximate recognition phrase. A subset of the
words in the phrase can be matched. For example, "hello
world" can be matched with "hello world", "hello", or
"world".

value The string to assign to the field variable when this option
is selected, either by speech or DTMF. Optional. (Defaults
to the option text with leading and trailing white space
removed, if specified. Otherwise, defaults to the value of
the dtmf attribute.

Attribute Description

position
X<int>Y<int>

The X coordinate and Y coordinate of the upper left-hand
corner of the overlay area, given either in pixels or as a
percentage of the background video frame.

To specify a percentage, include % character in the value.

The X and Y values can independently use pixels or a
percentage value.

Example: <overlay position=x20y50%>.

size
X<int>Y<int>

The height (X coordinate) and width (Y coordinate) of the
overlay area, given either in pixels or as a percentage of
the background video frame.

To specify a percentage, include % character in the value.

The X and Y values can independently use pixels or a
percentage value.

Example: <overlay size=x45%y20>.

delay Delays the start of the overlay until a specified number of
seconds has passed from the start of the video stream.

Default value is 0.

VoiceXML Elements Reference

Application Developer’s Guide 203

<param>

Specifies the values that are passed to subdialogs.

The value of this tag must be empty.

Parent: <object>, <subdialog>

layer The order in which overlays are displayed when multiple
overlays are specified.

An overlay with a higher number (such as 5) is displayed
in the foreground relative to an overlay with a lower
number (such as 4).

When using multiple overlays, be careful that the overlays
do not overlap and render the text unreadable. By
default, the same layer value is used for all overlays.

Default value is 0.

border-width Border width of the overlay area given in pixels.

Default value is 0.

border-color Border color of the overlay area. Values are: red, blue,
green, yellow, magenta, cyan, white, black, transparent
or an unsigned integer.

If a color enumeration is used, the color will be opaque.

If an integer is specified, use the format 0xRRGGBBTT,
where RR is a 2-digit hexadecimal value for the red
component, GG is for the green component, BB is for the
blue component, and TT is the value for the transparency
component.

Transparent can be used as a color or specified in the TT
of the bitmask.

Default value is black.

timeout Stops displaying the overlay after a specified number of
seconds has passed from the start of the video stream.

A value of 0 means that no timeout will occur.

Default value is 0.

bgcolor Background color of the overlay area. Values are: red,
blue, green, yellow, magenta, cyan, white, black,
transparent or an unsigned integer.

If a color enumeration is used, the color will be opaque.

If an integer is specified, use the format 0xRRGGBBTT,
where RR is a 2-digit hexadecimal value for the red
component, GG is for the green component, BB is for the
blue component, and TT is the value for the transparency
component.

Transparent can be used as a color or specified in the TT
of the bitmask.

Default value is transparent.

For foreground color of the text, see .

Attribute Description

VoiceXML Elements Reference

Application Developer’s Guide 204

Attributes:

<prompt>

Controls the output of pre-recorded audio, video, multimedia or TTS to the user.

The value can be empty or can contain one or more of the children listed below,
where the element is either parsed text or the tag.

Parents: <block>, <catch>, <error>, <field>, <filled>, <help>, <if>,
<initial>, <menu>, <noinput>, <nomatch>, <object>

<return>,
<subdialog>, <transfer>

Children: <audio>, <enumerate>, <overlay>, <ssml> <value>

Attributes:

Attribute Description

name Name to be associated with this parameter when the
subdialog is invoked. Required.

expr Expression that computes the value associated with name.

value Associates a literal string value with name.

valuetype Whether the value associated with name is data or a URI
(ref). Default is data.

type MIME type of the result provided by a URI if the value type
is ref. Only relevant for uses of <param> in <object>.

Attribute Description

bargein Whether a prompt may be interrupted.

True - Allow input to interrupt (Default)

False - Do not allow input to interrupt

bargeintype The bargein type. Optional. (Defaults to speech.)

speech - Any user utterance can barge in on the prompt.

hotword - Only user input that matches a grammar can barge
in on the prompt. (Not supported in the current release.)

Overrides the value of the bargeintype property.

cond Boolean value of TRUE or FALSE. Defaults to TRUE. When
FALSE, the tag is ignored or skipped; the form is not
visited.

count A number that allows you to issue different prompts if the
user is doing something repeatedly. If omitted, it defaults
to 1.

timeout How long to wait for the next input. The default noinput
timeout is 5 seconds.

vcr Whether VCR controls are to be active for the prompt
block. (Default: FALSE.)

VoiceXML Elements Reference

Application Developer’s Guide 205

<property>

Sets a property value that affects platform behavior.

The value of this tag must be empty.

Parents: <field>, <form>, <initial>, <menu>, <object>, <record>,
<subdialog>, <transfer>, <vxml>

Attributes:

<record>

A field item that collects a recording from the user. The recording is stored in
the field item variable, which can be played back or submitted to the server.
Only external storage is available.

The value can be empty or can contain one or more of the children listed below.

Parent: <form>

Children: <audio>, <catch>, <error>, <filled>, <grammar>, <help>,
<noinput>, <nomatch>, <prompt>, <property>, <value>

Attributes:

xml:lang The language identifier of the prompt. If omitted, it
defaults to the value specified in the document's xml:lang
attribute. Optional.

The list of supported values for this attribute depends on
the TTS engine being used. The xml:lang must always
match the TTS engine language. Refer to your vendor
documentation for support details.

xml:base Declares the base URI from which relative URIs in the
prompt are resolved. This base declaration has precedence
over the <vxml> base URI declaration. If a local
declaration is omitted, the value is inherited down the
document hierarchy. Optional.

Attribut
e

Description

name Property name. Required.

value Property value. Required.

Attribute Description

beep TRUE or FALSE (the default). If TRUE, the application
plays a tone just prior to recording.

cond Boolean value of TRUE or FALSE. Defaults to TRUE. When
FALSE, the tag is ignored or skipped; the form is not
visited.

Attribute Description

VoiceXML Elements Reference

Application Developer’s Guide 206

Note: Voice and DTMF grammars are not active during the record. DTMF digits
can only be used to terminate the recording when the record elements
'dtmfterm' attribute is set to true.

<reprompt>

Used inside executable content to set a flag indicating that a new attempt
should be made to issue a prompt for the current item.

The value of this tag must be empty.

Parents: <block>, <catch>, <error>, <filled>, <help>, <if>, <noinput>,
<nomatch>

Attributes: None.

<return>

Returns execution of a subcollege and returns control and data to the calling
dialog.

The value of this tag must be empty.

Parents: <block>, <catch>, <error>, <filled>, <help>, <if>, <noinput>,
<nomatch>

dtmfterm TRUE or FALSE. If TRUE (default), a DTMF keypress
terminates the recording. If FALSE, a DTMF keypress does
not terminate recording.

expr Initial value of the form-item variable; the default is
ECMAScript undefined. If initialized to a value, then the
form item is not visited unless the form-item variable is
cleared.

finalsilence Interval of silence that indicates the end of speech.
(Default: 3 seconds.)

meantime If the duration of the recording is less than this attribute,
then the recording is assumed to be empty and a nonbook
is thrown. Minimum value is 250ms (if defined as a
shorter duration, it will be set to 250ms); maximum value
is the value of the maxtime attribute (if defined as a
longer duration, it will be set to 250ms). Optional.
(Defaults to 250ms.)

maxtime Maximum duration to record. (Default: 10 seconds.)

name The name of a form-item variable used to track whether
the <initial> is eligible to execute; defaults to an
inaccessible internal variable.

type MIME type of the recording.

Attribute Description

VoiceXML Elements Reference

Application Developer’s Guide 207

Attributes:

<say-as>

Type of text construct contained within the element that defines the way a word
or phrase is spoken, including text generated by the <value> tag. The rules to
convert <sayas> text into pre-recorded speech fragments are determined by an
external script. The default URI of this script is
http://localhost/snowshore/vxmlphrase.cgi. This URI can be modified to use an
external server by the com.snowshore.recsrc property.

The default rules handle US English only. The value of this tag must be parsed
text.

Note: The <say-as> element is supported with IP Media Server resources and
not a TTS server. It provides an alternative to TTS for minimal phrases.

Parents: <audio>, <choice>, <emphasis>, <enumerate>, <paragraph>,
<p>, <prompt>, <prosody>, <sentence>, <s>, <speak>,

<voice>

Children: <value>

Attributes:

Attribute Description

event Returns, then sends this event.

namelist Variable names to be returned to the calling dialog.

eventexpr An ECMAScript expression to be evaluated and used as
the name of an event to be returned to the calling dialog
and thrown. Exactly one of event, eventexpr, or namelist
may be specified.

message A message string providing additional context about the
event being thrown. The message will be available as a
variable within the scope of the <catch> element.
Optional. (Can only be used if event or eventexpr is
specified; only one of message or messageexpr can be
specified.)

messageexpr An ECMAScript expression to be evaluated and used as
the message string, as documented under message,
above. Optional. (Can only be used if event or eventexpr
is specified; only one of message or messageexpr can be
specified.)

Attribute Description

interpret-as Describes the way to render the value of:

phone (NANP numbers)

digits (Each spoken with no pauses.)

number (Spoken as a positive cardinal number. Negative
numbers are not supported and will produce odd output.)

VoiceXML Elements Reference

Application Developer’s Guide 208

<script>

Allows the specification of a block of client-side ECMAScript code.

Note: Although the IP Media Server supports this tag, Dialogic does not
recommend its use and considers it inadvisable to execute arbitrary logic on the
IP Media Server due to resource limitations.

The value of this tag must be parsed text.

Parents: <block>, <catch>, <error>, <filled>,<form>, <help>, <if>,
<noinput>, <nomatch>, <vxml>

Attributes:

<scroll>

Specifies the characteristics of scrolling text in a text overlay. This is an optional
element for a text overlay. If the <scroll> element is not used, the text overlay
will be static. For an example of a text overlay, see “Image Overlay and Text
Overlay” (page 308). For more on text overlay, see “Image Overlay and Text
Overlay Functionality” (page 227)

This element is not used for image overlays.

Parents: <content>

Children: none

Attribute Description

src URL for the resource.

chariest The character encoding if an external script is used.
Optional.

fetchhint Defines when the script should be fetched. Optional.

prefect - script may be downloaded when the page is loaded

safe - only load the script when needed

fetchtimeout The length of time to wait for the script to be fetched
before throwing an error.badfetch event. Optional.

maxage Indicates that this document is willing to use a cached
copy of the script only while the age of the cached copy is
less than or equal to the number of seconds specified by
this attribute. Optional.

maxstale Indicates that this document is willing to use a cached
copy of the script that has exceeded its expiration time by
as much as the number of seconds specified by this
attribute. Optional.

VoiceXML Elements Reference

Application Developer’s Guide 209

Attributes:

<subdialog>

Invokes a second dialog within the current dialog. It provides a way for invoking
a new interaction, and returning to the original form. Local data, grammars, and
state information are saved and available when returning to the calling
document.

The value can be empty or can contain one or more of the children listed below.

Parent: <form>

Children: <audio>, <catch>, <error>, <filled>, <help>, <noinput>,
<nomatch>, <param>, <prompt>, <property>, <value>

Attributes:

Attribute Description

mode The mode of the scrolling text. Values are: content
(scroll one time), continuous (scroll continuously),
and none. Required attribute.

Default is none.

speed Speed of scrolling measured in pixels per second.

Default is 25.

direction Direction of scrolling. Values are: left, right, up,
down.

Default is left.

term-delay Used with content mode.

Termination delay. The amount of time in seconds to
keep the overlay in the video after scrolling
completes. This value must be greater than 0.

Default is 5 seconds.

Attribute Description

cond Boolean value of TRUE or FALSE. Defaults to TRUE. When
FALSE, the tag is ignored or skipped. the form is not
visited.

expr Initial value of the form-item variable; the default is
ECMAScript undefined. If initialized to a value, then the
form item is not visited unless the form-item variable is
cleared.

method Request method (get or post).

modal Controls which grammars are active during the
subcollege.

name The result returned from the subdialog, an ECMAScript
object whose properties are the ones defined in the
namelist attribute of the <return> element.

VoiceXML Elements Reference

Application Developer’s Guide 210

<submit>

This element is like <goto> because the application gets a new document. Unlike
<goto>, it lets you submit a list of variables to the document server, using an
HTTP GET or POST request.

The value of this tag must be empty.

Parents: <block>, <catch>, <error>, <filled>, <help>, <if>, <noinput>,
<nomatch>

src URI of the subdialog.

Required.

srcexpr An ECMAScript expression to be evaluated and used as
the URI of the subdialog. This can be the URI of another
document, a dialog in the same document, or a dialog in
another document. If this attribute is empty ("") or set to
the empty string ("''"), the current document will be used.
Exactly one of src or srcexpr must be specified.

namelist A space-separated list of variables to submit to the
subdialog. Optional. (Defaults to nothing.)

method The request method: get or post. Optional. (Defaults to
get.)

enctype The MIME encoding of the submitted data. The following
types are supported:

application/x-www-form-urlencoded

multipart/form-data

Optional. (Defaults to application/x-www-form-
urlencoded.)

fetchaudio The URI of audio to play while waiting for the document
to be fetched. Optional

fetchhint Defines when the subdialog should be fetched. Optional.

safe - only load the subdialog when needed

fetchtimeout The length of time to wait for the subdialog to be fetched
before throwing an error.badfetch event. Optional.

maxage Indicates that this document is willing to use a cached
copy of the subdialog only while the age of the cached
copy is less than or equal to the number of seconds
specified by this attribute. Optional.

maxstale Indicates that this document is willing to use a cached
copy of the subdialog that has exceeded its expiration
time by as much as the number of seconds specified by
this attribute. Optional.

Attribute Description

VoiceXML Elements Reference

Application Developer’s Guide 211

Attributes:

Note: An error.semantic event is thrown if an undeclared variable name is used
in the namelist. An error.badfetch event is thrown if more or less than one of
next and expr are specified.

<throw>

Sends an event to be received by <catch>.

The value of this tag must be empty.

Parents: <block>, <catch>, <error>, <filled>, <help>, <if>, <noinput>,
<nomatch>

Attribute Description

expr Like next, except that the URI is dynamically determined
by evaluating the given ECMAScript expression. One of
next, expr, or fetchtimeout is required.

method The request method (GET or POST). The default is GET.

namelist The list of variables to submit.

next The URL to which the query is submitted.

fetchtimeout Interval to wait for the content to be returned before
generating an error.badfetch event. If not specified, a
value derived from the innermost fetchtimeout property
is used.

enctype The MIME encoding of the submitted data. The following
types are supported:

application/x-www-form-urlencoded

multipart/form-data

Optional. (Defaults to application/x-www-form-
urlencoded.)

fetchaudio The URI of audio to play while waiting for the document
to be fetched. Optional

fetchhint Defines when the subdialog should be fetched. Optional.

safe - only load the subdialog when needed

maxage Indicates that this document is willing to use a cached
copy of the subdialog only while the age of the cached
copy is less than or equal to the number of seconds
specified by this attribute. Optional.

maxstale Indicates that this document is willing to use a cached
copy of the subdialog that has exceeded its expiration
time by as much as the number of seconds specified by
this attribute. Optional.

VoiceXML Elements Reference

Application Developer’s Guide 212

Attribute:

Note: An error.badfetch event is thrown if more or less than one of event and
eventexpr are specified, or if more than one of message and messageexpr are
specified.

<transfer>

Provides the ability to place an outgoing voice call to support transfers. A
“bridged” transfer session returns the caller to the original session with the
interpreter upon completion. A “blind” transfer session terminates when
completed.

Parent: <form>

Attribute Description

event Returns, then sends this event.

eventexpr An ECMAScript expression to be evaluated and used as
the name of the event to be thrown. Exactly one of event
or eventexpr must be specified.

message A message string providing additional context about the
event being thrown. For the pre-defined events thrown by
the platform, the value of the message is platform-
dependent. The message will be available as a variable
within the scope of the <catch> element. Optional. (Only
one of message or messageexpr can be specified.)

messageexpr An ECMAScript expression to be evaluated and used as a
message string, as documented under message, above.
Optional. (Only one of message or messageexpr can be
specified.)

VoiceXML Elements Reference

Application Developer’s Guide 213

Attributes:

Attribute Description

name The outcome of the transfer attempt. For possible return
values, see the following table.

Note: If the transfer request is unacceptable and the
transfer is not initiated at all, the transfer variable will not
be set and the platform will throw an error, instead.

expr Initial value of the form-item variable; the default is
ECMAScript undefined. If initialized to a value, then the
form item is not visited unless the form-item variable is
cleared.

cond Boolean value of TRUE or FALSE. Defaults to TRUE. When
FALSE, the tag is ignored or skipped; the form is not
visited.

dest The URL of the destination (phone, IP telephone address).

(Default: none)

destexpr An ECMAScript expression yielding the URI of the
destination.

The expression must produce a valid SIP URI, for example
sip:19783678400@gateway.carrier.net. (Default: none.)

bridge Determines what to do once the call is connected.

A value of ‘true’ indicates the transfer is bridged.

A value of ‘false’ indicates a blind transfer.

A blind transfer is not currently supported by the IP Media
Server. A value of false will result in the
error.unsupported.transfer.blind event being thrown. A
bridged transfer is currently implemented by hairpinning
media from both calls through the IP Media Server, which
requires the VoiceXML session to continue its existence
for the lifetime of the call transfer.

src The SIP URI that shows up as ANI at the callee. Must be
of the form sip:user@server. This is to identify the caller for
billing purposes. (Dialogic-specific attribute)

srcexpr An ECMAScript expression yielding src. (Dialogic-specific
attribute).

stopdigits Defines the list of single DTMF digits that ends the
transfer.

longdigit Enables detection of long DTMF digits or multiple, short
instance of the same digit.

Indicates that the transfer can be terminated only with a
long DTMF digit or multiple, short instances of the same
digit.

YES turns DTMF detection on for long digits. NO (default)
turns DTMF detection off for long digits.

VoiceXML Elements Reference

Application Developer’s Guide 214

Note: The src, srcexpr, stopdigits, longdigit, and video attributes are Dialogic-
specific attributes.

You can use one (but not both) of the following attribute pairs:

dest and destexpr

requir and requriexpr

src and srcexpr

aai and aaiexpr

type Specifies the transfer behavior (from the VoiceXML
application's perspective). Optional.

video Whether video is available on the outbound call. The value
can be one of suppress or allow. See “RTP Codec Selection
Using the <transfer> Element” (page 226).

connecttimeout The time to wait while trying to connect the call before
returning, and setting the transfer variable to 'noanswer'.
Minimum value allowed is 5s. This attribute only applies
for bridge or consultation transfers. Optional. (Defaults to
30s.)

maxtime The maximum time that the call is allowed to last.
Minimum value is 30 seconds; maximum is one week. A
value of 0 represents no limit. This attribute only applies
for bridge transfers. Optional. (Defaults to 0.)

transferaudio The URI of an audio file to be played while connecting the
call. Transfer audio cannot be played if
connectwhen="immediate"; in this case, network ringing
will be heard instead. Optional.

aai A string containing Application-to-Application Information
(AAI) data to be sent to an application on the far-end.

aaiexpr An ECMAScript expression evaluating to the Application-
to-Application Information (AAI) data string, to be sent to
an application on the far-end, as documented under aai,
above.

requri The SIP URI to be used as the Request-URI in an
outbound INVITE. The value must be compliant with the
grammar for a SIP URI. If this attribute is not present, the
Request-URI will have the same value as the To header.
The To URI value is determined by the dest attribute. This
attribute and the requriexpr attribute enable you to route
outbound calls to a proxy. The proxy will modify the
request as needed based on the URI parameters placed in
the INVITE and relevant network and subscriber data.

requri expr An ECMAscript expression that evaluates to a SIP URI.

Attribute Description

VoiceXML Elements Reference

Application Developer’s Guide 215

Return values of Name variable:

Note: An error event may be thrown if a reserved ECMAScript word is used as
the name. An error.badfetch event is thrown if more or less than one of dest
and destexpr are specified, or if more than one of aai and aaiexpr are specified.

<value>

Inserts the value of an ECMAScript expression into a prompt.

The value of this tag must be empty.

Parents: <audio>, <block>, <catch>, <choice>, <enumerate>, <error>,
<field>, <filled>, <help>, <if>, <initial>, <log>, <menu>,
<noinput>, <nomatch>, <object>, <prompt>, <record>,
<subdialog>, <transfer>

Attributes:

<var>

Declares an ECMAScript variable. The scope of the variable is determined by the
parent tag.

The value of this tag must be empty.

Parents: <block>, <catch>, <error>, <filled>, <form>, <help>, <if>,
<noinput>, <nomatch>, <vxml>

Value Description

busy The endpoint refused the call.

noanswer There was no answer within the specified time.

network busy Some intermediate network refused the call.

near_end_disconnect The call completed and was terminated by the
caller.

far_end_disconnect The call completed and was terminated by the
callee.

network_disconnect The call completed and was terminated by the
network.

maxtime_disconnect The call duration exceeded the value of the
maxtime attribute and was terminated by the
platform.

Attribute Description

expr Expression to render. Required.

VoiceXML Elements Reference

Application Developer’s Guide 216

Attributes:

<vxml>

The top-level element in a VoiceXML document.

The value of this tag must contain one of more of the children listed below.

Parent: None

Children: <catch>, <error> <form>, <help>, <link>, <menu>, <meta>,
<noinput>, <nomatch>, <property>, <script>, <var>

Attributes:

Note: Omitting version or xmlns when they are required will result in an
error.badfetch being thrown.

If the root document specified by application cannot be found, an error.badfetch
is thrown. If the root document refers to another root document, an
error.semantic event is thrown.

Attribut
e

Description

name Name of the variable. Required.

expr An initial value.

Attribute Description

version Version of VoiceXML. Set to 2.0. Required.

base Base URL. The root document URL, if any.

xmlns The VoiceXML specification requires the use of this
attribute (set to http://www.w3.org/2001/vxml) to
designate the namespace for VoiceXML.

lang The language identifier for this document. Used as the
language for implicit grammars (i.e., universal grammars,
and <choice>/<option> grammars), multi-language
Nuance grammars, and <prompt>s. Optional.

application The URI of this document's application root document.
Optional.

VoiceXML Properties

Application Developer’s Guide 217

VoiceXML Properties

com.snowshore.criticaldigit_timer

Sets a special digit timer that specifies the interval to wait for additional user
input before returning a match to an active grammar. This property is used
when the application modifies the DTMF matching behavior.

Uses the VoiceXML standard "n {ms}|{s}" timer notation. Default unit is
milliseconds (ms).

Values:

Value Description

-2 The default critical digit timer is set to the same value as
the interdigit timer (thus it has no effect).

-1 Immediate. Use “shortest match first”.

0 Infinite. Use “longest match first”, but waits infinitely
once a match is found. Thus, matched input must end
with a return digit or restart digit.

>0 Uses “longest match first”, and waits that amount of time
when a match is found.

VoiceXML Properties

Application Developer’s Guide 218

MIME Types Supported

The MIME type and optional codec parameters define the file format and
encoding (audio or video) for the file. The MIME type supports both headerless
(raw) and .wav file formats. Table 49 lists the supported MIME types, file
formats, and audio encodings.

Table 49. Supported MIME Types, Formats, and Audio Encodings

There are various commonly-used methods of specifying .wav format and the
desired audio encodings. The official IANA registered MIME type for wave is
audio/vnd.wave but audio/wav and audio/x-wav are used frequently.

Specify audio encoding by adding a codec parameter and value to the base
MIME type, for example:

audio/vnd.wave;codec=7

The official values for the codec parameter are defined by the IANA registry (see
http:/www.iana.org/assignments/wave-avi-codec-registry), but other commonly used
forms are also supported.

Table 50 provides a summary of the supported codec parameters and values
and their corresponding audio encodings.

MIME Type File Format Audio Encoding Notes

audio/basic raw G.711 µ-law

audio/x-alaw-basic raw G.711 A law

audio/vnd.wave WAVE IANA standard

audio/wav WAVE

audio/x-wav WAVE Proprietary

audio/3gpp 3GPP AMR-NB

audio/3gpp2 3GPP2 AMR-NB

video/3gpp 3GPP AMR-NB Valid for audio-only
file

video/3gpp2 3GPP2 AMR-NB Valid for audio-only
file

Table 50. Audio Codec Parameter Values

Value Audio Encoding Notes

7 G.711 µ-law IANA standard

6 G.711 A law IANA standard

31 Microsoft® GSM IANA standard

ulaw G.711 µ-law

alaw G.711 A law

VoiceXML Properties

Application Developer’s Guide 219

Table 51 lists the supported MIME types, file formats, and video encodings.

Table 51. Supported MIME Types, Formats, and Video Encodings

The video/x-wav MIME type produces a recording using the same codec as the
one negotiated during call setup.

The following code snippet is an example of how to record to a video file using
the video/3gpp MIME type. You can replace this type with the preferred MIME
type.

<record name=”vmail_recording” beep=”true” dtmfterm=”true”
type=video/3gpp” maxtime=”20s”
...
</record>

msgsm Microsoft® GSM

MIME Type File Format Encoding Notes

video/x-wav WAVE Proprietary

video/3gpp 3GPP Audio: AMR-NB.
Video: H.263+,
H.263++, or H.264.

Supported for
play and record.

video/3gpp2 3GPP2 Audio: AMR-NB.
Video: H.263+,
H.263++, or H.264.

Supported for
play only.

Table 50. Audio Codec Parameter Values (continued)

Value Audio Encoding Notes

ECMAScript Functionality

Application Developer’s Guide 220

ECMAScript Functionality

While the IP Media Server supports full ECMA (European Computer
Manufacturer’s Association) Scripting abilities, Dialogic recommends that you
perform that type of logic on the application server rather than in the VoiceXML
script. This method reduces the processing and memory required by the IP
Media Server and allows the IP Media Server to handle a large volume of
simultaneous sessions.

Note: The ECMAScript Language Specification can be downloaded for free.

Table 52 summarizes the categories and features supported by the IP Media
Server’s VoiceXML interpreter.

Table 52. ECMAScript Functionality

Category Feature/Keyword

Array Handling Array
join, length, reverse, sort

Assignments Assign (=)
Compound Assign (OP=)

Booleans Boolean

Comments /*...*/ or //

Constants/Literals NaN
null
true, false
Infinity
undefined

Control flow Break
continue
for
for...in
if...else
return
while

ECMAScript Functionality

Application Developer’s Guide 221

Dates and Time Date
getDate, getDay, getFullYear, getHours,
getMilliseconds, getMinutes, getMonth,
getSeconds, getTime, getTimezoneOffset,
getYear,
getUTCDate, getUTCDay, getUTCFullYear,
getUTCHours, getUTCMilliseconds,
getUTCMinutes, getUTCMonth,
getUTCSeconds,
setDate, setFullYear, setHours,
setMilliseconds, setMinutes, setMonth,
setSeconds, setTime, setYear,
setUTCDate, setUTCFullYear, setUTCHours,
setUTCMilliseconds, setUTCMinutes,
setUTCMonth, setUTCSeconds,
toGMTString, toLocaleString, toUTCString,
parse, UTC

Declarations Function
new
this
var
with

Function Creation Function
arguments, length

Global Methods Global
escape, unescape
eval
isFinite, isNaN
parseInt, parseFloat

Math Math
abs, acos, asin, atan, atan2, ceil, cos, exp,
floor, log, max, min, pow, random, round, sin,
sqrt, tan,
E, LN2, LN10, LOG2E, LOG10E, PI, SQRT1_2,
SQRT2

Numbers Number
MAX_VALUE, MIN_VALUE
NaN
NEGATIVE_INFINITY, POSITIVE_INFINITY

Object Creation Object
new
constructor, prototype, instanceof, toString,
valueOf

Table 52. ECMAScript Functionality (continued)

Category Feature/Keyword

ECMAScript Functionality

Application Developer’s Guide 222

Operators Addition (+), Subtraction (-)
Modulus arithmetic (%)
Multiplication (*), Division (/)
Negation (-)
Equality (==), Inequality (!=)
Less Than (<), Less Than or Equal To (<=)
Greater Than (>)
Greater Than or Equal To (>=)
Logical And(&&), Or (||), Not (!)
Bitwise And (&), Or (|), Not (~), Xor (^)
Bitwise Left Shift (<<), Shift Right (>>)
Unsigned Shift Right (>>>)
Conditional (?:)
Comma (,)
delete, typeof, void
Decrement (--), Increment (++)

Objects Array
Boolean
Date
Function
Global
Math
Number
Object
String

Strings String
charAt, charCodeAt, fromCharCode
indexOf, lastIndexOf
split
toLowerCase, toUpperCase
length

Table 52. ECMAScript Functionality (continued)

Category Feature/Keyword

VoiceXML Extended Session Variables

Application Developer’s Guide 223

VoiceXML Extended Session Variables

The Dialogic® VoiceXML browser supports the following VoiceXML 2.0 session
variables:

session.telephone.ani
session.telephone.dnis
session.telephone.rdnis (always set to NULL)

session.telephone.redirect_reason

In addition to the above, other session variables are supported so that a
VoiceXML script can access a complete set of information from the SIP call.
Some of the new session variables are defined in VoiceXML 2.0, and others are
Dialogic® extensions as noted on the following page.

VoiceXML 2.0 Recommendations

session.connection.local.uri

Value: Set to the SIP Request-URI; note that any SIP escapes (%xx) in the
Request-URI are still in this variable as well.

session.connection.remote.uri

Value: Set to the SIP From-URI.

session.connection.protocol.name

Value: Always SIP.

session.connection.protocol.version

Value: Always 2.0.

Dialogic® Extensions

session.connection.media

An array where each element represents an RTP media stream. Each array
element has the following associated attributes:

type - indicates the MIME type of media stream (currently either "audio" or "video")
subtype - indicates the MIME sub-type, or encoding, of the media stream (e.g.
PCMU, PCMA, H264, etc.)

session.connection.protocol.sip.parameter

Value: An array of name/value pairs parsed from the SIP Request-URI; the
name and value are "UnEscaped," meaning any SIP escapes (%xx) in the
URI are expanded before being assigned.

session.connection.protocol.sip.parameter[n].name

Value: The name of the nth parameter.

session.connection.protocol.sip.parameter[n].value

Value: The "value" (if any, can be empty) of the nth parameter.

session.connection.protocol.sip.uri

VoiceXML Extended Session Variables

Application Developer’s Guide 224

Value: Set to the SIP Request-URI. Note that any SIP escapes (%xx) in the
Request-URI are still in this variable as well. This variable duplicates the
session.connection.local.uri by design.

session.connection.protocol.sip.to

Value: Set to the SIP To-URI. Since the VoiceXML 2.0 defined
session.connection.local.uri variable is mapped to the request URI a separate
variable is required to contain the contents of the SIP To header.

session.connection.protocol.sip.from

Value: Set to the SIP From-URI. This variable duplicates the
session.connection.remote.uri by design.

session.connection.protocol.sip.call_id

Value: Set to the SIP Call ID.

Example

The following example shows the mapping between SIP headers and the newly
supported VoiceXML session variables.

Given the following SIP INVITE request:

INVITE
sip:dialog@10.102.4.26;voicexml=http://10.102.4.9:9020/ivr/s

ip_init.vxml%3fdnis%3d961234567%26hasvideo%3d1;dogs=nice;
user=phone

SIP/2.0
From: <sip:968037431@10.102.4.45:5060>;tag=2d04660a-13c4-

40ed433f-9ec19fd-1786
To: <sip:961234567@10.102.4.9>
Call-ID: 6a7b774-2d04660a-13c4-40ed433f-9ec19fd-

7061@10.102.4.45
CSeq: 1 INVITE
Via: SIP/2.0/UDP

10.102.4.134:5060;branch=z9hG4bKi8MKi8i!yi8MK2SsMu8Uyake2
q0OUqMi8i!y.1-1d9515c

Via: SIP/2.0/UDP
10.102.4.45:5060;received=10.102.4.45;branch=z9hG4bK-
40ed433f-9ec19fd-847

Max-Forwards: 69
User-Agent: RADVision ViaIP GW Vers. 2.0
Call-Info: <Media:Video>;purpose=info
Contact: <sip:968037431@10.102.4.45:5060>
Content-Length:0

The IP Media Server populates the new VoiceXML session variables, as shown:

session.connection.protocol.name = "SIP"
session.connection.protocol.version = "2.0"
session.connection.local.uri =

sip:dialog@10.102.4.26;voicexml=http://10.102.4.9:9020/iv
r/sip_init.vxml%3fdnis%3d961234567%26hasvideo%3d1;dogs=ni
ce;user=phone"

session.connection.remote.uri =
<sip:968037431@10.102.4.45:5060>;tag=2d04660a-13c4-
40ed433f-9ec19fd-1786

VoiceXML Extended Session Variables

Application Developer’s Guide 225

session.connection.protocol.sip.parameter[0].name =
"voicexml"

session.connection.protocol.sip.parameter[0].value =
"http://10.102.4.9:9020/ivr/sip_init.vxml?dnis=961234567&
hasvideo=1"

session.connection.protocol.sip.parameter[1].name = "dogs"
session.connection.protocol.sip.parameter[1].value = "nice"
session.connection.protocol.sip.parameter[2].name = "user"
session.connection.protocol.sip.parameter[2].value = "phone"
session.connection.protocol.sip.uri =

sip:dialog@10.102.4.26;voicexml=http://10.102.4.9:9020/iv
r/sip_init.vxml%3fdnis%3d961234567%26hasvideo%3d1;dogs=ni
ce;user=phone"

session.connection.protocol.sip.to =
<sip:961234567@10.102.4.9>

session.connection.protocol.sip.from =
<sip:968037431@10.102.4.45:5060>;tag=2d04660a-13c4-
40ed433f-9ec19fd-1786

session.connection.protocol.sip.call_id = 6a7b774-2d04660a-
13c4-40ed433f-9ec19fd-7061@10.102.4.45

RTP Codec Selection Using the <transfer> Element

Application Developer’s Guide 226

RTP Codec Selection Using the <transfer> Element

The Real-Time Protocol (RTP) codec can work with the VoiceXML <transfer>
element.

When <transfer> is enabled, the IP Media Server sends a SIP INVITE with an SDP
offer to the URI specified in the VoiceXML script. The contents of this offer,
combined with capabilities of the called device, determine the type of media
streams established. By default, the offer matches the capabilities of the
existing, inbound call leg.

For example, if the inbound leg has both audio and video streams, the SDP offer
might include media lines for both. Application-level control to override this
standard behavior is available. With such control, the application can force an
audio-only call even if the called device supports video.

To enable this control, the IP Media Server supports a proprietary VoiceXML
attribute named video of the <transfer> tag. This attribute has two supported
values: allow and suppress.

Table 53 shows the media streams that are included in the SDP offer based on
the negotiated SDP of the inbound call and the value of the video attribute. The
default value of the video attribute is allow.

Table 53. SDP Offer Sent in Outbound SIP INVITE

The called device on the outbound leg generates an SDP answer based on the
IP Media Server's offer and its own capabilities. This answer determines the
actual media streams that are created. So, the video attribute cannot guarantee
that video media are used; only that the option is presented.

The IP Media Server also allows the client application to determine what media
types were negotiated on the outbound call. The client application uses this
function for billing purposes. A custom shadow variable to <transfer> provides
this information.

The IP Media Server standard supports:

<transfer name="name".../> shadow variables name$.duration,
name$.inputmode and name$.utterance

The IP Media Server also supports the proprietary:

name$.media.

