

Dialogic® PowerMedia™ HMP for Windows
Release 3.0
Release Notes

February 2024 05-2508-131

 www.dialogic.com

2

Copyright and Legal Notice

Copyright © 2024 Enghouse Systems Limited (“Enghouse”). All Rights Reserved. You may not reproduce this
document in whole or in part without permission in writing from Enghouse at the address provided below.

All contents of this document are furnished for informational use only and are subject to change without notice and
do not represent a commitment on the part of Enghouse and its affiliates or subsidiaries ("Enghouse"). Reasonable
effort is made to ensure the accuracy of the information contained in the document. However, Enghouse does not

warrant the accuracy of this information and cannot accept responsibility for errors, inaccuracies or omissions that
may be contained in this document.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH DIALOGIC® PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. EXCEPT AS PROVIDED IN A SIGNED AGREEMENT BETWEEN YOU AND ENGHOUSE, ENGHOUSE
ASSUMES NO LIABILITY WHATSOEVER, AND ENGHOUSE DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO SALE AND/OR USE OF ENGHOUSE PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY INTELLECTUAL PROPERTY
RIGHT OF A THIRD PARTY.

Enghouse products are not intended for use in certain safety-affecting situations.

Due to differing national regulations and approval requirements, certain Enghouse products may be suitable for use
only in specific countries, and thus may not function properly in other countries. You are responsible for ensuring
that your use of such products occurs only in the countries where such use is suitable. For information on specific
products, contact Enghouse at legal.operations@enghouse.com

It is possible that the use or implementation of any one of the concepts, applications, or ideas described in this
document, in marketing collateral produced by or on web pages maintained by Enghouse may infringe one or more
patents or other intellectual property rights owned by third parties. Enghouse does not provide any intellectual
property licenses with the sale of Enghouse products other than a license to use such product in accordance with
intellectual property owned or validly licensed by Enghouse and no such licenses are provided except pursuant to a
signed agreement with Enghouse. More detailed information about such intellectual property is available from
Enghouse's legal department at 80 Tiverton Court, Suite 800 Markham, Ontario L3R 0G4.

Enghouse encourages all users of its products to procure all necessary intellectual property licenses required to
implement any concepts or applications and does not condone or encourage any intellectual property infringement
and disclaims any responsibility related thereto. These intellectual property licenses may differ from country to
country and it is the responsibility of those who develop the concepts or applications to be aware of and comply with
different national license requirements.

Dialogic, Dialogic Pro, DialogicOne, Dialogic Buzz, Brooktrout, BorderNet, PowerMedia, PowerVille, PowerNova,
ControlSwitch, I-Gate, Veraz, Cantata, TruFax, and NMS Communications, among others as well as related logos,
are either registered trademarks or trademarks of Enghouse and its affiliates or subsidiaries. Enghouse's trademarks
may be used publicly only with permission from Enghouse. Such permission may only be granted by Enghouse legal
department at 80 Tiverton Court, Suite 800 Markham, Ontario L3R 0G4. Any authorized use of Enghouse's
trademarks will be subject to full respect of the trademark guidelines published by Enghouse from time to time and
any use of Enghouse's trademarks requires proper acknowledgement.

The names of actual companies and products mentioned herein are the trademarks of their respective owners.

This document discusses one or more open source products, systems and/or releases. Enghouse is not responsible
for your decision to use open source in connection with Enghouse products (including without limitation those referred
to herein), nor is Enghouse responsible for any present or future effects such usage might have, including without
limitation effects on your products, your business, or your intellectual property rights.

mailto:legal.operations@enghouse.com

3

Table of Contents

Dialogic® PowerMedia™ HMP for Windows Release 3.0 ... 1

1. Revision History .. 4

2. Post Release Developments .. 7
Media Streaming Support for AMR, AMR-WB and EVS Codecs 7
Multitrack Audio Wave Recording .. 7
Google Cloud Platform (GCP) Support .. 7
Secure RTP With First Party Call Control ... 7
IPv6 Call Control ... 7
Driver Certification Updates with HMP Windows Service Update 538 8
NAT Traversal Support for 1PCC Applications in Cloud Environments 8
AMR2 Audio Codec Support .. 8
Transmit RFC 2833/RFC 4733 Tone Events ... 8
Microsoft Windows 11 and Windows Server 2022 Support .. 8
Increased Channel Density ... 8

3. Release Issues .. 9

4. Documentation Updates .. 13
NAT Traversal Feature ... 13
AMR2 Codec Support ... 15
Transmit RFC 2833/RFC 4733 Tone Events ... 17
Secure RTP With First Party Call Control ... 22
IPv6 Call Control ... 24
Multitrack Audio Wave Recording Feature ... 25

Individual Party Multitrack Recording .. 25
Two-Party Multitrack Recording .. 25
MM_MEDIA_AUDIO Updates .. 26
Port Connections .. 26
TX Mirror Port .. 26
Connecting Two TX Ports to MM ... 26

4

1. Revision History

This section summarizes the changes made in this and, if applicable, each previously

published version of the Release Notes for PowerMedia™ HMP for Windows Release 3.0,

which is a document that is planned to be periodically updated throughout the lifetime of

the release.

Revision Release Date Notes

05-2508-131 February 2024 Updates to support PowerMedia HMP for Windows 3.0

Service Update 556.

Release Issues:

HMP-1725, HMP-1681

05-2508-130 December

2023

Updates to support PowerMedia HMP for Windows 3.0

Service Update 554.

Release Issues:

HMP-1715

05-2508-129 August 2023 Updates to support PowerMedia HMP for Windows 3.0

Service Update 551.

Post Release Developments:

• Multitrack audio wav recording

• Support for GCP as of Service Update 550

• MM streaming support for AMR, AMR-WB and

EVS

Release Issues:

HMP-1695, HMP-1694, HMP-1664, HMP-1424

05-2508-128 May 2023 Updates to support PowerMedia HMP for Windows 3.0

Service Update 550.

Release Issues:

HMP-1665, HMP-1654, HMP-1640, HMP-1630, HMP-

1625.

5

Revision Release Date Notes

05-2508-127 March 2023 Updates to support PowerMedia HMP for Windows 3.0

Service Update 548.

Post Release Developments:

Added the following new features:

• Secure RTP With First Party Call Control

• Ipv6 Call Control

Release Issues:

HMP-1621, HMP-1601, HMP-1522, HMP-1436,

HMP-1150.

05-2508-126 December

2022

Updates to support PowerMedia HMP for Windows 3.0

Service Update 545.

Release Issues:

HMP-1558, HMP-1537, HMP-1521

05-2508-125 September

2022

Updates to support PowerMedia HMP for Windows 3.0

Service Update 543.

Release Issues:

Added the following resolved defects:

HMP-1523, HMP-1517, HMP-1507, HMP-1506,

HMP-1500, HMP-1499, HMP-1494.

