
Application Note

Developing Media
Solutions using RTSP and
Dialogic® Products

Application Note Developing Media Solutions using RTSP and Dialogic® Products

2

Executive Summary

This application note provides information about developing media
solutions using the Real Time Streaming Protocol (RTSP) and Dialogic®

Host Media Processing Software. Included (as a download) with this
application note is a sample RTSP client library and a sample Dialogic®

application, which serve as a reference for developing media streaming
applications using RTSP.

Developing Media Solutions using RTSP and Dialogic® Products Application Note

1

Table of Contents
Introduction... 2

Architecture .. 2

SIP User Agent .. 2

Dialogic® HMP Software ... 3

RTSP Server... 3

3G-324M Gateway ... 3

Code Walkthrough ... 3

Overview .. 4

Using the RTSP Client Library .. 4

Using the Dialogic® APIs... 7

Materials List for Sample Application .. 9

Appendix A: Setup and Configuration of Darwin Streaming (RTSP) Server.............. 9

Acronyms.. 9

For More Information... 10

2

Signaling

Media

Signaling
Media

Dialogic® Host Media
Processing Server

RTSP Server

Kapanga Softphone

Introduction

RTSP (Real Time Streaming Protocol) is an Internet
standard protocol commonly used for streaming media
from a media server to a client endpoint. The RTSP
client has the ability to control the media stream offered
by the server with a series of VCR-type commands like
play, pause, fast forward, and rewind. In addition to
providing media to RTSP clients, RTSP servers maintain
network status information, which is used to provide the
best possible user experience.

This document provides information for consideration
when building a Dialogic® Host Media Processing (HMP)
Software application that uses RTSP to provide a media
solution for both video-based VoIP phones and 3G and
4G cellular phones. The description of the architecture
for both the VoIP phone and the 3G/4G solutions is fol-
lowed by information about the sample application, plus
code snippets.

A Zip file containing the source code for the RTSP client
library and a sample Dialogic® application is available for
download (see the For More Information section).

Architecture

This section provides a complete list of the components
used in building and running a Dialogic® RTSP-based
media streaming solution. Specific information related to

the components used in the sample implementation is
provided. In addition, feature specifications of each
component are provided so that they can be substituted
with alternate products of the developer’s choosing.

The components presented in Figure 1 are those used in
the development of the sample application accompanying
this document. Although the sample application has been
used to stream media to 3G and 4G cellular devices, the
components in Figure 1 provide a simple, inexpensive
development environment.

SIP User Agent

The Kapanga Softphone is a SIP softphone that is based
on the Windows® operating system and that is used as the
calling party in the sample application. Refer to the
Materials List for Sample Application section for additional
information. To provide the functionality for the sample
application, the SIP user agent must support the media
sent to it. The limitations on the coders used in the
media that is sent depend on what the RTSP media server
will serve and what a typical client can support.
Commonly supported coders used to stream multimedia
to a 3G or 4G endpoint are H263+ (also known as
H.263/2000) for video and AMR Narrow Band (AMR-
NB) for audio. H.263+ is common due to its ability to
negotiate picture size, while AMR is common due to its
being an adjustable rate coder. The Kapanga Softphone
provides support for these coders, supporting both the

Application Note Developing Media Solutions using RTSP and Dialogic® Products

Figure 1. VoIP Video Softphone Environnent

Developing Media Solutions using RTSP and Dialogic® Products Application Note

RTSP server used and providing an alternative to the
need for a complete 3G development environment. It is
important to note that because the Kapanga Softphone
terminates the media stream from the RTSP server, it
must provide the coder licenses used to play the media
received.

Dialogic® HMP Software

Dialogic® Host Media Processing Software Release 3.0 for
Windows® Service Update 155 was used due to its
support for native hairpinning of both audio and video
media. Native hairpinning (also referred to as
tromboning) involves the routing of packets received on
one media device to a second media device connected to
the calling endpoint. The steps and the APIs used to
accomplish native hairpinning are described in the Code
Walkthrough section.