If the transfer did not connect to the far end, the value for the media shadow
variable is "". If the media is connected with audio only, then the media shadow
variable is set to audio. If the media is connected with both audio and video,
then the shadow variable is set to audio+video.

Video Attribute Values

Allow Value Suppress Value

Inbound Leg
Negotiated SDP

Audio Audio Audio

Audio+Video Audio+Video Audio

Image Overlay and Text Overlay Functionality

Application Developer’s Guide 227

Image Overlay and Text Overlay Functionality

This section provides information on text overlay and image overlay
functionality:

Overlay Overview

Characteristics of Image Overlay

Characteristics of Text Overlay

Text Overlay Restrictions

Installing Font Files

Dynamic Fonts

Cached Fonts

Overlay Demos

Overlay Overview

The IP Media Server provides text and image overlay functionality that can be
used to create interactive menus or to display corporate taglines and logos,
among other things. Up to 16 simultaneous overlays per RTP stream are
supported. These 16 overlays can be text overlays, image overlays, or a
combination of text and image overlays.

Text overlay functionality is supported for play only; it is not supported for
record.

Image overlay functionality is implemented in VoiceXML 2.0 using the
<overlay> and <content> elements. Text overlay functionality is implemented
in VoiceXML 2.0 using the <overlay>, <content>, , and <scroll>
elements. Default values are provided for various characteristics of an overlay,
such as font, font size, and font color.

For reference information, see the <overlay>, <content>, , and
<scroll> element descriptions in this chapter. For examples of scripts, see
“Image Overlay and Text Overlay” (page 308) in Chapter 7, “Sample Code and
Call Flows”.

The creation of an overlay requires a definition of the overlay, such as its size
and position, and a definition of the content to be displayed in the overlay.

The image overlay content definition specifies the source file to be rendered and
the image type.

The text overlay content definition provides the text string to be rendered and
a font definition. The IP Media Server offers cached font and dynamic font
rendering. For more information, see “Cached Fonts” (page 229) and “Dynamic
Fonts” (page 229).

Characteristics of Image Overlay

The IP Media Server supports the following file types for image overlay:

JPEG (MIME type: image/jpeg)

PNG (MIME type: image/png)

Image Overlay and Text Overlay Functionality

Application Developer’s Guide 228

When you define the size of the overlay window (or area), the image is resized
to fit this window and the aspect ratio of the original image is maintained. The
image is typically centered in the window (content attributes halign is ignored).

The <overlay>and <content> elements are used for image overlay. The
and <scroll> elements are not used for image overlay.

Characteristics of Text Overlay

The following characteristics of a text overlay are configurable:

Fonts, font sizes, and font colors for compatibility with varying video output
formats. See .

The degree of transparency of text foreground (the text itself). See <font
fgcolor>.

The degree of transparency of text background (the space in between the
letters). See <overlay bgcolor>.

The size, position, and border of the text window in which the text input is
displayed. See <overlay>.

Scrolling text, its direction, speed, and mode of display. See <scroll>.

Character-encoding, word wrap, and text alignment. See <content>.

Text Overlay Restrictions

The following restrictions are in effect for text overlay:

For scrolling text, when scroll mode is continuous, there is no delay or space
between the beginning of content and the end of content. To avoid this
restriction, you can manually add spaces at the end of a text string.

For scrolling text, the entire text overlay window scrolls. This means that the
window is not fixed; instead, it scrolls with the text. To avoid this restriction,
you can define two overlays; a smaller one to contain the text, and a larger
one for the window. See “Scrolling Text Overlay” (page 308) for an example.

For cached fonts, the font style must match the font file defined in trcr.cfg.
For example, if the font file specifies a bold font, you must set the style to
bold. If it specifies italics, you must set the style to italics.

Installing Font Files

Fonts must be installed on the IP Media Server system that will execute the
VoiceXML script. A distributed environment, such as one using Font Server, is
not supported.

The IP Media Server requires that the Red Hat Linux Liberation font package be
installed during the operating system install. Other font packages such as Hindi
and Chinese are provided by Red Hat and may be installed as needed using the
rpm-Uvh command. Font packages are placed in
/usr/share/fonts/ directories. For more information on installation, see the
Software Quick Start Guide.

To use fonts not provided by Red Hat, you must manually copy the font file such
as gz or rpm to the directory of choice. After the font file is on your system, you
can specify it using the element. See Dynamic Fonts and Cached Fonts
for more information.

Image Overlay and Text Overlay Functionality

Application Developer’s Guide 229

Dynamic Fonts

Dynamic font rendering allows rendering in any size using a font file that the
application specifies at runtime. Dynamic font rendering is more flexible, but
requires more processing at runtime and may add to play latency.

To use UTF-8 or GB18030 character encodings in a text overlay, you must use
dynamic fonts. Cached fonts support the ASCII character set only.

To use dynamic fonts:

1 Ensure that the font files for the fonts to be used in the text overlay are
already installed on your IP Media Server system. See “Installing Font Files”
(page 228).

2 In the <content> element, specify a local file for src attribute. Specify
values for other attributes as needed. For example:

<content src="file:////opt/snowshore/htdocs/vxml/demos/media/pizza.gb"
encoding="GB18030" halign="center" >

3 In the element, specify the font file and its location for name
attribute. The font file must be local to the IP Media Server system. Specify
values for other attributes as needed. For example:

<font name="font:///usr/share/fonts/chinese/TrueType/uming.ttf"
size="30" fgcolor="black" />

Cached Fonts

Cached font rendering uses the fonts defined in the trcr.cfg configuration file to
provide fast rendering. These cached fonts require less processing at runtime,
but require fonts and sizes to be identified and stored in memory when the IP
Media Server is started. Play latency is typically reduced but more memory is
consumed.

The character set supported by cached fonts is limited to ASCII characters. For
other character encodings such as UTF-8 or GB18030, you must use dynamic
fonts; see “Dynamic Fonts” (page 229).

To use cached fonts:

1 Ensure that the font files for the fonts to be used in the text overlay are
already installed on your IP Media Server system. See “Installing Font Files”
(page 228).

2 Define the fonts in the [fonts] section of trcr.cfg, located in
opt/snowshore/etc. See “trcr.cfg Description” (page 229). After making
changes in trcr.cfg, you must restart the IP Media Server.

3 In the <content> element, specify a local file for src attribute or inline ASCII
text. Specify values for other attributes as needed.

4 In the element, specify a font name defined in trcr.cfg. Specify
values for other attributes as needed. For example:

trcr.cfg Description

The trcr.cfg configuration file contains two sections: [global] and [fonts].

Image Overlay and Text Overlay Functionality

Application Developer’s Guide 230

The [global] section of trcr.cfg specifies overall text and image rendering
behavior and contains the following parameters:

The [fonts] section of trcr.cfg contains font definitions used for cached font
rendering. It specifies pre-defined fonts and contains the following parameters:

[global] section
parameters Description

debuglogmask Set of logging bits that can be activated to obtain detailed
tracing information of render operations.

Default: 0x00000003 (trace any detected WARNING or
ERROR condition).

This variable should not require any modification for
standard operations.

SharedMem Sets the size of the shared memory area that is used to
pass rendered overlay content between the rendering
process and the media server.

This value is set at download time based on the number of
transcoding instances in the license. A default value of
99 KB is allocated for each transcoding device. The value of
99 KB is determined by allotting for one overlay covering a
QCIF resolution image:

176 pixels wide * 144 pixels high * 4 bytes per pixel for
rendering = 101376 bytes / 1024 = 99 kilobytes

If necessary, you can change this value using the
KBsPerOverlayResource variable in
/opt/snowshore/etc/snowshore.cfg. The amount of
memory is allocated using this formula: the sum of
transcoding devices * KBsPerOverlayResource.

You will need to increase the KBsPerOverlayResource value
if you receive the following error in mserv.log:

trcr request failed (error=out of shared memory)

[fonts] section
parameters

Description

Name A short name to identify the font.

Font File Name The name of the true type font file describing the
font.

Pre-rendered From To A range of font sizes to be pre-rendered.

Font sizes increment The incremental value in the range of font sizes.

Image Overlay and Text Overlay Functionality

Application Developer’s Guide 231

Sample trcr.cfg

The following example shows font definitions in the [fonts] section of trcr.cfg.

[fonts]
Pre-rendered font sizes
#Name Font File Name From To Increment
#------------ -- ---- ---- -----------
font MonoBold "/usr/share/fonts/liberation/LiberationMono-Bold.ttf" 10 24 2
font MonoItal "/usr/share/fonts/liberation/LiberationMono-Italic.ttf" 10 24 2
font Mono "/usr/share/fonts/liberation/LiberationMono-Regular.ttf" 10 24 2
font SansBold "/usr/share/fonts/liberation/LiberationSans-Bold.ttf" 10 24 2
font SansItal "/usr/share/fonts/liberation/LiberationSans-Italic.ttf" 10 24 2
font Sans "/usr/share/fonts/liberation/LiberationSans-Regular.ttf" 10 24 2

Overlay Demos

Overlay demos (sample applications) are provided in
/opt/snowshore/htdocs/vxml/demos/tovl. For more information, see the demo
readme file included in this directory.

Application Developer’s Guide 232

7 - Sample Code and Call Flows

This chapter provides examples and call flow diagrams for a variety of
scenarios.

This chapter includes the following sections:

Announcements Sample Code and Call Flows

Conferences Sample Code and Call Flows

IVR with MSCML Sample Code and Call Flows

VoiceXML Sample Code and Call Flows

Announcements Sample Code and Call Flows

Application Developer’s Guide 233

Announcements Sample Code and Call Flows

Play an Announcement as Early Media

The numbers in the left-hand column reference the Call Flow diagram in
Figure 9 (page 235).

Example 20. Announcement as Early Media

1 INVITE
sip:annc@192.168.12.155:5060;early=yes;pla
y=
file:////opt/
snowshore/prompts/generic/10.ulaw SIP/2.0

Via: SIP/2.0/UDP 192.168.1.150:6100
To: <sip:annc@192.168.12.155:5060>
From: <sip:test0@192.168.12.153:5060>
Call-ID: 27125@192.168.1.150
Contact: sip:192.168.1.150:6100
CSeq: 2 INVITE
Content-Type: application/sdp
Supported: timer
Supported: 100rel
Session-Expires: 60
Content-Length: 153

v=0
o=SnowShoreUaV1 14250 3757 IN IP4

192.168.1.150
s=SnowShore Sdp
t=0 0
m=audio 6000/1 RTP/AVP 0
c=IN IP4 192.168.12.154
a=sendrecv
a=ptime:20

2 SIP/2.0 100 Trying
Contact: sip:192.168.12.155:5060
Via: SIP/2.0/UDP 192.168.1.150:6100
To:

<sip:annc@192.168.12.155:5060>;tag=1005580
780

From: <sip:test0@192.168.12.153:5060>
Call-ID: 27125@192.168.1.150
CSeq: 2 INVITE
Content-Length: 0

Announcements Sample Code and Call Flows

Application Developer’s Guide 234

3 SIP/2.0 183 Session Progress
Contact: sip:192.168.12.155:5060
Via: SIP/2.0/UDP 192.168.1.150:6100
To:

<sip:annc@192.168.12.155:5060>;tag=1005580
780

From: <sip:test0@192.168.12.153:5060>
Call-ID: 27125@192.168.1.150
CSeq: 2 INVITE
Content-Type: application/sdp
Require: 100rel
RSeq: 22752
Content-Length: 153

v=0
o=SnowShoreUaV1 27736 410 IN IP4

192.168.12.155
s=SnowShore Sdp
t=0 0
m=audio 4362/1 RTP/AVP 0
c=IN IP4 192.168.12.156
a=sendrecv
a=ptime:20

4 SIP/2.0 200 OK
Via: Sip/2.0/UDP 192.168.1.150:6100
To:

<sip:annc@192.168.12.155:5060>;tag=1005580
780

From: <sip:test0@192.168.12.153:5060>
Call-ID: 27125@192.168.1.150
CSeq: 3 PRACK
Content-Length: 0

5 SIP/2.0 487 Request Terminated
Contact: sip:192.168.12.155:5060
Via: SIP/2.0/UDP 192.168.12.150:6100
To:

sip:annc@192.168.12.155:5060>;tag=10055807
80

From: sip:4444@192.168.12.153:5060
Call-ID: 27125@192.168.1.150
CSeq: 2 INVITE
Content-Length: 0

6 ACK sip:annc@192.168.12.155:5060 SIP/2.0
Via: SIP/2.0/UDP 192.168.12.150:6100
To:

sip:annc@192.168.12.155:5060>;tag=10055807
80

From: sip:4444@192.168.12.153:5060
Call-ID: 27125@192.168.1.150
CSeq: 2 ACK
Content-Length: 0

Example 20. Announcement as Early Media (continued)

Announcements Sample Code and Call Flows

Application Developer’s Guide 235

Call Flow for an Early Media Announcement

The following illustrates a call flow diagram for early media announcement.

Figure 9. Call Flow: Announcement, Early Media

Application Server Media Server

INVITE

100 TRYING

183 SESSION PROGRESS

PRACK

487 CANCELLED

ACK

PLAY

1

2

3

4

5

6

Announcements Sample Code and Call Flows

Application Developer’s Guide 236

Playing an Announcement as Normal Media

The numbers in the left-hand column reference the diagram Figure 10
(page 238).

Example 21. Playing an Announcement as Normal Media

1 sip:annc@192.168.12.155:5060;play=file:////opt
/snowshore/
prompts/generic/10.ulaw;early=no SIP/2.0

Via: SIP/2.0/UDP 192.168.1.150:6100
To: <sip:annc@192.168.12.155:5060>
From: <sip:test0@192.168.12.153:5060>
Call-ID: 27103@192.168.1.150
Contact: sip:192.168.1.150:6100
CSeq: 2 INVITE
Content-Type: application/sdp
Supported: timer
Supported: 100rel
Session-Expires: 60
Content-Length: 154

v=0
o=SnowShoreUaV1 11845 20808 IN IP4

192.168.1.150
s=SnowShore Sdp
t=0 0
m=audio 6000/1 RTP/AVP 0
c=IN IP4 192.168.12.154
a=sendrecv
a=ptime:20

2 SIP/2.0 100 Trying
Contact: sip:192.168.12.155:5060
Via: SIP/2.0/UDP 192.168.1.150:6100
To:

<sip:annc@192.168.12.155:5060>;tag=10055806
54

From: <sip:test0@192.168.12.153:5060>
Call-ID: 27103@192.168.1.150
CSeq: 2 INVITE
Content-Length: 0

Announcements Sample Code and Call Flows

Application Developer’s Guide 237

3 SIP/2.0 200 OK
Contact: sip:192.168.12.155:5060
Via: SIP/2.0/UDP 192.168.1.150:6100
To:

<sip:annc@192.168.12.155:5060>;tag=10055806
54

From: <sip:test0@192.168.12.153:5060>
Call-ID: 27103@192.168.1.150
CSeq: 2 INVITE
Content-Type: application/sdp
Session-Expires: 60
Require: timer
Content-Length: 152

v=0
o=SnowShoreUaV1 5987 313 IN IP4 192.168.12.155
s=SnowShore Sdp
t=0 0
m=audio 4360/1 RTP/AVP 0
c=IN IP4 192.168.12.156
a=sendrecv
a=ptime:20

4 ACK sip:annc@192.168.12.155:5060 SIP/2.0
Via: SIP/2.0/UDP 192.168.1.150:6100
To:

<sip:annc@192.168.12.155:5060>;tag=10055806
54

From: <sip:test0@192.168.12.153:5060>
Call-ID: 27103@192.168.1.150
CSeq: 2 ACK
Content-Length: 0

5 BYE sip:annc@192.168.12.150:5060 SIP/2.0
Via: SIP/2.0/UDP 192.168.1.150:6100
To:

<sip:test0@192.168.12.153:5060>;tag=1005580
654

From: <sip:annc@192.168.12.155:5060>
Call-ID: 27103@192.168.1.150
CSeq: 3 BYE
Supported: timer
Supported: 100rel
Content-Length: 0

6 SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.1.150:6100
To:

<sip:test0@192.168.12.153:5060>;tag=1005580
654

From: <sip:annc@192.168.12.155:5060>
Call-ID: 27103@192.168.1.150
CSeq: 3 BYE
Content-Length: 0

Example 21. Playing an Announcement as Normal Media (continued)

Announcements Sample Code and Call Flows

Application Developer’s Guide 238

Call Flow for a Normal Media Announcement

The following illustrates a call flow diagram for normal media announcement.

Figure 10. Call Flow: Announcement, Normal Media

Application Server Media Server

100 Trying

200 OK

ACK

Play Audio (RTP)

BYE

200 OK

1

2

3

4

5

6

Announcements Sample Code and Call Flows

Application Developer’s Guide 239

Stopping Media—Hold

A SIP INVITE request places the remote party on hold.

Example 22. Stopping Media Using Hold

Note: Hold is represented with 0.0.0.0 on the line beginning with c=

[SIP header is not shown.]

v=0
o=anonymous 0 0 IN IP4 10.128.41.9
s=anonymous0
t=0 0
m=audio 5010 RTP/AVP 0 101
c=IN IP4 0.0.0.0
a=rtpmap:0 pcmu/8000
a=sendrecv
a=ptime:20
a=rtpmap:101 telephone-event/8000/1
m=video 5012 RTP/AVP 34
c=IN IP4 0.0.0.0
a=rtpmap:34 h263/90000
a=sendrecv

A successful response (200 OK) to the hold INVITE request confirms the on-hold
state. There is nothing unique in the SDP.

200 OK
v=0
o=SnowShoreUaV1 846930886 1681692777 IN IP4 10.128.41.223
s=SnowShore Sdp

t=0 0
m=audio 6000 RTP/AVP 0 101
c=IN IP4 10.128.41.223
a=sendrecv
a=ptime:20
a=rtpmap:0 PCMU/8000
a=rtpmap:101 telephone-event/8000/1
m=video 6002 RTP/AVP 34
c=IN IP4 10.128.41.223
a=sendrecv
a=ptime:20
a=rtpmap:34 H263/90000

re-INVITE to release the hold

[SIP header not shown]

v=0
o=anonymous 0 0 IN IP4 10.128.41.9
s=anonymous0
t=0 0
m=audio 5010 RTP/AVP 0 101
c=IN IP4 10.128.41.9

Announcements Sample Code and Call Flows

Application Developer’s Guide 240

a=rtpmap:0 pcmu/8000
a=sendrecv
a=ptime:20
a=rtpmap:101 telephone-event/8000/1
m=video 5012 RTP/AVP 34
c=IN IP4 10.128.41.9
a=rtpmap:34 h263/90000
a=sendrecv

200 OK sent by sipd to release the HOLD.

[SIP header not shown]

v=0
o=SnowShoreUaV1 846930886 1681692777 IN IP4 10.128.41.223
s=SnowShore Sdp
t=0 0
m=audio 0 RTP/AVP 0 101
c=IN IP4
a=sendrecv
a=ptime:20
a=rtpmap:0 PCMU/8000
a=rtpmap:101 telephone-event/8000/1
m=video 5012 RTP/AVP 34
c=IN IP4 10.128.41.9
a=sendrecv
a=ptime:20
a=rtpmap:34 H263/90000

Announcements Sample Code and Call Flows

Application Developer’s Guide 241

Call Flow for Stopping Media—Hold

The following illustrates a call flow diagram for stopping media using hold.

Figure 11. Call Flow: Stopping Media Using Hold

Announcements Sample Code and Call Flows

Application Developer’s Guide 242

Repeating the Audio

The following illustrates sample code for repeating audio indefinitely.

Example 23. Repeating Audio Indefinitely

<request>
<play id=21212>
<prompt baseurl="file:////opt/snowshore/prompts/
generic/" locale="en_US" repeat="infinite"
duration="infinite" offset="0" delay="2000">

<audio url="num_changed.wav"/>
<audio url="new_number.wav"/>
<variable type="dig" subtype="ndn"

value="9725551212"/>
<audio url="make_note.wav"/>

</prompt>
</play>
</request>

Conferences Sample Code and Call Flows

Application Developer’s Guide 243

Conferences Sample Code and Call Flows

Creating a Simple Conference

Example 24. Simple Conference

INVITE sip:conf=1234@192.168.12.153 SIP/2.0
From: sip:threepcc@192.168.1.126;tag=1as8ut
To: sip:conf=1234@192.168.12.153
Call-ID: 1031579120515@192.168.1.126
CSeq: 1327320033 INVITE
Content-Length: 201
Content-Type: application/sdp
Contact: <sip:192.168.1.126:5060;

transport=udp>
Via: SIP/2.0/UDP 192.168.1.126:5060

v=0
o=Pingtel 5 5 IN IP4 192.168.12.109
s=phone-call
c=IN IP4 192.168.12.109
t=0 0
m=audio 8770 RTP/AVP 0 96 8
a=rtpmap:0 pcmu/8000/1
a=rtpmap:96 telephone-event/8000/1
a=rtpmap:8 pcma/8000/1

SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.1.126:5060

To: sip:conf=1234@192.168.12.153;tag=
1031665657

From: sip:threepcc@192.168.1.126;tag=1as8ut
Call-ID: 1031579120515@192.168.1.126
CSeq: 1327320033 INVITE
Contact: sip:192.168.12.153:5060
Content-Type:application/sdp
Session-Expires:120
Content-Length: 153
a=ptime:20

v=0
o=SnowShoreUaV1 22263 30720 IN IP4 192.168.12.153
s=SnowShore Sdp
t=0 0
m=audio 4202 RTP/AVP 0
c=IN IP4 192.168.12.154
a=sendrecv

Conferences Sample Code and Call Flows

Application Developer’s Guide 244

Call Flow for a Simple Conference (Normal Media)

Figure 12. Call Flow: Simple Conference

Conferences Sample Code and Call Flows

Application Developer’s Guide 245

Creating an Advanced Conference

Example 25. Advanced Conference

INVITE sip:conf=1234@192.168.12.153 SIP/2.0
From: sip:mscmltest@192.168.1.126;tag=

7hl229
To: sip:conf=1234@192.168.12.153
Call-ID: 1031579500288@192.168.1.126
CSeq: 1597127738 INVITE
Content-Length: 504
Content-Type: multipart/mixed;boundary=snow-bound
Contact: <sip:192.168.1.126:5060;transport=

udp>
Via: SIP/2.0/UDP 192.168.1.126:5060

--snow-bound
Content-type:application/mediaservercontrol+xml

<?xml version='1.0'?>
<MediaServerControl version='1.0'>
<request>
<configure_conference reserveconfmedia='yes'

reservedtalkers='10' />
</request>
</MediaServerControl>
--snow-bound
Content-type:application/sdp

v=0
o=Pingtel 5 5 IN IP4 192.168.12.109
m=audio 18000 RTP/AVP 0 101
a=rtpmap:0 pcmu/8000
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-15
s=phone-call
c=IN IP4 0.0.0.0
t=0 0

--snow-bound--

Note: In compliance with RFC1341 (MIME), there is a blank line following the
boundary marker and a CRLF separating each line in the multipart/mixed
MSCML body.

Expected Response

SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.1.126:5060
To: sip:conf=1234@192.168.12.153;tag=

1031666037
From: sip:mscmltest@192.168.1.126;tag=

7hl229
Call-ID: 1031579500288@192.168.1.126

Conferences Sample Code and Call Flows

Application Developer’s Guide 246

CSeq: 1597127738 INVITE
Contact: sip:192.168.12.153:5060
Content-Type:multipart/mixed;boundary=

snow-boundary-1
Session-Expires:120
Content-Length: 444

--snow-boundary-1
Content-Type: application/mediaservercontrol+xml

<?xml version="1.0"?>
<MediaServerControl version="1.0">
 <response request="configure_conference" code="200"

text="OK"/>
</MediaServerControl>

--snow-boundary-1
Content-Type: application/sdp

v=0
o=SnowShoreUaV1 15485 15497 IN IP4 192.168.12.153
s=SnowShore Sdp
t=0 0
c=IN IP4 0.0.0.0

--snow-boundary-1--

Conferences Sample Code and Call Flows

Application Developer’s Guide 247

Call Flow to Set up an Advanced Conference

Figure 13. Call Flow: Advanced Conference

Conferences Sample Code and Call Flows

Application Developer’s Guide 248

Modifying Conference Using Subscribe

Example 26. Modifying a Conference Using Subscribe

INFO sip:conf=1234@192.168.12.153 SIP/2.0
From: sip:mscmltest@192.168.1.126;tag=

7hl229
To: sip:conf=1234@192.168.12.153
Call-ID: 1031579500288@192.168.1.126
CSeq: 1597127738 INFO
Content-Length: 504
Content-Type: application/mediaservercontrol+xml
Contact: <sip:192.168.1.126:5060;transport=

udp>
Via: SIP/2.0/UDP 192.168.1.126:5060

<?xml version='1.0'?>
<MediaServerControl version="1.0">

<request>
<configure_conference>

<subscribe>
<events>

<activetalkers report="yes"
</events>

</subscribe>
</configure_conference>
</request>
</MediaServerControl>

Conferences Sample Code and Call Flows

Application Developer’s Guide 249

Providing Communication for Participant in an
Advanced Conference

Note: This example uses defaults.

Example 27. Adding Participant to Advanced Conference

INVITE sip:conf=1234@192.168.12.153 SIP/2.0
From: sip:threepcc@192.168.1.126;tag=jtopyd
To: sip:conf=1234@192.168.12.153
Call-ID: 1031580002825@192.168.1.126
CSeq: 2076031605 INVITE
Content-Length: 201
Content-Type: application/sdp
Contact: <sip:192.168.1.126:5060;transport=

udp>
Via: SIP/2.0/UDP 192.168.1.126:5060

v=0
o=Pingtel 5 5 IN IP4 192.168.12.109
s=phone-call
c=IN IP4 192.168.12.109
t=0 0
m=audio 8770 RTP/AVP 0 96 8
a=rtpmap:0 pcmu/8000/1
a=rtpmap:96 telephone-event/8000/1
a=rtpmap:8 pcma/8000/1
SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.1.126:5060
To: sip:conf=1234@192.168.12.153;tag=

1
031666539

From: sip:threepcc@192.168.1.126;tag=
jtopyd

Call-ID: 1031580002825@192.168.1.126
CSeq: 2076031605 INVITE
Contact: sip:192.168.12.153:5060
Content-Type:application/sdp
Session-Expires:120
Content-Length: 152

v=0
o=SnowShoreUaV1 7030 13061 IN IP4 192.168.12.153
s=SnowShore Sdp
t=0 0
m=audio 4208 RTP/AVP 0
c=IN IP4 192.168.12.154
a=sendrecv
a=ptime:20

Conferences Sample Code and Call Flows

Application Developer’s Guide 250

Joining a Participant Using Special Attributes

Example 28. Joining Participant Using Special Attributes

INVITE sip:conf=1234@9.9.3.1 SIP/2.0
From: sip:confbridge@10.10.10.150;tag=4qjtic
To: sip:conf=1234@9.9.3.1
Call-ID: 1031256911282@10.10.10.150
CSeq: 1887335379 INVITE
Content-Length: 481
Content-Type: multipart/mixed;

boundary=confbridge-bound
Contact: <sip:10.10.10.150:5060;

transport=udp>
Via: SIP/2.0/UDP 10.10.10.150:5060

--confbridge-bound
content-type:application/sdp

v=0
o=Pingtel 5 5 IN IP4 10.10.10.16
s=phone-call
c=IN IP4 10.10.10.16
t=0 0
m=audio 8766 RTP/AVP 0 96 8
a=rtpmap:0 pcmu/8000/1
a=rtpmap:96 telephone-event/8000/1
a=rtpmap:8 pcma/8000/1
--confbridge-bound
content-type:application/mediaservercontrol+xml

<?xml version='1.0'?>
<MediaServerControl version='1.0'>
<request>
<configure_leg mixmode='private' />
</request>
</MediaServerControl>
--confbridge-bound--

Conferences Sample Code and Call Flows

Application Developer’s Guide 251

Suspending Communications within a Conference

Example 29. Suspending Communications during a Conference (Continued)

INFO sip:192.168.12.153:5060 SIP/2.0
From: sip:confbridge@192.168.1.126;tag=oi32zw
To: sip:conf=1234@192.168.12.153;tag=1031666918
Call-ID: 1031580381757@192.168.1.126
CSeq: 1066407038 INFO
Content-Length: 142

Content-Type: application/mediaservercontrol+xml
Via: SIP/2.0/UDP 192.168.1.126:5060

<?xml version='1.0'?>
<MediaServerControl version='1.0'>
<request>
<configure_leg mixmode='mute' />
</request>
</MediaServerControl>

SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.1.126:5060
To: sip:conf=1234@192.168.12.153;tag=

1031666918
From: sip:confbridge@192.168.1.126;tag=

oi32zw
Call-ID: 1031580381757@192.168.1.126
CSeq: 1066407038 INFO
Content-Length: 0

Conferences Sample Code and Call Flows

Application Developer’s Guide 252

Response to Mute a Conference Participant

Example 30. Response to Muting a Participant

INFO sip:confbridge@192.168.1.126:5060 SIP/2.0
Via: SIP/2.0/UDP 192.168.12.153:5060

To: sip:confbridge@192.168.1.126;tag=oi32zw
From: sip:conf=1234@192.168.12.153;tag=

1031666918
Call-ID: 1031580381757@192.168.1.126
CSeq: 15398 INFO
Content-Type:application/mediaservercontrol+xml
Supported:timer
Supported:100rel
Content-Length: 137
<?xml version="1.0"?>
<MediaServerControl version="1.0">
 <response request="configure_leg" code="200" text="OK"

/>
</MediaServerControl>
SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.12.153:5060
From: sip:conf=1234@192.168.12.153;tag=

1031666918
To: sip:confbridge@192.168.1.126;tag=oi32zw
Call-ID: 1031580381757@192.168.1.126
CSeq: 15398 INFO
Content-Length: 0

Conferences Sample Code and Call Flows

Application Developer’s Guide 253

Playing Audio to Conference Participant

Changing Mixmode to Parked

Example 31. Changing Participant Mixmode to Parked

INFO sip:192.168.12.153:5060 SIP/2.0
From: sip:confbridge@192.168.1.126;tag=oi32zw
To: sip:conf=1234@192.168.12.153;tag=1031666918
Call-ID: 1031580381757@192.168.1.126
CSeq: 1066407032 INFO
Content-Length: 144
Content-Type: application/mediaservercontrol+xml
Via: SIP/2.0/UDP 192.168.1.126:5060
<?xml version='1.0'?>
<MediaServerControl version='1.0'>
<request>
<configure_leg mixmode='parked' />
</request>
</MediaServerControl>
SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.1.126:5060
To: sip:conf=1234@192.168.12.153;tag=

1031666918

From: sip:confbridge@192.168.1.126;tag=
oi32zw

Call-ID: 1031580381757@192.168.1.126
CSeq: 1066407032 INFO
Content-Length: 0

Conferences Sample Code and Call Flows

Application Developer’s Guide 254

Response to Parked
INFO sip:confbridge@192.168.1.126:5060 SIP/2.0
Via: SIP/2.0/UDP 192.168.12.153:5060
To: sip:confbridge@192.168.1.126;tag=oi32zw
From: sip:conf=1234@192.168.12.153;tag=1031666918
Call-ID: 1031580381757@192.168.1.126
CSeq: 15392 INFO
Content-Type:application/mediaservercontrol+xml
Supported:timer
Supported:100rel
Content-Length: 137
<?xml version="1.0"?>
<MediaServerControl version="1.0">
 <response request="configure_leg" code="200" text="OK"

/>
</MediaServerControl>
SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.12.153:5060
From: sip:conf=1234@192.168.12.153;tag=1031666918
To: sip:confbridge@192.168.1.126;tag=oi32zw
Call-ID: 1031580381757@192.168.1.126
CSeq: 15392 INFO
Content-Length: 0

Playing the Audio

Example 32. Playing Audio

INFO sip:192.168.12.153:5060 SIP/2.0
From: sip:confbridge@192.168.1.126;tag=

oi32zw
To: sip:conf=1234@192.168.12.153;tag=

1031666918
Call-ID: 1031580381757@192.168.1.126
CSeq: 1066407033 INFO
Content-Length: 194
Content-Type: application/mediaservercontrol+xml
Via: SIP/2.0/UDP 192.168.1.126:5060
<?xml version='1.0'?>
<MediaServerControl version='1.0'>
<request>
<play prompt='http://192.168.1.126:8013/

confbridge/audio/help.raw' promptencoding='ulaw' />
</request>
</MediaServerControl>
SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.1.126:5060
To: sip:conf=1234@192.168.12.153;tag=

1031666918
From: sip:confbridge@192.168.1.126;tag=

oi32zw
Call-ID: 1031580381757@192.168.1.126
CSeq: 1066407033 INFO
Content-Length: 0

Conferences Sample Code and Call Flows

Application Developer’s Guide 255

Response to Message to Play Audio

Example 33. Response to Message to Play Audio

INFO sip:confbridge@192.168.1.126:5060 SIP/2.0
Via: SIP/2.0/UDP 192.168.12.153:5060
To: sip:confbridge@192.168.1.126;tag=oi32zw
From: sip:conf=1234@192.168.12.153;tag=1031666918
Call-ID: 1031580381757@192.168.1.126
CSeq: 15393 INFO
Content-Type:application/mediaservercontrol+xml
Supported:timer
Supported:100rel
Content-Length: 160
<?xml version="1.0"?>
<MediaServerControl version="1.0">
 <response request="play" code="200" text="OK"

reason="EOF" playduration="8890" />
</MediaServerControl>
SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.12.153:5060
From: sip:conf=1234@192.168.12.153;tag=1031666918
To: sip:confbridge@192.168.1.126;tag=oi32zw
Call-ID: 1031580381757@192.168.1.126
CSeq: 15393 INFO
Content-Length: 0

Changing Participant Mixmode Back to Full

Example 34. Changing Mixmode Back to Full

INFO sip:192.168.12.153:5060 SIP/2.0
From: sip:confbridge@192.168.1.126;tag=

oi32zw
To: sip:conf=1234@192.168.12.153;tag=1031666918
Call-ID: 1031580381757@192.168.1.126
CSeq: 1066407034 INFO
Content-Length: 142
Content-Type: application/mediaservercontrol+xml
Via: SIP/2.0/UDP 192.168.1.126:5060
<?xml version='1.0'?>
<MediaServerControl version='1.0'>
<request>
<configure_leg mixmode='full' />
</request>
</MediaServerControl>
SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.1.126:5060

To: sip:conf=1234@192.168.12.153;tag=
1031666918

From: sip:confbridge@192.168.1.126;tag=
oi32zw

Call-ID: 1031580381757@192.168.1.126
CSeq: 1066407034 INFO

Conferences Sample Code and Call Flows

Application Developer’s Guide 256

Content-Length: 0

Response to Mixmode Change

Example 35. Response to Mixmode Change

INFO sip:confbridge@192.168.1.126:5060 SIP/2.0
Via: SIP/2.0/UDP 192.168.12.153:5060
To: sip:confbridge@192.168.1.126;tag=oi32zw
From: sip:conf=1234@192.168.12.153;tag=

1031666918
Call-ID: 1031580381757@192.168.1.126
CSeq: 15394 INFO
Content-Type:application/mediaservercontrol+xml
Supported:timer
Supported:100rel
Content-Length: 137
<?xml version="1.0"?>
<MediaServerControl version="1.0">
<response request="configure_leg" code="200" text="OK" />
</MediaServerControl>
SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.12.153:5060
From: sip:conf=1234@192.168.12.153;tag=

