
PBX Integration Software
Reference

for Linux and Windows

Copyright © 1999-2005 Intel Corporation

05-1278-010

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS.
NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S
TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

This PBX Integration Software Reference as well as the software described in it is furnished under license
and may only be used or copied in accordance with the terms of the license. The information in this manual is
furnished for informational use only, is subject to change without notice, and should not be construed as a
commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or
inaccuracies that may appear in this document or any software that may be provided in association with this
document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means without express written consent of Intel Corporation.

Copyright © 1999 – 2005, Intel Corporation.

BunnyPeople, Celeron, Chips, Dialogic, EtherExpress, ETOX, FlashFile, i386, i486, i960, iCOMP, InstantIP,
Intel, Intel Centrino, Intel Centrino logo, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4,
IntelSX2, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel
SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Xeon, Intel XScale, IPLink, Itanium, MCS, MMX,
MMX logo, Optimizer logo, OverDrive, Paragon, PDCharm, Pentium, Pentium II Xeon, Pentium III Xeon,
Performance at Your Command, skoool, Sound Mark, The Computer Inside., The Journey Inside, VTune,
and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

* Other names and brands may be claimed as the property of others.

 Publication Date: April, 2005

Intel Converged Communications, Inc.
1515 Route 10
Parsippany NJ 07054

For Technical Support, visit the Intel Telecom Support Resources website at:
http://developer.intel.com/design/telecom/support

For Products and Services Information, visit the Intel Telecom Products website at:
http://www.intel.com/design/network/products/telecom
For Sales Offices and other contact information, visit the Where to Buy Intel Telecom Products page
at:http://www.intel.com/buy/wtb/wtb1028.htm

Table of Contents
1. How To Use This Manual ... 1
1.1. Audience .. 1
1.2. Voice Hardware Covered by This Manual... 2

1.2.1. Voice Hardware Model Names ... 3
1.3. When To Use This Manual .. 3
1.4. Documentation Conventions.. 4
1.5. How This Manual Is Organized ... 4
2. Using the PBX Functions.. 7
2.1. The Unified API... 7
2.2. Switch-Specific Support .. 9
3. Unified API Function Reference.. 11
ATD4_BDTYPE() - returns the board type .. 12
ATD4_CHTYPE() - returns the channel type... 14
d42_brdstatus() - retrieves the current board status .. 16
d42_chnstatus() - retrieves the current channel status .. 18
d42_closefeaturesession() - closes a feature session... 20
d42_display() - retrieves the current LCD/LED display..................................... 22
d42_displayex() - retrieves the current LCD/LED display 26
d42_getnewmessage() - allows messages to be returned to a board 30
d42_getparm() - retrieves the selected channel or board parameter.................... 32
d42_getver() - retrieves the board firmware or library version........................... 36
d42_gtcallid() - retrieves the called/calling number ID 39
d42_gtcallidex() - retrieves call information... 42
d42_indicators() - retrieves the current LCD or LED indicators 44
d42_openfeaturesession() - opens a feature session.. 63
d42_setparm() - sets a board or channel parameter... 66
d42_writetodisplay() - places information on a phone set’s display................... 69
4. Programming Considerations .. 73
4.1. Opening a Channel on the PBX Integration Board 73
4.2. Accessing PBX Features Using Dial Strings ... 74

4.2.1. On-Hook and Off-Hook Dialing Note... 75
4.2.2. Turn On the Message Waiting Indicator ... 76
4.2.3. Turn Off the Message Waiting Indicator Dial String 78
4.2.4. Dial Programmable Keys .. 80
4.2.5. Transferring a Call... 112

iii

PBX Integration Software Reference

4.2.6. In-Band/Out-of-Band Signaling .. 113
4.2.7. Disconnect Supervision... 115
4.2.8. Converting Existing D/4x Applications .. 115

Appendix A - Unified API Quick Reference.. 117
Appendix B - Demonstration Programs for Windows.................................. 123

Documentation Conventions .. 123
D42 Demo.. 123

D/42 Demo Requirements .. 124
Setup... 124
Running the Demo.. 124

Siemens Optiset MWI Demo ... 133
Appendix C - Error Definitions .. 137
Appendix D - Asynchronous Event Definitions... 139
Glossary .. 141
Index.. 149

iv

List of Tables
Table 1. Board and Channel Parameters for d42_getparm().............................. 33
Table 2. Board and Channel Parameters for d42_setparm() 67
Table 3. Avaya 7434 (4-wire) Direct Key Dialing Sequences............................ 82
Table 4. Avaya 8434DX (2-wire) Direct Key Dialing Sequences 85
Table 5. Siemens ROLMphone 400 Direct Key Dialing Sequences................... 88
Table 6. Siemens Hicom Optiset E Direct Key Dialing Sequences with

Hicom 150 ... 91
Table 7. Siemens Hicom Optiset E Direct Key Dialing Sequences with

Hicom 300 ... 94
Table 8. MITEL SX SUPERSET 420 Direct Key Dialing Sequences 97
Table 9. MITEL SX SUPERSET 430 Direct Key Dialing Sequences 99
Table 10. Nortel Norstar M7324 Direct Key Dialing Sequences...................... 103
Table 11. Nortel Meridian 1 M2616 Direct Key Dialing Sequences 106
Table 12. NEC KTS/PBX Direct Key Dialing Sequences................................ 109
Table 13. Setting In-band and Out-of-band Signaling 114
Table 14. Demo Indicator Definitions .. 132

v

PBX Integration Software Reference

vi

List of Figures
Figure 1. Avaya 7434 (4-wire) Telephone Indicators ... 47
Figure 2. Avaya 8434 (2-wire) Telephone Indicators ... 48
Figure 3. ROLMphone 400 Telephone Indicators .. 50
Figure 4. Siemens Optiset E Telephone Indicators ... 52
Figure 5. MITEL SUPERSET 400 Series Telephone Indicators 54
Figure 6. Nortel Model 7324 Telephone Indicators.. 55
Figure 7. Nortel Model 2616 Telephone Indicators.. 57
Figure 8. Nortel Model 7324 Telephone Indicators.. 61
Figure 9. Avaya 7434 (4-wire) Telephone.. 81
Figure 10. Avaya 8434 (2-wire) Telephone.. 84
Figure 11. ROLMphone 400 Telephone ... 87
Figure 12. Siemens Optiset E Telephone with a Hicom 150 90
Figure 13. Siemens Optiset E Telephone with a Hicom 300 93
Figure 14. MITEL SUPERSET 420 Telephone.. 96
Figure 15. MITEL SUPERSET 430 Telephone.. 99
Figure 16. Nortel M7324 Telephone... 102
Figure 17. Nortel Meridian 1 M2616 Telephone .. 105
Figure 18. NEC DTerm III Telephone.. 108
Figure 19. Dialogic D42 Demo Window .. 125
Figure 20. D42 Options Window.. 125
Figure 21. Input Strings .. 127
Figure 22. Input Strings Warning ... 128
Figure 23. Select Your D/42 Channel ... 128
Figure 24. Select a D/42 Channel ... 129
Figure 25. ROLMphone Window on the D42 Demo.. 130
Figure 26. Siemens Optiset MWI Demo Window .. 134
Figure 27. Enter Channel Number .. 134
Figure 28. Channel Opened Message.. 135
Figure 29. Send Message .. 135
Figure 30. Message Sent ... 136
Figure 31. Delete Message.. 136
Figure 32. Message Deleted.. 136

vii

PBX Integration Software Reference

viii

1. How To Use This Manual

1.1. Audience

This manual is written for programmers and engineers who and are interested in
using the D/42 series software, together with standard D/4x voice software, to
develop voice and call processing applications on PBX integration boards for a
PBX system.

When this manual addresses “you,” it means “you, the programmer,” and when
this manual refers to the “user,” it means the end-user of your application
program.

If you are experienced with voice technology and Intel® Dialogic® products, you
may prefer to deal strictly with information found in Sections 3 and 4 in this
manual. These sections contain comprehensive and detailed technical information
for programming an application with C language library functions and data
structures.

If you are new to Intel® Dialogic® products and voice technology, you may
prefer to start with the Features Guide. The Features Guide, contained in the
Voice Software Reference, provides an introduction to the voice products, with
explanations and help beyond a strictly technical level so that you can quickly
learn the voice software. This includes descriptions of how to use the voice
processing, signaling, and Call Progress Analysis features and how to design a
multi-line voice application.

NOTE: PBX integration boards only support CPA when used in the default
routing configuration. For instance, if a voice resource of a D/82JCT-U
is listening to a front end other than the default (its own), it may return a
disconnected result. This is because these boards support the call
progress analysis feature of dx_dial(), only when a board is using the
default TDM routing. In other words, PBX integration board voice
resources cannot be used to provide CPA capability for other boards.

1

PBX Integration Software Reference

1.2. Voice Hardware Covered by This Manual

The PBX integration boards are designed to provide a set of cost-effective tools
for implementing computerized voice and call processing applications for several
different private branch exchange (PBX) systems and key telephone systems
(KTSs). It provides the basic voice and call processing capabilities of D/4x voice
hardware and adds hardware and firmware required to integrate with PBXs and
KTSs. Refer to the Voice Software Reference for more information on voice and
call processing. For convenience, the term PBX is used to refer to any private
branch exchange (PBX), key system unit (KSU), or key telephone system (KTS).

The PBX integration hardware models covered by this manual include the
following:

D/42JCT-U A 4-port voice-processing solution from the PBX integration
family of products. It has downloadable firmware and a universal
digital station set interface that can emulate a number of phones
from different vendors. The trunk interface section of the board
uses special digital PBX signaling link technology to interface
with the entire range of supported PBXs. The D/82JCT-U is in the
PCI form factor, and it provides SCbus and H.100 connectivity.
The board uses R4 firmware and the Voice and Unified APIs.
Support for host-assisted FAX is also provided.

D/82JCT-U An 8-port voice-processing solution from the PBX integration
family of products. It has downloadable firmware and a universal
digital station set interface that can emulate a number of phones
from different vendors. The trunk interface section of the board
uses special digital PBX signaling link technology to interface
with the entire range of supported PBXs. The D/82JCT-U is in the
PCI form factor, and it provides SCbus and H.100 connectivity.
The board uses R4 firmware and the Voice and Unified APIs.
Support for host-assisted FAX is also provided.

2

1. How To Use This Manual

1.2.1. Voice Hardware Model Names

Model names for Intel Dialogic voice boards are based upon the following
pattern:

D/NNNoRBB-TT-VVV
where:

• D/ - identifies the board as Intel Dialogic voice hardware
• NNN - identifies the number of channels (2, 4, 8, 12, etc.), or relative

size/power measure
• o - 0 indicates no support for Call Progress Analysis; 1 indicates support for

Call Progress Analysis; and 2 indicates PBX support
• R - if present, represents board revision (D, E, J, etc.)
• BB - bus type (SC or CT)
• TT - telephony interface type (if applicable; valid entries include LS, T1, E1,

BR, U {for universal PBX Interface)
• VVV - ohm value (if it applicable; valid entries are 75 and 120)

Sometimes it is necessary in this document to refer to a group of voice boards
rather than specific models, in which case an “x” is used to replace the part of the
model name that is generic. For example, D/xxx refers to all models of the voice
hardware, and D/8x refers to all 8-channel models.

1.3. When To Use This Manual

This PBX Integration Software Reference contains programming information for
developing applications in the Windows and Linux operating system environment
using the Unified API and D/42 runtime library. The Unified API provides a
single, basic set of high-level calls used to develop applications across a variety
of manufacturer’s switches. The D/42 runtime library supports the Unified API
and works in conjunction with the standard voice runtime library to enable
applications to set up calls and perform PBX call functions using the PBX
integration board.

3

PBX Integration Software Reference

The sequence for installing software and hardware to develop application
programs is as follows:

• Install the PBX integration hardware in a PC according to the PBX
Integration Quick Install Card.

• Install the System Release software for your system following the procedures
in the System Release Software Installation Reference to include D/42 and
voice support.

• Download the PBX integration firmware to the boards in your system using
the configuration manager (DCM).

Refer to this manual, the PBX Integration Board User’s Guide, and the Voice
Software Reference to develop application programs.

1.4. Documentation Conventions

The following documentation conventions are used throughout this manual:
• When terms are first introduced, they are shown in italic text.
• When a word or phrase is emphasized, it is boldfaced.
• Function parameter names are shown in boldface, as in maxsec.
• Function names are shown in boldface with parentheses, such as

d42_display().

Names of defines or equates are shown in uppercase, such as T_DTMF. File
names are also shown in uppercase and italics, such as D42DRV.EXE.

1.5. How This Manual Is Organized

Chapter 1 – How To Use This Manual describes the PBX Integration Software
Reference.

Chapter 2 – Using PBX Functions provides fundamental information on using
the voice library functions with the PBX integration board product.

Chapter 3 – Function Reference provides comprehensive and detailed technical
information on the voice software C language voice library functions.

4

1. How To Use This Manual

Chapter 4 – Programming Considerations contains programming information
about developing applications for the supported PBXs.

Appendix A – Unified API Quick Reference provides concise information on
the unified API C language library functions.

Appendix B – Demonstration Programs for Windows

Appendix C – Error Definitions

Appendix D – Asynchronous Event Definitions

Glossary contains a comprehensive list of definitions for commonly used terms.

Index contains an alphabetical index of features and topics.

5

PBX Integration Software Reference

6

2. Using the PBX Functions

The PBX circuitry on the PBX integration boards provides functions specific to
several different PBXs. These functions are implemented using the D/42 runtime
library (.dll). The D/42 runtime library is used in addition to the standard runtime
library (SRL) when tight integration and control of the PBX and D/42-xx and
PBX integration boards are required.

The standard voice runtime library acts as an interface between the application
program and the PBX integration board hardware. The voice runtime library is
used to access standard voice functions such as voice play/record and call
progress analysis. Refer to the Voice Software Reference for detailed explanations
on using voice functions.

2.1. The Unified API

The Unified API (Application Programming Interface) enables the development
of applications across a variety of manufacturers switches (both Key and PBX
systems) through a single interface. The Unified API provides a single set of
basic functions (refer to Chapter 3. Unified API Function Reference) that can be
used for any supported switch and are sent directly to the switch through the PBX
integration board, without additional hardware. Functioning as an extension to the
standard voice API, the Unified API offers a single design model that allows
developers to take advantage of advanced PBX features (such as called/calling
number ID and ASCII display information).

Using the Unified API shortens development time by eliminating the need to
learn separate APIs for each switch. It enables you to create applications with a
common set of functions, which operate with switches produced by different
manufacturers, thereby widening your product’s support beyond the traditional
single-switch focus.

Utility functions included in the Unified API allow programmers to control the
PBX integration board. The application can retrieve the channel type, obtain and
set channel parameters, retrieve firmware/driver/library version numbers, and
retrieve error information.

7

PBX Integration Software Reference

The D/42 runtime library works in conjunction with the standard voice runtime
library to enable applications to set up calls and perform PBX call functions using
PBX integration boards. In addition, the D/42 runtime library supports the
Unified API.

The functions called by the Unified API are synchronous. This means that when a
function is called in a thread, it is performed immediately and blocks until the
operation is complete. Functions can be called at any time to execute on a channel
that is idle or busy, and do not affect the idle or busy state of the channel.

NOTE: Refer to the Voice Software Reference for a detailed explanation of
synchronous functions.

The D/42 runtime library treats boards and channels as separate devices, even
though channels are physically part of a board. A channel device is an individual
PBX line connection, and a board device is a PBX integration board that contains
channels. Most functions are performed at the channel level, such as getting
called/calling number ID. Certain functions, such as setting board parameters,
can occur at the board level and effect all channels on that board.

NOTE: Since boards and channels are considered separate devices under
Windows, it is possible to open and use a channel without opening the
board where the channel is located. There is no board-channel hierarchy
imposed by the D/42 runtime library.

8

2. Using the PBX Functions

2.2. Switch-Specific Support

PBX station set phones come with both standard and programmable keys that
give access to switch-specific functions. The most common of these features
include:

• Transfer
• Hold
• Trunk line select
• Message waiting indication
• Hands-free operation

Refer to the PBX Integration Board User’s Guide for detailed information about
PBX features. Because the PBX integration board has the capability to emulate a
PBX station set, it can also emulate any standard or programmable function for
your application. Applications can take advantage of the most common features
listed here, as well as less frequently used features like conference. In addition,
your application can reprogram keys as needed. Refer to Chapter 4.
Programming Considerations for details about switch-specific programming.

9

PBX Integration Software Reference

10

3. Unified API Function Reference

This chapter provides comprehensive and detailed technical information on the
PBX interface software, C-language library functions (the Unified API). The
library functions are prototyped in D42LIB.H.

See the Table of Contents for a list of functions. Appendix A provides a Quick
Reference containing a compact list of functions that are detailed in this chapter.
Only functions compatible with the PBX integration board are discussed in this
document.

Each function is listed in alphabetical order and provides the following
information:

Function Header Located at the beginning of each function and contains

the following information: function name, function title,
function syntax, input parameters, output or returns,
includes (header files required to be include), and mode.
The function syntax and inputs include the data type and
are shown using standard C language syntax.

Description Provides a detailed description of the function operation,
including parameter descriptions.

Example Provides one or more C language coding examples
showing how the function can be used.

Cautions Provides warnings and reminders.

11

ATD4_BDTYPE() returns the board type

Name: int ATD4_BDTYPE(devh)
Inputs: int devh • board descriptor

Returns: board type • returns board type information (see below)
0 • if success
-1 • if error; See Errors below.

Includes: D42LIB.H
Mode: synchronous

 Description

The ATD4_BDTYPE() function returns the board type of the queried device.

Board Type Description

TYP_D/82L4 Avaya Definity 75
TYP_D/82L2 Avaya Definity G3
TYP_D/82SX MITEL SX Series
TYP_D82NE2PBX NEC NEAX 2000 IVS, IVS2, IPS

NEC NEAX 2400 IMS
TYP_D82NE2KTS NEC Electra Elite, NEC Electra Professional 120
TYP_D/82NS Nortel Norstar DR5, CICS and MICS
TYP_D/82M1 Nortel Meridian 1
TYP_D/82SR Siemens ROLM CBX 9005, 9006 and 9715
TYP_D/82SH Siemens Hicom 150 and 300

Parameter Description

devh specifies the valid board device descriptor obtained by a
call to dx_open()

 Cautions

None.

12

returns the board type ATD4_BDTYPE()

 Example

void main(void)
{
 int devh;
 int rc = 0;

/* Open Board Device */
if ((devh = dx_open("dxxxB1C1",NULL))==-1)

 {
printf("Error dx_open()\n");
exit(-1);
 } /* End dx_open */

/* Check Board Type */
if ((rc = ATD4_BDTYPE(devh)) == -1)
 {
printf("Error ATD4_BDTYPE()\n");
dx_close(devh);
exit(-1);
 }

printf("Board Type = %d\n",rc);
dx_close(devh);
} /* End main */

 Errors

If this function returns -1 to indicate a failure, one of the following (most
common) codes will be contained in dx_errno. For a complete list of error codes
and definitions, refer to Appendix C.

EDX_TIMEOUT Firmware does not respond within a specified

time
ED42_BADDEVICE Invalid or wrong device handle
ED42_UNSUPPORTED Function not supported on this board
ED42_UNKNOWNBOARD Unknown D/42 board type

 See Also

• ATD4_CHTYPE()

13

ATD4_CHTYPE() returns the channel type

Name: int ATD4_CHTYPE(devh)
Inputs: int devh • channel descriptor

Returns: channel type • returned channel type information (see below)
0 • if success
-1 • if error; see Errors below.

