
Dialogic® Standard Runtime
Library API
Programming Guide

November 2007

05-1880-005

Dialogic® Standard Runtime Library API Programming Guide – November 2007

Copyright © 1992-2007, Dialogic Corporation. All Rights Reserved. You may not reproduce this document in whole or in part without permission in
writing from Dialogic Corporation.

All contents of this document are furnished for informational use only and are subject to change without notice and do not represent a commitment on
the part of Dialogic Corporation or its subsidiaries (“Dialogic”). Reasonable effort is made to ensure the accuracy of the information contained in the
document. However, Dialogic does not warrant the accuracy of this information and cannot accept responsibility for errors, inaccuracies or omissions
that may be contained in this document.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH DIALOGIC® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN A
SIGNED AGREEMENT BETWEEN YOU AND DIALOGIC, DIALOGIC ASSUMES NO LIABILITY WHATSOEVER, AND DIALOGIC DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF DIALOGIC PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY INTELLECTUAL PROPERTY
RIGHT OF A THIRD PARTY.

Dialogic products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

It is possible that the use or implementation of any one of the concepts, applications, or ideas described in this document, in marketing collateral
produced by or on web pages maintained by Dialogic may infringe one or more patents or other intellectual property rights owned by third parties.
Dialogic does not provide any intellectual property licenses with the sale of Dialogic products other than a license to use such product in accordance
with intellectual property owned or validly licensed by Dialogic and no such licenses are provided except pursuant to a signed agreement with
Dialogic. More detailed information about such intellectual property is available from Dialogic’s legal department at 9800 Cavendish Blvd., 5th Floor,
Montreal, Quebec, Canada H4M 2V9. Dialogic encourages all users of its products to procure all necessary intellectual property licenses
required to implement any concepts or applications and does not condone or encourage any intellectual property infringement and
disclaims any responsibility related thereto. These intellectual property licenses may differ from country to country and it is the
responsibility of those who develop the concepts or applications to be aware of and comply with different national license requirements.

Dialogic, Diva, Eicon, Eicon Networks, Dialogic Pro, EiconCard and SIPcontrol, among others, are either registered trademarks or trademarks of
Dialogic. Dialogic's trademarks may be used publicly only with permission from Dialogic. Such permission may only be granted by Dialogic’s legal
department at 9800 Cavendish Blvd., 5th Floor, Montreal, Quebec, Canada H4M 2V9. Any authorized use of Dialogic's trademarks will be subject to
full respect of the trademark guidelines published by Dialogic from time to time and any use of Dialogic’s trademarks requires proper
acknowledgement. Windows is a registered trademark of Microsoft Corporation in the United States and/or other countries. Other names of actual
companies and products mentioned herein are the trademarks of their respective owners.

Publication Date: November 2007

Document Number: 05-1880-005

Dialogic® Standard Runtime Library API Programming Guide – November 2007 3
Dialogic Corporation

Contents

Revision History . 7

About This Publication . 9

Purpose . 9
Applicability . 9
Intended Audience. 9
How to Use This Publication . 10
Related Information . 10

1 Product Description . 13

2 Programming Models . 15

2.1 Synchronous Versus Asynchronous Programming . 15
2.2 Synchronous Model . 16
2.3 Asynchronous Model . 16
2.4 Extended Asynchronous Model . 17
2.5 Asynchronous with Windows® Callback Model . 18
2.6 Asynchronous with Win32 Synchronization Model . 18
2.7 Model Combinations . 19
2.8 Performance Considerations . 19

3 Device Handling . 21

3.1 Device Concepts . 21
3.2 Device Names . 22

3.2.1 Overview of Device Names. 22
3.2.2 Dividing Boards Among Device Types . 22
3.2.3 Sorting Devices on Dialogic® DM3 Boards. 23
3.2.4 Sorting Devices on Dialogic® Springware Boards . 23
3.2.5 Constructing Device Names . 24

3.3 Opening and Using Devices . 28
3.4 Getting Device Information . 29

3.4.1 Common Device Information . 29
3.4.2 Technology-Specific Device Information. 29
3.4.3 User-Defined Device Information . 30
3.4.4 SRL-Specific Device Information . 30

4 Event Handling . 31

4.1 Event Management . 31
4.2 Using Event Handlers . 32

4.2.1 Event Handler Overview . 32
4.2.2 Event Handler Guidelines . 32
4.2.3 Event Handler Hierarchy. 32
4.2.4 Event Handler Thread Options . 33

5 Error Handling . 35

5.1 SRL Function Error Indication . 35

4 Dialogic® Standard Runtime Library API Programming Guide – November 2007
Dialogic Corporation

Contents

5.2 Retrieving Error Information Using Standard Attribute Functions. 35

6 Application Development Guidelines . 37

6.1 Summary of SRL Programming Model Selections . 37
6.2 Selecting the Synchronous Model . 38
6.3 Selecting the Asynchronous Model . 39
6.4 Selecting the Extended Asynchronous Model . 40
6.5 Selecting the Asynchronous with Windows® Callback Model . 41
6.6 Selecting the Asynchronous with Win32 Synchronization Model . 41

7 Using the Synchronous Model. 43

7.1 Implementing the Synchronous Model . 43
7.2 Implementing the Synchronous Model With Event Handlers . 45

8 Using the Asynchronous Model. 53

8.1 Implementing the Asynchronous Model . 53
8.2 Implementing the Asynchronous Model with Event Handlers. 57

9 Using the Extended Asynchronous Model . 63

9.1 Extended Asynchronous Model Variants . 63
9.2 Implementing the Device Grouping API Variant . 63
9.3 Implementing the sr_waitevtEx() Variant . 66

10 Using the Asynchronous with Windows® Callback Model . 71

10.1 Implementing the Asynchronous with Windows® Callback Model 71
10.2 Example Code . 71

11 Using the Asynchronous with Win32 Synchronization Model . 79

11.1 Implementing the Model Using Windows® Reset Events . 79
11.2 Implementing the Model Using Windows® I/O Completion Ports . 83

12 Getting Information About the Structure of a System . 85

13 Building Applications . 91

13.1 Compiling and Linking . 91
13.1.1 Include Files. 91
13.1.2 Required Libraries . 91
13.1.3 Variables for Compiling and Linking Commands. 92
13.1.4 Run-time Linking . 92

Glossary . 93

Index . 95

Dialogic® Standard Runtime Library API Programming Guide – November 2007 5
Dialogic Corporation

Contents

Tables

1 Device Sorting Example for BLT Boards . 23
2 Device Sorting Example for PCI Boards . 24
3 Device Sorting Example for BLT and PCI Boards . 24
4 Device Naming and Numbering Example for Dialogic® DM3 Boards . 27
5 Guidelines for Selecting an SRL Programming Model . 37

6 Dialogic® Standard Runtime Library API Programming Guide – November 2007
Dialogic Corporation

Contents

Dialogic® Standard Runtime Library API Programming Guide — November 2007 7
Dialogic Corporation

Revision History

This revision history summarizes the changes made in each published version of this document.

Document No. Publication Date Description of Revisions

05-1880-005 November 2007 Global changes: Made global changes to reflect Dialogic brand.

Programming Models chapter : Added information about using the Extended
Asynchronous Model and sr_waitevtEx() function. (IPY00039620)

05-1880-004 August 2006 Device Handling chapter : Added multimedia (mm) devices in Board-Level Names,
Channel-Level Names, and Technology-Specific Device Information sections.
(Multimedia devices are supported on Dialogic® Host Media Processing (HMP)
software only.)

05-1880-003 October 2005 Programming Models chapter : Updated Device Grouping API Variant description in
Extended Asynchronous Model section.
Replaced Invalid Model Combinations section with new Model Combinations
section.
Added new Performance Considerations section for Dialogic® DM3 Boards.
[PTR 34119]

Device Handling chapter : Added separate definition for physical board (brdBn) in
Device Concepts section.
Added new section on Device Naming and Numbering for Physical Boards
(brdBn).

Application Development Guidelines chapter : Updated Threading and Event
Handling Considerations for Extended Asynchronous Model in Guidelines for
Selecting an SRL Programming Model table.

Building Applications chapter : Renamed the Cross-Compatibility section to Run-time
Linking. Revised section to indicate that run-time linking using the source code
in the CLIB subdirectory is no longer supported. [PTR 32966]

Getting Information About the Structure of a System chapter : Updated the code in
Device Mapper API Code Example.

05-1880-002 November 2003 Application Development Guidelines chapter : Added Windows® operating system
caution in the Selecting the Asynchronous Model section.

Using the Asynchronous with Win32 Synchronization Model chapter : Revised one
line of code in the example code for using Windows® Reset Events. The revised
line is in bold.

05-1880-001 November 2002 Initial version of document. Much of the information contained in this document was
previously contained in the Voice Software Reference: Standard Runtime Library for
Windows, document number 05-1458-002.

8 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Revision History

Dialogic® Standard Runtime Library API Programming Guide — November 2007 9
Dialogic Corporation

About This Publication

The following topics provide information about this publication:

• Purpose

• Applicability

• Intended Audience

• How to Use This Publication

• Related Information

Purpose

This publication contains general programming guidelines for the Dialogic® Standard Runtime
Library (SRL), which provides a common interface for event handling and other functionality
common to all devices (such as network interface, voice, and fax resource devices) provided by
Dialogic® Boards.

This publication is a companion to the Dialogic® Standard Runtime Library API Library
Reference, which provides details on the functions and parameters used by the SRL software.

Applicability

This document is applicable to Dialogic® Host Media Processing (HMP) Software for Windows®

and to Dialogic® System Release Software for Windows®.

Check the Release Guide for your software release to determine whether this document is
supported.

Intended Audience

This publication is written for the following audience:

• Distributors

• System Integrators

• Toolkit Developers

• Independent Software Vendors (ISVs)

• Value Added Resellers (VARs)

• Original Equipment Manufacturers (OEMs)

• End Users

10 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

About This Publication

How to Use This Publication

This publication assumes that you are familiar with your operating system software and the C
programming language.

The information in this guide is organized as follows:

• Chapter 1, “Product Description” provides an overview of the SRL software.

• Chapter 2, “Programming Models” describes the supported programming models in the
Windows® environment.

• Chapter 3, “Device Handling” describes the concept of a device, the various types of devices,
how they are named, and how to access information about devices.

• Chapter 4, “Event Handling” describes the event handling mechanisms provided by the SRL
software.

• Chapter 5, “Error Handling” describes the error handling facilities provided by the SRL
software including information on how to implement event handlers.

• Chapter 6, “Application Development Guidelines” provides guidelines for selecting and
implementing one of the supported programming models.

• Chapter 7, “Using the Synchronous Model” provides guidelines for implementing the
Synchronous programming model.

• Chapter 8, “Using the Asynchronous Model” provides guidelines for implementing the
Asynchronous programming model.

• Chapter 9, “Using the Extended Asynchronous Model” provides guidelines for implementing
the Extended Asynchronous programming model.

• Chapter 10, “Using the Asynchronous with Windows® Callback Model” - Provides guidelines
for implementing the Asynchronous with Windows® Callback programming model.

• Chapter 11, “Using the Asynchronous with Win32 Synchronization Model” - Provides
guidelines for implementing the Asynchronous with Win32 Synchronization programming
model.

• Chapter 12, “Getting Information About the Structure of a System” describes the Device
Mapper API that can be used to retrieve information about the structure of a system, such as
the number of physical boards, virtual boards, and devices.

• Chapter 13, “Building Applications” provides guidelines for building applications that use the
SRL software.

• A Glossary provides a definition of terms used in this guide.

Related Information

This publication is a companion to the Dialogic® Standard Runtime Library API Library
Reference, which describes the functions and parameters used by the SRL.

Refer to the following documents and websites for more information:

• Release Guide and Release Update for your Dialogic® software release

Dialogic® Standard Runtime Library API Programming Guide — November 2007 11
Dialogic Corporation

About This Publication

• http://www.dialogic.com/support/ (for Dialogic technical support)

• http://www.dialogic.com/ (for Dialogic® product information)

http://www.dialogic.com/support/
http://www.dialogic.com/

12 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

About This Publication

Dialogic® Standard Runtime Library API Programming Guide — November 2007 13
Dialogic Corporation

11.Product Description

This chapter describes the purpose of the Dialogic® Standard Runtime Library (SRL) software.

The primary function of the SRL is to provide a common interface for event handling and other
functionality common to all devices. The SRL serves as the centralized dispatcher for events that
occur on all devices. Through the SRL, events are handled in a standard manner.

The SRL is a library that contains C functions and a data structure to support application
development. Using the SRL, an application can perform the following tasks:

Manage events associated with devices
The SRL includes a set of event management functions that provide application program
control for devices and events, providing the foundation for implementing the supported
programming models.

Retrieve information about devices
The SRL includes a set of standard attribute functions (prefixed ATDV_) that return general
information about a device, such as device name, board type, and the error that occurred on the
last library function call. Also associated with the SRL is a special device called the
SRL_DEVICE that has attributes and can generate events in the same way as other Dialogic®
devices. Parameters for the SRL_DEVICE can be set within the application program.

Set and retrieve user-specific context
The SRL includes two functions, sr_setparm() and sr_getparm(), that enable an application
to set up and retrieve user-specific context on a device-by-device basis. An example of user
context is an index (or pointer) to a per-device application table.

Retrieve information about the structure of the system
The SRL includes a set of functions called Device Mapper (functions prefixed SRL) that are a
subset of the SRL software and return information about the structure of the system, such as a
list of all the virtual boards on a physical board.

Specify termination conditions for devices
The SRL includes the DV_TPT data structure that specifies termination conditions for
multitasking functions on devices. For example, you can set the Dialogic® Voice library
function dx_rec() to terminate on any digit by setting the tp_termno field in the DV_TPT
structure to a value of DX_MAXDTMF and tp_length field to a value of 1.

You can use the SRL interface to simplify application development. The SRL enables you to do the
following:

• Write applications using any of the supported programming models

• Write common event handlers to be used by all devices

• Configure devices

• Handle events that occur on the devices

• Return device information

• Create user-defined device information (application-specific information per device)

14 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Product Description

The SRL software consists of the following files:

• srllib.h

• libsrlmt.lib

• libsrlmt.dll

The multithreaded SRL library supports all SRL programming models. See Chapter 2,
“Programming Models” for an overview of the supported programming models and Chapter 6,
“Application Development Guidelines” for more information about choosing a programming
model for your application.

For application developers, the SRL maximizes performance in the native Windows environment
by providing:

• Tight integration with the Windows programming model

• Options for program development

Dialogic® Standard Runtime Library API Programming Guide — November 2007 15
Dialogic Corporation

22.Programming Models

This chapter provides an overview of the programming models supported by the Dialogic®
Standard Runtime Library (SRL) software in a Windows® environment. Topics include:

• Synchronous Versus Asynchronous Programming . 15

• Synchronous Model . 16

• Asynchronous Model. 16

• Extended Asynchronous Model. 17

• Asynchronous with Windows® Callback Model . 18

• Asynchronous with Win32 Synchronization Model . 18

• Model Combinations . 19

• Performance Considerations . 19

2.1 Synchronous Versus Asynchronous Programming

Using synchronous programming models, developers can scale an application by simply
instantiating more threads or processes (one per channel). This programming model may be easy to
encode and manage but it relies on the system to manage scalability. Applying the synchronous
programming model can consume large amounts of system overhead, which reduces the achievable
densities and negatively impacts timely servicing of both hardware and software interrupts. Using
this model, a developer can only solve system performance issues by adding memory or increasing
CPU speed or both. The synchronous programming models may be useful for testing or for very
low-density solutions.

Asynchronous programming models enable a single program to control multiple devices within a
single process. This allows the development of complex applications where multiple tasks must be
coordinated simultaneously. Generally, when building applications that use any significant density,
you should use the asynchronous programming model to develop field solutions. Asynchronous
models:

• Achieve a high level of resource management by combining multiple devices in a single
thread.

• Provide better control of applications that have high channel density.

• Provide several extended mechanisms that help you port applications from other operating
systems.

• Work with other SRL mechanisms that allow new developers to tightly integrate the SRL with
standard Windows 32-bit programming mechanisms, such as the Win32 API and MFC.

• Reduce system overhead by minimizing thread context switching.

• Simplify the coordination of events from many devices.

16 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Programming Models

2.2 Synchronous Model

The Synchronous model is the least complex programming model. Typically, you can use this
model to write code for a voice-processing device, then simply create a thread for each device that
needs to run this code. You do not need event-driven state machine processing because each
function runs uninterrupted to completion.

When using the Synchronous model, each function blocks thread execution until the function
completes. The operating system can put individual device threads to sleep while allowing threads
that control other devices to continue their actions unabated. When a function completes, the
operating system wakes up the function’s thread so that processing continues. For example, if the
application is playing a file as a result of a dx_play() function call, the calling thread does not
continue execution until the play has completed and the dx_play() function has terminated.

Since application execution is blocked by a function in the Synchronous model, a separate
application or process is needed for each channel and the operating system allocates execution time
for each process.

An application that uses the Synchronous model may have a requirement to service unsolicited
events on Dialogic® devices. To service these events the application can use event handlers, also
known as callback functions.

To ensure that the right handler is called when an event associated with a device occurs, the
application can:

• Use the SRL handler thread (which is created automatically by calling the sr_enbhdlr()
function).

• Suppress the creation of the SRL handler thread, define its own handler thread, and use the
sr_waitevt() function to wait for events.

See Chapter 7, “Using the Synchronous Model” for more information about implementing the
model and Section 4.2, “Using Event Handlers”, on page 32 for more information about
implementing event handlers.

2.3 Asynchronous Model

In the Asynchronous programming model, after the application issues an asynchronous function, it
uses the sr_waitevt() function to wait for events on devices. If there is no event, other processing
may take place. If an event is available, information about the event can be accessed (upon
successful completion of sr_waitevt()) using event management functions.

Note: The Asynchronous model is also known as the Asynchronous Polled model.

In Asynchronous programming models, the calling thread performs further operations while the
function completes. At completion, the application receives event notification. Asynchronous
models are recommended for applications that require coordination of multiple tasks and have
large numbers of devices. Asynchronous models use system resources more efficiently because
they control multiple devices in a single thread.

Dialogic® Standard Runtime Library API Programming Guide — November 2007 17
Dialogic Corporation

Programming Models

Due to concurrent processing requirements, a thread cannot block execution while waiting for
functions, such as dx_play() or dx_rec(), to finish; this would interfere with the processing
requirements of other devices being managed by the thread. In this case, the SRL lets you create an
event-driven state machine for each device. Instead of each function blocking until completion, it
returns immediately and allows thread processing to continue. Subsequently, when an event is
returned through the SRL, signifying the completion of the operation, state machine processing can
continue. You can also place user-defined events into the event queue to get single-point state
processing control of non-Dialogic application states.

The application can include event handlers (also known as callback functions) to service events on
Dialogic® devices.

To ensure that the right handler is called when an event associated with a device occurs, the
application can:

• Use the SRL handler thread (which is created automatically by calling the sr_enbhdlr()
function).

• Suppress the creation of the SRL handler thread, define its own handler thread, and use the
sr_waitevt() function to wait for events.

See Chapter 8, “Using the Asynchronous Model” for more information about implementing the
model and Section 4.2, “Using Event Handlers”, on page 32 for more information about
implementing event handlers. See also Section 2.8, “Performance Considerations”, on page 19.

2.4 Extended Asynchronous Model

The Extended Asynchronous model is a variation of the Asynchronous model, except that the
application can control groups of devices with separate threads. When using the Extended
Asynchronous model, you can create multiple threads, each of which controls multiple devices. In
such an application, each thread has its own specific state machine for the devices that it controls.

Applications should create threads that manage a unique group of devices/channels. For example,
you can have one group of devices that provides fax services and another group that provides
interactive voice response (IVR) services, and so on. Once a thread is created to service a unique
group of devices/channels, it should remain in scope as long as the thread has to retrieve events on
that device/channel group. The threads created should not be destroyed until all the devices referred
by that thread have been closed. Creating a thread per span or a thread per board is recommended.

Note: Application models that create a thread per channel to retrieve all the events on that channel and/or
constantly create and kill threads for every channel and every event are highly discouraged. This
results in too much context switching and may not only negatively impact system performance but
may also lead to undesired behavior in the application.

The SRL software supports two variants of the Extended Asynchronous model:

sr_waitevtEx() Variant
The sr_waitevtEx() function is used to wait for events on certain devices determined by
passing an array of the device handles to wait for events on. It offers developers a different
approach for event retrieval across multiple threads. This function is merely an extension of
the standard sr_waitevt() function and provides the convenience to the calling thread to wait

18 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Programming Models

for events on certain devices. Using sr_waitevtEx() does not result in any performance
improvements over using sr_waitevt(). sr_waitevt() will likely yield higher performance as
it bypasses the extra work performed by sr_waitevtEx() in matching the events to devices. As
mentioned above, the same device should not be used across multiple threads.