1031666918
To: sip:confbridge@192.168.1.126;tag=oi32zw
Call-ID: 1031580381757@192.168.1.126
CSeq: 15394 INFO
Content-Length: 0

Playcollect and Playrecord in a Conference

Changing Participant Mixmode to Parked

Example 36. Changing Mixmode to Parked Mode

INFO sip:192.168.12.153:5060 SIP/2.0
From: sip:confbridge@192.168.1.126;tag=oi32zw
To: sip:conf=1234@192.168.12.153;tag=1031666918
Call-ID: 1031580381757@192.168.1.126
CSeq: 1066407032 INFO
Content-Length: 144
Content-Type: application/mediaservercontrol+xml
Via: SIP/2.0/UDP 192.168.1.126:5060
<?xml version='1.0'?>
<MediaServerControl version='1.0'>
<request>
<configure_leg mixmode='parked' />
</request>
</MediaServerControl>
SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.1.126:5060
To: sip:conf=1234@192.168.12.153;tag=

1031666918

Conferences Sample Code and Call Flows

Application Developer’s Guide 257

From: sip:confbridge@192.168.1.126;tag=
oi32zw

Call-ID: 1031580381757@192.168.1.126
CSeq: 1066407032 INFO
Content-Length: 0

Response to Parked

Example 37. Response to Parked

INFO sip:confbridge@192.168.1.126:5060 SIP/2.0
Via: SIP/2.0/UDP 192.168.12.153:5060
To: sip:confbridge@192.168.1.126;tag=oi32zw
From: sip:conf=1234@192.168.12.153;tag=1031666918
Call-ID: 1031580381757@192.168.1.126
CSeq: 15392 INFO
Content-Type:application/mediaservercontrol+xml
Supported:timer
Supported:100rel
Content-Length: 137
<?xml version="1.0"?>
<MediaServerControl version="1.0">
 <response request="configure_leg" code="200" text="OK"

/>
</MediaServerControl>
SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.12.153:5060
From: sip:conf=1234@192.168.12.153;tag=1031666918
To: sip:confbridge@192.168.1.126;tag=oi32zw
Call-ID: 1031580381757@192.168.1.126
CSeq: 15392 INFO
Content-Length: 0

PlayCollect
INFO sip:192.168.12.153:5060 SIP/2.0
From: sip:confbridge@192.168.1.126;tag=oi32zw
To: sip:conf=1234@192.168.12.153;tag=1031666918
Call-ID: 1031580381757@192.168.1.126
CSeq: 1066407027 INFO
Content-Length: 237
Content-Type: application/mediaservercontrol+xml
Via: SIP/2.0/UDP 192.168.1.126:5060
<?xml version='1.0'?>
<MediaServerControl version='1.0'>
<request>
<playcollect

prompt='http://192.168.1.126:8013/confbridge/audio/
askauthcode.raw' barge='yes' cleardigits='yes' maxdigits='4'

/>
</request>
</MediaServerControl>
SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.1.126:5060
From: sip:confbridge@192.168.1.126;tag=oi32zw
To: sip:conf=1234@192.168.12.153;tag=1031666918

Conferences Sample Code and Call Flows

Application Developer’s Guide 258

Call-ID: 1031580381757@192.168.1.126
CSeq: 1066407027 INFO
Content-Length: 0

Response to PlayCollect
INFO sip:confbridge@192.168.1.126:5060 SIP/2.0
Via: SIP/2.0/UDP 192.168.12.153:5060
To: sip:confbridge@192.168.1.126;tag=oi32zw
From: sip:conf=1234@192.168.12.153;tag=1031666918
Call-ID: 1031580381757@192.168.1.126
CSeq: 15387 INFO
Content-Type:application/mediaservercontrol+xml
Supported:timer
Supported:100rel
Content-Length: 183

<?xml version="1.0"?>
<MediaServerControl version="1.0">
 <response request="playcollect" code="200" text="OK"

reason="timeout" digits="85" playduration="2260"/>
</MediaServerControl>
SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.12.153:5060
From: sip:conf=1234@192.168.12.153;tag=1031666918
To: sip:confbridge@192.168.1.126;tag=oi32zw
Call-ID: 1031580381757@192.168.1.126
CSeq: 15387 INFO
Content-Length: 0

Sending PlayRecord
INFO sip:192.168.12.153:5060 SIP/2.0
From: sip:confbridge@192.168.1.126;tag=oi32zw
To: sip:conf=1234@192.168.12.153;tag=1031666918
Call-ID: 1031580381757@192.168.1.126
CSeq: 1066407028 INFO
Content-Length: 300
Content-Type: application/mediaservercontrol+xml
Via: SIP/2.0/UDP 192.168.1.126:5060
<?xml version='1.0'?>
<MediaServerControl version='1.0'>
<request>
<playrecord

prompt='http://192.168.1.126:8013/confbridge/audio/tellyo
urname.raw' promptencoding='ulaw' barge='yes'
cleardigits='yes'

 recurl='file:////var/snowshore/rec/temp.ulaw'
recencoding='ulaw' />

</request>
</MediaServerControl>
SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.1.126:5060
From: sip:confbridge@192.168.1.126;tag=oi32zw
To: sip:conf=1234@192.168.12.153;tag=1031666918
Call-ID: 1031580381757@192.168.1.126
CSeq: 1066407028 INFO

Conferences Sample Code and Call Flows

Application Developer’s Guide 259

Content-Length: 0

Response to PlayRecord
INFO sip:confbridge@192.168.1.126:5060 SIP/2.0
Via: SIP/2.0/UDP 192.168.12.153:5060
To: sip:confbridge@192.168.1.126;tag=oi32zw
From: sip:conf=1234@192.168.12.153;tag=1031666918
Call-ID: 1031580381757@192.168.1.126
CSeq: 15388 INFO
Content-Type:application/mediaservercontrol+xml
Supported:timer
Supported:100rel
Content-Length: 197
<?xml version="1.0"?>
<MediaServerControl version="1.0">

<response request="playrecord" code="200" text="OK"
reason="digit" digits="#" reclength="14320"
playduration="4820" />

</MediaServerControl>
SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.12.153:5060
From: sip:conf=1234@192.168.12.153;tag=1031666918
To: sip:confbridge@192.168.1.126;tag=oi32zw
Call-ID: 1031580381757@192.168.1.126
CSeq: 15388 INFO
Content-Length: 0

Changing Participant Back to Full
INFO sip:192.168.12.153:5060 SIP/2.0
From: sip:confbridge@192.168.1.126;tag=oi32zw
To: sip:conf=1234@192.168.12.153;tag=1031666918
Call-ID: 1031580381757@192.168.1.126
CSeq: 1066407030 INFO
Content-Length: 142
Content-Type: application/mediaservercontrol+xml
Via: SIP/2.0/UDP 192.168.1.126:5060
<?xml version='1.0'?>
<MediaServerControl version='1.0'>
<request>
<configure_leg mixmode='full' />
</request>
</MediaServerControl>
SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.1.126:5060
From: sip:confbridge@192.168.1.126;tag=oi32zw
To: sip:conf=1234@192.168.12.153;tag=1031666918
Call-ID: 1031580381757@192.168.1.126
CSeq: 1066407030 INFO
Content-Length: 0

Response to Full
INFO sip:confbridge@192.168.1.126:5060 SIP/2.0
Via: SIP/2.0/UDP 192.168.12.153:5060
To: sip:confbridge@192.168.1.126;tag=oi32zw
From: sip:conf=1234@192.168.12.153;tag=1031666918
Call-ID: 1031580381757@192.168.1.126

Conferences Sample Code and Call Flows

Application Developer’s Guide 260

CSeq: 15390 INFO
Content-Type:application/mediaservercontrol+xml
Supported:timer
Supported:100rel
Content-Length: 137
<?xml version="1.0"?>
<MediaServerControl version="1.0">

<response request="configure_leg" code="200" text="OK" />
</MediaServerControl>
SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.12.153:5060
From: sip:conf=1234@192.168.12.153;tag=1031666918
To: sip:confbridge@192.168.1.126;tag=oi32zw
Call-ID: 1031580381757@192.168.1.126
CSeq: 15390 INFO
Content-Length: 0

Coached Conferencing

Example 38. Coached Conferencing

1 Invitation for control leg of enhanced conference

INVITE sip:conf=1234@192.168.12.150:5060 SIP/2.0
From: sip:control@192.168.12.158:5558;tag=1
To: sip:conf=1234@192.168.12.150:5060
Subject: Call from Control
Cseq: 1 INVITE
Call-ID: 1119358373
Contact: <sip:control@192.168.12.158:5558>
Content-Type: multipart/mixed;boundary=salem
Via: SIP/2.0/UDP 192.168.12.158:5558

--salem
Content-Type: application/sdp

v=0
o=mserv 1 1119358373 IN IP4 192.168.12.151
s=Riptide_Media_Server
c=IN IP4 0.0.0.0
t=0 0
m=audio 0 RTP/AVP 0

--salem
Content-Type: application/mediaservercontrol+xml

<?xml version="1.0"?>
<MediaServerControl version="1.0">
 <request>
 <configure_conference reservedtalkers="20"

reserveconfmedia="no">
 </configure_conference>
 </request>
</MediaServerControl>

Conferences Sample Code and Call Flows

Application Developer’s Guide 261

--salem--

First response from IP Media Server:

SIP/2.0 100 Trying
Contact: sip:192.168.12.150:5060
Server: SnowShoreMediaServer/1.4.0-050614A
Via: SIP/2.0/UDP 192.168.12.158:5558
To: sip:conf=1234@192.168.12.150:5060;tag=1119358026
From: sip:control@192.168.12.158:5558;tag=1
Call-ID: 1119358373
CSeq: 1 INVITE
Content-Length: 0

Second response from IP Media Server:

SIP/2.0 200 Ok
Server: SnowShoreMediaServer/1.4.0-050614A
Via: SIP/2.0/UDP 192.168.12.158:5558
To: sip:conf=1234@192.168.12.150:5060;tag=1119358026
From: sip:control@192.168.12.158:5558;tag=1
Call-ID: 1119358373
CSeq: 1 INVITE
Contact: sip:192.168.12.150:5060
Content-Type: multipart/mixed;boundary=snow-boundary-1
Session-Expires: 6000
Content-Length: 466

--snow-boundary-1
Content-Type: application/mediaservercontrol+xml

<?xml version="1.0"?>
<MediaServerControl version="1.0">
 <response request="configure_conference" code="200"

text="OK"/>
</MediaServerControl>
--snow-boundary-1
Content-Type: application/sdp

v=0
o=SnowShoreUaV1 1102520059 2044897763 IN IP4 192.168.12.150
s=SnowShore Sdp
t=0 0
m=audio 0 RTP/AVP 0
c=IN IP4 0.0.0.0
a=sendrecv
a=ptime:20
a=rtpmap:0 PCMU/8000

--snow-boundary-1--

Customer Leg Invitation

INVITE sip:conf=1234@192.168.12.150:5060 SIP/2.0

Conferences Sample Code and Call Flows

Application Developer’s Guide 262

From: sip:control@192.168.12.158:5560;tag=1
To: sip:conf=1234@192.168.12.150:5060
Subject: Call from Control
Cseq: 1 INVITE
Call-ID: 1119358621
Contact: <sip:control@192.168.12.158:5560>
Content-Type: multipart/mixed;boundary=salem
Via: SIP/2.0/UDP 192.168.12.158:5560

--salem
Content-Type: application/sdp
v=0
o=mserv 1 1119358621 IN IP4 192.168.12.151
s=Riptide_Media_Server
c=IN IP4 192.168.12.155
t=0 0
m=audio 8766 RTP/AVP 0

--salem
Content-Type: application/mediaservercontrol+xml

<?xml version="1.0"?>
<MediaServerControl version="1.0">
 <request>
 <configure_leg id="customer"/>
 </request>
</MediaServerControl>

--salem--

IP Media Server response to client application:

SIP/2.0 200 Ok
Server: SnowShoreMediaServer/1.4.0-050614A
Via: SIP/2.0/UDP 192.168.12.158:5560
To: sip:conf=1234@192.168.12.150:5060;

tag=1119358274
From: sip:control@192.168.12.158:5560;tag=1
Call-ID: 1119358621
CSeq: 1 INVITE
Contact: sip:192.168.12.150:5060
Content-Type: multipart/mixed;boundary=

snow-boundary-1
Session-Expires: 6000
Content-Length: 469

--snow-boundary-1
Content-Type: application/mediaservercontrol+xml

<?xml version="1.0"?>
<MediaServerControl version="1.0">
 <response request="configure_leg" code="200"

text="OK"/>
</MediaServerControl>
--snow-boundary-1
Content-Type: application/sdp

v=0

Conferences Sample Code and Call Flows

Application Developer’s Guide 263

o=SnowShoreUaV1 1365180540 1540383426 IN IP4 192.168.12.150
s=SnowShore Sdp
t=0 0
m=audio 6006 RTP/AVP 0
c=IN IP4 192.168.12.150
a=sendrecv
a=ptime:20
a=rtpmap:0 PCMU/8000
--snow-boundary-1--

2 Agent Invite

INVITE sip:conf=1234@192.168.12.150:5060 SIP/2.0
From: sip:control@192.168.12.158:5562;tag=1
To: sip:conf=1234@192.168.12.150:5060
Subject: Call from Control
Cseq: 1 INVITE
Call-ID: 1119358826
Contact: <sip:control@192.168.12.158:5562>
Content-Type: multipart/mixed;boundary=salem
Via: SIP/2.0/UDP 192.168.12.158:5562

--salem
Content-Type: application/sdp

v=0
o=mserv 1 1119358826 IN IP4 192.168.12.151
s=Riptide_Media_Server
c=IN IP4 192.168.12.156
t=0 0
m=audio 8766 RTP/AVP 0

--salem
Content-Type: application/mediaservercontrol+xml
<?xml version="1.0"?>
<MediaServerControl version="1.0">
 <request>
 <configure_leg id="agent"/>
 </request>
</MediaServerControl>

--salem--

Response to agent:

SIP/2.0 200 Ok
Server: SnowShoreMediaServer/1.4.0-050614A
Via: SIP/2.0/UDP 192.168.12.158:5562
To: sip:conf=1234@192.168.12.150:5060;

tag=1119358479
From: sip:control@192.168.12.158:5562;tag=1
Call-ID: 1119358826
CSeq: 1 INVITE
Contact: sip:192.168.12.150:5060
Content-Type: multipart/mixed;boundary=snow-boundary-1
Session-Expires: 6000
Content-Length: 467

Conferences Sample Code and Call Flows

Application Developer’s Guide 264

--snow-boundary-1
Content-Type: application/mediaservercontrol+xml

<?xml version="1.0"?>
<MediaServerControl version="1.0">
 <response request="configure_leg" code="200"

text="OK"/>
</MediaServerControl>
--snow-boundary-1
Content-Type: application/sdp

v=0
o=SnowShoreUaV1 1303455736 35005211 IN IP4 192.168.12.150
s=SnowShore Sdp
t=0 0
m=audio 6008 RTP/AVP 0
c=IN IP4 192.168.12.150
a=sendrecv
a=ptime:20
a=rtpmap:0 PCMU/8000

--snow-boundary-1--

3 Supervisor- invited with ID and put into private mode

INVITE sip:conf=1234@192.168.12.150:5060 SIP/2.0
From: sip:control@192.168.12.158:5564;tag=1
To: sip:conf=1234@192.168.12.150:5060
Subject: Call from Control
Cseq: 1 INVITE
Call-ID: 1119359020
Contact: <sip:control@192.168.12.158:5564>
Content-Type: multipart/mixed;boundary=salem
Via: SIP/2.0/UDP 192.168.12.158:5564

--salem
Content-Type: application/sdp

v=0
o=mserv 1 1119359020 IN IP4 192.168.12.151
s=Riptide_Media_Server
c=IN IP4 192.168.12.157
t=0 0
m=audio 32126 RTP/AVP 0

--salem
Content-Type: application/mediaservercontrol+xml

<?xml version="1.0"?>
<MediaServerControl version="1.0">
<request>
 <configure_leg id="super" mixmode="private"/>
</request>
</MediaServerControl>

Response from Media Server:

SIP/2.0 200 Ok

Conferences Sample Code and Call Flows

Application Developer’s Guide 265

Server: SnowShoreMediaServer/1.4.0-050614A
Via: SIP/2.0/UDP 192.168.12.158:5564
To: sip:conf=1234@192.168.12.150:5060;

tag=1119358673
From: sip:control@192.168.12.158:5564;tag=1
Call-ID: 1119359020
CSeq: 1 INVITE
Contact: sip:192.168.12.150:5060
Content-Type: multipart/mixed;boundary=snow-boundary-1
Session-Expires: 6000
Content-Length: 468

--snow-boundary-1
Content-Type: application/mediaservercontrol+xml

<?xml version="1.0"?>
<MediaServerControl version="1.0">
 <response request="configure_leg" code="200"

text="OK"/>
</MediaServerControl>
--snow-boundary-1
Content-Type: application/sdp
v=0
o=SnowShoreUaV1 294702567 1726956429

IN IP4 192.168.12.150
s=SnowShore Sdp
t=0 0
m=audio 6010 RTP/AVP 0
c=IN IP4 192.168.12.150
a=sendrecv
a=ptime:20
a=rtpmap:0 PCMU/8000

--snow-boundary-1--

4 Supervisor makes teammate of agent and can start coach conference with
INFO message

INFO sip:192.168.12.150:5060 SIP/2.0
From: sip:control@192.168.12.158:5564;tag=1
To: sip:conf=1234@192.168.12.150:5060;

tag=1119358673
Call-ID: 1119359020
Cseq: 2 INFO
Via: SIP/2.0/UDP 192.168.12.158:5564
Content-Type: application/mediaservercontrol+xml
Content-Length: 190
<?xml version="1.0"?>
<MediaServerControl version="1.0">

<request>
<configure_team action="add">

<teammate id="agent" />
</configure_team>

</request>
</MediaServerControl>

Conferences Sample Code and Call Flows

Application Developer’s Guide 266

Response from IP Media Server:

INFO sip:control@192.168.12.158:5564 SIP/2.0
Via: SIP/2.0/UDP 192.168.12.150:5060
To: sip:control@192.168.12.158:5564;tag=1
From: sip:conf=1234@192.168.12.150:5060;

tag=1119358673
Call-ID: 1119359020
User-Agent: SnowShoreMediaServer/1.4.0-050614A
CSeq: 2 INFO
Content-Type: application/mediaservercontrol+xml
Supported: timer
Supported: 100rel
Content-Length: 231

<?xml version="1.0"?>
<MediaServerControl version="1.0">

<response request="configure_team" code="200" text="OK">
<team id="super" numteam="1">

<teammate id="agent">
</teammate>

</team>
</response>

</MediaServerControl>

5 Supervisor goes directly into coached conferencing in one step using the
INVITE

INVITE sip:conf=1234@192.168.12.150:5060 SIP/2.0
From: sip:control@192.168.12.158:5564;tag=1
To: sip:conf=1234@192.168.12.150:5060
Subject: Call from Control
Cseq: 1 INVITE
Call-ID: 1119359610
Contact: <sip:control@192.168.12.158:5564>
Content-Type: multipart/mixed;boundary=salem
Via: SIP/2.0/UDP 192.168.12.158:5564
--salem
Content-Type: application/sdp

v=0
o=mserv 1 1119359610 IN IP4 192.168.12.151
s=Riptide_Media_Server
c=IN IP4 192.168.12.157
t=0 0
m=audio 32128 RTP/AVP 0
--salem
Content-Type: application/mediaservercontrol+xml

<?xml version="1.0"?>
<MediaServerControl version="1.0">

<request>
<configure_leg id="super" mixmode="private">

<configure_team action="set">
<teammate id="agent"/>

</configure_team>
</configure_leg>

Conferences Sample Code and Call Flows

Application Developer’s Guide 267

</request>
</MediaServerControl>

--salem--

Response from IP Media Server:

SIP/2.0 200 Ok
Server: SnowShoreMediaServer/1.4.0-050614A
Via: SIP/2.0/UDP 192.168.12.158:5564
To: sip:conf=1234@192.168.12.150:5060;

tag=1119359262
From: sip:control@192.168.12.158:5564;tag=1
Call-ID: 1119359610
CSeq: 1 INVITE
Contact: sip:192.168.12.150:5060

Content-Type: multipart/mixed;boundary=snow-boundary-1
Session-Expires: 6000
Content-Length: 549

--snow-boundary-1
Content-Type: application/mediaservercontrol+xml

<?xml version="1.0"?>
<MediaServerControl version="1.0">

<response request="configure_leg" code="200" text="OK"/>
<team id="super" numteam="1">

<teammate id="agent">
</teammate>

</team>
</MediaServerControl>
--snow-boundary-1
Content-Type: application/sdp

v=0
o=SnowShoreUaV1 861021530 278722862 IN IP4 192.168.12.150
s=SnowShore Sdp
t=0 0
m=audio 6012 RTP/AVP 0
c=IN IP4 192.168.12.150
a=sendrecv
a=ptime:20
a=rtpmap:0 PCMU/8000
--snow-boundary-1

6 A query on team list from the supervisor’s leg

INFO sip:192.168.12.150:5060 SIP/2.0
From: sip:control@192.168.12.158:5564;

tag=1
To: sip:conf=1234@192.168.12.150:5060;

tag=1119359262
Call-ID: 1119359610
Cseq: 2 INFO
Via: SIP/2.0/UDP 192.168.12.158:5564
Content-Type: application/mediaservercontrol+xml

Conferences Sample Code and Call Flows

Application Developer’s Guide 268

Content-Length: 167

<?xml version="1.0"?>
<MediaServerControl version="1.0">
 <request>

<configure_team action="query">
</configure_team>

 </request>
</MediaServerControl>

Response from IP Media Server:

INFO sip:control@192.168.12.158:5564 SIP/2.0
Via: SIP/2.0/UDP 192.168.12.150:5060
To: sip:control@192.168.12.158:5564;tag=1
From: sip:conf=1234@192.168.12.150:5060;

tag=1119359262
Call-ID: 1119359610
User-Agent: SnowShoreMediaServer/

1.4.0-050614A
CSeq: 2 INFO
Content-Type: application/mediaservercontrol+xml
Supported: timer
Supported: 100rel
Content-Length: 231

<?xml version="1.0"?>
<MediaServerControl version="1.0">

<response request="configure_team" code="200"
text="OK">
<team id="super" numteam="1">

<teammate id="agent">
</teammate>

</team>
</response>

</MediaServerControl>

7 Supervisor clears entire team list.

INFO sip:192.168.12.150:5060 SIP/2.0
From: sip:control@192.168.12.158:5564;tag=1
To: sip:conf=1234@192.168.12.150:5060;

tag=1119359262
Call-ID: 1119359610
Cseq: 3 INFO
Via: SIP/2.0/UDP 192.168.12.158:5564
Content-Type: application/mediaservercontrol+xml
Content-Length: 147

<?xml version="1.0"?>
<MediaServerControl version="1.0">
 <request>
 <configure_team action="set"/>
 </request>
</MediaServerControl>

Conferences Sample Code and Call Flows

Application Developer’s Guide 269

Response from the IP Media Server:

INFO sip:control@192.168.12.158:5564 SIP/2.0
Via: SIP/2.0/UDP 192.168.12.150:5060
To: sip:control@192.168.12.158:5564;tag=1

From: sip:conf=1234@192.168.12.150:5060;tag=1119359262
Call-ID: 1119359610
User-Agent: SnowShoreMediaServer/1.4.0-050614A
CSeq: 3 INFO
Content-Type: application/mediaservercontrol+xml
Supported: timer
Supported: 100rel
Content-Length: 191

<?xml version="1.0"?>
<MediaServerControl version="1.0">

<response request="configure_team" code="200"
text="OK">
<team id="super" numteam="0">
</team>

</response>
</MediaServerControl>

8 Agent queries who is on the team

INFO sip:192.168.12.150:5060 SIP/2.0
From: sip:control@192.168.12.158:5562;

tag=1
To: sip:conf=1234@192.168.12.150:5060;

tag=1119358479
Call-ID: 1119358826
Cseq: 2 INFO
Via: SIP/2.0/UDP 192.168.12.158:5562
Content-Type: application/mediaservercontrol+xml
Content-Length: 167

<?xml version="1.0"?>
<MediaServerControl version="1.0">
 <request>

<configure_team action="query">
</configure_team>

 </request>
</MediaServerControl>

Response from IP Media Server:

INFO sip:control@192.168.12.158:5562 SIP/2.0
Via: SIP/2.0/UDP 192.168.12.150:5060
To: sip:control@192.168.12.158:5562;tag=1
From: sip:conf=1234@192.168.12.150:5060;

tag=1119358479
Call-ID: 1119358826
User-Agent: SnowShoreMediaServer/1.4.0-050614A
CSeq: 2 INFO
Content-Type: application/mediaservercontrol+xml
Supported: timer
Supported: 100rel

Conferences Sample Code and Call Flows

Application Developer’s Guide 270

Content-Length: 191
<?xml version="1.0"?>
<MediaServerControl version="1.0">

<response request="configure_team" code="200"
text="OK">
<team id="agent" numteam="0">
</team>

</response>
</MediaServerControl>

9 Supervisor is added to the conference: mixmode=full

INFO sip:192.168.12.150:5060 SIP/2.0
From: sip:control@192.168.12.158:5564;tag=1
To: sip:conf=1234@192.168.12.150:5060;

tag=1119359262
Call-ID: 1119359610
Cseq: 4 INFO
Via: SIP/2.0/UDP 192.168.12.158:5564
Content-Type: application/mediaservercontrol+xml
Content-Length: 148

<?xml version="1.0"?>
<MediaServerControl version="1.0">
 <request>
 <configure_leg mixmode="full"/>
 </request>
</MediaServerControl>

Response from IP Media Server:

INFO sip:control@192.168.12.158:5564 SIP/2.0
Via: SIP/2.0/UDP 192.168.12.150:5060
To: sip:control@192.168.12.158:5564;tag=1
From: sip:conf=1234@192.168.12.150:5060;

tag=1119359262
Call-ID: 1119359610
User-Agent: SnowShoreMediaServer/1.4.0-050614A
CSeq: 4 INFO
Content-Type: application/mediaservercontrol+xml
Supported: timer
Supported: 100rel
Content-Length: 137

<?xml version="1.0"?>
<MediaServerControl version="1.0">

<response request="configure_leg" code="200" text="OK" />
</MediaServerControl>

IVR with MSCML Sample Code and Call Flows

Application Developer’s Guide 271

IVR with MSCML Sample Code and Call Flows

Playing a Simple Announcement

Play Payload
<?xml version="1.0"?>
<MediaServerControl version="1.0">
 <request>
 <play id="332985001"

prompt="file:////opt/snowshore/prompts/generic/
10.ulaw"/>

 </request>
</MediaServerControl>

Expected Response
<?xml version="1.0"?>
<MediaServerControl version="1.0">
 <response request="play" id="332985001" code="200"

text="OK" reason="EOF"/>
</MediaServerControl>

Playing a Sequenced Announcement

Play Payload

Example 39. Playing Sequenced Announcement—Payload

<?xml version="1.0"?>
<MediaServerControl version="1.0">
<request>
<playcollect id=21212 maxdigits=5 firstdigittimer=250

interdigittimer=100 extradigittimer=250>
 <prompt baseurl="file:////opt/snowshore/

|prompts/generic/" locale="en_US">
 <audio url="num_changed.wav"/>
 <delay duration="10"/>
 <audio url="new_number.wav"/>
 <variable type="dig" subtype="ndn" value="9725551212"/>
 <audio url="make_note.wav"/>
 </prompt>
</playcollect>
</request>
</MediaServerControl>

Stopping a Play Command

Request 1 Payload

Example 40. Request 1 Payload

<?xml version="1.0"?>

IVR with MSCML Sample Code and Call Flows

Application Developer’s Guide 272

<MediaServerControl version="1.0">
 <request>
 <play id="332985011" prompt="file:////opt/snowshore/

prompts/generic/
10.ulaw"/>

 </request>
</MediaServerControl>

Request 2 Payload
<?xml version="1.0"?>
<MediaServerControl version="1.0">
 <request>
 <stop id="332985012" />
 </request>
</MediaServerControl>

Expected Response to Request 1 Payload
<?xml version="1.0"?>
<MediaServerControl version="1.0">
 <response request="play" id="332985011" code="200"

playduration=”10000” text="OK" reason="stopped"/>
</MediaServerControl>

Expected Response to Request 2 Payload
<?xml version="1.0"?>
<MediaServerControl version="1.0">
 <response request="stop" id="332985012" code="200"

text="OK"/>
</MediaServerControl>

IVR with MSCML Sample Code and Call Flows

Application Developer’s Guide 273

PlayCollect

Payload
<?xml version="1.0"?>
<MediaServerControl version="1.0">
 <request>
 <playcollect id="332986004"

prompt="file:////opt/snowshore/prompts/generic/
10.ulaw" maxdigits="1" barge="yes"/>

 </request>
</MediaServerControl>

Expected Response

The play is barged into on the digit press. The operation matches the digit 2 and
the INFO response indicates the match.

<?xml version="1.0"?>
<MediaServerControl version="1.0">

 <response request="playcollect" id="332986004"
code="200" text="OK" reason="match" playduration=”10000”
digits="2"/>

</MediaServerControl>

Playing a Recording

Payload
<?xml version="1.0"?>
<MediaServerControl version="1.0">
 <request>
 <playrecord id="332987015"

prompt="file:////opt/snowshore/prompts/generic/en_US/10.u
law" recurl="file:////var/snowshore/rec/temp01.ulaw"
recencoding="ulaw"/>

 </request>
</MediaServerControl>

Expected Response
<?xml version="1.0"?>
<MediaServerControl version="1.0">
 <response request="playrecord" id="332987015" code="200"

text="OK" reason="end_silence" reclength="1234"
playduration=”10000” digits=""/>

</MediaServerControl>

Stopping a Recording

Request 1 Payload
<?xml version="1.0"?>
<MediaServerControl version="1.0">
 <request>

IVR with MSCML Sample Code and Call Flows

Application Developer’s Guide 274

 <playrecord id="332987022"
prompt="file:////opt/snowshore/prompts/generic/
10.ulaw" initsilence="30000"
recurl=file:////tmp/7001.ulaw"/>

 </request>
</MediaServerControl>

Request 2 Payload
<?xml version="1.0"?>
<MediaServerControl version="1.0">
 <request>
 <stop />
 </request>
</MediaServerControl>

Expected Response Request 1 Payload
<?xml version="1.0"?>
<MediaServerControl version="1.0">
 <response request="playrecord" id="332987022" code="200"

text="OK" reason="stopped" reclength="0"
playduration=”10000” digits=""/>

</MediaServerControl>

Expected Response Request 2 Payload
<?xml version="1.0"?>
<MediaServerControl version="1.0">
 <response request="stop" code="200" text="OK"/>
</MediaServerControl>

IVR with MSCML Sample Code and Call Flows

Application Developer’s Guide 275

Asynchronous DTMF

Subscribing to Standard Digit Events
<?xml version="1.0"?>

<MediaServerControl version="1.0">
 <request>
 <configure_leg>
 <subscribe>
 <events>

 <keypress report="standard"/>
 </events>
 </subscribe>
 </configure_leg>
 </request>
</MediaServerControl>

Subscribing to Long Digit Events
<?xml version="1.0"?>

<MediaServerControl version="1.0">
 <request>
 <configure_leg>
 <subscribe>
 <events>

 <keypress report="long"/>
 </events>
 </subscribe>
 </configure_leg>
 </request>
</MediaServerControl>

Subscribing to Both Standard and Long Digit Events
<?xml version="1.0"?>

<MediaServerControl version="1.0">
 <request>
 <configure_leg>
 <subscribe>
 <events>
 <keypress report="both"/>
 </events>
 </subscribe>
 </configure_leg>

 </request>
</MediaServerControl>

IVR with MSCML Sample Code and Call Flows

Application Developer’s Guide 276

Turning Off Digit Event Reporting
<?xml version="1.0"?>

<MediaServerControl version="1.0">
 <request>
 <configure_leg>
 <subscribe>
 <events>

 <keypress report="none"/>
 </events>
 </subscribe>
 </configure_leg>
 </request>
</MediaServerControl>

Example Responses

The following shows the response generated by detection of a standard "4"
DTMF digit.

Note: This is the first digit detected so the interdigittime attribute has a value
of 0.

<?xml version="1.0"?>
<MediaServerControl version="1.0">
 <notification>
 <keypress digit="4" length="standard"
method="standard"
 interdigittime="0">
 <status command="play" duration="10"/>
 </keypress>
 </notification>
</MediaServerControl>

The following shows the response generated by detection of a long pound (#).
<?xml version="1.0"?>

<MediaServerControl version="1.0">
 <notification>
 <keypress digit="#" length="long" method="long"
 interdigittime="200">
 <status command="idle" duration="4"/>
 </keypress>
 </notification>
</MediaServerControl>

Example 41 shows the responses that are generated by the detection of two
standard pound (#) events which also meet the double sequence criteria for
long digits. In this scenario, three responses are generated; two for each of the
standard pound events and one indicating that these responses comprise a long
digit.

Multiple responses are generated because the subscription contained <keypress
report="both"/>, as shown in Example 41.

IVR with MSCML Sample Code and Call Flows

Application Developer’s Guide 277

Example 41. Asynchronous DTMF Response

1. <?xml version="1.0"?>
<MediaServerControl version="1.0">

 <notification>
 <keypress digit="#" length="standard"

method="standard" interdigittime="0">
 <status command="idle" duration="5"/>
 </keypress>
 </notification>

</MediaServerControl>

2. <?xml version="1.0"?>
<MediaServerControl version="1.0">

 <notification>
 <keypress digit="#" length="standard"
method="standard"
 interdigittime="1000">
 <status command="idle" duration="6"/>
</keypress>
 </notification>
</MediaServerControl>

3. <?xml version="1.0"?>

<MediaServerControl version="1.0">
 <notification>
 <keypress digit="#" length="long" method="double"
 interdigittime="1000">

<status command="idle" duration="6"/>
 </keypress>
 </notification>
</MediaServerControl>

If asynchronous DTMF is used in a conferencing scenario, make sure to maintain
the subscription across multiple <configure_leg/> requests.

IVR with MSCML Sample Code and Call Flows

Application Developer’s Guide 278

Call Flow for IVR with MSCML

Figure 14. Call Flow: IVR with MSCML

IVR with MSCML Sample Code and Call Flows

Application Developer’s Guide 279

Call Flow for PIN Collection, IVR with MCSCML

Figure 15. Call Flow: PIN Collection, IVR with MSCML

Explanation of Call Flow

The numbers in the following table correspond to those on the call flow diagram
in Figure 15.