Includes: D42LIB.H
Mode: synchronous

 Description

The ATD4_CHTYPE() function returns the channel type of the queried device.

Channel Type Description

TYP_D/82L4 Avaya Definity 75
TYP_D/82L2 Avaya Definity G3
TYP_D/82SX MITEL SX Series
TYP_D82NE2PBX NEC NEAX 2000 IVS, IVS2, IPS

NEC NEAX 2400 IMS
TYP_D82NE2KTS NEC Electra Elite, NEC Electra Professional 120
TYP_D/82NS Nortel Norstar DR5, CICS and MICS
TYP_D/82M1 Nortel Meridian 1
TYP_D/82SR Siemens ROLM CBX 9005, 9006 and 9715
TYP_D/82SH Siemens Hicom 150 and 300

Parameter Description

devh specifies the valid channel device descriptor obtained
by a call to dx_open()

 Cautions

None.

14

returns the channel type ATD4_CHTYPE()

 Example

void main(void)
{
 int devh;
 int rc = 0;

/* Open Channel Device */
if ((devh = dx_open("dxxxB1C1",NULL))==-1)

 {
printf("Error dx_open()\n");
exit(-1);
 } /* End dx_open */

/* Check Channel Type */
if ((rc = ATD4_CHTYPE(devh))== -1)
 {
printf("Error ATD4_CHTYPE()\n");
dx_close(devh);
exit(-1);
 }

printf("Channel Type = %d\n",rc);
dx_close(devh);
} /* End main */

 Errors

If this function returns -1 to indicate a failure, one of the following (most
common) codes will be contained in dx_errno. For a complete list of error codes
and definitions, refer to Appendix C.

EDX_TIMEOUT Firmware does not respond within a specified

time
ED42_BADDEVICE Invalid or wrong device handle
ED42_UNSUPPORTED Function not supported on this board
ED42_UNKNOWNBOARD Unknown D/42-xx or PBX integration board type

 See Also

• ATD4_BDTYPE()

15

d42_brdstatus() retrieves the current board status

Name: int d42_brdstatus(devh, buffstatus, bufferp)
Inputs: int devh • board descriptor

 char *buffstatus • pointer to buffer containing board
status information

 char *bufferp • reserved for future use
Returns: 0 • if success

 -1 • if error; see Errors below.
Includes: D42LIB.H

Mode: synchronous

 Description

The d42_brdstatus() function retrieves the current board status and places it in
an application buffer. The board status is a bit mask representing the status of the
board (see below) on a per board basis. Each D/82JCT-U contains two virtual
boards of four channels each, for a total of eight channels. Each D/42JCT-U
contains one virtual board of four channels. The application buffer (buffstatus)
that will contain the board status information must be one byte.

Bit 7 6 5 4 3 2 1 0
Channel x x x x 4 3 2 1
Example* 0 0 0 0 1 1 1 1
* Data shows that all channels on the
board have communication.

bit0 first channel on board 1=OK, 0=no communication
bit1 second channel on board 1=OK, 0=no communication
bit2 third channel on board 1=OK, 0=no communication
bit3 fourth channel on board 1=OK, 0=no communication

Parameter Description

devh specifies the valid board device descriptor obtained by a call to
dx_open()

buffstatus pointer to the 1-byte application buffer where the board status
is placed

bufferp pointer to an additional application buffer (reserved for future
use)

16

retrieves the current board status d42_brdstatus()

 Cautions

The character pointer bufferp is required. The associated buffer must be 49
bytes.

 Example

void main(void)
{
 int devh;
 int rc = 0;
 char buffstatus;
 char bufferp[49];

/* Open Channel Device */
if ((devh = dx_open("dxxxB1C1",NULL))==-1)
 {
printf("Error dx_open()\n");
exit(-1);
 } /* End dx_open */

/* Get the board status Information */
if ((rc = d42_brdstatus(devh, &buffstatus, bufferp)) == -1)
 {
printf("Error d42_brdstatus()\n");
dx_close(devh);
exit(-1);
 } /* End d42_brdstatus*/

printf("Board Status = %X\n",buffstatus);
dx_close(devh);
} /* End main */

 Errors

If this function returns -1 to indicate a failure, one of the following (most
common) codes will be contained in dx_errno. For a complete list of error codes
and definitions, refer to Appendix C.

ED42_BADDEVICE Invalid or wrong device handle
ED42_UNSUPPORTED Function not supported on this board
ED42_SYSTEM System level error
ED42_INVALARG Invalid argument passed to function

 See Also

• d42_chnstatus()

17

d42_chnstatus() retrieves the current channel status

Name: int d42_chnstatus(devh, statusp, bufferp)
Inputs: int devh • channel descriptor

 char *statusp • pointer to buffer containing channel
status information

 char *bufferp • reserved for future use
Returns: 0 • if success

 -1 • if error; see Errors below.
Includes: D42LIB.H

Mode: synchronous

 Description

The d42_chnstatus() function retrieves the current channel status and places it in
an application buffer. The application buffer (statusp) that will contain the
channel status information must be one byte. The channel status is a single bit (bit
0) representing the status of the channel device.

Parameter Description

devh specifies the valid channel device descriptor obtained by a
call to dx_open()

statusp pointer to a 1-byte application buffer. The application
buffer will contain a non-zero value if channel is
communicating with the switch.
non-zero = OK
0 = no communications

bufferp pointer to an additional application buffer (reserved for
future use)

 Cautions

The character pointer bufferp is required. The associated buffer must be 49
bytes.

 Example

void main(void)
{
 int devh;
 int rc = 0;

char bufferp[49];

18

retrieves the current channel status d42_chnstatus()

 char status;

/* Open Channel Device */
if ((devh = dx_open("dxxxB1C1",NULL))==-1)
 {
printf("Error dx_open()\n");
exit(-1);
 } /* End dx_open */

/* Get the channel status Information */
if ((rc = d42_chnstatus(devh, &statusp, bufferp)) == -1)
 {
printf("Error d42_chnstatus():\n");
dx_close(devh);
exit(-1);
 } /* End d42_chnstatus*/

if (status)
 {
printf("Channel Communication OK\n");
 }
else
 {
printf("No Channel Communication\n");
 }

dx_close(devh);
} /* End main */

 Errors

If this function returns -1 to indicate a failure, one of the following (most
common) codes will be contained in dx_errno. For a complete list of error codes
and definitions, refer to Appendix C.

ED42_BADDEVICE Invalid or wrong device handle
ED42_UNSUPPORTED Function not supported on this board
ED42_SYSTEM System level error
ED42_INVALARG Invalid argument passed to function

 See Also

• d42_brdstatus()

19

d42_closefeaturesession() closes a feature session

Name: int d42_closefeaturesession(devh)
Inputs: int devh • channel device

Returns: 0 • if success
 -1 • if error; see Errors below

Includes: D42LIB.H
Mode: immediate

 Description

The d42_closefeaturesession() function closes a feature session on a specified
channel. Once the feature session is closed the special functions that require a
feature session to be open may not be used, for example, d42_writetodisplay().

Parameter Description

channel specifies the channel number.

 Cautions

This function is valid only with a Nortel Norstar PBX.

This function sets the parameter values for the channel parameters
D4CH_SOFTKEYINPUT and D4CH_TERMINATEFEATURE to 0 for
disabled.

 Example

void main(void)
 {
 int devh;
 int rc = 0;
 char szDnNumber = "221";
 int iTerminalType;
 int iEvtMask = D42_EVT_SOFTKEY | D42_EVT_ASYNCCLOSEFEATSESSION

 /* Open Channel Device */
 if ((devh = dx_open("dxxxB1C1",NULL))==-1)
 {
 printf("Error dx_open()\n");
 exit(-1);
 } /* End dx_open */

20

closes a feature session d42_closefeaturesession()

 /* Open a feature session */
 if ((rc = d42_openfeaturesession (devh, szDnNumber, &iTerminalType, iEvtMask))
== -1)
 {
 printf("Error d42_closefeaturesession():\n");
 dx_close(devh);
 exit(-1);
 } /* End d42_brdstatus*/

 /*something is done */

 /* close the feature session */
 if ((rc = d42_closefeaturesession (devh)) == -1)
 {
 printf("Error d42_closefeaturesession():\n");
 dx_close(devh);
 exit(-1);
 } /* End d42_brdstatus*/

 dx_close(devh);
 } /* End main */

 Errors

If this function returns -1 to indicate a failure, one of the following (most
common) codes will be contained in dx_errno. For a complete list of error codes
and definitions, refer to Appendix C.

ED42_BADDDEVICE Invalid or wrong device handle sent to the

function
ED42_NOFEATURESESSION No feature session has been opened on the

channel.
ED42_UNSUPPORTED Function not supported on this board
ED42_SYSTEM System level error
ED42_INVALARG Invalid argument passed to function

 See Also

• d42_openfeaturesession()

• d42_writetodisplay()

21

d42_display() retrieves the current LCD/LED display

Name: int d42_display(devh, bufferp)
Inputs: int devh • channel descriptor

 char *bufferp • pointer to an application buffer. The buffer
will contain display data for the selected
channel.

Returns: 0 • if success
 -1 • if error; see Errors below.

Includes: D42LIB.H
Mode: synchronous

 Description

The d42_display() function retrieves the current LCD/LED display
(alphanumeric) data and places it in an application buffer. The application buffer
must be 49 bytes, and will hold an entire data string up to 48 bytes (see below)
plus a null. The length of the data string is 32 or 48 bytes for the supported PBXs.
Byte 0 of the display data corresponds to the top, left-most display element. The
display data is stored as a null-terminated ASCII string. Refer to the PBX
Integration Board User’s Guide for more information specific to your PBX.
Examples showing the contents of the application buffer for each supported
switch with a display less than or equal to 48 bytes are shown below:

 Siemens Hicom - 48-digit display

data 4E 6F 65 6C 20 4D 63 4C 6F 75 67 68 6C 69 6E 20
byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

data 20 20 20 20 20 20 20 20 43 6F 6E 73 75 6C 74 61
byte 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

data 74 69 6F 6E 3F 20 20 20 20 20 20 20 20 20 20 20
byte 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

22

retrieves the current LCD/LED display d42_display()

 MITEL SUPERSET 420 - 32-character display

data 43 41 4C 4C 46 4F 52 44 57 41 52 49 4E 47 3F 20
byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

data 59 65 73 20 20 20 20 20 20 20 20 20 20 4E 6F 20
byte 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

data xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx
byte 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

 Nortel Norstar - 32-character display

data 54 72 61 6E 73 66 65 72 20 20 20 20 20 20 20 20
byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

data 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
byte 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

data xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx
byte 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

 Nortel Meridian 1 - 48-character display

data 61 32 01 00 04 05 20 20 20 20 20 20 20 20 20 20
byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

data 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
byte 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

data 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
byte 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

23

d42_display() retrieves the current LCD/LED display

Parameter Description

devh specifies the valid channel device descriptor obtained by a call
to dx_open()

bufferp pointer to the application buffer. The buffer will contain the
display data in ASCII format.

 Cautions

The application buffer must be 49 bytes. The length of the LCD display data is
48 bytes for the supported PBX listed above. All other supported PBXs have
longer-length LCD display data, so d42_displayex() must be used. The data is
stored as a null-terminated ASCII string. An application that passes anything
smaller will not be backward compatible.

If you execute a function that updates the display (e.g., set the message waiting
indicator, or show the calling number ID), ensure that you allow time for the
switch to update the display before using d42_display(), or you can call the
d42_display() function until valid display data is returned.

 Example

void main(void)
{
 int devh;
 int rc = 0;
 char bufferp[49];

/* Open Channel Device */
if ((devh = dx_open("dxxxB1C1",NULL))==-1)
 {
printf("Error dx_open()\n");
exit(-1);
} /* End dx_open */

/* Wait for incoming call */
if ((rc = dx_wtring(devh, 2, DX_ONHOOK, -1))==-1)
 {
printf("Error dx_wtring()\n");
dx_close(devh);
exit(-1);
 }

24

retrieves the current LCD/LED display d42_display()

/* Get the Display Information */
if ((rc = d42_display(devh, bufferp)) == -1)
 {
printf("Error d42_display()\n");
dx_close(devh);
exit(-1);
 } /* End d42_display */

printf("Display = %s\n",bufferp);
dx_close(devh);
} /* End main */

 Errors

If this function returns -1 to indicate a failure, one of the following (most
common) codes will be contained in dx_errno. For a complete list of error codes
and definitions, refer to Appendix C.

ED42_BADDEVICE Invalid or wrong device handle
ED42_UNSUPPORTED Function not supported on this board
ED42_SYSTEM System level error
ED42_INVALARG Invalid argument passed to function

 See Also

• d42_displayex()

25

d42_displayex() retrieves the current LCD/LED display

Name: int d42_displayex(devh, bufferp)
Inputs: int devh • channel descriptor

 char *bufferp • pointer to an application buffer. The
buffer will contain display data for the
selected channel.

 buflen • length of buffer
Returns: 0

-1
• if success
• if error; see Errors below.

Includes: D42LIB.H
Mode: synchronous

 Description

The d42_displayex() function retrieves the current LCD/LED display
(alphanumeric) data and places it in an application buffer. Unlike d42_display(),
this function can retrieve display data larger than 49 bytes. The buffer must be at
least 49 bytes, which would mean a data string of 48 bytes plus a null. The length
of the data string is 50 for the Avaya Definity G3 and the 75 PBXs 60 for the
Siemens ROLM CBX 9005, 9006 and 9715; and 80 for the MITEL SX-200 or
SX-2000 PBXs. Byte 0 of the display data corresponds to the top, left-most
display element. The display data is stored as a null-terminated ASCII string.
Refer to the PBX Integration Board User’s Guide for more information specific
to your PBX. An example showing the contents of the application buffer for each
of the two supported switches with a display larger than 48 bytes is shown below.
d42_displayex() may also be used for display sizes smaller than 48 bytes.

 Avaya Definity - 50-character display

data 20

20
byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24

data 52 45 4C 45 41 53 45 20 41 4E 44 20 54 52 59 20 41 47 41 49 4E 20 20 20

20
byte 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

49

26

retrieves the current LCD/LED display d42_displayex()

 Siemens ROLM - 60-character display

data 43 4F 4E 46 45 52 45 4E 43 45 20 20 20 20 20 20 01 02 03 20
byte 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19

data 20 20 20 20 20 20 20 20 20 20 59 4F 55 52 20 50 4F 53 49 54
byte 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

data 49 4F 4E 3A 20 20 01 20 20 20 20 20 20 20 20 20 20 20 20 20
byte 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

 MITEL SUPERSET 430 - 80-character display

data 01 00 00 01 20 41 43 55 52 52 41 4E 20 49 53 20 43 41 4C 4C
byte 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19

data 49 4E 47 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
byte 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

data 20
byte 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

data 20
byte 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Parameter Description

devh specifies the valid channel device descriptor obtained by a call
to dx_open()

bufferp pointer to the application buffer. The buffer will contain the
display data in ASCII format.

buflen length of buffer on entry

27

d42_displayex() retrieves the current LCD/LED display

 Cautions

The pointer to the application buffer is assumed to be large enough to hold the
entire string plus a null, and the total must be at least 49 bytes.

If you execute a function that updates the display (e.g., set the message waiting
indicator, or show the calling number ID), ensure that you allow time for the
switch to update the display before using d42_displayex(), or you can call the
d42_displayex() function until valid display data is returned.

 Example

void main(void)
{
 int devh;
 int buflen = 50;
 int rc = 0;
 char bufferp[50];

/* Open Channel Device */
if ((devh = dx_open("dxxxB1C1",NULL))==-1)
 {
printf("Error dx_open()\n");
exit(-1);
 } /* End dx_open */

/* Wait for incoming call */
if ((rc = dx_wtring(devh, 2, DX_ONHOOK, -1))==-1)
 {
printf("Error dx_wtring()\n");
dx_close(devh);
exit(-1);
 }

/* Get the Display Information */
if ((rc = d42_displayex(devh, bufferp, buflen)) == -1)
 {
printf("Error d42_displayex()\n");
dx_close(devh);
exit(-1);
 } /* End d42_displayex */

printf("Display = %s\n",bufferp);
dx_close(devh);
} /* End main */

 Errors

If this function returns -1 to indicate a failure, one of the following (most
common) codes will be contained in dx_errno. For a complete list of error codes
and definitions, refer to Appendix C.

28

retrieves the current LCD/LED display d42_displayex()

ED42_BADDEVICE Invalid or wrong device handle
ED42_UNSUPPORTED Function not supported on this board
ED42_SYSTEM System level error
ED42_INVALARG Invalid argument passed to function
ED42_MEMORY Buffer not large enough

 See Also

• d42_display()

29

d42_getnewmessage() allows messages to be returned to a board

Name: int d42_getnewmessage(channel, bufferp)
Inputs: unsigned int channel • channel number

 unsigned char *bufferp • pointer to buffer containing
message data

Returns: 0 • if success
 -1 • if error; see Errors below

Includes: D42LIB.H
Mode: immediate

 Description

The d42_getnewmessage() function allows messages to be returned to a board
from a Norstar PBX. The function retrieves the next message for the specified
channel and places it in the user buffer. This feature has to be turned on by setting
the parameter D4CH_MESG_Q with the dx_setparm() function.

Parameter Description

channel specifies the channel number.
bufferp points to the buffer where messages are placed

 Cautions

This function is valid only with a Nortel Norstar PBX.

The pointer to the user buffer is assumed to be large enough to hold the entire
string plus a NULL, which is a total of 49 characters. The associated buffer must
be 49 bytes. An application which passes anything smaller will not be backward
compatible.

 Example

 int rc =0;
 unsigned char buffer[49];
 unsigned int channel = 1;

 /* Get new message */
 if ((rc = d42_getnewmessage(channel, &buffer))
 == ERR_SUCC)
 {

30

allows messages to be returned to a board d42_getnewmessage()

 printf("d42_getnewmessage() == %d %s, channel
 = %d, Message = %s\n", channel, buffer);
 }
 else
 {
 printf("d42_getnewmessage() == %d %s\n", rc,
 d42_geterror(rc));
 }

 Errors

If this function returns -1 to indicate a failure, one of the following (most
common) codes will be contained in dx_errno. For a complete list of error codes
and definitions, refer to Appendix C.

ED42_UNSUPPORTED Function not supported on this board
ED42_SYSTEM System level error
ED42_INVALARG Invalid argument passed to function
ERR_NOBOARD No board present
ERR_NODBFW No firmware loaded
ERR_BADCH Invalid channel number
ERR_NULLPTR Null pointer passed to function
ERR_QEMPTY Message queue is empty
ERR_QOVRFLOW Message queue is full

The final two messages listed are returned when the host computer PBX message
queue is full or empty, respectively. This queue is 8K, so up to 96 messages may
be stored before the overflow state occurs. When the queue is full, incoming
messages are lost until the application clears the queue.

 See Also

• d42_closefeaturesession()
• d42_openfeaturesession()
• d42_writetodisplay()

31

d42_getparm() retrieves the selected channel or board parameter

Name: int d42_getparm(devh, parmnum, parmvalp)
Inputs: int devh • board or channel descriptor

 int parmnum • parameter name
 void *parmvalp • pointer to parameter value

Returns: 0 • if success
 -1 • if error; see Errors below

Includes: D42LIB.H
Mode: synchronous

 Description

The d42_getparm() function retrieves the selected channel or board parameter
and places it in the application buffer (parmvalp). Depending on the parameter
retrieved, the data returned can be either a character string or an integer. The
board and channel parameter that can be retrieved are listed in
Table 1.