Device Grouping API Variant
The Device Grouping API allows the SRL to make direct associations between threads and
devices. The Device Grouping functions can be used to separate the functionality of
sr_waitevtEx() into two sub-functions (grouping devices together and waiting for events
from a group).

See Chapter 9, “Using the Extended Asynchronous Model” for implementation guidelines. See
also Section 2.8, “Performance Considerations”, on page 19.

2.5 Asynchronous with Windows® Callback Model

Asynchronous with Windows® Callback programming allows an asynchronous application to
receive SRL event notification through a standard Windows event technique. In Asynchronous with
Windows Callback programming, the application informs the SRL to post a user-specified message
to a user-specified window when an event occurs on a device. When the application receives the
user-specified message, it calls standard event-retrieval functions to process the event.

Asynchronous with Windows Callback programming:

• Allows tighter integration with Windows GUI programming techniques.

• Uses system resources more efficiently than does synchronous programming.

• Provides a single point of processing for all messages and events.

See Chapter 10, “Using the Asynchronous with Windows® Callback Model” for implementation
details.

2.6 Asynchronous with Win32 Synchronization Model

Asynchronous with Win32 Synchronization programming allows an asynchronous application to
receive SRL event notification through standard Win32 synchronization mechanisms. The two
mechanisms supported are Reset Events and I/O Completion Ports. In Asynchronous with Win32
Synchronization programming, the application informs the SRL to signal a user-specified wait
point when an event occurs on a device. When the application receives notification, it calls standard
event-retrieval functions to process the event.

Asynchronous with Win32 Synchronization programming:

• Allows tighter integration with other devices that use Win32 event synchronization. These
include, but are not limited to, Dialogic® DM3 devices and the Windows® Sockets library.

• Uses system resources more efficiently.

• Provides a single point of processing for all events.

Dialogic® Standard Runtime Library API Programming Guide — November 2007 19
Dialogic Corporation

Programming Models

See Chapter 11, “Using the Asynchronous with Win32 Synchronization Model” for
implementation details.

2.7 Model Combinations

Valid model combinations are listed below:

Synchronous/Event Handlers
In this combination, the application generally uses synchronous functions with unsolicited
events managed by event handlers. Typically, these unsolicited events are exceptions such as
hang-up, which are dealt with via handlers. With this combination, the main thread is
uncluttered with exception-handling code.

Using this combination, it is possible to control multiple devices within the same program and
still maintain most of the ease in coding. For example, when a voice board is used with a
digital network interface board, the voice board handles the user, and the hang-up is received
on the digital network interface board.

Synchronous/Polled
In this combination, the application is written in the Synchronous model, but at various stages,
the application polls using sr_waitevt() to verify that a given condition is satisfied which
allows synchronization or detection of events that are not time critical.

Synchronous/Polled/Event Handlers
This combination is similar to the Synchronous/Polled combination except event handlers
manage unsolicited events.

Polled/Event Handlers
This combination uses some asynchronous functions in the main thread, but primarily waits
for their termination also in the main thread. Occasional unsolicited events are dealt with via
handlers; for example, a hang-up may occur at any time during the application that an event
handler can deal with, and the process remains ready for the next call.

Polled/Synchronous
In this combination, most calls are asynchronous and the main thread waits for termination
but, occasionally, synchronous calls are made.

Polled/Synchronous/Event Handlers
With this combination, the main thread uses sr_waitevt() to wait for termination and uses
some synchronous calls, and also deals with some unsolicited events via event handlers.

When an application is written to use event handlers, be aware of the following cautions:

• It is not possible to wait for events while in event handlers.

• It is not possible to call synchronous functions from within event handlers.

2.8 Performance Considerations

This section applies to Dialogic® DM3 Boards only.

20 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Programming Models

To build scalable applications for higher densities, it is strongly recommended that developers
design applications to use a single process for one or more boards and a single thread per
span/trunk or a single thread per board. This enables the underlying Dialogic® DM3 libraries to use
system resources more efficiently. Using one process per channel or even one thread per channel
can have a negative impact on system performance, where systems may become overloaded due to
thread and/or process context switching.

Designing applications to use a single process for one or more boards and a single thread per
span/trunk or a single thread per board is strongly recommended for the following reasons:

• When Dialogic® DM3 libraries are loaded, they initialize many objects and create threads to
enable the asynchronous behavior of the API. At the time of the process shutdown, the
libraries de-initialize these objects and threads. This operation requires system-wide resources.
If the application is architected by creating one process per channel, the number of processes
required would be equivalent to the channel density. The system resource requirement for the
initialization/de-initialization and steady state operation would increase accordingly. As the
density of the channels increases, the regular operation of the Dialogic® DM3 library stack is
impacted. The performance impact is a result of increased CPU scheduling; this in turn affects
CPU availability per process, causing processes to starve due to the long line of processes
waiting in the scheduler queue. The behavior can cause delayed events, gaps in media
play/record, and latency in user-defined callbacks from the Dialogic® DM3 libraries.

• Dialogic® DM3 libraries also create threads per process internally; as the density of the
channels increases with the one process per channel model, an increased number of threads
runs in the system. Thread context switching is a performance issue with any operating system
and severely affects system performance, which may cause delayed events and delayed
callbacks.

Therefore, the ideal design to scale applications with higher densities is to use one board per
process and one thread per span/trunk or one thread per board.

Dialogic® Standard Runtime Library API Programming Guide — November 2007 21
Dialogic Corporation

33.Device Handling

This chapter describes the concept of a Dialogic® device, how devices are named and used, and
how to retrieve information about devices. Topics include:

• Device Concepts . 21

• Device Names . 22

• Opening and Using Devices . 28

• Getting Device Information . 29

3.1 Device Concepts

The following concepts are key to understanding Dialogic® devices and device handling:

device
A computer component controlled through a software device driver. A Dialogic® resource
board, such as a voice resource, fax resource, and conferencing resource, and network
interface board contain one or more logical board devices. Each channel or time slot on the
board is also considered a device.

device channel
A data path that processes one incoming or outgoing call at a time (equivalent to the terminal
equipment terminating a phone line). The first two numbers in the product naming scheme
identify the number of device channels for a given product. For example, there are 24 voice
device channels on a Dialogic® D/240JCT-T1 Board, 30 on a Dialogic® D/300JCT-E1 Board.

device name
A literal reference to a device, used to gain access to the device via an xx_open() function,
where “xx” is the prefix defining the device to be opened. The “xx” prefix is “dx” for voice
device, “fx” for fax device, and so on. For more information on device names, see Section 3.2,
“Device Names”, on page 22.

device handle
A numerical reference to a device, obtained when a device is opened using xx_open(), where
“xx” is the prefix defining the device to be opened. The device handle is used for all operations
on that device. For more information on device handles, see Section 3.3, “Opening and Using
Devices”, on page 28.

physical and virtual boards
Dialogic® API functions distinguish between physical boards and virtual boards. The device
driver views a single physical voice board with more than four channels as multiple emulated
Dialogic® D/4x Boards. These emulated boards are called virtual boards. For example, a
Dialogic® D/120JCT-LS Board with 12 channels of voice processing contains three virtual
boards. A Dialogic® DM/V480A-2T1 Board with 48 channels of voice processing and two T1
lines contains 12 virtual voice boards and two virtual network interface boards.

22 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Device Handling

physical board
A single piece of hardware that fits in a single slot in the computer. A physical board device
handle (of the form brdBn) is a concept introduced in Dialogic® System Release 6.0.
Previously there was no way to identify a physical board but only the virtual boards that make
up the physical board. Having a physical board device handle enables Dialogic® API functions
to act on all devices on the physical board.

3.2 Device Names

The Dialogic® software assigns device names. The following topics describe how the device names
are assigned:

• Overview of Device Names

• Dividing Boards Among Device Types

• Sorting Devices on Dialogic® DM3 Boards

• Sorting Devices on Dialogic® Springware Boards

• Constructing Device Names

3.2.1 Overview of Device Names

The Dialogic® software creates standard device and channel names for boards. These names are
input as the namep parameter to, for example, the dx_open() and fx_open() functions, which
return the device handles necessary for many essential API calls, such as dx_play() and dx_rec().

3.2.2 Dividing Boards Among Device Types

The Dialogic® software designates devices by type. Some examples of devices types are:

Voice and fax
Device names for this type are prefixed dxxx.

Digital network interface
Device names for this type are prefixed dti.

Modular station interface
 Device names for this type are prefixed msi.

Audio conferencing
Device names for this type are prefixed dcb.

IP network interface
Device names for this type are prefixed ipt.

IP media (for example, Dialogic® IPT Boards and Dialogic® DM/IP Boards)
Device names for this type are prefixed ipm.

Voice boards with an integrated digital network interface are assigned both voice devices and one
or two digital network interfaces.

Dialogic® Standard Runtime Library API Programming Guide — November 2007 23
Dialogic Corporation

Device Handling

3.2.3 Sorting Devices on Dialogic® DM3 Boards

Once the devices are divided by device type, the Dialogic® software sorts the devices within each
division. The sort order determines how the device names are constructed. All Dialogic® DM3
Board devices are numbered in sequential order after the Dialogic® Springware Board devices (for
example, Dialogic® Dialog/HD Boards) have been numbered. For example:

Springware: dtiB1 / dxxxB1 to dxxxB6
DM3: dtiB2 to dtiB5 / dxxxB7 to dxxxB30

3.2.4 Sorting Devices on Dialogic® Springware Boards

Once the devices are divided by device type, the Dialogic® system software sorts the devices
within each division. The sort order determines how the device names are constructed. The
following topics describe the sorting rules for Dialogic® Springware Boards:

• BLT Boards Only

• PCI Boards Only

• BLT and PCI Boards

3.2.4.1 BLT Boards Only

Board Locator Technology (BLT) boards are sorted in ascending order of the rotary switch setting.
Table 1 shows an example.

3.2.4.2 PCI Boards Only

The way in which PCI boards are sorted depends on how the rotary switches on the various boards
are set:

• Rotary switch settings are unique: In this case, the PCI boards are sorted in ascending order of
rotary switch setting.

• Rotary switches are set to zero: In this case, the boards are sorted by bus and slot number.

Note: Both of these methods may be used in the same system.

Table 2 shows an example.

Table 1. Device Sorting Example for BLT Boards

Sort Order Board Address Rotary Switch Slot Number

1 Dialogic® VFX/40ESC Board N/A 0 N/A

2 Dialogic® D/240SC-T1 Board N/A 1 N/A

3 Dialogic® D/41ESC Board N/A 1F N/A

24 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Device Handling

3.2.4.3 BLT and PCI Boards

When BLT and PCI boards are used together in a system, the order in which the boards are sorted
depends on how the PCI rotary switches are set:

• All BLT and PCI rotary switches are set to unique values: The BLT and PCI boards are all
sorted together in ascending order of rotary switch setting.

• PCI rotary switches are set to zero and BLT rotary switches are set to unique values: The PCI
boards as a group are ordered before the BLT boards; within the group, PCI boards are sorted
by bus and slot number, and BLT boards follow in order of ascending rotary switch setting.

• BLT and PCI rotary switches are set to zero: The PCI boards are ordered before the BLT
boards.

Table 3 shows an example.

3.2.5 Constructing Device Names

Once the Dialogic® software sorts the devices, it assigns names to both devices and channels
within devices. The following topics describe how to construct device names:

• Overview of Device Naming

• Board-Level Names

• Channel-Level Names

• Device Naming and Numbering for Dialogic® DM3 Boards

• Device Naming and Numbering for Physical Boards (brdBn)

Table 2. Device Sorting Example for PCI Boards

Sort Order Board Address Rotary Switch Slot Number

1 Dialogic® VFX/PCI Board N/A 0 2

2 Dialogic® D/41EPCI Board N/A 0 3

3 Dialogic® D/240PCI-T1 Board N/A 1 1

Table 3. Device Sorting Example for BLT and PCI Boards

Sort Order Board Address Rotary Switch Slot Number

1 Dialogic® VFX/PCI Board N/A 0 2

2 Dialogic® D/41EPCI Board N/A 0 3

3 Dialogic® VFX/40ESC Board N/A 0 N/A

4 Dialogic® D/240PCI-T1 Board N/A 1 1

Dialogic® Standard Runtime Library API Programming Guide — November 2007 25
Dialogic Corporation

Device Handling

3.2.5.1 Overview of Device Naming

Although there is a great deal of consistency among different types of compatible Dialogic®
hardware in how devices are numbered, device mapping (device naming or device numbering) is
hardware dependent. If a programmer hard codes an application to use device names based on
specific Dialogic® Boards, some of those device names may need to be changed if a different
model board is used as a replacement. A programmer can achieve a great degree of backward
compatibility among boards by making the device mapping in the application program hardware
independent.

3.2.5.2 Board-Level Names

A board name is assigned to a physical or virtual board in the system. The following board devices
are used:

• dxxxBn, where n is the board device number assigned in sequential order down the list of
sorted voice boards. A board device corresponds to a group of two or four voice channels.

For example, a Dialogic® D/240JCT-T1 Board employs 24 voice channels; the Dialogic®
software therefore divides the D/240JCT Board into six voice board devices, each board
device consisting of four channels. Boards with an E1 interface, such as the Dialogic®

D/600JCT-E1 Board, employ 60 voice channels. The Dialogic® software divides the
Dialogic® D/320SC-E1 Board into seven board devices consisting of four channels each and
one board device consisting of two voice channels.

Examples of board device names for voice boards are dxxxB1 and dxxxB2.

• dtiBn, where n is the board number assigned in sequential order down the list of sorted digital
network interface boards. A board device consists of one digital network interface. A
Dialogic® DTI/240SC Board contains one dti board device. A Dialogic® DM/V480A-2T1
Board contains two dti board devices. Note that the Dialogic® DM/V480A-2T1 Board also
contains 12 dxxx board devices.

Examples of board device names for digital network interface boards are dtiB1 and dtiB2.

• msiBn, where n is the board device number assigned in sequential order down the list of sorted
modular station interface boards.

• dcbBn, where n is the board device number assigned in sequential order down the list of
sorted audio conferencing boards.

• iptBn, where n is the logical board number that corresponds to a NIC or NIC address when
using IP technology. These devices are used by the Dialogic® Global Call API.

• ipmBn, where n is the board device number assigned to a media board. These devices are used
by the Dialogic® Global Call API and the Dialogic® IP Media Library API.

• mmBn, where n is the board device number assigned to a media board (multimedia devices
are supported in Dialogic® Host Media Processing software only).

• brdBn, where n is a physical board name assigned to each board in the system. Given the
opaque identifier (AUID) for a board, the SRLGetPhysicalBoardName() function can be
used to retrieve the physical board name.

26 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Device Handling

3.2.5.3 Channel-Level Names

A board device name can be appended with a channel or component identifier. The following
channel-level devices are used:

• dxxxBnCy, where y corresponds to one of the voice channels. Examples of channel device
names for voice boards are dxxxB1C1, dxxxB1C2.

• dtiBnTy, where y corresponds to one of the digital time slots. Examples of channel device
names for digital network interface boards are dtiB1T1, dtiB1T2.

• msiBnCy, where y corresponds to one of the conferencing channels.

• dcbBnDy, where y corresponds to 1 (DCB/320), 2 (DCB/640), or 3 DSPs (DCB/960).

• iptBnTy, where y corresponds to the logical channel number over which call signaling is
transmitted when using IP technology. These devices are used by the Dialogic® Global Call
API.

• ipmBnCy, where y corresponds to a media resource on a media board and is used to control
media streaming and related functions when using IP technology. These devices are used by
the Dialogic® Global Call API and the Dialogic® IP Media Library API.

• mmBnCy, where y corresponds to one of the multimedia channels (multimedia devices are
supported in Dialogic® Host Media Processing software only). Examples of multimedia
channel device names are mmB1C1, mmB1C2.

3.2.5.4 Device Naming and Numbering for Dialogic® DM3 Boards

The following conventions apply to Dialogic® DM3 Board naming and numbering:

• All Dialogic® DM3 Board devices are assigned standard device names, for example, dxxxB1,
dxxxB2, dtiB1, dtiB2.

• All Dialogic® DM3 channel and timeslot devices are assigned standard device names, for
example, dxxxB1C1, dxxxB1C2, dtiB1T1, dtiB1T2.

• A single physical Dialogic® DM3 Board device can contain multiple virtual boards that are
each numbered in sequential order; for example, a Dialogic® DM/V960-4T1 Board with four
digital network interfaces contains four virtual network interface boards that would follow a
sequential numbering pattern such as dtiB1, dtiB2, dtiB3, dtiB4.

Note: See also Section 3.2.5.5, “Device Naming and Numbering for Physical Boards
(brdBn)”, on page 27 for information about brdBn physical board devices.

• All Dialogic® DM3 Board devices are numbered in sequential order based on the logical board
ID assigned by the Dialogic® DM3 driver (the board with the lowest logical board ID will be
assigned the next board number, and so on).

The SRL device mapper functions can be used to return information about the structure of the
system including the number of boards in the system and so on. See the Dialogic® Standard
Runtime Library API Library Reference for more information.

Table 4 provides an example of the device naming and numbering conventions used for Dialogic®

DM3 Boards.

Dialogic® Standard Runtime Library API Programming Guide — November 2007 27
Dialogic Corporation

Device Handling

For a given physical board, devices are enumerated sequentially, but there are differences in the
way devices are enumerated for Dialogic® Springware Boards and Dialogic® DM3 Boards. For
example:

For a Dialogic® Springware D/600JCT Board, devices are enumerated as follows:

• dxxxB1C1-dxxxB8C2 (span 1) then

• dxxxB9C1-dxxxB16C2 (span 2)

For a Dialogic® DM3 DM/V600A Board, devices are enumerated sequentially without any skips as
follows:

• dxxxB1C1-dxxxB8C2 then

• dxxxB8C3-dxxxB15C4

3.2.5.5 Device Naming and Numbering for Physical Boards (brdBn)

The following conventions apply to physical board naming and numbering for Dialogic® DM3
Boards:

• All physical board devices are assigned standard device names, such as brdB1, brdB2, brdB3.

• In a single board start and stop, physical board devices are numbered in sequential order based
on the order of the board start. The board that is started first is assigned 1, namely brdB1.

• In a system start (all boards in the system are started), the order of the individual board start is
based on the logical board ID assigned by the Dialogic® DM3 driver; the board with the lowest

Table 4. Device Naming and Numbering Example for Dialogic® DM3 Boards

Hardware Resource Type Device Type Logical Device Names and Numbers

Dialogic® D/480SC-
2T1 Board
(BLT board ID 5)†

Voice

Digital Network
Interface

Board
 Channels
 ...
 Channels

Board
 Timeslots
 Timeslots

dxxxB1 to dxxxB12
 dxxxB1C1 to dxxxB1C4
 to
 dxxxB12C1 to dxxxB12C4

dtiB1 to dtiB2
 dtiB1T1 to dtiB1T24 ‡
 dtiB2T1 to dtiB2T24 ‡

Dialogic® DMV/V960-
4T1 Board
(logical board ID 1)†

Voice

Digital Network
Interface

Board
 Channel
 ...
 Channel

Board
 Timeslots
 Timeslots
 Timeslots
 Timeslots

dxxxB13 to dxxxB36
 dxxxB13C1 to dxxxB13C4
 to
 dxxxB36C1 to dxxxB36C4

dtiB3 to dtiB6
 dtiB3T1 to dtiB3T24 ‡
 dtiB4T1 to dtiB4T24 ‡
 dtiB5T1 to dtiB5T24 ‡
 dtiB6T1 to dtiB6T24 ‡

† All Dialogic® Springware Board devices are assigned device numbers (for example, dxxxB1) before all
Dialogic® DM3 Board devices.

‡ T23 when using ISDN.

28 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Device Handling

logical board ID is started first and is assigned 1, namely brdB1. The board with the next
lowest logical board ID is assigned the next number, namely brdB2, and so on.

The SRL device mapper functions can be used to return information about the structure of the
system including the number of physical boards in the system and so on. See the Dialogic®
Standard Runtime Library API Library Reference for more information.

3.3 Opening and Using Devices

When you open a file in a Windows® environment, it returns a unique file descriptor for that file.
The following is an example of a file descriptor:

int file_descriptor;
file_descriptor = open(filename, mode);

Any subsequent action you wish to perform on that file is accomplished by identifying the file
using the file_descriptor. No action can be performed on the file until it is first opened.

