
Application Note

 Dialogic Research, Inc.
Dual OS Applications

Creating Telephony
Applications for Both
Windows® and Linux:
Principles and Practice

Application Note Creating Telephony Applications for Both Windows® and Linux: Principles and Practice

Executive Summary

To help architects and programmers who only have experience in a
Windows® environment move their telephony applications to Linux, this
application note provides information that aims to make the transition
easier. At the same time, it takes into account that the original code for
Windows may not be abandoned. The ultimate goal is to demonstrate
how to create flexible OS-agnostic telephony applications that are easy to
build, deploy, and maintain in either environment.

Creating Telephony Applications for Both Windows® and Linux: Principles and Practice Application Note

1

Table of Contents
Introduction .. 2

Moving to a Dual Operating System Environment ... 2

CMAKE ... 2

Boost Jam .. 2

Eclipse .. 3

Visual SlickEdit ... 3

Using Open Source Portable Libraries .. 3

Boost Libraries .. 3

Log4cplus ... 3

Xerces XML .. 3

Common System-Level Operations in Windows and Linux 4

Application Code Organization .. 4

User Interface Strategies .. 5

Command Line ... 5

Web Interface ... 5

Java Abstract Window Toolkit .. 5

Tcl and Tk .. 5

Common Source File Problems .. 6

Text File Incompatibilities .. 6

Tab Size Compatibility ... 6

Source Code Beautifiers .. 6

Differences in Dialogic® Products for Windows and Linux 6

Programming Models .. 7

Installation .. 7

Configuration and System Service Startup ... 7

Logging and Diagnostics ... 8

Usage Differences for the Dialogic® R4 API on Windows and Linux 9

Manipulating Voice Data Files for Play and Record 9

System Runtime Library Differences ... 9

Use of gc_Start and gc_Stop in Global Call Applications 9

Appendix A: Sample Scripts to Aid in Cross-Operating-System Builds 10

Acronyms .. 12

For More Information ... 12

Introduction

With the increasing use of Linux in the enterprise, many
companies need to address a growing demand for
Linux-based telephony applications. A desirable solution is
to port existing applications containing the required
functionality from the Windows® operating system to
Linux to take advantage of the lower costs and new
 capabilities available there.

To make existing Windows applications portable so that
they will work well in both environments, note the
 following key design rules:
 • Minimize the use of OS-specific features
 • Maximize the use of libraries and packages that will

work on both operating systems
 • Separate user interface and processing code clearly
 • Avoid graphical user interfaces (GUIs) specific to

either operating system
 • Isolate OS-specific code in a single area, rather than

spreading it throughout the entire application
 • Adopt development practices that avoid conflicts

between processes in the operating systems

If the existing application is modular and well designed
and organized, applying the principles listed above should
not be difficult.

Although this application note is written specifically for
developers using Dialogic® telephony boards and
software and the Dialogic® R4 API, it concentrates on a
general discussion of the basic differences in developing for
two operating systems. A number of sections provide
general porting guidelines and consider important issues
before specific Dialogic R4 API concerns are discussed. In
addition, this application note does not focus on
 developing specifically for Dialogic® boards that use
Dialogic® System Release software or Dialogic® Host
Media Processing (HMP) software, but instead discusses
general issues that apply to both.

Moving to a Dual Operating System
Environment

The first step in porting from Windows to Linux is to
establish a usable framework for building applications.
Under Microsoft Visual C++ or .NET, a workspace or
solution contains individual projects. Each of these projects
is a separate executable or library. The equivalent under
Linux/GNU C++ is a set of project-specific

makefiles, each of which defines the source components
that are compiled and linked into an executable or library
for the application. One or more higher-level makefiles are
then used to tie the lower-level makefiles together.

Generally, the simplest approach for moving from an
existing Visual C++/.NET to a Linux/GNU C++
environment is to create appropriate makefile templates and
then add the information needed to produce specific
makefiles for a project. The template includes placeholders
for source code (C or C++), header files, directory
 specifications, and library references for an application.

Adding project-specific information can be automated by
writing a script that extracts the component parts from a
Visual C++/.NET project file and adds them to the
makefile template. See Appendix A for a sample script that
does such an extraction.