RTSP Server

Apple’s Darwin Streaming Server (“Darwin”) is an open
source RTSP server used as the streaming server in the
sample application provided. Darwin was selected because
it is open source, is easy to install and configure, and sup-
ports the media to be streamed. Media servers work on
the concept of media containers. A media container is a
combination of the video and audio content that is served
to clients. The container provides information to the
RTSP server on the format and characteristics of the

media enclosed. Container types supported by Darwin
include the MOV, 3GP, and MP4 formats, which provide
the flexibility needed to serve media to both SIP user
agents, as well as 3G and 4G cellular phones.

3G-324M Gateway

Figure 2 shows the components for adding support to the
RTSP streaming sample application for 3G and 4G
cellular devices. The 3G-324M Gateway is the added
hardware component for providing RTSP streaming for
3G and 4G cellular users. Cellular users dialing into a
media service will have their calls routed to a 3G-324M
gateway, which serves as a PSTN to VoIP gateway. VoIP
call signaling is then sent to the HMP server, which
accepts the call and streams a menu of video choices back
to the gateway for delivery to the caller’s cellular phone.
Streaming the menu to the caller was necessary due to the
3G-H324 gateway’s inability to change coders during the
course of the call.

Code Walkthrough

This section details the steps used to implement the
sample application. The coding steps are broken down
into the topics covering the Dialogic HMP Software API
and the RTSP client library calls.

3

Signaling

Media

Signaling
Media

Dialogic® Host Media
Processing Server

RTSP Server

3G-324M Gateway

.............

.............
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......

.............

.............

.............

.............

.............

.............

.............
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......

.............

.............

.............

.............

.............

.............

Video
Content

Figure 2. 3G/4G RTSP Deployment

4

Define (menu)

Reply

Setup (audio)

Reply

Setup (audio)

Reply

Reply

Play

Audio

Video

SIP Invite
SIP Ringing
SIP OK

DTMF (rfc2833)

Calling
Party

Dialogic
App

RTSP
Server

Call

Startup

Overview

Figure 3 presents the message exchange that occurs
between the various parties involved in presenting
RTSP-based media to the calling party. Figure 3 focuses
solely on the messages exchanged between the calling
party, the Dialogic® application, and the RTSP server.
Messages exchanged between a 3G cellular phone and
3G-324M Gateway are outside of the scope of this
document; however, for 3G solutions, the calling party
shown in the figure would be the 3G-324M Gateway.

Figure 3 shows the message sequence for a Dialogic
version of the RTSP application from startup through
menu presentation and caller selection using the menu of
options provided. When the DTMF digit shown as the
last step in the figure is received, it results in an RTSP
setup sequence identical to the first six steps that are
shown here between the Dialogic application and the
RTSP server. An RTSP Define request identifying the
video the caller selected from the menu is sent. The RTSP
reply contains the information needed to issue RTSP
setup messages to support the video and audio streams.
Replies received in response to the RTSP setup messages
provide success or failure statuses for each Setup message
sent. Once the last setup/reply message exchange occurs,
the Dialogic application issues the RTSP Play function to
start the media streams.

Figure 4 provides a summary of the Dialogic® APIs used
and events received in an RTSP client application
developed using Dialogic HMP Software. These Dialogic
commands are used to establish the media hairpin for
streaming media to the client endpoint. One device using
Dialogic® Global Call Software, two media devices (IPM),
and one voice device (VOX) are needed per channel to
support the RTSP functionality described in this
document.

Using the RTSP Client Library

To assist developers in creating media streaming solutions,
an RTSP client library implementation is provided along
with the sample application. The source code provided is
for consideration in developing an RTSP client library
that provides the functionality to set up, play, pause, and
tear down an RTSP media session. All commands are
asynchronous and require a callback routine to process
results returned. This code has been tested with the
Darwin Streaming Server release 5.5.4. Developers may
need to modify or replace the library if adding functional-
ity or working with a different RTSP server.

Note: Variations exist in the signaling used to establish
RTSP session by server implementation.

Application Note Developing Media Solutions using RTSP and Dialogic® Products

Figure 3. Process Flow

Developing Media Solutions using RTSP and Dialogic® Products Application Note

Startup
The setup process for an RTSP session may involve between six and eight message exchanges depending on the media
requested. It is preferred that the Dialogic HMP Software-based application open one media session for each Dialogic
HMP Software channel opened when the application is started. The RTSP Play function can then be issued when a call
arrives on the channel, decreasing the time needed to present the menu to the caller.