Dialogic® Boards and channels work in a similar manner. You must first open a voice device using
dx_open() before you can perform any operation on it. Keep in mind that Dialogic® Springware
Boards such as the Dialogic® D/240JCT-T1 Board and Dialogic® D/300JCT-E1 Board comprise
both voice resources (dx_open()) and digital interface resources (dt_open()), and that these
resources must be opened separately.

When you open a channel or a device connected to the time division multiplexing (TDM) bus using
dx_open() or dt_open(), the value returned is a unique Dialogic® device handle for that particular
open process on that channel. Typically, the channel device handle is referred to as chdev:

int chdev;
chdev = dx_open(dxxxBnCy,mode)

The channel device name is dxxxBnCy, where B is followed by the board number and C is
followed by the number of the voice device channel. An example is dxxxB1C2 for board 1, channel
2.

The device handle for a digital network interface device is referred to as dtih:

int dtih;
dtih = dt_open(dtiBxTx,mode)

The device name is dtiBxTx, where B is followed by the unique board number and T is followed by
the number of the time slot (digital channel), 1 to 24 for T1 or 1 to 30 for E1.

For more information on device naming, see Section 3.2, “Device Names”, on page 22.

To use a Dialogic® Voice library function on the channel, you must identify the channel with its
channel device handle, chdev. The channel device name is used only when opening a channel, and
all actions after opening must use the handle chdev.

Board devices are opened by following the same procedure, where bddev refers to the board device
handle. If you use the cached prompt management feature, the concept of a physical board device

Dialogic® Standard Runtime Library API Programming Guide — November 2007 29
Dialogic Corporation

Device Handling

handle, brdBn, is introduced. See the Dialogic® Voice API Programming Guide for more
information.

Note: Boards and channels are considered separate devices. It is possible to open and use a channel
without ever opening the board it is on. There is no board-channel hierarchy imposed by the driver.

In applications that spawn child processes from a parent process, device handles are not inheritable
from the parent process to the child process. Make sure that devices are opened in the child process.

Note: When using Dialogic® DM3 Boards, two processes cannot open and access the same device.

To enable you to control the boards and channels in a Windows environment, Dialogic provides
libraries of C language functions. For details on opening and closing board and channel devices,
see the documentation provided for each library.

Caution: Do not open Dialogic® devices using the Windows open() command.

3.4 Getting Device Information

The SRL provides several ways of retrieving information about devices. Device information is
categorized as follows:

• Common Device Information

• Technology-Specific Device Information

• User-Defined Device Information

• SRL-Specific Device Information

The Device Mapper API can also be used to retrieve device information. See Chapter 12, “Getting
Information About the Structure of a System” for more information.

3.4.1 Common Device Information

General information exists for all devices, such as the device name and the error that occurred on
the last library call. This information can be obtained through SRL standard attribute functions,
such as ATDV_LASTERR(). Standard attribute functions return general information about a
device, such as device name, board type, and the error that occurred on the last library call.

3.4.2 Technology-Specific Device Information

Technology-specific devices communicate through the SRL and are addressable entities:

• Voice channel and board devices

• Analog or digital time slot and network interface board devices

• Fax channels and board devices

• Modular station interface sets and board devices

• IP network interface channel and board devices

30 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Device Handling

• IP media channel and board devices

• Multimedia channel and board devices (multimedia devices are supported in Dialogic® Host
Media Processing software only)

Technology-specific device information can be obtained through the API using technology-
specific, extended attribute functions, such as ATDX_BDNAMEP() for voice and
ATFX_BADIOTT() for fax. The APIs also may provide functions to get and set technology-
specific parameters, such as dx_getparm() for voice and fx_getparm() for fax.

3.4.3 User-Defined Device Information

An application programmer can set up and get application-specific information on a device-by-
device basis. Two examples are:

• An index to a per-device application array

• A pointer to a per-device application structure

To set user-specific context, use the sr_setparm() function with the parmno parameter set to
SR_USERCONTEXT. To get user-specific context, use the sr_getparm() function with the
parmno parameter set to SR_USERCONTEXT.

3.4.4 SRL-Specific Device Information

Associated with the SRL is a special device called SRL_DEVICE, which has attributes and can
generate errors and events similar to any technology-specific device. The SRL_DEVICE is a
predefined virtual device handle for the SRL. The SRL provides functions to get and set SRL
device information using the SRL_DEVICE parameter in the sr_getparm() and sr_setparm()
functions.

Dialogic® Standard Runtime Library API Programming Guide — November 2007 31
Dialogic Corporation

44.Event Handling

This chapter describes the event handling facilities provided by the Dialogic® Standard Runtime
Library (SRL). Topics include:

• Event Management . 31

• Using Event Handlers . 32

4.1 Event Management

The SRL includes event management functions to provide an interface for managing events on
devices and handling the program flow associated with the different programming models.

The event management functions include:

sr_dishdlr()
disable an event handler

sr_enbhdlr()
enable an event handler

sr_NotifyEvent()
send event notification

sr_putevt()
add an event to the SRL event queue

sr_waitevt()
wait for next event

sr_waitevtEx()
wait for events on certain groups of devices

Application programmers can use event management functions to do the following:

• Utilize asynchronous and/or synchronous functions. An asynchronous function returns
immediately to the calling application and returns event notification at some future time.
EV_ASYNC is specified in the function’s mode. This allows the calling thread to perform
further operation while the function completes. A synchronous function blocks the thread until
the function completes. EV_SYNC is specified in the function's mode argument.

• Write one program to handle events on several devices.

• Enable or disable application-defined event handlers for a device.

See the Dialogic® Standard Runtime Library API Programming Guide for detailed information
about each event management function.

32 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Event Handling

4.2 Using Event Handlers

The Synchronous and Asynchronous models can use event handlers (also known as callback
functions) to act as application-level interrupt service routines that are triggered by the detection of
events associated with devices. The following topics provide more information on event handlers:

• Event Handler Overview

• Event Handler Guidelines

• Event Handler Hierarchy

• Event Handler Thread Options

4.2.1 Event Handler Overview

An event handler is a user-defined function called by the SRL to handle an event or events
associated with one or more devices. You can set up event handlers to be invoked for:

• A single event on any device.

• Any event on a specified device.

• Combinations of events on combinations of devices. Where overlap occurs, the SRL calls all
applicable event handlers.

Event notification is implemented using the sr_waitevt() function. The application defines the
function(s) that will be called when an event occurs on a device. Events are not received by the
process until the sr_waitevt() function is called. When an event occurs (or has previously
occurred) on the device, the appropriate event handlers for the event are called before sr_waitevt()
returns.

4.2.2 Event Handler Guidelines

The following guidelines apply to event handlers:

• You can enable more than one handler for any event. The SRL calls all specified handlers
when a thread detects the event.

• You can enable general handlers that handle all events on a specified device.

• You can enable a handler for any event on any device.

• You can not call synchronous functions in a handler.

• You can enable or disable handlers from any thread.

4.2.3 Event Handler Hierarchy

The SRL calls event handlers in a hierarchy determined by how device- and event-specific a
handler is. The order in which the SRL calls event handlers is listed below:

1. Device/event-specific handlers. Handlers enabled for a specific event on a specific device are
called when the event occurs on the device.

Dialogic® Standard Runtime Library API Programming Guide — November 2007 33
Dialogic Corporation

Event Handling

2. Device specific/event non-specific handlers. Handlers enabled for any event on a specific
device are called only if no device/event specific handlers are enabled for the event.

3. Device non-specific/event non-specific or device non-specific/event-specific handlers (also
called backup or fallback handlers). Handlers enabled for any event, or for a specific event on
any device, are called only if no higher-ranked handler has been called. This allows these
handlers to act as contingencies for events that might not have been handled by device/event-
specific handlers.

The function prototype for user-supplied event handler functions is as follows (shown in ANSI C
format):

 long usr_hdlr(unsigned long evhandle);

4.2.4 Event Handler Thread Options

The following topics describe the event handler thread options available to an application and how
each option can be implemented:

• Selecting an Event Handler Thread

• Using the SRL Handler Thread

• Using an Application Handler Thread

4.2.4.1 Selecting an Event Handler Thread

An application that uses event handlers can use an event handler thread to wait for events on
Dialogic® devices and when an event is detected, invoke the appropriate event handler. The
application can either use the SRL handler thread (the default option) or define its own application-
specific handler thread.

The application can control which type of handler thread to use by setting the SR_MODELTYPE
parameter to one of the following values:

SR_MTASYNC
Use the SRL handler thread to invoke event handlers. The SRL handler thread is automatically
created on the first call to the sr_enbhdlr() function. This is the default option. See
Section 4.2.4.2, “Using the SRL Handler Thread”, on page 33 for more information.

SR_STASYNC
Use an application-specific handler thread to invoke event handlers. The automatic creation of
the SRL handler thread is suppressed. See Section 4.2.4.3, “Using an Application Handler
Thread”, on page 34 for more information.

4.2.4.2 Using the SRL Handler Thread

You can use an SRL handler thread to execute an event handler. Enable an event handler by calling
the sr_enbhdlr() function from within any application thread. You can set up separate event
handlers for separate events for separate devices.

By default, on the first call to sr_enbhdlr(), the SRL creates an internal thread, the SRL handler
thread, that services event handlers. You do not need to call the sr_waitevt() function from

34 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Event Handling

anywhere within the application; the sr_enbhdlr() thread already calls the sr_waitevt() function
to get events. Each call to the sr_enbhdlr() function allows the events to be serviced when the
operating system schedules the SRL handler thread for execution. The SRL handler thread exists as
long as one handler is still enabled. See the description of the sr_dishdlr() function in the
Dialogic® Standard Runtime Library API Programming Guide.

Handlers are called from the context of the SRL handler thread. Therefore, if the main thread is
blocked in a function that is not a Dialogic® library function and an asynchronous event, such as a
hang-up, occurs on a device being controlled by the main thread, the handler is called immediately
within the context of the SRL handler thread that has been created to service handlers.

A state machine is driven by the event handlers. If the event handler returns a 1, the event is kept.
The next general handler in the hierarchy is notified.

Note: You can use the SRL handler thread in some Linux applications that require porting.

4.2.4.3 Using an Application Handler Thread

To create your own application handler thread, with which you can distribute your workload and
gain more control over program structure, you can use the application handler thread to make calls
to the sr_waitevt() function and execute event handlers. To avoid the creation of the SRL handler
thread, you must set SR_MODELTYPE to SR_STASYNC. The thread must not call any
synchronous functions.

After initiation of the asynchronous function, the application thread can perform other tasks but
cannot receive solicited or unsolicited events until the sr_waitevt() function is called.

If a handler returns a non-zero value, the sr_waitevt() function returns in the application thread.

Note: A solicited event is an expected event specified using an asynchronous function contained in the
device library, such as a “play complete” after issuing a dx_play() function. An unsolicited event
is an event that occurs without prompting, such as a silence-on or silence-off event in a device.

Dialogic® Standard Runtime Library API Programming Guide — November 2007 35
Dialogic Corporation

55.Error Handling

This chapter describes the error handling functionality provided by the Dialogic® Standard
Runtime Library (SRL). Topics include:

• SRL Function Error Indication . 35

• Retrieving Error Information Using Standard Attribute Functions 35

5.1 SRL Function Error Indication

Most SRL event management functions return a value that indicates success or failure:

• Success is indicated by a return value other than -1.

• Failure is indicated by a return value of -1.

Note: The exception is sr_getevtdatap(), which returns a NULL to indicate that there is no data
associated with the current event.

5.2 Retrieving Error Information Using Standard
Attribute Functions

If a function fails, the error can be retrieved using the ATDV_LASTERR() or
ATDV_ERRMSGP() SRL standard attribute functions. See the Dialogic® Standard Runtime
Library API Library Reference for more information. If an SRL function fails, retrieve the error by
using the ATDV_LASTERR() function with SRL_DEVICE as the argument. To retrieve a text
description of the error, use the ATDV_ERRMSGP() function.

For example, if the SRL function sr_getparm() fails, the error can be found by calling the
ATDV_LASTERR() function with SRL_DEVICE as the argument.

The Dialogic® Standard Runtime Library API Library Reference includes a list of the errors that
can occur for each function.

If the error returned by ATDV_LASTERR() is ESR_SYS, an error from the operating system has
occurred. Use the dx_fileerrno() function to obtain the system error value.

The error codes are defined in srllib.h. See the Dialogic® Standard Runtime Library API Library
Reference for a list of valid error codes.

36 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Error Handling

Dialogic® Standard Runtime Library API Programming Guide — November 2007 37
Dialogic Corporation

66.Application Development
Guidelines

This chapter provides guidelines for selecting the most appropriate Dialogic® Standard Runtime
Library programming model for your application. Topics include:

• Summary of SRL Programming Model Selections . 37

• Selecting the Synchronous Model . 38

• Selecting the Asynchronous Model . 39

• Selecting the Extended Asynchronous Model. 40

• Selecting the Asynchronous with Windows® Callback Model 41

• Selecting the Asynchronous with Win32 Synchronization Model 41

6.1 Summary of SRL Programming Model Selections

Select a programming model according to the criteria shown in Table 5. See also Section 2.8,
“Performance Considerations”, on page 19 for information that impacts system performance.

Table 5. Guidelines for Selecting an SRL Programming Model

Application
Requirements

Recommended
 Programming Model

Threading and Event Handling
Considerations

• Few devices Synchronous model † Create a separate thread to execute
processing for each Dialogic® device.

• Few devices

• Needs to service
unsolicited events

Synchronous model with event
handlers †

Create a separate thread to execute
processing for each Dialogic® device.

Call sr_enbhdlr() to enable an event handler
to service unsolicited events on Dialogic®
devices.

OR

Create your own handler thread that calls the
sr_waitevt() function to receive the
unsolicited events.

See Section 4.2, “Using Event Handlers”, on
page 32 for more information.

• Many devices

• Multiple tasks

Asynchronous model Call sr_waitevt() to wait for events. Create a
single thread to execute processing for all
Dialogic® devices.

38 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Application Development Guidelines

6.2 Selecting the Synchronous Model

Choose the Synchronous programming model when developing applications that have:

• Only a few devices.

• Simple and straight flow control with only one action per device occurring at any time.

• Many devices

• Multiple tasks

• Needs user-defined
event handlers

Asynchronous model with event
handlers

Create a single thread to execute processing
for all Dialogic® devices.

Call sr_enbhdlr() to enable an event handler
to service unsolicited events on Dialogic®
devices.

OR

Create your own handler thread that calls the
sr_waitevt() function to receive the
unsolicited events.

See Section 4.2, “Using Event Handlers”, on
page 32 for more information.

• Many devices

• Multiple tasks

• Needs to wait for
events on more than
one group of devices

• High availability

Extended Asynchronous model Create multiple threads to execute processing
on groups of Dialogic® devices. Call
sr_waitevtEx() for each group of devices, to
wait for events on that group.

High availability is supported; if one thread
dies, other threads can continue processing
calls.

• Many devices

• Multiple tasks

• Needs the tightest
possible integration
with the Windows®
messaging scheme

Asynchronous with Windows®
Callback model

Call sr_NotifyEvent() to enable event
notification to a user-specified window.

When the window receives event notification,
call sr_waitevt() to retrieve the event.

• Many devices

• Multiple tasks

• Needs the tightest
possible integration
with other Win32
devices

Asynchronous with Win32
Synchronization model

At application initialization:

• Use a Win32 function to create the Reset
event or I/O Completion Port.

• Set up the SRLWIN32INFO structure.

• Call the sr_setparm() function.

Use a Win32 function to wait for event
notification. At notification, call the
sr_waitevt() function to retrieve the event
from the event queue.

† The Synchronous model is not recommended for production applications. However, it can be used for demo or proof of
concept applications.

Table 5. Guidelines for Selecting an SRL Programming Model (Continued)

Application
Requirements

Recommended
 Programming Model

Threading and Event Handling
Considerations

Dialogic® Standard Runtime Library API Programming Guide — November 2007 39
Dialogic Corporation

Application Development Guidelines

Advantages

The advantages are:

• The Synchronous programming model is the easiest to program, and typically allows fast
deployment.

• The model can easily be adapted to handle notification of some unsolicited asynchronous
events on Dialogic® devices.

• If event handlers are used to handle unsolicited events on Dialogic® devices, the first call to
sr_enbhdlr() automatically creates an SRL handler thread that services the event handlers.

Disadvantages

The disadvantages are:

• A high level of system resources is required since the main thread creates a separate thread for
each device. This can limit maximum device density; thus, the Synchronous programming
model provides limited scalability for growing systems.

• When a thread is executing a synchronous function, it cannot perform any other processing
since a synchronous operation blocks thread execution.

• Unsolicited events are not processed until the thread calls a function such as dx_getevt() or
dt_getevt().

• If you are using event handlers, you may need to set up a way for each event handler to
communicate events to another thread. For example, an event handler might need to stop a
multitasking function that is active in another thread.

6.3 Selecting the Asynchronous Model

Choose the Asynchronous model for any application that:

• Requires a state machine.

• Needs to wait for events on multiple devices in a single thread.

See also Section 2.8, “Performance Considerations”, on page 19 for information that impacts
system performance.

Advantages

The advantages are:

• A lower level of system resources than the Synchronous model is required since the
Asynchronous model uses one thread for all devices; therefore, the Asynchronous model
allows for greater scalability in growing systems.

• The Asynchronous model lets you use a single thread to run the entire Dialogic portion of the
application.

• When using event handlers, even if the application’s non-Dialogic threads block on non-
Dialogic functions, the event handlers can still handle Dialogic events. This model ensures that

40 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Application Development Guidelines

events on Dialogic® devices can be serviced when an event occurs and when the thread is
scheduled for execution.

Disadvantages

The disadvantages are:

• The Asynchronous model requires the development of a state machine, which is typically
more complex to develop than a Synchronous application.

• When using event handlers, you may need to set up a way for the event handler to
communicate events to other threads.

Usage Notes

The Windows® operating system discards any pending I/O request packets (IRP) when the
asynchronous I/O calling thread is terminated. If the application thread that calls an asynchronous
Dialogic® I/O function (such as play, record, and dial) exits for any reason, the driver will not be
able to send any messages back to the application using the associated IRP for that asynchronous
Dialogic® I/O function. Therefore, do not close a thread that calls a function asynchronously until
you have received a completion or error notification event. If you choose to do so, the application
will not receive any events associated with that thread. Note that this is a characteristic of the
Windows operating system and not a limitation of the Dialogic® libraries.

6.4 Selecting the Extended Asynchronous Model

Choose the Extended Asynchronous model for any application that:

• Requires a state machine.

• Needs to wait for events on more than one group of devices.

• Needs to support high availability.

See also Section 2.8, “Performance Considerations”, on page 19 for information that impacts
system performance.

Advantages

The advantages are:

• A lower level of system resources than the Synchronous model is required since the Extended
Asynchronous model uses only a few threads for all Dialogic® devices.

• The Extended Asynchronous model lets you use a few threads to run the entire Dialogic
portion of the application.

Disadvantages

The main disadvantage is that the Extended Asynchronous model requires the development of a
state machine that is typically more complex to develop than a Synchronous application.

Dialogic® Standard Runtime Library API Programming Guide — November 2007 41
Dialogic Corporation

Application Development Guidelines

6.5 Selecting the Asynchronous with Windows®
Callback Model

This model uses the sr_NotifyEvt() function to send event notification (a user-specified message)
to a user-specified window. The main application loop follows the standard Windows® message
handling scheme. When a completion event occurs:

1. A user-specified message is sent to a user-specified window.

2. The sr_waitevt() function is called with a zero time-out.

3. Event data retrieval functions sr_getevtdev() and sr_getevttype() retrieve information about
the event.

4. The next action is initiated asynchronously.

Choose the Asynchronous with Windows Callback model for an application that needs the tightest
possible integration with the Windows messaging scheme.

Advantages

The advantages are:

• A low level of system resources is required since a separate thread is not required for each
device. You can run the entire Dialogic portion of the application on a single thread.

• Provides tight integration within the Windows messaging scheme.

• Services all events for all devices within the Windows messaging loop.

Disadvantages

Since this message loop is handling all the processing, you must be more aware of the efficiency of
your Windows procedure and not call many blocking functions that may take a long time to
complete.

6.6 Selecting the Asynchronous with Win32
Synchronization Model

The Asynchronous with Win32 Synchronization model allows an asynchronous application to
receive SRL event notification through standard Win32 synchronization mechanisms. The two
mechanisms supported are Reset Events and I/O Completion Ports. In this model, the application
requests the SRL to signal the specified Reset Event or I/O Completion Point when an event occurs
on a Dialogic® device. When the application receives notification, it calls standard Dialogic event
retrieval functions to process the event.

Choose the Asynchronous with Win32 Synchronization model for an application that needs the
tightest possible integration with other Win32 devices.