Unfortunately, this approach results in two separate
descriptions of the application. Each will require updating
as changes are made, and they are very likely to get “out of
sync.” A generally more reliable approach involves using a
neutral utility to specify and handle the edit/build/debug/
deploy process. Some possible tools include CMAKE,
Boost Jam, Eclipse, and Visual SlickEdit.

CMAKE

CMAKE is an open source tool that generates
OS-independent projects and makefiles. Configuration
directives are put into text files in each directory of a
 project. When CMAKE traverses the directory tree for the
project, it adds the necessary options to the
OS-specific build environment that it is creating. Thus, it
is possible to build both Linux makefiles and a Microsoft®
.NET project from the same set of code and directives.

For more information, visit http://www.cmake.org/
HTML/Index.html.

Boost Jam

Boost Jam is a build system for creating multi-platform
Boost Open Source C++ Libraries, which are described
below.

Boost Jam supports a wide variety of Unix and Microsoft
platforms, including Visual C++ for Windows and the
GNU C Compiler (GCC) for Linux. A jamfile, much like
a makefile, consists of a sequence of rules that define the
build process and a set of target files on which the rules
operate. Conditional statements in the jamfile handle the

Application Note Creating Telephony Applications for Both Windows® and Linux: Principles and Practice

2

Creating Telephony Applications for Both Windows® and Linux: Principles and Practice Application Note

differences between operating systems. Once the jamfile is
defined, it can be used for builds on either platform by
invoking the jam executable with an argument specifying
the platform in use.

For more information, visit http://www.boost.org/tools/
build/v2/index.html.

Eclipse

Eclipse is a comprehensive open source IDE platform
written in Java with a host of optional features that may
be added as plug-ins. Since it is Java-based, Eclipse will
run on platforms that support a Java virtual machine with
a native windowing system, including Windows and
Linux Motif or GTK.

While Eclipse runs on Windows, it mainly uses the GNU
compiler and linker to produce executables that must be
run using Cygwin, a Linux API emulation layer that runs
on top of Windows. However, native Windows executables
can be produced with Eclipse in one of two ways:
 • Mingw — uses GNU toolsets but still produces

native Windows code. For more information, visit
http://www.mingw.org/.

 • Microsoft Visual C++ 2005 Express Edition—
performs native Windows compilation and linking
and is freely available from Microsoft at http://
msdn2.microsoft.com/en-us/visualc/
aa336490.aspx

The Eclipse Tools Project provides a C/C++ plug-in to the
basic platform. Its Linux implementation includes an
integrated editor, a front end for the standard GNU
Debugger (GDB), a search engine, class viewer, and
makefile generator. User-supplied makefiles are an option
for more complicated makefile needs than can be handled
by the automatic generator.

For more information, visit http://www.eclipse.org/tools/.

Visual SlickEdit

Visual SlickEdit is a commercially available multi-platform
Editor/IDE that can provide a common look and feel for
development functions such as workspace/project
definition, editing, navigating between objects, and
re-factoring.

SlickEdit also has a C-like macro language that can be
used to automate text editing and navigation tasks on
either platform. For more information, visit http://www.
slickedit.com/.

Using Open Source Portable Libraries

Many open source projects are available that are portable

and non-OS-specific. These projects provide functionality

suitable for many different kinds of applications and can

save development time.

Boost Libraries

Boost Libraries are intended to be extensions of the C++

Standard Library.

A large number of libraries are available. A partial list

includes:
 • Strings and text processing

 • Containers and data structures

 • Memory management

 • Concurrent programming/threading

For more information about the libraries and the move to

make the Boost Libraries a standard, see the Boost website

at http://www.boost.org/.

Log4cplus

A robust event logging system enables an application to be

successfully debugged and deployed. Since the

 functionality of an event logger is fairly straightforward, it

seems best to use an existing logging package, particularly

if that event logger is operating system independent. Such a

package is the open source library called log4cplus, an

offshoot of the Java log4j logging environment. Options

include several logging levels (from DEBUG through

ERROR) and configurable log file size and rollover time.

For more information about log4cplus, visit

http://sourceforge.net/projects/log4cplus/.

Xerces XML

Another element often needed when developing

 applications is an eXtensible markup language (XML)

interpreter. Applications need such an interpreter for

 configuration files or for parsing information in text-

oriented communications protocols. For example,

OpenVXI, a VoiceXML interpreter, uses Xerces as its core

technology. SIP makes use of XML for organizing and

transferring data.