[1] SIP INVITE from caller to application server
Method: SIP INVITE
Body: Caller's SDP

[2] SIP INVITE from application server to IP Media Server
Method: SIP INVITE
Body: Caller's SDP

[3] Response to SIP INVITE [2]
Method: SIP INVITE
Body: IP Media Server's SDP

[4] Response to SIP INVITE [1]
Method: SIP INVITE

Body: IP Media Server's SDP

[5] Acknowledgement of final response to INVITE [1]
Method: SIP ACK
Body: None

[6] Acknowledgement of final response to INVITE [2]
Method: SIP ACK
Body: None

[7] Bi-directional SDP established between caller and IP Media
Server

IVR with MSCML Sample Code and Call Flows

Application Developer’s Guide 280

[8] Application server directs IP Media Server to play a prompt
and collect returned digits
Method: SIP INFO
Body:

<?xml version="1.0"?>

<MediaServerControl version="1.0">

<request>

<playcollect prompt="file:////opt/snowshore/prompts/conf/enterpin.wav"
maxdigits="4" cleardigits="yes" returnkey="#" escapekey="*">

</playcollect>

 </request>

</MediaServerControl
[9] Response from IP Media Server to <playcollect> request

Method: SIP INFO
Body: Empty

[10] Return collected DTMF digits
Method: SIP INFO
Body:

<?xml version="1.0"?>
<MediaServerControl version="1.0">
<response request="playcollect" code="200" text="OK"
reason="match" digits="1234" playduration=”5230”/>
</MediaServerControl>

[11] Response from application server to INFO response
Method: SIP INFO
Body: Empty

IVR with MSCML Sample Code and Call Flows

Application Developer’s Guide 281

Call Flow for Recording a Message, IVR with MSCML

Figure 16. Call Flow: Recording, IVR with MSCML

Caller

[7] RTP

[2] INVITE (SDP Caller)

[3] 200 OK (SDP MS)

[6] ACK

Request recording
preceded by a
prompt

[8] INFO(<playrecord>)

9] 2 0 O[0 K

[11] INFO (<response>)

[12] 200OK

Recording completed

[1] INVITE (SDP Caller)

[4] 200 OK (SDP MS)

[5] ACK

NFS

Storage

Play beep to indicate
start of recording

[10] NFS to specified URL

Application

Server

Dialogic®

IP Media

Server

IVR with MSCML Sample Code and Call Flows

Application Developer’s Guide 282

Explanation of Call Flow

The numbers in the following table correspond to those on the call flow diagram
in Figure 16.

[1] SIP INVITE from caller to application server
Method: SIP INVITE
Body: Caller's SDP

[2] SIP INVITE from application server to IP Media Server
Method: SIP INVITE
Body: Caller's SDP

[3] Response to SIP INVITE [2]
Method: SIP INVITE
Body: IP Media Server's SDP

[4] Response to SIP INVITE [1]
Method: SIP INVITE
Body: IP Media Server's SDP

[5] Acknowledgement of final response to INVITE [1]
Method: SIP ACK
Body: None

[6] Acknowledgement of final response to INVITE [2]
Method: SIP ACK
Body: None

[7] Bi-directional SDP established between caller and IP Media
Server

[8] Application server directs IP Media Server to play a prompt
and then record the caller's message.
Method: SIP INFO
Body:

<?xml version="1.0"?>
<MediaServerControl version="1.0">
request>
<playrecord prompt="file:////opt/snowshore/prompts/conf/
recmessage.wav" escapekey="*"
recurl="file:////storage/msg123.ulaw" initsilence="1000"
endsilence="4000" beep="yes" recstopmask="01234356789*#"/>
</request>
</MediaServerControl>

[9] Response from IP Media Server to <playrecord> request
Method: SIP INFO
Body: Empty
Response from IP Media Server to <playrecord> request

[10] Recording is written to the external storage location specified
in the url parameter of the <record> request.

IVR with MSCML Sample Code and Call Flows

Application Developer’s Guide 283

Call Flow for MSCML MRCP Session Management

This section provides a sample call flow of the following MRCP session creation
scenario.

Scenario
After creating a SIP dialog with the media server, the application establishes
an MRCP session with a speech recognition resource and starts a recognition
session via MSCML requests to the IP Media Server.

The application then requests the media server to begin playing a prompt
which is barged by speech input from the user. The MRCP server sends the
results of the speech recognition to the application.

When finished, the application terminates the MRCP session and media
server session.

The following sequence of interactions assumes that the initial dialog between
the application server and media server is already established.

Call Flow
1 Create MRCP Session

The application sends an MSCML request to create an MRCP session on an
existing dialog using a SIP INFO message. The MSCML request must specify the
type of resource needed and must include the URL of the MRCP server to
contact. The request may optionally include an MSCML request ID for the
purpose of matching the request with its response.

The following is an example of the MSCML payload:

<?xml version="1.0" encoding="UTF-8"?>
<MediaServerControl version="1.0">

<mrcp_session_create id="1234"
resource="speechrecog"
url="sip:speechresources@server.example.com"
proto=TCP/MRCPv2”
rtpdirection=”sendonly”/>

</MediaServerControl>

[11] Response from IP Media Server to application server when
recording is complete
Method: SIP INFO
Body:

<MediaServerControl version="1.0">
<response request="playrecord" code="200" text="OK"
reason="endsilence" digits="" playduration=”4738”
reclength=”24000”/>
</MediaServerControl>

[12] Response from application server to INFO response
Method: SIP INFO
Body: Empty

IVR with MSCML Sample Code and Call Flows

Application Developer’s Guide 284

a. As a result, the media server generates a SIP INVITE to the target
address as shown below.

INVITE sip:speechresources@server.example.com SIP/2.0
Via:SIP/2.0/TCP ssmediaserver.example.com:5060;
branch=z9hG4bK74bf9
Max-Forwards:6
To:sip:speechresources@server.example.com
From:SnowShoreMediaServer
<sip:ssms@example.com>;tag=1928301774

Call-ID:a84b4c76e66710
CSeq:314161 INVITE
Contact:<sip:ssms@example.com>
Content-Type:application/sdp
Content-Length: 230

v=0
o=SnowShoreMediaServer 2890844526 2890842808
IN IP4 126.16.64.4
s=-
c=IN IP4 224.2.17.12
m=application 9 TCP/MRCPv2
a=setup:active
a=connection:new
a=resource:speechrecog
a=cmid:1
m=audio 49170 RTP/AVP 0 101
a=rtpmap:0 pcmu/8000
a=sendonly
a=mid:1

b. The speech server generates a response.

SIP/2.0 200 OK
Via:SIP/2.0/TCP ssmediaserver.example.com:5060;
branch=z9hG4bK74bf9

To:sip:speechresources@server.example.com;tag=a6c85cf
From:SnowShoreMediaServer

<sip:ssms@example.com>;tag=1928301774
Call-ID:a84b4c76e66710
CSeq:314161 INVITE
Contact:<sip:ssms@example.com>
Content-Type:application/sdp
Content-Length: 249

v=0
o=speechresources 2890844526 2890842808 IN IP4 126.16.64.4
s=-
c=IN IP4 224.2.17.12
m=application 32416 TCP/MRCPv2
a=setup:passive
a=connection:new
a=channel:32AECB234338@speechrecog
a=cmid:1
m=audio 48260 RTP/AVP 00 101
a=rtpmap:0 pcmu/8000

IVR with MSCML Sample Code and Call Flows

Application Developer’s Guide 285

a=recvonly
a=mid:1

c. The media server acknowledges the response.

ACK sip:mresources@server.example.com SIP/2.0
Via:SIP/2.0/TCP ssmediaserver.example.com:5060;
branch=z9hG4bK74bf9
Max-Forwards:6
To:sip:speechresources@server.example.com;tag=a6c85cf

From:SnowShoreMediaServer
<sip:ssms@example.com>;tag=1928301774
Call-ID:a84b4c76e66710
CSeq:314162 ACK
Content-Length:0

2 The media server sends an MSCML response to the <mrcp_session_create>
request, as depicted in the following example.

<?xml version="1.0" encoding="UTF-8"?>
<MediaServerControl version="1.0">

<response id="1234" request="mrcp_session_create"
code="200" text="OK" connect="224.2.17.2"
port="32416" channel="32AECB234338@speechrecog"/>

</MediaServerControl>

Note: The IP Media Server's response must contain the connection and port
information for the control channel and the channel identifier returned from
the MRCP server. These are required to establish the control channel and
identify all future requests for the associated resource.

3 The application initiates the start speech recognition by making an MRCP
RECOGNIZE request on the control channel with the correct channel id and
grammar to match. Following is an example request:

MRCP/2.0 487 RECOGNIZE 32416
Channel-Identifier:32AECB23433801@speechrecog
Confidence-Threshold:0.9
Content-Type:application/srgs+xml
Content-Id:<request1@form-level.store>
Content-Length:104

<?xml version="1.0"?>

<!-- the default grammar language is US English -->
<grammar xmlns="http://www.w3.org/2001/06/grammar"

xml:lang="en-US" version="1.0" root="request">

<!-- single language attachment to tokens -->
<rule id="yes">

IVR with MSCML Sample Code and Call Flows

Application Developer’s Guide 286

<one-of>
<item xml:lang="fr-CA">oui</item>
<item xml:lang="en-US">yes</item>

</one-of>
</rule>

<!-- single language attachment to a rule expansion -->
<rule id="request">may I speak to

<one-of xml:lang="fr-CA">
<item>Alex Michaels</item>
<item>Bill Fuller</item>

</one-of>
</rule>

</grammar

4 The MRCP server responds that recognition is in progress.

MRCP/2.0 48 32614 200 IN-PROGRESS
Channel-Identifier:32AECB23433801@speechrecog

5 The application requests the media server to play a sequence of prompts by
sending a request like the following.

<MediaServerControl version="1.0">
 <request>
 <play id="33298">

<prompt stoponerror="yes"
 baseurl="file:////var/mediaserver/prompts/"
 <audio url="prompt1.wav"/>
 <audio url="prompt2.wav"/>
 <audio url="prompt3.wav"/>

</prompt>
 </play>
 </request>
</MediaServerControl>

6 The MRCP server sends a response when speech input has started.

MRCP/2.0 49 START-OF-INPUT 32614 IN-PROGRESS
Channel-Identifier:32AECB23433801@speechrecog

7 The application tells the media server to terminate prompt play to
implement barge-in based on speech input. The MSCML request would look
like:

<?xml version="1.0" encoding="UTF-8"?>
<MediaServerControl version="1.0">

<request>
<stop id="5678"/>

</request>
</MediaServerControl>

8 The IP Media Server sends a response to the <stop> request.

<?xml version="1.0" encoding="UTF-8"?>
 <MediaServerControl version="1.0">

IVR with MSCML Sample Code and Call Flows

Application Developer’s Guide 287

 <response id="5678" request="stop" code="200"
text="OK"/>

 </MediaServerControl>

9 The IP Media Server sends a response for the stopped <play> request
similar to the following:

<?xml version="1.0" encoding="UTF-8"?>
<MediaServerControl version="1.0">
 <response id="33298" request="play" code="200"

text="OK" reason="stopped" playduration="12620">
 </response>
</MediaServerControl>

10 The MRCP server sends a response when recognition has completed with the
results of the recognition. The response would look like the following:

MRCP/2.0 465 RECOGNITION-COMPLETE 32614 COMPLETE
 Channel-Identifier:32AECB23433801@speechrecog
 Completion-Cause:000 success
 Waveform-

URI:<http://web.media.com/session123/audio.wav>;
size=342456;duration=25435

 Content-Type:application/nlsml+xml
 Content-Length:276

<?xml version="1.0"?>
<result grammar="session:request1@form-level.store">

<interpretation>
<instance name="Person">

<Person>
<Name> Alex Michaels</Name>

</Person>
</instance>
<input> may I speak to Alex Michaels</input>

</interpretation>
</result

11 The application issues an MRCP GET-RESULT request to recompute and
retrieve the results. Following is an example request.

MRCP/2.0 73 GET-RESULT 32614
Channel-Identifier:32AECB23433801@speechrecog
Confidence-Threshold:0.9

12 The MRCP server responds to the GET-RESULT request with a message
similar to the one below.

MRCP/2.0 487 32614 200 COMPLETE
Channel-Identifier:32AECB23433801@speechrecog
Content-Type:application/nlsml+xml
Content-Length:276

<?xml version="1.0"?>
<result grammar="session:request1@form-level.store">

<interpretation>
<instance name="Person">

IVR with MSCML Sample Code and Call Flows

Application Developer’s Guide 288

<Person>
<Name> Alex Michaels </Name>

</Person>
</instance>
<input> may I speak to Alex Michaels </input>

</interpretation>
</result

13 The application sends a BYE to the media server which causes the media
server to also issue a BYE to the MRCP server. The result is that resources
on both servers are freed.

VoiceXML Sample Code and Call Flows

Application Developer’s Guide 289

VoiceXML Sample Code and Call Flows

Playing an Announcement

The sample code below is for a simple announcement, such as "The number you
have reached…". This could be a dynamically generated script, which would fill
in the values for the variables "was" and "is".

Example 42. Playing an Announcement, VoiceXML

<?xml version="1.0" ?>
<vxml version="1.0" application="default.xml">
<form id="changed">
<block>
<var name="was" expr="9785551212"/>
<var name="is" expr="9785554141"/>
<prompt>

<audio src="audio/numreached.ulaw"/>
<value class="phone" mode="recorded" expr="was"/>
<break/>
<audio src="audio/beenchanged.ulaw"/>
<audio src="audio/newnumberis.ulaw"/>

<value class="phone" mode="recorded" expr="is"/>

<audio src="audio/pleasenote.ulaw"/>
</prompt>
</block>
</form>
</vxml>

PIN Collection

This script collects a PIN number, and submits it to a web server for verification.

Example 43. PIN Collection

<?xml version="1.0" ?>

<vxml version="1.0" application="default.xml">

<form id="get_pin">

<field name="pin" type="digits?length=4">
<prompt count="1">

<audio src="audio/enterpin.ulaw"> Please enter your PIN
number.</audio>
</prompt>
<prompt count="2">

<audio src="audio/pin.ulaw"> PIN? </audio>

</prompt>

VoiceXML Sample Code and Call Flows

Application Developer’s Guide 290

<noinput count="1"> <reprompt/> </noinput>
<noinput count="2"> <exit/> </noinput>

</field>

</field>
</form>
</vxml>
<field name="confirm" type="boolean">

<prompt>
<audio src="audio/yourpinis.ulaw">

Your pin is </audio>
<value expr="pin"/>
<audio src="audio/correct.ulaw">

If this correct press 1. Otherwise, press 2
</audio>

</prompt>
<nomatch count="1"> <reprompt/> </nomatch>

<nomatch count="3"> <exit/> </nomatch>
<noinput count="1"> <reprompt/> </noinput>
<noinput count="3"> <exit/> </noinput>
<filled>

<if cond="confirm">
<submit namelist="pin" next="pin.cgi"/>

<else/>
<clear namelist="pin confirm"/>

</if>
</filled>

VoiceXML Sample Code and Call Flows

Application Developer’s Guide 291

Call Flow for VoiceXML

The following illustrates a call flow diagram for VoiceXML.

Figure 17. Call Flow: VoiceXML

VoiceXML Sample Code and Call Flows

Application Developer’s Guide 292

Transferring a Call

This script depicts a bridged transfer, which returns the caller to the original
session with the interpreter when completed. One MSCML session (in addition
to a VoiceXML resource) is required for each simultaneous transfer session.
MSCML and VXML session configuration is performed at the CLI logical-vhost
level.

Example 44. Transferring a Call, VoiceXML

<?xml version="1.0"?>

<!-- 10.10.10.111 is the SnowShore MPS -->
<!-- 12345679@10.10.10.253 is a valid SIP destination -->
<!-- This script would first play “star”, followed by “One” -->
<!-- Then attempts to do the transfer. If the transfer is -->
<!-- success, when the call is ended, you’ll hear the reason-->
<!-- number (see below in the script) followed by the number-->
<!-- seconds the call is connected betweeen the caller and -->
<!-- the callee. -->
<vxml version=”1.0”>
<form name=”genericTransfer”>
<block>
<audio src=”http://10.10.10.111/snowshore/prompts/gmvoices/star.neu” />
 </block>

<transfer name=”makethecall” dest=”sip:12345679@10.10.10.253” connecttimeout=”30s”
bridge=”true”>

 <prompt>
 <audio src=”http://10.10.10.111/snowshore/prompts/gmvoices/1.ris” />
 </prompt>
 <filled>
 <if cond=”makethecall == ‘busy’”>
 <prompt>

<audiosrc=”http://10.10.10.111/snowshore/prompts/gmvoices/2.ris” />
 </prompt>
 <elseif cond=”makethecall == ‘noanswer’”/>
 <prompt>

<audio src=”http://10.10.10.111/snowshore/prompts/gmvoices/3.ris” />
 </prompt>
 <elseif cond=”makethecall == ‘near_end_disconnect’”/>
 <prompt>
 <audio src=”http://10.10.10.111/snowshore/prompts/gmvoices/4.ris” />
 </prompt>
 <elseif cond=”makethecall == ‘far_end_disconnect’”/>
 <prompt>

<audio src=”http://10.10.10.111/snowshore/prompts/gmvoices/5.ris” />
 </prompt>
 <elseif cond=”makethecall == ‘network_disconnect’”/>
<prompt>
 <audio src=”http://10.10.10.111/snowshore/prompts/gmvoices/6.ris” />

VoiceXML Sample Code and Call Flows

Application Developer’s Guide 293

 </prompt>

<elseif cond=”makethecall == ‘network_busy’”/>
 <prompt>
<audio src=”http://10.10.10.111/snowshore/prompts/gmvoices/7.ris” />
 </prompt>
 <elseif />
 <prompt>
 <value class=”number” expr=”makethecall$.duration” />
 <audio src=”http://10.10.10.111/snowshore/prompts/gmvoices/seconds.neu” />
 </prompt>
 </if>
 </filled>
 </transfer>
 <block>
 <audio src=”http://10.10.10.111/snowshore/prompts/gmvoices/star.neu” />
</block>
</form>
</vxml>

VoiceXML Sample Code and Call Flows

Application Developer’s Guide 294

T.30 Fax Detection

The T.30 fax detection feature enables the IP Media Server to detect T.30 fax
CNG tones embedded in a G.711 RTP audio stream, and to notify a VXML
application script via a VXML event. The VXML script then transfers the media
stream to a target fax machine for further processing.

The transfer is hairpinned, and does not go through the IP Media Server
conference mixer, which in turn keeps the audio (fax) signals cleaner and does
not introduce unnecessary delay.

Note: The T.30 fax detection feature is implemented only in the VoiceXML
browser.

Fax Call Transfer Call Flow

Figure 18 outlines the call flow between the initiating (sending) Fax machine
and the terminating (receiving) Fax machine. Each step is explained following
the figure.

Figure 18. T.30 Fax Call Transfer

VoiceXML Sample Code and Call Flows

Application Developer’s Guide 295

The following table contains a detailed description of the call flow for the T.30
Fax Call Transfer scenario.

Time Description

1 The Sending Fax machine initiates an analog call (dialed number is
3010) to the Analog-to-IP Adapter.

2 The SIP proxy server has been configured to respond to the INVITE
3010 by issuing a SIP INVITE request to the IP Media Server. Note
that the INVITE request specifies using the dialog service.

3 A connection is established between the Sending Fax machine and
the IP Media Server. The IP Media Server begins executing the
default VXML script, which has requested the CNG tone detection.
The Sending Fax machine is generating the CNG tone.

4 The CNG tone is detected by the IP Media Server and a notification
event (CNG) is sent to the VXML script. In response to this event,
the VXML script performs a Fax call <transfer> specifying
bridge=”forward”)

This step results in an INVITE 98944545@192.168.16.18 sent to the
IP Gateway. The IP Gateway calls the Receiving Fax (via the PBX) at
the number 9-894-4545. When the call is established, the VXML
script instructs the IP Media Server to hairpin together the Receiving
Fax and the Sending Fax RTP streams.

5 The Sending Fax machine and the Receiving Fax server are
connected together via hairpinning RTP streams. The two Fax
machines continue to perform the fax data transfer.

6 The Sending Fax completes sending the Fax to the Receiving Fax and
hangs up. The Analog-to-IP Adapter issues a SIP BYE request to the
SIP Proxy which results in the SIP Proxy sending a BYE request to
the IP Media Server.

7 The VXML script terminates when the Sending Fax RTP stream closes
which closes the Receiving Fax stream.

VoiceXML Sample Code and Call Flows

Application Developer’s Guide 296

CNG Tone Detection and Event Notification

The VXML interpreter supports the ability to enable and disable CNG tone
detection, and to handle event notification (CNG-tone-detected events). The
VXML application (or VXML script) employs this capability to handle incoming
Fax calls.

VoiceXML Implementation

The com.snowshore.signal property enables detection of various signals on
the IP Media Server platform when the property is in scope in the VoiceXML
interpreter.

Note: The property has a value string that allows the scriptwriter to specify
which signal or signals that should be detected. The only signal type
implemented at this time is Fax CNG tone. For example,
<property name="com.snowshore.signal" value="CNG"/>
enables detection of CNG tone. Multiple signals could be enabled by placing
them all in the value attribute, separated by commas.

When the CNG tone signal is detected by the IP Media Server platform, the
VoiceXML interpreter throws the com.snowshore.signal event. The VXML
script should handle this event and then disable signal detection. The
"_message" variable is set to the type of signal, and can be detected as shown
in the following example:

<catch event="com.snowshore.signal">
<if cond="_message == 'CNG'">

<!—Perform Fax Call Transfer when CNG tone is detected -->
</if>

Note that <catch event=> does not block; events are handled in an
asynchronous manner, which permits other operations to take place.

In order to disable CNG tone detection, the application must clear the
com.snowshore.signal property in the correct scope. For example:

<property name="com.snowshore.signal" value="OFF"/>

The following list describes the interaction of CNG tone detection with other
VXML input collection modes:

If there is a DTMF recognition session, it is terminated and any digits
collected up to that point are dropped.

If a prompt that allows barge-in is being played, it is stopped.

The following list describes the VXML interpreter’s actions when it is not in an
input collection mode:

If the prompt does not allow barge-in, the VXML interpreter processes the
event after the prompt completes.

If the VXML interpreter is in a transition state that does not require the
collection of input, the event is left queued until the VXML interpreter enters
the input state.

VoiceXML Sample Code and Call Flows

Application Developer’s Guide 297

VoiceXML Properties

com.snowshore.signal

Enables detection of various signals on the IP Media Server platform when the
property is in scope in the VoiceXML interpreter.

Note: The property has a value string that allows the scriptwriter to specify
which signal or signals that should be detected. The only signal type
implemented at this time is Fax CNG tone. For example,
<property name="com.snowshore.signal" value="CNG"/>
enables detection of CNG tone. Multiple signals could be enabled by placing
them all in the "value" attribute, separated by commas.

When the CNG tone signal is detected by the IP Media Server platform, the
VoiceXML interpreter throws the com.snowshore.signal event. The VXML
script should handle this event and then disable signal detection. The
"_message" variable is set to the type of signal, and can be detected as shown
in the following example:

<catch event="com.snowshore.signal">
<if cond="_message == 'CNG'">

<!—Perform Fax Call Transfer when CNG tone is detected -->
</if>

Note that <catch event=> does not block; events are handled in an
asynchronous manner, which permits other operations to take place.

Fax Detection—Example Script

The following example illustrates the syntax to enable CNG tone detection and
to catch the tone-detected event.

Welcome.vxml:

<?xml version="2.0" encoding="UTF-8"?>

<vxml version="2.0">

<property name="universals" value="help"/>
<property name="timeout" value="3000"/>
<property name="com.snowshore.signal" value="CNG"/>

<form id="f1">

 <field name="F_1">
 <dtmf> [1-3]
 </dtmf>
 <prompt bargein="false">
 <audio

src="http://localhost/snowshore/prompts/gmvoices/en_US/su
san/msg040"/>

 </prompt>

 <help count="1" cond="dtmf">
 <prompt> since the condition is set to false, this

handler will be skipped

VoiceXML Sample Code and Call Flows

Application Developer’s Guide 298

 <audio
src="http://localhost/snowshore/prompts/gmvoices/en_US/su
san/msg060"/>

 </prompt>
 </help>

 <noinput count="1" cond="true">
 <prompt> this is the first occurrence of the help event.

say help again.</prompt>
 </noinput>

 <noinput count="2" cond="true">
 <prompt> this is the second occurrence of the help event.

Do something!!!.</prompt>
 </noinput>

 <noinput count="3" cond="true">
 <prompt> this is the third occurrence of the help event.

goodbye.</prompt>
 <disconnect/>
 </noinput>

 <catch event="com.snowshore.signal">
 <prompt> GOT THE com.snowshore.signal event.</prompt>
 <if cond="_message=='CNG'">
 <prompt> Found CNG message. GOTO fax transfer

support</prompt>
 <goto next='transfer_call.xml'/>
 </if>
 <disconnect/>
 <prompt> goodbye.</prompt>
 </catch>

 </field>

 <filled>
 <prompt>why did you fill the field?</prompt>
 </filled>

</form>

VoiceXML Sample Code and Call Flows

Application Developer’s Guide 299

T.38 Fax Detection, Termination, and Initiation

The fax termination server is incorporated into the IP Media Server using the
Dialogic® Brooktrout® T.38 host fax termination software. Refer to the IP
Media Server Installation and Operations Guide for instructions on configuring
the fax software.

Detection and Termination

This feature enables the IP Media Server to detect CNG fax tones embedded in
a G.711 RTP audio stream, and notify a VXML application script via a VXML
event. The IP Media Server then initiates a SIP Re-INVITE method to the
endpoint requesting a switch from the current voice coder mode to T.38 fax
relay mode. Upon the completion of the SIP Re-INVITE method, the IP Media
Server will record the fax transmission to a TIFF file stored locally on the IP
Media Server and optionally convert the file to PDF format.

Initiation (Email to Fax)

This feature enables the IP Media Server to initiate a T.38 Fax Transmission of
a file received as an attachment in an SMTP request.

Users can send an email to the IP Media Server in the following format:

user@phonenumber.fax

Once the IP Media Server receives the email, it parses the email into
components. The IP Media Server can parse the following formats and convert
them to TIFF format:

JPG

GIF

TIFF

PDF

Text

Once the IP Media Server converts the email to TIFF format, it saves it with a
unique filename in the /tmp directory.

The IP Media Server notifies the T.38 application about the new fax file to
transmit. The T.38 application accepts the destination phone number and the
filename as input. The T.38 API transmits the fax and returns a status once the
transmission is complete.

snowshore.cfg Parameters

You must configure the following parameters in the snowshore.cfg file to enable
this feature.

Table 54. T.38 Fax Parameters

Parameter Description
Default

in
decimal

Range

SR140APP_PORT First port for the T.38 fax
server

9000 9000-40000

VoiceXML Sample Code and Call Flows

Application Developer’s Guide 300

Fax Call Termination Call Flow

Figure 18 outlines the call flow between the initiating (sending) fax server and
the terminating (receiving) fax server. Each step is explained following the
figure.

Figure 19. T.38 Fax Call Transfer

SR140APP_PROXY_PORT Host name for proxy fax
SIP Server

5060

SR140APP_PROXY_IP Required field for sending
fax

No default

Parameter Description
Default

in
decimal

Range

VoiceXML Sample Code and Call Flows

Application Developer’s Guide 301

The following is a detailed description of the call flow for the T.38 Fax Call
Transfer scenario.

CNG Tone Detection and Event Notification

The VXML interpreter supports the ability to enable and disable CNG tone
detection, and to handle event notification (CNG-tone-detected events). The
VXML application (or VXML script) employs this capability to handle incoming
Fax calls.

The Media Server application enables and disables the CNG tone detection
through the Media Server Protocol (MSP) command's Call Progress Analysis
parameters. In addition, the Media Server application provides event
notification back to the VXML browser / application.

VoiceXML Implementation

The com.snowshore.signal property enables detection of various signals on
the IP Media Server platform when the property is in scope in the VoiceXML
interpreter.

Note: The property has a value string that allows the scriptwriter to specify
which signal or signals that should be detected. The only signal type
implemented in this release is Fax CNG tone. For example:
<property name="com.snowshore.signal" value="CNG"/>
This example enables detection of CNG tone. Multiple signals could be enabled
by placing them all in the "value" attribute, separated by commas.

Time Description

1 The Sending Fax server initiates an analog call (dialed number is
3010) to the Analog-to-IP Adapter.

2 The Analog-to IP Adapter accepts the analog call and issues a SIP
INVITE request to the SIP Server it is configured to use (for example,
the SIP Proxy Server @192.168.12.203).

3 The SIP Proxy Server is configured to respond to the INVITE 3010
by issuing a SIP INVITE request to the IP Media Server. The INVITE
request specifies the use of the dialog service.

4 A connection is established between the Sending Fax server and the
IP Media Server. The Media Server begins execution of the default
VXML script which has requested CNG tone detection. The Sending
Fax server generates a CNG tone.

5 The CNG tone is detected by the Media Server application and a
notification event (CNG detected) is sent to the VXML script. In
response to the event, the VXML script performs a fax record
<record> (specifying dest_enc="tiff"). This results in a RE-INVITE
request sent to 192.168.12.203 with the new RTP port for the fax
data.

6 The Sending Fax server starts sending fax data to the T.38 Host
Server RTP port to be terminated.

The two fax systems continue to perform the fax data transfer.

7 The VXML script sends the fax tiff file to a file server.

VoiceXML Sample Code and Call Flows

Application Developer’s Guide 302

When the CNG tone signal is detected by the IP Media Server platform, the
VoiceXML interpreter throws the com.snowshore.signal event. The VXML
script should handle this event and then disable signal detection. The
"_message" variable is set to the type of signal, and can be detected as shown
in the following VoiceXML 2.0 example:

<catch event="com.snowshore.signal">
<if cond="_message == 'cng'">

<!—Perform Fax Call Transfer when CNG tone is detected -->
</if>

For VoiceXML 1.0 syntax, replace 'cng' with 'CNG'in the "_message" variable
in the above example.

Note that <catch event=> does not block; events are handled in an
asynchronous manner, which permits other operations to take place.

In order to disable CNG tone detection, the application must clear the
com.snowshore.signal property in the correct scope. For example:

<property name="com.snowshore.signal" value="OFF"/>

The following list describes the interaction of CNG tone detection with other
VXML input collection modes:

If there is a DTMF recognition session, it is terminated and any digits
collected up to that point are dropped.

If a prompt that allows barge-in is being played, it is stopped.

The following list describes the VXML interpreter’s actions when it is not in an
input collection mode:

If the prompt does not allow barge-in, the VXML interpreter processes the
event after the prompt completes.

If the VXML interpreter is in a transition state that does not require the
collection of input, the event is left queued until the VXML interpreter enters
the input state.

Fax Detection—Example VXML Script

The example below shows the VoiceXML 2.0 syntax to enable CNG tone
detection and catch the event.

For VoiceXML 1.0 syntax, replace 'cng' with 'CNG'in the “_message” variable:
<if cond="_message == 'CNG'">.

<form id="f1">
 <field name="field1">
 <property name="com.snowshore.signal" value="CNG"/>
 <noinput>
 <!-- sets the value of this field, so that the FIA doesn't

select this again -->
 <assign name="field1" expr="true"/>
 </noinput>
 <catch event="com.snowshore.signal">
 <if cond="_message == 'cng'">
 <!-- perform fax call transfer when CNG is detected -->

 </if>
 </catch>
 <!-- This field waits for the CNG tone -->

VoiceXML Sample Code and Call Flows

Application Developer’s Guide 303

 </field>
 <field name="Voicemail"/>
 <!-- When this field is visited, CNG is not enabled (the

property is not set) -->
 <prompt> Welcome to VoiceMail. To leave a message ...

</prompt>

 </field>
</form>

VXML Fax Record

The VXML script can perform a fax record (using the VXML <record> element
with the mimetype "image/tiff"). The record will initiate the media sever to
redirect the incoming media to the T.38 fax termination server (the fax will be
recorded as a tiff file).

The Fax Record feature is supported by the VoiceXML browser through
enhancements to the <record> element mimetype "image/tiff" and/or
“image/pdf”.

Call Record - Example VXML Script

This section contains a sample VoiceXML 2.0 FAX Call Record script. The script
demonstrates use of FAX Call Record and HTTP post of the file.

<vxml version="2.0">
<var name="recordedMedia"/>

<form id="recordMessage">
 <record name="deposit" beep="true" type="image/tiff" >
 <filled>
 <assign name="recordedMedia" expr="deposit"/>
 <goto next=" #deliverMessage"/>
 </filled>
 </record>
</form>

<form id="deliverMessage">
 <block>
<submit method="post" namelist="recordedMedia"

next="http://localhost/snowshore/htdocs/depositfax.cgi?an
i='session.telephone.ani'"/>

 </block>
</form>

VoiceXML Sample Code and Call Flows

Application Developer’s Guide 304

Using VCR and Gain Controls

The following properties are used for VCR and gain controls in the VoiceXML 2.0
browser:

com.snowshore.vcr_skip: Contains the amount of time to skip ahead or
behind when one of the 'vcr_fwd' or 'vcr_rew' grammars are matched. This
value is a Time Designation type defined in section 6.5 of the VoiceXML 2.0
specification and has a default value of '5s' if the property is not set.

com.snowshore.gain_adj: Contains the amount of gain to adjust the audio
playback when 'gain_up' or 'gain_down' grammars are matched. This value
is in dB and has a default value of '3' if the property is not set.

com.snowshore.vcr_pause: Contains the amount of time to pause a prompt
when the 'vcr_pause' grammar is matched. This value is a Time Designation
type defined in section 6.5 of the VoiceXML 2.0 specification and has a
default value of '3s' if the property is not set.

com.snowshore.vcr_speed_adj: Contains the approximate percentage
change in speed that the IP Media Server will attempt to play back the audio
prompt when one of the 'vcr_faster' or ‘vcr_slower’ grammars are matched.
The actual percentage change in speed depends on the content of the audio
prompt and the system environment; the IP Media Server places emphasis
on the audio quality produced.

For an example script, see “Using VCR and Gain Controls in VoiceXML 2.0” (page
305).

Note: VCR controls for video files are supported through the Real Time
Streaming Protocol (RTSP) only. VCR controls for all other video calls will cause
the video file to be played back from the beginning; only the gain adjustment
has effect and is applied to the audio level at the restart of the play.

Table 55 describes the VCR and gain controls that are supported through the
RTSP in VoiceXML 2.0. For an example script, see “Using VCR Controls for RTSP
in VoiceXML 2.0” (page 306).

The VoiceXML 2.0 browser supports built-in grammars to support VCR and gain
controls:

<grammar mode"dtmf" src="builtin:dtmf/vcr"/>
<grammar mode"dtmf" src="builtin:dtmf/gain"/>

Table 55. VCR and Gain Controls Support for RTSP in VoiceXML 2.0

Property Description RTSP Support

com.snowshore.vcr_skip fast forward and rewind Yes

com.snowshore.gain_adj gain adjustment No

com.snowshore.vcr_pause pause Yes

com.snowshore.speed_adj speed adjustment No

VoiceXML Sample Code and Call Flows

Application Developer’s Guide 305

The following is an example script using VCR and gain control in VoiceXML 2.0.