42 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Application Development Guidelines

Advantages

The advantages are:

• A lower level of system resources than the Asynchronous with Windows® Callback model
since one thread is used for all devices; therefore, the Asynchronous with Win32
Synchronization model allows for greater scalability in growing systems.

• Provides a single point of event synchronization for devices of separate sources, including
Dialogic® DM3 devices.

• Minimizes inter-thread communication because all devices can be controlled within a single
thread.

• Provides a high level of scalability to multi-processing platforms. This is especially true for the
I/O Completion Ports implementation.

Disadvantages

The Asynchronous with Win32 Synchronization model is possibly the most complex to program
and requires familiarity with the Windows concepts of either Reset Events or I/O Completion
Ports.

Dialogic® Standard Runtime Library API Programming Guide — November 2007 43
Dialogic Corporation

77.Using the Synchronous Model

This chapter provides information on using the Synchronous programming model of the Dialogic®
Standard Runtime Library (SRL). Topics include:

• Implementing the Synchronous Model . 43

• Implementing the Synchronous Model With Event Handlers . 45

7.1 Implementing the Synchronous Model

The following guidelines apply:

• You should use the Synchronous model only for simple and straight flow control, with only
one action per device occurring at any time.

• Because each function in the Synchronous model blocks execution in its thread, the main
thread in your application must create a separate thread for each device.

Note: The Synchronous model is not recommended for production applications. It can be used for demo
or proof of concept applications.

Example Code

The following code is an example of the Synchronous model.

/*
 * This synchronous mode sample application was designed to work with
 * D/41ESC, VFX/40ESC, LSI/81SC, LSI/161SC and D/160SC-LS boards only.
 * It was compiled using MS-VC++.
 */

/* C includes */
#include <stdio.h>
#include <process.h>
#include <conio.h>
#include <ctype.h>
#include <windows.h>

/* Dialogic includes */
#include <srllib.h>
#include <dxxxlib.h>

/* Defines */
#define MAX_CHAN 4 /* maximum number of voice channels in system */

/* Globals */
int Thrd_num[MAX_CHAN];
int Kbhit_flag = 0;

/* Prototypes */
int main();
DWORD WINAPI sample_begin(LPVOID);

44 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Using the Synchronous Model

/**
* NAME : int main()
* DESCRIPTION : prepare screen for ouput, create threads and
* : poll for keyboard input
* INPUT : none
* OUTPUT : none
* RETURNS : 0 on success; 1 if a failure was encountered
* CAUTIONS : none
**/

int main()
{
 int cnt;
 HANDLE thread_handles[MAX_CHAN];
 DWORD threadID;

 /* show application's title */
 printf("Synchronous Mode Sample Application - hit any key to exit...\n");

 /* create one thread for each voice channel in system */
 for (cnt = 0; cnt < MAX_CHAN; cnt++) {
 Thrd_num[cnt] = cnt;
 if ((thread_handles[cnt] = (HANDLE)_beginthreadex(NULL,
 0,
 sample_begin,
 (LPVOID)&Thrd_num[cnt],
 0,
 &threadID)) == (HANDLE)-1) {
 /* Perform system error processing */
 exit(1);
 }
 }

 /* wait for Keyboard input to shutdown program */
 getch();

 Kbhit_flag++; /* let threads know it's time to abort */

 /* sleep here until all threads have completed their tasks */
 if (WaitForMultipleObjects(MAX_CHAN, thread_handles, TRUE, INFINITE) == WAIT_FAILED) {
 printf("ERROR: Failed WaitForMultipleObjects(): error = %ld\n", GetLastError());
 }

 return(0);
}

/**
* NAME : DWORD WINAPI sample_begin(LPVOID argp)
* DESCRIPTION : do all channel specific processing
* INPUT : LPVOID argp - pointer to the thread's index number
* OUTPUT : none
* RETURNS : 0 on success; 1 if a failure was encountered
* CAUTIONS : none
**/

DWORD WINAPI sample_begin(LPVOID argp)
{
 char channame[20];
 int chdesc;
 int thrd_num = *((int *)argp);

 /* build name of voice channel */
 sprintf(channame, "dxxxB%dC%d", (thrd_num / 4) + 1,
 (thrd_num % 4) + 1);

Dialogic® Standard Runtime Library API Programming Guide — November 2007 45
Dialogic Corporation

Using the Synchronous Model

 /* open voice channel */
 if ((chdesc = dx_open(channame, 0)) == -1) {
 printf("%s - FAILED: dx_open(): system error = %d\n", channame, dx_fileerrno());
 return(1);
 }
 printf("%s - Voice channel opened\n", ATDV_NAMEP(chdesc));

 /* loop until Keyboard input is received */
 while (!Kbhit_flag) {
 /* set the voice channel off-hook */
 if (dx_sethook(chdesc, DX_OFFHOOK, EV_SYNC) == -1) {
 printf("%s - FAILED: dx_sethook(DX_OFFHOOK): %s (error #%d)\n",
 ATDV_NAMEP(chdesc), ATDV_ERRMSGP(chdesc), ATDV_LASTERR(chdesc));
 return(1);
 }
 printf("%s - Voice channel off-hook\n",ATDV_NAMEP(chdesc));

 /* dial number (without call progress) */
 printf("%s - Voice channel dialing...\n",ATDV_NAMEP(chdesc));
 if (dx_dial(chdesc, "12025551212", NULL, EV_SYNC) == -1) {
 printf("%s - FAILED: dx_dial(): %s (error #%d)\n",
 ATDV_NAMEP(chdesc), ATDV_ERRMSGP(chdesc), ATDV_LASTERR(chdesc));
 return(1);
 }
 printf("%s - Voice channel Done dialing\n",ATDV_NAMEP(chdesc));

 /* set the voice channel back on-hook */
 if (dx_sethook(chdesc, DX_ONHOOK, EV_SYNC) == -1) {
 printf("%s - FAILED: dx_sethook(DX_ONHOOK): %s (error #%d)\n",
 ATDV_NAMEP(chdesc), ATDV_ERRMSGP(chdesc), ATDV_LASTERR(chdesc));
 return(1);
 }
 printf("%s - Voice channel on-hook\n",ATDV_NAMEP(chdesc));
 }

 /* close the voice channel */
 if (dx_close(chdesc) == -1) {
 printf("%s - FAILED: dx_close(): %s (error #%d)\n",
 ATDV_NAMEP(chdesc), ATDV_ERRMSGP(chdesc), ATDV_LASTERR(chdesc));
 return(1);
 }
 printf("%s - Voice channel closed\n",channame);

 return(0);
}

7.2 Implementing the Synchronous Model With Event
Handlers

The following guidelines apply:

• Enable the event handler by calling sr_enbhdlr() from within any application thread. You can
set up separate event handlers for various devices and event types. The first call to
sr_enbhdlr() creates the SRL handler thread. You do not need to call sr_waitevt() from
anywhere within the application because the SRL handler thread already calls sr_waitevt() to
get events.

• The event handlers must not call sr_waitevt() or any synchronous function. For example, you
can use this model to wait for inbound calls synchronously, then service those calls through

46 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Using the Synchronous Model

telephony functions, such as play and record. You could use the event handlers to receive
notification of unsolicited hang-up events.

Note: The Synchronous model is not recommended for production applications. It can be used for demo
or proof of concept applications.

Example Code

The following code is an example of the Synchronous with SRL Callback model.

/***
 * This Windows Callback model sample application was designed to work with
 * D/41ESC, VFX/40ESC, LSI/81SC, LSI/161SC and D/160SC-LS boards only.
 * It was compiled using MS-VC++.
 * It cycles through 4 channels going offhook, dialing a digit string,
 * going onhook. This is repeated until the user stops the processing from the
 * Test menu in the main Window
 * The test can be started by choosing the Go option of the Test menu in the
 * program window
 * ***/

#define STRICT
#include <windows.h>
#include <windowsx.h>
#include <afxres.h>
#include <process.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <string.h>
#include <stdio.h>
#include <fcntl.h>
#include "resource.h"
#include <sctools.h>

// Defines
#define MAXCHAN 4 // maximum number of voice channels in system
#define WM_SRNOTIFYEVENT WM_USER + 100
#define ROWHEIGHT 20

// Modified version of the normal HANDLE_MSG macro in windows.h
#define HANDLE_DLGMSG(hwnd, message, fn) \
 case (message): \
 return(SetDlgMsgResult(hwnd, uMsg, \
 HANDLE_##message((hwnd), (wParam), \
 (lParam), (fn))))
// This may be expanded to contain other information such as state

typedef struct dx_info {
 int chdev;
 int iter;
} DX_INFO;

// Globals
DX_INFO dxinfo[MAXCHAN+1];
int Kbhit_flag = 0;
char tmpbuf[128];
HANDLE hInst;
char gRowVal[MAXCHAN+1][80];
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam);
void General_OnCommand(HWND , int , HWND , UINT); // Windows WM_COMMAND handler

Dialogic® Standard Runtime Library API Programming Guide — November 2007 47
Dialogic Corporation

Using the Synchronous Model

int dlgc_OnCommand(HWND); // WM_SRNOTIFYEVENT handler
int DialogicSysInit(HWND);
void DialogicClose(HWND);
int get_ts(int);
void disp_status(HWND, int , char *);

/***
 * NAME : WinMain()
 * DESCRIPTION : Windows application entry point
 * CAUTIONS : none.
***/

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hinstPrev, LPSTR lpszCmdLine, int nCmdShow)
{
 HWND hWnd;
 WNDCLASS wc;
 MSG msg;
 hInst = hInstance;
 if (!hinstPrev)
 {
 // Fill in window class structure with parameters that
 // describe the main window.
 wc.style = CS_HREDRAW | CS_VREDRAW;// Class style(s).
 wc.lpfnWndProc = (WNDPROC)WndProc; // Window Procedure
 wc.cbClsExtra = 0; // No per-class extra data.
 wc.cbWndExtra = 0; // No per-window extra data.
 wc.hInstance = hInstance; // Owner of this class
 wc.hIcon = LoadIcon (hInstance, MAKEINTRESOURCE(IDI_ICON1)); // Icon name from .RC
 wc.hCursor = LoadCursor(NULL, IDC_ARROW);// Cursor
 wc.hbrBackground = (HBRUSH)(COLOR_WINDOW+1);// Default color
 wc.lpszMenuName = MAKEINTRESOURCE(IDR_MENU1);
 wc.lpszClassName = "WinCallBack"; // Name to register
 // Register the window class and return success/failure code.
 if (!RegisterClass(&wc))
 return (FALSE); // Exits if unable to register
 }
 hWnd = CreateWindowEx(0L,
 "WinCallBack",
 "Windows Callback Demo",
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT,
 0,
 CW_USEDEFAULT,
 0, NULL, NULL, hInstance, NULL);
 // If window could not be created, return "failure"
 if (!hWnd)
 return (FALSE);
 sr_NotifyEvent(hWnd, WM_SRNOTIFYEVENT, SR_NOTIFY_ON);
 ShowWindow(hWnd, SW_SHOW); // Show the window
 UpdateWindow(hWnd); // Sends WM_PAINT message

 // Get and dispatch messages until a WM_QUIT message is received.
 while (GetMessage(&msg,NULL, 0,0))
 {
 TranslateMessage(&msg); // Translates virtual key code DispatchMessage(&msg);
 // Dispatches message to window
 }
 return (0);
}

/***
 * NAME : WndProc()
 * DESCRIPTION : Windows Procedure
 * CAUTIONS : none.
***/
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{

48 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Using the Synchronous Model

 HDC hDC;
 PAINTSTRUCT ps;
 RECT rect;
 int numchan;
 switch (uMsg) {
 // Handle the WM_COMMAND messages HANDLE_MSG(hWnd, WM_COMMAND, General_OnCommand);
 case WM_SRNOTIFYEVENT:
 if (dlgc_OnCommand(hWnd)) { // Dialogic event
 DialogicClose(hWnd);
 DestroyWindow(hWnd); } // if dlgc_OnCommand() returns FALSE
 break;
 case WM_CREATE:
 break;
 case WM_PAINT:
 // get the actual window rectangle
 GetClientRect(hWnd, &rect);
 hDC = BeginPaint(hWnd, &ps);

 // display name of application
 rect.top = ROWHEIGHT;
 sprintf(tmpbuf,"Windows Callback Demo");
 DrawText(hDC,tmpbuf , -1, &rect, DT_SINGLELINE|DT_CENTER);
 // display status of channel
 for (numchan=1;numchan<=MAXCHAN;numchan++)
 {
 rect.top = (numchan+2) * ROWHEIGHT;
 DrawText(hDC, gRowVal[numchan], -1, &rect, DT_SINGLELINE);
 }
 EndPaint(hWnd, &ps);
 break;
 case WM_CLOSE:
 DestroyWindow(hWnd);
 break;
 case WM_DESTROY:
 PostQuitMessage(0); // Allow GetMessage() to return FALSE
 break;
 default:
 return (DefWindowProc(hWnd, uMsg, wParam, lParam));
 } // switch (uMsg)
}

/***
 * NAME : General_OnCommand()
 * DESCRIPTION : Message Handler for WM_COMMAND
 * CAUTIONS : none.
 ***/

void General_OnCommand(HWND hWnd, int id, HWND hwndCtl, UINT codeNotify)
{
 switch (id) {
 case ID_TEST_EXIT:
 DestroyWindow(hWnd); // post WM_DESTROY message for WndProc to exit app break;
 case ID_TEST_GO: // create threads here and gray the "start" menu and
 // launch the call control threads
 if (DialogicSysInit(hWnd)) {
 // initialize Dialogic devices, if error initializing then show error
 // message and exit
 MessageBox(hWnd, "Error initializing",
 "ERROR", MB_OK | MB_ICONSTOP| MB_APPLMODAL);
 break;
 }
 // ungrey the "stop" menu
 EnableMenuItem(GetMenu(hWnd), ID_TEST_STOP, MF_ENABLED);
 EnableMenuItem(GetMenu(hWnd), ID_TEST_GO, MF_DISABLED | MF_GRAYED);
 break;
 case ID_TEST_STOP: // "terminate" the call control threads and ungray menu items
 // terminate the call control threads

Dialogic® Standard Runtime Library API Programming Guide — November 2007 49
Dialogic Corporation

Using the Synchronous Model

 DialogicClose(hWnd);
 // disable the Action/Stop menu item
 EnableMenuItem(GetMenu(hWnd), ID_TEST_STOP, MF_DISABLED | MF_GRAYED);
 EnableMenuItem(GetMenu(hWnd), ID_TEST_GO, MF_ENABLED);
 break;
 default:
 return;
 } // switch (id)
}

/***
 * NAME : dlgc_OnCommand()
 * DESCRIPTION : Message Handler for WM_SRNOTIFYEVENT
 * CAUTIONS : none.
***/
int dlgc_OnCommand(HWND hWnd)
{
 int rc = 0;
 int chdev;
 int event;
 DX_CST *cstp;
 static iter=0;
 int channum;

 if (sr_waitevt(0) == -1) {
 sprintf(tmpbuf, "sr_waitevt() ERROR %s", ATDV_ERRMSGP(SRL_DEVICE));
 MessageBox(hWnd,tmpbuf, "ERROR" , MB_OK|MB_APPLMODAL);
 return (1);
 }
 chdev = sr_getevtdev();
 event = sr_getevttype();

 /* Switch according to the event received. */
 switch (event) {
 case TDX_SETHOOK:
 cstp = (DX_CST *)sr_getevtdatap();
 switch(cstp->cst_event) {
 case DX_ONHOOK:
 /* Go offhook next */
 if (dx_sethook(chdev, DX_OFFHOOK, EV_ASYNC) == -1)
 {
 sprintf(tmpbuf,"FAILED: dx_sethook(%s, DX_OFFHOOK): %s (error #%d)",
 ATDV_NAMEP(chdev), ATDV_ERRMSGP(chdev), ATDV_LASTERR(chdev));
 MessageBox(hWnd, tmpbuf, "ERROR",MB_OK|MB_APPLMODAL);
 return(1);
 }
 break;
 case DX_OFFHOOK:
 /* dial next */
 if (dx_dial(chdev, "12025551212", NULL, EV_ASYNC) == -1)
 {
 sprintf(tmpbuf,"FAILED: dx_dial(%s): %s (error #%d) ",
 ATDV_NAMEP(chdev),
 ATDV_ERRMSGP(chdev),
 ATDV_LASTERR(chdev));
 MessageBox(hWnd, tmpbuf, "ERROR",MB_OK|MB_APPLMODAL);
 return(1);
 }
 break;
 }
 break;
 case TDX_DIAL:
 /* Next go onhook */
 if (dx_sethook(chdev, DX_ONHOOK, EV_ASYNC) == -1)
 {
 sprintf(tmpbuf,"FAILED: dx_sethook(%s, DX_ONHOOK): %s (error #%d) ",
 ATDV_NAMEP(chdev), ATDV_ERRMSGP(chdev), ATDV_LASTERR(chdev));

50 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Using the Synchronous Model

 MessageBox(hWnd, tmpbuf, "ERROR",MB_OK|MB_APPLMODAL);
 return(1);
 }
 }
 // retrieve channel number using the USERCONTEXT feature of the SRL
 if (sr_getparm(chdev, SR_USERCONTEXT, (void *)&channum) == -1)
 {
 sprintf(tmpbuf,"FAILED: sr_getparm(%s): %s (error #%d) ",
 ATDV_NAMEP(dxinfo[channum].chdev),
 ATDV_ERRMSGP(dxinfo[channum].chdev),
 ATDV_LASTERR(dxinfo[channum].chdev));
 MessageBox(hWnd, tmpbuf, "ERROR",MB_OK|MB_APPLMODAL);
 return(1);
 }
 sprintf(tmpbuf, "Iteration %d Completed", ++dxinfo[channum].iter);
 disp_status(hWnd, channum, tmpbuf);
 return (0);
}

/***
 * NAME : DialogicSysInit()
 * DESCRIPTION : Initialization of Dialogic devices
 * CAUTIONS : none.

/ int DialogicSysInit(HWND hWnd)
{
 int numchan;
 char channame[20];
 /* Initial processing for MAXCHANS */
 for (numchan=1; numchan<=MAXCHAN; numchan++) {
 /* build name of voice channel */
 sprintf(channame, "dxxxB%dC%d", ((numchan-1) / 4) + 1, ((numchan -1)% 4) + 1);
 /* open voice channel */
 if ((dxinfo[numchan].chdev = dx_open(channame, 0)) == -1) {
 sprintf(tmpbuf,"FAILED: dx_open(%s): system error = %d ", channame,
 dx_fileerrno());
 MessageBox(hWnd, tmpbuf, "ERROR",MB_OK|MB_APPLMODAL);
 return(1);
 }
 /* set user specific information in the device, in this case the channel number */
 if (sr_setparm(dxinfo[numchan].chdev, SR_USERCONTEXT, (void *)&numchan) == -1) {
 sprintf(tmpbuf,"FAILED: sr_setparm(%s): %s (error #%d) ",
 ATDV_NAMEP(dxinfo[numchan].chdev),
 ATDV_ERRMSGP(dxinfo[numchan].chdev),
 ATDV_LASTERR(dxinfo[numchan].chdev));
 MessageBox(hWnd, tmpbuf, "ERROR",MB_OK|MB_APPLMODAL);
 return(1);
 }
 /* Start the application by putting the channel in onhook state */
 if (dx_sethook(dxinfo[numchan].chdev,DX_ONHOOK,EV_ASYNC) == -1) {
 sprintf(tmpbuf,"FAILED: dx_sethook(%s): %s (error #%d) ",
 ATDV_NAMEP(dxinfo[numchan].chdev),
 ATDV_ERRMSGP(dxinfo[numchan].chdev),
 ATDV_LASTERR(dxinfo[numchan].chdev));
 MessageBox(hWnd, tmpbuf, "ERROR",MB_OK|MB_APPLMODAL);
 return(1);
 }
 }
 return(0);
}

/***
 * NAME : DialogicClose()
 * DESCRIPTION : Tier down of Dialogic devices
 * CAUTIONS : none.
**/

Dialogic® Standard Runtime Library API Programming Guide — November 2007 51
Dialogic Corporation

Using the Synchronous Model

void DialogicClose(HWND hWnd)
{
 int numchan;

 /* Close all voice devices before exiting */
 for (numchan=1;numchan<=MAXCHAN;numchan++) {
 // attempt to stop the channel dx_stopch(dxinfo[numchan].chdev,EV_SYNC);
 dx_close(dxinfo[numchan].chdev);
 }
}

/***
 * NAME: disp_status(hwnd, chnum, stringp)
 * INPUTS: chno - channel number (1 - 12)
 * stringp - pointer to string to display
 * DESCRIPTION: display the current activity on the channel in window 2
 * the string pointed to by stringp) using chno as a Y offset
**/

void disp_status(HWND hWnd, int channum, char *stringp)
{
 RECT rect;

 // get the entire window rectangle and modify it
 GetClientRect(hWnd, &rect);
 rect.top = (channum+2) * ROWHEIGHT;
 rect.bottom = (channum+3) * ROWHEIGHT;

 // buffer the message
 sprintf(gRowVal[channum], "Channel %d: %s", channum, stringp);
 InvalidateRect(hWnd, &rect, TRUE);
 UpdateWindow(hWnd);
}

52 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Using the Synchronous Model

Dialogic® Standard Runtime Library API Programming Guide — November 2007 53
Dialogic Corporation

88.Using the Asynchronous Model

This chapter provides information on using the Asynchronous programming model of the
Dialogic® Standard Runtime Library (SRL). Topics include:

• Implementing the Asynchronous Model . 53

• Implementing the Asynchronous Model with Event Handlers 57

8.1 Implementing the Asynchronous Model

The following guidelines apply:

• The application uses the sr_waitevt() function to wait for events on Dialogic® devices.