The first steps in using the RTSP client library are to get a pointer to an instance of the library and then call its start
method as follows:

// establish session with RTSP server for quicker menu presentation

CRtspSystem* g_rtspSystem = CRtspSystem::Instance();

g_rtspSystem->Start();

Next, the application needs to open a session with the RTSP client library for the device opened as follows:
if (m_rtspPtr->OpenSession(&m_rtspConfig) == 0)

::RegisterRequestByObject(m_rtspConfig.sessionHandle, this);

The configuration parameters represented by m_rtspConfig in the sample are both pre-configured and determined through
the course of operation.

5

Init

Calling
Party

Dialogic
App

HMP
Software

Call

SIP Invite

SIP Ringing

SIP Answer

SIP Answered

Open GC Device
Open IPM Device
Open VOX Device

Parse SDP

ipm_StartMedia (1)

ipm_StartMedia (2)

Build/Export SDP

dev_GetTransmitPortInfo
dmev_get_tx_port_info

dev_GetTransmitPortInfo

dmev_get_tx_port_info

dev_GetReceivePortInfo

dmev_get_rx_port_info

dev_GetReceivePortInfo
dmev_get_rx_port_info

dev_portConnect

dev_portConnect

Figure 4. Dialogic® API Flow

6

Application Note Developing Media Solutions using RTSP and Dialogic® Products

Parameter Value

clientAudioPort Returned from IPM API call

clientVideoPort Returned from IPM API call

callBack Routine to receive asynchronous callbacks

Bandwidth Amount of bandwidth requested for session

rtspServerAddr Address of RTSP server—preconfigured

rtspServerPort Socket number to receive RTSP signals—preconfigured

Language HTTP specification for language (H14.4)

sessionHandle Handle used to identify session for all RTSP library calls—returned value

mediaFile Media file name to be streamed

clientAudioPort and clientVideoPort — Contain the IP socket numbers that receive the audio and video streamed.

callBack — Contains a pointer to the application callback executed when a function completes. RTSP client library calls
are asynchronous with the callBack parameter.

rstpServerAddr and rtspServerPort — Contain the IP address and socket number used by the RTSP server for signaling.

Language — Indicates the language used in the H14.4 HTTP format. U.S. English would be en-US, and case does matter.

sessionHandle — Contains the session handle value returned when the openSession call completes. This session handle
must be used for future RTSP calls for this session.

mediaFile — Contains the name of the media file to be streamed from the RTSP server.

The openSession API starts the RTSP signaling process used to establish the session. RTSP signals generated from this API
call include the RTSP Describe, followed by the RTSP reply/ok handshake needed to establish the RTSP media streams.

Play and Pause
The Play API in the RTSP client library is used to start streaming the media to the Dialogic HMP Software-based applica-
tion. Media received is hairpinned to the calling endpoint when received. The format of the Play API is as follows:

m_rtspPtr->Play(m_rtspConfig.sessionHandle, &m_playParms);

The parameters referred to as m_playParms include the following:

Parameter Value

cSequenceNumber Unique value provided by the library

playLowRange Starting point in media to begin play

playHiRange Ending point in media to end play

preBufferMax Maximum to buffer before playing

cSequenceNumber — Receives the sequence number assigned by the RTSP client library and used by the RTSP server to
track requests by client instance.

playLowRange — Indicates where in the media file to begin playing. To play the entire file, specify a value of zero.

playHiRange — Indicates how far into the media file to play.

preBufferMax — Specifies how many media buffers received are buffered before being played.

The Pause API is used to pause RTSP streams. RTSP client applications typically pause streams for a session before closing
the session. The format of the Pause API is as follows:

m_rtspPtr->Pause(sessionHandle, &cSequenceNumber)

Developing Media Solutions using RTSP and Dialogic® Products Application Note

sessionHandle — Contains the session handle value
returned when the session was opened.

cSequenceNumber — Receives the sequence number
assigned by the library for the Pause function. This
sequence number should be used in the callback routine
in order to determine when the pause function has
completed.

CloseSession
The CloseSession API generates the RTSP Teardown
signal for ending the RTSP session with the server. All
sessions should be closed in order to ensure that the
streaming resources are freed for other applications or
HMP ports. The format of the CloseSession API is as
follows:

CloseSession(sessionHandle)

sessionHandle — Contains the session handle value
returned when the OpenSession API was called to
establish the RTSP session.