Parameter Description

devh specifies the valid board device or channel device descriptor
obtained by a call to dx_open()

parmnum contains the parameter name to retrieve
parmvalp pointer to the application variable that will receive the

parameter value

 Cautions

When retrieving a parameter, the application passes a pointer to a variable that
will contain the actual parameter value. This variable should be treated as an
unsigned integer for all parameters. The application should cast the parmvalp
parameter to a (void *) to avoid compiler warnings.

32

retrieves the selected channel or board parameter d42_getparm()

Table 1. Board and Channel Parameters for d42_getparm()

Board Parameters Description

D4BD_CALLID Enable Caller ID
Values: 0 - disable (default)
 1 - enable

D4BD_GETSWITCHTTYPE Obtains the switch type
Values:

 PBX_L4
PBX_L2
PBX_SH

PBX_SR

PBX_NS

PBX_M1
PBX_SX
PBX_SX2

- Avaya 75
- Avaya G3
- Siemens Hicom 150
and 300
- Siemens ROLM CBX
9005, 9006 and 9715
- Norstar DR5, CICS or
MICS
- Meridian 1
- MITEL SX-50
- MITEL SX-200 or
SX-2000

D4BD_REPORT_RESET Enable report reset
Values: 0 - disable (default)
 1 - enable

Channel Parameters Description

D4CH_CHANNELSTATUS Receive asynchronous channel status
messages
Values: 0 - disable (default)
 1 - enable

D4CH_LC_LAMP Lamp to monitor for loop current

D4CH_CHANNELUPDATE Enable/Disable asynchronous LCD and
indicator updates

33

d42_getparm() retrieves the selected channel or board parameter

D4CH_CALLERIDAVAILABLE Enables notification of Caller ID
availability using the
T_CALLERIDAVAILABLE event.
Values: 0 - disable (default)
 1 - enable

D4CH_CHANNELSTATUS Enables notification of a change in the
status of the channel.
Values: 0 - disable (default)
 1 - enable

D4CH_SOFTKEYINPUT* Enables notification of SoftKey input
using the T_SOFTKEYINPUT event.
Values: 0 - disable (default)
 1 - enable

D4CH_TERMINATEFEATURE* Enables notification when a feature
session is terminated.
Values: 0 - disable(default)
 1 - enable

* When d42_openfeaturesession() is called for a channel, the value of this parameter is set
automatically to 1 (enable) for that channel. When d42_closefeaturesession() is called, the value of
this parameter is set automatically to 0 (disable) for that channel.

 Example

void main(void)
{
 int devh;
 int rc = 0;
 int parmnum;
 unsigned int parmvalp;

/* Open Board Device */
if ((devh = dx_open("dxxxB1",NULL))==-1)
 {
printf("Error dx_open()\n");
exit(-1);
 } /* End dx_open */

if ((ATD4_BDTYPE (devh)) == TYP_D/82M1)
 {
/* Get the Board Parameter To See if Speakerphone Mode is Enabled */
if ((rc = d42_getparm(devh, D4BD_SPMODE, (void *)&parmvalp)) == -1)
 {
printf("Error d42_getparm(D4BD_SPMODE)\n");
dx_close(devh);
exit(-1);
 } /* End d42_getparm */

/* Check if Speakerphone is enabled */
if (parmvalp == 1)

34

retrieves the selected channel or board parameter d42_getparm()

 {
printf("Speakerphone Mode is ENABLED");
else if (parmvalp == 0)
printf("Speakerphone Mode is DISABLED");
} /* End Check if Speakerphone is enabled */

 } /* end ATD4_BDTYPE */
dx_close(devh);
} /* End main */

 Errors

If this function returns -1 to indicate a failure, one of the following (most
common) codes will be contained in dx_errno. For a complete list of error codes
and definitions, refer to Appendix C.

ED42_BADDEVICE Invalid or wrong device handle
ED42_UNSUPPORTED Function not supported on this board
ED42_SYSTEM System level error
ED42_INVALARG Invalid argument passed to function

 See Also

• d42_setparm()

35

d42_getver() retrieves the board firmware or library version

Name: int d42_getver(devh, bufferp, flag)
Inputs: int devh • board descriptor

 char *bufferp • pointer to an application buffer containing
the version information

 int flag • determines if firmware or library version
is retrieved

Returns: 0 • if success
 -1 • if error; see Errors below.

Includes: D42LIB.H
Mode: synchronous

 Description

The d42_getver() function retrieves the board firmware or library version and
places it in an application buffer. The application buffer is at least 100 bytes long
and will contain either the firmware or library version number in the following
format:

Firmware Firmware Version: XX.XX type YY.YY

where: X.XX is the version number
type is the type of release (Alpha, Beta, Experimental, or
Production)
Y.YY is the alpha or experimental number

Library File Version: YY.MM.XX.XX Product Version:
YY.MM.XX.XX

where: YY is the year
MM is the month
X is a number

36

retrieves the board firmware or library version d42_getver()

Parameter Description

devh specifies the valid board device descriptor obtained by a call to
dx_open()

bufferp pointer to the application buffer that will contain the version data
flag determines if the firmware or library version number is placed in

the application buffer.
VER_D42FIRMWARE - returns the D/42-xx or PBX integration
board firmware version
VER_D42LIB - returns the D42 library (D42LIB) version

 Cautions

The application buffer must be at least 100 bytes.

 Example

void main(void)
{
 int devh;
 int rc = 0;
 char bufferp[100];

/* Open Board Device */
if ((devh = dx_open("dxxxB1",NULL))==-1)
 {
printf("Error dx_open()\n");
exit(-1);
 } /* End dx_open */

/* Get the Firmware Version */
if ((rc = d42_getver(devh, bufferp, VER_D42FIRMWARE)) == -1)
 {
printf("Error d42_getver()\n");
dx_close(devh);
exit(-1);
 } /* End d42_getver */

/* Print the Firmware Version /*
printf("%s",bufferp);

dx_close(devh);
} /* End main */

37

d42_getver() retrieves the board firmware or library version

 Errors

If this function returns -1 to indicate a failure, one of the following (most
common) codes will be contained in dx_errno. For a complete list of error codes
and definitions, refer to Appendix C.

ED42_BADDEVICE Invalid or wrong device handle
ED42_UNSUPPORTED Function not supported on this board
ED42_SYSTEM System level error
ED42_RDFWVER Error reading firmware version
ED42_INVALARG Invalid argument passed to function

38

retrieves the called/calling number ID d42_gtcallid()

Name: int d42_gtcallid(devh, bufferp)
Inputs: int devh • channel descriptor

 char *bufferp • pointer to an application buffer containing
called/calling number ID data

Returns: 0 • if success
 -1 • if error; see Errors below

Includes: D42LIB.H
Mode: synchronous

 Description

The d42_gtcallid() function retrieves the called/calling number ID of the
incoming call and places it in an application buffer. The application buffer must
be 49 bytes, and will hold the entire data string (see below) plus a null. The
length of the data string is variable. Refer to the PBX Integration Board User’s
Guide for more information specific to your PBX. An example showing the
contents of the application buffer for any supported switch is as follows:

text bb 2 2 1 _ 2 2 4
data 20 32 32 31 5F 32 32 34 00 xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx
byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

text
data xx
byte 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Parameter Description

devh specifies the valid channel device descriptor obtained by a
call to dx_open()

bufferp pointer to the application buffer. The called/calling number
ID is placed here

 Cautions

The application buffer must be 49 bytes. The length of the called/calling number
ID data is variable (not exceeding 48 bytes), and is stored as a null-terminated
ASCII string (total length--49 bytes). The called/calling number cannot contain
spaces; the information will only be parsed up to the first space.

39

d42_gtcallid() retrieves the called/calling number ID

For Avaya 7434 (4-wire) and 8434 (2-wire) telephone sets, the extension number
must be programmed in the first 16 characters of the PBX name field.

NOTE: Since the called/calling number ID data is not always sent by the PBX
prior to the ring event, the application should be set up to answer a call
only after the second ring to ensure that the correct called/calling ID data
is obtained.

 Example

void main(void)
{
 int devh;
 int rc = 0;
 char bufferp[49];

/* Open Channel Device */
if ((devh = dx_open("dxxxB1C1",NULL))==-1)
 {
printf("Error dx_open()\n");
exit(-1);
 } /* End dx_open */

/* Wait for incoming call */
if ((rc = dx_wtring(devh, 2, DX_ONHOOK, -1))==-1)
 {
printf("Error dx_wtring()\n");
dx_close(devh);
exit(-1);
 }

/* Get the Calling/Caller Id */
if ((rc = d42_gtcallid(devh, bufferp)) == -1)
 {
printf("Error d42_gtcallid()\n");
dx_close(devh);
exit(-1);
 } /* End d42_gtcallid */

printf("Caller Id = %s\n",bufferp);
dx_close(devh);
} /* End main */

40

retrieves the called/calling number ID d42_gtcallid()

 Errors

If this function returns -1 to indicate a failure, one of the following (most
common) codes will be contained in dx_errno. For a complete list of error codes
and definitions, refer to Appendix C.

ED42_BADDEVICE Invalid or wrong device handle
ED42_UNSUPPORTED Function not supported on this board
ED42_SYSTEM System level error
ED42_INVALARG Invalid argument passed to function

41

d42_gtcallidex() retrieves call information

Name: int d42_gtcallidex(devh, *pcallidex)
Inputs: int devh • channel descriptor

Outputs: CALLIDEX *pcallidex • pointer to a CALLIDEX structure
containing the call information

Returns: 0
-1

• if success
• if error; see Errors below

Includes: d42lib.h
Mode: synchronous

 Description

The d42_gtcallidex() function retrieves call information, such as the type of call
(internal or external), the reason for the call (direct, forwarded as a result of being
busy, forwarded because of no answer etc.), with calling party ID and called party
ID.

NOTE: For Nortel Norstar PBXs, all information, including the reason code and
call type integration, is available. For all other integrations, the reason
code and call type are not available, but the calling ID (calling_id) and
called ID (called_id) are available.

Parameter Description

devh specifies a valid channel device descriptor
*pcallidex pointer to a CALLIDEX structure that contains the call

information

 Structure and Constant Definitions

The following definitions define the call type:

 #define CALL_TYP_NULL 0x00 // None
 #define CALL_TYP_INTERNAL 0X01 // internal call
 #define CALL_TYP_EXTERNAL 0x02 // external call

The following definitions can define a reason code for a call forward:

 #define RSN_NULL 0x00 // None
 #define RSN_DIRECT 0X01 // Direct call
 #define RSN_FBUSY 0x02 // Call forwarded because busy
 #define RSN_FNOANS 0X03 // Call forwarded because of no answer
 #define RSN_SPR_XFR 0x04 // Supervised call transfer
 #define RSN_UNSPR_XFR 0x05 // Unsupervised call transfer

42

retrieves call information d42_gtcallidex()

The CALLIDEX structure is defined as follows:

typedef struct tagCALLIDEX
{
 char called_id[CALLID_LEN];
 char calling_id[CALLID_LEN];
 int call_type;
 int reason_code;
}CALLIDEX;

 Cautions

It is the application’s responsibility to allocate memory for the pointer pcallidex
of size CALLIDEX.

 Example

CALLIDEX callidex;
...
// open device
...
// pass device handle to d42_gtcallidex()
rc = d42_gtcallidex(devh, &callidex);

if(rc < 0)
{
 // handle the error here
}
...

 Errors

If this function returns -1 to indicate a failure, the ATDV_LASTERR() function
can be used to retrieve the reason for the error. The error codes that can be
returned are as follows:

ED42_BADDEVICE Invalid or wrong device handle
ED42_INVALARG Invalid argument passed to function
ED42_UNKNOWNBOARD The board is not supported
ED42_FWREQFAILURE Firmware request failed

 See Also

• d42_gtcallid()

43

d42_indicators() retrieves the current LCD or LED indicators

Name: int d42_indicators(devh, bufferp)
Inputs: int devh • channel descriptor

 char *bufferp • pointer to an application buffer
containing the indicators data

Returns: 0 • if success
 -1 • if error; see Errors below

Includes: D42LIB.H
Mode: synchronous

 Description

The d42_indicators() function retrieves the current LCD or LED indicators
status and places it in an application buffer. The application buffer must be 49
bytes, and will hold the entire bit mask (see below) representing the status of each
indicator. Refer to the PBX Integration Board User’s Guide for more information
specific to your switch. Examples showing the contents of the application buffer
for each supported switch are as follows:

PBX Number of Indicators
Avaya 7434 4-wire 41 indicators
Avaya 8434 2-wire 34 indicators
Siemens/ROLM 35 indicators
Siemens Hicom 12 indicators
MITEL SUPERSET 400 12 indicators
Nortel Norstar M7324 24 indicators
Nortel Meridian 1 M2616 16 indicators

Parameter Description

devh specifies the valid channel device descriptor obtained by a
call to dx_open()

bufferp pointer to the application buffer; the indicator is placed here

 Cautions

The application buffer must be 49 bytes. The length of the line indicator data is
variable (currently 126-34 bytes), and is stored as bit mask. An application that
passes anything smaller will not be compatible.

44

retrieves the current LCD or LED indicators d42_indicators()

 Avaya 7434 (4-Wire) and Avaya 8434 (2-Wire)

On the Avaya 7434 telephone, there are a total of 34 sets of line indicators (a set
of two indicators, with red on the left and green on the right). Twelve LEC Line
Indicators are located to the left of line keys 00-23. In addition, there are 10 LEC
Line Indicators located to the left of line keys 24-33 (see Figure 1).

Like the 7434, the Avaya 8434 also has a total of 34 sets of line indicators (a set
of two indicators, with red the top and green on the bottom) on the Avaya 8434
telephone, but their arrangement is somewhat different (see Figure 2). Twelve
LEC Line Indicators are located to the left of line keys 00-11 and 12 LEC Line
Indicators to the right of keys 12-23 on the Avaya 8434 telephone. In addition,
there are five LEC Line Indicators located to the left of line keys 24-28 and five
LEC Line Indicators located to the right of line keys 29-33.

For both phones, the indicator status data stored in the application buffer is 34
bytes long. Bytes 0-33 contain the indicator status of Feature Buttons 0-33,
respectively.

As mentioned above, each line or feature button actually has two indicator lights.
The red indicator tells the user that the line is being used or that the line will be
the one used when the handset is lifted. The green indicator (bottom on the 8434
and right on the 7434) tells the user that the line or feature is in use. In other
words, when you pick up the handset or press a feature button, the green indicator
goes on.

When a call is on hold, the green indicator for that line flashes and the red
indicator goes off. The red light is either off or on (a value of eight [0x08]
indicates ON), while the green light has six possible values.

45

d42_indicators() retrieves the current LCD or LED indicators

The status of the indicators is obtained by bitwise-ANDing the returned value
from the green light with the value from the red light (green light value + red
light value). In other words, the value for a line indicator in use with a call would
be nine--0x08 (for red light on) + 0x01 (for green light on). The status conditions
for each byte of the green light are defined as follows:

Value (in HEX) State
0x00 off
0x01 on
0x02 ringing
0x03 hold
0x04 error
0x05 unknown

 Example

If the data for byte 19 is 0x09 and byte 28 is 0x03, the red and green indicators
are on for Feature Button 19 indicating that the line is in use for a call, and the
green indicator for Memory Button 28 is flashing, indicating that the call is on
hold. The contents of the application buffer are shown below.

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

16 17 18 19 20 21 22 23
Data

Data

Byte

Byte

00 00 00 00 00 00 00 00 00 00
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Fe
at

ur
e

B
ut

to
n

00

 B
ut

to
n

01

 B
ut

to
n

02

B
ut

to
n

03

 B
ut

to
n

04

 B
ut

to
n

05

 B
ut

to
n

06

 B
ut

to
n

07

B
ut

to
n

08

 B
ut

to
n

09

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e B

ut
to

n
10

 B
ut

to
n

11

 B
ut

to
n

12

 B
ut

to
n

13

 B
ut

to
n

14

 B
ut

to
n

15

Bu
tto

n
16

 B
ut

to
n

17

 B
ut

to
n

18

 B
ut

to
n

19

 B
ut

to
n

20

 B
ut

to
n

21

 B
ut

to
n

22

 B
ut

to
n

23

00 00 00 00 00 00 00 00 00 09 00 00 00 00

00 00 00 00 03 00 00 00 00 00 xx xx xx xx xx xx xx xx xx xx xx xx xx xx

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e B

ut
to

n
24

 B
ut

to
n

25

 B
ut

to
n

26

 B
ut

to
n

27

 B
ut

to
n

28

 B
ut

to
n

29

 B
ut

to
n

30

 B
ut

to
n

31

 B
ut

to
n

32

Fe
at

ur
e

B
ut

to
n

32

46

retrieves the current LCD or LED indicators d42_indicators()

gU

fT

eS

dR

cQ

bP

ZD N

YC M

G

I

XB L

F

H

WA K

J aE

ij

kl

O

hV

Message Select

D

C

G

I

B

F

H

A

JE

gU

fT

eS

dR

cQ

bP

ZN

YM

XL

WK

aO

hV

Figure 1. Avaya 7434 (4-wire) Telephone Indicators

47

d42_indicators() retrieves the current LCD or LED indicators

U

V

S

R

Q

P

M

L

T

a

Z

Y

W

b

g

h

d

D

E

B

A

C

G

H

I

J

F

m n

r

po

s

q

O

N

K

X

c

e

f

U

V

S

R

Q

P

M

L

T

a

Z

Y

W

b

g

h

d

D

E

B

A

C

F

G

H

I

J

O

N

K

X

c

e

f

m n

r

po

s

q

Figure 2. Avaya 8434 (2-wire) Telephone Indicators

48

retrieves the current LCD or LED indicators d42_indicators()

 Siemens ROLM

There are 35 LED Line Indicators located to the left of feature keys 01-09, 11-29,
31-35, and 36-37 on the ROLMphone 400 telephone (see Figure 3), for a total of
35 LED Line Indicators. The line indicator status data stored in the application
buffer is 39 bytes long. Bytes 00-39 contain the indicator status for Feature Keys
01-37. Feature Key 01 is the Mail Box or message waiting indicator. Byte 39 is
used for the Call Waiting Indicator LED. Note that keys 10, 30, 38-4 0 do not
have line indicator LEDs.

Value (in HEX) State
0x00 off
0x01 on
0x02 ringing
0x03 hold
0x04 error
0x05 unknown

 Example

If the data for byte 06 is 0x02, the indicator for Feature Key 11 is indicating
ringing. If the data for byte 08 is 0x03, the indicator for Feature Key 09 is
indicating hold. The contents of the application buffer are shown below.