05-2508-124 March 2022 Updates to support PowerMedia HMP for Windows 3.0

Service Update 540.

Added Section 4 that incorporates new API

information.

Release Issues:

Added the following resolved defects:

HMP-1472, HMP-1468.

6

Revision Release Date Notes

05-2508-123 December

2021

Updates to support PowerMedia HMP for Windows 3.0

Service Update 538.

Post Release Developments:

Added the following new features:

• NAT Traversal for 1PCC

• AMR2

• Transmit RFC 2833/RFC 4733 Tone Events

• Microsoft Windows 11 and Windows Server

2022

Release Issues:

Added the following resolved defects:

HMP-1408, HMP-1332, HMP-1126.

05-2508-122 June 2021 Archived previous revision of the document.

Updates to support PowerMedia HMP for Windows 3.0

Service Update 533.

Release Issues:

Added the following resolved defects:

HMP-1317, HMP-1311, HMP-1245, HMP-1244, HMP-

1234, HMP-1223, HMP-1149, HMP-1144, HMP-1141,

HMP-1136, HMP-965.

7

2. Post Release Developments

This section describes significant changes after the general availability release.

Media Streaming Support for AMR, AMR-WB and EVS
Codecs

HMP 3.0 Windows Service Update 551 adds support for AMR, AMR-WB and EVS codecs

when using the media streaming API functions. For more information regarding media

streaming APIs, refer to the Dialogic® Multimedia API Programming Guide and Library

Reference.

Multitrack Audio Wave Recording

With Service Update 551, HMP for Windows adds support for audio recording to dual-track

(stereo) .wav files. This multitrack record feature enables applications to record two

separate audio sources into different tracks. This feature can be utilized by call centers,

E911 applications, banking applications, and monitoring applications to record two audio

callers, such as agent and client, as different tracks rather than recording the mixed output

of an audio conference. An additional use case of this feature enables applications to

capture an audio recording of the HMP system input and output of the caller (i.e., what the

caller hears and what the caller says) in a single dual-track (stereo) .wav file.

For more information, refer to the Documentation Updates section later in this document.

Google Cloud Platform (GCP) Support

Dialogic® PowerMedia™ HMP for Windows Release 3.0 Service Update 550 adds support for

Google Cloud Platform (GCP) instances running Microsoft Windows Server 2022 Datacenter

or later. HMP has been qualified on the e2-medium, n2-standard, n2d-standard, t2d-

standard, and c3-highcpu instance types. Two or more VCPU are supported; the required

instance size is dependent on the number of ports in use during run time and depends on

HMP and application performance requirements.

Note: Depending on use case, an application may need to configure SIP headers

(“Contact”, “From”) using the external IP address of the instance. When using SIP in 1PCC

mode, this can be accomplished by using the NAT Traversal Support for 1PCC Applications

in Cloud Environments released with Service Update 538.

Secure RTP With First Party Call Control

With Service Update 548, HMP for Windows adds functionality to support Secure RTP calls

when using the first party call control (1PCC) model.

For more information, refer to the Documentation Updates section later in this document.

IPv6 Call Control

With Service Update 548, HMP for Windows adds functionality to support IPv6 call control.

For more information, refer to the Documentation Updates section later in this document.

8

Driver Certification Updates with HMP Windows Service
Update 538

HMP Windows SU538 contains updated hardware driver certificates issued by DigiCert. The

new root certificate DigiCert Trusted Root G4 must be installed prior to updating to HMP

Windows SU538. The G4 certificate is installed automatically as long as "Automatic Root

Certificate Update" in the Local Group Policy is enabled.

NAT Traversal Support for 1PCC Applications in Cloud
Environments

With Service Update 538, HMP for Windows adds NAT Traversal functionality that enables

SIP and RTP access to the public network in cloud environments where a media server only

has access to a network interface with a local IP address.

For more information, refer to the Documentation Updates section later in this document.

AMR2 Audio Codec Support

With Service Update 538, HMP for Windows adds support for the AMR2 codec. The AMR2

codec is a restricted subset of AMR codec functionality provided for VoLTE compatibility with

older UMTS networks.

For more information, refer to the Documentation Updates section later in this document.

Transmit RFC 2833/RFC 4733 Tone Events

With Service Update 538, HMP for Windows adds support for sending RFC 2833/RFC 4733

telephony events. This feature allows an application to transmit a sequence of both DTMF

and non-DTMF telephony events, including hookflash, over an IP network.

For more information, refer to the Documentation Updates section later in this document.

Microsoft Windows 11 and Windows Server 2022 Support

With Service Update 538, HMP for Windows has been qualified to run on Microsoft Windows

11 and Windows Server 2022.

Increased Channel Density

With Service Update 533, Dialogic PowerMedia HMP for Windows Release 3.0 now supports

up to 3000 ports of audio.

9

3. Release Issues

Issue

Type

Defect

No.

SU

No.

Product

or Com-

ponent

Description

Resolved HMP-1725 556 Driver An issue introduced in SU550 that

caused delayed or missing events and

crashes on some VMWare

configurations has been addressed.

Resolved HMP-1681 556 Driver An update was made to address a

crash in the SSP component when

parsing RTCP packets.

Resolved HMP-1715 554 IPHOST An issue introduced in SU550 that

impacted SIP call rates/density has

been addressed.

Resolved HMP-1695 551 IPHOST An update was made to prevent

additional characters from being

included in the 200 OK SDP a=crypto

line.

Resolved HMP-1694 551 IPHOST An update was made to address an

IPHOST library exception when

accepting a ReINVITE during a 1PCC

SRTP call.

Resolved HMP-1664 551 IPHOST An issue that caused SIP TLS

connections to fail has been addressed.

Resolved HMP-1424 551 Driver An update was made to address a

memory leak when mismatched

dynamic payload types are used. Note

that packets with an incorrect payload

type are dropped and not processed.

Resolved HMP-1665 550 IPHOST An issue that caused the SIP stack to

leak call resources when handling SIP

forking has been addressed.

Resolved HMP-1654 550 IPHOST An update was made to prevent adding

crypto lines to the SDP for outbound

calls.

Resolved HMP-1640 550 IPHOST An issue that caused an application

segfault when no IPv6 proxy was

specified has been addressed.

Resolved HMP-1630 550 IPHOST An issue that prevented calls from

being answered has been addressed.

10

Issue

Type

Defect

No.

SU

No.

Product

or Com-

ponent

Description

Resolved HMP-1625 550 IPHOST An issue was addressed that prevented

use of Elliptic Curve Diffie-Hellman

ciphers for SIP TLS.

Resolved HMP-1621 548 Driver An issue introduced in SU 545 that

caused connection failures between DX

devices and thinblade timeslots has

been addressed.