Note: All APIs in the RTSP client library return an
integer value containing a 0 for success or -1 for failure. A
value of 0 indicates the API function was submitted to
the RTSP server for processing, while a value of -1
indicates the function failed and was not submitted to the
RTSP server.

Using the Dialogic® APIs

Dialogic HMP Software Service Update 155 was used in
the development of the sample application accompanying
this document. The Dialogic HMP Software feature used
to support RTSP media streams is the native hairpinning
functionality. Like other multimedia Dialogic
applications, RTSP streaming applications use third party
call control for all call signaling. Refer to the For More
Information section for additional information on
implementing third party call control.

Third Party Call Control using Dialogic Global Call
Software
Although this document mostly covers the integration of
RTSP with Dialogic applications, a brief overview of the
use of the third party call control routines using Dialogic®

Global Call Software as used in the sample application
follows:

1. To use third party call control, the Global Call API
library must be opened to specify its use. The

StartGC function contains the code for opening the
Global Call library specifying third party call control.

2. The SDP sent during the signaling for call setup
must be parsed as the first step in responding to the
inbound call request. The routine ParseOfferSDP in
the sample application performs the parsing of the
SDP information received with the SIP Invite
message.

3. Once the SDP has been parsed, and information,
such as video, audio ports and coders, have been
processed, the next step is to populate SDP informa-
tion to be used to respond to the SIP Invite. The
BuildAnswerSDP function in the sample application
builds the SDP message used.

4. After the response SDP information has been built, it
must be exported for use in the signaling response.
The ExportSDP function in the sample application
exports the SDP and calls
gc_util_insert_parm_ref_ex and gc_SetUserInfo to
set the SDP for the call received.

5. A call to gc_AnswerCall is then made to complete
the setup of the call.

The sample application provided could be enhanced to
verify that the calling device had the coders needed to
properly play the audio and video streams that were
requested. As an example, verification could be
accomplished via a database that contained a list of coders
supported by caller or cell phone.

Hairpinning Media Streams
In a hairpinned application, media received on media
ports connected to the source are routed to media ports
connected to the destination endpoint. In this case, the
media is received from the RTSP server, the source, and is
sent to the calling endpoint, the destination. The
Dialogic® devices used for the streams are media devices
(IPM devices). The sample application uses one media
device for the caller and one media device connected to
the RTSP server. A network device using Dialogic Global
Call Software is opened to receive call control and events.
A walkthrough of the code used to accomplish
hairpinning follows.

Setting up Media Devices
In the sample application, media devices are opened in
pairs and are set up to receive DTMF using rfc2833. The

7

8

ipm_Open and ipm_setParm APIs are used to open the
device and set its DTMF mode to rfc2833. A call to
ipm_GetLocalMediaInfo is made to get the video and
audio ports associated with the media device. Both the
video and audio ports are used in the hairpinning of the
RTSP media stream.

DTMF digits collected from the caller are used to identify
the media stream requested by the caller. Rfc2833 is used
to ensure that DTMF digit events are generated for the
application regardless of the audio coder used. A dx
device is opened with each media device and a dx_listen
is called using the media devices timeslot and is used to
receive the DTMF events.

Connecting Calling Endpoint to Media Stream
The offered event is used to trigger the setup of the media
devices for hairpinning the RTSP streams. The
ipm_StartMedia is called for both the calling endpoint
and the RTSP server media device. Information including
video and audio coders, payload types, RTP and RTCP
ports, frame size, and frames per packet is set prior to the
ipm_StartMedia call. The sample application does not
check the client endpoint’s SDP to verify that it has the
coders needed to play the RTSP audio and video streams.
This verification step is useful for production implemen-
tations.

The answered event is then used to call the
dev_GetTransmitPortInfo API. This API is called twice,
once for the media device associated with the calling
party and once for the media device associated with the
RTSP server. These APIs are called asynchronously with
the completion event, DMEV_GET_TX_PORT_INFO
used to trigger the API calls to get the receive port
information. Like the dev_GetTransmitPortInfo API
usage, two calls are made asynchronously with the
dev_GetReceivePortInfo API. One of the calls gets the
receive port information for the calling party and the
second gets the information for the RTSP server.