3

The Xerces Open Source XML parsers are one component

of a suite of XML products in the Apache XML project.

Domain Object Model (DOM) or Simple API for XML

(SAX) parser libraries are available for use with an

application. Sample applications are provided to illustrate

library use.

For more information, visit http://xerces.apache.org/.

Common System-Level Operations in

Windows and Linux

Most applications, including telephony applications, need

to perform certain tasks that use OS-level routines. Since

these routines are often dissimilar even though they do the

same thing, their behaviour must be normalized into a set

of functions and data that an application can handle in an

OS-independent way. In simple cases, only minor

differences will need to be addressed; for example, a small

difference in a data type or struct. In many cases, portable

open source libraries, such as the Boost Libraries, can be

used to normalize these functions. However, developers

will have to handle these routines themselves in some cases.

Table 1 below lists a number of functional areas and

 summarizes how the functions are handled differently in

Windows and Linux. For working sample code that

implements an OS-neutral version of the functionality,

download the file at http://www.dialogic.com/goto/?10563.

The download includes Microsoft® Visual Studio project

files and Linux makefiles.

Application Code Organization

A number of differences in OS-level calls commonly used
by applications were highlighted in the last section. These
differences are usually handled by C preprocessor
directives embedded in the source code. Depending on the
compiler setting, the preprocessor ignores or includes
sections of code that pertain to Windows or Linux.

Although this beneficially reduces the size of the
executables by removing unneeded code before
compilation, it also results in code that is difficult to read
because it is riddled with #ifdef/#else/#endif
directives. To avoid this, all OS-specific code and all
OS-related preprocessor directives can be placed in
appropriate C/C++ modules in a single directory. There,
neutral methods/functions can be written around pieces
of code that perform the same function. See the
following “sleep” function for a simple illustration.

void appSleep (unsigned long millisecs){

#ifdef LINUX

 usleep (millisecs * 1000);

#else

 Sleep (millisecs);

#endif

}

All calls in the main body of code can now use
appSleep(). Repetitive instances of five unwieldy lines of
code are collapsed into one. Changes, fixes, or adding
support for a third operating system need only be done in
one place. All the functional areas listed in Table 1 have
been streamlined with this technique in the sample code
available with this application note. The downloadable file
is accessible at http://www.dialogic.com/goto/?10563.

Application Note Creating Telephony Applications for Both Windows® and Linux: Principles and Practice

4

 Functional Area Windows Approach Linux Approach

 Timers Multimedia timer subsystem Alarm signals and callbacks; interval timers for
 microsecond resolution

 Timestamping GetLocalTime, related time structs, and Ftime, ctime, related time structs, and formatted
 formatted printable text list of components printable text list of components

 Thread IDs Windows threading and GetCurrentThreadId Posix threading and pthread_self

 Socket and IP-related functionality Winsock subsystem — needs startup with its Unix sockets — no startup, different data structs
 own data structs than Windows

 Serial inter-process communications Named and unnamed pipe subsystem FIFOs — device-specific files in the Linux file system

 Shared memory/ memory mapped Windows-specific shared memory and memory Linux-specific shared memory and memory mapping
 files mapping subsystem subsystem

 Interrupt handling Signals and callbacks Signals and slightly different callback definitions

Table 1. Functional Areas and Their Implementations

Creating Telephony Applications for Both Windows® and Linux: Principles and Practice Application Note

5

User Interface Strategies

In most cases, telephony applications function well as
 system services because they are not highly interactive
applications and use keyboard, screen, and mouse input
sparingly. The main uses for conventional telephony user
interfaces are configuration, administration, and
management. A convenient, usable interface is still needed,
but it is normally intended to be used by an administrator
rather than an end user. Because of this, a simplified,
portable user interface, as discussed in this section, is
appropriate.

Command Line

A simple portable interface runs a service in console or text
mode, relying on C or C++ standard I/O functions. These
functions are portable across C/C++ implementations on
both Linux and Windows. Because a configuration file or
database is likely to be part of the system, and the
application is run as a service, little or no input must be
submitted from the command line. Output in the form of
informational, debug, or error messages can be directed via
a logging subsystem to a log file, or can be displayed in the
console window. This approach is simple and often
adequate.

