Revision History

<table>
<thead>
<tr>
<th>Issue</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22-Mar-02</td>
<td>Initial Issue</td>
</tr>
<tr>
<td>2</td>
<td>04-Aug-03</td>
<td>Naming changed to reference SPCI4/SPCI2S and CPM8.</td>
</tr>
<tr>
<td>3</td>
<td>01-Oct-07</td>
<td>Remove reference to PCCS6 and CPM8, include non-circuit protocol configuration commands in config.txt. Add SS7HD and SS7G21 SIU configuration and add support for SIGTRAN M2PA links</td>
</tr>
</tbody>
</table>
Section 1 Introduction

1 Introduction... 5

1.1 Software requirements... 5

INTU Application .. 6

2.1 SSF... 7

2.2 Message Sequence Chart... 7

2.2.1 Successful Call – Connect Operation... 8

2.2.2 Invalid Service Key – User Error... 9

2.2.3 Invalid Parameter - ReleaseCall Operation... 10

2.3 Customizing the example applications... 11

2.4 INTU source code... 11

Building the INTU application ... 12

3.1 Host software directory structure.. 13

3.2 Building INTU.. 13

Configuration.. 15

4.1 System Configuration .. 15

4.1.1 SS7G2x SIU.. 15

4.1.2 SPCI2S, SPCI4 and SS7HD ... 15

4.1.3 SIGTRAN M2PA.. 15

4.2 Protocol Configuration.. 16

4.2.1 SCCP... 16

4.2.2 TCAP... 16

4.2.3 INAP.. 16

Running the INTU application... 17

5.1 INTU Command Line Arguments... 17

5.1.1 INTU Display Options.. 18

References .. 19

Abbreviations.. 20

Appendix A - Example Configuration Files using SS7HD and SS7G21SIU... 21

Appendix B - Example Configuration Files using SIGTRAN M2PA ... 32

Appendix C - INAP User - point code 2 ... 39

Appendix D - Sample Output.. 44

Appendix E - SDL Diagrams... 45
1 Introduction

The INTU application is suited to work with the Dialogic® INAP module. This application, in conjunction with the Service Switching Function (SSF), will simulate the generation and acknowledgement of simple INAP messages between the two nodes. This user guide will describe the design, build and usage of this application for developers.

This user guide is for users developing their own applications that will interface with and use the functionality provided by the INAP module.

1.1 Software requirements

The INTU application requires the following software:

1. Dialogic® SS7Development Package

2. Dialogic® User Part Development Package

3. For TDM-based configurations:
 - ss7.dc3 or ss7.dc4 codefile
 - Dialogic® MTP3, SCCP, TCAP, INAP host binaries, as required

4. For SIGTRAN-based configurations:
 - Dialogic® M2PA, MTP3, SCCP, TCAP, INAP host binaries, as required

Software can be downloaded from http://www.dialogic.com/support/helpweb/signaling/software3.htm
2 INTU Application

The simple service implemented by INTU is a number translation from a fixed calling party number to a fixed destination routing address. The translation is triggered by the reception of a pre-defined service key contained in the InitialDP operation received from the SSP.

Figure 1. InitialDP Operation
INTU offers a simple SCF service implementation, which sits above the INAP layer in the SS7 stack. Figure 2 below shows INTU at the local node behaving as an SCP connected to a remote SSP.

![Diagram showing INTU as a SCF](image)

Figure 2. INTU behaving as a SCF

2.1 SSF
For the purpose of this user guide, SSF is simply a file whose contents are sent to INTU using `s7_play`.

2.2 Message Sequence Chart
The following message sequence charts show three call flows through INTU. The charts show the messages flowing between INTU and its local INAP.
2.2.1 Successful Call – Connect Operation
This is the normal success path for the call. The InitialDP operation is received correctly and a Connect containing the destination address is sent back to the SSP enabling the call to be rerouted to that address.

![Diagram of Successful Call - Connect Operation](image-url)

Figure 3. Successful Call - Connect Operation
2.2.2 Invalid Service Key – User Error

In the case of the reception of an invalid service key, an error is returned to the SSP that then releases the call.

Figure 4. Invalid Service Key – User Error
2.2.3 Invalid Parameter - ReleaseCall Operation

In this case, the InitialDP is received with the correct service key but the called party number is incorrect so a ReleaseCall operation is returned to the SCP to direct it to release the call.

![Diagram](image)

Figure 5. Invalid Parameter - ReleaseCall
2.3 Customizing the example applications

INTU is example code for development using the INAP module and API. As such, a number of simplifications and limitations are implemented.

The service supported by INTU is a simple number translation from a single fixed number to a single destination routing address. The called party number, destination routing address and expected service key all have their values fixed at compile time. These may need to be changed before building the application for any particular network.

The developer should be aware of the limited nature of the example application when making use of the source code for building their own application.