• If an event is available, you can use the following functions to access information about the
event:

– sr_getevtdev() to get the device handle for the current event.

– sr_getevttype() to get the event type for the current event.

– sr_getevtdatap() to get a pointer to additional data for the current event.

– sr_getevtlen() to get the number of bytes of additional data that are pointed to by
sr_getevtdatap().

• Use the sr_getevtdatap() function to extract the event-specific data. Use the other functions
to return values about the current event. The values returned are valid until sr_waitevt() is
called again.

• After the event is processed, the application determines what asynchronous function should be
issued next; the decision to issue a function depends on what event has occurred, and on the
last state of the device when the event occurred.

Example Code

The following code is an example of the Asynchronous model.

/*
 * This asynchronous mode sample application was designed to work with
 * D/41ESC, VFX/40ESC, LSI/81SC, LSI/161SC and D/160SC-LS boards only.
 * It was compiled using MS-VC++.
 * It cycles through channels going offhook, dialing a digit string,
 * going onhook. This is repeated until the user hits a keyboard key.
 * The thread to monitor the keyboard is peripheral to the main application
 * and the asynchronous programming mode and may be replaced with any other
 * mechanism the user may desire.
 */

54 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Using the Asynchronous Model

/* C includes */
#include <stdio.h>
#include <process.h>
#include <string.h>
#include <conio.h>
#include <windows.h>
#include <winbase.h>

/* Dialogic includes */
#include <srllib.h>
#include <dxxxlib.h>
#include <sctools.h> /* needed for nr_scroute() declaration */

/* Defines */
#define MAXCHAN 4 /* maximum number of voice channels in system */
#define USEREVT_KEYBOARD 1 /* User defined keyboard event */

/* This may be expanded to contain other information such as state */
typedef struct dx_info {
 int chdev;
} DX_INFO;

/* Globals */
DX_INFO dxinfo[MAXCHAN+1];
int Kbhit_flag = 0;

/* Prototypes */
int main();
DWORD WINAPI keyboard_monitor(LPVOID);
int process(int,int);

/**
* NAME : int main()
* DESCRIPTION : prepare screen for output, create keyboard monitor
* : thread and process asynchronous events received
* INPUT : none
* OUTPUT : none
* RETURNS : 0 on success; 1 if a failure was encountered
* CAUTIONS : none
**/

int main()
{
 int numchan;
 char channame[20];
 HANDLE threadHdl;
 DWORD ThrdID;
 int evtdev, evttype;

 /* show application's title */
 printf("Asynchronous Mode Sample Application - hit any key to exit...\n");

 /* Create a thread for monitoring keyboard input */
 threadHdl = (HANDLE)_beginthreadex(NULL,
 0,
 keyboard_monitor,
 NULL,
 0,
 &ThrdID);
 if (threadHdl == (HANDLE) -1) {
 printf("Error creating keyboard monitor thread -- exiting\n");
 return(1);
 }

Dialogic® Standard Runtime Library API Programming Guide — November 2007 55
Dialogic Corporation

Using the Asynchronous Model

 /* Initial processing for MAXCHANS */
 for (numchan=1;numchan<=MAXCHAN;numchan++) {
 /* build name of voice channel */
 sprintf(channame, "dxxxB%dC%d", ((numchan-1) / 4) + 1,
 ((numchan -1)% 4) + 1);

 /* open voice channel */
 if ((dxinfo[numchan].chdev = dx_open(channame, 0)) == -1) {
 /* Perform system error processing */
 return(1);
 }

 /* Store numchan as USERCONTEXT for this device */
 sr_setparm(dxinfo[numchan].chdev,SR_USERCONTEXT,&numchan);

 printf("Voice channel opened (%s)\n", ATDV_NAMEP(dxinfo[numchan].chdev));

 /* route voice channel to it's analog front end */
 if (nr_scroute(dxinfo[numchan].chdev,
 SC_VOX,
 dxinfo[numchan].chdev,
 SC_LSI,
 SC_FULLDUP) == -1) {
 printf("FAILED: nr_scroute(%s): %s (error #%d)\n",
 ATDV_NAMEP(dxinfo[numchan].chdev),
 ATDV_ERRMSGP(dxinfo[numchan].chdev),
 ATDV_LASTERR(dxinfo[numchan].chdev));
 return(1);
 }
 printf("Voice channel connected to analog front end\n");

 /* Start the application by putting the channel in onhook state */
 if (dx_sethook(dxinfo[numchan].chdev,DX_ONHOOK,EV_ASYNC) == -1) {
 printf("FAILED: dx_sethook(%s): %s (error #%d)\n",
 ATDV_NAMEP(dxinfo[numchan].chdev),
 ATDV_ERRMSGP(dxinfo[numchan].chdev),
 ATDV_LASTERR(dxinfo[numchan].chdev));
 return(1);
 }
 }

 /* While no keyboard input, keep cycling through functions */
 while (1) {
 /* Wait for events */
 sr_waitevt(-1);
 evtdev = sr_getevtdev();
 evttype = sr_getevttype();
 if ((evtdev == SRL_DEVICE) && (evttype == USEREVT_KEYBOARD))
 break;
 if (process(evtdev, evttype) != 0)
 break;
 }

 /* Close all voice devices before exiting */
 for (numchan=1;numchan<=MAXCHAN;numchan++) {
 dx_close(dxinfo[numchan].chdev);
 }

 /* Wait here until thread exits */
 if (WaitForMultipleObjects(1, &threadHdl, TRUE, INFINITE) == WAIT_FAILED) {
 printf("ERROR: Failed WaitForMultipleObjects(): error = %ld\n", GetLastError());
 }
 return(0);
}

56 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Using the Asynchronous Model

/***
 * NAME: DWORD WINAPI keyboard_monitor(LPVOID argp)
 * DESCRIPTION: Wait for keyboard input
 * INPUT: LPVOID argp
 * OUTPUT: None
 * RETURNS: none
 * CAUTIONS: None
 ***/

DWORD WINAPI keyboard_monitor(LPVOID argp)
{
 getch();
 sr_putevt(SRL_DEVICE,USEREVT_KEYBOARD,0,NULL,0);
 return(0);
}

/***
 * NAME: int process(eventdev, event)
 * DESCRIPTION: Do the next function depending on the Event Received
 * INPUT: int eventdev; - Device on which event was received
 * int event; - Event being processed
 * OUTPUT: None
 * RETURNS: New Channel State
 * CAUTIONS: None
 ***/
int process(eventdev, event)
int eventdev;
int event;
{
 DX_CST *cstp;
 int channum;

 /*
 * Retrieve USERCONTEXT for device
 */
 sr_getparm(eventdev, SR_USERCONTEXT, &channum);

 /*
 * Switch according to the event received.
 */
 switch (event) {

 case TDX_SETHOOK:
 cstp = (DX_CST *)sr_getevtdatap();
 switch(cstp->cst_event) {
 case DX_ONHOOK:
 /* Go offhook next */
 printf("Received onhook event\n");
 if (dx_sethook(dxinfo[channum].chdev, DX_OFFHOOK, EV_ASYNC) == -1) {
 printf("FAILED: dx_sethook(%s, DX_OFFHOOK): %s (error #%d)\n",
 ATDV_NAMEP(dxinfo[channum].chdev),
 ATDV_ERRMSGP(dxinfo[channum].chdev),
 ATDV_LASTERR(dxinfo[channum].chdev));
 return(1);
 }
 break;

 case DX_OFFHOOK:
 /* dial next */
 printf("Received offhook event\n");
 if (dx_dial(dxinfo[channum].chdev, "12025551212", NULL, EV_ASYNC) == -1) {
 printf("FAILED: dx_dial(%s): %s (error #%d)\n",
 ATDV_NAMEP(dxinfo[channum].chdev),
 ATDV_ERRMSGP(dxinfo[channum].chdev),
 ATDV_LASTERR(dxinfo[channum].chdev));

Dialogic® Standard Runtime Library API Programming Guide — November 2007 57
Dialogic Corporation

Using the Asynchronous Model

 return(1);
 }
 break;
 }
 break;

 case TDX_DIAL:
 /* Next go onhook */
 printf("Received TDX_DIAL event\n");
 if (dx_sethook(dxinfo[channum].chdev, DX_ONHOOK, EV_ASYNC) == -1) {
 printf("FAILED: dx_sethook(%s, DX_ONHOOK): %s (error #%d)\n",
 ATDV_NAMEP(dxinfo[channum].chdev),
 ATDV_ERRMSGP(dxinfo[channum].chdev),
 ATDV_LASTERR(dxinfo[channum].chdev));
 return(1);
 }

 }
 return(0);
}

8.2 Implementing the Asynchronous Model with Event
Handlers

The Asynchronous model lets your application execute event handlers via one of the following
threads:

• An SRL handler thread, which the SRL creates

• The application handler thread, which you create

See Section 4.2, “Using Event Handlers”, on page 32 for more information on when each type of
handler thread is used.

When using an SRL handler thread, the following guidelines apply:

• You can use an SRL handler thread to execute an event handler. Enable an event handler by
calling the sr_enbhdlr() function from within any application thread. You can set up separate
event handlers for separate events for separate devices.

• The first call to the sr_enbhdlr() function automatically creates the SRL handler thread that
services the event handler. You do not need to call the sr_waitevt() function from anywhere
within the application; the sr_enbhdlr() thread already calls the sr_waitevt() function to get
events. Each call to the sr_enbhdlr() function allows the events to be serviced when
Windows® schedules the SRL handler thread for execution.

• Call each event handler from the context of the SRL handler thread. The event handler must
not call sr_waitevt() or any synchronous Dialogic® function.

• The state machine is driven by the event handlers. If the event handler returns a 1, the event is
kept. The next general handler in the hierarchy is notified.

When using an application handler thread, the following guidelines apply:

• To create your own application thread, with which you can distribute your workload and gain
more control over program structure, you can use the application handler thread to make calls
to the sr_waitevt() function and execute event handlers. To avoid the creation of the SRL

58 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Using the Asynchronous Model

handler thread, you must set SR_MODELTYPE to SR_STASYNC. The thread must not call
any synchronous functions.

• After initiation of the asynchronous function, the application thread can perform other tasks
but cannot receive solicited or unsolicited events until the sr_waitevt() function is called.

• If a handler returns a non-zero value, the sr_waitevt() function returns in the application
thread.

Example Code

The following code is an example of the Asynchronous with SRL Callback model.

Note: This code uses an application handler thread.

/********* Aynchronous with SRL Callback Model - Using the Main Thread **********/
/*
 * Compiled using Visual C++ 5.0
 */

/* C includes */
#include <windows.h>
#include <stdio.h>
#include <StdLib.H>
#include <process.h>
#include <conio.h>
#include <ctype.h>
#include <String.H>

/* Dialogic includes */
#include <srllib.h>
#include <dxxxlib.h>

/* Defines */
#define MAXCHAN 4 /* maximun number of voice channels in system */
#define FOREVER 1
#define DIALSTRING "01234"

/* Globals */
int vxh[MAXCHAN];
int errflag = FALSE;

/* Prototypes */
int main();
long fallback_hdlr(unsigned long parm);
int voxinit(void);
int sysexit(int exitcode);
int process_events(void);

/**
* NAME : int main(void)
* DESCRIPTION : The Entry Point into the application.
* INPUT : none
* OUTPUT : none
* RETURNS : 0 on success; 1 if a failure was encountered
* CAUTIONS : none
**/

int main(void)
{
 /* Show application's title */
 printf("Asynchronous with Main-Thread Callback Model\n");

Dialogic® Standard Runtime Library API Programming Guide — November 2007 59
Dialogic Corporation

Using the Asynchronous Model

 /* Start Dialogic Devices */
 if (voxinit() == -1) {
 sysexit(-1);
 }

 /* Process events , monitor keyboard input and other activities */
 if (process_events() == -1) {
 sysexit(-1);
 }
 sysexit(0);
 return(0);
}

/**
* NAME : int voxinit(void)
* DESCRIPTION : Initializes Dialogic Devices.
* INPUT : none
* OUTPUT : none
* RETURNS : 0 on success; -1 if a failure was encountered
* CAUTIONS : none
**/

int voxinit(void)
{
 int index;
 int mode;
 char devname[32];

 /** Set to SR_STASYNC so another thread is not created by the SRL to
 ** monitor events to pass to the handler. We will use this thread
 ** to monitor events; creating another thread internally is not
 ** necessary.
 **/
 mode = SR_STASYNC;
 if (sr_setparm(SRL_DEVICE, SR_MODELTYPE, &mode) == -1) {
 printf("ERROR:Unable to set SRL modeltype to SR_STASYNC \n");
 return(-1);
 }

 /*
 * Set-up the fall-back handler
 */
 if (sr_enbhdlr((long)EV_ANYDEV, (unsigned long)EV_ANYEVT, fallback_hdlr) == -1) {
 printf("ERROR:Unable to set-up the fall back handler \n");
 return(-1);
 }

 /* Open the voice chans now */
 for (index = 0; index < MAXCHAN; index++) {
 sprintf(devname, "dxxxB1C%d", (index+1));
 if ((vxh[index] = dx_open(devname, 0)) == -1) {
 /* Perform system error processing */
 return(-1);
 }
 }

 /* Issue the dial without call progres on all the voice chans */
 for (index = 0; index < MAXCHAN; index++) {
 if (dx_dial(vxh[index], DIALSTRING, NULL, EV_ASYNC) == -1) {
 printf("ERROR: dx_dial(%s) failed, 0x%X(%s)\n",
 ATDV_NAMEP(vxh[index]), ATDV_LASTERR(vxh[index]),
 ATDV_ERRMSGP(vxh[index]));
 return(-1);
 }
 }
}

60 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Using the Asynchronous Model

/**
* NAME : int process_events(void)
* DESCRIPTION : The processing loop.
* INPUT : none
* OUTPUT : none
* RETURNS : 0 on success; -1 if a failure was encountered
* CAUTIONS : none
**/
int process_events(void)
{
 while (FOREVER) {
 if (kbhit() != (int)0) {
 return(-1);
 }

 /* Wait for Dialogic events 1 second */
 sr_waitevt(1000);

 if (errflag == TRUE) {
 return(-1);
 }

 /* Do other processing here */
 printf("Press Any Key to Exit \n");
 }
 return(0);
}

/**
* NAME : long fallback_hdlr(unsigned long parm)
* DESCRIPTION : The fallback handler for all Dialogic events
* INPUT : parm
* OUTPUT : return value
* RETURNS :
* CAUTIONS : none
**/

long fallback_hdlr(unsigned long parm)
{
 int index, devh, evttype;

 /* Find out the event received */
 devh = sr_getevtdev();
 evttype = sr_getevttype();

 for (index=0; index<MAXCHAN; index++) {
 if (devh == vxh[index]) {
 break;
 }
 }

 switch(evttype) {
 case TDX_DIAL :
 printf("%s : Dialing again.\n", ATDV_NAMEP(vxh[index]));
 if (dx_dial(vxh[index], DIALSTRING, NULL, EV_ASYNC) == -1) {
 printf("ERROR: dx_dial(%s) failed, 0x%X(%s)\n",
 ATDV_NAMEP(vxh[index]), ATDV_LASTERR(vxh[index]),
 ATDV_ERRMSGP(vxh[index]));
 errflag = TRUE;
 }
 break;

 case TDX_ERROR :
 printf("%s : TDX_ERROR!\n", ATDV_NAMEP(vxh[index]));
 errflag = TRUE;
 break;

Dialogic® Standard Runtime Library API Programming Guide — November 2007 61
Dialogic Corporation

Using the Asynchronous Model

 default :
 printf("%s : unknown event(0x%X)\n", ATDV_NAMEP(vxh[index]), evttype);
 errflag = TRUE;
 break;
 }
 /* Remove the events from the SRL queue */
 return(1);
}

/**
* NAME : void sysexit(exitcode)
* DESCRIPTION : Closes the devices and exits the application.
* INPUT : none
* OUTPUT : none
* RETURNS : exitcode
* CAUTIONS : Exit of the application!
**/

int sysexit(int exitcode)
{
 int index;
 /* Close the voice chans now */
 for (index = 0; index < MAXCHAN; index++) {
 if (dx_close(vxh[index]) == -1) {
 printf("ERROR: dx_close(%s) failed, 0x%X(%s)\n",
 ATDV_NAMEP(vxh[index]), ATDV_LASTERR(vxh[index]),
 ATDV_ERRMSGP(vxh[index]));
 }
 }
 exit(exitcode);
 return(exitcode);
}

62 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Using the Asynchronous Model

Dialogic® Standard Runtime Library API Programming Guide — November 2007 63
Dialogic Corporation

99.Using the Extended
Asynchronous Model

This chapter provides information on using the Extended Asynchronous programming model of the
Dialogic® Standard Runtime Library (SRL). Topics include:

• Extended Asynchronous Model Variants . 63

• Implementing the Device Grouping API Variant . 63

• Implementing the sr_waitevtEx() Variant. 66

9.1 Extended Asynchronous Model Variants

The SRL supports two variants of the Extended Asynchronous model. The first variant uses the
Device Grouping API (a subset of the SRL API) to perform the same basic function as the
sr_waitevtEx() variant. The second variant is the traditional variant that uses the sr_waitevtEx()
function to control groups of devices with separate threads.

The following topics provide more detail on each variant:

• Implementing the Device Grouping API Variant

• Implementing the sr_waitevtEx() Variant

9.2 Implementing the Device Grouping API Variant

The Device Grouping API variant of the Extended Asynchronous model provides an alternative to
the sr_waitevtEx() variant described in Section 9.3, “Implementing the sr_waitevtEx() Variant”,
on page 66. This variant allows the SRL to make some internal assumptions about the application's
behavior and binds these assumptions to the thread context. The Device Grouping API includes the
following functions:

sr_CreateThreadDeviceGroup()
specifies a list of devices to poll for events

sr_WaitThreadDeviceGroup()
waits for events on devices in the group

sr_AddToThreadDeviceGroup()
adds specified devices to the group

sr_RemoveFromThreadDeviceGroup()
removes specified devices from the group

sr_GetThreadDeviceGroup()
retrieves all devices from the group

64 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Using the Extended Asynchronous Model

sr_DeleteThreadDeviceGroup()
removes all devices from the group

See the Dialogic® Standard Runtime Library API Library Reference for detailed information about
each function.

The following guidelines apply when using the Device Grouping API variant of the Extended
Asynchronous model:

How is a device group defined?
Use the sr_CreateThreadDeviceGroup() function to define a device group. The SRL uses
the information to create a queue to store events for these devices.

How is a device group modified?
Use the sr_RemoveFromThreadDeviceGroup() function to remove devices from a group.
The devices in the list passed to the function are removed from the internal list of devices that
the thread is managing events for. Use the sr_AddToThreadDeviceGroup() function to add
devices to the group.

What happens if a single device is added to multiple thread device groups?
The device becomes a member of the thread device group of the last thread to call
sr_AddToThreadDeviceGroup(). Any events for this device that were in the original device
thread group queue are moved to the new one.

How are the devices in a device group tracked?
The SRL internally stores the devices that are members of a device group. The application
does not need to track this information. If the application requires knowledge of which devices
are members of a particular thread's device group, the application should call the
sr_GetThreadDeviceGroup() function.

What happens to events pending for a device that is removed from a device group?
As an example, what happens if the dxxxB1C1 device is part of a device group, it has an event
pending, and the sr_RemoveFromThreadDeviceGroup() function is called to remove the
device from the group? When the sr_RemoveFromThreadDeviceGroup() function is called,
the SRL detects that there is an event still pending on the thread's event queue for this device.
This event is removed from the thread event queue and placed on the main event queue. The
situation is now identical to that described in the next bullet, that is, an event is pending for a
device that is not part of any device group. The sr_waitevt() function can be used to retrieve
this event.