Resolved HMP-1601 548 HMP An issue was addressed that caused

unexpected bit rate changes in RTP

streams encoded in EVS.

Resolved HMP-1522 548 HMP An issue was addressed that prevented

RTCP receiver reports from being sent

in RECVEIVEONLY mode.

Resolved HMP-1436 548 Host

Library

An update was made to return an

IPMEV_ERROR - “Invalid Parameter”

error from ipm_StartMedia() when

licensed resources are all in use.

Resolved HMP-1150 548 IPHOST An issue that prevented IPv6 calls

through an outbound proxy has been

addressed.

Resolved HMP-1558 545 IPHOST An issue introduced in SU 543 that

caused SIP supervised transfer calls to

fail has been addressed.

Resolved HMP-1537 545 IPHOST An update was made to ensure that

SDP is included in SIP 200 OK

responses when processing inbound

calls.

Resolved HMP-1521 545 Driver An issue that caused delayed audio

during hair pinned call scenarios has

been addressed.

Resolved HMP-1523 543 IPHOST An update was made to increase the

SIP SDP buffer size to prevent calls

from being rejected with “413 Request

Entity Too Large” error.

Resolved HMP-1517 543 HMP An update was made to address a

crash during network driver buffer

allocation.

Resolved HMP-1507 543 HMP An issue that caused

ipm_ModifyMedia() to fail when a

Native codec was selected has been

addressed.

11

Issue

Type

Defect

No.

SU

No.

Product

or Com-

ponent

Description

Resolved HMP-1506 543 Fax An issue that caused ipm_StartMedia()

failures when using fax T.38 has been

addressed.

Resolved HMP-1500 543 IPHOST An update was made to ensure that

SIP INVITE messages sent after a

CANCEL contain the proper SDP.

Resolved HMP-1499 543 Host

Library

An issue that caused an exception

during a call to gc_stop() has been

addressed.

Resolved HMP-1494 543 IPHOST An update was made to ensure that

SIP headers containing “:” are properly

encoded.

Resolved HMP-1472 540 IPHOST An issue that caused SIP registration

using Digest Authentication to fail has

been resolved.

Resolved HMP-1468 540 Install An update was made to ensure that

HMP drivers are signed with an

updated certificate.

Resolved HMP-1408 538 IPHOST An issue that caused an application

crash when the SIP “Supported:”

header included a comma-separated

list was addressed.

Resolved HMP-1332 538 IPHOST An update was made so that the SIP

“identity:” and “identity-info:” headers

can be read and set from an

application.

Resolved HMP-1126 538 HMP An issue was addressed that prevented

IPM completion events from being sent

to an application.

Resolved HMP-1328 538 Fax An issue that occurred during fax

receive that resulted in corrupted files

approximately 3% of the time has been

resolved.

Resolved HMP-1311 538 IPHOST An issue that caused SIP INVITE to be

rejected with 400 “Sip Parser Error” for

certain SIP “Identity” header formats

was addressed.

Resolved HMP-1317 533 IPHOST The issue that caused a SIP INVITE

that followed a cancelled call not to

include SDP was addressed

12

Issue

Type

Defect

No.

SU

No.

Product

or Com-

ponent

Description

Resolved HMP-1245 533 Firmware An issue that caused an HMP start

failure when setting the

PrmRFC2833TimeStampSkew

parameter was addressed.

Resolved HMP-1244 533 Firmware The issue that caused MultiMedia

recordings to fail when using the

MultiMedia Streaming I/O interface was

fixed.

Resolved HMP-1234 533 Host

Library

The library exception that occurred

when using the MultiMedia Streaming

I/O interface was addressed.

Resolved HMP-1223 533 IPHOST The issue that caused incorrect

handling of the SIP REINVITE message

when multiple RFC2833 lines are

present in the SDP was fixed.

Resolved HMP-1149 533 IPHOST An issue that caused the

gc_AcceptModifyCall () to fail when a

REINVITE with remote port change is

received was addressed.

Resolved HMP-1144 533 IPHOST A fix to allow modification of the SDP

content of subsequent SIP OPTIONS

messages was made.

Resolved HMP-1141 533 IPHOST An issue that occurred when calling

gc_SetAuthenticationInfo() with an

empty Identity element was fixed.

Resolved HMP-1136 533 Firmware An issue that caused SIP calls over an

IPv6 network to fail with

GCEV_TASKFAIL was addressed.

Resolved HMP-965 533 IPHOST An issue that caused the gc_OpenEx()

function to fail on systems with IPv6

addresses was fixed.

13

4. Documentation Updates

NAT Traversal Feature

NAT Traversal functionality enables SIP and RTP access to the public network in cloud

environments where a media server only has access to a network interface with a local IP

address.

SIP and SDP address translation is configured on gc_Start() by setting the

"nat_external_sip_address" and "nat_external_rtp_address" fields in the IP_VIRTBOARD

structure.

The SIP external address is used to replace the host part of the addresses in the "From"

header and the top "Via" header in outbound SIP request messages. The host part of the

address is replaced in the "Contact" header in outbound SIP request messages and

outbound SIP response messages. The SIP external address is used in 1PCC and 3PCC

operating modes.

An application can use IPSET_SIP_MSGINFO / IPPARM_SIP_HDR to add SIP headers. The

application must translate addresses for header types that aren't known to GlobalCall.

The RTP external address is used to replace the host part of the addresses on the o= and

c= lines in outbound SDP. The RTP external address is used in 1PCC operating mode only.

The "audio_rtp_base_port" field in the IP_VIRTBOARD structure is used to configure unique

UDP port ranges for the IPM devices in 1PCC operating mode when multiple media servers

share one public IP address.

In a cloud environment where the media server has a local IP address, only the SIP and

SDP external addresses must be configured. The SIP and SDP external addresses are set in

the "nat_external_sip_address" and "nat_external_rtp_address" fields of the IP_VIRTBOARD

structure.

IP_VIRTBOARD Additions for NAT traversal

The following parameters have been added to the IP_VIRTBOARD structure to support NAT

Traversal feature. For more information regarding the IP_VIRBOARD structure, refer to

the Dialogic® Global Call IP Technology Guide.

nat_external_sip_address (structure version >= 0x118 only)
Specifies the host address that will replace the host address in From, Contact and

Via headers in outbound SIP messages. The value can be any string, e.g. an IPv4

address, an IPv6 address or an FQDN. SIP address translation is disabled by

default. This field applies to 1PCC and 3PCC operating modes.

nat_external_rtp_address (structure version >= 0x118 only)
Specifies the host address that will replace the host addresses on the c= and o=

SDP lines in all outbound SDP. The value must be an IPv4 address or an IPv6

address. SDP address translation is disabled by default. This field applies to 1PCC

operating mode only.

audio_rtp_base_port (structure version >= 0x118 only)
Sets the IPM base UDP port. The default value is 0 which means the default IPM

base UDP port will be used. This field applies to 1PCC operating mode only.