The asynchronous completion event generated when the
dev_GetReceivePortInfo completes is used to start con-
necting the two media devices to facilitate the media
stream. Transmit and receive information collected is
placed into a DM_PORT_CONNECT_INFO structure,
which is then used to begin connecting the two media
devices. The API used to connect the media devices is the
dev_PortConnect API and is called asynchronously.
The completion event, DMEV_PORT_CONNECT

is used to trigger the population of the second
DM_PORT_CONNECT_INFO structure and to call to
dev_PortConnect, which completes the media hairpin
setup.

The event, DMEV_PORT_CONNECT, generated when
the second call to dev_PortConnect completes, is used to
trigger the RTSP library Play request. Successful execu-
tion of this request results in the media stream being
streamed from the RTSP server through the hairpinned
media connections to the caller’s endpoint.

Note: All API commands listed in this section, with the
exception of the ipm_Open function, must be made
asynchronously.

Disconnecting Media Streams
The disconnect event GCEV_DISCONNECTED should
be used to trigger:

1. The pausing of the RTSP media.

2. The disconnection of the media device hairpin. Like
the other dev API calls, dev_PortDisconnect is called
asynchronously, and like dev_PortConnect, it must
be called once for each of the connected media
devices.

Only one call to dev_PortDisconnect for a connected
session can be processed at once. The completion event,
DMEV_DISCONNECT, should be used as a trigger to
additional calls to dev_PortDisconnect. Failure to use the
dev_PortDisconnect API may result in error conditions
occurring with future calls to connect the media devices.

Note: Although the sample application architecture has a
one-to-one mapping of callers to RTSP media sessions, it
is possible to add callers to an existing RTSP media
stream following the steps presented in this document.
An application of this technique would be to add callers
into a live streaming event. Adding callers to an existing
RTSP stream is achieved by connecting the caller’s
media device to the RTSP media stream via a
dev_portConnectCommand.

Application Cleanup
All devices and the RTSP session(s) should be properly
terminated and closed before the application exits. For
RTSP, a call to the CloseSession function is required for
each open RTSP session. CloseSession results in a RTSP
Teardown call being made to the RTSP server for the
session freeing the RTSP server resources. The dx devices

Application Note Developing Media Solutions using RTSP and Dialogic® Products

Developing Media Solutions using RTSP and Dialogic® Products Application Note

associated with the media devices should call dx_unlisten
and then close, as should the media devices. Finally, the
network devices using Global Call Software should be
closed and the Global Call API library stopped.

Materials List for Sample Application

Kapanga Softphone version 1.00.2158c — Ecotronics
Ventures LLC

Darwin Streaming Server version 5.5.4 — (will need to
set up an account to download)
http://developer.apple.com/darwin/projects/streaming

Dialogic® Host Media Processing Software Release 3.0 for
Windows® Service Update 155

Network protocol analyzer (Ethereal or Wireshark
[formerly known as Ethereal])

Appendix A: Setup and Configuration of
Darwin Streaming (RTSP) Server

The Darwin Streaming Server can be downloaded from
http://developer.apple.com/opensource/server/streaming/
index.html.

1. Download the Darwin Streaming Server as a self-
extracting .zip file named DarwinStreamingSrvr5.5.4-
Windows.exe. Running this file prompts for a direc-
tory into which to unzip the contents.

2. From the directory containing the unzipped Darwin
distribution, run the install.bat file.

3. Darwin’s install.bat moves the files it needs to run to
the root:\program files\Darwin Streaming Server
directory structure. Where root: equals the root drive
on the server and is usually c:. Additionally,
install.bat adds the Darwin Streaming Server as a
system service on the server.

By default, Darwin uses Reliable UDP (rfc908 and
rfc1151) as the delivery transport for media. Reliable
UDP acts much like TCP in that acks are exchanged for
each UDP packet sent. Not responding to a fixed number
of packets results in the media session being closed by the
Darwin server. Reliable UDP is not supported in the
Dialogic® product set and is not widely supported in
telephony-based endpoints. You can turn off Reliable
UDP by editing the streamingserver.xml file changing the
following line:

<PERF NAME=”reliable_udp”
TYPE=”Bool16”>true</PERF>

To:
<PERF NAME=”reliable_udp”
TYPE=”Bool16”>false</PERF>

Stop and restart the Darwin Streaming Server to remove
the use of Reliable UDP for all media streams. The
Darwin Streaming Server works without any manual
intervention on the server. By default, the Darwin
Streaming Server logs are written to the root:\ Program
Files\Darwin Streaming Server\Logs directory, and are a
good source of information for troubleshooting streaming
issues.