Example 45. Using VCR and Gain Controls in VoiceXML 2.0

<?xml version="1.0"?>
<vxml version="2.0" xmlns="http://www.w3.org/2001/vxml">

<property name="com.snowshore.gain_adj" value="10" />
<property name="com.snowshore.vcr_skip" value="5s" />
<property name="com.snowshore.vcr_pause" value="3s" />
<property name="com.snowshore.vcr_speed_adj" value="5" />

<form id="g">
<field name="u">
<link event="modify_audio_control">
 <grammar src="builtin:dtmf/gain?down=7;up=8;reset=9"/>

</link>

<link event="modify_audio_control">
 <grammar src="builtin:dtmf/vcr?rew=1;fwd=2;pause=3;slower=4;faster=5"/>

</link>

<prompt bargein="true" vcr="true">
 <audio src="file:////opt/showshore/prompts/generic/en_US/num_changed.ulaw"/>
 <audio src="http://localhost/showshore/prompts/number.wav"/>
 <audio src="http://localhost/showshore/prompts/alpha.wav"/>

</prompt>

<catch event="modify_audio_control">
 <clear/>
 <reprompt/>

</catch>

</field>
</form>
</vxml>

VoiceXML Sample Code and Call Flows

Application Developer’s Guide 306

The following is an example script using VCR controls for the RTSP in VoiceXML
2.0.

Example 46. Using VCR Controls for RTSP in VoiceXML 2.0

<?xml version="1.0"?>
<vxml version="2.0" xmlns="http://www.w3.org/2001/vxml">

<property name='com.snowshore.vcr_skip' value='6s'/>
<property name='com.snowshore.vcr_pause' value='5s'/>

<form id="g">
 <field type="boolean" name="u">
 <link event="modify_video_control">
 <grammar src="builtin:dtmf/vcr?rew=0;fwd=6;pause=3"/>
 </link>

 <prompt bargein='true' vcr='true'>
 <audio src="rtsp://rtspserver.dialogic.com/sample.3gp"/>
 </prompt>

 <catch event="modify_video_control">
 <clear />
 <reprompt />
 </catch>
 </field>
</form>
</vxml>

VoiceXML Sample Code and Call Flows

Application Developer’s Guide 307

The following is an example script using VCR controls in VoiceXML 1.0.

Example 47. Using VCR Controls in VoiceXML 1.0

<link event="vcr">
 <dtmf>
 7 {vcr_rew} | 8 {vcr_pause} | 9 {vcr_fwd}
 </dtmf>
</link>

<form id="form1">
<!- Remove the default termchar, as we don't want to wait for it -->
 <property name="termchar" value=""/>
 <property name="com.snowshore.vcr_skip" value="1s"/> <!-- default 5s -->
 <property name="com.snowshore.vcr_pause" value="10s"/> <!-- default 10s -->
<!- VCR controls work on this prompt only ->
<block>
 <prompt vcr="true">
<audio
src="file:////net/192.168.12.12/opt/snowshore/prompts/gmvoices/

en_US/susan/msg055"/>

<!-- The message audio -->audio
src="file:////net/192.168.12.12/opt/snowshore/prompts/generic/

1MinuteMusic.raw"/>
</prompt></prompt>
</block>
<!-- This is the menu "To repeat, press 1, to save, press 2, to erase ... -->
<!-- VCR controls don't affect this prompt, but ARE active, i.e. 7 can -->
<!-- backup out of this menu back into the message -->
<field name="field1" type="digits?length=1">
 <prompt>
audio
src="file:////net/192.168.12.12/opt/snowshore/prompts/generic/

en_US/try_again.ulaw"/>
 </prompt>
filled>

<!-- Fetch next thing to do -->
<submit
next="msgfetch?sid=12345&msgid=42&digit=$field1"/>
 </filled>

<catch event="vcr">
 <!- VCR events must loop back to the top in order to be effective->
 <clear/>
 <reprompt/>
 </catch>
</field>
</form>

VoiceXML Sample Code and Call Flows

Application Developer’s Guide 308

Image Overlay and Text Overlay

This section provides VoiceXML 2.0 text and image overlay sample code.

Simple Text Overlay

This script illustrates a simple text overlay using VoiceXML 2.0. Modify the
script, such as audio source file and font name, to suit your implementation.

<?xml version="1.0" encoding="UTF-8" ?>
<vxml version="2.0" xmlns="http://www.w3.org/2001/vxml">

 <form id="form1">
 <block>
 <prompt bargein="false">
 <audio src="file:////opt/snowshore/htdocs/3GPP/sample1.3gp"/>
 <overlay position="x0y240" size="x346y20">
 <content>
 <font name="font:///opt/snowshore/fonts/FreeSans.ttf" size="14"

 fgcolor="yellow"/>
 "Hello, world!"
 </content>
 </overlay>
 </prompt>
 </block>
 </form>
</vxml>

Scrolling Text Overlay

This script illustrates a scrolling text overlay using VoiceXML 2.0. Modify the
script, such as audio source file and font name, to suit your implementation.

<?xml version="1.0" encoding="UTF-8" ?>
<vxml version="2.0" xmlns="http://www.w3.org/2001/vxml">

 <form id="form1">
 <block>
 <prompt bargein="false">
 <audio src="file:////opt/snowshore/htdocs/3GPP/sample2.3gp"/>
 <!--First overlay defines the outer border and does not use scrolling-->
 <overlay position="x0%y20%" size="x100%y10%" border-width="2"

 border-color="yellow" bgcolor="0xFFFF007F">
 <content> " " </content>
 </overlay>
 <!--Second overlay is inside first overlay and will scroll-->
 <overlay position="x2%y22%" size="x96%y6%" layer="1">
 <content>
 <font name="font:///opt/snowshore/fonts/FreeSans.ttf" size="14"

 fgcolor="black"/>
 <scroll mode="continuous" speed="40" direction="left"/>
 "The quick brown fox jumps over the lazy dog."
 </content>
 </overlay>
 </prompt>
 </block>
 </form>
</vxml>

VoiceXML Sample Code and Call Flows

Application Developer’s Guide 309

Image Overlay

This script illustrates a simple image overlay using VoiceXML 2.0. Modify the
script, such as image source file and file type, to suit your implementation.

<?xml version="1.0" encoding="UTF-8" ?>
<vxml version="2.0" xmlns="http://www.w3.org/2001/vxml">
 <form id="form1">
 <block>
 <prompt bargein="false">
 <audio src="file:////opt/snowshore/htdocs/3GPP/sample2.3gp"/>
 <overlay position="x0y60" size="x180y80">
 <content type="image/jpeg" src="file:////opt/snowshore/htdocs/ubuntu.jpg" />
 </overlay>
 </prompt>
 </block>
 </form>
</vxml>

Late Media Sample Code

Application Developer’s Guide 310

Late Media Sample Code

The sample code below if for the Late Media feature.

Example 48. Late Media

INVITE sip:conf=1@192.168.16.150 SIP/2.0
Via: SIP/2.0/UDP

10.128.41.4:5060;branch=z9hG4bKB710DA6E24074155BD75A591F6
8C4101;rport

From: "Your Full Name"
<sip:Username@10.128.41.4:5060>;tag=A5C31AD26902A99B6B818
E7C9A97079B

To: <sip:conf=1@192.168.16.150>
Contact: <sip:Username@10.128.41.4:5060;transport=udp>
Call-ID: 9B1E828144DBA7DCFAF06764DC144AEF68DE@10.128.41.4
User-Agent: Kapanga Softphone Desktop Windows

1.00/2182d+1288207401_00FF88241B88_705AB69C3CA5
Supported: timer, replaces
CSeq: 1 INVITE
Max-Forwards: 70
Session-Expires: 1800;refresher=uac
Allow: INVITE, INFO, PRACK, ACK, BYE, CANCEL, OPTIONS, NOTIFY,

REGISTER, SUBSCRIBE, REFER, PUBLISH, UPDATE, MESSAGE
Content-Length: 0

SIP/2.0 100 Trying
From: "Your Full

Name"<sip:Username@10.128.41.4:5060>;tag=A5C31AD26902A99B
6B818E7C9A97079B

To: <sip:conf=1@192.168.16.150>
Call-ID: 9B1E828144DBA7DCFAF06764DC144AEF68DE@10.128.41.4
CSeq: 1 INVITE
Via: SIP/2.0/UDP

10.128.41.4:5060;rport=5060;branch=z9hG4bKB710DA6E2407415
5BD75A591F68C4101

Supported: 100rel,timer
Contact: <sip:192.168.16.150:5060>
Content-Length: 0

SIP/2.0 200 OK
From: "Your Full

Name"<sip:Username@10.128.41.4:5060>;tag=A5C31AD26902A99B
6B818E7C9A97079B

To: <sip:conf=1@192.168.16.150>;tag=495b7d8-9610a8c0-13c4-
50022-1574e-488461c0-1574e

Call-ID: 9B1E828144DBA7DCFAF06764DC144AEF68DE@10.128.41.4
CSeq: 1 INVITE
Allow: INVITE, CANCEL, ACK, BYE, OPTIONS, INFO, PRACK
Via: SIP/2.0/UDP

10.128.41.4:5060;rport=5060;branch=z9hG4bKB710DA6E2407415
5BD75A591F68C4101

Supported: 100rel,timer
Require: timer
Contact: <sip:192.168.16.150:5060>

Late Media Sample Code

Application Developer’s Guide 311

Session-Expires: 180;refresher=uac
Content-Type: application/sdp
Content-Length: 517

v=0
o=snowshoreSDP 2890844526 2890844526 IN IP4 192.168.16.150
s=snowshoreSDP
c=IN IP4 192.168.16.150
t=0 0
m=audio 6000/1 RTP/AVP 18 2 8 96 0 101
c=IN IP4 192.168.16.150
a=rtpmap:18 G729/8000
a=fmtp:18 annexb=no
a=rtpmap:2 G726-32/8000
a=rtpmap:8 PCMA/8000
a=rtpmap:96 AMR/8000
a=fmtp:96 octet-align=0; mode-set=7
a=rtpmap:0 PCMU/8000
a=rtpmap:101 telephone-event/8000/1
a=sendrecv
a=ptime:20
m=video 6002/1 RTP/AVP 34
c=IN IP4 192.168.16.150
a=rtpmap:34 H263/90000
a=sendrecv
a=fmtp:34 QCIF=2

ACK sip:192.168.16.150:5060 SIP/2.0
Via: SIP/2.0/UDP

10.128.41.4:5060;branch=z9hG4bKB710DA6E24074155BD75A591F6
8C4101

From: "Your Full Name"
<sip:Username@10.128.41.4:5060>;tag=A5C31AD26902A99B6B818
E7C9A97079B

To: <sip:conf=1@192.168.16.150>;tag=495b7d8-9610a8c0-13c4-
50022-1574e-488461c0-1574e

Contact: <sip:Username@10.128.41.4:5060;transport=udp>
Call-ID: 9B1E828144DBA7DCFAF06764DC144AEF68DE@10.128.41.4
User-Agent: Kapanga Softphone Desktop Windows

1.00/2182d+1288207401_00FF88241B88_705AB69C3CA5
CSeq: 1 ACK
Max-Forwards: 70
Content-Type: application/sdp
Content-Length: 284
v=0
o=Username 1297963048 1297963099 IN IP4 10.128.41.4
s=Kapanga [1297963048]
c=IN IP4 10.128.41.4
t=0 0
m=audio 5100 RTP/AVP 18 0 101
a=rtpmap:18 G729/8000
a=fmtp:18 annexb=no
a=sendrecv
a=maxptime:20
a=ptime:20
a=rtpmap:0 PCMU/8000
a=rtpmap:101 telephone-event/8000/1

Application Developer’s Guide 312

A - Audio Library

This appendix describes a preconfigured sound library (audio files) which
consists of phrases and messages, numbers, time and money, quantities, and
miscellaneous words.

This appendix includes the following major sections:

Sound Library

Generic Audio Files

Sound Library

Application Developer’s Guide 313

Sound Library

The IP Media Server comes with a library of stock audio segments,
professionally recorded in a female voice. These files are stored in the following
location:

/opt/snowshore/prompts/

Within this directory are two subdirectories:

/generic/ contains some files recorded by Dialogic that can be useful for
testing.

/gmvoices/) holds a directory of audio files in US English (/en_US/susan/)
and a directory of audio files in Chinese Mandarin (/zh_CN/sara/).

These audio segments provide a consistent set of sounds that have been
recorded to support a wide variety of pre-programmed phrases, spoken
numbers, dates, and other sequenced recordings.

These files are in a protected area and cannot be modified. If you have
application-specific audio files, Consider placing these files an NFS server on
your network rather than locally on the IP Media Server.

With the exception of the generic audio files and audio files for letters of the
alphabet, the other files listed in the following pages exist in both US English
and Chinese Mandarin versions.

The tables on the following pages explain the categories of phrases provided
with the prompt library. Phrases are categorized as follows:

Phrases and Messages

Numbers

Letters

Time and Money

Press Keys

Quantities

Miscellaneous Words

Phrases and Messages

Phrases and message are located in:

opt/snowshore/prompts/gmvoices/en_US/susan/

and in

/opt/snowshore/prompts/gmvoices/zh_CN/sara/

These files are standard phrase segments that can be combined into sequences.

Table 56. Prompt Library: Standard Phrases

Filename Spoken as

msg001 one second of silence

msg002 600Hz beep tone

Sound Library

Application Developer’s Guide 314

msg003 Goodbye.

msg004 Hello.

msg005 Good morning.

msg006 Good afternoon.

msg007 Good evening.

msg008 If this is correct...

msg009 To transfer to another extension...

msg010 To return to the main menu...

msg011 To return to the previous menu...

msg012 To delete this message...

msg013 To delete all messages...

msg014 To exit the system...

msg015 To end this call...

msg016 To cancel delivery of this message...

msg017 To send your message now...

msg018 Please hold while your call is being transferred.

msg019 Please leave your message after the tone.

msg020 Please begin recording after the tone.

msg021 Thank you for calling.

msg022 Thank you for calling, goodbye.

msg023 Thank you.

msg024 Please enter your mailbox number.

msg025 Please enter your passcode.

msg026 I'm sorry, that passcode is invalid. Please reenter
your passcode.

msg027 I'm sorry, that mailbox number is invalid. Please
reenter your mailbox number.

msg028 I'm sorry, that is an invalid entry. Please try again.

msg029 You have no messages.

msg030 You have no more messages.

msg031 You have...

msg032 ...new message.

Table 56. Prompt Library: Standard Phrases (continued)

Filename Spoken as

Sound Library

Application Developer’s Guide 315

msg033 ...new messages.

msg034 ...saved message.

msg035 ...saved messages.

msg036 Your mailbox is currently full.

msg037 Message deleted.

msg038 Message saved.

msg039 Please hold.

msg040 Please hold for assistance.

msg041 I'm sorry...

msg042 You entered...

msg043 End of messages.

msg044 We cannot identify that entry. Please try again.

msg045 Please hold while I transfer your call to the
operator.

msg046 We're sorry you are having difficulty. Please try
your call again later.

msg047 If this is correct, press 1. If not, press 2.

msg048 Please enter your passcode now.

msg049 If you're calling from a touchtone phone, press 1
now. Otherwise, please stay on the line to speak
with an operator.

msg050 Please enter your business phone number
beginning with the area code now.

msg051 You have selected...

msg052 You have reached...

msg053 To make another selection...

msg054 To try again...

msg055 Extension...

msg056 The telephone number you entered is...

msg057 The fax number you entered is...

msg058 Please enter the account number.

msg059 Please enter your personal identification number.

msg060 Your personal identification number is...

Table 56. Prompt Library: Standard Phrases (continued)

Filename Spoken as

Sound Library

Application Developer’s Guide 316

Numbers

These files are spoken as cardinal numbers. (Ordinals are listed with dates.)

Some numbers have multiple files for neutral, rising, and falling inflection, as
indicated by their file extensions.

All these files are located in:

opt/snowshore/prompts/gmvoices/en_US/susan/

and in

/opt/snowshore/prompts/gmvoices/zh_CN/sara/

msg061 Thank you, please hold.

msg062 Please record your message at the tone. When you
are finished you may hang up or...

msg063 ...for more options.

msg064 Please record your greeting at the tone.

msg065 To save this message, press...

msg066 To delete this message, press...

msg067 To listen to the next message, press...

msg068 To replay this message, press...

msg069 The passcode you entered is...

msg070 Your message to...

msg071 ...was delivered.

msg072 ...could not be delivered.

msg073 I'm sorry, we cannot connect your call at this time.
Please try again later.

msg074 Mailbox number...

msg075 ...is full.

Table 57. Prompt Library: Cardinal Numbers

Filename Numbers Extension Spoken As

0.neu ... through 9.neu

0.ris ... through 9.ris

0.dwn ...through
9.dwn

0 through 9 .neu

.ris

.dwn

Zero through
Nine with
neutral, rising,
or falling
intonation

Table 56. Prompt Library: Standard Phrases (continued)

Filename Spoken as

Sound Library

Application Developer’s Guide 317

Dates and Ordinal Numbers

The following files consists of dates and ordinal numbers.

10.num, 11.num,
12.num... through
100.num

10 through
100

.num Ten, Eleven,
Twelve,... One
hundred’

100.neu ... through
1000.neu

100.ris ... through
1000.ris

100.dwn ...through
1000.dwn

100 through
1000 in
increments of
100

.neu

.ris

.dwn

One hundred
through One
thousand with
neutral, rising,
or falling
intonation.

thousand.num
million.num
billion.num
trillion.num

thousand,
million,
billion, and
trillion

.num Thousand,
Million, Billion,
Trillion

Table 58. Prompt Library: Dates and Ordinal Numbers

Filename Days/Months Spoken As

mon.dat
tue.dat
wed.dat
thu.dat
fri.dat
sat.dat
sun.dat

Monday
through
Sunday

Day of the week,
Monday through Sunday

1st.dat, 2nd.dat,
3rd.dat... through
31st.dat

1st, 2nd, 3rd...
through 31st

Spoken as ordinal
number

First, Second, Fourth,
Thirty-first

jan.dat
feb.dat
mar.dat
apr.dat
may.dat
jun.dat
jul.dat
aug.dat
sep.dat
oct.dat
nov.dat
dec.dat

January
through
December

Name of month

January, February, etc.

Table 57. Prompt Library: Cardinal Numbers (continued)

Filename Numbers Extension Spoken As

Sound Library

Application Developer’s Guide 318

Letters

There are two audio files for each letter of the alphabet: one with rising
intonation, for example aup.ltr and one with falling intonation, for example adn.ltr.

Having both types of files allows you to select audio files by context. For
example, the letters C and N have different sounds in the acronyms for NBC and
CNN.

These audio files are located in:

opt/snowshore/prompts/gmvoices/en_US/susan/

and in

/opt/snowshore/prompts/gmvoices/zh_CN/sara/

Filename Years Spoken As

1975.dat ... through
2015.dat

1975 through
2015

Spoken as year.

Nineteen seventy five,
‘Two thousand and
fifteen

Table 58. Prompt Library: Dates and Ordinal Numbers (continued)

Filename Days/Months Spoken As

Sound Library

Application Developer’s Guide 319

Time and Money

You can combine these audio files with audio files for numbers to form
sequences for times of day and money values. These audio files are located in:

opt/snowshore/prompts/gmvoices/en_US/susan/

and in

/opt/snowshore/prompts/gmvoices/zh_CN/sara/

Press Keys

Most of these files have two values: one with falling intonation (*.dwn) and one
with neutral intonation (*.neu).

Filename Spoken With Example

aup through zup.ltr Rising
intonation

aup.ltr; bup.ltr ... through zup.ltr

adn through zdn.ltr Falling
intonation

adn.ltr; bdn.ltr ... through zdn.ltr

Table 59. Prompt Library: Time and Money Phrases

Filename Spoken as Time Zones:

est.tim Eastern Standard Time

cst.tim Central Standard Time

mst.tim Mountain Standard Time

pst.tim Pacific Standard Time

am.tim AM

at.tim at (time)

mid.tim Midnight

noon.tim Noon

oclock.tim o’clock

pm.tim PM

and.mon and (money)

cent.mon Cent

cents.mon Cents

dollar.mon Dollar

dollars.mon Dollars

Sound Library

Application Developer’s Guide 320

Press key audio files are located in:

opt/snowshore/prompts/gmvoices/en_US/susan/

and in

/opt/snowshore/prompts/gmvoices/zh_CN/sara/

Table 60. Prompt Library: Press Key Phrases

Filename Spoken as Press Key
Phrases:

press Press

prs0.dwn / prs0.neu Press 0

prs1.dwn / prs1.neu Press 1

prs2.dwn / prs2.neu Press 2

prs3.dwn / prs3.neu Press 3

prs4.dwn / prs4.neu Press 4

prs5.dwn / prs5.neu Press 5

prs6.dwn / prs6.neu Press 6

prs7.dwn / prs7.neu Press 7

prs8.dwn / prs8.neu Press 8

prs9.dwn / prs9.neu Press 9

asterisk.dn
/asterisk.neu

Asterisk

pound.dwn /
pound.neu

Pound

star.dwn / star.neu Star

Sound Library

Application Developer’s Guide 321

Quantities

Quantity audio files are located in:

opt/snowshore/prompts/gmvoices/en_US/susan/

and in

/opt/snowshore/prompts/gmvoices/zh_CN/sara/

Table 61. Prompt Library: Quantities

Filename Spoken as

year.neu year neutral

years.neu years neutral

month.neu month neutral

months.neu months neutral

day.neu day neutral

days.neu days neutral

hour.neu hour neutral

hours.neu hours neutral

minute.neu minute neutral

minutes.neu minutes neutral

second.neu second neutral

seconds.neu seconds neutral

dollar.neu dollar neutral

dollars.neu dollars neutral

cent.neu cent neutral

cents.neu cents neutral

minus.dwn minus neutral

year.dwn year final intonation

years.dwn years final intonation

month.dwn month final intonation

months.dwn months final intonation

day.dwn day final intonation

days.dwn days final intonation

hour.dwn hour final intonation

hours.dwn hours final intonation

Sound Library

Application Developer’s Guide 322

Miscellaneous Words

Miscellaneous words are located in:

opt/snowshore/prompts/gmvoices/en_US/susan/

and in

/opt/snowshore/prompts/gmvo1ices/zh_CN/sara/

Note: Many of these files do not have filename extensions.

minute.dwn minute final intonation

minutes.dwn minutes final intonation

second.dwn second final intonation

seconds.dwn seconds final intonation

dollar.dwn dollar final intonation

dollars.dwn dollars final intonation

cent.dwn cent final intonation

cents.dwn cents final intonation

minus.dwn minus final intonation

Table 62. Prompt Library: Miscellaneous Words

Filename Spoken as

act Activate

acted Activated

dash Dash

deact Deactivate

deacted Deactivated

for For

no No

none None

o.dwn
o.neu
o.ris

O

Table 61. Prompt Library: Quantities (continued)

Filename Spoken as

Sound Library

Application Developer’s Guide 323

off.dwn
off.neu

Off

on.dwn
on.neu

On

or Or

percent Percent

point Point

sent Sent

Table 62. Prompt Library: Miscellaneous Words (continued)

Filename Spoken as

Generic Audio Files

Application Developer’s Guide 324

Generic Audio Files

Generic audio files are located in:

/opt/snowshore/prompts/generic/en_US

These files were internally recorded by Dialogic and can be useful for testing
purposes.

Table 63. Generic Prompt Phrases

Filename Spoken as

ac_changed.ulaw

ac_changed.wav

“The area code for the number you are dialing
has changed to...”

circuit_busy.ulaw

circuit_busy.wav

“We’re sorry. All circuits are busy now.”

contact_provider.ulaw

contact_provider.wav

“Please contact your service provider.”

dial_again.ulaw

dial_again.wav

“If you’d like to make a call, please hang up and
dial again.”

dial_operator.ulaw

dial_operator.wav

“If you need help, please hang up and dial your
operator.”

disconnected.ulaw

disconnected.wav

“...has been disconnected.”

make_note.ulaw

make_note.wav

“Please make a note of it.”

new_number.ulaw

new_number.wav

“The new number is...”

no_permission.ulaw

no_permission.wav

“You no longer have permission to utilize the
system.”

num_changed.ulaw

num_changed.wav

“The number you are calling has changed.”

num_dialed.ulaw

num_dialed.wav

“The number you have dialed...”

num_invalid.ulaw

num_invalid.wav

“...is not a valid number.”

please_check.ulaw

please_check.wav

“Please check the number and dial again.”

service_outage.ulaw

service_outage.wav

“Please contact your service provider for
information relating to this service outage.”

Generic Audio Files

Application Developer’s Guide 325

try_again.ulaw

try_again.wav

“Please hang up and try your call again later.”

Table 63. Generic Prompt Phrases (continued)

Filename Spoken as (continued)

Application Developer’s Guide 326

B - VoiceXML Version 1.0 and Dialog Service

This appendix explains the basics of VoiceXML (VXML) Version 1.0, lists the
supported VoiceXML elements and attributes, and explains ECMAScript
language functionality.

Note: For information about VoiceXML 2.0, see “VoiceXML Version 2.0 and
Dialog Service” (page 176).

The dialog service is one of two interfaces that the IP Media Server offers for
developing IVR/DTMF applications. The other service is ivr through which SIP
requests are enhanced by MSCML message bodies for play, playcollect, and
playrecord. For details on IVR, see Chapter 5, “IVR with MSCML”.

This appendix includes the following sections:

VoiceXML Interpreter

VoiceXML Launcher

Dialog Service Indicator and Request URI

VoiceXML Concepts

VoiceXML Application and Its Documents

Dialogs

Grammar and Scripting

Session Variables

File Storage and Retrieval

Media Content Recovery Extension

VoiceXML Elements Reference

VoiceXML Attributes Reference

VoiceXML Properties

ECMAScript Functionality

Support for VoiceXML Extended Session Variables

About VoiceXML

Application Developer’s Guide 327

About VoiceXML

VoiceXML is a W3C standard scripting language for playing audio prompts and
for collecting DTMF input.

The interpreter executes VoiceXML dialogs on an RTP stream (see next section).
Each dialog represents an announcement, menu, or other IVR script. The
dialogs finish when they have posted information to a Web server or returned
a namelist back to the command that invoked the browser. If additional dialogs
are needed, then the application runs another script.

While the IP Media Server supports full ECMA (European Computer
Manufacturer’s Association) Scripting abilities, Dialogic recommends that you
perform that type of logic on the application server rather than in the VoiceXML
script. This method reduces the processing and memory required by the IP
Media Server and allows the IP Media Server to handle a large volume of
simultaneous sessions.

VoiceXML Interpreter

The IP Media Server includes interpreters for VoiceXML 1.0 and VoiceXML 2.0.

Note: For information about VoiceXML 2.0, see “VoiceXML Version 2.0 and
Dialog Service” (page 176).

If the IP Media Server receives a SIP INVITE request directed to the dialog
service, a VoiceXML session begins. The VoiceXML session initially gets
(fetches) and executes the VoiceXML script that is specified in the SIP Request-
URI parameter, voicexml.

Once specified, a VoiceXML script URI remains in effect until it completes
execution or the session is stopped.

Dialog Service Indicator and Request URI

Through the dialog service (dialog), the IP Media Server executes VoiceXML
documents to offer IVR scripting with DTMF input and recorded audio output.

The application references the initial VoiceXML script using the Request-URI
parameter voicexml. The following SIP Request-URI directs the IP Media Server
to retrieve and execute script1.vxml from the server app1.carrier.com.

INVITE sip:dialog@MS_IP;voicexml=http://
app1.carrier.com/path/
script1.vxml

It is common for the HTTP URI referencing the VoiceXML script to be a query
that contains its own parameters so the script can be dynamically generated.
For example, the following HTTP URI provides a subscriber ID so the VoiceXML
script can be appropriately personalized.

INVITE sip:dialog@MS_IP;voicexml=http://
app1.carrier.com/cgi/bin/
genvxml.pl?subscriberid=34590087

About VoiceXML

Application Developer’s Guide 328

If a query HTTP URI is used, be careful to replace characters that are reserved
in SIP with their hexadecimal equivalents preceded by a percent (%) character.
This substitution is called escaping. In particular, the question mark (?) and
equals sign (=) must be escaped to conform with SIP standards. The following
example shows the escaped form of the previous example.

INVITE sip:dialog@MS_IP;voicexml=http://
app1.carrier.com/cgi/bin/
genvxml.pl%3Fsubscriberid%3D34590087

The SIP URI must be escaped, as described in “Syntax and Escaping” (page 78).

VoiceXML Launcher

If a SIP INVITE to the IP Media Server is directed to the dialog service but does
not specify a file (voicexml=), then the IP Media Server launches the dialog
service and runs a default script configured by the system administrator using
the Web UI MEDIA SERVER > VOICEXML menu.

VoiceXML Concepts

Syntax

VoiceXML (VXML) is an eXtensible Markup Language for the creation of IVR and
Automated Speech Recognition (ASR) applications. Based on XML tag/attribute
format, its syntax involves enclosing instructions (items) within a tag structure.
For example:

<element_nameattribute_name="attribute_value">
…contained items….
</element_name>

Generic XML concepts remain unchanged in VoiceXML. For example, any
character data must be escaped as per the XML specification.

Scope

As for all XML, VoiceXML observes a hierarchical structure and applies the
construct of scope to define the range within the source where a variable, event
handler, or other element is applicable.

Resource Fetching

VoiceXML defines several attributes to qualify properties relevant to the caching
and fetching of documents and other resources.

Note: The IP Media Server does not currently support these attributes.

VoiceXML Application and Its Documents

A VoiceXML application is a set of VoiceXML scripts that share the same root
document. The application consists of one or more text files called documents.
Document files are identified by a .vxml extension and are retrieved using HTTP
or (Network File System) NFS.

About VoiceXML

Application Developer’s Guide 329

If a VoiceXML application includes multiple documents, one of these can be the
application root document. The application shares the root document among all
other documents. Sharing root documents occurs when the script author
explicitly sets the root document to be the same in multiple VoiceXML scripts.
The IP Media Server’s VoiceXML browser supports the VoiceXML standard.

Whenever a user interacts with a document in an application, the corresponding
root document is also loaded. The root document is unloaded when a user
transitions to a document not in the application.

While the root document is loaded, the application root document's variables
are available to other documents as application variables. Grammars defined in
the root document also remain active for the duration of the application.

Figure 20 shows how a root document is shared in a VoiceXML application.

Figure 20. Sharing of Root Document in VoiceXML Application

Dialogs

A VoiceXML document contains dialogs or conversations between a prompting
VoiceXML interpreter and a responding caller.

Conversational building blocks are as follows:

Prompts (in the IP Media Server context for playing audio)

The grammar that specifies the range of acceptable user responses to a
prompt

Transitions (to the URI of the next prompt/response exchange)

Conversational constructs are as follows:

Forms that collect an input or event, process it, and select the next form to
visit.

Menus for organization and navigation (multiple-choice options, with a
transition for each).

Links that execute a transaction or throw an event.

Grammar and Scripting

The IP Media Server supports DTMF grammars and also supports ECMA tags
that involve the scripting capabilities of the VoiceXML interpreter. See
“ECMAScript Functionality” (page 365).

Root
Document

doc1.vxml doc2.vxml doc3.vxml

About VoiceXML

Application Developer’s Guide 330

However, executing complex ECMAScript on the IP Media Server can affect its
ability to perform real-time media processing. To conserve processing capacity
and memory, Dialogic recommends limiting the use of ECMAscripting on the IP
Media Server.

Session Variables

Voice XML provides a facility, called session variables, to pass signaling
information to Voice XML scripts. The IP Media Server supports the standard
Voice XML session variables as well as extensions which capture additional
information from the SIP INVITE. See “Support for VoiceXML Extended Session
Variables” (page 368) for further details.

File Storage and Retrieval

You can access VoiceXML scripts through the network using NFS and HTTP
protocols. Audio and video content can be retrieved and stored using HTTP and
NFS as well.

Note: The VoiceXML files can be located anywhere as long as the VoiceXML
interpreter can access them.

Media Content Recovery Extension

The Media Content Recovery mechanism has been extended such that there can
be increased reliability of recorded content delivery from Voice XML
applications.

"Next-generation" application architectures such as SIP and VoiceXML are
highly distributed in nature and rely on multiple components and network
communication protocols to function. In the case of VoiceXML applications, the
link between the VoiceXML browser (the IP Media Server) and the application
server, which provides the scripts and content, is critical.

Now that SIP and VoiceXML applications have been successfully deployed,
carriers expect reliability and behavior similar to the legacy applications that are
being replaced. In most situations, it is acceptable for a subscriber to call back
and establish a new VoiceXML session if a failure occurs. The notable exception
is when the caller has successfully recorded a message and expects for it to be
sent. If the failure occurs before the message can be transmitted, there is no
way to inform the user of the issue and there is nothing the user can do about
it. The Media Content Recovery extension provides a solution to the specific
issue of reliable content delivery.

Recording is implemented in VoiceXML through the <record> element. When a
<record> element is processed, the IP Media Server creates a temporary file with
a locally unique identifier name.

The IP Media Server VoiceXML 1.0 browser maintains a list of the temporary
files created during each call and deletes them when the VoiceXML script
terminates. The browser also deletes any temporary files upon startup. When
the Media Content Recovery mechanism is used, temporary recordings that are
left over after a failure will be processed. At startup, a recovery daemon detects
temporary files that have been tagged for recovery.

About VoiceXML

Application Developer’s Guide 331

The Media Content Recovery extension utilizes the <data> element to enable
the application to associate recovery data with specific recorded content. The
browser supports recovery data in the form of a completely specified HTTP URI.
It is the VoiceXML application's responsibility to make sure the URI is correct
and contains the information needed to deliver the content to the ultimate
recipient.

If the Media Content Recovery extensions are not used, the IP Media Server
processes the recording in accordance with standard VoiceXML. If the VoiceXML
Media Content Recovery extensions are present in the VoiceXML script, then the
recovery feature is used. A VoiceXML script that provides the user with a
confirmation probably should not include the VoiceXML extensions due to the
possibility that the recording could be recovered and sent without the user
providing confirmation.

VoiceXML Elements Reference

Application Developer’s Guide 332

VoiceXML Elements Reference

This section describes the VoiceXML elements (tags) supported by the IP Media
Server. For a more detailed description of VoiceXML attributes, see “VoiceXML
Attributes Reference” (page 353).

<assign>

Assigns a value to a variable.

The value of this tag must be empty.

Parents: <block>, <catch>, <error>, <filled>, <help>, <if>, <noinput>,
<nomatch>

Attributes:

<audio>

Plays pre-recorded audio and accesses the audio from the URI, which is
specified by the src attribute.

The audio encoding is determined from the file header when .wav or .au formats
are used. Otherwise, the audio encoding is implied by the file extension
according to the following table.

If the encoding cannot be determined by the extension, it is assumed to be
G.711 µ-law.

The value of this tag can be empty or can contain one or more of the child
elements listed below.

Parents: <audio>, <block>, <catch>, <choice>, <error>, <field>,
<filled>, <help>, <if>, <initial>, <menu>, <noinput>, <nomatch>,
<prompt>, <record>, <subdialog>

Child Elements: <audio> <break> <sayas> <value>

Attribut
e

Description

name Name of the variable being assigned to a value.

Required.

expr ECMAScript expression that, when evaluated, is
assigned as the new value of the variable. It must be
a valid ECMA value.

Required.

Extension Encoding

ulaw G.711µ-law

alaw G.711 A law

msgsm Microsoft® GSM

VoiceXML Elements Reference

Application Developer’s Guide 333

Attributes:

<block>

Defines a container for non-interactive executable content such as welcome
prompts.

The value can be empty or can contain one or more of the child elements listed
below, where the element is either parsed text or the tag.

Parent: <form>

Child Elements: <assign>, <audio>, <clear>, <disconnect>, <exit>,
<goto>, <if>, <prompt>, <reprompt>, <return>, <script>, <submit>,
<throw>, <value>, <var>

Attributes:

<break>

Adds a pause to the audio content.