How are events for a device that is not part of a device group captured?
To retrieve events for devices that are not part of a device group, the application should call
sr_waitevt(). Otherwise, the events accumulate in the event queue and consume memory.
This is an improvement over the sr_waitevtEx() implementation, since calling sr_waitevt()
in a separate thread is not an option when sr_waitevtEx() is used. When using the Device
Grouping API, sr_waitevt() can be used as a fallback to handle events from devices not
managed in a group.

What happens to events pending for a device that is added to a device group?
Suppose that the dxxxB1C1 device is not part of a device group and that it has an event
pending, what happens to the event when the device is added to a device group by calling
sr_AddToThreadDeviceGroup()? When sr_AddToThreadDeviceGroup() is called, the
SRL scans the main event queue to determine if there are any events pending for this device. If

Dialogic® Standard Runtime Library API Programming Guide — November 2007 65
Dialogic Corporation

Using the Extended Asynchronous Model

events are pending, they are removed from the main queue and placed on the thread event
queue.

How is a device group removed?
To remove an entire grouping, the function sr_DeleteThreadDeviceGroup() is used. Any
events pending for devices in this group are moved to the main event queue.

How are events for a device group captured?
To capture events for a device group, the function sr_WaitThreadDeviceGroup() is used. It
is important that this function be called from the same thread that created the device grouping,
that is, the thread that called sr_CreateThreadDeviceGroup(). This is because the SRL
internally associates the data passed via sr_CreateThreadDeviceGroup() with the thread
context. This is consistent with the behavior of sr_waitevtEx() since it is passed both the
device array and the timeout value.

How are events for a device group retrieved?
Upon successful termination of sr_WaitThreadDeviceGroup(), use the Event Data Retrieval
functions sr_getevtdev(), sr_getevttype(), sr_getevtlen(), and sr_getevtdatap() to retrieve
the associated event information.

How does an application use the Device Grouping API to use a multithreaded model to service the
event queue?

With the device groups, this is not necessary. When using device groups, the SRL creates a
separate event queue for each group. This is much more efficient than using a single event
queue because no synchronization is required to access it.

Example Code for the Device Grouping API Variant

The following pseudo code shows how to implement the Device Grouping API variant of the
Extended Asynchronous model.

main()
{
 int iNumTrunks = GetNumberOfTrunks();
 for each trunk{
 beginthread (EventPollThread (trunkNumber);
 }
 WaitUntilDone();
}

EventPollThread (TrunkNumber)
{
 int Devices [NumTimeslotsPerTrunk];

 for each device on the trunk{
 Devices [DevNum] = dx_open(...);
 }

 sr_CreateThreadDeviceGroup (Devices, NumTiemslotsPerTrunk);
 while (1){
 sr_WaitThreadDeviceGroup (-1);
 // do something with the event
 }
}

66 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Using the Extended Asynchronous Model

9.3 Implementing the sr_waitevtEx() Variant

The sr_waitevtEx() variant of the Extended Asynchronous model is the traditional variant that has
been supported in many previous Dialogic® software releases. The following guidelines apply:

• This variant uses multiple threads and calls sr_waitevtEx().

• If an event is available, you can use the following functions to access information about the
event:

– sr_getevtdev() to get the device handle for the current event.

– sr_getevttype() to get the event type for the current event.

– sr_getevtdatap() to get a pointer to additional data for an event.

– sr_getevtlen() to get the number of bytes of additional data that are pointed to by
gc_getevtdatap().

• Use the sr_getevtdatap() function to extract the event-specific data; use the other functions to
return values about the current event. The values returned are valid until sr_waitevtEx() is
called again.

• After the event is processed, the application determines what asynchronous function should be
issued next depending on what event has occurred and the last state of the device when the
event occurred.

• Do not use any Dialogic® device in more than one grouping. Otherwise, it is impossible to
determine which thread receives the event.

• Do not use the sr_waitevtEx() function in combination with either the sr_waitevt() function
or event handlers.

Example Code for the sr_waitevtEx() Variant

The following code is an example of the sr_waitevtEx() variant of the Extended Asynchronous
model.

**
* NAME : int main()
* DESCRIPTION : create thread and poll for keyboard input
* INPUT : none
* OUTPUT : none
* RETURNS : 0 on success; 1 if a failure was encountered
* CAUTIONS : none
**/
int main()
{
 HANDLE thread_handle[2];
 DWORD threadID;

 /* show application's title */
 printf("Extended Asynchronous Mode Sample Application - hit any key to exit...\n");

 /* create one thread to run one state machine */
 if ((thread_handle[0] = (HANDLE)_beginthreadex(NULL,
 0,
 StateMachine1,
 (LPVOID)0,

Dialogic® Standard Runtime Library API Programming Guide — November 2007 67
Dialogic Corporation

Using the Extended Asynchronous Model

 0,
 &threadID)) == (HANDLE)-1) {
 /* Perform system error processing */
 exit(1);
 }

 /* create a second thread to run the other state machine */
 if ((thread_handle[1] = (HANDLE)_beginthreadex(NULL,
 0,
 StateMachine2,
 (LPVOID)2,
 0,
 &threadID)) == (HANDLE)-1) {
 /* Perform system error processing */
 exit(1);
 }

 /* wait for Keyboard input to shutdown program */
 getch();

 Kbhit_flag++; /* let thread know it's time to abort */

 /* sleep here until thread has terminated */
 if (WaitForMultipleObjects(2, thread_handle, TRUE, INFINITE) == WAIT_FAILED) {
 printf("ERROR: Failed WaitForMultipleObjects(): error = %ld\n", GetLastError());
 }

 return(0);
}

/**
* NAME : DWORD WINAPI StateMachine1(LPVOID argp)
* DESCRIPTION : This tread runs the offhook-dial-onhook state machine
* INPUT : LPVOID argp - NULL pointer (not used)
* OUTPUT : none
* RETURNS : 0 on success; 1 if a failure was encountered
* CAUTIONS : none
**/

DWORD WINAPI StateMachine1(LPVOID argp)
{
 char channame[20];
 int chdesc;
 int cnt;
 int hDevice[MAX_CHAN];
 int hEvent;
 long EventCode;
 int basechn = (int)argp;

 for (cnt = basechn; cnt < basechn + (MAX_CHAN/2); cnt++) {
 /* build name of voice channel */
 sprintf(channame, "dxxxB%dC%d", (cnt / 4) + 1, (cnt % 4) + 1);

 /* open voice channel */
 if ((chdesc = dx_open(channame, 0)) == -1) {
 printf("%s - FAILED: dx_open(): system error = %d\n", channame, dx_fileerrno());
 return(1);
 }
 hDevice[cnt] = chdesc;
 printf("%s - Voice channel opened\n", ATDV_NAMEP(chdesc));

68 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Using the Extended Asynchronous Model

 /* kick off the state machine by going offhook asynchronously */
 if (dx_sethook(chdesc, DX_OFFHOOK, EV_ASYNC) == -1) {
 printf("%s - FAILED: dx_sethook(DX_OFFHOOK): %s (error #%d)\n",
 ATDV_NAMEP(chdesc), ATDV_ERRMSGP(chdesc), ATDV_LASTERR(chdesc));
 return(1);
 }
 printf("%s - Voice channel off-hook initialized\n",ATDV_NAMEP(chdesc));
 }

 /* loop until Keyboard input is received */
 while (!Kbhit_flag) {
 /*
 * wait for event on the specific list of handles
 */
 sr_waitevtEx(&hDevice[basechn], MAX_CHAN/2, -1, &hEvent);

 /*
 * gather data about the event
 */
 chdesc = sr_getevtdev(hEvent);
 EventCode = sr_getevttype(hEvent);

 switch(EventCode) {
 case TDX_SETHOOK:
 if (ATDX_HOOKST(chdesc) == DX_OFFHOOK) {
 printf("%s - Voice channel off-hook\n",ATDV_NAMEP(chdesc));

 /* we went off hook so start dialing */
 if (dx_dial(chdesc, "12025551212", NULL, EV_ASYNC) == -1) {
 printf("%s - FAILED: dx_dial(): %s (error #%d)\n",
 ATDV_NAMEP(chdesc), ATDV_ERRMSGP(chdesc), ATDV_LASTERR(chdesc));
 return(1);
 }
 printf("%s - Voice channel dialing initialized\n",ATDV_NAMEP(chdesc));
 } else {
 /* we went on hook so go off hook again */
 printf("%s - Voice channel on-hook\n",ATDV_NAMEP(chdesc));

 /* set the voice channel off-hook */
 if (dx_sethook(chdesc, DX_OFFHOOK, EV_ASYNC) == -1) {
 printf("%s - FAILED: dx_sethook(DX_OFFHOOK): %s (error #%d)\n",
 ATDV_NAMEP(chdesc), ATDV_ERRMSGP(chdesc), ATDV_LASTERR(chdesc));
 return(1);
 }
 printf("%s - Voice channel off-hook initialized\n",ATDV_NAMEP(chdesc));
 }
 break;

 case TDX_DIAL:
 printf("%s - Voice channel Done dialing\n",ATDV_NAMEP(chdesc));

 /* done dialing so set the voice channel on-hook */
 if (dx_sethook(chdesc, DX_ONHOOK, EV_ASYNC) == -1) {
 printf("%s - FAILED: dx_sethook(DX_ONHOOK): %s (error #%d)\n",
 ATDV_NAMEP(chdesc), ATDV_ERRMSGP(chdesc), ATDV_LASTERR(chdesc));
 return(1);
 }
 printf("%s - Voice channel on-hook initialized\n",ATDV_NAMEP(chdesc));
 break;

 default:
 printf("Received unexpected event 0x%X on device %d\n", EventCode, chdesc);
 break;

 }

 }

Dialogic® Standard Runtime Library API Programming Guide — November 2007 69
Dialogic Corporation

Using the Extended Asynchronous Model

 for (cnt = basechn; cnt < basechn + (MAX_CHAN/2); cnt++) {
 /* close the voice channel */
 chdesc = hDevice[cnt];
 printf("%s - Voice channel closing\n",ATDV_NAMEP(chdesc));
 if (dx_close(chdesc) == -1) {
 printf("%s - FAILED: dx_close(): %s (error #%d)\n",
 ATDV_NAMEP(chdesc), ATDV_ERRMSGP(chdesc), ATDV_LASTERR(chdesc));
 return(1);
 }
 }

 return(0);
}

/**
* NAME : DWORD WINAPI StateMachine2(LPVOID argp)
* DESCRIPTION : This tread runs the offhook-playtone-onhook state machine
* INPUT : LPVOID argp - NULL pointer (not used)
* OUTPUT : none
* RETURNS : 0 on success; 1 if a failure was encountered
* CAUTIONS : none
**/

DWORD WINAPI StateMachine2(LPVOID argp)
{
 char channame[20];
 int chdesc;
 int cnt;
 int hDevice[MAX_CHAN];
 int hEvent;
 long EventCode;
 int basechn = (int)argp;
 TN_GEN ToneGeneration;

 for (cnt = basechn; cnt < basechn + (MAX_CHAN/2); cnt++) {
 /* build name of voice channel */
 sprintf(channame, "dxxxB%dC%d", (cnt / 4) + 1, (cnt % 4) + 1);

 /* open voice channel */
 if ((chdesc = dx_open(channame, 0)) == -1) {
 printf("%s - FAILED: dx_open(): system error = %d\n", channame, dx_fileerrno());
 return(1);
 }
 hDevice[cnt] = chdesc;
 printf("%s - Voice channel opened\n", ATDV_NAMEP(chdesc));

 /* kick off the state machine by going offhook asynchronously */
 if (dx_sethook(chdesc, DX_OFFHOOK, EV_ASYNC) == -1) {
 printf("%s - FAILED: dx_sethook(DX_OFFHOOK): %s (error #%d)\n",
 ATDV_NAMEP(chdesc), ATDV_ERRMSGP(chdesc), ATDV_LASTERR(chdesc));
 return(1);
 }
 printf("%s - Voice channel off-hook initialized\n",ATDV_NAMEP(chdesc));
 }

 /* loop until Keyboard input is received */
 while (!Kbhit_flag) {
 /*
 * wait for event on the specific list of handles
 */
 sr_waitevtEx(&hDevice[basechn], MAX_CHAN/2, -1, &hEvent);

 /*
 * gather data about the event
 */
 chdesc = sr_getevtdev(hEvent);
 EventCode = sr_getevttype(hEvent);

70 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Using the Extended Asynchronous Model

 switch(EventCode) {
 case TDX_SETHOOK:
 if (ATDX_HOOKST(chdesc) == DX_OFFHOOK) {
 printf("%s - Voice channel off-hook\n",ATDV_NAMEP(chdesc));

 /* we went off hook so build and play the tone */
 dx_bldtngen(&ToneGeneration, 340, 450, -10, -10, 300);
 if (dx_playtone(chdesc, &ToneGeneration, (DV_TPT *)NULL, EV_ASYNC) == -1) {
 printf("%s - FAILED: dx_playtone(): %s (error #%d)\n",
 ATDV_NAMEP(chdesc), ATDV_ERRMSGP(chdesc), ATDV_LASTERR(chdesc));
 return(1);
 }
 printf("%s - Voice channel play tone initialized\n",ATDV_NAMEP(chdesc));
 } else {
 /* we went on hook so go off hook again */
 printf("%s - Voice channel on-hook\n",ATDV_NAMEP(chdesc));

 /* set the voice channel off-hook */
 if (dx_sethook(chdesc, DX_OFFHOOK, EV_ASYNC) == -1) {
 printf("%s - FAILED: dx_sethook(DX_OFFHOOK): %s (error #%d)\n",
 ATDV_NAMEP(chdesc), ATDV_ERRMSGP(chdesc), ATDV_LASTERR(chdesc));
 return(1);
 }
 printf("%s - Voice channel off-hook initialized\n",ATDV_NAMEP(chdesc));
 }
 break;

 case TDX_PLAYTONE:
 printf("%s - Voice channel Done playine tone\n",ATDV_NAMEP(chdesc));
 /* done playing a tone so set the voice channel on-hook */
 if (dx_sethook(chdesc, DX_ONHOOK, EV_ASYNC) == -1) {
 printf("%s - FAILED: dx_sethook(DX_ONHOOK): %s (error #%d)\n",
 ATDV_NAMEP(chdesc), ATDV_ERRMSGP(chdesc), ATDV_LASTERR(chdesc));
 return(1);
 }
 printf("%s - Voice channel on-hook initialized\n",ATDV_NAMEP(chdesc));
 break;

 default:
 printf("Received unexpected event 0x%X on device %d\n", EventCode, chdesc);
 break;
 }
 }

 for (cnt = basechn; cnt < basechn + (MAX_CHAN/2); cnt++) {
 /* close the voice channel */
 chdesc = hDevice[cnt];
 printf("%s - Voice channel closing\n",ATDV_NAMEP(chdesc));
 if (dx_close(chdesc) == -1) {
 printf("%s - FAILED: dx_close(): %s (error #%d)\n",
 ATDV_NAMEP(chdesc), ATDV_ERRMSGP(chdesc), ATDV_LASTERR(chdesc));
 return(1);
 }
 }
 return(0);
}

Dialogic® Standard Runtime Library API Programming Guide — November 2007 71
Dialogic Corporation

1010.Using the Asynchronous with
Windows® Callback Model

This chapter provides information on using the Asynchronous with Windows® Callback
programming model of the Dialogic® Standard Runtime Library (SRL). Topics include:

• Implementing the Asynchronous with Windows® Callback Model 71

• Example Code . 71

10.1 Implementing the Asynchronous with Windows®
Callback Model

The following guidelines apply:

• The Windows message callback function must be re-entrant.

• Enable a Windows message callback function as follows:

1. Enable Windows message callback from any thread in the application by calling
sr_NotifyEvent().

2. When the application receives event notification through Windows message callback, the
application must immediately call sr_waitevt(), with a zero timeout, to retrieve the event
from the event queue.

3. To retrieve information about the event, call:

• sr_getevtdev() to get the event’s device handle.

• sr_getevttype() to get the event type.

• If any thread has a callback window that can block on a non-Dialogic function, the thread
might not be able to service Dialogic events quickly enough. In this case, you can create a
separate thread that creates a hidden window. The thread must own the message queue. The
thread calls sr_NotifyEvent(), passing the handle to the hidden window.

10.2 Example Code

The following code is an example of the Asynchronous with Windows® Callback model.

/***
 * This Windows Callback model sample application was designed to work with
 * D/41ESC, VFX/40ESC, LSI/81SC, LSI/161SC and D/160SC-LS boards only.
 * It was compiled using MS-VC++.
 * It cycles through 4 channels going offhook, dialing a digit string,
 * going onhook. This is repeated until the user stops the processing from the
 * Test menu in the main Window
 * The test can be started by choosing the Go option of the Test menu in the
 * program window
 *
***/

72 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Using the Asynchronous with Windows® Callback Model

#define STRICT
#include <windows.h>
#include <windowsx.h>
#include <afxres.h>
#include <process.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <string.h>
#include <stdio.h>
#include <fcntl.h>
#include "resource.h"
#include <sctools.h>

// Defines
#define MAXCHAN 4 // maximum number of voice channels in system
#define WM_SRNOTIFYEVENT WM_USER + 100
#define ROWHEIGHT 20

// Modified version of the normal HANDLE_MSG macro in windowsx.h
#define HANDLE_DLGMSG(hwnd, message, fn) \
 case (message): \
 return(SetDlgMsgResult(hwnd, uMsg, \
 HANDLE_##message((hwnd), (wParam), \
 (lParam), (fn))))
// This may be expanded to contain other information such as state
typedef struct dx_info {
 int chdev;
 int iter;
} DX_INFO;

// Globals
DX_INFO dxinfo[MAXCHAN+1];
int Kbhit_flag = 0;
char tmpbuf[128];
HANDLE hInst;
char gRowVal[MAXCHAN+1][80];

LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam);
void General_OnCommand(HWND , int , HWND , UINT); // Windows WM_COMMAND handler
int dlgc_OnCommand(HWND); // WM_SRNOTIFYEVENT handler
int DialogicSysInit(HWND);
void DialogicClose(HWND);
int get_ts(int);
void disp_status(HWND, int , char *);

/***
 * NAME : WinMain()
 * DESCRIPTION : Windows application entry point
 * CAUTIONS : none.
***/

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hinstPrev, LPSTR lpszCmdLine, int nCmdShow)
{
 HWND hWnd;
 WNDCLASS wc;
 MSG msg;
 hInst = hInstance;

 if (!hinstPrev)
 {
 // Fill in window class structure with parameters that
 // describe the main window.
 wc.style = CS_HREDRAW | CS_VREDRAW;// Class style(s).
 wc.lpfnWndProc = (WNDPROC)WndProc; // Window Procedure
 wc.cbClsExtra = 0; // No per-class extra data.
 wc.cbWndExtra = 0; // No per-window extra data.
 wc.hInstance = hInstance; // Owner of this class

Dialogic® Standard Runtime Library API Programming Guide — November 2007 73
Dialogic Corporation

Using the Asynchronous with Windows® Callback Model

 wc.hIcon = LoadIcon(hInstance, MAKEINTRESOURCE(IDI_ICON1)); // Icon name from .RC
 wc.hCursor = LoadCursor(NULL, IDC_ARROW); // Cursor
 wc.hbrBackground = (HBRUSH)(COLOR_WINDOW+1); // Default color
 wc.lpszMenuName = MAKEINTRESOURCE(IDR_MENU1);
 wc.lpszClassName = "WinCallBack"; // Name to register
 // Register the window class and return success/failure code.
 if (!RegisterClass(&wc))
 return (FALSE); // Exits if unable to register
 }

 hWnd = CreateWindowEx(0L,"WinCallBack", "Windows Callback Demo",
 WS_OVERLAPPEDWINDOW, CW_USEDEFAULT, 0, CW_USEDEFAULT,
 0, NULL, NULL, hInstance, NULL);

 // If window could not be created, return "failure"
 if (!hWnd)
 return (FALSE);

 sr_NotifyEvent(hWnd, WM_SRNOTIFYEVENT, SR_NOTIFY_ON);
 ShowWindow(hWnd, SW_SHOW); // Show the window
 UpdateWindow(hWnd); // Sends WM_PAINT message

 // Get and dispatch messages until a WM_QUIT message is received.
 while (GetMessage(&msg, NULL, 0,0))
 {
 TranslateMessage(&msg);// Translates virtual key code
 DispatchMessage(&msg); // Dispatches message to window
 }
 return (0);
}

/***
 * NAME : WndProc()
 * DESCRIPTION : Windows Procedure
 * CAUTIONS : none.
***/

LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
 HDC hDC;
 PAINTSTRUCT ps;
 RECT rect;
 int numchan;

 switch (uMsg) {
 // Handle the WM_COMMAND messages
 HANDLE_MSG(hWnd, WM_COMMAND, General_OnCommand);

 case WM_SRNOTIFYEVENT:
 if (dlgc_OnCommand(hWnd)) { // Dialogic event
 DialogicClose(hWnd);
 DestroyWindow(hWnd); // if dlgc_OnCommand() returns 1
 }
 break;

 case WM_CREATE:
 break;

 case WM_PAINT:
 // get the actual window rectangle
 GetClientRect(hWnd, &rect);
 hDC = BeginPaint(hWnd, &ps);

 // display name of application
 rect.top = ROWHEIGHT;
 sprintf(tmpbuf,"Windows Callback Demo");
 DrawText(hDC,tmpbuf , -1, &rect, DT_SINGLELINE|DT_CENTER);

74 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Using the Asynchronous with Windows® Callback Model

 // display status of channel
 for (numchan=1; numchan<=MAXCHAN; numchan++) {
 rect.top = (numchan+2) * ROWHEIGHT;
 DrawText(hDC, gRowVal[numchan], -1, &rect, DT_SINGLELINE);
 }
 EndPaint(hWnd, &ps);
 break;

 case WM_CLOSE:
 DestroyWindow(hWnd);
 break;

 case WM_DESTROY:
 PostQuitMessage(0); // Allow GetMessage() to return FALSE
 break;

 default:
 return (DefWindowProc(hWnd, uMsg, wParam, lParam));
 } // switch (uMsg)
}

/***
 * NAME : General_OnCommand()
 * DESCRIPTION : Message Handler for WM_COMMAND
 * CAUTIONS : none.
 ***/

void General_OnCommand(HWND hWnd, int id, HWND hwndCtl, UINT codeNotify)
{
 switch (id) {
 case ID_TEST_EXIT:
 DestroyWindow(hWnd); // post WM_DESTROY message for WndProc to exit app
 break;

 case ID_TEST_GO: // create threads here and gray the "start" menu
 // and launch the call control threads
 if (DialogicSysInit(hWnd)) {
 // initialize Dialogic devices, if error initializing then show error
 // message and exit
 MessageBox(hWnd, "Error initializing",
 "ERROR", MB_OK | MB_ICONSTOP| MB_APPLMODAL);
 break;
 }

 // ungrey the "stop" menu
 EnableMenuItem(GetMenu(hWnd), ID_TEST_STOP, MF_ENABLED);
 EnableMenuItem(GetMenu(hWnd), ID_TEST_GO, MF_DISABLED | MF_GRAYED);
 break;

 case ID_TEST_STOP: // "terminate" the call control threads and ungray menu items
 DialogicClose(hWnd);
 // disable the Action/Stop menu item
 EnableMenuItem(GetMenu(hWnd), ID_TEST_STOP, MF_DISABLED | MF_GRAYED);
 EnableMenuItem(GetMenu(hWnd), ID_TEST_GO, MF_ENABLED);
 break;

 default:
 return;
 } // switch (id)
}

/***
 * NAME : dlgc_OnCommand()
 * DESCRIPTION : Message Handler for WM_SRNOTIFYEVENT
 * CAUTIONS : none.
 ***/

Dialogic® Standard Runtime Library API Programming Guide — November 2007 75
Dialogic Corporation

Using the Asynchronous with Windows® Callback Model

int dlgc_OnCommand(HWND hWnd)
{
 int rc = 0;
 int chdev;
 int event;
 DX_CST *cstp;
 static iter=0;
 int channum;

 if (sr_waitevt(0) == -1) {
 sprintf(tmpbuf, "sr_waitevt() ERROR %s", ATDV_ERRMSGP(SRL_DEVICE));
 MessageBox(hWnd,tmpbuf, "ERROR" , MB_OK|MB_APPLMODAL);
 return (1);
 }

 chdev = sr_getevtdev();
 event = sr_getevttype();

 /* Switch according to the event received. */
 switch (event) {
 case TDX_SETHOOK:
 cstp = (DX_CST *)sr_getevtdatap();
 switch(cstp->cst_event) {
 case DX_ONHOOK:
 /* Go offhook next */
 if (dx_sethook(chdev, DX_OFFHOOK, EV_ASYNC) == -1) {
 sprintf(tmpbuf,"FAILED: dx_sethook(%s, DX_OFFHOOK): %s (error #%d)",
 ATDV_NAMEP(chdev), ATDV_ERRMSGP(chdev), ATDV_LASTERR(chdev));
 MessageBox(hWnd, tmpbuf, "ERROR",MB_OK|MB_APPLMODAL);
 return(1);
 }
 break;

 case DX_OFFHOOK:
 /* dial next */
 if (dx_dial(chdev, "12025551212", NULL, EV_ASYNC) == -1) {
 sprintf(tmpbuf,"FAILED: dx_dial(%s): %s (error #%d) ",
 ATDV_NAMEP(chdev), ATDV_ERRMSGP(chdev), ATDV_LASTERR(chdev));
 MessageBox(hWnd, tmpbuf, "ERROR",MB_OK|MB_APPLMODAL);
 return(1);
 }
 break;
 }
 break;

 case TDX_DIAL:
 /* Next go onhook */
 if (dx_sethook(chdev, DX_ONHOOK, EV_ASYNC) == -1) {
 sprintf(tmpbuf,"FAILED: dx_sethook(%s, DX_ONHOOK): %s (error #%d) ",
 ATDV_NAMEP(chdev), ATDV_ERRMSGP(chdev), ATDV_LASTERR(chdev));
 MessageBox(hWnd, tmpbuf, "ERROR",MB_OK|MB_APPLMODAL);
 return(1);
 }
 break;
 }

 // retrieve channel number using the USERCONTEXT feature of the SRL
 if (sr_getparm(chdev, SR_USERCONTEXT, (void *)&channum) == -1) {
 sprintf(tmpbuf,"FAILED: sr_getparm(%s): %s (error #%d) ",
 ATDV_NAMEP(dxinfo[channum].chdev), ATDV_ERRMSGP(dxinfo[channum].chdev),
 ATDV_LASTERR(dxinfo[channum].chdev));
 MessageBox(hWnd, tmpbuf, "ERROR",MB_OK|MB_APPLMODAL);
 return(1);
 }

76 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Using the Asynchronous with Windows® Callback Model

 sprintf(tmpbuf, "Iteration %d Completed", ++dxinfo[channum].iter);
 disp_status(hWnd, channum, tmpbuf);
 return (0);
}

/***
 * NAME : DialogicSysInit()
 * DESCRIPTION : Initialization of Dialogic devices
 * CAUTIONS : none.
***/
int DialogicSysInit(HWND hWnd)
{
 int numchan;
 char channame[20];

 /* Initial processing for MAXCHANS */
 for (numchan=1;numchan<=MAXCHAN;numchan++) {
 /* build name of voice channel */
 sprintf(channame, "dxxxB%dC%d", ((numchan-1) / 4) + 1, ((numchan -1)% 4) + 1);

 /* open voice channel */
 if ((dxinfo[numchan].chdev = dx_open(channame, 0)) == -1) {
 sprintf(tmpbuf,"FAILED: dx_open(%s): system error = %d ", channame, dx_fileerrno());
 MessageBox(hWnd, tmpbuf, "ERROR",MB_OK|MB_APPLMODAL);
 return(1);
 }

 /* set user specific information in the device, in this case the channel number */
 if (sr_setparm(dxinfo[numchan].chdev, SR_USERCONTEXT, (void *)&numchan) == -1) {
 sprintf(tmpbuf,"FAILED: sr_setparm(%s): %s (error #%d) ",
 ATDV_NAMEP(dxinfo[numchan].chdev), ATDV_ERRMSGP(dxinfo[numchan].chdev),
 ATDV_LASTERR(dxinfo[numchan].chdev));
 MessageBox(hWnd, tmpbuf, "ERROR",MB_OK|MB_APPLMODAL);
 return(1);
 }

 /* Start the application by putting the channel in onhook state */
 if (dx_sethook(dxinfo[numchan].chdev,DX_ONHOOK,EV_ASYNC) == -1) {
 sprintf(tmpbuf,"FAILED: dx_sethook(%s): %s (error #%d) ",
 ATDV_NAMEP(dxinfo[numchan].chdev), ATDV_ERRMSGP(dxinfo[numchan].chdev),
 ATDV_LASTERR(dxinfo[numchan].chdev));
 MessageBox(hWnd, tmpbuf, "ERROR",MB_OK|MB_APPLMODAL); return(1);
 }
 }
 return(0);
}

/***
 * NAME : DialogicClose()
 * DESCRIPTION : Tier down of Dialogic devices
 * CAUTIONS : none.
***/

void DialogicClose(HWND hWnd)
{
 int numchan;
 /* Close all voice devices before exiting */
 for (numchan=1;numchan<=MAXCHAN;numchan++) {
 // attempt to stop the channel dx_stopch(dxinfo[numchan].chdev,EV_SYNC);
 dx_close(dxinfo[numchan].chdev);
 }
}

Dialogic® Standard Runtime Library API Programming Guide — November 2007 77
Dialogic Corporation

Using the Asynchronous with Windows® Callback Model

/***
 * NAME: disp_status(hwnd, chnum, stringp)
 * INPUTS: chno - channel number (1 - 12)
 * stringp - pointer to string to display
 * DESCRIPTION: display the current activity on the channel in window 2
 * (the string pointed to by stringp) using chno as a Y offset
**/

void disp_status(HWND hWnd, int channum, char *stringp)
{
 RECT rect;

 // get the entire window rectangle and modify it
 GetClientRect(hWnd, &rect);
 rect.top = (channum+2) * ROWHEIGHT;
 rect.bottom = (channum+3) * ROWHEIGHT;

 // buffer the message
 sprintf(gRowVal[channum], "Channel %d: %s", channum, stringp);

 InvalidateRect(hWnd, &rect, TRUE);
 UpdateWindow(hWnd);
}

78 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Using the Asynchronous with Windows® Callback Model

Dialogic® Standard Runtime Library API Programming Guide — November 2007 79
Dialogic Corporation

1111.Using the Asynchronous with
Win32 Synchronization Model

This chapter provides information on using the Asynchronous with Win32 Synchronization
programming model of the Dialogic® Standard Runtime Library (SRL). Topics include:

• Implementing the Model Using Windows® Reset Events. 79

• Implementing the Model Using Windows® I/O Completion Ports 83

11.1 Implementing the Model Using Windows® Reset
Events

When using Windows® Reset Events to implement the Asynchronous with Win32 Synchronization
model, initialize the application as follows:

1. Use the Win32 CreateEvent() function to create the event.

2. Fill in the SRLWIN32INFO structure to indicate that reset events are being used. The
dwHandleType field must be set to SR_RESETEVENT. The ObjectHandle field must be set
to the event handle returned by the CreateEvent() function.

3. Call the sr_setparm() function with the parmno parameter set to SR_WIN32INFO.

Then, to wait for event notification:

1. Call the Win32 WaitForSingleObject() or WaitForMultipleObjects() function. The
WaitForMultipleObjects() function is most commonly used because the application can
wait for event notification from multiple sources.

2. At notification, if the event source is a Dialogic® device, call the sr_waitevt() function, with a
zero timeout, to retrieve the event from the event queue. To identify the Dialogic® device and
event, use the sr_getevtdev() and sr_getevttype() functions.

Example Code

The following code is an example of the Asynchronous with Win32 Synchronization model.

/* C includes */
#include <stdio.h>
#include <process.h>
#include <conio.h>
#include <ctype.h>
#include <windows.h>

/* Dialogic includes */
#include <srllib.h>
#include <dxxxlib.h>

80 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Using the Asynchronous with Win32 Synchronization Model

/* Defines */
#define MAX_CHAN 4 /* maximun number of voice channels in system */

#define DIALOGIC_KEY 0 /* Index for Dialogic reset event */
#define KEYBOARD_KEY 1 /* Index for keyboard reset event */
#define MAX_RESET_EVENTS 2 /* number of reset events */

/* Globals */
int Kbhit_flag = 0;
HANDLE hEvent[MAX_RESET_EVENTS];

/* Prototypes */
int main();
DWORD WINAPI sample_begin(LPVOID);

/**
* NAME : int main()
* DESCRIPTION : create reset events, create thread and
* : poll for keyboard input
* INPUT : none
* OUTPUT : none
* RETURNS : 0 on success; 1 if a failure was encountered
* CAUTIONS : none
**/

int main()
{
 HANDLE thread_handle;
 DWORD threadID;
 DWORD Index;

 /* show application's title */
 printf("Async with Win32 Sychronization Sample Application - hit any key to exit...\n");

 /* create the reset events */
 for (Index = 0; Index < MAX_RESET_EVENTS; Index++) {
 hEvent[Index] = CreateEvent((LPSECURITY_ATTRIBUTES)NULL,
 FALSE,
 FALSE,
 NULL);
 }

 /* create one thread to process all the voice channels */
 if ((thread_handle = (HANDLE)_beginthreadex(NULL,
 0,
 sample_begin,
 (LPVOID)NULL,
 0,
 &threadID)) == (HANDLE)-1) {
 /* Perform system error processing */
 exit(1);
 }

 /* wait for Keyboard input to shutdown program */
 getch();

 Kbhit_flag++; /* let thread know it's time to abort */
 SetEvent(hEvent[KEYBOARD_KEY]);

 /* sleep here until thread has terminated */
 if (WaitForMultipleObjects(1, &thread_handle, TRUE, INFINITE) == WAIT_FAILED) {
 printf("ERROR: Failed WaitForMultipleObjects(): error = %ld\n", GetLastError());
 }
 return(0);
}

Dialogic® Standard Runtime Library API Programming Guide — November 2007 81
Dialogic Corporation

Using the Asynchronous with Win32 Synchronization Model

/**
* NAME : DWORD WINAPI sample_begin(LPVOID argp)
* DESCRIPTION : do all channel specific processing
* INPUT : LPVOID argp - NULL pointer (not used)
* OUTPUT : none
* RETURNS : 0 on success; 1 if a failure was encountered
* CAUTIONS : none
**/

DWORD WINAPI sample_begin(LPVOID argp)
{
 char channame[20];
 int chdesc;
 int cnt;
 int hDevice[MAX_CHAN];
 long EventCode;
 int Index;
 SRLWIN32INFO SrlWin32Info;

 /*
 * First thing is to inform SRL to signal the reset event
 * when a Dialogic event occurs
 */
 SrlWin32Info.dwTotalSize = sizeof(SRLWIN32INFO);
 SrlWin32Info.dwHandleType = SR_RESETEVENT;
 SrlWin32Info.ObjectHandle = hEvent[DIALOGIC_KEY];
 if (sr_setparm(SRL_DEVICE, SR_WIN32INFO, (void *)&SrlWin32Info) == -1) {
 printf("SRL - FAILED sr_setparm(SR_WIN32INFO): %s (error #%d)\n",
 ATDV_ERRMSGP(SRL_DEVICE), ATDV_LASTERR(SRL_DEVICE));
 return(1);
 }

 for (cnt = 0; cnt < MAX_CHAN; cnt++) {
 /* build name of voice channel */
 sprintf(channame, "dxxxB%dC%d", (cnt / 4) + 1, (cnt % 4) + 1);

 /* open voice channel */
 if ((chdesc = dx_open(channame, 0)) == -1) {
 printf("%s - FAILED: dx_open(): system error = %d\n", channame, dx_fileerrno());
 return(1);
 }
 hDevice[cnt] = chdesc;
 printf("%s - Voice channel opened\n", ATDV_NAMEP(chdesc));

 /* kick off the state machine by going offhook asynchronously */
 if (dx_sethook(chdesc, DX_OFFHOOK, EV_ASYNC) == -1) {
 printf("%s - FAILED: dx_sethook(DX_OFFHOOK): %s (error #%d)\n",
 ATDV_NAMEP(chdesc), ATDV_ERRMSGP(chdesc), ATDV_LASTERR(chdesc));
 return(1);
 }
 printf("%s - Voice channel off-hook initialized\n",ATDV_NAMEP(chdesc));
 }

 /* loop until Keyboard input is received */
 while (!Kbhit_flag) {
 /*
 * Wait on the reset events
 */
 if ((Index = WaitForMultipleObjects(MAX_RESET_EVENTS,
 hEvent,
 FALSE,
 INFINITE)) == WAIT_FAILED) {
 printf("ERROR: Failed WaitForMultipleObjects(): error = %ld\n", GetLastError());
 }

82 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Using the Asynchronous with Win32 Synchronization Model

 /* check if it is because of a key hit */
 if (Index == KEYBOARD_KEY) {
 continue;
 }

 /* must be a Dialogic event so process it */
 while (sr_waitevt(0) != -1) ;

 /*
 * gather data about the event
 */
 chdesc = sr_getevtdev(0);
 EventCode = sr_getevttype(0);

 switch(EventCode) {
 case TDX_SETHOOK:
 if (ATDX_HOOKST(chdesc) == DX_OFFHOOK) {
 printf("%s - Voice channel off-hook\n",ATDV_NAMEP(chdesc));

 /* we went off hook so start dialing */
 if (dx_dial(chdesc, "12025551212", NULL, EV_ASYNC) == -1) {
 printf("%s - FAILED: dx_dial(): %s (error #%d)\n",
 ATDV_NAMEP(chdesc), ATDV_ERRMSGP(chdesc), ATDV_LASTERR(chdesc));
 return(1);
 }
 printf("%s - Voice channel dialing initialized\n",ATDV_NAMEP(chdesc));
 } else {
 /* we went on hook so go off hook again */
 printf("%s - Voice channel on-hook\n",ATDV_NAMEP(chdesc));

 /* set the voice channel off-hook */
 if (dx_sethook(chdesc, DX_OFFHOOK, EV_ASYNC) == -1) {
 printf("%s - FAILED: dx_sethook(DX_OFFHOOK): %s (error #%d)\n",
 ATDV_NAMEP(chdesc), ATDV_ERRMSGP(chdesc), ATDV_LASTERR(chdesc));
 return(1);
 }
 printf("%s - Voice channel off-hook initialized\n",ATDV_NAMEP(chdesc));
 }
 break;

 case TDX_DIAL:
 printf("%s - Voice channel Done dialing\n",ATDV_NAMEP(chdesc));

 /* done dialing so set the voice channel on-hook */
 if (dx_sethook(chdesc, DX_ONHOOK, EV_ASYNC) == -1) {
 printf("%s - FAILED: dx_sethook(DX_ONHOOK): %s (error #%d)\n",
 ATDV_NAMEP(chdesc), ATDV_ERRMSGP(chdesc), ATDV_LASTERR(chdesc));
 return(1);
 }
 printf("%s - Voice channel on-hook initialized\n",ATDV_NAMEP(chdesc));
 break;

 default:
 printf("Received unexpected event 0x%X on device %d\n", EventCode, chdesc);
 break;
 }
 }

 for (cnt = 0; cnt < MAX_CHAN; cnt++) {
 /* close the voice channel */
 chdesc = hDevice[cnt];
 printf("%s - Voice channel closing\n",ATDV_NAMEP(chdesc));
 if (dx_close(chdesc) == -1) {
 printf("%s - FAILED: dx_close(): %s (error #%d)\n",
 ATDV_NAMEP(chdesc), ATDV_ERRMSGP(chdesc), ATDV_LASTERR(chdesc));

Dialogic® Standard Runtime Library API Programming Guide — November 2007 83
Dialogic Corporation

Using the Asynchronous with Win32 Synchronization Model

 return(1);
 }
 }
 return(0);
}

11.2 Implementing the Model Using Windows® I/O
Completion Ports

When using Windows® I/O Completion Ports to implement the Asynchronous with Win32
Synchronization model, initialize the application as follows:

1. Use the Win32 CreateIoCompletionPort() function to create the Completion Port.

2. Fill in the SRLWIN32INFO structure to indicate that I/O Completion Points are being used.
The dwHandleType field must be set to SR_IOCOMPLETIONPORT. The ObjectHandle
field contains the Completion Port handle returned by the CreateIoCompletionPort()
function. The dwUserKey field must be set to the user-specified key that is returned at the time
of event notification. The lpOverlapped field may be set to an optional user-specified
OVERLAPPED structure.

3. Call the sr_setparm() function with the parmno parameter set to SR_WIN32INFO.

Then, to wait for event notification:

1. Call the Win32 GetQueuedCompletionStatus() to wait for events from multiple sources,
including SRL devices.

2. At notification, if the event source is a Dialogic® device, call the sr_waitevt() function, with a
zero timeout, to retrieve the event from the event queue. To identify the device and event, use
the sr_getevtdev() and sr_getevttype() functions.