14

Configuring Multiple Servers Sharing a Single Public Address

Multiple media servers can also share a single public IP address. Forwarding rules are

configured on the NAT device for each media server. Each media server's UDP and TCP

ports are configured so they don't overlap.

Media server 1 configuration

SIP UDP port 5060

SIP TCP port 5060

RTP / RTP base UDP port 20000

Media server 2 configuration

SIP UDP port 5070

SIP TCP port 5070

RTP / RTP base UDP port 30000

SIP and RTP to media server 1

Public Private

SIP 172.1.1.10:5060 -> 192.168.1.20:5060

RTP 172.1.1.10:20000 -> 192.168.1.20:20000

SIP and RTP to media server 2

Public Private

SIP 172.1.1.10:5070 -> 192.168.1.30:5070

RTP 172.1.1.10:30000 -> 192.168.1.30:30000

The following IP_VIRTBOARD fields are used to configure the network interface IP address,

UDP ports and TCP port for SIP on gc_Start():

localIP

localIPv6

localIPv6_iface_name

sip_signaling_port

audio_rtp_port_base

15

AMR2 Codec Support

The AMR2 codec is a restricted subset of AMR codec functionality provided for VoLTE

compatibility with older UMTS networks. The use of AMR2 promotes Tandem Free Operation

(TFO) and Transcoder Free Operation (TrFO) when a legacy network utilizes a restricted

subset of AMR modes.

Support for AMR2 and AMR Mode Change Restrictions are specified as an optional, but

recommended requirement by the IMS VoLTE specification IR.92, "IMS Profile for Voice and

SMS". AMR2 provides compatibility with multiple AMR codec types, including FR AMR, HR

AMR, UMTS AMR, and OHR AMR.

RFC 4867 and 3GPP TS 26.114 describe AMR2 and how the AMR2 features are negotiated

using SDP. The IPM device provides the media path processing required for the following

SDP parameters:

mode-set

mode-change-period

mode-change-capability

mode-change-neighbor

The following new macros are bitwise OR'd into the unCoderOptions field of the existing

IPM_AUDIO_CODER_OPTIONS_INFO structure to configure AMR2.

CODER_OPT_AMR_MODE_CHANGE_NEIGHBOR(neighbor) where "neighbor" is 0 or 1

as defined in RFC 4867.

CODER_OPT_AMR_MODE_CHANGE_PERIOD(period) where "period" is 1 or 2 as

defined in RFC 4867.

CODER_OPT_AMR_MODE_SET(set) where each bit in "set" indicates a bitrate in the

mode-set. The bit definitions are as follows.

Bit Definition for AMR

Bit Bitrate (kbps)

0 4.75

1 5.15

2 5.90

3 6.70

4 7.40

5 7.95

6 10.2

7 12.2

16

Bit Definition for AMR-WB

Bit Bitrate (kbps)

0 6.60

1 8.85

2 12.65

3 14.25

4 15.85

5 18.25

6 19.85

7 23.05

8 23.85

CMR rule and packing mode configuration are supported in previous releases. The following

macros have been added to this release.

CODER_OPT_AMR_CMR_RULE(rule) where "rule" is CODER_OPT_AMR_CMR_TRACK or

CODER_OPT_AMR_CMR_LIMIT

CODER_OPT_AMR_PACKING_MODE(mode) where "mode" is CODER_OPT_AMR_OCTET

or CODER_OPT_AMR_EFFICIENT

Example AMR2 configuration

The following example demonstrates the IPM REMOTE configuration for an endpoint that

includes the following AMR2 related attributes in SDP.

a=fmtp:96 mode-set=0,2,4,7; mode-change-period=2, \

 mode-change-neighbor=1; mode-change-capability=2

17

Example code

...

/* Setup IP address here */

// Remote Audio Coder

ipmMediaInfo.MediaData[unCount].eMediaType = MEDIATYPE_AUDIO_REMOTE_CODER_INFO;

ipmMediaInfo.MediaData[unCount].mediaInfo.AudioCoderInfo.eCoderType =

CODER_TYPE_AMRNB_12_2k;

ipmMediaInfo.MediaData[unCount].mediaInfo.AudioCoderInfo.eFrameSize =

CODER_FRAMESIZE_20;

ipmMediaInfo.MediaData[unCount].mediaInfo.AudioCoderInfo.unFramesPerPkt = 1;

ipmMediaInfo.MediaData[unCount].mediaInfo.AudioCoderInfo.eVadEnable =

CODER_VAD_ENABLE

ipmMediaInfo.MediaData[unCount].mediaInfo.AudioCoderInfo.unCoderPayloadType = 96;

ipmMediaInfo.MediaData[unCount].mediaInfo.AudioCoderInfo.unRedPayloType = 0;

unCount++;

ipmMediaInfo.MediaData[unCount].eMediaType =

MEDIATYPE_AUDIO_REMOTE_CODER_OPTIONS_INFO;

ipmMediaInfo.MediaData[unCount].mediaInfo.AudioCoderOptionsInfo = {0};

ipmMediaInfo.MediaData[unCount].mediaInfo.AudioCoderOptionsInfo.unVersion =

IPM_AUDIO_CODER_OPTIONS_INFO_VERSION;

ipmMediaInfo.MediaData[unCount].mediaInfo.AudioCoderOptionsInfo.unCoderOptions=

CODER_OPT_AMR_CMR_RULE(CODER_OPT_AMR_CMR_TRACK) |

CODER_OPT_AMR_PACKING_MODE(CODER_OPT_AMR_EFFICIENT) |

CODER_OPT_AMR_MODE_CHANGE_NEIGHBOR(1) |

CODER_OPT_AMR_MODE_CHANGE_PERIOD(2) |

CODER_OPT_AMR_MODE_SET(0x95);

unCount++

ipmMediaInfo.unCount = unCount;

For more information on IP Media codec configuration, refer to the Dialogic® IP Media

Library API Programming Guide and Library Reference.

Transmit RFC 2833/RFC 4733 Tone Events

This feature allows an application to transmit a sequence of both DTMF and non-DTMF

telephony events over an IP network by calling ipm_SendTelephonySignals(). This can be

used in generating all RFC 4733 tone event definitions (0-255) beyond the initial set of

DTMF telephony events (0-15) used to represent digits 0-9, A-D, *, #. This can also be

used to generate a non-DTMF telephony event, such as a Hookflash event, and DTMF RFC

2833/RFC 4733 RTP telephony events based on WebRTC signaling events in a WebRTC

Gateway application. The feature also allows an application to support the modem and text

tone event definitions specified in RFC 4734 (https://tools.ietf.org/html/rfc4734), or channel

oriented signaling tone events specified in RFC 5244 (https://tools.ietf.org/html/rfc5244).