49

d42_indicators() retrieves the current LCD or LED indicators

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

16 17 18 19 20 21 22 23

00 00 00 00 00 00 00 00 00 00 00 00 xx xx xx xx xx xx xx xx xx xxxx 00

Data

Data

Byte

Byte

00 00 00 00 00 00 02 00 03 00 00 00 00 00 00 00 00 00 00 00 00 00 00xx
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

 K
ey

 0
1

 K
ey

 0
2

 K
ey

 0
3

 K
ey

 0
4

 K
ey

 0
5

K
ey

 0
6

 K
ey

 0
7

 K
ey

 0
8

 K
ey

 0
9

N
o

LE
D

 In
id

ca
to

r

Fe
au

tre

Fe
au

tre

Fe
au

tre

Fe
au

tre

Fe
au

tre

Fe
au

tre

Fe
au

tre

Fe
au

tre

Fe
au

tre

Fe
au

tre
 K

ey
 1

1

Fe
au

tre
 K

ey
 1

2

Fe
au

tre
 K

ey
 1

3

Fe
au

tre
 K

ey
 1

4

Fe
au

tre
 K

ey
 1

5

Fe
au

tre
 K

ey
 1

6

Fe
au

tre
 K

ey
 1

7

Fe
au

tre
 K

ey
 1

8

Fe
au

tre
 K

ey
 1

9

Fe
au

tre
 K

ey
 2

0

Fe
au

tre
 K

ey
 2

1

Fe
au

tre
 K

ey
 2

2

Fe
au

tre
 K

ey
 2

3

Fe
at

ur
e

K
ey

 2
4

Fe
at

ur
e

K
ey

 2
5

Fe
at

ur
e

K
ey

 2
6

Fe
at

ur
e

K
ey

 2
7

Fe
at

ur
e

K
ey

 2
8

Fe
at

ur
e

K
ey

 2
9

N
O

 L
E

D
 In

di
ca

to
r

Fe
at

ur
e

K
ey

 3
1

Fe
at

ur
e

K
ey

 3
2

Fe
at

ur
e

K
ey

 3
3

Fe
at

ur
e

K
ey

 3
4

Fe
at

ur
e

K
ey

 3
5

Fe
at

ur
e

K
ey

 3
6

Fe
at

ur
e

K
ey

 3
7

N
O

 L
E

D
 In

di
ca

to
r

N
O

 L
E

D
 In

di
ca

to
r

N
O

 L
E

D
 In

di
ca

to
r

C
al

l W
ai

tin
g

i

ZUPKF

B e

j

aVQLG

C f

k

bWRMH

D

cXSNI

g

h

YTOJE

A d

CALL WAITING

ZUPKF

aVQLG

bWRMH

cXSNI

YTOJE

ie

f

g

hd
B

C

D

A

Figure 3. ROLMphone 400 Telephone Indicators

50

retrieves the current LCD or LED indicators d42_indicators()

 Siemens Hicom

There are 12 LED Line Indicators looked to the right of Feature Keys 00-11on
the Hicom Optiset E telephone. The line indicator status data stored in the
application buffer is 12 bytes long. Bytes 0-11 contain the indicator status for line
keys 00-11, respectively.

Value (in HEX) State

0x00 off
0x01 on
0x02 ringing
0x03 hold
0x04 error
0x05 unknown

 Example

If the data for byte 04 is 0x02, the indicator for Feature Key 04 is indicating
ringing. The contents of the application buffer are shown below.

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

16 17 18 19 20 21 22 23
xx xx xx xx xx xx xx xx

xx xx

Data

Data

Byte

Byte

Fe
at

ur
e

K
ey

 0
0

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e

Fe
at

ur
e K

ey
 0

1

 K
ey

 0
2

 K
ey

 0
3

 K
ey

 0
4

 K
ey

 0
5

 K
ey

 0
6

 K
ey

 0
7

 K
ey

 0
8

K
ey

 0
9

K
ey

 1
0

 K
ey

 1
1

00 00 00 00 02 00 00 02 00 00 00 00 xx xx xx xx
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

51

d42_indicators() retrieves the current LCD or LED indicators

General Call

Send Message

Consultation

Programmable

Programmable

Programmable

L

M N O

K

J

I

HD

C

B

A

G

E

F

Programmable

Release

General Call

Send Message

Consultation

Programmable

Programmable

Programmable

L

K

J

I

H

G

E

F

Programmable

Release

Speaker

Redial

Mute

Service Menu

D

C

B

A

Speaker

Redial

Mute

Service Menu

1

P

Q

8

2 3

4

7

5

9

0*

6

Figure 4. Siemens Optiset E Telephone Indicators

52

retrieves the current LCD or LED indicators d42_indicators()

 MITEL SX SUPERSET Telephones

There are six LCD Line Indicators located to the left of Personal Keys 00-05 and
six LCD Line Indicators to the right of keys 06-11 on the MITEL SUPERSET
400 Series telephones (see Figure 5), for a total of 12 LCD Line Indicators. The
line indicator status data stored in the application buffer is 12 bytes long. Bytes 0-
11 contain the indicator status for line keys 00-11, respectively.

Value (in HEX) State

0x00 off
0x01 on
0x02 ringing
0x03 hold
0x04 error
0x05 unknown

 Example

If the data for byte 7 is 0x02, the indicator for Personal Key 07 is indicating
ringing. The contents of the application buffer are shown below.

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

16 17 18 19 20 21 22 23

xx xx xx xx xx xx xx xx

xx xx

Data

Data

Byte

Byte

Pe
rs

on
al

 K
ey

 0
0

Pe
rs

on
al

 K
ey

 0
1

 K
ey

 0
2

 K
ey

 0
3

 K
ey

 0
4

 K
ey

 0
5

 K
ey

 0
6

 K
ey

 0
7

 K
ey

 0
8

 K
ey

 0
9

 K
ey

 1
0

 K
ey

 1
1

Pe
rs

on
al

Pe
rs

on
al

Pe
rs

on
al

Pe
rs

on
al

Pe
rs

on
al

Pe
rs

on
al

Pe
rs

on
al

Pe
rs

on
al

Pe
rs

on
al

Pe
rs

on
al

00 00 00 00 00 00 00 02 00 00 00 00 xx xx xx xx
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

53

d42_indicators() retrieves the current LCD or LED indicators

*

7

4

1

0

8

5

2

#

9

6

3

M

b ca

Q

N T

P

U

VO

S

R

Figure 5. MITEL SUPERSET 400 Series Telephone Indicators

 Nortel Norstar M7324

As shown in Figure 6, there are 24 LCD Line Indicators located between
Programmable Memory Buttons 00-23 on the Model 7324 telephone. The
indicator status data stored in the application buffer is 24 bytes long. Bytes 00-23
contain the indicator status of Memory Buttons 00-23, respectively. The status
data for each byte is defined as follows:

Value (in HEX) State

0x00 off
0x01 on
0x02 ringing
0x03 hold
0x04 error
0x05 unknown

NOTE: These status indicators are different from those used with the Nortel
Norstar and the D/42-NS board. The PBX integration board uses the
same status indicators for all supported PBXs.

54

retrieves the current LCD or LED indicators d42_indicators()

 Example

If the data for byte 16 is 0x02 and byte 19 is 0x01, the indicator for Memory
Button 16 indicates ringing and the indicator for Memory Button 19 is on. The
contents of the application buffer are shown below.

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

16 17 18 19 20 21 22 23

xx xx

Data

Data

Byte

Byte

00 00 00 00 00 00 00 00 00 00
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

M
em

or
y

B
ut

to
n

00

M
em

or
y

B
ut

to
n

01

M
em

or
y

B
ut

to
n

02

M
em

or
y

B
ut

to
n

03

M
em

or
y

B
ut

to
n

04

M
em

or
y

B
ut

to
n

05

M
em

or
y

B
ut

to
n

06

M
em

or
y

B
ut

to
n

07

M
em

or
y

B
ut

to
n

08

M
em

or
y

B
ut

to
n

09

M
em

or
y

B
ut

to
n

10

M
em

or
y

B
ut

to
n

11

M
em

or
y

B
ut

to
n

12

M
em

or
y

B
ut

to
n

13

M
em

or
y

B
ut

to
n

14

M
em

or
y

B
ut

to
n

15

M
em

or
y

B
ut

to
n

16

M
em

or
y

B
ut

to
n

17

M
em

or
y

B
ut

to
n

18

M
em

or
y

B
ut

to
n

19

M
em

or
y

B
ut

to
n

20

M
em

or
y

B
ut

to
n

21

M
em

or
y

B
ut

to
n

22

M
em

or
y

B
ut

to
n

23

00 00 00 00 00 00 02 00 00 01 00 00 00 00

Memory Buttons
18 to 23

Memory Buttons
06 to 11

Memory Buttons
12 to 17

Memory Buttons
00 to 05

LCD
Indicators

LCD
Indicators

Figure 6. Nortel Model 7324 Telephone Indicators

55

d42_indicators() retrieves the current LCD or LED indicators

 Nortel Meridian 1

As shown in Figure 7, there are 16 LCD Line Indicators located between
Programmable Memory Buttons 00-15 on the Model 2616 telephone. The
indicator status data stored in the application buffer is 24 bytes long. Bytes 00-23
contain the indicator status of Memory Buttons 00-23, respectively. The status
data for each byte is defined as follows:

Value (in HEX) State

0x00 off
0x01 on
0x02 ringing
0x03 hold
0x04 error
0x05 unknown

 Example

If the data for byte 04 is 0x01 and byte 10 is 0x02, the indicator for Memory
Button 04 is on and the indicator for Memory Button 10 is alerting. The contents
of the application buffer are shown below.

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

16 17 18 19 20 21 22 23

xx xx

Data

Data

Byte

Byte

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

M
em

or
y

B
ut

to
n

10

M
em

or
y

B
ut

to
n

11

M
em

or
y

B
ut

to
n

12

M
em

or
y

B
ut

to
n

13

M
em

or
y

B
ut

to
n

14

M
em

or
y

B
ut

to
n

15

02 00 00 00 00 00 xx xx xx xx xx xx xx xx

M
em

or
y

B
ut

to
n

00

M
em

or
y

B
ut

to
n

01

M
em

or
y

B
ut

to
n

02

M
em

or
y

B
ut

to
n

03

M
em

or
y

B
ut

to
n

04

M
em

or
y

B
ut

to
n

05

M
em

or
y

B
ut

to
n

06

M
em

or
y

B
ut

to
n

07

M
em

or
y

B
ut

to
n

08

M
em

or
y

B
ut

to
n

09

00 00 00 00 01 00 00 00 00 00

56

retrieves the current LCD or LED indicators d42_indicators()

J

K

L

M

N

O

P

I

*

7

4

1

0

8

5

2

#

9

6

3

H

G

F

D

C

B

A

E

Q

R

Memory
Buttons 00-07

Memory
Buttons 08-15

LCD Indicators

J

K

L

M

N

O

P

I

H

G

F

D

C

B

A

E

Figure 7. Nortel Model 2616 Telephone Indicators
 Example

void main(void)
{
 int devh;
 int rc = 0;
 int count;
 char bufferp[49];

/* Open Channel Device */
if ((devh = dx_open("dxxxB1C1",NULL))==-1)
 {
printf("Error dx_open()\n");
exit(-1);
 } /* End dx_open */

/* Wait for incoming call */
if ((rc = dx_wtring(devh, 2, DX_ONHOOK, -1))==-1)
 {
printf("Error dx_wtring()\n");
dx_close(devh);
exit(-1);
 }

57

d42_indicators() retrieves the current LCD or LED indicators

/* Get the Calling/Caller Id */
if ((rc = d42_gtcallid(devh, bufferp)) == -1)
 {
printf("Error d42_gtcallid()\n");
dx_close(devh);
exit(-1);
 } /* End d42_gtcallid */

printf("Caller Id = %s\n",bufferp);
/* Get the Indicator Information */
if ((rc = d42_indicators(devh, bufferp)) == -1)
 {
printf("Error d42_indicators(): Error Code: %hX\n",dx_errno);
dx_close(devha);
exit(-1);
 } /* End d42_indicators*/

for (count = 0; count < 49; count++)
 {
printf("Indicator %d = %X\n",count, bufferp[count]);
 }

dx_close(devh);
} /* End main */

 Errors

If this function returns -1 to indicate a failure, one of the following (most
common) codes will be contained in dx_errno. For a complete list of error codes
and definitions, refer to Appendix C.

ED42_BADDEVICE Invalid or wrong device handle
ED42_UNSUPPORTED Function not supported on this board
ED42_SYSTEM System level error
ED42_INVALARG Invalid argument passed to function

58

retrieves the current LCD or LED indicators d42_indicatorsex()

Name: int d42_indicatorsex(devh, bufferp, buflen)
Inputs: int devh • channel descriptor

 char *bufferp • pointer to an application buffer
containing the indicators data

 buflen • length of buffer
Returns: 0 • if success

 -1 • if error; see Errors below
Includes: D42LIB.H

Mode: synchronous

 Description

The d42_indicatorsex() function retrieves the current LCD or LED indicators
status and places it in an application buffer. Unlike d42_indicators(), this
function can retrieve indicator data larger than 49 bytes. The information is
returned as a null-terminated ASCII string. The buffer must be at least 49 bytes,
which would mean a data string of 48 bytes plus a null. The application buffer
holds the entire bit mask (see below) representing the status of each indicator.
Refer to the PBX Integration Board User’s Guide for more information specific
to your switch.

Parameter Description

devh specifies the valid channel device descriptor obtained by a
call to dx_open()

bufferp pointer to the application buffer; the indicator is placed here
buflen length of buffer

 Cautions

• Only size bytes of data are copied to the buffer.

• The buffer must be NULL terminated.

 Nortel Norstar M7324

Note that the following example shows a phone with just 24 indicators. Your
phone is not limited to 49 bytes when using the d42_indicatorsex() function. As
shown in Figure 8, there are 24 LCD Line Indicators located between

59

d42_indicatorsex() retrieves the current LCD or LED indicators

Programmable Memory Buttons 00-23 on the Model 7324 telephone. The
indicator status data stored in the application buffer is 24 bytes long. Bytes 00-23
contain the indicator status of Memory Buttons 00-23, respectively. The status
data for each byte is defined as follows:

Value (in HEX) State

0x00 off
0x01 on
0x02 ringing
0x03 hold
0x04 error
0x05 unknown

NOTE: These status indicators are different from those used with the Nortel
Norstar and the D/42-NS board. The PBX integration board uses the
same status indicators for all supported PBXs.

 Example

If the data for byte 16 is 0x02 and byte 19 is 0x01, the indicator for Memory
Button 16 indicates ringing and the indicator for Memory Button 19 is on. The
contents of the application buffer are shown below.

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

16 17 18 19 20 21 22 23

xx xx

Data

Data

Byte

Byte

00 00 00 00 00 00 00 00 00 00
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

M
em

or
y

B
ut

to
n

00

M
em

or
y

B
ut

to
n

01

M
em

or
y

B
ut

to
n

02

M
em

or
y

B
ut

to
n

03

M
em

or
y

B
ut

to
n

04

M
em

or
y

B
ut

to
n

05

M
em

or
y

B
ut

to
n

06

M
em

or
y

B
ut

to
n

07

M
em

or
y

B
ut

to
n

08

M
em

or
y

B
ut

to
n

09

M
em

or
y

B
ut

to
n

10

M
em

or
y

B
ut

to
n

11

M
em

or
y

B
ut

to
n

12

M
em

or
y

B
ut

to
n

13

M
em

or
y

B
ut

to
n

14

M
em

or
y

B
ut

to
n

15

M
em

or
y

B
ut

to
n

16

M
em

or
y

B
ut

to
n

17

M
em

or
y

B
ut

to
n

18

M
em

or
y

B
ut

to
n

19

M
em

or
y

B
ut

to
n

20

M
em

or
y

B
ut

to
n

21

M
em

or
y

B
ut

to
n

22

M
em

or
y

B
ut

to
n

23

00 00 00 00 00 00 02 00 00 01 00 00 00 00

60

retrieves the current LCD or LED indicators d42_indicatorsex()

Memory Buttons
18 to 23

Memory Buttons
06 to 11

Memory Buttons
12 to 17

Memory Buttons
00 to 05

LCD
Indicators

LCD
Indicators

Figure 8. Nortel Model 7324 Telephone Indicators

 Example

void main(void)
{
 int devh;
 int rc = 0;
 char bufferp[81];

 /* Open Channel Device */
 if ((devh = dx_open("dxxxB1C1",NULL)) == -1)
 {
 printf("Error dx_open()\n");
 exit(-1);
 } /* End dx_open */

 /* Wait for incoming call */
 if ((rc = dx_wtring(devh, 2, DX_ONHOOK, -1)) == -1)
 {
 printf("Error dx_wtring()\n");
 dx_close(devh);
 exit(-1);
 }

61

d42_indicatorsex() retrieves the current LCD or LED indicators

 /* Get the Calling/Caller Id */
 if ((rc = d42_gtcallid(devh, buffer)) == -1)
 {
 printf("Error d42_gtcallid()\n");
 dx_close(devh);
 exit(-1);
 } /* End d42_gtcallid */

 printf("Caller Id = %s\n",buffer);

 /* Get the Indicator Information */
 if ((rc = d42_indicatorsex(devh, buffer,80)) == -1)
 {
 printf("Error d42_indicatorsex(): Error Code: %hX\n",ATDV_LASTERR (devh));
 dx_close(devh);
 exit(-1);
 } /* End d42_indicatorsex*/

 for (count = 0; count < 80; count++)
 printf("Indicators = %X\n",buffer[count]);

 dx_close(devh);

} /* End main */

 Errors

If this function returns -1 to indicate a failure, one of the following (most
common) codes will be contained in dx_errno. For a complete list of error codes
and definitions, refer to Appendix C.

ED42_BADDEVICE Invalid or wrong device handle
ED42_UNSUPPORTED Function not supported on this board
ED42_SYSTEM System level error
ED42_INVALARG Invalid argument passed to function

62

opens a feature session d42_openfeaturesession()

Name: int d42_openfeaturesession(devh, szDnNumber, piTermType,
iEvtMask)

Inputs: int devh • channel number
 char *szDnNumber • specifies the extension for

session
 int piTermType • pointer to type of terminal

display
 int iEvtMask • type of events session will

recognize
Returns: 0 • if success

 -1 • if error; see Errors below
Includes: D42LIB.H

Mode: synchronous

 Description

The d42_openfeaturesession() function opens a feature session on a specified
channel and phone set specified by an extension number in the buffer. Once a
feature session is opened, the user may use the functions that require a feature
session to be open, for example, d42_writetodisplay(). The events that require a
feature session to be open--for example T_SOFTKEYDATAREADY--are also
enabled. The user must pass a valid extension number to the function to establish
the feature session with the board channel and the extension number specified.

The type of display the phone set has available is returned when the
d42_openfeaturesession() function is called.

Parameter Description

devh specifies the channel number.
szDnNumber specifies the extension of the phone set on which the feature

session is to be opened
piTermType points to an unsigned integer that contains a value indicating

what type of display is available on a phone set. The
following values define the type of display available
 0x00 or 0x01: no display available
 0x02: 16 byte display
 0x03: 32 byte display

63

d42_openfeaturesession() opens a feature session

Parameter Description

iEvtMask The events to be received during the feature session. These
may be either D42_EVT_SOFTKEY (receive notification of
button pushes) or
D42_EVT_ASYNCCLOSEFEATSESSION (receive
notification of feature session close).

 Cautions

This function is valid only with a Nortel Norstar PBX.

Only one feature session is supported per channel.

This function sets the parameter values for the channel parameters
D4CH_SOFTKEYINPUT and D4CH_TERMINATEFEATURE to 1 for enabled.

 Example

void main(void)
 {
 int devh;
 int rc = 0;
 char szDnNumber = "221";
 int iTerminalType;
 int iEvtMask = D42_EVT_SOFTKEY | D42_EVT_ASYNCCLOSEFEATSESSION

 /* Open Channel Device */
 if ((devh = dx_open("dxxxB1C1",NULL))==-1)
 {
 printf("Error dx_open()\n");
 exit(-1);
 } /* End dx_open */

 /* Open a feature session */
 if ((rc = d42_openfeaturesession (devh, szDnNumber, &iTerminalType, iEvtMask))
== -1)
 {
 printf("Error d42_closefeaturesession():\n");
 dx_close(devh);
 exit(-1);
 } /* End d42_brdstatus*/

 /*something is done */

 /* close the feature session */
 if ((rc = d42_closefeaturesession (devh)) == -1)
 {
 printf("Error d42_closefeaturesession():\n");
 dx_close(devh);

64

opens a feature session d42_openfeaturesession()

 exit(-1);
 } /* End d42_brdstatus*/

 dx_close(devh);
 } /* End main */

 Errors

If this function returns -1 to indicate a failure, one of the following (most
common) codes will be contained in dx_errno. For a complete list of error codes
and definitions, refer to Appendix C.