Web Interface

A telephony service can be accessed using the graphical
components of a web service. A graphical web interface has
two major advantages: portability across operating systems
and local or remote accessibility from any system that
supports a web browser. A web interface is also the type of
interface that most end users now expect. Configuration
information, stored in a local database, can be displayed and
modified easily. Logging output can be displayed in a
scrollable window with filtering and search capabilities.

The open source Apache web server is available for both
Windows and Linux at http://httpd.apache.org/. Common
Gateway Interface (CGI) with PERL or JavaScript
programming can be used to link the Apache web server
interface to the telephony application, and used with either
operating system.

Java Abstract Window Toolkit

Java has become popular due to its simplicity, ease of use
and object-oriented model. Its Abstract Window Toolkit
(AWT) package provides a comprehensive set of objects
that can be used to implement most common GUI
components. Controls make it easy to display and

manipulate the telephony application service’s
configuration and to display log output.

Interfacing the GUI to the C/C++ telephony application
can be done in a standalone Java application in two ways:
 • Direct Function Calls — C functions can be called

directly from the Java Native Interface (JNI) package.
The C interface functions, along with their typed
parameters, are defined as part of the Java AWT
 application. Java classes that contain the interface
functions are invoked from callbacks triggered by
GUI events. Events on the C side of the application
can also trigger the invocation of Java classes, which
can, for example, display an error message or set
an alarm.

 • Messaging Protocol — The GUI and telephony
application interface can be abstracted into a user-
defined XML-based protocol. An inter- or intra-
system socket connection can then pass messages.
Socket communications classes are currently available
in both C++ and Java.

AWT can also be used in an applet that is embedded
within an HTML document and delivered via a web page
request. When the applet is on the target system, it is run
in the web browser and communicates back to the host
system to control the telephony service.

For more information, visit http://java.sun.com/j2se/
1.4.2/docs/guide/awt/.

Tcl and Tk

Tcl and Tk can be combined to implement an operating-
system-independent GUI. Tcl is an interpreted command
language with a relatively simple syntax. Tk uses the X
Window System to implement a ready-made set of controls
with a Motif-like look and feel.

A bidirectional interface is available between Tcl and C/
C++ and can be used to tie the telephony application to the
Tcl/Tk GUI. The Tcl scripting is actually embedded in the
C/C++ application, allowing it to start a Tcl interpreter and
communicate with it when the GUI is invoked. Events and
commands move between the GUI and the application to
carry out various operations.

This approach is best suited to a telephony application in
which the GUI will always reside on the same system. A
number of Dialogic® diagnostic utilities for Dialogic®
telephony boards with DM3 architecture use Tcl/Tk for
their GUIs.

Common Source File Problems

Text file formats and the use of different editors can present
problems. While not insurmountable, the problems are
annoying to programmers used to working under a single
operating system.

Text File Incompatibilities

Even though they use the same ASCII encoding, Linux
and Windows text files differ because Linux line endings
consist only of a newline character while Windows files
end in carriage return/newline.

While most Linux editors handle both line endings, the
GNU C/C++ compiler will generate warnings, and shell
scripts under Linux may fail to run when a carriage return
is encountered. Generally, a Windows-based source code
control system will be the reason for this problem. Check
the settings of the source code control system before
checking out files. A setting to append a newline character
to the end of each line instead of the newline/carriage
return should be available. Make sure this feature is
activated when the target operating system is Linux.

Checking out a body of code on one operating system,
transferring it to the other, working on it, and then
checking it back in on the second operating system can
also lead to unpredictable results.

Winzip is another potential source of carriage return
issues. Under Options->Configuration->
Miscellaneous, verify that the Tar file smart
CR/LF conversion box is not checked. This will
 prevent automatic insertion of carriage returns into text
files that are unzipped and then moved to a Linux
system. You should also have a simple script that strips
carriage returns from files that were intended for use on
Windows, but end up on a Linux system. See Appendix
B for a sample script.

Tab Size Compatibility

The number of spaces in a tab can vary in text editors on
Windows and Linux. While this does not affect parsing
and source code compilation, it does produce misaligned,
hard-to-read code.

When a TAB key is hit, an editor may insert a predefined
number of spaces, an ASCII TAB character, or both. If
code created in one editor is opened in another editor, the
spaces and TAB characters may be interpreted and

 displayed differently, again affecting alignment and
 readability.