The value of this tag must be empty.

Parents: <audio>, <choice>, <prompt>

Attributes:

<catch>

Defines an event handler within the current scope.

Attribute Description

src String literal containing the URI for the
audio.

Required.

Attribute Description

cond Boolean value of TRUE or FALSE. Defaults to TRUE. When
FALSE, the tag is ignored or skipped; the form is not
visited.

expr Initial value of the form-item variable; the default is
ECMAScript undefined. If initialized to a value, then the
form item is not visited unless the form-item variable is
cleared.

name Name of the form-item variable used to track whether this
block can be executed. Defaults to an inaccessible
internal variable.

Attribute Description

size A relative pause duration, with possible values of none (0
ms), small (50 ms), medium (200 ms) or large (500 ms). The
default is medium.

msecs Text. The number of milliseconds to pause.

VoiceXML Elements Reference

Application Developer’s Guide 334

The value can be empty or can contain one or more of the child elements listed
below, where the element is either parsed text or the tag.

Parents: <field>, <form>, <initial>, <menu>, <record>, <subdialog>,
<vxml>

Child Elements: <audio> <value>

Attributes:

<choice>

Defines a menu item by specifying one choice in the menu. It can specify a
DTMF grammar fragment or the URI to go to when the choice is selected. When
the choice is made, the tag either transitions to a new dialog or throws an event.

The IP Media Server handles DTMF grammar fragments only. The contents must
be <audio> and not text.

The value can be empty or can contain one or more of the child elements listed
below, where the element is either parsed text or the tag.

Parent: <menu>

Child Elements: <audio>, <sayas>, <value>

Attributes:

To indicate the action to take, set one of the following: next, expr, or event.

<clear>

Resets one or more form items to its initial state, including setting the form item
variable to ECMAScript undefined and re-initializing the prompt counter and the
event counters for the form item.

Attribute Description

event Event or events to catch.

Required.

count The occurrence of the event. (Default: 1.) The count
allows you to handle different occurrences of the same
event differently. Each form item and <menu> maintains a
counter for each event that occurs while it is being
visited; these counters are reset each time the <menu> or
form item's <form> is re-entered.

cond Boolean value of TRUE or FALSE. (Default: TRUE). When
FALSE, the tag is ignored or skipped; the form is not
visited.

Attribute Description

dtmf DTMF sequence for the choice.

event An event to be thrown instead of going to ext.

expr Expression to evaluate instead of going to next.

next URI of next dialog or document.

VoiceXML Elements Reference

Application Developer’s Guide 335

The value of this tag must be empty.

Parents: <block>, <catch>, <error>, <filled>, <help>, <if>, <noinput>,
<nomatch>

Attributes:

<data>

Enables Media Content Recovery Extension. The Media Content Recovery
feature is triggered by a <data> element with either of the following set:

The src property set to builtin:persist.
or

The srcexpr property evaluates to the ECMA string builtin:persist.

An error.semantic event is generated if the <data> element is encountered with
src or srcexpr set to anything but builtin:persist.

An error.semantic is generated if the <data> tag has any of the following
attributes set with the builtin:persist data submission:

method, enctype, fetchaudio, fetchint, fetchtimeout, maxage, maxstale

A valid <data> tag causes the recovery file to be created. If the recovery file
cannot be written, an error.semantic event is generated.

The <data> tag is controlled entirely by its namelist attribute.

The namelist attribute must have one and only one variable name that is the
same as the <record> element to be protected by the Media Content Recovery
feature. The <record> input item must be in the same <form> element. If it is not,
an error.semantic event is generated.

The namelist attribute must have one and only one recovery_uri variable name
that evaluates to a defined ECMA value that is not an array or an object. Without
the recovery_uri variable name the recovery file will not be written. The recovery
daemon attempts content recovery by executing an HTTP POST method to the
HTTP URI specified in the recovery information. When a file is being recovered,
the recovery daemon uses the recording_name variable as the name of the
content in the HTTP POST.

The recovery file is deleted if a new <data> element is encountered that does
not have the recovery_uri name in the namelist. This allows an application to
immediately disable the recovery feature if the user confirms that he does not
want the message sent.

Note: Other uses of <data> as part of VoiceXML 2.1 are not supported.

Parents: <block>, <if>, <filled>, <form>, <noinput>

The <data> tag must be a descendant of a <form> tag that contains the
associated <record> tag.

Child Elements: None.

Attribute Description

namelist List of items to clear. (When not specified, the application
clears all form items in the current form.)

Required.

VoiceXML Elements Reference

Application Developer’s Guide 336

Attributes:

Note: The Media Content Recovery extension currently supports audio content
only.

<disconnect>

Causes the interpreter context to disconnect from the user. As a result, the
interpreter context generates an event (telephone.disconnected.hangup). Upon
receiving the event, the application then performs a cleanup.

<disconnect> is the only supported VoiceXML call control tag (the same effect as
<exit>).

The value of this tag must be empty.

Parents: <block>, <catch>, <error>, <filled>, <help>, <noinput>,
<nomatch>

Attributes: None

<dtmf>

Specifies a touch-tone grammar that defines both a set of key presses so a user
can perform actions or supply information and the corresponding string values
that describe those actions or information.

The value of this tag must be parsed text.

Parents: <field>, <form>, <link>

Attributes:

<else>

Marks the beginning of content to be executed when the parent <if> tag and
all <elseif> tags at the same level of nesting have conditions that evaluate to
false. Ends at the closing <if>.

The value of this tag must be empty.

Parent: <if>

Attributes: None.

Attribute Description

namelist See above.

Attribute Description

src URI for the source for an external grammar.

scope Options are document, which makes the grammar active in
all dialogs of the current document (and relevant
application leaf documents), or dialog, which makes the
grammar active throughout the current form. If omitted,
the scope is determined by the parent element.

type x-dtmf or regex

VoiceXML Elements Reference

Application Developer’s Guide 337

<elseif>

Marks the beginning of content to be executed when the parent <if> and all
<elseif> tags evaluate to false and the cond attribute evaluates to true. Ends at
the next <elseif/> or <else> or closing <if> tag, whichever comes first.

The value of this tag must be empty.

Parent: <if>

Attributes:

<error>

This element receives (catches) an error event. It is shorthand for <catch
event="error"> and receives all events of type ‘error’.

The value can be empty or can contain one or more child elements listed below,
where the element is either parsed text or the tag.

Parents: <field>, <form>, <initial>, <menu>, <record>, <subdialog>,
<vxml>

Child Elements: <assign>, <audio>, <clear>, <disconnect>, <exit>,
<goto>, <if>, <prompt>, <reprompt>, <return>, <script>, <submit>,
<throw>, <value>, <var>

Attributes:

<exit>

Halts all loaded documents and returns control to the interpreter context. Once
<exit> returns control to the interpreter context, the interpreter context is free
to do as it wishes. For example, it can play a top level menu for the user, drop
the call, or the user to an operator.

The value of this tag must be empty.

Parents: <block>, <catch>, <error>, <filled>, <help>, <if>, <noinput>,
<nomatch>

Attribute Description

cond Boolean value of TRUE or FALSE. Defaults to TRUE. When
FALSE, the tag is ignored or skipped; the form is not
visited.

Attribute Description

cond Boolean value of TRUE or FALSE. Defaults to TRUE. When
FALSE, the tag is ignored or skipped; the form is not
visited.

count The occurrence of the event. (Default is 1.) The count
allows you to handle different occurrences of the same
event differently. Each form item and <menu> maintains a
counter for each event that occurs while it is being
visited; these counters are reset each time the <menu> or
form item's <form> is re-entered.

VoiceXML Elements Reference

Application Developer’s Guide 338

Attributes: The IP Media Server returns no values and ignores the values
specified in the expr or namelist attributes if they are supplied.

<field>

An input field that collects prompt-solicited user input within a form. Acceptable
input is specified by type.

The value can be empty or can contain one or more of the child elements listed
below, where the element is either parsed text or the tag.

Parent: <form>

Child Elements: <audio>, <catch>, <dtmf>, <error>, <filled>, <help>,
<if>, <noinput>, <nomatch>, <prompt>, <property>, <value>

Attributes:

<filled>

Specifies an action to perform when some combination of fields are filled by
user input. It can occur in two places: as a child of the <form> element, or as a
child of a field item.

The value can be empty or can contain one or more of the child elements listed
below, where the element is either parsed text or the tag.

Parents: <field>, <form>, <record>, <subdialog>

Child Elements: <assign>, <audio>, <clear>, <disconnect>, <exit>,
<goto>, <if>, <prompt>, <reprompt>, <return>, <script>, <submit>,
<throw>, <value>, <var>

Attribute Description

cond Boolean value of TRUE or FALSE. Defaults to TRUE. When
FALSE, the tag is ignored or skipped; the form is not
visited.

expr Initial value of the form-item variable; the default is
ECMAScript undefined. If initialized to a value, then the
form item is not visited unless the form-item variable is
cleared.

modal If FALSE (the default), all active grammars are turned on
while collecting this field. If TRUE, only the field’s
grammars are enabled: all others are temporarily
disabled.

name Field-item variable in the dialog scope that holds the
result.

slot Name of the grammar slot used to populate the variable.
If it is absent, it defaults to the variable name.

type ype of field, for example digits, currency, phone, date,
Boolean, number, time. If not present, <grammar> and/or
<dtmf> elements can be specified instead.

VoiceXML Elements Reference

Application Developer’s Guide 339

Attributes:

Note: Attributes are valid only when <filled> is a child of <form>.

<form>

One of two kinds of dialogs for collecting user input. The other is <menu>.

The value of this tag can be empty or can contain one of more of the child tags
listed below.

Parent: <vxml>

Child Elements: <block>, <catch>, <dtmf>, <error>, <field>, <filled>,
<help>, <initial>, <link>, <noinput>, <nomatch>, <property>, <record>,
<subdialog>, <var>

Attributes:

<goto>

Used in executable content to cause a transition to another form item in the
current form, another dialog in the current document, or another document.

The value of this tag must be empty.

Parents: <block>, <error>, <filled>, <help>, <if>, <noinput>,
<nomatch>

Attributes: One of the following values must be specified:

Attribute Description

mode Any or all. If any, action is executed when any field is filled
by last user input, If all, action executes when all fields are
filled.

namelist The names of the form’s field items.

Attribute Description

id Name of the form.

scope Default scope of the form’s grammars.

Attribute Description

expr ECMAScript expression that yields the target URI.

expritem ECMAScript expression that yields the name of the target
form item.

next URL to which to transition.

nextitem Name of the next form item in the current form.

VoiceXML Elements Reference

Application Developer’s Guide 340

<grammar>

This element is identical to <dtmf>, because the IP Media Server supports only
DTMF grammars.

<help>

Receives a help event, and is shorthand for <catch event="help">. On the IP Media
Server, there is currently no way for DTMF input to automatically throw a help
event, unlike a speech recognition interface. The <help> tag is fully supported
because an explicit grammar can define a DTMF sequence that causes the help
event to be generated.

The value can be empty or can contain one or more of the child elements listed
below, where the element is either parsed text or the tag.

Parents: <field>, <form>, <initial>, <menu>, <record>, <subdialog>,
<vxml>

Child Elements: <assign>, <audio>, <clear>, <disconnect>, <else>,
<elseif>, <exit>, <goto>, <if>, <prompt>, <reprompt>, <return>, <script>,
<submit>, <throw>, <value>, <var>

Attributes:

<if>

Used for conditional logic. It has optional <else> and <elseif> elements.

The value can be empty or can contain one or more of the child elements listed
below, where the element is either parsed text or the tag.

Parents: <block>, <catch>, <error>, <filled>, <help>, <if>, <noinput>,
<nomatch>

Child Elements: <assign>, <audio>, <clear>, <disconnect>, <else>,
<elseif>, <exit>, <goto>, <if>, <prompt>, <reprompt>, <return>, <script>,
<submit>, <throw>, <value>, <var>

fetchtimeout Interval to wait for the content to be returned before
generating an error.badfetch event. If not specified, a
value derived from the innermost fetchtimeout property
is used.

Attribute Description

count The occurrence of the event. (Default is 1.) The count
allows you to handle different occurrences of the same
event differently. Each form item and <menu> maintains
a counter for each event that occurs while it is being
visited; these counters are reset each time the <menu>
or form item's <form> is re-entered.

cond Boolean value of TRUE or FALSE. Defaults to TRUE. When
FALSE, the tag is ignored or skipped; the form is not
visited.

Attribute Description

VoiceXML Elements Reference

Application Developer’s Guide 341

Attributes:

<initial>

Declares initial logic upon entry into a mixed-initiative form.

The value can be empty or can contain one or more of the child elements listed
below, where the element is either parsed text or the tag.

Parent: <form>

Child Elements: <audio>, <catch>, <error>, <help>, <link>,
<noinput>, <nomatch>, <prompt>, <property>, <value>

Attributes:

<link>

Specifies a destination for a transition or an event to be thrown when input
matches.

The value of this tag can be empty or can contain one or more grammar tags.

Parents: <dtmf>, <field>, <form>, <initial>, <vxml>

Attributes: Must specify one of next, expr, or event.

Attribute Description

cond Boolean value of TRUE or FALSE. Defaults to TRUE. When
FALSE, the tag is ignored or skipped; the form is not
visited.

Attribute Description

cond Boolean value of TRUE or FALSE. Defaults to TRUE. When
FALSE, the tag is ignored or skipped; the form is not
visited.

expr Initial value of the form-item variable; the default is
ECMAScript undefined. If initialized to a value, then the
form item is not visited unless the form-item variable is
cleared.

name The name of a form-item variable used to track whether
the <initial> is eligible to execute; defaults to an
inaccessible internal variable.

Attribute Description

next URI to go to. Either a document (perhaps with an anchor to
specify the starting dialog), or a dialog in the current document
(just a bare anchor).

expr Like next, except that the URI is dynamically determined
by evaluating the given ECMAScript expression.

event The event to generate when the user matches one of the
link grammars.

VoiceXML Elements Reference

Application Developer’s Guide 342

Dialogic’s VoiceXML browser uses link grammars to support skip forward, skip
back, and pause operations (VCR controls) for audio prompts.

<log>

When the log dest attribute is set to a value of SNMP, the VoiceXML browser
sends out the msVXMLCriticalError trap to all SNMP trap hosts configured on the
IP Media Server.

Attributes:

<menu>

Dialog for making a selection among choices.

The value can be empty or can contain one or more of the child elements listed
below, where the element is either parsed text or the tag.

Parents: <vxml>

Child Elements: <audio>, <catch>, <choice>, <error>, <help>,
<noinput>, <nomatch>, <prompt>, <property>, <value>

Attributes:

fetchtimeout Interval to wait for the content to be returned before
generating an error.badfetch event. If not specified, a
value derived from the innermost fetchtimeout property
is used.

Attribute Description

dest When set to SNMP, this instructs the browser to send out
the msVXMLCriticalError trap to all SNMP trap hosts
configured on the IP Media Server.

The text value of the <log> element can be used to
contain the details about the error. This content is placed
in the msVXMLLastCriticalError object. This object is passed
as a varbind of the msVXMLCriticalError trap.

Following is an example <log> tag with the trap extension:

<log dest="snmp">Unable to contact VoiceXML
application server.</log>

Attributes Description

id Identifier of the menu. It allows the menu to be the target
of a <goto> or a <submit>.

scope Menu's grammar scope. Either dialog (the default) or
document.

dtmf TRUE or FALSE. WhenTRUE, any choices that do not have
explicit DTMF elements are given implicit ones: 1, 2, etc.

Attribute Description

VoiceXML Elements Reference

Application Developer’s Guide 343

<meta>

Page properties as meta-data, as in HTML.

Note: This is ignored by the VoiceXML Interpreter.

The value of this tag must be empty.

Parent: <vxml>

Attributes:

<noinput>

A type of catch element event used when the user does not respond within the
required timeout interval. For example, <noinput> Shorthand for <catch
event="noinput">. See <catch>.

The value can be empty or can contain one or more of the child elements listed
below, where the element is either parsed text or the tag.

Parents: <field>, <form>, <initial>, <menu>, <record>, <subdialog>,
<vxml>

Child Elements: <assign>, <audio>, <clear>, <disconnect>, <exit>,
<goto>, <if>, <prompt>, <reprompt>, <return>, <script>, <submit>,
<throw>, <value>, <var>

Attributes:

<nomatch>

Used to catch a nomatch event. Shorthand for <catch event="nomatch">. See
“<catch>” (page 333).

The value can be empty or can contain one or more of the child elements listed
below, where the element is either parsed text or the tag.

Parents: <field>, <form>, <initial>, <menu>, <record>, <subdialog>,
<vxml>

Attribute Description

name Name of the meta-data property.

http-equiv Name of an HTTP response header. Either name or http-
equiv must be specified, but not both.

content Value of the meta-data property.

Required.

Attribute Description

cond Boolean value of TRUE or FALSE. Defaults to TRUE. When
FALSE, the tag is ignored or skipped; the form is not visited.

count A number that allows you to issue different prompts if the
user is doing something repeatedly. If omitted, it defaults
to 1.

VoiceXML Elements Reference

Application Developer’s Guide 344

Child Elements: <assign>, <audio>, <clear>, <disconnect>, <exit>,
<goto>, <if>, <prompt>, <reprompt>, <return>, <script>, <submit>,
<throw>, <value>, <var>

Attributes:

<param>

Specifies the values that are passed to subdialogs.

The value of this tag must be empty.

Parent: <subdialog>

Attributes:

<prompt>

Controls the output of prerecorded audio only.

The value can be empty or can contain one or more of the child elements listed
below, where the element is either parsed text or the tag.

Parents: <block>, <catch>, <error>, <field>, <filled>, <help>, <if>,
<initial>, <menu>, <noinput>, <nomatch>, <return>, <subdialog>

Child Elements: <audio>, <break>, <sayas>, <value>

Attributes:

Attribute Description

cond Boolean value of TRUE or FALSE. Defaults to TRUE. When
FALSE, the tag is ignored or skipped; the form is not visited.

count A number that allows you to issue different prompts if the
user is doing something repeatedly. If omitted, it defaults
to 1.

Attribute Description

name Name to be associated with this parameter when the
subdialog is invoked.

Required.

expr Expression that computes the value associated with name.

value Associates a literal string value with name.

valuetype Whether the value associated with name is data or a URI
(ref).

type MIME type of the result provided by a URI if the value type
is ref; only relevant for uses of <param> in <object>.

Attribute Description

bargein Whether a prompt may be interrupted. (Default: TRUE.)

cond Boolean value of TRUE or FALSE. Defaults to TRUE. When
FALSE, the tag is ignored or skipped; the form is not visited.

VoiceXML Elements Reference

Application Developer’s Guide 345

<property>

Sets a property value that affects platform behavior.

The value of this tag must be empty.

Parents: <field>, <form>, <initial>, <menu>, <record>, <subdialog>,
<vxml>

Attributes:

<record>

A field item that collects a recording from the user. The recording is stored in
the field item variable, which can be played back or submitted to the server.
Only external storage is available.

The value can be empty or can contain one or more of the child elements listed
below, where the element is either parsed text or the tag.

Parent: <form>

Child Elements: <audio>, <catch>, <error>, <filled>, <help>,
<noinput>, <nomatch>, <prompt>, <property>, <value>

Attributes:

count A number that allows you to issue different prompts if the
user is doing something repeatedly. If omitted, it defaults
to 1.

timeout How long to wait for the next input. The default noinput
timeout is 5 seconds.

VCR Whether VCR controls are to be active for the prompt
block. (Default: FALSE.)

Attribute Description

name Property name.

Required.

value Property value.

Required.

Attribute Description

beep TRUE or FALSE (the default). If TRUE, the application
plays a tone just prior to recording.

cond Boolean value of TRUE or FALSE. Defaults to TRUE. When
FALSE, the tag is ignored or skipped; the form is not visited.

dtmfterm TRUE or FALSE. If TRUE (default), a DTMF keypress
terminates the recording.

Attribute Description

VoiceXML Elements Reference

Application Developer’s Guide 346

<reprompt>

Used inside executable content to set a flag indicating that a new attempt
should be made to issue a prompt for the current item.

The value of this tag must be empty.

Parents: <block>, <catch>, <error>, <filled>, <help>, <if>, <noinput>,
<nomatch>

Attributes: None.

<return>

Returns execution of a subdialog and returns control and data to the calling
dialog.

The value of this tag must be empty.

Parents: <block>, <catch>, <error>, <filled>, <help>, <if>, <noinput>,
<nomatch>

Attributes:

<sayas>

Type of text construct contained within the element that defines the way a word
or phrase is spoken, including text generated by the <value> tag. The rules to
convert <sayas> text into pre-recorded speech fragments are determined by an
external script. The default URI of this script is
http://localhost/snowshore/vxmlphrase.cgi. This URI can be modified to use an
external server by the com.snowshore.recsrc property.

The default rules handle US English only. The value of this tag must be parsed
text.

Parents: <audio>, <choice>, <prompt>

expr Initial value of the form-item variable; the default is
ECMAScript undefined. If initialized to a value, then the
form item is not visited unless the form-item variable is
cleared.

finalsilence Interval of silence that indicates the end of speech.
(Default: 3 seconds.)

max-time Maximum duration to record. (Default: 10 seconds.)

name The name of a form-item variable used to track whether
the <initial> is eligible to execute; defaults to an
inaccessible internal variable.

type MIME type of the recording.

Attribute Description

event Returns, then sends this event.

namelist Variable names to be returned to the calling dialog.

Attribute Description

VoiceXML Elements Reference

Application Developer’s Guide 347

Attributes:

<script>

Allows the specification of a block of client-side ECMAScript code.

Note: Although the IP Media Server supports this tag, Dialogic does not
recommend its use and considers it inadvisable to execute arbitrary logic on the
IP Media Server due to resource limitations.

The value of this tag must be parsed text.

Parents: <block>, <catch>, <error>, <filled>, <help>, <if>, <noinput>,
<nomatch>, <vxml>

Attributes:

<subdialog>

Invokes a second dialog within the current dialog. It provides a way for invoking
a new interaction, and returning to the original form. Local data, grammars, and
state information are saved and available when returning to the calling
document.

The value can be empty or can contain one or more of the child elements listed
below, where the element is either parsed text or the tag.

Parent: <form>

Child Elements: <audio>, <catch>, <error>, <filled>, <help>, <if>,
<noinput>, <nomatch>, <param>, <prompt>, <property>, <value>

Attributes:

Attribute Description

class Describes the way to render the value of:

phone (NANP numbers)

digits (Each spoken with no pauses.)

number (Spoken as a positive cardinal number. Negative
numbers are not supported and will produce odd output.)

Attribute Description

src URL for the resource.

Attribute Description

cond Boolean value of TRUE or FALSE. Defaults to TRUE. When
FALSE, the tag is ignored or skipped; the form is not visited.

expr Initial value of the form-item variable; the default is
ECMAScript undefined. If initialized to a value, then the
form item is not visited unless the form-item variable is
cleared.

method Request method (get or post).

modal Controls which grammars are active during the subdialog.

VoiceXML Elements Reference

Application Developer’s Guide 348

<submit>

This element is like <goto> because the application gets a new document. Unlike
<goto>, it lets you submit a list of variables to the document server, using an
HTTP GET or POST request.

The value of this tag must be empty.

Parents: <block>, <catch>, <error>, <filled>, <help>, <if>, <noinput>,
<nomatch>

Attributes:

<throw>

Sends an event to be received by <catch>.

The value of this tag must be empty.

Parents: <block>, <catch>, <error>, <filled>, <help>, <if>, <noinput>,
<nomatch>

Attribute:

name The result returned from the subdialog, an ECMAScript
object whose properties are the ones defined in the
namelist attribute of the <return> element.

namelist List of variables to submit to the subdialog. Same as
namelist in <submit>, except that the default is to submit
nothing. Only valid when fetching another document.

src URI of the subdialog.

Required.

Attribute Description

expr Like next, except that the URI is dynamically determined
by evaluating the given ECMAScript expression. One of
next, expr, or fetchtimeout is required.

method The request method (GET or POST). The default is GET.

namelist The list of variables to submit.

next The URL to which the query is submitted.

fetchtimeout Interval to wait for the content to be returned before
generating an error.badfetch event. If not specified, a
value derived from the innermost fetchtimeout property
is used.

Attribute Description

event Returns, then sends this event.

Attribute Description

VoiceXML Elements Reference

Application Developer’s Guide 349

<transfer>

Provides the ability to place an outgoing voice call to support transfers. A
“bridged” transfer session returns the caller to the original session with the
interpreter upon completion. A “blind” transfer session terminates when
completed.

Parent: <form>

VoiceXML Elements Reference

Application Developer’s Guide 350

Attributes:

Attribute Description

name The outcome of the transfer attempt. For possible return
values, see the following table.

expr Initial value of the form-item variable; the default is
ECMAScript undefined. If initialized to a value, then the
form item is not visited unless the form-item variable is
cleared.

cond Boolean value of TRUE or FALSE. Defaults to TRUE. When
FALSE, the tag is ignored or skipped; the form is not
visited.

dest The URL of the destination (phone, IP telephone address).

destexpr An ECMAScript expression yielding the URI of the
destination.

bridge What to do once the call is connected. If bridge is TRUE,
document interpretation suspends until the transferred
call terminates. Blind transfer is supported by hairpinning
RTP through the IP Media Server.

connect Time to wait while trying to connect the timeout call before
returning the noanswer condition. Default is platform
specific.

maxtime Time that the call is allowed to last, or 0 if it can last
arbitrarily long. Only applies if bridge is TRUE. (Default: 0.)

transfer URI of audio source to play while the audio transfer
attempt is in process (before far-end answer). If the
resource cannot be fetched, the error is ignored and the
transfer continues.

reqUri SIP URI to be used as the Request-URI in the outbound
INVITE. The value must be compliant with the grammar
for a SIP URL. If this attribute is not present the Request-
URI will have the same value as the To header. The To URI
value is determined by the dest attribute.

requri expr An ECMAscript expression that evaluates to a SIP URI.

src The SIP URI that shows up as ANI at the callee. Must be
of the form sip:user@server. This is to identify the caller for
billing purposes. (Dialogic-specific attribute)

srcexpr An ECMAScript expression yielding src. (Dialogic-specific
attribute).

stopdigits Defines the list of single DTMF digits that ends the
transfer.

longdigit Enables detection of long DTMF digits or multiple, short
instance of the same digit.

video Whether video is available on the outbound call. The value
can be one of suppress or allow. See “RTP Codec Selection
Using the <transfer> Element” (page 226).

VoiceXML Elements Reference

Application Developer’s Guide 351

Note: The src, srcexpr, stopdigits, longdigit, and video attributes are Dialogic-
specific attributes.

Return values of Name variable:

<value>

Inserts the value of an ECMAScript expression into a prompt.

The value of this tag must be empty.

Parents: <audio>, <block>, <catch>, <choice>, <error>, <field>,
<filled>, <help>, <if>, <initial>, <menu>, <noinput>, <nomatch>,
<record>, <subdialog>

Attributes:

<var>

Declares an ECMAScript variable. The scope of the variable is determined by the
parent tag.

The value of this tag must be empty.

Parents: <block>, <catch>, <error>, <filled>, <form>, <help>, <if>,
<noinput>, <nomatch>

Value Description

busy The endpoint refused the call.

noanswer There was no answer within the specified time.

network busy Some intermediate network refused the call.

near_end_disconnect The call completed and was terminated by the caller.

far_end_disconnect The call completed and was terminated by the callee.

network_disconnect The call completed and was terminated by the
network.

Attribute Description

expr Expression to render.

Required.

class Data type of the value.

recsrc URI used to determine text to prompt conversion.
Defaults to the value of com.snowshore.recsrc if
specified, otherwise it is
"http://locahost/snowshore/phrase.cgi?".

VoiceXML Elements Reference

Application Developer’s Guide 352

Attributes:

<vxml>

The top-level element in a VoiceXML document.

The value of this tag must contain one of more of the child elements listed
below.

Parent: None

Child Elements: <catch>, <error> <form>, <help>, <link>, <menu>,
<meta>, <noinput>, <nomatch>, <property>, <script>, <var>

Attributes:

Attribute Description

name Name of the variable.

Required.

expr An initial value.

Attribute Description

version Version of VoiceXML.

Required.

base Base URL. The root document URL, if any.

VoiceXML Attributes Reference

Application Developer’s Guide 353

VoiceXML Attributes Reference

This section describes the VoiceXML attributes supported by the IP Media
Server.

application

Specifies the URI of the root document.

Attribute for: <vxml>

bargein

Specifies whether user input can interrupt a prompt.

The IP Media Server supports the energy bargein type. The prompt is stopped
if a DTMF tone is detected.

Attribute for: <prompt>

Values:

bargeintype

Type of interrupt (bargein) the IP Media Server performs in response to DTMF
inputs.

Attribute for: <prompt>

Values:

Note: Dialogic recommends running several tests using all combinations of the
prompt element and its attributes.

base

The base URL for interpreting relative URLs.

Attribute for: <vxml>

beep

Whether to play a tone before recording.

Attribute for: <record>

Value Description

true

(default)

Allow input to interrupt.

false Do not allow input to interrupt.

Value Description

true The default value of bargein is true.

false The default value of bargein is false.

VoiceXML Attributes Reference

Application Developer’s Guide 354

Values:

bridge

Controls the platform behavior once the call is connected. If set to true, the
application stops interrupting documents until the transferred call terminates,
at which time document processing resumes.

If set to false, document interpretation is also suspended but terminates
immediately after the transferred call ends. This behavior does not follow the
VoiceXML specification which calls for the interpreter to throw a
telephone.disconnect.transfer event as soon as the call connects. Bridged transfer
is currently implemented by hair-pinning media from both calls through the IP
Media Server, which requires the VoiceXML session to continue its existence for
the lifetime of the call transfer.

Attribute for: <transfer>

Values:

class

The data type of the value.

Attribute for: <sayas> <value>

Values:

Value Description

true Plays a tone when recording starts.

false

(default
)

Does not play tone when recording starts.

Value Description

true Suspends document interpretation until the transferred
call terminates, at which time document processing
resumes.

false

(default)

Suspends document interpretation but terminates
immediately after the transferred call ends.

Value Description

phone The value is spoken as a phone number, with a leaning toward the
North American Numbering Plan (NANP). 10 digit numbers have
breaks after the 3rd and 6th digits. 7 digit numbers have breaks
after the 3rd digit. 4 digit numbers are spoken as is. 11 digit
numbers, where the first digit is a one, are spoken with a pause
after the 1st, 4th, and 7th digit. Other length numbers are spoken
with a pause after the 2nd digit, and each 3rd digit thereafter.

digits Each digit is spoken with no pauses.

number The value is spoken as a positive cardinal number. Negative
numbers are not supported and will produce odd output.

VoiceXML Attributes Reference

Application Developer’s Guide 355

cond

Boolean ECMAScript expression that serves as a guard.

Attribute for: <block>, <catch>, <elseif>, <error>, <field>, <help>,
<if>, <initial>, <noinput>, <nomatch>, <prompt>, <record>, <subdialog>,
<transfer>

Values:

connect-timeout

Time to wait while trying to connect the call before returning a noanswer
condition.

Attribute for: <transfer>

Values: Positive integers expressed in milliseconds or seconds when a
qualifier “s” is appended to the value, for example 1s.

content

Value of the meta-data property.

Attribute for: <meta>

count

Repeat count for prompt or handler.

Attribute for: <catch>, <error>, <help>, <noinput>, <nomatch>,
<prompt>

Values:

For prompts, the minimum count for the prompt to be played. Set to zero
when dialog is initialized. Increases by one each time user is prompted. The
<clear> tag resets it to zero.

For event handlers, the minimum count for the handler to be eligible to
handle an event. Set to zero at initialization and increased by one each time
event is triggered.

dest

Destination address for outbound calls initiated using <transfer>.

Attribute for: <transfer>

Value: The dest attribute must be in the form of a valid SIP URI, for
example sip:19783678400@gateway.carrier.net. (Default: none.)

Value Description

true

(default
)

The form item is executed.

false The form item is ignored or skipped; the form is not
visited.

VoiceXML Attributes Reference

Application Developer’s Guide 356

destexpr

An ECMAScript expression yielding the destination address for outbound calls
initiated via <transfer>.

Attribute for: <transfer>

Value: The expression must produce a valid SIP URI, for example
sip:19783678400@gateway.carrier.net. (Default: none.)

dtmf

Specifies touch-tone.

Attribute for: <choice>, <menu>

choiceText /CDATA (touch-tone digit for this choice).

menuDialog for making a selection among choices. See “<menu>” (page
342).

Values:

dtmfterm

Whether to allow touch-tone interruption.

Attribute for: <record>

Values:

event

Name of an event.

Attribute for: <catch>, <choice>, <link>, <return>, <throw>

expr

ECMAScript expression to evaluate. Depending on the tag, used to set a
variable, a URL, or for other purposes.

Attribute for: <assign>, <audio>, <block>, <choice>, <exit>,
<field>, <goto>, <initial>, <link>, <param>, <record>, <subdialog>,
<submit>, <value>, <var>, <transfer>

Value: Text (CDATA).

Value Description

true Assigns touch-tone digits.

false Does not assign touch-tone digits.

Value Description

true

(default)

Touch-tone terminates recording.

false Touch-tone does not terminate recording.

VoiceXML Attributes Reference

Application Developer’s Guide 357

expritem

ECMAScript that provides item name.

Attribute for: <goto>

Value: Text (CDATA).

finalsilence

Interval of silence that indicates end of speech.

Attribute for: <record>

Value: Text (CDATA). (Default: 3 seconds.)

http-equiv

The HTTP response header field name.

Attribute for: <meta>

Value: Text (NMTOKEN)

id

Names an element for later reference.

Attribute for: <form>, <menu>

Value: URL#anchorname is the syntax.

longdigit

Turns detection on or off on long DTMF digits or multiple, short instances of the
same digit in a two-second interval.

Attribute for: <transfer>

Values:

max-time

Maximum time the call is allowed to last, or 0 (zero) if call duration is unlimited.
This attribute only applies when the bridge attribute is set to true.

Attribute for: <transfer>

Values: Positive integers expressed in milliseconds or seconds (when a
qualifier “s” is appended to the value, for example 1s). (Default: 0. (zero))

method

The request method.

Attribute for: <subdialog> <submit>

Value Description

yes Turns DTMF detection on for long digits.

no

(default)

Turns DTMF detection off for long digits.

VoiceXML Attributes Reference

Application Developer’s Guide 358

Values:

modal

Whether to enable outside grammars.

Attribute for: <field>, <subdialog>

Values:

mode

Specifies mode for performing action when fields are filled in a form.

Attribute for: <filled>

Values:

msecs

Number of milliseconds to pause.

Attribute for: <break>

Value: Text. A length of time in milliseconds as a numerical value.

name

Name of an item, variable, or parameter.

Attribute for: <assign>, <block>, <field>, <initial>, <meta>,
<param>, <property>, <record>, <subdialog>, <var>, <transfer>

Values: Text.

namelist

List of variable names.

Value Description

get

(default)

HTTP GET method.

post HTTP POST method.

Value Description

true

(default)

Disable higher-level grammars in the scope.

false Enable higher-level grammars in the scope.

Value Description

all

(default)

Action executes when all fields are filled.

any Action is executed when any field is filled by user input.