ED42_BADDDEVICE Invalid or wrong device handle sent to the

function
ED42_UNSUPPORTED Function not supported on this board
ED42_SYSTEM System level error
ED42_INVALARG Invalid argument passed to function

 See Also

• d42_closefeaturesession()
• d42_writetodisplay()

65

d42_setparm() sets a board or channel parameter

Name: int d42_setparm(devh, parmnum, parmvalp)
Inputs: int devh • board or channel descriptor

 int parmnum • parameter name
 void *parmvalp • pointer to an application buffer

containing the parameter value
Returns: 0 • if success

 -1 • if error; see Errors below
Includes: D42LIB.H

Mode: synchronous

 Description

The d42_setparm() function sets a board or channel parameter. Depending on
the parameter to be set, the value can be either a character string or an integer.
The input board and channel parameter values for parmnum are listed in
Table 2.

Parameter Description

devh specifies the valid board device or channel device descriptor
obtained by a call to dx_open()

parmnum contains the parameter name to update
parmvalp application buffer containing the parameter value

NOTE: Setting board parameters affects all the channels on the board, but
setting channel parameters affects only the specified channel.

To set board parameters the following requirements must be met:

• the board must be open
• all channels on the board must be closed

To set channel parameters the following requirements must be met:

• the channel must be open
• the channel must be idle

This function returns a failure if:

• the board or channel descriptor is invalid
• any channels are open when setting board parameters

66

sets a board or channel parameter d42_setparm()

• when setting channel parameters, the channel is not open and idle
• a read-only parm is specified
• the value of parmnum is invalid
• parmnum is not supported on the specified board
• an MF parm is specified while MF detection is enabled

 Cautions

When setting a parameter, the user passes a pointer to a variable containing the
new parameter value. This variable should be treated as an unsigned integer for
all parameters. The application should cast the parmvalp parameter to a (void *)
to avoid compiler warnings.

Table 2. Board and Channel Parameters for d42_setparm()

Board Parameters Description

D4BD_CALLID Enable Caller ID
Values: 0 - disable (default)
 1 - enable

D4BD_REPORT_RESET Enable report reset
Values: 0 - disable (default)
 1 - enable

Channel Parameters Description

D4CH_CHANNELSTATUS Receive asynchronous channel
Values: 0 - disable (default)
 1 - enable

67

d42_setparm() sets a board or channel parameter

 Example

void main(void)
{
 int devh;
 int rc = 0;
 unsigned int parmvalp = 1;

/* Open Board Device */
if ((devh = dx_open("dxxxB1",NULL))==-1)
 {
printf("Error dx_open()\n");
exit(-1);
 } /* End dx_open */

if ((ATD4_BDTYPE (devh)) == TYP_D/82M1)
 {
/* Set the Board Parameter To Enable Calling/Caller Id */
if ((rc = d42_setparm(devh, D4BD_CALLID, (void *)&parmvalp)) == -1)
 {
printf("Error d42_setparm(D4BD_CALLID)\n");
dx_close(devh);
exit(-1);
 } /* End d42_setparm */

 } /* end ATD4_BDTYPE */
dx_close(devh);
} /* End main */

 Errors

If this function returns -1 to indicate a failure, one of the following (most
common) codes will be contained in dx_errno. For a complete list of error codes
and definitions, refer to Appendix C.

ED42_BADDEVICE Invalid or wrong device handle
ED42_UNSUPPORTED Function not supported on this board
ED42_SYSTEM System level error
ED42_INVALARG Invalid argument passed to function

 See Also

• d42_getparm()

68

places information on a phone set’s display d42_writetodisplay()

Name: int d42_writetodisplay(devh, szMsg)
Inputs: int devh • channel device

 char *szMsg • message to be displayed
Returns: 0 • if success

 -1 • if error; see Errors below
Includes: D42LIB.H

Mode: synchronous

 Description

The d42_writetodisplay() function places information on a phone set’s display.
An ASCII string held within the character buffer contains the information shown
on the phone set display, if a feature session has been successfully established
using the d42_openfeaturesession() function. The maximum size of the display
buffer is dependent on the type of phone set display on the channel that the
function calls.

The maximum size of the buffer is returned by the d42_openfeaturesession()
function when a feature session is established.

Parameter Description

devh specifies the channel device
szMsg specifies the message to display on a phone set during a feature

session.

 Cautions

This function is valid only with a Nortel Norstar PBX.

The pointer must point to a buffer that is 49 characters long even though the
displays supported will accept a maximum of either 16 or 32 characters.

A feature session must be opened using the d42_openfeaturesession() function
to use the d42_writetodisplay() function.

69

d42_writetodisplay() places information on a phone set’s display

 Example

void main(void)
 {
 int devh;
 int rc = 0;
 char szDnNumber = "221";
 int iTerminalType;
 int iEvtMask = D42_EVT_SOFTKEY | D42_EVT_ASYNCCLOSEFEATSESSION

 /* Open Channel Device */
 if ((devh = dx_open("dxxxB1C1",NULL))==-1)
 {
 printf("Error dx_open()\n");
 exit(-1);
 } /* End dx_open */

 /* Open a feature session */
 if ((rc = d42_openfeaturesession (devh, szDnNumber, &iTerminalType, iEvtMask))
== -1)
 {
 printf("Error d42_closefeaturesession():\n");
 dx_close(devh);
 exit(-1);
 } /* End d42_brdstatus*/

 d42_writetodisplay (devh, "This is a test");

 /* close the feature session */
 if ((rc = d42_closefeaturesession (devh)) == -1)
 {
 printf("Error d42_closefeaturesession():\n");
 dx_close(devh);
 exit(-1);
 } /* End d42_brdstatus*/

 dx_close(devh);
 } /* End main */

 Errors

If this function returns -1 to indicate a failure, one of the following (most
common) codes will be contained in dx_errno. For a complete list of error codes
and definitions, refer to Appendix C.

ED42_BADDDEVICE Invalid or wrong device handle sent to the

function
ED42_NOFEATURESESSION No feature session has been opened on the

channel.
ED42_UNSUPPORTED Function not supported on this board
ED42_SYSTEM System level error
ED42_INVALARG Invalid argument passed to function

70

places information on a phone set’s display d42_writetodisplay()

 See Also

• d42_closefeaturesession()
• d42_openfeaturesession()

71

4. Programming Considerations

Specific information about using the D/42 runtime library to perform PBX
functions is included in this chapter. A general description of the PBX functions
and considerations unique to each supported PBX system are included for the
following:

• Opening a channel on a PBX integration board
• Accessing PBX features using dial strings

• turn on/off message waiting indicators
• dial programmable keys
• call transfer

• Disconnect supervision
• Converting existing D/4x applications into D/42 applications

4.1. Opening a Channel on the PBX Integration Board

 Description

During initialization of the system, the R4 firmware file is downloaded to the
board. Once Firmware is downloaded, the appropriate PBX Signaling Link
firmware load file is downloaded to a specified area in memory on the board. The
PBXDRVR sub-system then downloads and starts this PBX Signaling Link
firmware from its place in memory. The PBX Signaling Link firmware can then
begin to synchronize with the PBX (assuming that the board is physically
connected to the PBX). This process can take up to 60 seconds to complete.
During this time period, the board should not receive any calls from the PBX.
Your application should ensure that the board is “alive” before any other
functions are accessed.

NOTE: Failure to ensure that the connection is established (synchronized)
causes unpredictable results.

73

PBX Integration Software Reference

After synchronization is complete, the dx_open() function is used to open the
channel by using a valid device name to identify the channel you wish to open.
The oflags parameter is used to set the attributes of the channel being opened.
The attributes determine what types of I/O functions (recording and playback of
voice data) can be performed on the open channel.

 Example

int cd; /* channel descriptor */
int sysinit()
{

/* open the channel VOXB0C0 */
if ((cd = dx_open("VOXB0C0",O_RDWR)) == -1)
 {
/* process error */
exit(1);
 }

/* wait for 60 seconds for switch */
Sleep(60000L);

exit(0);

}

The dx_close() function is used to close a previously opened channel. Once the
channel is closed, a process can no longer perform any action on that channel
using that device handle. See the Voice Software Reference for more information
about the dx_open() and dx_close() functions.

4.2. Accessing PBX Features Using Dial Strings

You can access PBX features such as turning on and off a message waiting
indicator, dialing programmable keys, and transferring calls, using dial strings in
the dx_dial() function. dx_dial() is a D/4x voice function. For detailed
information on how to use this function, see the Voice Software Reference .

74

4. Programming Considerations

Input parameters for the dx_dial() function are defined as follows:

dx_dial()
Name: int dx_dial(cd, dialstrp, capp, mode)
Inputs: int cd channel descriptor
 char *dialstrp pointer to ASCIIZ dial string
 DX_CAP *capp pointer to Call Progress Analysis Parameter

structure
 unsigned short mode asynchronous/synchronous setting and call

analysis flag

The dial string accepts escape sequences that are used to access PBX features.
Acceptable ASCII characters for each dial string are the standard DTMF dialing
and control characters described in the Voice Software Reference , and the
additional characters described in the following paragraphs.

The procedure for accessing a feature is as follows:

1. Set the hook state (on-hook or off-hook) required for dialing the feature dial
string.

2. Use the appropriate dial string (e.g., <ESC>K).

NOTE: In some cases, a pause (“,”) may be needed after the entire dial string to
give the switch enough time to respond to the command before issuing
the next command.

4.2.1. On-Hook and Off-Hook Dialing Note

When using the PBX integration board with the supported MITEL and Siemens
PBXs, you can make a connection without explicitly going off-hook. With a
channel in the on-hook state, if you dx_dial() a valid extension, you can make a
connection. However, if you do a dx_sethook() to go back on-hook, you cannot
go back to the on-hook state no matter how many on-hooks are performed. You
must dx_sethook() off-hook, then on-hook (or dx_dial() the Release key, in the
case of the Siemens).

75

PBX Integration Software Reference

4.2.2. Turn On the Message Waiting Indicator

 Description

A dial string instructs the PBX to light the message waiting indicator on the
specific extension. The dial string contains the following components:

<ESC> the ASCII escape character (0x1B).

command an ASCII character that identifies the “turn on message
waiting indicator” feature.

, pause (optional)

<extension> the number of the extension whose message waiting
indicator is to be lit.

The dial string for all sported PBXs is listed below.

NOTE: The pause in the dial string is sometimes needed to give the PBX time to
activate the feature. The command character is case sensitive. Characters
with the incorrect case are ignored.

NEC and Hicom 150 - Message Waiting Indicator (MWI) Requirement

The default access dial strings for the PBX integration board are set to **9 (on)
and ##9 (off). If the PBX has not been set to use these dial strings, you must:

• Use the d42_setparm() function to change the following parameters to the
dial string programmed on the PBX:

• D4BD_MSGACCESSON
• D4BD_MSGACCESSOFF

OR

• Change the PBX access dial string to **9 (on) and ##9 (off).

76

4. Programming Considerations

 Turn On the Message Waiting Indicator Dial String

<ESC>O,<extension>,<ESC>O

All PBXs - Except Nortel Meridian

For all supported PBXs, except Nortel Meridian, use the following technique to
turn on the MWI using dx_dial() and the dial string.

1. Go Off Hook using dx_sethook()

2. Call the dx_dial() function. The dial string is <ESCO><extention><ESCO>

3. Go On hook using the dx_sethook() again

Use the optional pause character (comma) in the dial string when necessary.

Nortel Meridian - Exception

For the Nortel Meridian Switch only, skip items 1 and 3 above:

• The combined use of dx_sethook() and dx_dial() does not work for MWI.

• We also strongly recommend use of pause characters (comma) in the dial
string to avoid problems.

Characters are case sensitive.

 Example

unsigned int cd; /* channel descriptor */
char digstr[40];

int turn_on_mwl()
{

/* set up dial string */
switch (ATD4_CHTYPE(cd))
 {
case TYP_D/82M1:
case TYP_D/82L4:
case TYP_D/82L2:
sprintf(digstr,"%c0,555,%cO",ESC,ESC);
break;
 }

77

PBX Integration Software Reference

/* turn on message waiting indicator on ext. 555 */
if (dx_dial(cd,digstr,NULL,EV_SYNC) == -1)
 {
printf("\nDial failed\n");
exit (1);
 }

return (0);
}

4.2.3. Turn Off the Message Waiting Indicator Dial String

 Description

A dial string instructs the PBX to turn off the message waiting indicator on the
specific extension. The dial string contains the following components:

<ESC> the ASCII escape character (1B hex).

command an ASCII character that identifies the “turn off message
waiting indicator” feature.

, pause (optional)

<extension> the number of the extension whose message waiting
indicator is to be turned off.

The dial string for all supported PBXs is listed below.

NOTES: 1. The pause in the dial string is sometimes needed to give the PBX
time to activate the feature.

2. The command character is case sensitive.
3. Characters with the incorrect case are ignored.

 Turn Off the Message Waiting Indicator Dial String

<ESC>F,<extension>,<ESC>F

All PBXs - except Nortel Meridian

For all supported PBXs except Nortel Meridian, use the following technique to
turn off the MWI using dx_dial() and the dial string.

78

4. Programming Considerations

1. Go Off Hook using dx_sethook()

2. Call the dx_dial() function. The dial string is <ESCF><extention><ESCF>

3. Go On hook using the dx_sethook() again

Use the optional pause character (comma) in the dial string when necessary.

Nortel Meridian - exception

For the Nortel Meridian Switch only, skip items 1 and 3 above:

• The combined use of dx_sethook() and dx_dial() does not work for MWI.

• We also strongly recommend use of pause characters (comma) in the dial
string to avoid problems.

Characters are case sensitive.

 Example

unsigned int cd; /* channel descriptor */
char digstr[40];

int turn_off_mwl()
{

/* set up dial string */
switch (ATD4_CHTYPE(cd))
 {
case TYP_D/82M1:
case TYP_D/82L4:
case TYP_D/82L2:
sprintf(digstr,"%cF,555,%cF",ESC,ESC);
break;
 }

/* turn off message waiting indicator on ext. 555 */
if (dx_dial(cd,digstr,NULL,EV_SYNC) == -1)
 {
printf("\nDial failed\n");
exit (1);
 }

return (0);
}

79

PBX Integration Software Reference

4.2.4. Dial Programmable Keys

 Description

The dial string <ESC>K<key> enables the PBX integration board to access
features programmed into the programmable keys available to extensions on the
PBX. The dial string contains the following components:

<ESC> the ASCII escape character (1B hex)

K identifies the Dial Programmable Key feature

<key> indicates which programmable feature key to access

, pause (optional)

NOTE: The pause in the dial string may be needed to give the PBX time to
activate the feature. The “K” and <key> characters are case sensitive.
Dial strings using a lower case “k” are ignored. Use the correct case for
the <key> characters to ensure the proper function is accessed.

 Avaya Definity 7434 (4-wire)

To access the dial string features on a Avaya 7434 4-wire telephone, refer to
Figure 9 and use the direct key dialing sequences listed in Table 3. Also, refer to
the PBX Integration Board User’s Guide for more detailed information about
programmable keys.

NOTE: When using the PBX integration board with a Avaya PBX, the inter-
digit delay for dialing should be increased to equal or greater than
150mS in the application. With the firmware default of 50mS, the
Avaya PBX’s DTMF detection sometimes fails to recognize back-to-
back dialing of any digit.

80

4. Programming Considerations

gU

fT

eS

dR

cQ

bP

ZD N

YC M

G

I

XB L

F

H

WA K

J aE

ij

kl

O

hV

Message Select

on/off

Figure 9. Avaya 7434 (4-wire) Telephone

81

PBX Integration Software Reference

Table 3. Avaya 7434 (4-wire) Direct Key Dialing Sequences

Dial Code Key Description

<ESC>KA Feature Key 00

<ESC>KB Feature Key 01

<ESC>KC Feature Key 02

<ESC>KD Feature Key 03

<ESC>KE Feature Key 04

<ESC>KF Feature Key 05

<ESC>KG Feature Key 06

<ESC>KH Feature Key 07

<ESC>KI Feature Key 08

<ESC>KJ Feature Key 09

<ESC>KK Feature Key 10

<ESC>KL Feature Key 11

<ESC>KM Feature Key 12

<ESC>KN Feature Key 13

<ESC>KO Feature Key 14

<ESC>KP Feature Key 15

<ESC>KQ Feature Key 16

<ESC>KR Feature Key 17

<ESC>KS Feature Key 18

<ESC>KT Feature Key 19

<ESC>KU Feature Key 20

<ESC>KV Feature Key 21

<ESC>KW Feature Key 22

<ESC>KX Feature Key 23

<ESC>KY Feature Key 24

<ESC>KZ Feature Key 25

82

4. Programming Considerations

Dial Code Key Description

<ESC>Ka Feature Key 26

<ESC>Kb Feature Key 27

<ESC>Kc Feature Key 28

<ESC>Kd Feature Key 29

<ESC>Ke Feature Key 30

<ESC>Kf Feature Key 31

<ESC>Kg Feature Key 32

<ESC>Kh Feature Key 33

<ESC>Ki Hold

<ESC>Kj Drop

<ESC>Kk Transfer

<ESC>Kl Conference

<ESC>DI Enable in-band signaling
<ESC>DO Enable out-of-band signaling

83

PBX Integration Software Reference

 Avaya Definity 8434 (2-wire)

To access the dial string features on a 2-wire Avaya 8434 telephone, refer to
Figure 10 to and use the direct key dialing sequences listed in Table 4. Also, refer
to the PBX Integration Board User’s Guide for more detailed information about
programmable keys.

NOTE: When using the PBX integration board with a Avaya PBX, the inter-
digit delay for dialing should be increased to equal or greater than
150mS in the application. With the firmware default of 50mS, the Avaya
PBX’s DTMF detection sometimes fails to recognize back-to-back
dialing of any digit.

U

V

S

R

Q

P

M

L

T

a

Z

Y

W

b

g

h

d

D

E

B

A

C

G

H

I

J

F

m n

r

po

s

q

O

N

K

X

c

e

f

Figure 10. Avaya 8434 (2-wire) Telephone

84

4. Programming Considerations

Table 4. Avaya 8434DX (2-wire) Direct Key Dialing Sequences

Dial Code Key Description

<ESC>KA Feature Key 00

<ESC>KB Feature Key 01

<ESC>KC Feature Key 02

<ESC>KD Feature Key 03

<ESC>KE Feature Key 04

<ESC>KF Feature Key 05

<ESC>KG Feature Key 06

<ESC>KH Feature Key 07

<ESC>KI Feature Key 08

<ESC>KJ Feature Key 09

<ESC>KK Feature Key 10

<ESC>KL Feature Key 11

<ESC>KM Feature Key 12

<ESC>KN Feature Key 13

<ESC>KO Feature Key 14

<ESC>KP Feature Key 15

<ESC>KQ Feature Key 16

<ESC>KR Feature Key 17

<ESC>KS Feature Key 18

<ESC>KT Feature Key 19

<ESC>KU Feature Key 20

<ESC>KV Feature Key 21

<ESC>KW Feature Key 22

<ESC>KX Feature Key 23

<ESC>KY Feature Key 24

<ESC>KZ Feature Key 25

85

PBX Integration Software Reference

Dial Code Key Description

<ESC>Ka Feature Key 26

<ESC>Kb Feature Key 27

<ESC>Kc Feature Key 28

<ESC>Kd Feature Key 29

<ESC>Ke Feature Key 30

<ESC>Kf Feature Key 31

<ESC>Kg Feature Key 32

<ESC>Kh Feature Key 33

<ESC>Ki Hold

<ESC>Kj Drop

<ESC>Kk Transfer

<ESC>Kl Conference

<ESC>Km Display Key 0

<ESC>Kn Display Key 1

<ESC>Ko Display Key 2

<ESC>Kp Display Key 3

<ESC>Kq Display Key 4

<ESC>Kr Display Key 5 - Menu

<ESC>Ks Display Key 6- Exit

<ESC>DI Enable in-band signaling
<ESC>DO Enable out-of-band signaling

NOTE: The PBX integration board does not currently support the Shift, Test,
Mute, and Speaker feature buttons, nor does it support the Prev and Next
display keys. In Figure 10 above, these keys are shown without an
assigned dialing sequence.