Before beginning work on code brought over to Linux,
decide on a tab policy, and set all the text editors you are
likely to use on either operating system to handle tabs in
the same way. The best solution may be to convert tabs
into the same number of spaces on insertion. This tactic,
coupled with displaying code in a standard fixed width
font such as Courier, should maintain alignment between
editors.

Source Code Beautifiers

Source code beautifiers are utilities that will process a
 collection of source files and format them in the same way.
The content is not changed, and the result when the files
are compiled is the same. Formatting (indentation, bracket
placement, spacing, etc.) is normalized, improving the
code’s readability. Using a source code beautifier to process
files that are edited under both Linux and Windows
regularly helps keep unwanted changes to a minimum
once all the developers at an installation agree on a
common format.

The Linux indent utility is an example of a source code
beautifier. Since dozens of options to control formatting
are possible, some experimentation may be needed to
choose the proper command-line switches to achieve the
desired results. Again, tab settings need special attention,
and tabs should be converted to a consistent number of
spaces. You can set up a script to traverse a directory
 hierarchy regularly and to format all source code files
found in the tree.

Differences in Dialogic® Products for
Windows and Linux

Generally speaking, few differences in functionality exist
between Windows and Linux versions of Dialogic System
Release software and Dialogic HMP software. This is
 particularly true for the Dialogic R4 API itself. Most of the
differences are found only when installing and configuring
these products.

The following section introduces developers who are
familiar with Dialogic products in a Windows
environment to the differences they will encounter
in the Linux versions of the same products.

Application Note Creating Telephony Applications for Both Windows® and Linux: Principles and Practice

6

Creating Telephony Applications for Both Windows® and Linux: Principles and Practice Application Note

7

Programming Models

Creating a portable application for Dialogic products
restricts programming model selection options. Two
 models cannot be used: asynchronous with Windows
callback and asynchronous with Win32 synchronization.
In addition, a synchronous model or a mixture of
 synchronous and asynchronous models are to be avoided.

An application will work best on both Linux and Windows
— be easiest to write and debug, have fewer load and
timing-related problems, and scale to a maximum possible
density — if it is written or rewritten to conform to the
following:
 • Fully asynchronous programming model, polled or

callback
 • Single process with multiple threads
 • Single thread handling multiple (~25) channels
 • Single thread handling an SRL and application event

processing queue

If these guidelines are followed, compatibility issues should
be minimized.

Installation

Generally a “Wizard” is used to lead an operator through a
step-by-step software install/uninstall on Windows. The
equivalent procedure on Linux can be accomplished
through the use of the Red Hat Package Manager (RPM)
controlled by interactive scripts. The procedure does not
have a graphical interface and may be less elegant, but the
same functionality is available.

An install.sh script checks operating system
dependencies and queries for desired installation options
before launching a package installation of the system
components. The package installation moves all needed
files into place, sets permissions, and updates any
applicable system configuration files.

The dlguninstall.sh script reverses the process.
System services are stopped, packages removed, and
installation files are cleaned up.

Depending on the Dialogic System Release software for
Linux that is in use, additional steps may be necessary at
installation. Here are some examples:

 • Dialogic® System Release 6.1 requires the installation
of the Linux Streams (LiS) drivers (supplied with the
system release) and kernel source packages when PCI
boards with Springware architecture are being used.

 • Dialogic HMP Software Release 1.2 for Linux
requires a Linux kernel upgrade before the software
is installed.

 • Simple Network Management Protocol (SNMP)
under Linux requires the installation and build of the
modified external SNMP package called Net-SNMP.

Any additional procedures are documented in the

installation guides for Dialogic products running on

Linux. Some of the procedures are automated while others

require manual intervention.

For Dialogic documentation, visit http://www.dialogic.

com/manuals/default.htm.

Configuration and System Service Startup

An option to configure the system is offered as part of the

Linux installation process, and a script called config.sh

leads the operator through the configuration of the various

system components. This script is the Linux equivalent of

the Dialogic Configuration Manager (DCM) interface used

on Windows. Like the DCM, config.sh contains options

for systematically configuring a specific board or

 technology. Unfortunately config.sh, like install.sh,

is text-based and lacks a convenient GUI. Note that

config.sh is run not only during installation but also

whenever system configuration must be changed.