The RFC 4733 (https://tools.ietf.org/html/rfc4733) recommendation specifies the "RTP

Payload for DTMF Digits, Telephony Tones and Telephony Signals" and obsoletes the original

RFC 2833 specification. The send/receive RFC 4733 tone event capability is integrated into

the standard DTMF digit generation and detection API when RFC 2833/RFC 4733 mode is

negotiated upon SDP media session establishment.

Note: ipm_SendTelephonySignals() is only available when audio is encoded. It’s not

available for native audio.

https://datatracker.ietf.org/doc/html/rfc4734
https://datatracker.ietf.org/doc/html/rfc5244
https://datatracker.ietf.org/doc/html/rfc4733

18

New DTMF Transfer Mode

The Dialogic® IP Media Library API can be used to configure which DTMF transfer mode (in-

band, RFC 2833, or out-of-band) is used by the application. The mode is set on a per-

channel basis using ipm_SetParm() and the IPM_PARM_INFO data structure.

DTMFXFERMODE_RFC2833_APP

This transfer mode is the same as DTMFXERMODE_RFC2833 except that inband tones are

not converted into RFC 2833 DTMF events by the IPM transmitter. The tones are still

clamped. In this mode, telephony events are generated exclusively by the application when

ipm_SendTelephonySignals() is called.

Function Information

Name: int ipm_SendTelephonySignals (nDeviceHandle, *pDigitInfo, usMode)

Inputs:

int nDeviceHandle • IP Media device handle IPM_TELEPHONY_SEQUENCE_INFO

*pInfo • pointer to information structure

unsigned short usMode • async or sync mode setting

Returns:

0 on success

-1 on failure

Includes:

srllib.h, ipmlib.h

Category:

Media Session

Mode: asynchronous or synchronous

Description

The ipm_SendTelephonySignals() function instructs the IPM device to generate a sequence

of RFC 2833/RFC 4733 telephony events over an IP network. The on/off time and volume of

each telephony event is configurable.

The transfer mode must be set to DTMFXERMODE_RFC2833 or

DTMFXERMODE_RFC2833_APP for the telephony events to be transmitted on the network.

Refer to the ipm_SetParm() for more information.

Parameter Description

nDeviceHandle handle of the IP Media device

pInfo pointer to the IPM_TELEPHONY_SEQUENCE_INFO structure

usMode operation mode. Set to EV_ASYNC for asynchronous execution or to

EV_SYNC for synchronous execution

Termination Events

IPMEV_SEND_TELEPHONY_SIGNALS

Indicates successful completion. The given telephony event sequence has been transmitted

to the remote endpoint. If ipm_Stop() is called while a sequence is being generated,

19

generation is stopped immediately and the IPMEV_SEND_TELEPHONY_SIGNALS termination

event is generated, followed by the IPMEV_STOP termination event.

IPMEV_SEND_TELEPHONY_SIGNALS_FAIL

Indicates that the function failed. See the "Errors" section below for a list of error codes.

Cautions

ipm_SendTelephonySignals() is only available when audio is encoded. It’s not available for

native audio.

When the transfer mode is set to DTMFXFERMODE_RFC2833, inband tones that are

converted to telephony events will conflict with telephony events that are generated by the

application at the same time.

The DTMFXFERMODE_RFC2833_APP mode disables telephony event generation from inband

tones on the transmit side. While in DTMFXFERMODE_RFC2833_APP mode, an application

can detect inbound tones or telephony events using a DX device or detect inbound

telephony events using IPM telephony event reporting. The detected tones/events can be

regenerated using ipm_SendTelephonySignals().

Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()

to return one of the following errors:

EIPM_BUSY

Channel is busy.

EIPM_INTERNAL

Internal error.

EIPM_INV_MODE

Invalid mode.

EIPM_INV_STATE

Invalid state. Initial command did not complete before another function call was made.

EIPM_SYSTEM

System error.

If the IPMEV_SEND_TELEPHONY_SIGNALS_FAIL termination event is received, call

ATDV_LASTERR() and ATDV_ERRMSGP() to return one of the following errors:

EIPM_INVALID_EVENT_ID

The event ID is not in the range 0 through 255.

EIPM_INVALID_VOLUME

20

The volume is not in the range 0 through 63.

EIPM_INVALID_OPTIONS

Options value is wrong.

EIPM_INVALID_SIGNAL_TYPE

Unrecognized signal type. The signal type must be "event".

EIPM_PAYLOAD_TYPE_NOT_IMPLEMENTED

Per sequence/per event RTP payload type is not implemented. The telephony event

payload type must be set by the PARMCH_RFC2833EVT_TX_PLT to ipm_SetParm().

EIPM_PTIME_NOT_IMPLEMENTED

Per sequence/per event ptime is not implemented. The frame time of the codec selected

in ipm_StartMedia() is always used.

EIPM_CLOCK_RATE_NOT_IMPLEMENTED

Per sequence/per event clock rate is not implemented. The RTP clock rate of the codec

selected in ipm_StartMedia() is always used.

EIPM_TONE_NOT_IMPLEMENTED

This function can only generate telephony events. Telephony tones can not be generated

by this function.

EIPM_OUT_OF_RANGE

An event ID in the "telephony event ID string" is too large. The maximum value is 255.

EIPM_TOO_MANY_DIGITS

An event ID in the "telephony event ID string" contains too many digits. The maximum

number of digits is 3.

EIPM_INVALID_CHARACTER

The "telephony event ID string" contains an invalid character. Valid characters are

comma and decimal digits.

Example 1

In this example, the "telephony event ID string" is used to generate the sequence.

void SendTelephonySignalsExample1(int handle)

{

IPM_TELEPHONY_SEQUENCE_INFO seq;

21

// The second parameter to the INIT function is set to zero since it

doesn't apply

// to strEventIDs. It's only used for the signal array.

INIT_IPM_TELEPHONY_SEQUENCE_INFO(&seq, 0);

// These apply to each event in the event ID string.

seq.sVolume = 7; // dBm0/sign dropped as defined in RFC 4733 seq.usDuration =

200; // milliseconds

// This is the duration of the gap between events in the event ID string.

seq.unInterval = 100; // milliseconds

// The event ID string is a comma separated list of telephony event IDs.

The following

// list includes DTMF 1,2,3 and hook flash.

seq.strEventIDs = "1,2,3,16";

if(ipm_SendTelephonySignals(handle, &seq, EV_ASYNC) == -1)

{

printf("ipm_SendTelephonySignals() failed, %s (%ld)\n", ATDV_ERRMSGP(handle),

ATDV_LASTERR(handle));

}

FREE_IPM_TELEPHONY_SEQUENCE_INFO(&seq); // this must be called

}

Example 2

In this example, the “telephony signal array” is used to generate the sequence. The volume

and duration can be configured for each event.

void SendTelephonySignalsExample2(int handle)

{

IPM_TELEPHONY_SEQUENCE_INFO seq;

IPM_TELEPHONY_EVENT_INFO pEventInfo;

// The "count" parameter is set to 3 since there are 3 elements in the

telephony

// event array defined below.