84 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Using the Asynchronous with Win32 Synchronization Model

Dialogic® Standard Runtime Library API Programming Guide — November 2007 85
Dialogic Corporation

1212.Getting Information About the
Structure of a System

This chapter describes the Device Mapper API, a subset of the Dialogic® Standard Runtime
Library (SRL) API, which can be used to retrieve information about the structure of the system
such as the number of physical and virtual boards in a system, and the number of devices on a
board.

The SRL Device Mapper API operates on a hierarchy of entities described in the following rules:

• A physical board owns zero or more virtual boards.

• A virtual board owns zero or more subdevices.

• A virtual board is an R4 device.

• A subdevice is an R4 device.

• One or more jacks can be associated with one or more R4 devices.

The SRL Device Mapper API consists of the following functions:

SRLGetAllPhysicalBoards()
Retrieves a list of all physical boards in a system.

SRLGetJackForR4Device()
Retrieves the jack number for an R4 device.

SRLGetPhysicalBoardName()
Retrieves the physical board name for the specified AUID.

SRLGetSubDevicesOnVirtualBoard()
Retrieves a list of all subdevices on a virtual board.

SRLGetVirtualBoardsOnPhysicalBoard()
Retrieves a list of all virtual boards on a physical board.

Note: The SRL Device Mapper API provides a set of atomic transforms, such as a list of all virtual boards
on a physical board. For more complicated transforms, such as information about all the subdevices
on a physical board, combine multiple SRL Device Mapper API functions.

Device Mapper API Code Example

The following code demonstrates the use of the Device Mapper API to determine all physical
boards, virtual boards, virtual channels, and virtual channel types in the system. It displays the
information to the screen and also writes to the devinfo.log file.

86 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Getting Information About the Structure of a System

// devinfo.c
// Illustrates use of SRL Device Mapper API
//
// Program Pseudocode
// Start
// Open logfile devinfo.log
// For each Physical Board in system {
// Get Virtual Boards on associated AUID {
// Get Virtual Channels on Virtual Board {
// - Display AUID, Virtual Board and Virtual Device Type for
// each Virtual Channel
// - Log information to devinfo.log
// }
// }
// }
// Close logfile
// End

// System Header Files
#ifdef WIN32
#include <windows.h>
#endif

#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <fcntl.h>

// Dialogic Header Files
#include <srllib.h>

// Function Prototypes
void Shutdown();

// Global Variables
FILE *g_pLogFile; // Handle for device log file

int main(int argc, char *argv[])
{
 int nPhysBoards; // Number of Physical Boards in system
 int nVirtualBoards; // Number of Virtual Boards on a Physical Board
 int nVirtualChans; // Number of Virtual Channels on a Virtual Board

 AUID *pAuidList = NULL; // AUID list
 SRLDEVICEINFO *pSrlBoardList = NULL;// SRL Device Info for virtual board
 SRLDEVICEINFO *pSrlChanList = NULL; // SRL Device Info for virtual channel

 AUID *pAuid = NULL; // AUID pointer for iterating list
 SRLDEVICEINFO *pSrlBoard = NULL; // Board pointer for iterating list
 SRLDEVICEINFO *pSrlChan = NULL; // Channel pointer for iterating list

 int indxPhys; // Loop index for physical boards
 int indxBoard; // Loop index for virtual boards
 int indxChan; // Loop index for virtual channels

 long rc; // Return code from device mapper functions

 // Open device log file
 g_pLogFile = fopen("devinfo.log", "w");
 if (g_pLogFile == NULL)
 {
 printf("Unable to open devinfo.log, errno = 0x%X\n", errno);
 Shutdown();
 }

Dialogic® Standard Runtime Library API Programming Guide — November 2007 87
Dialogic Corporation

Getting Information About the Structure of a System

 // Determine number of physical boards by
 // passing 0 Physical Board count and NULL Auid device info
 // Function will fail but number of Physical Boards will
 // be returned
 nPhysBoards = 0;
 pAuidList = NULL;

 rc = SRLGetAllPhysicalBoards(&nPhysBoards, pAuidList);
 if (rc != ESR_INSUFBUF)
 {
 // If error other than ESR_INSUFBUF then either no virtual boards
 // or other unexpected error
 printf("SRLGetAllPhysicalBoards() failed, error = 0x%X\n", rc);
 Shutdown();
 }

 // Allocate memory for array of AUIDs
 pAuidList = (AUID *) malloc(nPhysBoards * sizeof(AUID));
 if (pAuidList == NULL)
 {
 printf("malloc() failed, unable to allocate memory for AUIDs\n");
 Shutdown();
 }

 // Retrieve physical board info
 rc = SRLGetAllPhysicalBoards(&nPhysBoards, pAuidList);
 if (rc != ESR_NOERR)
 {
 printf("SRLGetAllPhysicalBoards failed, error = 0x%X\n", rc);
 free(pAuidList);
 Shutdown();
 }

 // Display header for AUID/board/chan/type display
 printf("AUID\tBoard\t\tChan\t\tDev Type\n");
 fprintf(g_pLogFile, "AUID\tBoard\t\tChan\t\tDev Type\n");
 fflush(g_pLogFile);

 // For each Physical Board AUID, determine associated
 // virtual board
 for (indxPhys = 0; indxPhys < nPhysBoards; indxPhys++)
 {
 // Set the AUID pointer to the current item
 pAuid = &pAuidList[indxPhys];

 // Determine number of virtual boards by
 // passing 0 Virtual Board count and NULL SRL device info
 // Function will fail but number of virtual boards will
 // be returned
 nVirtualBoards = 0;
 pSrlBoardList = NULL;

 rc = SRLGetVirtualBoardsOnPhysicalBoard(*pAuid,
 &nVirtualBoards,
 pSrlBoardList);
 if (rc != ESR_INSUFBUF)
 {
 // If error other than ESR_INSUFBUF then either no virtual boards
 // or other unexpected error
 printf("SRLGetVirtualBoardsOnPhysicalBoard() failed, "
 "error = 0x%X\n",
 rc);
 free(pAuidList);
 Shutdown();
 }

88 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Getting Information About the Structure of a System

 // Allocate memory for number of virtual boards found
 pSrlBoardList = (SRLDEVICEINFO *) malloc(
 nVirtualBoards * sizeof(SRLDEVICEINFO));
 if (pSrlBoardList == NULL)
 {
 printf("Unable to allocate memory for pSrlBoardList");
 free(pAuidList);
 Shutdown();
 }

 // Now retrieve all virtual boards on physical board
 rc = SRLGetVirtualBoardsOnPhysicalBoard(*pAuid,
 &nVirtualBoards,
 pSrlBoardList);
 if (rc != ESR_NOERR)
 {
 printf("SRLGetVirtualBoardsOnPhysicalBoard() failed, "
 "error = 0x%X\n",
 rc);
 free(pSrlBoardList);
 free(pAuidList);
 Shutdown();
 }

 // For each virtual board, determine associated virtual channels
 for (indxBoard = 0; indxBoard < nVirtualBoards; indxBoard++)
 {
 // Set the Board pointer to the current item
 pSrlBoard = &pSrlBoardList[indxBoard];

 // Determine number of virtual channels by
 // passing 0 Virtual Channel count and NULL SRL device info
 // Function will fail but number of virtual channels will
 // be returned
 nVirtualChans = 0;
 pSrlChanList = NULL;

 rc = SRLGetSubDevicesOnVirtualBoard(pSrlBoard->szDevName,
 &nVirtualChans,
 pSrlChanList);
 if (rc != ESR_INSUFBUF)
 {
 // If error other than ESR_INSUFBUF then either no virtual
 // channels or other unexpected error
 printf("SRLGetSubDevicesOnVirtualBoard() failed, "
 "error = 0x%X\n",
 rc);
 free(pSrlBoardList);
 free(pAuidList);
 Shutdown();
 }

 // Allocate memory for number of virtual channels found
 pSrlChanList = (SRLDEVICEINFO *) malloc(
 nVirtualChans * sizeof(SRLDEVICEINFO));
 if (pSrlChanList == NULL)
 {
 printf("Unable to allocate memory for pSrlChanList");
 free(pSrlBoardList);
 free(pAuidList);
 Shutdown();
 }

 // Now retrieve all virtual channels on physical board
 rc = SRLGetSubDevicesOnVirtualBoard(pSrlBoard->szDevName,
 &nVirtualChans,
 pSrlChanList);

Dialogic® Standard Runtime Library API Programming Guide — November 2007 89
Dialogic Corporation

Getting Information About the Structure of a System

 if (rc != ESR_NOERR)
 {
 printf("SRLGetSubDevicesOnVirtualBoard() failed, "
 "error = 0x%X\n",
 rc);
 free(pSrlChanList);
 free(pSrlBoardList);
 free(pAuidList);
 Shutdown();
 }

 // For each virtual channel, display associated AUID,
 // virtual board and device type
 for (indxChan = 0; indxChan < nVirtualChans; indxChan++)
 {
 // Set the Channel pointer to the current item
 pSrlChan = &pSrlChanList[indxChan];

 // Display AUID, virtual board, virtual channel and
 // device type
 // device type values found in devmapr4.h
 printf("%d\t%s\t\t%s\t\t%d\n",
 *pAuid,
 pSrlBoard->szDevName,
 pSrlChan->szDevName,
 pSrlChan->iDevType);
 fprintf(g_pLogFile,
 "%d\t%s\t\t%s\t\t%d\n",
 *pAuid,
 pSrlBoard->szDevName,
 pSrlChan->szDevName,
 pSrlChan->iDevType);
 fflush(g_pLogFile);
 } // end virtual channel loop

 // Free memory previously malloc'd
 free(pSrlChanList);

 } // end virtual board loop

 // Free memory previously malloc'd
 free(pSrlBoardList);

 } // end physical board loop

 // Cleanup and terminate application
 free(pAuidList);
 Shutdown();
 return(0);
} // end main()

/*===*/
/* NAME: Shutdown() */
/* DESCRIPTION: Terminate the application after cleaning up. */
/* INPUT: None */
/* OUTPUT: Application state when Shutdown() was invoked */
/* RETURN: None */
/*===*/
void Shutdown()
{
 fclose(g_pLogFile);
 exit(0);
}

90 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Getting Information About the Structure of a System

Dialogic® Standard Runtime Library API Programming Guide — November 2007 91
Dialogic Corporation

1313.Building Applications

This chapter provides information on building applications that use the Dialogic® Standard
Runtime Library (SRL) software. Topics include:

• Compiling and Linking . 91

13.1 Compiling and Linking

Applications that use the SRL software must include references to the SRL header file and must be
linked with the appropriate library file. This information is provided the following topics:

• Include Files

• Required Libraries

• Variables for Compiling and Linking Commands

• Run-time Linking

13.1.1 Include Files

The SRL uses one header file, srllib.h, that contains the equates required by each application that
uses the SRL software.

The following lines of code show where the srllib.h file should be included relative to other header
files that may be used by the application:

 #include <windows.h>
 #include <srllib.h>
 #include <XXXXlib.h>

where:

• windows.h is shown to indicate that the Dialogic® include files should appear after all
Windows® include files.

• srllib.h must be included in code before all other Dialogic header files.

• XXXXlib.h represents the header file for the device being used. For example, if using a voice
device, include the dxxxlib.h file. Depending upon the application, you may need to include
more than one Dialogic header file for the devices being used.

13.1.2 Required Libraries

Applications developed using the SRL software should be linked with the libsrlmt.lib library file.
By default, library files are located in the directory given by the INTEL_DIALOGIC_LIB
environment variable.

92 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

Building Applications

13.1.3 Variables for Compiling and Linking Commands

The following variables provide a standardized way of referencing the directories that contain
header files and libraries:

INTEL_DIALOGIC_INC
Variable that points to the directory where header files are stored.

INTEL_DIALOGIC_LIB
Variable that points to the directory where library files are stored.

These variables are automatically set at login and should be used in compiling and linking
commands.

Note: It is strongly recommended that developers begin using these variables when compiling and linking
applications since they will be required in future releases. The name of the variables will remain
constant, but the values may change in future releases.

13.1.4 Run-time Linking

Run-time linking resolves the entry points to the Dialogic® dynamic link libraries (DLLs) when the
application is loaded and executed. This allows the application to contain function calls that are not
contained in the DLL that resides on the target system.

To use run-time linking, the application can call the Windows® LoadLibrary() function to load a
specific technology DLL and a series of GetProcAddress() function calls to set up the address
pointers for the functions.

Dialogic® Standard Runtime Library API Programming Guide — November 2007 93
Dialogic Corporation

Glossary

asynchronous function: A function that returns immediately to the application and returns event notification at
some future time. EV_ASYNC is specified in the function’s mode argument. This allows the current thread of code
to continue while the function is running.

backup handlers: Handlers that are enabled for all events on one device or all events on all devices.

device: Any object, for example, a board or a channel, that can be manipulated via a physical library.

device grouping functions: Functions that allow a direct association between threads and devices. The Device
Grouping APIs can be used to group devices together and wait for events from one of the devices.

device handle: Numerical reference to a device, obtained when a device is opened using xx_open(), where xx is
the prefix defining the device to be opened. The device handle is used for all operations on that device.

device mapper functions: Functions that are contained in the device mapper API, a subset of the Dialogic®
Standard Runtime Library. They return information about the structure of the system, such as a list of all the virtual
boards on a physical boards. The device mapper API works for any component that exposes R4 devices.

device name: Literal reference to a device, used to gain access to the device via an xx_open() function, where
xx is the prefix defining the device type to be opened.

event: Any message sent from the device.

event data retrieval functions: Dialogic® Standard Runtime Library functions that retrieve information about
the current event, allowing data extraction and event processing.

event handling functions: Dialogic® Standard Runtime Library functions that connect and disconnect events
to application-specified event handlers, allowing the user to retrieve and handle events when they occur on a device.

handler: A user-defined function called by the Dialogic® Standard Runtime Library when a specified event
occurs on a specified event.

solicited event: An expected event. It is specified using one of the device library's asynchronous functions. For
example, for dx_play(), the solicited event is “play complete”.

Standard Attribute functions: Dialogic® Standard Runtime Library functions that return general information
about the device specified in the function call. Standard Attribute information is applicable to all devices that are
supported by the Dialogic® Standard Runtime Library.

Standard Runtime Library (SRL): Device-independent library that contains functions that provide event
handling and other functionality common to Dialogic® devices.

Standard Runtime Library parameter functions: Functions that are used to check the status of and set the
value of Dialogic® Standard Runtime Library parameters.

94 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

subdevice: Any device that is a direct child of another device, for example, a channel is a subdevice of a board
device. Since “subdevice” describes a relationship between devices, a subdevice can be a device that is a direct
child of another subdevice.

synchronous function: A function that blocks the application until the function completes. EV_SYNC is
specified in the function’s mode argument.

unsolicited event: An event that occurs without prompting, for example, silence-on or silence-off events on a
channel.

Dialogic® Standard Runtime Library API Programming Guide — November 2007 95
Dialogic Corporation

Index

A
Asynchronous model

advantages 39
code example 53
description 16
disadvantages 40
guidelines for 53
selecting 39

Asynchronous model with event handlers
code example 58
guidelines for 57

Asynchronous with Win32 Synchronization model
advantages 42
code example 79
description 18
guidelines 79
selecting 41

Asynchronous with Windows Callback model
advantages 41
code example 71
description 18
disadvantages 41
guidelines for 71
selecting 41

B
bddev 28

BLT boards
device sorting 24
device sorting rules 23

board
devices 25

C
channel

definition 21
devices 26
naming 26

code example
Asynchronous model 53
Asynchronous model with event handlers 58
Asynchronous with Win32 Synchronization model 79
Asynchronous with Windows Callback model 71
Device Mapper API usage 85
Extended Asynchronous model

Device Grouping API variant 65
sr_waitevtEx() variant 66

Synchronous model 43
Synchronous model with event handlers 46

compiling and linking
variables for 92

D
device

definition 21
event management 31
getting jack for 85
getting technology-specific information 29
handle for 21
naming 25
opening 28
retrieving common information 29
retrieving user-defined information 30
sorting DM3 boards 26
sorting rules for DM3 boards 23
types of 22
using 28

Device Grouping API
definition 63
list of functions 63

Device Mapper API
code example 85
definition 85
list of functions 85

device name
definition 21
process for assigning 22

DM3 boards
device naming 26
device sorting rules 26

96 Dialogic® Standard Runtime Library API Programming Guide — November 2007
Dialogic Corporation

E
error

indication of 35
retrieving information for 35

events
handler guidelines 32
handlers for 32
hierarchy of handlers 32
managing 31

Extended Asynchronous model
advantages 40
description 17
Device Grouping API variant

code example 65
description 63
guidelines for 64

disadvantages 40
selecting 40
sr_waitevtEx() variant

code example 66
description 66
guidelines for 66

variants 63

H
handlers

for events 32
guidelines 32
hierarchy of 32
using an application handler thread 34
using an SRL handler thread 33

I
I/O completion ports

guidelines for using 83

include files
order of 91

L
libraries

required 91

M
model combinations

cautions 19
valid 19

multi-threaded model
See Extended Asynchronous model 17

P
PCI boards

device sorting 23, 24

performance considerations 20

physical board
definition 22
getting virtual board list 85

programming model
performance considerations 20
selecting 37

R
reset events

guidelines for using 79

S
SRL device

definition 30
retrieving information 30

Synchronous model
advantages 39
code example 43
description 16
disadvantages 39
guidelines for 43
selecting 38

Synchronous model with event handlers
code example 46
guidelines for 45

system
getting information about 85
getting list of physical boards 85

V
variables

when compiling and linking 92

virtual board
definition 21
getting subdevice list 85

W
Win32 synchronization

model for 79

Windows I/O completion ports
guidelines for using 83

Windows reset events
guidelines for using 79

	Contents
	Tables
	Revision History
	About This Publication
	Purpose
	Applicability
	Intended Audience
	How to Use This Publication
	Related Information

	1. Product Description
	2. Programming Models
	2.1 Synchronous Versus Asynchronous Programming
	2.2 Synchronous Model
	2.3 Asynchronous Model
	2.4 Extended Asynchronous Model
	2.5 Asynchronous with Windows® Callback Model
	2.6 Asynchronous with Win32 Synchronization Model
	2.7 Model Combinations
	2.8 Performance Considerations

	3. Device Handling
	3.1 Device Concepts
	3.2 Device Names
	3.2.1 Overview of Device Names
	3.2.2 Dividing Boards Among Device Types
	3.2.3 Sorting Devices on Dialogic® DM3 Boards
	3.2.4 Sorting Devices on Dialogic® Springware Boards
	3.2.5 Constructing Device Names

	3.3 Opening and Using Devices
	3.4 Getting Device Information
	3.4.1 Common Device Information
	3.4.2 Technology-Specific Device Information
	3.4.3 User-Defined Device Information
	3.4.4 SRL-Specific Device Information

	4. Event Handling
	4.1 Event Management
	4.2 Using Event Handlers
	4.2.1 Event Handler Overview
	4.2.2 Event Handler Guidelines
	4.2.3 Event Handler Hierarchy
	4.2.4 Event Handler Thread Options

	5. Error Handling
	5.1 SRL Function Error Indication
	5.2 Retrieving Error Information Using Standard Attribute Functions

	6. Application Development Guidelines
	6.1 Summary of SRL Programming Model Selections
	6.2 Selecting the Synchronous Model
	6.3 Selecting the Asynchronous Model
	6.4 Selecting the Extended Asynchronous Model
	6.5 Selecting the Asynchronous with Windows® Callback Model
	6.6 Selecting the Asynchronous with Win32 Synchronization Model

	7. Using the Synchronous Model
	7.1 Implementing the Synchronous Model
	7.2 Implementing the Synchronous Model With Event Handlers

	8. Using the Asynchronous Model
	8.1 Implementing the Asynchronous Model
	8.2 Implementing the Asynchronous Model with Event Handlers

	9. Using the Extended Asynchronous Model
	9.1 Extended Asynchronous Model Variants
	9.2 Implementing the Device Grouping API Variant
	9.3 Implementing the sr_waitevtEx() Variant

	10. Using the Asynchronous with Windows® Callback Model
	10.1 Implementing the Asynchronous with Windows® Callback Model
	10.2 Example Code

	11. Using the Asynchronous with Win32 Synchronization Model
	11.1 Implementing the Model Using Windows® Reset Events
	11.2 Implementing the Model Using Windows® I/O Completion Ports

	12. Getting Information About the Structure of a System
	13. Building Applications
	13.1 Compiling and Linking
	13.1.1 Include Files
	13.1.2 Required Libraries
	13.1.3 Variables for Compiling and Linking Commands
	13.1.4 Run-time Linking

	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Updated TIPs settings to fix web compatibility issue. The PDF documents can be opened with Acrobat and Reader 4.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