Another DCM component that exists as a separate script

on Linux is the startup and shutdown of Dialogic® system

services. Two simple commands (dlstart and dlstop)

are used. On installation, system services are configured to

start automatically. On the X Window System for Linux,

they may be set to manual by unchecking the ct_intel box

found under

RedHat -> System Settings-> Server

Settings -> Services

and saving the configuration. The same may done on the

command line with

chkconfig --del ct _ intel

Dialogic HMP software releases on Windows have a

 separate license manager utility. This functionality, which

adds a new license, deletes an old, and checks the system

MAC address, is part of the config.sh script on Linux

and may be reached by rerunning the script.

On Windows, DCM uses the Native Configuration
Manager (NCM) API, which provides an interface to
 system configuration functions. Since other methods are
used on Linux, the NCM API is not available for use as a
general purpose OA&M programming interface. In SR
6.1 for Linux, an object-oriented OA&M API may be
used to perform many of these same functions for PCI
boards.

Logging and Diagnostics

This section lists the most useful logging and diagnostic
tools for debugging telephony applications that use
Dialogic® DM3 boards. Availability on Linux and the
 differences between how the tools are used in Windows
and Linux are discussed.

System Services Logging
System services event and error messages for Dialogic
products are logged via the Windows Event Viewer. A
similar log viewing utility on the X Window System for
Linux may be reached through

 RedHat -> System Tools-> System Logs

and selecting the System Log option. The underlying
system log file itself is /var/log/messages and may
also be read directly with any Linux editor such as vi,
emacs, or kedit.

Debugangel
Debugangel is a low-level firmware tracing tool for boards
with DM3 architecture that writes to a console or a log. At
present, there are minor differences in the options available
for Windows and Linux.

Devmapdump
Devmapdump writes a hierarchical map of device
components and their settings for boards with DM3
architecture to a console or a log. There are no differences
currently between its use on Windows and Linux.

DM3Insight
DM3Insight is a tool for logging message and stream
traffic from device drivers on boards with DM3
architecture. It is not available on Linux at present.

Gc_basic_call_model
Although gc_basic_call_model is actually a demo
 program, it can also be used as a diagnostic tool for Global

Call. It is usually run in loopback mode to verify that

inbound and outbound calls function correctly. Currently,

the configuration and use of gc_basic_call_model is

identical on Windows and Linux.

Isdntrace

Isdntrace is an ISDN message trace utility for boards with

DM3 architecture that writes to a console or a log. There

are no differences at present between its use on Windows

and Linux.

Lineadmin

Lineadmin is used to set and monitor the alarm states on

T-1 or E-1 lines on boards with DM3 architecture. Its Tcl/

Tk GUI works on both operating systems, and currently

there are no differences between its use on Windows and

Linux.

Listboards

Listboards provides a high-level look at boards with DM3

architecture available in a system. It writes to a console or a

log, and there are no current differences between its use on

Windows and Linux.

PSTNDiag

PSTNDiag is a tool for troubleshooting PSTN

 connectivity problems on boards with DM3 architecture.

Its Tcl/Tk GUI works on both operating systems, and at

present there are no differences between use on Windows

or Linux.

RTF Logging

The Runtime Trace Facility (RTF) provides a

comprehensive library-level logger for most Dialogic®

telephony components. Output is directed to the specified

log file, and is configured using RtfConfigLinux.xml in

Linux and RtfConfigWin.xml on Windows.

RtfConifig is a Tcl/Tk GUI that provides a way to change

RTF logging options without directly editing the XML

configuration file.

Sysinfo

Sysinfo is a tool that collects system configuration

 information, which Dialogic technical support can provide

on request. It is not available on Linux at present.

Application Note Creating Telephony Applications for Both Windows® and Linux: Principles and Practice

8

Creating Telephony Applications for Both Windows® and Linux: Principles and Practice Application Note

9

Usage Differences for the Dialogic® R4 API
on Windows and Linux

The following sections discuss differences in the use of the

Dialogic R4 API on Windows and Linux.

Manipulating Voice Data Files for Play and Record

Under Linux, native OS-level file I/O calls are used to open

and close voice data files, and then to locate, fetch, and

store binary data from them. Dialogic Voice Library

routines do the equivalent under Windows. Errno, the

standard system error indicator, is part of the Linux

 operating system and is available as an equivalent routine

on Windows after an error indication for the voice file

manipulation routines is received. Table 2 shows the

 corresponding API calls on the two operating systems.