INIT_IPM_TELEPHONY_SEQUENCE_INFO(&seq, 3);

// These are the default values that will be used for the event array

elements.

seq.sVolume = 7;

seq.usDuration = 200;

seq.unInterval = 100;

// The volume and duration aren't set in this element, so the default

values

// above are used.

22

pEventInfo = INIT_IPM_TELEPHONY_EVENT_INFO(&seq);

pEventInfo->eTelephonyEventID = SIGNAL_ID_EVENT_DTMF_0;

// The volume and duration set on the next two events override the volume,

duration

// and interval values set above.

pEventInfo = INIT_IPM_TELEPHONY_EVENT_INFO(&seq);

pEventInfo->eTelephonyEventID = SIGNAL_ID_OFF; // pseudo event ID to insert a

gap between events

pEventInfo->usDuration = 150;

pEventInfo = INIT_IPM_TELEPHONY_EVENT_INFO(&seq);

pEventInfo->eTelephonyEventID = SIGNAL_ID_EVENT_DTMF_1;

pEventInfo->sVolume = 5;

pEventInfo->usDuration = 185; // this is rounded up to the next frame period,

e.g. 200 milliseconds for 20 millisecond G.711

if(ipm_SendTelephonySignals(handle_, &seq, EV_ASYNC) == -1)

{

printf("ipm_SendTelephonySignals() failed, %s (%ld)\n", ATDV_ERRMSGP(handle_),

ATDV_LASTERR(handle_));

}

FREE_IPM_TELEPHONY_SEQUENCE_INFO(&seq); // this must be called

}

For more information on IP Media API functionality, refer to the Dialogic® IP Media Library

API Programming Guide and Library Reference.

Secure RTP With First Party Call Control

Secure RTP (http://www.ietf.org/rfc/rfc3711.txt) is a method that allows for secure

encrypted transmission of RTP data between endpoints. Secure RTP functionality has been

previously supported with HMP when using third party call control (3PCC) mode. In 3PCC

mode, the application is responsible for selecting the encryption method, key generation,

negotiation, and state transitions between the endpoints. This HMP release adds

functionality for supporting Secure RTP when using first party call control (1PCC)

configuration. In 1PCC mode, these steps are managed within the HMP GlobalCall libraries.

Secure RTP can be used in conjunction with SIP TLS (https://www.rfc-

editor.org/rfc/rfc5246.txt) to provide a secure method for two endpoints using SRTP to

exchange the necessary setup information, including SRTP keys.

Supported crypto suites

HMP supports the following crypto suites through 1PCC:

• AES_CM_128_HMAC_SHA1_80

• AES_CM_128_HMAC_SHA1_32

• AES_CM_256_HMAC_SHA1_80

• AES_CM_256_HMAC_SHA1_32

http://www.ietf.org/rfc/rfc3711.txt
https://www.rfc-editor.org/rfc/rfc5246.txt
https://www.rfc-editor.org/rfc/rfc5246.txt

23

Enabling 1PCC SRTP

The feature is enabled by including a GC_PARM_BLK with parameter set ID

GCSET_CHAN_CAPABILITY and parameter ID of IPPARM_ENABLE_SRTP_1PCC. Setting the

value to IP_DISABLE disables Secure RTP (default), setting to IP_ENABLE enables Secure

RTP.

The HMP license on the target system must include Encryption (SRTP / TLS) in the license

configuration to enable support for this feature. An “IPERR_BAD_PARAM” is returned when

enabling the feature if Encryption is not included in the HMP license.

Example code

…

/* Enable Secure RTP */

gc_util_insert_parm_val(&gcParmBlk, GCSET_CHAN_CAPABILITY,IPPARM_ENABLE_SRTP_1PCC,

 sizeof(long), IP_ENABLE);

if (gc_SetUserInfo(GCTGT_GCLIB_CHAN, lineDev , gcParmBlk, GC_ALLCALLS) < 0) {

 printf(“Error: gc_SetUserInfo() returned error enabling Secure RTP\n”);

}

Outbound calls

When the SRTP feature is enabled, the GlobalCall library will generate a new Master key for

each call. The crypto information is included in the SDP offer provided in the SIP INVITE

message. The remote side responds with its crypto information in its response. If the

negotiation is successful, RTP in both directions will be encrypted. If the remote side does

not provide its crypto information in its response, the call will be rejected per RFC4568,

section 7.1.2 (https://www.ietf.org/rfc/rfc4568.txt)

The table below shows documents HMP behavior during outbound call negotiation.

Local Remote response Results

SRTP Disabled SDP without SRTP Invoke regular RTP call handling

SRTP Enabled SDP with SRTP Invoke Secure RTP call handling

SRTP Disabled SDP with SRTP If remote responds with SRTP crypto, then local

side will CANCEL the call and return

GCEV_DISCONNECTED event sent to application

with reason

IPEC_InternalReasonSRTPCryptoMismatch.

SRTP Enabled SDP without SRTP Per RFC, if the remote does not support SRTP

then it should reject the call. If it accepts

without sending SRTP crypto back then local side

will CANCEL the call and return

GCEV_DISCONNECTED event sent to

application with reason

IPEC_InternalReasonSRTPCryptoMismatch.

https://www.ietf.org/rfc/rfc4568.txt

24

Receiving calls

When the SRTP feature is enabled, the GlobalCall library will generate a new Master key for

each call. When a new incoming call is received containing crypto information in the SDP,

GlobalCall will respond with its crypto information in the SDP answer provided in the SIP

response. If a call is received that does not include crypto information, GlobalCall will not

include crypto in its response. The resulting call will not utilize Secure RTP.

The table below shows documents HMP behavior during inbound call negotiation.

Local Remote sends Results

SRTP Disabled Invite without SRTP Invoke regular RTP call handling

SRTP Enabled Invite with SRTP Invoke Secure RTP call handling

SRTP Disabled Invite with SRTP Send 488 “Not Acceptable Here” response to

remote and return GCEV_DISCONNECTED

event sent to application.

SRTP Enabled Invite without SRTP Invoke regular RTP call handling (no SRTP)

Feature notes

- While HMP IP Media Library implementation supports the ability to specify multiple

encryption keys, 1PCC Secure RTP feature utilizes a single key per call. Multiple key

rotation is not supported.