VoiceXML Attributes Reference

Application Developer’s Guide 359

Attribute for: <clear>, <data>, <exit>, <filled>, <return>,
<subdialog>, <submit>

Value: A white space-separated list of variable or field names.

next

URL of the next page or dialog. This element is similar to <goto>, because it
results in a new dialog being obtained. Unlike <goto>, it lets you submit a list of
variables to the document server using an HTTP GET or POST request.

Attribute for: <choice>, <goto>, <link>

nextitem

First item to visit in the next dialog.

Attribute for: <goto>

Value: Text (NMTOKEN)

recsrc

Method to use when concatenating audio.

Attribute for: <value>

Value: The value of expr is expanded into a list of audio files by a CGI script
external to the VoiceXML process. The default URI of this script is
http://localhost/Cantata/vxmlphrase.cgi. This URI can be modified to use an external
server by the com.Cantata.recsrc property, or by setting the recsrc attribute. The
class and value of the phrase to be rendered are sent as properties of the CGI
script “class” and “value”.

reqUri

SIP URI to be used as the Request-URI in the outbound INVITE. The value must
be compliant with the grammar for a SIP URL. If this attribute is not present the
Request-URI will have the same value as the To header. The To URI value is
determined by the dest attribute.

scope

Range where an element can be used.

Attribute for: <form>, <grammar>, <menu>

Values:

size

Relative pause duration.

Attribute for: <break>

Value Description

dialog Scope is the current dialog.

document Scope is the current document.

VoiceXML Attributes Reference

Application Developer’s Guide 360

Values:

slot

Name of the grammar slot used to populate the variable. If the grammar slot is
absent, it defaults to the variable name. This attribute is useful when the
grammar format being used has a mechanism for returning sets of slot/value
pairs and the slot names differ from the field item variable names. If the
grammar returns only one slot, as do the built-in type grammars like Boolean,
then no matter what the slot's name, the field item variable gets the value of
that slot.

Attribute for: <field>

Value: Text (NMTOKEN)

src

Calling party identification (ANI) used when placing the outbound call through
<transfer>. This identifies the caller for billing purposes.

Attribute for: <transfer>

Value: Must be in the form of a valid SIP URI, for example
subscriber103@vm.carrier.net. (Default: none.)

srcexpr

ECMAScript expression yielding the calling party identification.

Attribute for: <transfer>

Value: The expression must produce a valid SIP URI, for example
sip:subscriber103@vm.carrier.net.

stopdigits

List of DTMF digits that terminate a transfer.

Attribute for: <transfer>

Values: 0-9, #, A-D. (Default: #.)

timeout

Maximum time to wait before triggering a <noinput> event.

Attribute for: <prompt>

Value: Text. A numerical value with optional decimals, followed by "s" for
seconds or "ms" for milliseconds.

Value Description

none 0 ms

small 50 ms

medium

(default)

200 ms

large 500 ms

VoiceXML Attributes Reference

Application Developer’s Guide 361

transfer-audio

URI of the audio source to play while the transfer attempt is in process. If the
resource cannot be fetched, the application ignores the error and continues the
transfer.

Attribute for: <transfer>

Value: Valid HTTP or file scheme URI. (No default.)

type

Indicates how to interpret text to be spoken. The meaning of this attribute
depends on the tag: for dtmf, grammar, object, param, and record, it is a content type
(MIME type); for field and say-as, it is a data type.

Attribute for: <dtmf>, <field>, <grammar>, <object> ,<param>,
<record>, <sayas>

Values:

value

Value to assign to the parameter or property named by the name attribute.

Attribute for: <param>, <property>

valuetype

Value to assign to the parameter or property named by the name attribute.

Attribute for: <param>

Values:

Value Description

dtmf x-dtmf or regex.

field A built-in type (Boolean, digits, phone, date, currency,
number, time).

grammar Content type of the grammar.

object Content type of the object data.

param MIME type of the result provided by a URI if the value type
is ref; only relevant for uses of <param> in <object>.

record MIME type of the recording. See “MIME Recording
Encoding Types” (page 363).

sayas Data type to use in interpreting the value for the
following: telephone, date, digits, number.

Value Description

data

(default)

Value is data.

ref Value is a URL pointing to data.

VoiceXML Attributes Reference

Application Developer’s Guide 362

version

Version of VoiceXML. Required.

Attribute for: <vxml>

Value: 1.0.

VCR

Whether VCR controls are active

Attribute for: <prompt>

Values:

video

Whether video media is offered on outgoing calls.

Attribute for: <transfer>

Values:

See “RTP Codec Selection Using the <transfer> Element” (page 226) for
additional information on the detailed interaction of the video attribute and RTP
codec selection.

Value Description

true VCR controls are enabled.

Value Description

allow Video media is offered on outgoing calls.

suppress Video media is not offered on outgoing calls.

VoiceXML Properties

Application Developer’s Guide 363

VoiceXML Properties

com.snowshore.criticaldigit_timer

Sets a special digit timer that specifies the interval to wait for additional user
input before returning a match to an active grammar. This property is used
when the application modifies the DTMF matching behavior.

Uses the VoiceXML standard "n {ms}|{s}" timer notation. Default unit is
milliseconds (ms).

Values:

MIME Recording Encoding Types

The MIME type and optional codec parameters define the file format and audio
encoding for the recording. Supports both headerless (raw) and .wav file
formats. Table 64 lists the MIME type, file format, and audio encoding.

Table 64. Supported MIME Types, Formats, and Audio Encodings

There are various commonly-used methods of specifying .wav format and the
desired audio encodings. The official IANA registered MIME type for wave is
audio/vnd.wave but audio/wav and audio/x-wav are used frequently. Table 65 lists the
accepted WAVE format specifiers.

Value Description

-2 The default critical digit timer is set to the same value as
the interdigit timer (thus it has no effect).

-1 Immediate. Use “shortest match first”.

0 Infinite. Use “longest match first”, but waits infinitely
once a match is found. Thus, matched input must end
with a return digit or restart digit.

>0 Uses “longest match first”, and waits that amount of time
when a match is found.

MIME Type File Format Audio Encoding

audio / basic raw G.711 µ-law

audio/ x-alaw-basic raw G.711 A law

VoiceXML Properties

Application Developer’s Guide 364

Table 65. Accepted WAVE Format Specifiers

Specify audio encoding by adding a codec parameter and value to the base
MIME type, for example:

audio/vnd.wave;codec=7

The official values for the codec parameter are defined by the IANA registry
(http:/www.iana.org/assignments/wave-avi-codec-registry), but other commonly used
forms are also supported.

Table 66 provides a summary of the supported codec parameters and values
and their corresponding audio encodings.

The video/x-wav MIME type always produces a file with a G.711 audio track and
an H.263 video track. No codec parameters are supported for this type.

MIME Type File
Format

Notes

audio/vnd.wave WAVE IANA standard

audio/wav WAVE

audio/x-wav

video/x-wav

WAVE

WAVE

Proprietary

Table 66. Codec Parameter Values

Value Audio Encoding Notes

7 G.711 µ-law IANA standard

6 G.711 A law IANA standard

31 Microsoft® GSM IANA standard

ulaw G.711 µ-law

alaw G.711 A law

msgsm Microsoft® GSM

ECMAScript Functionality

Application Developer’s Guide 365

ECMAScript Functionality

Table 67 summarizes the categories and features supported by the IP Media
Server’s VoiceXML interpreter.

Note: The ECMAScript Language Specification can be downloaded for free.

Table 67. ECMAScript Functionality

Category Feature/Keyword

Array Handling Array
join, length, reverse, sort

Assignments Assign (=)
Compound Assign (OP=)

Booleans Boolean

Comments /*...*/ or //

Constants/Literal
s

NaN
null
true, false
Infinity
undefined

Control flow Break
continue
for
for...in
if...else
return
while

Dates and Time Date
getDate, getDay, getFullYear, getHours,
getMilliseconds, getMinutes, getMonth,
getSeconds, getTime, getTimezoneOffset, getYear,
getUTCDate, getUTCDay, getUTCFullYear,
getUTCHours, getUTCMilliseconds, getUTCMinutes,
getUTCMonth, getUTCSeconds,
setDate, setFullYear, setHours, setMilliseconds,
setMinutes, setMonth, setSeconds, setTime,
setYear,
setUTCDate, setUTCFullYear, setUTCHours,
setUTCMilliseconds, setUTCMinutes, setUTCMonth,
setUTCSeconds,
toGMTString, toLocaleString, toUTCString, parse,
UTC

Declarations Function
new
this
var
with

ECMAScript Functionality

Application Developer’s Guide 366

Function Creation Function
arguments, length

Global Methods Global
escape, unescape
eval
isFinite, isNaN
parseInt, parseFloat

Math Math
abs, acos, asin, atan, atan2, ceil, cos, exp, floor,
log, max, min, pow, random, round, sin, sqrt, tan,
E, LN2, LN10, LOG2E, LOG10E, PI, SQRT1_2,
SQRT2

Numbers Number
MAX_VALUE, MIN_VALUE
NaN
NEGATIVE_INFINITY, POSITIVE_INFINITY

Object Creation Object
new
constructor, prototype, instanceof, toString,
valueOf

Operators Addition (+), Subtraction (-)
Modulus arithmetic (%)
Multiplication (*), Division (/)
Negation (-)
Equality (==), Inequality (!=)
Less Than (<), Less Than or Equal To (<=)
Greater Than (>)
Greater Than or Equal To (>=)
Logical And(&&), Or (||), Not (!)
Bitwise And (&), Or (|), Not (~), Xor (^)
Bitwise Left Shift (<<), Shift Right (>>)
Unsigned Shift Right (>>>)
Conditional (?:)
Comma (,)
delete, typeof, void
Decrement (--), Increment (++)

Objects Array
Boolean
Date
Function
Global
Math
Number
Object
String

Table 67. ECMAScript Functionality (continued)

Category Feature/Keyword

ECMAScript Functionality

Application Developer’s Guide 367

Strings String
charAt, charCodeAt, fromCharCode
indexOf, lastIndexOf
split
toLowerCase, toUpperCase
length

Table 67. ECMAScript Functionality (continued)

Category Feature/Keyword

Support for VoiceXML Extended Session Variables

Application Developer’s Guide 368

Support for VoiceXML Extended Session Variables

The Dialogic® VoiceXML browser supports the following VoiceXML 1.0 session
variables:

session.telephone.ani
session.telephone.dnis
session.telephone.rdnis (always set to NULL)

session.telephone.redirect_reason

In addition to the above, other session variables are supported so that a
VoiceXML script can access a complete set of information from the SIP call.
Some of the new session variables are defined in VoiceXML 2.0, and others are
Dialogic® extensions as noted on the following page.

VoiceXML 2.0 Recommendations

session.connection.local.uri

Value: Set to the SIP Request-URI; note that any SIP escapes (%xx) in the
Request-URI are still in this variable as well.

session.connection.remote.uri

Value: Set to the SIP From-URI.

session.connection.protocol.name

Value: Always SIP.

session.connection.protocol.version

Value: Always 2.0.

Dialogic® Extensions

session.connection.media

An array where each element represents an RTP media stream. Each array
element has the following associated attributes:

"type" - indicates the MIME type of media stream (currently either "audio" or
"video")
"subtype" - indicates the MIME sub-type, or encoding, of the media stream (e.g.
PCMU, PCMA, H264, etc.)

session.connection.protocol.sip.parameter

Value: An array of name/value pairs parsed from the SIP Request-URI; the
name and value are "UnEscaped," meaning any SIP escapes (%xx) in the
URI are expanded before being assigned.

session.connection.protocol.sip.parameter[n].name

Value: The name of the nth parameter.

session.connection.protocol.sip.parameter[n].value

Value: The "value" (if any, can be empty) of the nth parameter.

session.connection.protocol.sip.uri

Support for VoiceXML Extended Session Variables

Application Developer’s Guide 369

Value: Set to the SIP Request-URI. Note that any SIP escapes (%xx) in the
Request-URI are still in this variable as well. This variable duplicates the
session.connection.local.uri by design.

session.connection.protocol.sip.to

Value: Set to the SIP To-URI. Since the VoiceXML 2.0 defined
session.connection.local.uri variable is mapped to the request URI a separate
variable is required to contain the contents of the SIP To header.

session.connection.protocol.sip.from

Value: Set to the SIP From-URI. This variable duplicates the
session.connection.remote.uri by design.

session.connection.protocol.sip.call_id

Value: Set to the SIP Call ID.

Example

The following example shows the mapping between SIP headers and the newly
supported VoiceXML session variables.

Given the following SIP INVITE request:

INVITE
sip:dialog@10.102.4.26;voicexml=http://10.102.4.9:9020/ivr/s

ip_init.vxml%3fdnis%3d961234567%26hasvideo%3d1;dogs=nice;
user=phone

SIP/2.0
From: <sip:968037431@10.102.4.45:5060>;tag=2d04660a-13c4-

40ed433f-9ec19fd-1786
To: <sip:961234567@10.102.4.9>
Call-ID: 6a7b774-2d04660a-13c4-40ed433f-9ec19fd-

7061@10.102.4.45
CSeq: 1 INVITE
Via: SIP/2.0/UDP

10.102.4.134:5060;branch=z9hG4bKi8MKi8i!yi8MK2SsMu8Uyake2
q0OUqMi8i!y.1-1d9515c

Via: SIP/2.0/UDP
10.102.4.45:5060;received=10.102.4.45;branch=z9hG4bK-
40ed433f-9ec19fd-847

Max-Forwards: 69
User-Agent: RADVision ViaIP GW Vers. 1.0
Call-Info: <Media:Video>;purpose=info
Contact: <sip:968037431@10.102.4.45:5060>
Content-Length:0

The Media Server populates the new VoiceXML session variables, as shown:

session.connection.protocol.name = "SIP"
session.connection.protocol.version = "2.0"
session.connection.local.uri =

sip:dialog@10.102.4.26;voicexml=http://10.102.4.9:9020/iv
r/sip_init.vxml%3fdnis%3d961234567%26hasvideo%3d1;dogs=ni
ce;user=phone"

session.connection.remote.uri =
<sip:968037431@10.102.4.45:5060>;tag=2d04660a-13c4-
40ed433f-9ec19fd-1786

Support for VoiceXML Extended Session Variables

Application Developer’s Guide 370

session.connection.protocol.sip.parameter[0].name =
"voicexml"

session.connection.protocol.sip.parameter[0].value =
"http://10.102.4.9:9020/ivr/sip_init.vxml?dnis=961234567&
hasvideo=1"

session.connection.protocol.sip.parameter[1].name = "dogs"
session.connection.protocol.sip.parameter[1].value = "nice"
session.connection.protocol.sip.parameter[2].name = "user"
session.connection.protocol.sip.parameter[2].value = "phone"
session.connection.protocol.sip.uri =

sip:dialog@10.102.4.26;voicexml=http://10.102.4.9:9020/iv
r/sip_init.vxml%3fdnis%3d961234567%26hasvideo%3d1;dogs=ni
ce;user=phone"

session.connection.protocol.sip.to =
<sip:961234567@10.102.4.9>

session.connection.protocol.sip.from =
<sip:968037431@10.102.4.45:5060>;tag=2d04660a-13c4-
40ed433f-9ec19fd-1786

session.connection.protocol.sip.call_id = 6a7b774-2d04660a-
13c4-40ed433f-9ec19fd-7061@10.102.4.45

Application Developer’s Guide 371

C - MSCML Schema

Example 49. MSCML Schema

 <?xml version=”1.0” encoding=”UTF-8”?>
 <xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
 elementFormDefault=”qualified”>
 <xs:element name=”MediaServerControl”>
 <xs:complexType>
 <xs:choice>
 <xs:element name=”request”>
 <xs:complexType>
 <xs:choice>
 <xs:element name=”configure_conference”
 type=”configure_conferenceRequestType”/>
 <xs:element name=”configure_leg”
 type=”configure_legRequestType”/>
 <xs:element name=”play” type=”playRequestType”/>
 <xs:element name=”playcollect”
 type=”playcollectRequestType”/>
 <xs:element name=”playrecord”
 type=”playrecordRequestType”/>
 <xs:element name=”managecontent”
 type=”managecontentRequestType”/>
 <xs:element name=”faxplay”
 type=”faxRequestType”/>
 <xs:element name=”faxrecord”
 type=”faxRequestType”/>
 <xs:element name=”stop” type=”stopRequestType”/>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 <xs:element name=”response” type=”responseType”/>
 <xs:element name=”notification”>
 <xs:complexType>
 <xs:choice>
 <xs:element name=”conference”

Application Developer’s Guide 372

 type=”conferenceNotificationType”/>
 <xs:element name=”keypress”
 type=”keypressNotificationType”/>
 <xs:element name=”signal”
 type=”signalNotificationType”/>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 <xs:attribute name=”version” use=”required”/>
 </xs:complexType>
 </xs:element>

 <!-- Definitions for base and concrete MSCML requests -->
 <!-- and embedded types. -->
 <xs:complexType name=”base_requestType” abstract=”true”>
 <xs:attribute name=”id” type=”xs:string”/>
 </xs:complexType>
 <xs:complexType name=”playRequestType”>
 <xs:complexContent>
 <xs:extension base=”base_requestType”>
 <xs:sequence>
 <xs:element name=”prompt” type=”promptType”
 minOccurs=”0”/>
 </xs:sequence>
 <xs:attribute name=”prompturl” type=”xs:string”/>
 <xs:attribute name=”offset” type=”xs:string”/>
 <xs:attribute name=”promptencoding” type=”xs:string”/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name=”configure_conferenceRequestType”>
 <xs:complexContent>
 <xs:extension base=”base_requestType”>
 <xs:sequence>
 <xs:element name=”subscribe”
 type=”conference_eventsubscriptionType” minOccurs=”0”/>
 </xs:sequence>
 <xs:attribute name=”reservedtalkers”
 type=”xs:positiveInteger”/>
 <xs:attribute name=”reserveconfmedia” type=”yesnoType”
 default=”yes”/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name=”configure_legRequestType”>
 <xs:complexContent>
 <xs:extension base=”base_requestType”>
 <xs:sequence>
 <xs:element name=”inputgain” type=”gainType”
 minOccurs=”0”/>
 <xs:element name=”outputgain” type=”gainType”
 minOccurs=”0”/>
 <xs:element name=”configure_team”
 type=”configure_teamType” minOccurs=”0”/>
 <xs:element name=”subscribe”
 type=”leg_eventsubscriptionType” minOccurs=”0”/>

Application Developer’s Guide 373

 </xs:sequence>
 <xs:attribute name=”type”>
 <xs:simpleType>
 <xs:restriction base=”xs:NMTOKEN”>
 <xs:enumeration value=”talker”/>
 <xs:enumeration value=”listener”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”mixmode”>
 <xs:simpleType>
 <xs:restriction base=”xs:NMTOKEN”>
 <xs:enumeration value=”full”/>
 <xs:enumeration value=”mute”/>
 <xs:enumeration value=”preferred”/>
 <xs:enumeration value=”parked”/>
 <xs:enumeration value=”private”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”dtmfclamp” type=”yesnoType”/>
 <xs:attribute name=”toneclamp” type=”yesnoType”/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name=”configure_teamType”>
 <xs:sequence>
 <xs:element name=”teammate” type=”teammateType” minOccurs=”0”
 maxOccurs=”unbounded”/>
 </xs:sequence>
 <xs:attribute name=”id” type=”xs:string”/>
 <xs:attribute name=”action” use=”required”>
 <xs:simpleType>
 <xs:restriction base=”xs:string”>
 <xs:enumeration value=”add”/>
 <xs:enumeration value=”delete”/>
 <xs:enumeration value=”query”/>
 <xs:enumeration value=”set”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 <xs:complexType name=”teammateType”>
 <xs:attribute name=”id” type=”xs:string” use=”required”/>
 </xs:complexType>
 <xs:complexType name=”playcollectRequestType”>
 <xs:complexContent>
 <xs:extension base=”base_requestType”>
 <xs:sequence>
 <xs:element name=”prompt” type=”promptType”
 minOccurs=”0”/>
 <xs:element name=”pattern” type=”dtmfGrammarType”
 minOccurs=”0”/>
 </xs:sequence>
 <xs:attribute name=”prompturl” type=”xs:string”/>
 <xs:attribute name=”offset” type=”xs:string”/>
 <xs:attribute name=”barge” type=”yesnoType” default=”yes”/>

Application Developer’s Guide 374

 <xs:attribute name=”promptencoding” type=”xs:string”/>
 <xs:attribute name=”cleardigits” type=”yesnoType”
 default=”no”/>
 <xs:attribute name=”maxdigits” type=”xs:string”/>
 <xs:attribute name=”firstdigittimer” type=”xs:string”
 default=”5000ms”/>
 <xs:attribute name=”interdigittimer” type=”xs:string”
 default=”2000ms”/>
 <xs:attribute name=”extradigittimer” type=”xs:string”
 default=”1000ms”/>
 <xs:attribute name=”interdigitcriticaltimer”
 type=”xs:string”/>
 <xs:attribute name=”skipinterval” type=”xs:string”
 default=”6s”/>
 <xs:attribute name=”ffkey” type=”DTMFkeyType”/>
 <xs:attribute name=”rwkey” type=”DTMFkeyType”/>
 <xs:attribute name=”returnkey” type=”DTMFkeyType”
 default=”#”/>
 <xs:attribute name=”escapekey” type=”DTMFkeyType”
 default=”*”/>
 <xs:attribute name=”maskdigits” type=”yesnoType”
 default=”no”/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name=”playrecordRequestType”>
 <xs:complexContent>
 <xs:extension base=”base_requestType”>
 <xs:sequence>
 <xs:element name=”prompt” type=”promptType”
 minOccurs=”0”/>
 </xs:sequence>
 <xs:attribute name=”prompturl” type=”xs:string”/>
 <xs:attribute name=”promptencoding” type=”xs:string”/>
 <xs:attribute name=”offset” type=”xs:string” default=”0”/>
 <xs:attribute name=”barge” type=”yesnoType” default=”yes”/>
 <xs:attribute name=”cleardigits” type=”yesnoType”
 default=”no”/>
 <xs:attribute name=”escapekey” type=”xs:string” default=”*”/>
 <xs:attribute name=”recurl” type=”xs:string” use=”required”/>
 <xs:attribute name=”mode” default=”overwrite”>
 <xs:simpleType>
 <xs:restriction base=”xs:NMTOKEN”>
 <xs:enumeration value=”append”/>
 <xs:enumeration value=”overwrite”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”recencoding” type=”xs:string”/>
 <xs:attribute name=”initsilence” type=”xs:string”/>
 <xs:attribute name=”endsilence” type=”xs:string”/>
 <xs:attribute name=”duration” type=”xs:string”/>
 <xs:attribute name=”beep” type=”yesnoType” default=”yes”/>
 <xs:attribute name=”recstopmask” type=”xs:string”
 default=”01234567890*#”/>
 </xs:extension>
 </xs:complexContent>

Application Developer’s Guide 375

 </xs:complexType>
 <xs:complexType name=”managecontentRequestType”>
 <xs:complexContent>
 <xs:extension base=”base_requestType”>
 <xs:attribute name=”fetchtimeout” type=”xs:string”
 default=”10000”/>
 <xs:attribute name=”mimetype” type=”xs:string”/>
 <xs:attribute name=”name” type=”xs:string”/>
 <xs:attribute name=”httpmethod”>
 <xs:simpleType>
 <xs:restriction base=”xs:NMTOKEN”>
 <xs:enumeration value=”put”/>
 <xs:enumeration value=”post”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”action”>
 <xs:simpleType>
 <xs:restriction base=”xs:NMTOKEN”>
 <xs:enumeration value=”move”/>
 <xs:enumeration value=”delete”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”dest” type=”xs:string”/>
 <xs:attribute name=”src” type=”xs:string” use=”required”/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name=”stopRequestType”>
 <xs:complexContent>
 <xs:extension base=”base_requestType”/>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name=”faxRequestType”>
 <xs:complexContent>
 <xs:extension base=”base_requestType”>
 <xs:sequence>
 <xs:element name=”prompt” type=”promptType” minOccurs=”0”/>
 </xs:sequence>
 <xs:attribute name=”lclid” type=”xs:string”/>
 <xs:attribute name=”prompturl” type=”xs:string”/>
 <xs:attribute name=”recurl” type=”xs:string”/>
 <xs:attribute name=”rmtid” type=”xs:string”/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name=”dtmfGrammarType”>
 <xs:choice>
 <xs:element name=”regex” type=”dtmfPatternType”
 maxOccurs=”unbounded”/>
 <xs:element name=”mgcpdigitmap” type=”dtmfPatternType”/>
 <xs:element name=”megacodigitmap” type=”dtmfPatternType”/>
 </xs:choice>
 </xs:complexType>
 <xs:complexType name=”dtmfPatternType”>
 <xs:attribute name=”value” type=”xs:string” use=”required”/>

Application Developer’s Guide 376

 <xs:attribute name=”name” type=”xs:string”/>
 </xs:complexType>
 <!-- Definitions for base and concrete MSCML responses -->
 <!-- and embedded types. -->
 <xs:complexType name=”base_responseType” abstract=”true”>
 <xs:attribute name=”request” use=”required”>
 <xs:simpleType>
 <xs:restriction base=”xs:NMTOKEN”>
 <xs:enumeration value=”configure_conference”/>
 <xs:enumeration value=”configure_leg”/>
 <xs:enumeration value=”play”/>
 <xs:enumeration value=”playcollect”/>
 <xs:enumeration value=”playrecord”/>
 <xs:enumeration value=”managecontent”/>
 <xs:enumeration value=”faxplay”/>
 <xs:enumeration value=”faxrecord”/>
 <xs:enumeration value=”stop”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”id” type=”xs:string”/>
 <xs:attribute name=”code” type=”xs:string” use=”required”/>
 <xs:attribute name=”text” type=”xs:string” use=”required”/>
 </xs:complexType>
 <xs:complexType name=”responseType”>
 <xs:complexContent>
 <xs:extension base=”base_responseType”>
 <xs:sequence>
 <xs:element name=”error_info”
 type=”stoponerrorResponseType” minOccurs=”0”/>
 <xs:element name=”team” type=”configure_teamResponseType”
 minOccurs=”0”/>
 </xs:sequence>
 <xs:attribute name=”reason” type=”xs:string”/>
 <xs:attribute name=”reclength” type=”xs:string”/>
 <xs:attribute name=”recduration” type=”xs:string”/>
 <xs:attribute name=”digits” type=”xs:string”/>
 <xs:attribute name=”name” type=”xs:string”/>
 <xs:attribute name=”playduration” type=”xs:string”/>
 <xs:attribute name=”playoffset” type=”xs:string”/>
 <xs:attribute name=”faxcode” type=”xs:string”/>
 <xs:attribute name=”pages_sent” type=”xs:string”/>
 <xs:attribute name=”pages_recv” type=”xs:string”/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name=”stoponerrorResponseType”>
 <xs:attribute name=”code” type=”xs:string” use=”required”/>
 <xs:attribute name=”text” type=”xs:string” use=”required”/>
 <xs:attribute name=”context” type=”xs:string” use=”required”/>
 </xs:complexType>
 <xs:complexType name=”configure_teamResponseType”>
 <xs:sequence>
 <xs:element name=”teammate” type=”teammateType” minOccurs=”0”
 maxOccurs=”unbounded”/>
 </xs:sequence>
 <xs:attribute name=”id” type=”xs:string” use=”required”/>

Application Developer’s Guide 377

 <xs:attribute name=”numteam” type=”xs:integer” use=”required”/>
 </xs:complexType>

 <!-- Definitions for MSCML event subscriptions and -->
 <!-- embedded types -->
 <xs:complexType name=”conference_eventsubscriptionType”>
 <xs:sequence>
 <xs:element name=”events”>
 <xs:complexType>
 <xs:sequence>
 <xs:element name=”activetalkers”
 type=”activetalkersSubscriptionType”/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name=”activetalkersSubscriptionType”>
 <xs:attribute name=”report” type=”yesnoType” use=”required”/>
 <xs:attribute name=”interval” type=”xs:string” default=”60s”/>
 </xs:complexType>
 <xs:complexType name=”leg_eventsubscriptionType”>
 <xs:sequence>
 <xs:element name=”events”>
 <xs:complexType>
 <xs:sequence>
 <xs:element name=”keypress”
 type=”keypressSubscriptionType” minOccurs=”0”
 maxOccurs=”1”/>
 <xs:element name=”signal” type=”signalSubscriptionType”
 minOccurs=”0” maxOccurs=”unbounded”/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name=”keypressSubscriptionType”>
 <xs:attribute name=”report” use=”required”>
 <xs:simpleType>
 <xs:restriction base=”xs:NMTOKEN”>
 <xs:enumeration value=”standard”/>
 <xs:enumeration value=”long”/>
 <xs:enumeration value=”both”/>
 <xs:enumeration value=”none”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”maskdigits” type=”yesnoType” default=”no”/>
 </xs:complexType>
 <xs:complexType name=”signalSubscriptionType”>
 <xs:attribute name=”type” type=”xs:NMTOKEN” use=”required”/>
 <xs:attribute name=”report” type=”yesnoType” use=”required”/>
 </xs:complexType>
 <!-- Definitions for MSCML event notifications and -->
 <!-- embedded types. -->
 <xs:complexType name=”conferenceNotificationType”>
 <xs:sequence>

Application Developer’s Guide 378

 <xs:element name=”activetalkers”
 type=”activetalkersNotificationType” minOccurs=”0”/>
 </xs:sequence>
 <xs:attribute name=”uniqueid” type=”xs:string” use=”required”/>
 <xs:attribute name=”numtalkers” type=”xs:string”
 use=”required”/>
 </xs:complexType>
 <xs:complexType name=”activetalkersNotificationType”>
 <xs:sequence minOccurs=”0”>
 <xs:element name=”talker” maxOccurs=”unbounded”>
 <xs:complexType>
 <xs:attribute name=”callid” type=”xs:string”
 use=”required”/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name=”keypressNotificationType”>
 <xs:sequence>
 <xs:element name=”status” type=”statusType”/>
 </xs:sequence>
 <xs:attribute name=”digit” type=”DTMFkeyType” use=”required”/>
 <xs:attribute name=”length” use=”required”>
 <xs:simpleType>
 <xs:restriction base=”xs:NMTOKEN”>
 <xs:enumeration value=”standard”/>
 <xs:enumeration value=”long”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”method” use=”required”>
 <xs:simpleType>
 <xs:restriction base=”xs:NMTOKEN”>
 <xs:enumeration value=”standard”/>
 <xs:enumeration value=”long”/>
 <xs:enumeration value=”double”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”interdigittime” type=”xs:string”
 use=”required”/>
 </xs:complexType>
 <xs:complexType name=”statusType”>
 <xs:attribute name=”command” use=”required”>
 <xs:simpleType>
 <xs:restriction base=”xs:string”>
 <xs:enumeration value=”idle”/>
 <xs:enumeration value=”play”/>
 <xs:enumeration value=”collect”/>
 <xs:enumeration value=”record”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”duration” type=”xs:string” use=”required”/>
 </xs:complexType>
 <xs:complexType name=”signalNotificationType”>
 <xs:attribute name=”type” use=”required” fixed=”busy”/>

Application Developer’s Guide 379

 </xs:complexType>

 <!-- Definitions for miscellaneous embedded, helper data types -->
 <xs:complexType name=”promptType”>
 <xs:choice maxOccurs=”unbounded”>
 <xs:element name=”audio” type=”promptcontentType”/>
 <xs:element name=”variable” type=”spokenvariableType”/>
 </xs:choice>
 <xs:attribute name=”locale” type=”xs:string”/>
 <xs:attribute name=”baseurl” type=”xs:string”/>
 <xs:attribute name=”stoponerror” type=”yesnoType” default=”no”/>
 <xs:attribute name=”gain” type=”xs:string” default=”0”/>
 <xs:attribute name=”gaindelta” type=”xs:string” default=”0”/>
 <xs:attribute name=”rate” type=”xs:string” default=”0”/>
 <xs:attribute name=”ratedelta” type=”xs:string” default=”0”/>
 <xs:attribute name=”repeat” type=”xs:string” default=”1”/>
 <xs:attribute name=”duration” type=”xs:string”
 default=”infinite”/>
 <xs:attribute name=”offset” type=”xs:string” default=”0”/>
 <xs:attribute name=”delay” type=”xs:string” default=”0”/>
 </xs:complexType>
 <xs:complexType name=”promptcontentType”>
 <xs:attribute name=”url” type=”xs:string” use=”required”/>
 <xs:attribute name=”encoding” type=”xs:string”/>
 <xs:attribute name=”gain” type=”xs:string” default=”0”/>
 <xs:attribute name=”gaindelta” type=”xs:string” default=”0”/>
 <xs:attribute name=”rate” type=”xs:string” default=”0”/>
 <xs:attribute name=”ratedelta” type=”xs:string” default=”0”/>
 </xs:complexType>
 <xs:complexType name=”spokenvariableType”>
 <xs:attribute name=”type” use=”required”>
 <xs:simpleType>
 <xs:restriction base=”xs:NMTOKEN”>
 <xs:enumeration value=”dat”/>
 <xs:enumeration value=”dig”/>
 <xs:enumeration value=”dur”/>
 <xs:enumeration value=”mth”/>
 <xs:enumeration value=”mny”/>
 <xs:enumeration value=”num”/>
 <xs:enumeration value=”sil”/>
 <xs:enumeration value=”str”/>
 <xs:enumeration value=”tme”/>
 <xs:enumeration value=”wkd”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”subtype”>
 <xs:simpleType>
 <xs:restriction base=”xs:NMTOKEN”>
 <xs:enumeration value=”mdy”/>
 <xs:enumeration value=”dmy”/>
 <xs:enumeration value=”ymd”/>
 <xs:enumeration value=”ndn”/>
 <xs:enumeration value=”t12”/>
 <xs:enumeration value=”t24”/>
 <xs:enumeration value=”USD”/>
 <xs:enumeration value=”gen”/>

Application Developer’s Guide 380

 <xs:enumeration value=”ndn”/>
 <xs:enumeration value=”crd”/>
 <xs:enumeration value=”ord”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”value” type=”xs:string” use=”required”/>
 </xs:complexType>
 <xs:simpleType name=”yesnoType”>
 <xs:restriction base=”xs:NMTOKEN”>
 <xs:enumeration value=”yes”/>
 <xs:enumeration value=”no”/>
 <xs:enumeration value=”1”/>
 <xs:enumeration value=”0”/>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name=”DTMFkeyType”>
 <xs:restriction base=”xs:string”>
 <xs:pattern value=”[0-9]”/>
 <xs:pattern value=”[A-D]”/>
 <xs:pattern value=”[a-d]”/>
 <xs:pattern value=”#”/>
 <xs:pattern value=”*”/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name=”gainType”>
 <xs:choice>
 <xs:element name=”auto” type=”autogainType”/>
 <xs:element name=”fixed” type=”fixedgainType”/>
 </xs:choice>
 </xs:complexType>
 <xs:complexType name=”autogainType”>
 <xs:attribute name=”startlevel” type=”xs:string”/>
 <xs:attribute name=”targetlevel” type=”xs:string”/>
 <xs:attribute name=”silencethreshold” type=”xs:string”/>
 </xs:complexType>
 <xs:complexType name=”fixedgainType”>
 <xs:attribute name=”level” type=”xs:string”/>
 </xs:complexType>
 </xs:schema>

Application Developer’s Guide 381

D - Dial Pulse Detection

This appendix describes the Dial Pulse Detection feature and includes the
following sections:

Overview

Configuration

Overview

Application Developer’s Guide 382

Overview

In addition to the existing checks for Dual Tone Multi Frequency (DTMF) and Call
Progress Analysis (CPA) tones, the IP Media Server can be configured to detect
Dial Pulses.