 Windows Linux

 dx_fileopen() open()

 dx_fileclose() close()

 dx_fileseek() seek()

 dx_fileread() read()

 dx_filewrite() write()

 dx_fileerrno() errno()

Table 2: Voice File Access API Calls

Arguments to both sets of routines are similar. Consult the

Dialogic® Voice API for Windows Library Reference and the

Linux man pages (online help) for details.

Two API calls that help manage the file descriptors used by

the system file access functions are available only under

Linux. sr_getfdcnt() and sr_getfdinfo() return the number

of file descriptors in use by the R4 libraries, and an array of

the descriptors themselves.

System Runtime Library Differences

When using the asynchronous callback mode, the

 definition of the callback function used to obtain System

Runtime Library (SRL) events differs slightly on Linux

and Windows.

The Windows event callback is invoked with an event

handle passed in as a parameter so that it can be used when

calling sr_getevttype(), sr_getevtdatap(), sr_getevtlen(),

and sr_getevtdev() to fetch information on a specific event.

Linux calls to the sr_getevtxxx() functions do not need the

handle, so it is not passed to the event callback. In

addition, consult OS-specific documentation for the sr_

getevtxxx() and sr_getUserContext() functions to

understand the differences in scoping and data validity

between Windows and Linux.

Four other functions are currently available on Windows

only:
 • sr_NotifyEvent() — Tells the SRL to send an event

notification to a window.

 • sr_getboardcount() — Retrieves the number of
boards of a particular type in use.

 • sr_GetDllVersion() — Retrieves the SRL DLL
 version number.

 • sr_libinit() — Initializes the SRL DLL.

Certain sr_getparm() and sr_setparm() parameters are not

valid across operating systems.
 • SR_MODEID — Fetches the value for the event

notification mode (Linux only).

 • SR_MODELTYPE — Fetches the value for the
model type (Windows only).

 • SR_WIN32INFO — Describes a Win32
 synchronization data (Windows only).

 • ATDV_IOPORT() — Returns the base port address
used by a device (Linux only).

sr_waitevt() and sr_waitevEx() only have a granularity of

one second under Linux. Obtaining error information also

differs between Windows and Linux environments.

Use of gc_Start and gc_Stop in Global Call
Applications

Under Linux, gc_Start and gc_Stop must be called from

the parent process if the application forks into child

processes.

Appendix A: Sample Scripts to Aid in Cross-Operating-System Builds

This appendix contains two sample scripts: extract_ms-project and remove_cr.

extract _ ms _ project
#!/bin/sh
#
Extract useful pieces from a Windows VC++ 6 project file for
use in building a Linux Makefile.
#
Results are processed for easier inclusion in Makefiles, and
sent to stdout.
#

if test $# != 1; then
 echo usage: $0 project _ file _ name
 exit 1
fi

if ! test -f $1; then
 echo File $1 not found
 exit 1
fi

PROJ _ FILE=$1

Extract list of header files first
echo
echo Header files in project:
echo
grep ‘SOURCE=’ $PROJ _ FILE | tr ‘\\’ / | grep ‘\.h$’ | sed s/SOURCE=//
echo
echo

Then list of .cpp files
echo C++ files in project:
echo
grep ‘SOURCE=’ $PROJ _ FILE | tr ‘\\’ / | grep ‘\.cpp$’ | sed s/SOURCE=//
echo
echo

Extract a list of -I (include) options for the compilation
echo Include directories referenced by the compiler:
echo
grep ‘ADD CPP’ $PROJ _ FILE | \
awk ‘{ for (i = 0; i < NF; ++i) {if ($i == “/I”) { print $(i+1)}}}’ | \
tr ‘\\’ / | \
sed -e s/̂ \”/-I/ -e s/\”$// | \
sort | uniq

Application Note Creating Telephony Applications for Both Windows® and Linux: Principles and Practice

10

Creating Telephony Applications for Both Windows® and Linux: Principles and Practice Application Note

11

echo
echo

Extract a list of -D (compiler directive) options for the compilation
echo Compiler directives used:
echo
grep ‘ADD CPP’ $PROJ _ FILE | \
awk ‘{ for (i = 0; i < NF; ++i) {if ($i == “/D”) { print $(i+1)}}}’ | \
tr ‘\\’ / | \
sed -e s/̂ \”/-D/ -e s/\”$// | \
sort | uniq
echo
echo