86

4. Programming Considerations

 Siemens ROLM

To access the dial string features on a Siemens ROLMphone 400, refer to
Figure 11 and use the direct key dialing sequences listed in Table 5.

i

ZUPKF

B e

j

aVQLG

C f

k

bWRMH

D

cXSNI

g

h

YTOJE

A d

CALL WAITING

Figure 11. ROLMphone 400 Telephone

Also, refer to the PBX Integration Board User’s Guide for more detailed
information about programmable keys.

87

PBX Integration Software Reference

Table 5. Siemens ROLMphone 400 Direct Key Dialing Sequences

Dial Code Key Description

<ESC>K0 Dialpad 0
<ESC>K1 Dialpad 1
<ESC>K2 Dialpad 2
<ESC>K3 Dialpad 3
<ESC>K4 Dialpad 4
<ESC>K5 Dialpad 5
<ESC>K6 Dialpad 6
<ESC>K7 Dialpad 7
<ESC>K8 Dialpad 8
<ESC>K9 Dialpad 9
<ESC>K* Dialpad *
<ESC>K# Dialpad #
<ESC>KA Feature Key 09 - LINE
<ESC>KB Feature Key 08
<ESC>KC Feature Key 07
<ESC>KD Feature Key 06 - CLEAR
<ESC>KE Feature Key 05
<ESC>KF Feature Key 04 - DDS (for Message Waiting Light OFF)
<ESC>KG Feature Key 03 - DDS (for Message Waiting Light ON)
<ESC>KH Feature Key 02
<ESC>KI Feature Key 01 - MAILBOX (MWL)
<ESC>KJ Feature Key 15
<ESC>KK Feature Key 14
<ESC>KL Feature Key 13
<ESC>KM Feature Key 12
<ESC>KN Feature Key 11

88

4. Programming Considerations

Dial Code Key Description

<ESC>KO Feature Key 20 - PROG
<ESC>KP Feature Key 19
<ESC>KQ Feature Key 18
<ESC>KR Feature Key 17
<ESC>KS Feature Key 16
<ESC>KT Feature Key 25
<ESC>KU Feature Key 24
<ESC>KV Feature Key 23
<ESC>KW Feature Key 22
<ESC>KX Feature Key 21
<ESC>KY Feature Key 35
<ESC>KZ Feature Key 34
<ESC>Ka Feature Key 33
<ESC>Kb Feature Key 32
<ESC>Kc Feature Key 31
<ESC>Kd Feature Key 29
<ESC>Ke Feature Key 28
<ESC>Kf Feature Key 27
<ESC>Kg Feature Key 26
<ESC>Kh Feature Key 37 - MWCTR
<ESC>Ki Feature Key 36 - SPEAKER
<ESC>Kj Feature Key 40 - Volume Down
<ESC>Kk Feature Key 39 - Volume Up
<ESC>Kl Feature Key 10
<ESC>Km Feature Key 30
<ESC>Kn Feature Key 38 - XFER
<ESC>DI Enable in-band signaling
<ESC>DO Enable out-of-band signaling

89

PBX Integration Software Reference

 Siemens Hicom

To access the dial string features on a Siemens Hicom Optiset E telephone,
depending on which PBX you are using, refer to Figure 12 and Figure 13, along
with the direct key dialing sequences listed in Table 6 and Table 7. Also, refer to
the PBX Integration Board User’s Guide for more detailed information about
programmable keys.

�

� � �

�

�

�

��

	

�

�

�

�

�

�

�

� �

�

�

�

�

��

�

������ 	�

	"�#$ %�%&"�

��"'��((�) �

�&��

�&��

�&��

��"'��((�) �

��&)"*

	�)�+, ��"'��((�) �

��"'��((�) �

��"'��((�) �

Figure 12. Siemens Optiset E Telephone with a Hicom 150

90

4. Programming Considerations

Table 6. Siemens Hicom Optiset E Direct Key Dialing Sequences
with Hicom 150

Dial Code Key Description

<ESC>K0 Dialpad 0
<ESC>K1 Dialpad 1
<ESC>K2 Dialpad 2
<ESC>K3 Dialpad 3
<ESC>K4 Dialpad 4
<ESC>K5 Dialpad 5
<ESC>K6 Dialpad 6
<ESC>K7 Dialpad 7
<ESC>K8 Dialpad 8
<ESC>K9 Dialpad 9
<ESC>K* Dialpad *
<ESC>K# Dialpad #
<ESC>KA Feature Key 00 - Programmable
<ESC>KB Feature Key 01 - Programmable
<ESC>KC Feature Key 02 - Programmable
<ESC>KD Feature Key 03 - Programmable
<ESC>KE Feature Key 04 - Programmable
<ESC>KF Feature Key 05 - Programmable
<ESC>KG Feature Key 06 - Consultation
<ESC>KH Feature Key 07 - Programmable
<ESC>KI Feature Key 08 - Programmable
<ESC>KJ Feature Key 09 - Programmable
<ESC>KK Feature Key 10 - Programmable
<ESC>KL Feature Key 11 - General Call
<ESC>KM Select OptiGuide key (for selecting display options)

91

PBX Integration Software Reference

Dial Code Key Description

<ESC>KN Scroll Back OptiGuide key (for scrolling display options)
<ESC>KO Scroll Forward OptiGuide key (for scrolling display options)
<ESC>KP Plus (+) key
<ESC>KQ Minus (-) key
<ESC>DI Enable in-band signaling
<ESC>DO Enable out-of-band signaling

92

4. Programming Considerations

L

M N O

K

J

I

HD

C

B

A

G

E

F

1

P

Q

8

2 3

4

7

5

9

0*

6

General Call

Consultation

Programmable

Line

Line

Line

MWL_OFF

Mailbox

Callback Programmable

Programmable

MWL_ON

Figure 13. Siemens Optiset E Telephone with a Hicom 300

93

PBX Integration Software Reference

Table 7. Siemens Hicom Optiset E Direct Key Dialing Sequences
with Hicom 300

Dial Code Key Description

<ESC>K0 Dialpad 0
<ESC>K1 Dialpad 1
<ESC>K2 Dialpad 2
<ESC>K3 Dialpad 3
<ESC>K4 Dialpad 4
<ESC>K5 Dialpad 5
<ESC>K6 Dialpad 6
<ESC>K7 Dialpad 7
<ESC>K8 Dialpad 8
<ESC>K9 Dialpad 9
<ESC>K* Dialpad *
<ESC>K# Dialpad #
<ESC>KA Feature Key 00 - Mailbox
<ESC>KB Feature Key 01 - Callback
<ESC>KC Feature Key 02 - (Configure to dial MWL_ON)
<ESC>KD Feature Key 03 - (Configure to dial MWL_OFF)
<ESC>KE Feature Key 04 - Programmable
<ESC>KF Feature Key 05 - Programmable
<ESC>KG Feature Key 06 - Consultation
<ESC>KH Feature Key 07- Line
<ESC>KI Feature Key 08 - Line
<ESC>KJ Feature Key 09 - Line
<ESC>KK Feature Key 10 - Line
<ESC>KL Feature Key 11 - General Call
<ESC>KM Select OptiGuide key (for selecting display options)

94

4. Programming Considerations

Dial Code Key Description

<ESC>KN Scroll Back OptiGuide key (for scrolling display options)
<ESC>KO Scroll Forward OptiGuide key (for scrolling display options)
<ESC>KP Plus (+) key
<ESC>KQ Minus (-) key
<ESC>DI Enable in-band signaling
<ESC>DO Enable out-of-band signaling

95

PBX Integration Software Reference

 MITEL SX Series PBXs

To access the dial string features on a MITEL SUPERSET 420 and 430
telephones, refer to Figure 14 and Table 8 and use the direct key dialing
sequences listed in Figure 15 and Table 9. Also, refer to the PBX Integration
Board User’s Guide for more detailed information about programmable keys.

*

7

4
1

0

8

5
2

#

9

6
3

M

b ca

Q

N T

P

U

VO

S

R

Figure 14. MITEL SUPERSET 420 Telephone

96

4. Programming Considerations

Table 8. MITEL SX SUPERSET 420 Direct Key Dialing Sequences

Dial Code Key Description
<ESC>K0 Dialpad 0
<ESC>K1 Dialpad 1
<ESC>K2 Dialpad 2
<ESC>K3 Dialpad 3
<ESC>K4 Dialpad 4
<ESC>K5 Dialpad 5
<ESC>K6 Dialpad 6
<ESC>K7 Dialpad 7
<ESC>K8 Dialpad 8
<ESC>K9 Dialpad 9
<ESC>K* Dialpad *
<ESC>K# Dialpad #
<ESC>KA Personal Key 00

<ESC>KB Personal Key 06

<ESC>KC Personal Key 01

<ESC>KD Personal Key 07

<ESC>KE Personal Key 02

<ESC>KF Personal Key 08

<ESC>KG Personal Key 03

<ESC>KH Personal Key 09

<ESC>KI Personal Key 04

<ESC>KJ Personal Key 10

<ESC>KK Personal Key 05

<ESC>KL Personal Key 11

<ESC>KM Message Key

<ESC>KN SuperKey

97

PBX Integration Software Reference

Dial Code Key Description

<ESC>KO Cancel

<ESC>KP Microphone

<ESC>KQ Hold

<ESC>KR Redial

<ESC>KS Speaker

<ESC>KT Trans/Conf

<ESC>KU V/T/C up

<ESC>KV V/T/C down

<ESC>Ka Left Softkey

<ESC>Kb Middle Softkey

<ESC>Kc Right Softkey

<ESC>DI Enable in-band signaling
<ESC>DO Enable out-of-band signaling

98

4. Programming Considerations

b
f
c

e

*

7

4

1

0

8

5

2

#

9

6

3M Q

U

VN

R

S P

d

Figure 15. MITEL SUPERSET 430 Telephone

Table 9. MITEL SX SUPERSET 430 Direct Key Dialing Sequences

Dial Code Key Description
<ESC>K0 Dialpad 0
<ESC>K1 Dialpad 1
<ESC>K2 Dialpad 2
<ESC>K3 Dialpad 3
<ESC>K4 Dialpad 4
<ESC>K5 Dialpad 5
<ESC>K6 Dialpad 6

99

PBX Integration Software Reference

Dial Code Key Description
<ESC>K7 Dialpad 7
<ESC>K8 Dialpad 8
<ESC>K9 Dialpad 9
<ESC>K* Dialpad *
<ESC>K# Dialpad #
<ESC>KA Personal Key 00

<ESC>KB Personal Key 06

<ESC>KC Personal Key 01

<ESC>KD Personal Key 07

<ESC>KE Personal Key 02

<ESC>KF Personal Key 08

<ESC>KG Personal Key 03

<ESC>KH Personal Key 09

<ESC>KI Personal Key 04

<ESC>KJ Personal Key 10

<ESC>KK Personal Key 05

<ESC>KL Personal Key 11

<ESC>KM Message Key

<ESC>KN SuperKey

<ESC>KO Not Used

<ESC>KP Microphone

<ESC>KQ Hold

<ESC>KR Applications

<ESC>KS Speaker

<ESC>KT Not Used

<ESC>KU V/T/C up

<ESC>KV V/T/C down

<ESC>Ka Top Left Softkey

100

4. Programming Considerations

Dial Code Key Description

<ESC>Kb Top Middle Softkey

<ESC>Kc Top Right Softkey

<ESC>Kd Bottom Left Softkey

<ESC>Ke Bottom Middle Softkey

<ESC>Kf Bottom Right Softkey

<ESC>DI Enable in-band signaling

<ESC>DO Enable out-of-band signaling

101

PBX Integration Software Reference

 Nortel Norstar

To access the dial string features on a Nortel Model 7324 telephone, refer to
Figure 16 while using the direct key dialing sequences listed in Table 10. Also,
refer to the PBX Integration Board User’s Guide for more detailed information
about programmable keys.

NOTE: In-band and out-of-band signaling – the default is set to out-of-band. If
you need to invoke in-band signaling, you must use the <ESC>DI dial
string. The signaling remains in-band until either the sethook() function
is used to go on hook, or the <ESC>DO dial string is used.

9

8

K

H

E

B

A

I

F

C

L

J

G

D

O

N

M

7

6

5

3

2

1

0

4

P Q R

V

Ua

W

X

Y

Z

b

c

d

e

f

T

S

Figure 16. Nortel M7324 Telephone

102

4. Programming Considerations

Table 10. Nortel Norstar M7324 Direct Key Dialing Sequences

Dial Code Key Description

<ESC>K0 Memory Button 00
<ESC>K1 Memory Button 01
<ESC>K2 Memory Button 02
<ESC>K3 Memory Button 03
<ESC>K4 Memory Button 04
<ESC>K5 Memory Button 05
<ESC>K6 Memory Button 06
<ESC>K7 Memory Button 07
<ESC>K8 Memory Button 08
<ESC>K9 Memory Button 09
<ESC>KA Dialpad 0
<ESC>KB Dialpad 1
<ESC>KC Dialpad 2
<ESC>KD Dialpad 3
<ESC>KE Dialpad 4
<ESC>KF Dialpad 5
<ESC>KG Dialpad 6
<ESC>KH Dialpad 7
<ESC>KI Dialpad 8
<ESC>KJ Dialpad 9
<ESC>KK Dialpad *
<ESC>KL Dialpad #
<ESC>KM Release
<ESC>KN Feature
<ESC>KO Hold

103

PBX Integration Software Reference

Dial Code Key Description

<ESC>KP Display button 00
<ESC>KQ Display button 01
<ESC>KR Display button 02
<ESC>KS Memory Button 10
<ESC>KT Memory Button 11
<ESC>KU Memory Button 12
<ESC>KV Memory Button 13
<ESC>KW Memory Button 14
<ESC>KX Memory Button 15
<ESC>KY Memory Button 16
<ESC>KZ Memory Button 17
<ESC>Ka Memory Button 18
<ESC>Kb Memory Button 19
<ESC>Kc Memory Button 20
<ESC>Kd Memory Button 21
<ESC>Ke Memory Button 22
<ESC>Kf Memory Button 23
<ESC>DI Enable in-band signaling
<ESC>DO Enable out-of-band signaling

104

4. Programming Considerations

 Nortel Meridian 1 M2616

To access the dial string features on a Nortel Model 2616 telephone, refer to
Figure 17 and use the direct key dialing sequences listed in Table 11. Also, refer
to the PBX Integration Board User’s Guide for more detailed information about
programmable keys.

J

K

L

M

N

O

P

I

*

7

4

1

0

8

5

2

#

9

6

3

H

G

F

D

C

B

A

E

Q

R

Figure 17. Nortel Meridian 1 M2616 Telephone

105

PBX Integration Software Reference

Table 11. Nortel Meridian 1 M2616 Direct Key Dialing Sequences

Dial Code Key Description

<ESC>K0 Dialpad 0
<ESC>K1 Dialpad 1
<ESC>K2 Dialpad 2
<ESC>K3 Dialpad 3
<ESC>K4 Dialpad 4
<ESC>K5 Dialpad 5
<ESC>K6 Dialpad 6
<ESC>K7 Dialpad 7
<ESC>K8 Dialpad 8
<ESC>K9 Dialpad 9
<ESC>K* Dialpad *
<ESC>K# Dialpad #
<ESC>KA Feature Key 00 - Primary Call

<ESC>KB Feature Key 01

<ESC>KC Feature Key 02

<ESC>KD Feature Key 03 - Transfer

<ESC>KE Feature Key 04

<ESC>KF Feature Key 05

<ESC>KG Feature Key 06

<ESC>KH Feature Key 07 - Program

<ESC>KI Feature Key 08

<ESC>KJ Feature Key 09

<ESC>KK Feature Key 10

<ESC>KL Feature Key 11

<ESC>KM Feature Key 12

<ESC>KN Feature Key 13

106

4. Programming Considerations

Dial Code Key Description

<ESC>KO Feature Key 14

<ESC>KP Feature Key 15

<ESC>KQ Hold
<ESC>KR Release
<ESC>DI Enable in-band signaling
<ESC>DO Enable out-of-band signaling

107

PBX Integration Software Reference

 NEC KTS/PBX

To access the dial string features on a DTerm Series III telephone, refer to
Figure 18 and use the direct key dialing sequences listed in Table 12. Also, refer
to the PBX Integration Board User’s Guide for more detailed information about
programmable keys.

NOTE: For in-band and out-of-band signaling, the default is set to out-of-band.
If you need to invoke in-band signaling, you must use the <ESC>DI dial
string. The signaling will remain in-band until either the dx_sethook()
function is use to go on hook, or the <ESC>DO dial string is used.

W X Y Z

a b c d

e f g h

i j k l

1 2 3

4 5 6

7 8 9

K

L

I

H

NMGJ

CBA

U V

m n

o p

q r

s t

u v

w x

y z

()

+ /

< >

Figure 18. NEC DTerm III Telephone

108

4. Programming Considerations

Table 12. NEC KTS/PBX Direct Key Dialing Sequences

Dial Code Key Description

<ESC>K1 Dialpad 1
<ESC>K2 Dialpad 2
<ESC>K3 Dialpad 3
<ESC>K4 Dialpad 4
<ESC>K5 Dialpad 5
<ESC>K6 Dialpad 6
<ESC>K7 Dialpad 7
<ESC>K8 Dialpad 8
<ESC>K9 Dialpad 9
<ESC>KA Dialpad 0
<ESC>KB Dialpad *
<ESC>KC Dialpad #
<ESC>KG Function key 0 - TRF
<ESC>KH Function key 1 - LNR
<ESC>KI Function key 2 - CNF
<ESC>KJ Function key 3 - HOLD
<ESC>KK Function key 4 - RECALL
<ESC>KL Function key 5 - FNC
<ESC>KM Function key 6 - ANS
<ESC>KN Function key 7 - SPKR
<ESC>KU Volume up
<ESC>KV Volume down
<ESC>KW Line key 1
<ESC>KX Line key 2
<ESC>KY Line key 3
<ESC>KZ Line key 4

109

PBX Integration Software Reference

Dial Code Key Description

<ESC>Ka Line key 5
<ESC>Kb Line key 6
<ESC>Kc Line key 7
<ESC>Kd Line key 8
<ESC>Ke Line key 9
<ESC>Kf Line key 10
<ESC>Kg Line key 11
<ESC>Kh Line key 12
<ESC>Ki Line key 13
<ESC>Kj Line key 14
<ESC>Kk Line key 15
<ESC>Kl Line key 16
<ESC>Km Direct Station Select (DDS) key 1
<ESC>Kn Direct Station Select (DDS) key 2
<ESC>Ko Direct Station Select (DDS) key 3
<ESC>Kp Direct Station Select (DDS) key 4
<ESC>Kq Direct Station Select (DDS) key 5
<ESC>Kr Direct Station Select (DDS) key 6
<ESC>Ks Direct Station Select (DDS) key 7
<ESC>Kt Direct Station Select (DDS) key 8
<ESC>Ku Direct Station Select (DDS) key 9
<ESC>Kv Direct Station Select (DDS) key 10
<ESC>Kw Direct Station Select (DDS) key 11
<ESC>Kx Direct Station Select (DDS) key 12
<ESC>Ky Direct Station Select (DDS) key 13
<ESC>Kz Direct Station Select (DDS) key 14
<ESC>K(Direct Station Select (DDS) key 15
<ESC>K) Direct Station Select (DDS) key 16

110

4. Programming Considerations

Dial Code Key Description

<ESC>K+ Direct Station Select (DDS) key 17
<ESC>K/ Direct Station Select (DDS) key 18
<ESC>K< Direct Station Select (DDS) key 19
<ESC>K> Direct Station Select (DDS) key 20
<ESC>DI Enable in-band DTMF signaling
<ESC>DO Enable out-of-band DTMF signaling

 Example

int cd; /* channel descriptor */
char digstr[40];

int set_dpk()
{

/* set up dial string to press Speaker key */
switch (ATD4_CHTYPE(cd))
 {
case TYP_D/82M1:
sprintf(digstr,"%cKD",ESC);
break;
case TYP_D/82L4:
case TYP_D/82L2:
sprintf(digstr,"%cKl",ESC);
break;

}

/* Program dial programmable key */
if (dx_dial(cd,digstr,NULL, EV_SYNC))
 {
printf("\nDial failed\n");
exit(1);
 }

exit(0);
}

111

PBX Integration Software Reference

4.2.5. Transferring a Call

 Description

The hook flash character (“&” by default) is used to initiate a transfer instead of
an escape sequence as in the other feature dial strings. The hook flash is used
because many PBX switches commonly use a hook flash as a transfer key. The
following procedure is used by an application to transfer a call:

1. The channel must be off-hook and connected to an extension or trunk.

2. Use the following dial string to transfer the call to another extension:
&,<extension>

where “&” is the hook flash character, the comma (“,”) is a pause, and
<extension> is the extension to which the call is being transferred.