- For more information related to Secure RTP, see Chapter 21 of the “Dialogic® IP Media

Library API Programming Guide and Library Reference” https://www.dialogic.com/-

/media/manuals/docs/ip_media_api_hmp_v16.pdf

- For more information related to SIP TLS, see Chapter 4, Section 29 of the “Dialogic®

Global Call IP Technology Guide“ https://www.dialogic.com/-

/media/manuals/docs/globalcall_for_ip_hmp_v12.pdf

IPv6 Call Control

Support for IPv6 call control has been enabled for HMP Windows. The feature is enabled

through the IP_VIRTBOARD structure.

IP_VIRTBOARD

• E_SIP_IPv6 - Enables the application to use IPv6. The default is disabled.

• localIPv6 - Specifies the local IPv6 address to be used in SIP signaling.

• localIPv6_iface_name - For Link-Local IPv6 address only. Specifies the network

interface to use when sending IPv6 packets. The value can be an interface name or a

scope identifier string value.

The IPPARM_SDP_IP_TYPE parameter in the IPSET_SDP parameter set is used to specify the

SDP address type (IPv4 or IPv6 for RTP/RTCP addresses) in the SIP SDP offer/answer

model. The default value is IPv4 addressing for backward compatibility. Use

gc_SetUserInfo() to specify arguments for a single call (GC_SINGLECALL) or for all calls

https://www.dialogic.com/-/media/manuals/docs/ip_media_api_hmp_v16.pdf
https://www.dialogic.com/-/media/manuals/docs/ip_media_api_hmp_v16.pdf
https://www.dialogic.com/-/media/manuals/docs/globalcall_for_ip_hmp_v12.pdf
https://www.dialogic.com/-/media/manuals/docs/globalcall_for_ip_hmp_v12.pdf

25

(GC_ALLCALLS) on a line device. The gc_SetConfigData() function is not used with this

parameter.

IPPARM_SDP_IP_TYPE

Specifies the IP address type to use in SDP:

• USE_IPv4 – (Default) Only IPv4 addressing is accepted in incoming/outgoing SDP.

• USE_IPv6 – Only IPv6 addressing is accepted in incoming SDP.

• PREFER_IPv6 – IPv6 addressing is used when sending an SDP offer. When receiving

an SDP offer based on IPv4, the SIP stack will use IPv4 SDP for that connection.

Multitrack Audio Wave Recording Feature

The multitrack record feature enables applications to record two separate audio sources into

a dual-track (stereo) wave file. This feature can be utilized by call centers, E911

applications, banking applications, and monitoring applications to record two audio callers,

such as agent and client, as different tracks rather than recording the mixed output of an

audio conference. An additional use case of this feature enables applications to capture an

audio recording of the HMP system input and output of the caller (i.e., what the caller hears

and what the caller says) in a single dual-track (stereo) .wav file.

The two main use cases supported by HMP for the multitrack record feature in this release

are individual party multitrack transaction recording and two-party multitrack recording,

which are described in the following sections.

Individual Party Multitrack Recording

The individual multitrack transaction recording use case enables applications to record the

audio of the caller speaking and the audio that the caller hears in the same file as two

different tracks.

This feature provides the ability to record the system output sent to a user without the need

to do packet capture on the network to get the audio as it is heard by the caller. The

recording of what a caller hears includes all of the different sources that occur during a call,

such as audio from another caller, output of a conference, or output from a play file. This

provides the ability to record the audio a caller hears without the need to put all sources

through a conference mixer.

Two-Party Multitrack Recording

The two-party recording use case enables applications to record two sources, such as two

call parties, as two separate tracks in a single .wav file. The resulting file has each audio

source in a separate track, which can be played back together or separated by source.

Providing recordings as multitrack recordings has unique advantages over single mixed

audio recordings. A dual-track (stereo) .wav file can be played back on standard players as

a stereo file with synchronized audio between the two parties. Additionally, a multitrack file

also allows the audio of each individual participant track to be easily separated. Separating

the audio allows post processing of the individual caller’s audio that may not be possible

with a mixed conference output where voices cannot easily be separated.

For example, individual tracks can be sent to speech analytics software to get an accurate

per participant transcript or to analyze the speech characteristics of a caller or agent.

26

MM_MEDIA_AUDIO Updates

Updates are needed to the MM_MEDIA_AUDIO structure that is passed into the

mm_Record() function to start the recording. The following is an example.

INIT_MM_MEDIA_ITEM_LIST(&m_audioMediaList);

INIT_MM_MEDIA_AUDIO(&m_audioMediaList.item.audio);

m_audioMediaList.ItemChain = EMM_ITEM_EOT;

m_audioMediaList.item.audio.codec = m_mmAudioCodecRecord;

m_audioMediaList.item.audio.unMode = MM_MODE_AUD_BEEPINITIATED |

MM_MODE_MULTI_TRACK_RECORD; m_audioMediaList.item.audio.unOffset = 0;

m_audioMediaList.item.audio.szFileName = m_audioRecordFileName.c_str();

m_audioMediaList.item.audio.unAccessMode = MM_MEDIA_ACCESS_MODE_FILE;

m_audioMediaList.item.audio.unNumTracks = 2

When using ORing in MM_MODE_MULTI_TRACK_RECORD in the unMode field and setting

the umNumTracks field to a value of 2, a 2 track .wav file will be recorded.

Port Connections

With a single track recording, there is one port connected to the MM device. When executing

a multitrack recording, there are 2 ports that are connected to the MM device. The following

figure shows a use case in which both the transmit and receive streams of an IPM device

will be recorded to a multitrack .wav file.

This use case makes use of “mirrored” port that mirrors the data coming into the RX port of

an IPM device. This RX data is what will be sent out over the IP network. The “tx mirror”

port mirrors the data from the RX side back into a TX port for transmission to other HMP

components.

TX Mirror Port

The “tx mirror” port is represented in the device management API using the port type of

DM_PORT_MEDIA_TYPE_AUDIO_MIRROR. A port of this type will be returned in the event

data provided by a call to dev_GetTransmitPorts() on an IPM device. This port will be

provided in addition to the existing port of type DM_PORT_MEDIA_TYPE_AUDIO.

Connecting Two TX Ports to MM

In addition to adding the “tx mirror” port to IPM, an additional port was added to MM to

support a second transmitter to be recorded. The second RX port is accessed by ORing in

the value of DMFL_TRANSCODE_USE_SECOND_PORT in the unFlags field. The following is

27

sample code to show how to retrieve the “tx mirror” and connect both the TX audio port and

the TX mirror audio port to the MM device.