Extract a list of libraries loaded
echo Libraries loaded:
echo
grep ‘ADD LINK32’ $PROJ _ FILE | \
awk ‘{ for (i = 0; i < NF; ++i) {print $i}}’ | \
grep ‘lib$’ | \
sort | uniq

echo
echo

remove _ cr
#!/bin/sh
#
Script to remove any instances of CRs (carriage returns)
in a text file.
#
###

if test $# != 1; then
 echo usage: $0 text _ file _ name
 exit 1
fi

if ! test -f $1; then
 echo File $1 not found
 exit 1
fi

TXT _ FILE=$1

cat $TXT _ FILE | tr -d ‘\r’ > tmpfile.$$
mv $TXT _ FILE $TXT _ FILE.bak
mv tmpfile.$$ $TXT _ FILE

Acronyms

API Application Programming Interface

AWT Abstract Window Toolkit

CGI Common Gateway Interface

DCM Dialogic® Configuration Manager

DOM Domain Object Model

FIFO First In First Out

GCC GNU C Compiler

GDB GNU Debugger

GNU Gnu’s Not Unix

GTK GIMP Tool Kit

GUI Graphical User Interface

IDE Integrated Development Environment

ISDN Integrated Services Digital Network

JNI Java Native Interface

LiS Linux Streams

NCM Native Configuration Manager

OS Operating System

PSTN Public Switched Telephone Network

RPM Red Hat Package Manager

RTF Runtime Trace Facility

SAX Simple API for XML

SIP Session Initiation Protocol

SNMP Simple Network Management Protocol

SRL System Runtime Library

XML eXtensible Markup Language

Application Note Creating Telephony Applications for Both Windows® and Linux: Principles and Practice

12

For More Information

The following references are cited in this application note:

Apache HTTP Server http://httpd.apache.org/

Boost http://www.boost.org/

Boost Jam http://www.boost.org/tools/build/v2/index.html

CMAKE http://www.cmake.org/HTML/Index.html

Eclipse Tools Project http://www.eclipse.org/tools

Java AWT http://java.sun.com/j2se/1.4.2/docs/guide/awt/

Log4Cplus http://sourceforge.net/projects/log4cplus/

Mingw http://www.mingw.org/

Visual C++ http://msdn2.microsoft.com/en-us/visualc/aa336490.aspx

Visual SlickEdit http://www.slickedit.com/

Xerces XML http://xerces.apache.org/

For Dialogic documentation, visit http://www.dialogic.com/manuals/default.htm.

www.dialogic.com

To learn more about Dialogic® products, go to www.dialogic.com.

Dialogic Corporation
9800 Cavendish Blvd., 5th floor
Montreal, Quebec
CANADA H4M 2V9

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH PRODUCTS OF DIALOGIC CORPORATION OR ITS SUBSIDIARIES (“DIALOGIC”). NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS
PROVIDED IN A SIGNED AGREEMENT BETWEEN YOU AND DIALOGIC, DIALOGIC ASSUMES NO LIABILITY WHATSOEVER, AND DIALOGIC DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF DIALOGIC® PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT OF A THIRD PARTY.

Dialogic products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications

Dialogic may make changes to specifications, product descriptions, and plans at any time, without notice

Dialogic is a registered trademark of Dialogic Corporation. Dialogic’s trademarks may be used publicly only with permission from Dialogic. Such permission may only
be granted by Dialogic’s legal department at 9800 Cavendish Blvd., 5th Floor, Montreal, Quebec, Canada H4M 2V9. Any authorized use of Dialogic’s trademarks
will be subject to full respect of the trademark guidelines published by Dialogic from time to time and any use of Dialogic’s trademarks requires proper
acknowledgement.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States and/or other countries. Other names of actual companies and
 products mentioned herein are the trademarks of their respective owners. Dialogic encourages all users of its products to procure all necessary intellectual property
licenses required to implement their concepts or applications, which licenses may vary from country to country.

This document discusses various open source products, systems and releases. Dialogic is neither responsible for your decision to use open source in connection
with Dialogic products including without limitation those referred to herein, nor is Dialogic responsible for any present or future effects such usage might have,
including without limitation effects on your products, business, or intellectual property rights.

Copyright © 2008 Dialogic Corporation All rights reserved. 04/08 9754-02