3. Go on-hook to complete the transfer or dial a second hook flash to cancel the
transfer.

The pause in the dial string is required. The pause gives the PBX time to activate
the feature. Instead of a pause, you can use Enhanced Call Progress Analysis
(ECPA) to detect a dial tone before dialing an extension. When the control
character “L” is used in the dial string, the dx_dial() function waits for a dial
tone before dialing. For example, to transfer to extension 555:

dx_initcallp(chdev)
dx_dial(channel, "&L555",NULL, EV_SYNC)

You can also use Global Tone Detection (GTD) to detect a dial tone before
dialing an extension. For example, to transfer to extension 555:

dx_dial(chdev, "&",NULL, EV_SYNC)
/ add code here to wait for tone event /
dx_dial (chdev, "555" ,NULL, EV_SYNC)

Refer to the Voice Software Reference for more information about using ECPA
and GTD.

112

4. Programming Considerations

 Example

int cd; /* channel descriptor */
char digstr[40];

int transfer_call()
{

/* transfer the call */
if (dx_dial(cd,"&,555",NULL,EV_SYNC) == -1)
 {
printf("\nDial failed\n");
exit (1);
 }

/* set the channel onhook after the transfer */
if (dx_sethook(cd, DX_ONHOOK, EV_SYNC) == -1)
 {
/* process error */
exit(1);
 }

exit (0);
}

4.2.6. In-Band/Out-of-Band Signaling

In-band signaling is a method used by analog (2500) telephones to communicate
with PBXs (e.g., calling into a PBX and using DTMF to respond to voice
prompts). In-band signals use the same band of frequencies as the voice signal.
The in-band signaling method provides limited integration because there are no
standards and different PBXs provide varying levels of control.

Out-of-band signaling is used by PBXs to communicate with their station sets or
a CT computer. Out-of-band signals do not use the band of frequencies used by
the voice signals. The PBX transmits data that can include information such as
called/calling number ID. Because of its versatility, out-of-band signaling is the
preferred method.

In-band signaling must be used when DTMF tones are required to communicate
(e.g., connecting two voice mail systems through a CO using AMIS--Automated
Messaging Interchange Specification). If out-of-band signaling is used, timing
problems may occur because digit data (dial pad) sent from the station set (or
PBX integration board) to the PBX are converted to DTMF and then sent to the
CO.

113

PBX Integration Software Reference

PBX integration boards can be set to communicate using either in-band or out-of-
band signaling (see Table 13). Characters are not case sensitive for this dial
string.

Table 13. Setting In-band and Out-of-band Signaling

 DTMF Signaling
PBX In-band Out-of-band Default Signaling

Avaya 4-wire <ESC>DI <ESC>DO In-band
Avaya 2-wire <ESC>DI <ESC>DO In-band
Siemens ROLM CBX
9005, 9006 and 9715

<ESC>DI <ESC>DO Out-of-band

Siemens Hicom 150
and 300

<ESC>DI <ESC>DO Out-of-band

MITEL SX Series <ESC>DI <ESC>DO Out-of-band
NEC Electra Elite
(KTS)
NEC Electra
Professional 120 (KTS)

<ESC>DI <ESC>DO Out-of-band

NEC NEAX 2400 IMS
(PBX)
NEC NEAX 2000 IVS,
IVS2, IPS (PBX)

<ESC>DI <ESC>DO Out-of-band

Nortel Meridian 1 <ESC>DI <ESC>DO Out-of-band
Nortel Norstar DR5,
CICS and MICS

<ESC>DI <ESC>DO Out-of-band

NOTE: When using <ESC>DI and <ESC>DO to set the DTMF signaling
method, the PBX integration channel returns to its default state (out-of-
band signaling) after a sethook() function is called.

 Example

unsigned int cd; /* channel descriptor */
char digstr[40];

int set_dtmf_signaling()

114

4. Programming Considerations

{

/* set up dial string */
switch (ATD4_CHTYPE(cd))
 {
case TYP_D/82M1:
case TYP_D/82L4:
case TYP_D/82L2:
sprintf(digstr,"%cDI",ESC);
break;
 }

/* set DTMF signaling to in-band */
if (dx_dial(cd,digstr,NULL,EV_SYNC) == -1)
 {
printf("\nDial failed\n");
exit (1);
 }

return (0);
}

4.2.7. Disconnect Supervision

 Description

Disconnect supervision for PBX integration boards functions the same as other
D/4x boards. Refer to the Voice Software Reference for a description on using I/O
terminations to perform disconnect supervision in your application.

As part of disconnect supervision, the PBX integration boards monitor
communications with the PBX. If communication is lost with the PBX for 60
seconds, the firmware forces a loop current drop condition until communication
is re-established.

NOTE: Disconnect supervision is always available for internal calls; however,
for external or trunk calls, it is available only if the trunk module handles
disconnect supervision.

4.2.8. Converting Existing D/4x Applications

 Description

The PBX integration boards and the D/42-xx and D/41 voice boards use the same
D/4x voice runtime library and supporting library. However , some modifications
are required to convert an existing D/4x application into a PBX integration

115

PBX Integration Software Reference

application. This conversion only includes new functions provided by the D/42
runtime library. Use the following guidelines to convert an existing D/4x
application to an application that uses the D/42 runtime library:

NOTE: Like D/42-xx applications, all PBX integration board applications must
take into account the delay waiting for loop current to be detected that
exists when opening the board with the dx_open() library function.

• To convert an existing application without using the Unified API or
called/calling number ID, use the dx_cdbuf() function immediately after the
application receives a rings-received event to clear the called/calling number
ID digits from the digit buffer. This prevents the called/calling number ID
from interfering with what the application expects to find in the digit buffer.
Alternately, use the dx_gtdigbuf() function to retrieve the called/calling
number ID and then discard the retrieved string. To access the other PBX
features, the application must use the dial strings in the dx_dial() function,
using the format described in Section 4.2. Accessing PBX Features Using
Dial Strings.

• To convert an existing application without using the Unified API but using
called/calling number ID, use the dx_gtdigbuf() function to retrieve the
called/calling number ID digits and place them in the digit buffer. To access
the other PBX features, the application must use the dial strings in the
dx_dial() function, using the format described in Section 4.2. Accessing
PBX Features Using Dial Strings.

• To convert an existing application using the Unified API to retrieve the
called/calling number ID, use the dx_gtcallid() function to retrieve the
called/calling number ID digits and place them in the application buffer.
Refer to Section 3. Unified API Function Reference. To access the other
PBX features, the application must use the dial strings in the dx_dial()
function, and the dial string format must be as described in Section 4.2.
Accessing PBX Features Using Dial Strings.

116

Appendix A
Unified API Quick Reference

ATD4_BDTYPE() retrieves the PBX integration board type

Name: int ATD4_BDTYPE(devh)
Inputs: int devh • board descriptor

Returns: board type • returns board type information
 0 • if success
 -1 • if error; see Appendix C.

Includes: D42LIB.H
Mode: synchronous

ATD4_CHTYPE() retrieves the PBX integration channel type

Name: int ATD4_CHTYPE(devh)
Inputs: int devh • channel descriptor

Returns: board type • returned channel type information
 0 • if success
 -1 • if error; see Appendix C

Includes: D42LIB.H
Mode: synchronous

117

PBX Integration Software Reference

d42_brdstatus() retrieves the current PBX integration board status

Name: int d42_brdstatus(devh, buffstatus, bufferp)
Inputs: int devh • board descriptor

 char *buffstatus • pointer to buffer containing board status
information

 char *bufferp • reserved for future use
Returns: 0 • if success

 -1 • if error; see Appendix C
Includes: D42LIB.H

Mode: synchronous

d42_chnstatus() retrieves the current channel status

Name: int d42_chnstatus(devh, statusp, bufferp)
Inputs: int devh • channel descriptor

 char *statusp • pointer to buffer containing channel status
information

 char *bufferp • reserved for future use
Returns: 0 • if success

 -1 • if error; see Appendix C
Includes: D42LIB.H

Mode: synchronous

d42_closefeaturesession() closes a feature session

Name: int d42_closefeaturesession(devh)
Inputs: int devh • channel descriptor

Returns: 0 • if success
 -1 • if error; see Appendix C

Includes: D42LIB.H
Mode: synchronous

118

Appendix A

d42_display() retrieves the current LCD display

Name: int d42_display(devh, bufferp)
Inputs: int devh • channel descriptor

 char *bufferp • pointer to an application buffer. The buffer
will contain display data for the selected
channel.

Returns: 0 • if success
 -1 • if error; see Appendix C

Includes: D42LIB.H
Mode: synchronous

d42_displayex() retrieves the current extended LCD display

Name: int d42_displayex(devh, bufferp,buflen)
Inputs: int devh • channel descriptor

 char *bufferp • pointer to an application buffer. The buffer
will contain display data for the selected
channel.

 buflen • length of buffer on entry.
Returns: 0 • if success

 -1 • if error; see Appendix C
Includes: D42LIB.H

Mode: synchronous

119

PBX Integration Software Reference

d42_getparm() gets a PBX integration board or channel parameter

Name: int d42_getparm(devh, parmnum, parmvalp)
Inputs: int devh • board or channel descriptor

 unsigned short parmnum • parameter name
 void *parmvalp • pointer to parameter value

Returns: 0 • if success
 -1 • if error; see Appendix C

Includes: D42LIB.H
Mode: synchronous

d42_getver() retrieves the firmware or library version

Name: int d42_getver(devh, bufferp, flag)
Inputs: int devh • board descriptor

 char *bufferp • pointer to an application buffer containing
version information

 int flag • determines if firmware or library version is
retrieved

Returns: 0 • if success
 -1 • if error; see Appendix C

Includes: D42LIB.H
Mode: synchronous

d42_gtcallid() retrieves the called/calling number ID

Name: int d42_gtcallid(devh, bufferp)
Inputs: int devh • channel descriptor

 char *bufferp • pointer to an application buffer containing
called/calling number ID data

Returns: 0 • if success
 -1 • if error; see Appendix C

Includes: D42LIB.H
Mode: synchronous

120

Appendix A

d42_gtcallidex() retrieves call information

Name: int d42_gtcallid(devh, *pcallidex)
Inputs: int devh • channel descriptor

 CALLIDEX *pcallidex • pointer to a CALLIDEX structure
containing the call information

Returns: 0 • if success
 -1 • if error; see Appendix C

Includes: D42LIB.H
Mode: synchronous

d42_indicators() retrieves the current LCD or LED line indicators

Name: int d42_indicators(devh, bufferp)
Inputs: int devh • channel descriptor

 char *bufferp • pointer to an application buffer
containing the indicators data

Returns: 0 • if success
 -1 • if error; see Appendix C

Includes: D42LIB.H
Mode: synchronous

d42_openfeaturesession() opens a feature session

Name: int d42_openfeaturesession(devh)
Inputs: int devh • channel number

 char *szDnNumber • specifies the extension for session
 int piTermType • pointer to type of terminal display
 int iEvtMask • type of events session will recognize

Returns: 0 • if success
 -1 • if error; see Appendix C

Includes: D42LIB.H
Mode: synchronous

121

PBX Integration Software Reference

d42_setparm() sets a board or channel parameter

Name: int d42_setparm(devh, parmnum, parmvalp)
Inputs: int devh • board or channel descriptor

 int parmnum • parameter name
 void *parmvalp • pointer to an application buffer

containing the parameter value
Returns: 0 • if success

 -1 • if error; see Appendix C
Includes: D42LIB.H

Mode: synchronous

d42_writetodisplay() places information on a phone set’s display

Name: int d42_writetodisplaysion()
Inputs: int devh • channel number

 char *szMsg • message to be displayed
Returns: 0 • if success

 -1 • if error; see Appendix C
Includes: D42LIB.H

Mode: synchronous

122

Appendix B
Demonstration Programs for Windows

This appendix provides instructions for running the D/42 Demonstration
Program and the Siemens Optiset MWI Demo for Windows. The D/42
program demonstrates the Unified API functions using the PBX
integration board. The Siemens Optiset Demo may only be used with the
Siemens Hicom 150 PBX to test MWI functionality.

CAUTION

The D42 demo works only with up to three boards in a system.
An Access Violation occurs after a fourth D/82JCT-U or D/42x
board is added. Do not attempt to run the demo with more than

three boards in your system.

Documentation Conventions

The following conventions and terminology are used throughout the
instructions contained in this section:

• Window titles are in italics.
• Menu items are in bold.
• The extension used to call the board channel is called Phone A.
• The extension used receive the transfer is called Phone B.

D42 Demo
Basic operations performed by the PBX integration board include:

• answer
• dial
• supervised/blind transfer
• play/record messages

123

PBX Integration Software Reference

D/42 Demo Requirements

• Two phones connected to a PBX
• One PBX integration board connected to a PBX
• The PBX must be configured according to the PBX Integration Board

User’s Guide.

Setup

Before running the demonstration program, perform the following
procedures:

1. Connect 1 channel of your board to an extension of the PBX.

2. Connect two telephones to two extensions of the PBX.

3. If necessary, start the board using the configuration manager (DCM).

Running the Demo

To run the Demonstration Program:

1. Go to the c:\program files\dialogic\samples\d42 directory or use the
Start Menu on Windows.

2. Start the D/42 Series Demonstration Program by double-clicking on
d42demo.exe or by making appropriate selection from the Start Menu.

3. The Dialogic D/42 Demo window opens, as seen in Figure 19.

124

Appendix B

Figure 19. Dialogic D42 Demo Window

4. From the Options menu, choose Properties. The D42 Options
window is displayed, as shown in Figure 20.

Figure 20. D42 Options Window

5. Enter the number of extension digits that corresponds to your PBX
configuration.

125

PBX Integration Software Reference

NOTE: If this option is not set correctly, the demo program will not
perform transfers correctly.

6. If you want to use supervised transfers, check the Supervised
Transfers box.

NOTE: In a supervised transfer, the demo program puts the incoming
call (Phone A) on hold and attempts to establish a connection
with the Phone B before the transfer is completed.

In a non-supervised, or blind transfer, the incoming call
(Phone A) is transferred immediately to Phone B. You will
hear the ring signal, and the D/42-xx channel is ready to
accept a new call (indicators are gray).

7. From the Options Menu choose Input Strings. The Input Strings
Window will be displayed as shown in Figure 21.

126

Appendix B

Figure 21. Input Strings

8. Enter the strings for Dial, Cancel, and Complete fields for the PBX
that is currently being used.

NOTES: 1. Please use the $ (dollar) sign in place of ESC key
while entering strings.

2. Certain default strings have been supplied for
backwards compatibility. You must verify their
correctness for the PBX that is being currently used
with the demo. The $ (dollar) sign in the default
strings indicates the ESC key.

127

PBX Integration Software Reference

9. Press OK to save and close the Input Strings Window.

NOTE: If you skip setting up the Input Strings, you are prompted to
enter them again at the time of opening the channels, as
shown in Figure 22.

Figure 22. Input Strings Warning

10. Press OK to close the D42 Options window.

11. From the File menu, choose Open. The Select Your D42 Channel
window displays, as shown in Figure 23.

Figure 23. Select Your D/42 Channel

12. Choose a board listed below the applicable PBX integration board
(Example: dxxxB1 under the Northern Telecom Norstar). A channel
list is displayed in the right-hand window, as seen in Figure 24.

128

Appendix B

Figure 24. Select a D/42 Channel

13. Choose a channel connected to the PBX and press OK
(Example: dxxxB1C1). A window is displayed that simulates the
appropriate phone set for your PBX.

NOTE: All four channels are displayed, not just the channel
connected to the PBX.

129

PBX Integration Software Reference

LED Indicators

LED Indicators

Display

Message Waiting
Indicator

Message Waiting
Indicator

Display

CALL WAITING

Application Status
Messages

Figure 25. ROLMphone Window on the D42 Demo

130

Appendix B

14. Observe that the date and time appear in the display. This verifies that
the board is communicating with the PBX. If the date and time do not
appear, verify that the correct channel is selected and that the phone
line is connected to the proper channel on the board.

15. From Phone A, dial the number of the extension connected to the
board channel selected in step 10.

16. Listen to the greeting.

17. Enter the extension for Phone B.

NOTE: If you do not enter an extension within five seconds, the
demo plays the message, “Thank you for calling Dialogic
Corporation” and hangs up.

18. When Phone B rings, answer the call.

NOTE: If the demo is performing a supervised transfer, the transfer
completes immediately after voice is detected on the “transfer
to” extension, or after 30 seconds of silence.

If performing a blind transfer, the transfer is completed
immediately.

19. Observe the indicators, display, caller ID, and status areas in the demo
window.

• Indicators - refer to Table 14

• Display - shows information sent from the PBX

• Caller ID - shows the caller ID data sent by the PBX

• Message Waiting Indicator (MWI) - turns on when a message is
recorded.

• Status Area - shows demo application status messages (e.g.,
dialing, ready, playing intro prompt, and message access code)

131

PBX Integration Software Reference

Table 14. Demo Indicator Definitions

Indicator Color M3710*

gray off
green on
red flash, hold

* Refer to Section 3, d42_indicators(), for detailed description
of the indicators

20. You may repeat steps 12 through 15 using different scenarios for the
Phone B (e.g., busy, no answer, forward).

NOTE: If you choose busy or no answer, you are prompted to leave a
message. Recording stops when silence is detected. When
you leave a message, the MWI turns on. Only one message is
saved (any previously recorded message is overwritten). The
saved message is deleted when the channel is closed.

To listen to the message, call back the extension and press the
key. The access number is displayed in the status area.