#include <srllib.h>

#include <ipmlib.h>

#include <mmlib.h>

#include <port_connect.h>

#include <string.h>

#include <iostream>

using namespace std;

int main(int argc, char** argv)

{

int rc;

int ipmDev,mmDev;

long evt;

void* evt_data;

const char szDev1[] = "ipmB1C1";

const char szDev2[] = "mmB1C1";

unsigned int index = 0;

ipmDev = -1;

mmDev = -1;

try

{

// Open device (ipm)

ipmDev = ipm_Open(szDev1, NULL, EV_ASYNC);

if (-1 == ipmDev)

{

cout << "ipm_Open error";

cout << " handle = " << ipmDev << endl;

throw 1;

}

sr_waitevt(-1);

evt = sr_getevttype();

if (IPMEV_OPEN != evt)

{

cout << "ipm_Open error";

cout << " event = " << evt << endl;

throw 2;

}

cout << "ipm_Open() completed successfully" << endl;

// Open device (mm)

mmDev = mm_Open(szDev2, NULL, NULL);

28

if (-1 == mmDev)

{

cout << "mm_Open error";

cout << " handle = " << mmDev << endl;

throw 3;

}

sr_waitevt(-1);

evt = sr_getevttype();

if (MMEV_OPEN != evt)

{

cout << "mm_Open error";

cout << " event = " << evt << endl;

throw 4;

}

cout << "mm_Open() completed successfully" << endl;

//****** get MM RX ports ******

rc = dev_GetReceivePortInfo(mmDev, NULL);

if (-1 == rc)

{

cout << "dev_GetReceivePortInfo error";

cout << " rc = " << rc << endl;

throw 5;

}

sr_waitevt(-1);

evt = sr_getevttype();

if (DMEV_GET_RX_PORT_INFO != evt)

{

cout << "dev_GetReceivePortInfo error";

cout << " event = " << evt << endl;

throw 4;

}

evt_data = sr_getevtdatap();

int evt_len = sr_getevtlen();

DM_PORT_INFO_LIST mmRxPortList = {};

memcpy(&mmRxPortList, evt_data, evt_len);

cout << "Number of RX ports: " << mmRxPortList.unCount << endl;

DM_PORT_INFO *pmmRxAudioPort = NULL;

for (index = 0; index < mmRxPortList.unCount; index++)

{

cout << "port type at index " << index << ": "

<< mmRxPortList.port_info[index].port_media_type << endl;

if (mmRxPortList.port_info[index].port_media_type ==

DM_PORT_MEDIA_TYPE_AUDIO)

29

{

cout << "RX port index " << index << " is of type DM_PORT_MEDIA_TYPE_AUDIO" <<

endl;

pmmRxAudioPort = &mmRxPortList.port_info[index];

}

}

//****** get IPM TX ports ******

rc = dev_GetTransmitPortInfo(ipmDev, NULL);

if (-1 == rc)

{

cout << "dev_GetTransmitPortInfo error";

cout << " rc = " << rc << endl;

throw 5;

}

sr_waitevt(-1);

evt = sr_getevttype();

if (DMEV_GET_TX_PORT_INFO != evt)

{

cout << "dev_GetTransmitPortInfo error";

cout << " event = " << evt << endl;

throw 4;

}

evt_data = sr_getevtdatap();

evt_len = sr_getevtlen();

DM_PORT_INFO_LIST ipmTxPortList = {};

memcpy(&ipmTxPortList, evt_data, evt_len);

cout << "Number of TX ports: " << ipmTxPortList.unCount << endl;

DM_PORT_INFO *pipmTxAudioMirrorPort = NULL;

DM_PORT_INFO *pipmTxAudioPort = NULL;

for (index = 0; index < ipmTxPortList.unCount; index++)

{

if (ipmTxPortList.port_info[index].port_media_type ==

DM_PORT_MEDIA_TYPE_AUDIO_MIRROR)

{

cout << "TX port index " << index << " is of

type DM_PORT_MEDIA_TYPE_AUDIO_MIRROR" << endl;

pipmTxAudioMirrorPort = &ipmTxPortList.port_info[index];

}

if (ipmTxPortList.port_info[index].port_media_type == DM_PORT_MEDIA_TYPE_AUDIO)

{

cout << "TX port index " << index << " is of type

DM_PORT_MEDIA_TYPE_AUDIO" <<

endl;

30

pipmTxAudioPort = &ipmTxPortList.port_info[index];

}

}

//***** Connect MM receive and IPM transmit ports (audio and audio

mirror ****************

// the IPM device has to transmit ports. The newly-added port is the called

that

"rx mirror" port

// because it takes that audio that is transmitted out to the IP network and

"mirrors"

back into

// HMP. This allows the outgoing data to be recorded. The rx mirror port has a

media

type of

// DM_PORT_MEDIA_TYPE_AUDIO_MIRROR.

//

// to connect the rx mirror port to the MM device, a new flag bit has been

defined.

// DMFL_TRANSCODE_USE_SECOND_PORT allows a second transmit port to be connected

to an MM

device.

// To use the 2nd port in MM, OR in the DMFL_TRANSCODE_USE_SECOND_PORT flag and

set the

tx port

// to the rx mirror port retrieved with dev_GetTransmitPorts().

DM_PORT_CONNECT_INFO_LIST ConnList;

INIT_DM_PORT_CONNECT_INFO_LIST(&ConnList);

unsigned int count=0;

/* set up MM audio tx to IPM port connections with transcoding enabled

*/

ConnList.port_connect_info[count].unFlags = DMFL_TRANSCODE_ON |

DMFL_TRANSCODE_USE_SECOND_PORT;

ConnList.port_connect_info[count].port_info_tx = *pipmTxAudioMirrorPort;

ConnList.port_connect_info[count].port_info_rx = *pmmRxAudioPort;

count++;

ConnList.port_connect_info[count].unFlags = DMFL_TRANSCODE_ON;

ConnList.port_connect_info[count].port_info_tx =

*pipmTxAudioPort; ConnList.port_connect_info[count].port_info_rx

= *pmmRxAudioPort; count++;

ConnList.unCount = count;

rc = dev_PortConnect(ipmDev, &ConnList, NULL);

if (-1 == rc)

{

cout << "dev_PortConnect error";

31

cout << " rc = " << rc << endl;

throw 51;

}

sr_waitevt(-1);

evt = sr_getevttype();

if (DMEV_PORT_CONNECT != evt)

{

cout << "dev_PortConnect error";

cout << " event = " << evt << endl;

throw 52;

}

cout << "dev_PortConnect completed sucessfully" << endl;

// disconnect the ports

rc = dev_PortDisconnect(ipmDev, &ConnList, NULL);

if (-1 == rc)

{

cout << "dev_PortDisconnect error";

cout << " rc = " << rc << endl;

throw 51;

}

sr_waitevt(-1);

evt = sr_getevttype();

if (DMEV_PORT_DISCONNECT != evt)

{

cout << "dev_PortDisconnect error";

cout << " event = " << evt << endl;

throw 52;

}

cout << "dev_PortDisconnect completed sucessfully" << endl;

}

catch(int point)

{

cout << "error at point: " << point << endl;

exit(-1);

}

}