Dial Pulse Detection and DTMF

This feature supports all of the features associated with the DTMF signal
detection. It is designed to minimize the considerations that an application
developer has to address when supporting both DTMF and Dial Pulse detection.

The following applies to Dial Pulse detection and DTMF detection:

Dial Pulse detector can detect pulse dialed digits in any call state that allows
DTMF detection.

Dial Pulse detection runs concurrently with DTMF detection. You can
configure the Dial Pulse detector to disable itself when it first receives a
DTMF digit. This option is configured by the parameter DP_detectAfterDtmf
(See Table on page 383.)

The IP Media Server detects Dial Pulse and DTMF within a single stream. As
a result, when the IP Media Server detects each type of signaling, it checks
for the completion of any previously detected digits of the alternate type.

Consistency

In order for the IP Media Server to detect Dial Pulse digits, they must be fairly
consistent in form and meet the criteria defined in the configuration
parameters. You can manipulate these parameters to meet the dial pulse
criteria for differing networks and implementations.

MSCML and VXML 1.0/2.0 Support

Dial Pulse detection is compatible with MSCML and VXML applications - both
VXML versions 1.0 and 2.0.

When collecting dial pulse digits under VXML, the following VXML properties can
be set so collection will not time out. Values will depend on the application and
average dial pulse timeout.

<property name="timeout" value="10s"/>
<property name="interdigittimeout" value="10s"/>

The default values of these properties for VXML 1.0 and 2.0 are different. If the
interdigit timing is large, VXML may declare a timeout while collecting digits.
VXML 2.0 is more sensitive to this issue as its default values are smaller. Use
the VXML code provided to change these default values.

Configuration

Application Developer’s Guide 383

Configuration

Dial Pulse detection is configured separately from DTMF detection. DTMF is
always detected and Dial Pulse detection is configurable.

Dial Pulse is configured with the DP_DetectAfterDtmf parameter. If that
parameter is set to Y, the IP Media Server detects Dial Pulse after detecting a
DTMF. If configured to N, the IP Media Server no longer detects Dial Pulse after
detecting a DTMF.

Parameters

The IP Media Server detects the properties of a dial pulse such as those
represented by the parameters in the following table. You can configure these
parameters only in the snowshore.cfg file (keyword=value).

Table 68. Dial Pulse Detection Parameters

Parameter Description Default
(in

Decimal)

Range

DP_enabled DP Enabled

Determines if the Dial Pulse
detection is enabled or
disabled system-wide

N Y or N

DP_detectAfterDtmf DP Detect After Dtmf

Determines if Dial Pulses
should be detected on a call
leg after DTMF has been
detected on that leg.

N Y or N

DP_low_Thresh Low Threshold Level

Sample level required to be
below in order to declare
sample as a Low Signal

5,000 0 to 32768

DP_lowThreshCnt Low Threshold Count

Number of consecutive Low
samples to be considered a
post Dial Pulse Low
(or trough)

17 0 to 32768

DP_peakThresh Peak Threshold

Sample value required for
signal to be declared a dial
pulse peak

 14,000 20 to 32768

Configuration

Application Developer’s Guide 384

DP_maxTransCnt Max Transition Count

Maximum low to high
transition time (samples).
For a peak to be declared,
the ramp time has to be
less than this number of
samples

30,000 0 to 32768

DP_settleByCnt Settle By Count

Number of consecutive
samples that the signal
must be below the
threshold to declare the
signal as a dial pulse.

400 0 to 65535

DG_InterDigitQuietCnt Inter-Digit Quiet Count

Number of 10 ms frames
between the last pulse of a
previous digit and the first
pulse of the next digit.

30 20 to 32768

Parameter Description Default
(in

Decimal)

Range

Configuration

Application Developer’s Guide 385

The following figure illustrates these parameters and the description follows.

Figure 21. Dial Pulse Detection Parameters

Description of Dial Pulse Detection Algorithm

The first representative pulse is a digit 1. Note the pair of pulses. Each of the
configurable parameters is indicated by a line on the figure. The second pulse
is ignored by the algorithm because it does not exceed the peak threshold at
any time.

The first pulse exceeds the Peak Threshold of approximately 25,000 within a
small enough number of samples (defined by Max Trans Count) to constitute
the start of Dial Pulse.

The first pulse then returns below the Low Threshold and remains there
(settles) between the red and green vertical lines.

The number of packets received during this interval is the Settle By Count. This
point is the end of a detected dial pulse.

Between the green and pink lines, the IP Media Server counts the consecutive
samples the signal remains below the Low Threshold. This information is useful
when determining the time spacing between pulses used to determine if two
consecutive pulses are from the same digit or from different digits.

Application Developer’s Guide 386

Index

Symbols

key 149
* key 149
= 178, 328
? 178, 328

Numerics

100rel 77
2833 events 102
3GPP 32, 33, 218, 219
3GPP2 32, 33, 218, 219

A

ACK method (SIP) 54
active talker events 29, 106, 112, 115
activetalkers (MSCML) 136
advanced conferences

active talker events 115
audio 121
control leg 111, 116
creating 111
defaults 107
DTMF 119
joining participants 113, 249
modifying conference 112, 248
modifying participants 114
MSCML 125
parking participants 116, 253
playing to 111, 116
recording 111, 116
removing participants 114

Advanced conferencing attributes
reserveconf media 107
reserved talkers 107

annc 27, 82, 89, 91
announcement parameters 91

delay 95

duration 96
early 95
play 35, 94

announcement sequences 36, 89
announcement service indicator 27

See also annc
announcement variables

digits 96
money 97
months 97
numbers 97
silence 98
strings 98
time 98
weekdays 98

announcements 35, 89
default locations 36
in conferences 140
Request-URI 90
sequences 89, 92
simple 35, 89
storage 35
types of 89

application (VoiceXML) 353
application servers 26, 47
assign element (VoiceXML) 183, 332
attribute lines (SDP) 75
Attributes

endsilence 152
initsilence 152
playrecord 151, 152
stop_on_error 151

attributes
stop_on_error 153

audio 32
DTMF digits 34, 138
duration of play 96
encoding 168
file retrieval 89
in conferences 116, 121, 139
mixing 139
playing 91
recording 151, 161
supported CODECs 74
voice encoding 32

Index

Application Developer’s Guide 387

audio element (VoiceXML) 183, 332
audio files

cardinal numbers 316
Chinese Mandarin 313
dates 317
default location 36, 89
in Sound Library 35
letters of the alphabet 318
ordinal numbers 317
press key phrases 320
standard phrases 313
storage 35

B

barge (MSCML) 148, 151, 163
bargein (VoiceXML) 353
bargeintype (VoiceXML) 353
base (VoiceXML) 353
baserurl (MSCML) 164
beep (VoiceXML) 353
block element (VoiceXML) 184, 333
break element (VoiceXML) 333
bridge (VoiceXML) 354

C

cached fonts 229
call control 26
Call-ID header (SIP) 62
channels 36
choice element (VoiceXML) 185, 189, 334
class (VoiceXML) 354
clear element (VoiceXML) 186, 334
cleardigits (MSCML) 164
CLI

configuration for conferences 99
code (MSCML) 174
CODECs 71, 74
cond (VoiceXML) 355
conf= 27, 99
conference control leg 111, 116
conference participants

advanced conferences 113
audio mixing 139
joining to advanced conference 113
joining to simple conference 101
modifying 114
playing audio to 121
removing 114
simple conferences 102

conference service indicator 99
conferences 36

advanced 106
audio 121

control leg 106
creating advanced 111
creating simple 101
defaults for advanced 107
defaults for simple 102
DTMF digits 119, 138
ending simple 101
examples 101
joining participants 101, 113
mixing 36
modifying advanced 112, 114
parking participants 116
playing announcements in 140
recording 116, 161
removing participants 114
simple 37, 101

conferencing attributes
activetalkers (MSCML) 136
configure_team (MSCML) 136
dtmfclamp (MSCML) 137, 138
events (MSCML) 137
id (MSCML) 138
keypress (MSCML) 137
mixmode 139
mixmode (MSCML) 139
notification (MSCML) 137
report (MSCML) 140
reserveconfmedia 140
reserveconfmedia (MSCML) 140
reservedtalkers 141
signal 137
subscribe 137
subscribe (MSCML) 137
toneclamp (MSCML) 141
type 141
type (MSCML) 141

configure_conference 106
configure_conference (MSCML) 106, 111, 125
configure_leg 106, 130
configure_leg (MSCML) 106, 113, 127, 128
configure_team 130
configure_team (MSCML) 136
conformance

HTTP 33
NFS 33

connection information (SDP) 74
Contact header (SIP) 62
content attribute (VoiceXML) 355
content element (VoiceXML) 187
content types (SIP) 47
Content-Length header (SIP) 62
Content-Type header (SIP) 63
control agent 26
control leg (advanced conferences) 106, 111,

116
count attribute (VoiceXML) 355
creating

advanced conferences 111

Index

Application Developer’s Guide 388

simple conferences 101
CSeq header (SIP) 63

D

data element (VoiceXML) 188, 335
default application 27
default location

simple announcements 90
SnowShore prompts 89

delay (announcement parameter) 95
delay (MSCML) 164
dest attribute (VoiceXML) 355
dialog 27, 29
dialog service indicator 177, 327
Digit Buffering 148
digit buffering (MSCML) 148
digit collection (MSCML) 148
digits 173

barging (MSCML) 148, 151
buffering 148
collection 119, 161, 166
ending collection 170
flushing 164
maximum collected 168

digits (MSCML) 173
digits (variables) 96
direction (SDP) 75
disconnect element (VoiceXML) 189, 336
double keypress 120
DTMF 34, 138, 148, 161

barging 163
detecting in conferences 119
escape key 165
flushing digits 164
return key 170
VoiceXML grammar 180, 329

DTMF attribute (VoiceXML) 356
dtmf element (VoiceXML) 336
dtmfclamp (MSCML) 108, 113, 128, 136, 137, 138
dtmfterm attribute (VoiceXML) 356
duration 164
duration (MSCML) 164
duration= (announcement parameter) 96
dynamic fonts 229

E

early= (announcement parameter) 69, 95
ECMAScripting 220, 327
else element (VoiceXML) 189, 336
elseif element (VoiceXML) 189, 337
encoding (MSCML) 165
ending

simple conferences 101
endpoint devices 26
endsilence (MSCML) 165
equals sign 178, 328
error element (VoiceXML) 190, 337
escapekey 149
escapekey (MSCML) 165
escaping 178, 328
event attribute (VoiceXML) 356
events 29, 115, 119
events (MSCML) 137
examples

IVR with MSCML 271
late-media announcements 237
MSCML 256
MSCML multipart syntax 80
VoiceXML 289

exit element (VoiceXML) 190, 337
expr (VoiceXML) 356
expritem (VoiceXML) 357
extradigittimer (MSCML) 166

F

field element (VoiceXML) 190, 338
filled element (VoiceXML) 191, 338
finalsilence (VoiceXML) 357
firstdigittimer (MSCML) 166
font element (VoiceXML) 192
font files 228
form element (VoiceXML) 193, 339
From header (SIP) 63

G

G.711 74
gain control 304
goto element (VoiceXML) 193, 339
grammar element (VoiceXML) 194, 340

H

hairpinning 294
headers

SDP 71
help element (VoiceXML) 196, 340
Hold Behavior 81
Hold media 74, 81, 145
Hold SDP 82
HTTP 33, 35, 89
http-equiv (VoiceXML) 357

Index

Application Developer’s Guide 389

I

id (MSCML) 138, 173
id (VoiceXML) 357
image overlay 41, 227
INFO method (SIP) 58, 144

and MSCML 28
initsilence (MSCML) 166
interdigittimer (MSCML) 166
INVITE method (SIP) 52

and MSCML 28
IVR

digit collection 161
escape key 165
functions 144
return key 170

ivr 27, 28, 82, 144
IVR attributes

barge 163
baseurl 164
beep 164
cleardigits 164
delay 164
duration 164
encoding 165
endsilience 165, 172
escapekey 165
extradigittimer 166
firstdigittimer 166
id 166
initsilence 166, 167, 170
interdigittimer 166
maxdigits 168
mode 168
offset 168
promptencoding 168
recencoding 169
recstopmask 169
recurl 169
repeat 139, 169
returnkey 170
stop_on_error 170
subtype 171
type 171
url 172

IVR responses
code 174
digits 174
error_info 173
id 173
playduration 174
reason 174
reclength 175
text 175

IVR service indicator 143

J

joining participants
advanced conferences 113
simple conferences 101

K

keypress (MSCML) 137

L

locale (MSCML) 167

M

Maskdigits 120
maskdigits 167
maxdigits (MSCML) 168
maxtime (VoiceXML) 357
Media Content Recovery 182, 188, 330, 331, 335
media information (SDP) 74
Media Server Control Markup Language 28
method (VoiceXML) 357
methods (SIP) 52
mid-call requests 58, 144
MIME 49, 106, 218, 219
mixed audio/video 32
mixing (in conferences) 36, 139
mixmode (MSCML) 108, 113, 116, 139
modal (VoiceXML) 358
mode (VoiceXML) 358
modifying advanced conferences 112, 248
money (PDML) 97
months (PCML) 97
MSCML 28, 99, 164, 173

activetalkers 136
advanced conferences 37
barge 163
baseurl 164
cleardigits 164
code 174
conferencing attributes 136, 137, 138
conferencing dtmfclamp 138
conferencing events 137
conferencing id 138
conferencing keypress 137
conferencing mixmode 139
conferencing notification 137
conferencing report 140
conferencing requests 125
conferencing reserveconfmedia 140
conferencing subscribe 137
conferencing toneclamp 141
conferencing type 141
configure_team 136

Index

Application Developer’s Guide 390

delay 164
digit collection 148
dtmfclamp 137, 138
encoding 165
endsilence 165
escapekey 165
events 137
extradigittimer 166
firstdigittimer 166
id 138, 173
initsilence 166
interdigittimer 166
keypress 137
maxdigits 168
MIME type 106
mixmode 139
multipart syntax 80
notification 137
prompt 162
promptencoding 168
recencoding 169
reclength 175
recstopmask 169
report 140
reserveconfmedia 140
reservedtalkers 141
responses 29, 147, 149, 154
responses for playrecord 152
sample code 256
signal 137
subscribe 137
subtype 171
syntax 80
text 175
toneclamp 141
type 141, 171
value 172

MSCML directives for IVR functions
play 145
playcollect 145
playrecord 145
stop 145

MSCML locale 167
msecs (VoiceXML) 358
msVXMLCriticalError 199, 342
msVXMLLastCriticalError 199, 342
multimedia files 32

N

name (VoiceXML) 358
namelist (VoiceXML) 358
next (VoiceXML) 359
nextitem (VoiceXML) 359
NFS 35, 89
notification (MSCML) 137
numbers (variables) 97

O

overlay 41
overlay element (VoiceXML) 202

P

packet time (SDP) 75
PDF 22
play (MSCML) 116, 121

sample code 271
Play and/or Collect 148
play= 35
play= (announcement parameter) 35, 94
playcollect (MSCML) 116, 119

sample code 256, 273
playrecord (MSCML) 116, 117, 151

sample code 256, 273
Playrecord attributes

recurl 151
playrecord attributes

beep 152
duration 152
mode 152
recencoding 152

port 5060 76, 89
prompt (MSCML) 162
promptencoding (MSCML) 168
provisional responses 77
ptime (SDP) 75

Q

question mark 178, 328

R

Real Time Streaming Protocol (RTSP) 34, 42
VCR controls 304
VCR controls example 306

recencoding (MSCML) 169
reclength (MSCML) 175
recording 151, 165, 166

encoding 169
length of 175
mode 168
MSCML request for 161
terminating 169
URL for 169

Record-Route header (SIP) 64
recsrc (VoiceXML) 359
recstopmask (MSCML) 169
recvonly (SDP) 75
re-INVITE (SIP) 53

Index

Application Developer’s Guide 391

repeat= (announcement parameter) 95
report (MSCML) 140
report values

both 120
long 120
none 119
standard 120

Requests (SIP) 50
Request-URI (SIP) 50, 90, 169

parameters 94
reserveconfmedia (MSCML) 107, 111, 116, 140
reservedtalkers 107, 141
reservedtalkers (MSCML) 111, 141
responses

for MSCML 173
SIP 67

Return codes (SIP) 67
returnkey 149
returnkey (MSCML) 170
RFC conformance 45
root document 179, 328
Route header (SIP) 64

S

scope (VoiceXML) 359
scroll element (VoiceXML) 208
SDP 27, 52, 54, 71

attribute lines 75
connection information 74
direction 75
headers 71
Hold media 74, 81, 145
media description headers 73
media information 74
optional headers 75
packet time 75
session description headers 71
syntax errors 71
time description headers 72
TTL 74

sendonly (SDP) 75
sendrecv (SDP) 75
sequences 36, 92

See also announcement sequences
service indicators 27, 48

annc 27
announcements 27, 89
conf 99
conf= 27
conference 99
default 27
dialog 27
ivr 27, 145

session 27
Session Description Protocol 71

See also SDP
session timer 53, 64
Session-Expires header (SIP) 64
signal 137
signal (MSCML) 137
silence 165

and recording 165, 166
as announcement variables 98

simple announcements 35, 89
default location 90
overview 91

Simple conference attributes
dtmfclamp 102
mixmode 102
type 102

simple conferences 37, 101
creating 101
default parameters for 102
ending 101
joining participants to 101
upgrading 101

SIP 26
announcement parameters 94
default port 76
event notification 29, 115
message body 47
ports 89
provisional responses 77
Requests 50
Request-URI 50, 169
responses 67
session description 54
syntax 47
transaction 47

SIP headers 60
Call-ID 62, 115
compact form 61
Contact 62
Content-Length 62
Content-Type 63
CSeq 63
From 63
Record-Route 64
Route 64
Session-Expires 64
Supported 65
To 65
Unsupported 65
Via 65

SIP methods 52
ACK 54
INFO 28, 58, 106, 116, 126, 144
INVITE 28, 52

SIP Return Codes 67
size (VoiceXML) 359
slot (VoiceXML) 360
softswitch 26
src (VoiceXML) 360

Index

Application Developer’s Guide 392

Star and Pound Keys 149
stop (MSCML) 154

sample code 273
stopdigits (VoiceXML) 360
strings (PDML) 98
subdialog element (VoiceXML) 209, 347
subscribe 115
subscribe (MSCML) 115, 126, 137
subscribe element 107
subtype (MSCML) 171
Supported header (SIP) 65
syntax overview

SDP 71
SIP 47

T

text (MSCML) 175
text overlay 41, 187, 227
throw element (VoiceXML) 210, 348
time (PDML) 98
timeout (VoiceXML) 360, 361
timing attributes 152

extradigittimer 149
firstdigittimer 149
interdigittimer 149

To header (SIP) 65
toneclamp (MSCML) 108, 113, 128, 141
tones 34
transfer element (VoiceXML) 212, 349
trcr.cfg 192, 229, 231
TTL 74
type (MSCML) 108, 113, 128, 141, 171
type (VoiceXML) 361

U

Unsupported header (SIP) 65
URIs

recurl attribute 169

V

value (MSCML) 172
value (VoiceXML) 361, 362
value element (VoiceXML) 215, 351
valuetype (VoiceXML) 361
var element (VoiceXML) 215, 351
variable subtypes (PDML) 96
variable types (PDML) 96
VCR (VoiceXML) 362
VCR controls 304
version (VoiceXML) 362

Via header (SIP) 65
video 32
video transcoder 39

auto setting rules 39
restrictions 40
settings 39

video transcoding 39
VoiceXML 29

cond 355
elements 183, 332
grammars supported 180, 329
sample code 289

VoiceXML attributes
application 353
bargein 353
bargeintype 353
base 353
beep 353
bridge 354
class 354
content 355
count 355
dest 355
dtmf 356
dtmfterm 356
event 356
expr 356
expritem 357
finalsilence 357
http-equiv 357
id 357
maxtime 357
method 357
modal 358
mode 358
msecs 358
name 358
namelist 358
next 359
nextitem 359
recsrc 359
scope 359
size 359
slot 360
src 360
stopdigits 360
timeout 360, 361
type 361
value 361, 362
valuetype 361
VCR 362
version 362

VoiceXML elements
assign 183, 332
audio 183, 332
block 184, 333
break 333
choice 185, 189, 334
clear 186, 334
content 187

Index

Application Developer’s Guide 393

disconnect 189, 336
dtmf 336
else 189, 336
elseif 189, 337
error 190, 337
exit 190, 337
field 190, 338
filled 191, 338
font 192
form 193, 339
goto 193, 339
grammar 194, 340
help 196, 340
overlay 202
scroll 208
subdialog 209, 347
throw 210, 348
transfer 212, 349
value 215, 351
var 215, 351
vxml 216, 352

VoiceXML interpreter 177, 327
vxml element (VoiceXML) 216, 352

W

weekdays (variables) 98

	Contents
	List of Figures
	List of Tables
	About this Publication
	Using this Publication
	Audience and Purpose
	Documentation Set
	Document Conventions
	Notes, Cautions, and Warnings
	Links in PDF

	Contacting Dialogic Technical Services and Support
	Ordering Licenses

	1 - Introduction
	Control Protocols and Services
	Call Control Protocols
	Session Initiation Protocol (SIP)
	Session
	Service Indicators

	Session Description Protocol (SDP)
	Media Server Control Markup Language (MSCML)
	SIP Methods with MSCML

	VoiceXML

	Media Storage, Processing, and Supported Codecs
	Audio
	Audio Content Storage

	Video
	Mixed Audio/Video
	WAV-based
	3GPP and 3GPP2
	Mixed Audio/Video Content Storage

	File Storage and Retrieval
	Network File System (NFS)
	HTTP
	Real Time Streaming Protocol (RTSP)

	DTMF
	In-Band Busy Tone Detection and Reporting

	Services
	Network Announcements
	Simple Announcements
	Announcement Sequences and Variable Content Announcements

	Conferences
	Simple Conferences
	Advanced Conferences

	Interactive Voice Response (IVR)
	Dialog (VoiceXML)

	Advanced Video Features
	Video Transcoding
	Video Transcoder Settings
	Video Transcoder Automatic Setting Rules
	Video Transcoder Restrictions

	Image Overlays and Text Overlays
	Real Time Streaming Protocol (RTSP)
	Configuring Session Keep Alive

	2 - Session Initiation Protocol (SIP)
	Conformance
	Media Server Availability
	SIP Description
	SIP User Agents
	SIP Message
	SIP Transaction
	URLs
	Service Indicators
	SIP Message Body Types

	SIP Requests
	Request Line
	Headers
	Session Descriptor

	SIP Methods
	INVITE
	Headers in an INVITE

	ACK
	Headers in an ACK

	CANCEL
	Headers in CANCEL

	OPTIONS
	Headers in OPTIONS

	BYE
	Headers in BYE

	INFO
	Headers in INFO

	PRACK
	Headers in a PRACK

	SIP Headers
	Format and Syntax
	Supported Headers
	Accept
	Call-ID (i)
	Contact (m)
	Content-Length (l)
	Content-Type (c)
	CSeq
	From (f)
	Max-Forwards
	Record-Route
	Require
	Route
	Session-Expires
	Server
	Subject
	Supported
	To (t)
	Unsupported
	User-Agent
	Via (v)

	SIP Responses
	SIP Provisional Response Configuration
	SIP Return Codes

	Session Description Protocol
	Session Description Headers
	Time Description Headers
	Media Description Headers
	Header Action Classes

	Header Definitions
	m= (Media information)
	c= (Connection data)
	a= (Attribute Lines)

	Ports
	SIP
	RTP
	Reliability of Provisional Responses
	Syntax and Escaping
	Syntax and MSCML Body
	IP Media Server Behavior When Hold Media is Presented
	About Hold SDP
	Hold Behavior for the Various Media Services

	Using AMR-NB
	Media Description Header
	Dynamic Payload Type
	Format Specific Parameters
	Optional Format Parameters
	Packet Time
	Maximum Packet Time

	3 - Announcement Service API
	Overview
	File Retrieval
	Network File System (NFS)
	HTTP

	Announcement Types
	Announcement Service Indicator and Request URI

	Simple Announcements
	Announcement Sequences
	Variable-Content Announcements
	Implementation

	SIP Request Parameters for Announcements
	Variable Types and Subtypes

	4 - Conferencing API
	Simple Conferencing
	How SIP Manages Conferences
	Creating a Simple Conference
	Adding a Participant to a Simple Conference
	Ending a Simple Conference

	Attributes for Simple Conferences and Participants
	DTMF Clamping
	Managing Video Switching

	Call Flow and Sample Code Examples
	Code for Creating a Simple Conference

	Advanced Conferencing
	Using MSCML for Advanced Conferencing
	<configure_conference>
	<configure_leg>

	MSCML Attributes and Elements for <configure_conference>
	MSCML Attributes and Elements for <configure_leg>
	MSCML Attributes for <managecontent>
	<managecontent> Examples

	Creating an Advanced Conference
	Modifying an Advanced Conference
	Ending an Advanced Conference
	Joining Participants (Legs) to an Advanced Conference
	Modifying a Conference Participant
	Removing Participants From a Conference
	Conference Subsetting
	Active Talker Events

	IVR Operations during a Conference
	Playing and Recording Within the Entire Conference
	Playing to the Conference
	Recording the Conference Output

	Video Conferencing Enhancements
	MSCML Changes

	IVR Operations on Participant Legs
	Detecting DTMF Digits On A Conference Leg
	Playing Audio to a Participant Leg

	Detecting and Reporting Busy Call Progress Tones in MSCML

	Simultaneous Play and Record
	Creating an Internal Conference Leg
	Recording a Conference

	MSCML Conferencing Requests
	Conferencing Request Elements and Attributes
	configure_conference
	In INFO Message
	configure_leg

	Coached Conferencing
	Overview
	MSCML Elements and Attributes of Coached Conferencing
	configure_team

	Configuring a Coached Conference
	Creating the Conference
	Joining and Configuring the Coach
	Joining and Configuring the Agent
	Joining and Configuring the Client
	Supervisor Query for Number of Team Members
	Exiting the Conference
	Using SIP INFO

	MSCML Conferencing Reference
	MSCML Elements
	activetalkers
	configure_team
	dtmf
	events
	keypress
	notification
	signal
	subscribe
	teammate

	MSCML Attributes
	action
	dtmfclamp
	id
	mixmode
	repeat
	report
	reserveconfmedia
	reservedtalkers
	toneclamp
	type

	5 - IVR with MSCML
	IVR Service
	Call Progress Tones

	Playing Announcements
	Elements and Attributes
	Responses

	Collecting DTMF Digits
	Prompting
	Digit Buffering
	Star and Pound Keys
	Timing Attributes
	Responses

	Recording Audio
	Playrecord Attributes
	Playrecord Process
	Timing Attributes
	Additional Attributes
	Responses
	Handling of Content Retrieval Errors

	Stopping an IVR Request in Progress
	ID Attribute
	Response

	MSCML MRCP Session Management
	Overview of MRCP Session Management
	Features Enabled
	Process

	MSCML Requests
	Create session request format
	Create session response format
	Terminate session request format
	Terminate session response format
	Sample Call Flow

	MSCML IVR Reference
	IVR Elements
	IVR Prompt Block
	Prompt Elements

	IVR Attributes
	barge
	baseurl
	beep
	cleardigits
	delay
	duration
	encoding
	endsilence
	endwarning
	escapekey
	extradigittimer
	firstdigittimer
	id
	interdigittimer
	initsilence
	locale
	maskdigits
	maxdigits
	mode
	offset
	promptencoding
	recstopmask
	recurl
	recencoding
	repeat
	report
	returnkey
	stop_on_error
	subtype
	type
	url
	value
	warnurl

	IVR Response Elements and Attributes
	Response Elements
	error_info
	id
	Response Attributes
	code
	digits
	playduration
	reason
	reclength
	text

	6 - VoiceXML Version 2.0 and Dialog Service
	About VoiceXML
	VoiceXML Interpreter
	Dialog Service Indicator and Request URI
	VoiceXML Launcher
	Default Script
	VoiceXML Concepts
	Syntax
	Scope
	Resource Fetching

	VoiceXML Application and Its Documents
	Dialogs
	Scripting
	DTMF Grammars Guidelines
	<grammar>
	<tag>
	<ruleref>
	<rule>
	MRCP
	Session Variables

	File Storage and Retrieval
	Media Content Recovery Extension

	VoiceXML Elements Reference
	<assign>
	<audio>
	<block>
	<catch>
	<choice>
	<clear>
	<content>
	<data>
	<disconnect>
	<else>
	<elseif>
	<enumerate>
	<error>
	<exit>
	<field>
	<filled>
	
	<form>
	<goto>
	<grammar>
	<help>
	<if>
	<initial>
	<link>
	<log>
	<menu>
	<meta>
	<noinput>
	<nomatch>
	<object>
	<option>
	<overlay>
	<param>
	<prompt>
	<property>
	<record>
	<reprompt>
	<return>
	<say-as>
	<script>
	<scroll>
	<subdialog>
	<submit>
	<throw>
	<transfer>
	<value>
	<var>
	<vxml>

	VoiceXML Properties
	com.snowshore.criticaldigit_timer
	MIME Types Supported

	ECMAScript Functionality
	VoiceXML Extended Session Variables
	VoiceXML 2.0 Recommendations
	Dialogic® Extensions
	Example

	RTP Codec Selection Using the <transfer> Element
	Image Overlay and Text Overlay Functionality
	Overlay Overview
	Characteristics of Image Overlay
	Characteristics of Text Overlay
	Text Overlay Restrictions
	Installing Font Files
	Dynamic Fonts
	Cached Fonts
	trcr.cfg Description
	Sample trcr.cfg

	Overlay Demos

	7 - Sample Code and Call Flows
	Announcements Sample Code and Call Flows
	Play an Announcement as Early Media
	Call Flow for an Early Media Announcement
	Playing an Announcement as Normal Media
	Call Flow for a Normal Media Announcement
	Stopping Media-Hold
	Call Flow for Stopping Media-Hold
	Repeating the Audio

	Conferences Sample Code and Call Flows
	Creating a Simple Conference
	Call Flow for a Simple Conference (Normal Media)
	Creating an Advanced Conference
	Call Flow to Set up an Advanced Conference
	Modifying Conference Using Subscribe
	Providing Communication for Participant in an Advanced Conference
	Joining a Participant Using Special Attributes
	Suspending Communications within a Conference
	Response to Mute a Conference Participant

	Playing Audio to Conference Participant
	Changing Mixmode to Parked
	Response to Parked
	Playing the Audio
	Response to Message to Play Audio
	Changing Participant Mixmode Back to Full
	Response to Mixmode Change

	Playcollect and Playrecord in a Conference
	Changing Participant Mixmode to Parked
	Response to Parked
	PlayCollect
	Response to PlayCollect
	Sending PlayRecord
	Response to PlayRecord
	Changing Participant Back to Full
	Response to Full

	Coached Conferencing

	IVR with MSCML Sample Code and Call Flows
	Playing a Simple Announcement
	Play Payload
	Expected Response

	Playing a Sequenced Announcement
	Play Payload

	Stopping a Play Command
	Request 1 Payload
	Request 2 Payload
	Expected Response to Request 1 Payload
	Expected Response to Request 2 Payload

	PlayCollect
	Payload
	Expected Response

	Playing a Recording
	Payload
	Expected Response

	Stopping a Recording
	Request 1 Payload
	Request 2 Payload
	Expected Response Request 1 Payload
	Expected Response Request 2 Payload

	Asynchronous DTMF
	Subscribing to Standard Digit Events
	Subscribing to Long Digit Events
	Subscribing to Both Standard and Long Digit Events
	Turning Off Digit Event Reporting
	Example Responses

	Call Flow for IVR with MSCML
	Call Flow for PIN Collection, IVR with MCSCML
	Explanation of Call Flow

	Call Flow for Recording a Message, IVR with MSCML
	Explanation of Call Flow

	Call Flow for MSCML MRCP Session Management
	Scenario
	Call Flow

	VoiceXML Sample Code and Call Flows
	Playing an Announcement
	PIN Collection
	Call Flow for VoiceXML
	Transferring a Call
	T.30 Fax Detection
	Fax Call Transfer Call Flow
	CNG Tone Detection and Event Notification
	VoiceXML Implementation
	VoiceXML Properties
	Fax Detection-Example Script

	T.38 Fax Detection, Termination, and Initiation
	Detection and Termination
	Initiation (Email to Fax)
	snowshore.cfg Parameters
	Fax Call Termination Call Flow
	CNG Tone Detection and Event Notification
	VoiceXML Implementation
	Fax Detection-Example VXML Script
	VXML Fax Record
	Call Record - Example VXML Script

	Using VCR and Gain Controls
	Image Overlay and Text Overlay
	Simple Text Overlay
	Scrolling Text Overlay
	Image Overlay

	Late Media Sample Code

	A - Audio Library
	Sound Library
	Phrases and Messages
	Numbers
	Dates and Ordinal Numbers

	Letters
	Time and Money
	Press Keys
	Quantities
	Miscellaneous Words

	Generic Audio Files

	B - VoiceXML Version 1.0 and Dialog Service
	About VoiceXML
	VoiceXML Interpreter
	Dialog Service Indicator and Request URI
	VoiceXML Launcher
	VoiceXML Concepts
	Syntax
	Scope
	Resource Fetching

	VoiceXML Application and Its Documents
	Dialogs
	Grammar and Scripting

	Session Variables
	File Storage and Retrieval
	Media Content Recovery Extension

	VoiceXML Elements Reference
	<assign>
	<audio>
	<block>
	<break>
	<catch>
	<choice>
	<clear>
	<data>
	<disconnect>
	<dtmf>
	<else>
	<elseif>
	<error>
	<exit>
	<field>
	<filled>
	<form>
	<goto>
	<grammar>
	<help>
	<if>
	<initial>
	<link>
	<log>
	<menu>
	<meta>
	<noinput>
	<nomatch>
	<param>
	<prompt>
	<property>
	<record>
	<reprompt>
	<return>
	<sayas>
	<script>
	<subdialog>
	<submit>
	<throw>
	<transfer>
	<value>
	<var>
	<vxml>

	VoiceXML Attributes Reference
	application
	bargein
	bargeintype
	base
	beep
	bridge
	class
	cond
	connect-timeout
	content
	count
	dest
	destexpr
	dtmf
	dtmfterm
	event
	expr
	expritem
	finalsilence
	http-equiv
	id
	longdigit
	max-time
	method
	modal
	mode
	msecs
	name
	namelist
	next
	nextitem
	recsrc
	reqUri
	scope
	size
	slot
	src
	srcexpr
	stopdigits
	timeout
	transfer-audio
	type
	value
	valuetype
	version
	VCR
	video

	VoiceXML Properties
	com.snowshore.criticaldigit_timer
	MIME Recording Encoding Types

	ECMAScript Functionality
	Support for VoiceXML Extended Session Variables
	VoiceXML 2.0 Recommendations
	Dialogic® Extensions
	Example

	C - MSCML Schema
	D - Dial Pulse Detection
	Overview
	Dial Pulse Detection and DTMF
	Consistency
	MSCML and VXML 1.0/2.0 Support

	Configuration
	Parameters
	Description of Dial Pulse Detection Algorithm

	Index