21. To close the open channel, choose Close from the File menu.

22. To exit the program, choose Exit from the File menu.

23. You may also run the Multithreaded GUI Based Application Program
to check the voice functions of the board. Refer to the System Release
Software Installation and Configuration Reference.

132

Appendix B

Siemens Optiset MWI Demo

The Siemens Optiset Message Waiting Indicator (MWI) demo turns a
MWI light on and off by sending the appropriate Siemens Hicom 150 PBX
switch commands. Note that this demo cannot be used with the Siemens
Hicom 300. The MWI light can be toggled on and off by sending and
deleting messages for a given extension.

This demo program follows the Siemens Optiset E phone key strokes for
sending and deleting messages. An application program accomplishes this
by sending the appropriate command escape sequences. The Siemens
switch associates these commands with the key strokes required to
accomplish sending and deleting messages. The demo program’s algorithm
can be used in your applications as is, or it can be modified to accomplish
other tasks, as detailed in the Siemens manuals. The algorithm shows the
basic approach needed to send command escape sequences to Siemens
Hicom 150. The switch “sees” the voice board with an appropriate
application as an Optiset E phone and expects the correct key strokes to
accomplish tasks.

The demo provides the user with three options:

• Open channels on a voice board

• Send a message to a selected extension

• Delete a selected message.

To run the Siemens Optiset MWI Demo:

1. Go to c:\program files\dialogic\samples\Siemens Optiset Demo\debug
directory.

2. Start the demo by double-clicking on mwi.exe.

133

PBX Integration Software Reference

3. The Dialogic Siemens Optiset MWI Demo window opens, as seen in
Figure 26.

Figure 26. Siemens Optiset MWI Demo Window

4. From the Options menu, choose Select Channel. The Enter Channel
Number pop-up is displayed, as shown in Figure 27.

Figure 27. Enter Channel Number

5. Enter the channel number that corresponds to your PBX configuration
and choose OK.

134

Appendix B

6. If the channel opens, the Siemens Optiset MWI Demo window
displays a success message as shown in Figure 28.

Figure 28. Channel Opened Message

7. From the Options menu, choose Send Message. The Send Message
pop-up is displayed, as shown in Figure 29.

Figure 29. Send Message

8. Enter an extension applicable to your PBX setup and choose OK.

135

PBX Integration Software Reference

9. If the send is successful, the pop-up shown in Figure 30 appears.

Figure 30. Message Sent

10. From the Options menu, choose Delete Message. The Delete
Message pop-up is displayed, as shown in Figure 31.

Figure 31. Delete Message

11. Choose OK. Use the Next button if more than one message was sent.

12. If the delete is successful, the pop-up shown in Figure 32 appears.

Figure 32. Message Deleted

136

137

Appendix C
Error Definitions

Error Code Name Return

Value
Description

ED42_NOERROR 0x0000 Operation
completed

ED42_NOTIMP 0x0500 Function is not
implemented

ED42_MAXCHAN 0x0501 Maximum
channel capacity
reached

ED42_INVALARG 0x0502 Illegal argument
in function

ED42_BADPARM 0x0503 Invalid value for
parameter

ED42_UNSUPPORTED 0x0504 Unsupported
feature

ED42_RDFWVER 0x0505 Error reading
firmware version

ED42_UNKNOWNBOARD 0x0506 Unknown board
type

ED42_BADDEVICE 0x0507 Invalid or wrong
device handle

ED42_DLLINIT 0x0508 Unable to
initialize DLL

ED42_SYSTEM 0x0509 System error
ED42_NOCOMM 0x050A No commun-

ication with
switch

ED42_NOTIDLE 0x050B Device is not
idle

ED42_FEATSESSIONALREADYOPEN 0x050C Feature session

PBX Integration Software Reference

Error Code Name Return Description

138

Value
is already open

ED42_NOFEATURESESSION 0x050D No feature
session available

ED42_FWREQFAILURE 0x050E Firmware
request failed

ED42_MEMORY 0x050F Buffer is to small

Appendix D
Asynchronous Event Definitions

Event Code Name

Return
Value

Description

TD42_ASYNCCHSTATUS 0x00D0 Asynchronous
channel status
notification

TD42_ASYNCCLOSEFEATSESSION 0x00D5 Asynchronous
close of feature
session (NS only)

TD42_ASYNCDISP 0x00DA Asynchronous
display
notification

TD42_ASYNCLINE 0x00DB Asynchronous
line status change
notification

TD42_SOFTKEYINPUT 0x00D2 Soft key pressed
(NS only)

TDX_ERROR 0x0089 Asynchronous
error message

When using the above event data in sample applications, the following
information is applicable:

For TD42_ASYNCCHSTATUS: sr_getevtdatap() returns a pointer to an
unsigned short containing the status of the channel.

For TD42_ASYNCDISP: sr_getevtdatap() returns a pointer to a null-terminated
buffer containing the display. sr_getevtlen() returns the length of the data.

For TD42_ASYNCLINE: sr_getevtdatap() returns a pointer to a
LINEINDICATOR structure containing the status of the indicator. The structure
is defined in the d42lib.h and contains two members: line (the line #) and status
(the status)

139

PBX Integration Software Reference

140

Glossary

Adaptive Differential Pulse Code Modulation (ADPCM): A sophisticated
technique for reducing voice data storage requirements that is used on
voice boards. With ADPCM, rather than store the value of the speech
sample (i.e., all 8-bits), only the change in the signal level between the
present and the previous sample is stored. Fewer bits are needed to
describe the change from one sample to the next because voice signals
vary relatively slowly.

ADPCM: See Adaptive Differential Pulse Code Modulation.

analog: 1. A method of telephony transmission in which the information
from the source (for example, speech in a human conversation) is
converted into an electrical signal that varies continuously over a range
of amplitude values. 2. Used to refer to applications that use loop start
signaling instead of digital signaling.

answer supervision: A telephone system feature that returns a momentary
drop in loop current when a connection has been established. When
Call Progress Analysis detects a transient loop current drop, it returns a
connect event.

base address: A starting memory location (address) from which other
addresses are referenced.

buffer: A block of memory or temporary storage device that holds data
until it can be processed. It is used to compensate for the difference in
the rate of flow of information (or time occurrence of events) when
transmitting data from one device to another.

bus: An electronic path that allows communication between multiple
points or devices in a system.

called/calling number ID: A PBX feature that identifies the number of the
calling party to the extension that is called.

Call Progress Analysis: A voice software feature that monitors the
progress of an out-bound call by detecting the different results that can
occur after dialing, which allows you to process the call based on the
outcome. By using Call Progress Analysis, you can determine whether

141

PBX Integration Software Reference

the line is answered, the line rings but is not answered, the line is busy,
or there is a problem in completing the call.

central office (CO): The telephone company (informally). A local
telephone switching exchange.

channel: An voice I/O port on a voice board. 1. When used in reference to
an analog board, an audio path, or the activity happening on that audio
path (for example, in “the channel goes off-hook”). 2. When used in
reference to a digital board, a data path, or the activity happening on
that data path. 3. When used in reference to a bus, an electrical circuit
carrying control information and data.

class of service (COS): A defined group of features. Once an extension is
assigned to a COS, the COS determines which features may be
accessed by that extension.

computer telephony: The extension of computer-based intelligence and
processing over the telephone network to a telephone. Lets you interact
with computer databases or applications from a telephone and also
enables computer-based applications to access the telephone network.
Computer telephony makes computer-based information readily
available over the world-wide telephone network from your telephone.
Computer telephony technology incorporated into PCs supports
applications such as: automatic call processing; automatic speech
recognition; text-to-speech conversion for information-on-demand; call
switching and conferencing; unified messaging that lets you access or
transmit voice, fax, and E-mail messages from a single point; voice
mail and voice messaging; fax systems including fax broadcasting, fax
mailboxes, fax-on-demand, and fax gateways; transaction processing
such as Audiotex and Pay-Per-Call information systems; call centers
handling a large number of agents or telephone operators for
processing requests for products, services or information; etc.

configuration file: A file used to download voice hardware and software
specifications to the voice board.

connect: A Call Progress Analysis event indicating that the call has been
answered. A connect can be established by Cadence Detection, Loop
Current Detection, or Positive Voice Detection.

D/4x: A general term used to refer to a 4-channel voice boards (e.g.,
D/41D, D/41E, and D/41ESC).

142

Glossary

D/xxx: A general term used to refer to all models of voice boards.

D40CHK: The diagnostic program that is used to test voice boards for
hardware problems.

digit queue: The location where digits are stored after they are detected.
Digits are processed on a first-in, first-out basis, and can be accessed
by the getdtmfs() function.

disconnect supervision: A feature that detects and acts on the change in
electrical state from off-hook to on-hook.

driver: A software module that provides a defined interface between a
program and the hardware. It directly controls the data transfer to and
from I/O.

DSP: 1. Digital signal processor. A specialized microprocessor designed to
perform speedy and complex operations with digital signals. 2. Digital
signal processing.

DTMF: Dual Tone Multi Frequency. 1. A signaling method. 2. The tone
made by pressing a button on a push-button telephone. This tone is
actually the combination of two tones, one high frequency and one low
frequency.

Event Block (EVTBLK): A data structure that is used as output for the
gtevtblk() function. The gtevtblk() function removes an event from
the queue and places it into an EVTBLK for use by the application
program.

event: 1. A specific activity that has occurred on a channel. The voice
driver reports channel activity to the application program in the form of
events, which allows the program to identify and respond to a specific
occurrence on a channel. Events provide feedback on the progress and
completion of functions and indicate the occurrence of other channel
activities. Events are sometimes referred to in general as termination
events, because most of them indicate the end of an operation. 2. Any
signal or condition that causes a state transition in a state machine, the
majority of which are usually the physical events produced by the
voice driver.

FCC: Federal Communications Commission. The governing body for
communications regulations within the U.S.

143

PBX Integration Software Reference

firmware: Software downloaded to a board and stored in
semi- permanent memory.

flash: A signal that consists of a momentary off-hook/on-hook/off-hook
transition that is most often used by the voice board to alert a telephone
switch. This signal usually initiates a call transfer. The dial() function
can generate a hook flash by including the flash character in the dial
string.

hook flash: See flash.

hook switch: The name given to the circuitry that controls on-hook and
off-hook state of the voice board telephone interface.

idle: The channel state when no multitasking function is in operation on
the channel. The opposite of busy.

IRQ: Interrupt request. A signal sent to a central processing unit (CPU) to
temporarily suspend normal processing and transfer control to an
interrupt handling routine. Interrupts may be generated by conditions
such as completion of an I/O process and detection of an event.

loop current: The current that flows through the circuit from the telephone
switch to the voice board when the channel is off-hook.

loop start: In an analog environment, an electrical circuit consisting of
two wires (or leads) called tip and ring, which are the two conductors
of a telephone cable pair. The CO provides a voltage (called “talk
battery” or just “battery”) to power the line. When the circuit is
complete, this voltage produces a current called loop-current. The
circuit provides a method of starting (seizing) a telephone line or trunk
by sending a supervisory signal (going off-hook) to the CO. .

multitasking functions: Functions that allow the voice software to
perform concurrent operations. After being initiated, multitasking
functions return control to the program so that during the time it takes
the function to complete, the application program can perform other
operations, such as initiating a function on another channel.

no answer: A Call Progress Analysis event indicating that the call has
not been answered. A no answer event is returned after a ring cadence
has been established by Cadence Detection and there was no break in
the ring cadence for a specified number of times.

144

Glossary

no ringback: A Call Progress Analysis event indicating that there is a
problem in completing the call. Cadence Detection has determined that
the signal is continuous silence or nonsilence.

nonsilence: Sound. Used when describing an audio cadence.

off-hook signal: A basic signal used on the telephone network that is
produced when the line loop between the telephone set and the central
office switch is closed and loop current flows, which also powers the
telephone. This term is derived from the position of the old fashioned
telephone set receiver in relation to the mounting hook provided for it.

on-hook signal: A basic signal used on the telephone network that is
produced when the line loop between the telephone set and the central
office (CO) switch is open and no loop current flows. This term is
derived from the position of the old fashioned telephone set receiver in
relation to the mounting hook provided for it.

ring detect: The act of sensing that an incoming call is present by
determining that the telephone switch is providing a ringing signal to
the voice board.

SCbus : Signal Computing Bus. A high-speed serial TDM (Time Division
Multiplexed) bus designed for connecting devices in telecommun-
ications and computer systems. SCbus enables computer telephony
hardware of multiple kinds from multiple vendors to be integrated
within richly capable computer telephony systems. For instance, up to
eight PBX integration boards can be connected up over an SCbus using
a card-to-card ribbon cable. It supports up to 2048 bi-directional time
slots, clocking, and an optional HDLC messaging channel, which can
be used for signaling.

signaling: The transmission of electrical signals on the telephone network.
The voice software supports the following signaling methods: DTMF,
MF, R2 MF, Socotel, Global Tone Detection and Generation, and Dial
Pulse Detection and Generation.

Standard Voice Driver See voice driver.

system events: Events in a state machine that are generated by relevant
system signals, such as keyboard input, communications adapters, etc.
These generally cause state changes for all channels rather than a
specific channel.

145

PBX Integration Software Reference

talk off: The false tripping of DTMF receivers caused by speech.

telephone switch: A telephone company central office or a PBX (private
branch exchange).

termination condition: A requirement that when met causes a
multitasking function to terminate. You can enable the termination
conditions by setting parameters in the Read/Write Block (RWB) and
then passing the RWB as one of the function parameters. The
termination conditions are monitored while the multitasking function is
in progress. The function continues to execute until one of the selected
termination conditions has been met. When the function terminates, an
event is produced, indicating which termination condition caused the
function to terminate.

tone event: A tone-on or tone-off event that is produced by Global Tone
Detection when a GTD tone is detected. A tone event can be accessed
on the event queue by using the gtevtblk() function, which provides
the channel, event code, and GTD tone ID.

Unified API: . This API provides a single set of basic, high-level calls that
can be used for any supported switches and are sent directly to the
switch through the PBX integration board, without additional
hardware. Functioning as an extension to the voice API, the Unified
API offers a single design model that is flexible enough to allow
developers to take advantage of the advanced, PBX features (such as
called/calling number ID and ASCII display information).

voice demonstration programs: The programs that are included with the
voice software and which demonstrate voice software features;
provided in both source code and executable formats.

voice driver: The device driver for the voice boards; D40DRV.EXE.
Executes as a terminate-and-stay-resident (TSR) program.

voice hardware diagnostic programs: The D40CHK.EXE,
D41ECHK.EXE, and UDD.EXE programs allow you to test the
features of the voice hardware.

voice library: A C language function library that can be accessed from
assembly language programs or from applications written in a high-
level language.

146

Glossary

voice software: The Voice Development Package software, which
includes the Voice Installation Programs and Files, Voice
Demonstration Programs and Files, Voice Library (C Language
Functions), and Voice Driver.

Voice Processing: Features of the voice software that provide the ability
to record and play voice messages.

Voice Store-and-Forward: A term used to refer to a voice mail system.
An early term for voice processing.

wink: A signal that consists of a momentary on-hook/off-hook/on-hook
transition, which is used by the voice board as an acknowledgment
signal. The wink() function generates an out-bound wink on a channel
in response to an incoming call.

147

PBX Integration Software Reference

148

Index

d42_indicators(), 44, 121 A
d42_indicatorsex(), 59 Asynchronous Event Definitions, 139
d42_openfeaturesession(), 63 ATD4_BDTYPE(), 12, 117
d42_setparm(), 66, 122 ATD4_CHTYPE(), 14, 117
d42_writetodisplay(), 69 C
D4BD_ GETSWITCHTTYPE, 33

Call Progress Analysis, 1, 7, 75, 112,
141 D4BD_CALLID, 33, 67

Event, 142, 144, 145 D4BD_REPORT_RESET, 33, 67
call transfer, 9, 74, 112, 144 D4CH_CHANNELSTATUS, 33, 67
called/calling number ID, 7, 8, 39, 40,

113, 116, 120, 121, 141, 146 Demo Indicator Definitions, 132

dial programmable keys, 74, 80 converting existing applications, 115 Avaya, 80
MITEL SUPERSET 400 Series, 96 D
Nortel M2616, 105
Nortel M7324, 102 D/42 Demo, 124
Siemens Optiset, 90

D/42 driver, 3, 8 Siemens ROLMphone, 87
D/82JCT-U hardware installation, 4 disconnect supervision, 115
d42_brdstatus(), 16, 118 dollar sign, 127
d42_chnstatus(), 18, 118, 121, 122 dx_dial(), 116
d42_closefeaturesession(), 20 E
d42_display(), 22, 119

Error Definitions, 137
d42_displayex(), 26, 119

G d42_getnewmessage(), 30
Global Tone Detection, 112 d42_getparm(), 32, 120

I d42_getver(), 36, 120

in-band signaling, 113 d42_gtcallid(), 39, 120, 121
NEC, 111

d42_gtcallidex(), 42
indicators, 44

149

PBX Integration Software Reference

Avaya, 42, 45 T
MITEL SX SUPERSET 400 Series,

53 transfer. See call transfer
Nortel Meridan 1 M2616, 56 U Nortel Norstar M7324, 54, 59
Siemens Hicom, 51 Unified API, 3, 7, 8, 11, 146
Siemens ROLM, 49

V indicatorsex, 59
voice and call processing, 2 input strings, 128

installation
D/82JCT-U hardware, 4
System Release software, 4

N
NEC

in-band signaling, 111
out-of-band signaling, 111

O
opening a D/82JCT-U channel, 73

out-of-band signaling, 113
Avaya Definity 75, 83
Avaya Definity G3, 86
MITEL Definity G3, 98, 101
NEC, 111
Nortel Meridian 1, 107
Nortel Norstar, 102, 104
Siemens Hicom, 92, 95
Siemens ROLM, 89

P
PBX configuration, 4

S
Siemens Optiset Demo, 133

standard voice library, 1, 3, 7, 8

synchronous, 8

System Release Software installation, 4

150

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	1. How To Use This Manual
	1.1. Audience
	1.2. Voice Hardware Covered by This Manual
	1.2.1. Voice Hardware Model Names

	1.3. When To Use This Manual
	1.4. Documentation Conventions
	1.5. How This Manual Is Organized

	2. Using the PBX Functions
	2.1. The Unified API
	2.2. Switch-Specific Support

	3. Unified API Function Reference
	ATD4_BDTYPE()
	ATD4_CHTYPE()
	d42_brdstatus()
	d42_chnstatus()
	d42_closefeaturesession()
	d42_display()
	d42_displayex()
	d42_getnewmessage()
	d42_getparm()
	d42_getver()
	d42_getcallid()
	d42_getcallidex()
	d42_indicators()
	d42_indicatorsex()
	d42_openfeaturesession()
	d42_setparm()
	d42_writetodisplay()

	4. Programming Considerations
	4.1. Opening a Channel on the PBX Integration Board
	4.2. Accessing PBX Features Using Dial Strings
	4.2.1. On-Hook and Off-Hook Dialing Note
	4.2.2. Turn On the Message Waiting Indicator
	4.2.3. Turn Off the Message Waiting Indicator Dial String
	4.2.4. Dial Programmable Keys
	4.2.5. Transferring a Call
	4.2.6. In-Band/Out-of-Band Signaling
	4.2.7. Disconnect Supervision
	4.2.8. Converting Existing D/4x Applications

	Appendix A - API Quick Reference
	Appendix B - Demo Programs
	Documentation Conventions
	D42 Demo
	D/42 Demo Requirements
	Setup
	Running the Demo

	Siemens Optiset MWI Demo

	Appendix C - Error Definitions
	Appendix D - Event Definitions