Acronyms

3GP 3GP is the media container frequently
used by mobiles,

AMR Adaptive Multi-Rate — Is a variable
rate audio compression coder that is
used both in the 3G Cellular and VoIP
worlds. As more congestion is detected
on the network, AMR lowers the coder
sample rate.

AMR-NB Adaptive Multi-Rate Narrow Band —
Provides sampling rates between 4.75
kbps and 12.2 kbps. Audio sent is
mono.

Hairpinning/ Information/data or media going into a
Tromboning switch and turning around and going

back to another device.

MP4 The MPEG 4 media container.

MOV MOV is the Apple QuickTime media
container.

RTSP Real Time Streaming Protocol —
Application-level protocol used to
control the delivery of data with real
time properties such as video and audio.

Reliable UDP Reliable User Datagram Protocol is a
simple packet-based transport protocol,
based on rfc908 (version 1) and rfc1151
(version 2), which is intended as a
reliable protocol to transport telephony
signaling across IP networks.

9

http://developer.apple.com/darwin/projects/streaming
http://developer.apple.com/opensource/server/streaming/index.html

10

For More Information

Adding video to an R4 IVR Application — On-line train-
ing material — http://www.dialogic.com/
support/training/

Global Call IP for Host Media Processing Technology Guide
– Chapter 5 — http://www.dialogic.com/manuals/docs/
globalcall_for_ip_hmp_v8.pdf

Real Time Streaming Protocol (rfc2326) —
http://www.ietf.org/rfc/rfc2326.txt

A Zip file containing the source code for the RTSP client
library and a sample application can be downloaded at
http://www.dialogic.com/goto/?10584

Application Note Developing Media Solutions using RTSP and Dialogic® Products

http://www.dialogic.com/support/training/
http://www.dialogic.com/manuals/docs/globalcall_for_ip_hmp_v8.pdf
http://www.ietf.org/rfc/rfc2326.txt
http://www.dialogic.com/goto/?10584

www.dialogic.com

To learn more, visit our site on the World Wide Web at http://www.dialogic.com.

Dialogic Corporation
9800 Cavendish Blvd., 5th floor
Montreal, Quebec
CANADA H4M 2V9

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH PRODUCTS OF DIALOGIC CORPORATION OR ITS SUBSIDIARIES (“DIALOGIC”). NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS
PROVIDED IN A SIGNED AGREEMENT BETWEEN YOU AND DIALOGIC, DIALOGIC ASSUMES NO LIABILITY WHATSOEVER, AND DIALOGIC DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF DIALOGIC PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT OF A THIRD PARTY.

Dialogic products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Dialogic may make changes to specifications, product descriptions, and plans at any time, without notice.

Dialogic is a registered trademark of Dialogic Corporation. Dialogic’s trademarks may be used publicly only with permission from Dialogic. Such permission may only
be granted by Dialogic’s legal department at 9800 Cavendish Blvd., 5th Floor, Montreal, Quebec, Canada H4M 2V9. Any authorized use of Dialogic’s trademarks will
be subject to full respect of the trademark guidelines published by Dialogic from time to time and any use of Dialogic’s trademarks requires proper acknowledgement.

Windows is a registered trademark of Microsoft Corporation in the United States and/or other countries. Other names of actual companies and products mentioned
herein are the trademarks of their respective owners. Dialogic encourages all users of its products to procure all necessary intellectual property licenses required to
implement their concepts or applications, which licenses may vary from country to country.

This document discusses various open source products, systems and releases. Dialogic is neither responsible for your decision to use open source in connection with
Dialogic products including without limitation those referred to herein, nor is Dialogic responsible for any present or future effects such usage might have, including
without limitation effects on your products, business, or intellectual property rights.

Copyright © 2007 Dialogic Corporation All rights reserved. 10/07 10580-01

http://www.dialogic.com
http://www.dialogic.com