2.4 INTU source code

The INTU program can be found in the Dialogic® User Part Development Package. The following table describes the files required by the INTU application:

<table>
<thead>
<tr>
<th>File</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>intu.c</td>
<td>The main loop for INTU is in intu_ent(). It waits for a message to be received. If it is a dialogue, INTU_dlg_ind() is called, but if the message is a invoke then INTU_srv_ind() is called. When an invoke has been received, the number translation is performed. INTU responds with the appropriate message sequence (section 2.2.1).</td>
</tr>
<tr>
<td>intu_trc.c</td>
<td>Display procedures for tracing INTU.</td>
</tr>
<tr>
<td>intu_sys.c</td>
<td>Message sending and formatting procedures for INTU.</td>
</tr>
<tr>
<td>intumain.c</td>
<td>This file contains the main() function. This reads the command line arguments and passes them to intu_ent().</td>
</tr>
<tr>
<td>intu_def.h</td>
<td>Contains function prototypes and #defines used by INTU.</td>
</tr>
</tbody>
</table>
3 Building the INTU application

Example make-files for the following operating systems are provided and identified by a unique suffix:

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Suffix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generic UNIX (Solaris, Linux)</td>
<td>.mak</td>
</tr>
<tr>
<td>Windows®</td>
<td>.mnt</td>
</tr>
</tbody>
</table>

A single definitions file (one for each operating system) which contains the definitions relating to the user's own development environment is supplied in the *Dialogic® User Part Development Package*. The definitions files are as follows, and the appropriate file should be used depending on the operating system:

- `makdefs.mak` (Linux)
- `makdefs_sol.mak` (Solaris)
- `makdefs.mnt` (Windows®)

For the Windows® operating system, a dynamically linked GCT library that allows the application to link to the GCT functions is supplied in the *Dialogic® SS7 Development Package* as follows:

- `gctlib.dll` (Visual C++® compiler)

For 'UNIX', a GCT shared object is supplied in the *Dialogic® SS7 Development Package*

- e.g. `libgctlib.so.1.0.0` (Linux & Solaris)

The source code for the example program should be compiled and linked with the appropriate library for the operating system in use.

The INAP API library (the dynamically linked GCT library or the GCT shared object) should be copied to the *Dialogic® SS7 Development Package* directory.

For UNIX, re-configure the dynamic linker's run time configuration by running the following command (as root):

```
ldconfig -v
```

A series of symbolic links to the INAP API shared object must also be created in the *Dialogic® SS7 Development Package* directory

- e.g. `In –s libin_api.so.1.0.0 libin_api.so.1`

 `In –s libin_api.so.1.0.0 libin_api.so`
3.1 Host software directory structure

To build the INTU application, the user should first ensure that the required files are copied into the correct directories as follows:

1. Copy either the zip or tar file from the Dialogic® User Part Development Package to the Dialogic® SS7 Development Package directory and decompress using the appropriate tool. The choice of the zip or tar file is up to the user; both will create the UPD directory structure shown in the table below. The table below shows files required by the INTU program only.

2. The C header files in the INC directory shown in the table below The C header files in the INC directory shown in the table below lists the header files required by the INTU program.

The following table lists the directory structure and files required to build the INTU programs supplied on the Dialogic® User Part Development Package.

<table>
<thead>
<tr>
<th>Root directory</th>
<th>Septel</th>
<th>INC</th>
<th>BIN</th>
<th>SRC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>asciibin.h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bit2byte.h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>in_ain_inc.h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>inap_inc.h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pack.h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ss7_inc.h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>strtonum.h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sysgct.h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>system.h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BACKUP_WIN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BACKUP_LNX</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BACKUP_SOL</td>
<td></td>
</tr>
</tbody>
</table>

3.2 Building INTU

It is assumed that the UPD is extracted in the Dialogic® SS7 Development Package directory i.e. for Windows® C:\Septel as shown above.

A script is provided in the SRC directory to build and copy all of the example programs into the UPD\BIN directory. To run this script, change to the SRC directory and type one of the following commands depending on the operating system:

- `makeall` (Linux)
- `makeall_sol` (Solaris)
- `makeall.bat` (Windows®)

A pre-built copy of the INTU application, for each operating system, can be located within the backup subdirectories in the BIN directory.
To build the INTU program, change to the SRC\INTU directory and type one of the following commands depending on the operating system:

- `make -f intu.mak`
- `make -f intu_sol.mak`
- `nmake /f intu.mnt`
4 Configuration

The local and remote ends of the system need to be configured before the INTU application may be run. Example configuration files are provided in the Dialogic® User Part Development Package and after installation will be stored in the directories as shown in the following table:

<table>
<thead>
<tr>
<th>Root directory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RUN</td>
<td></td>
</tr>
<tr>
<td>INTU</td>
<td></td>
</tr>
<tr>
<td>“CONFIG1”</td>
<td>“CONFIG2”</td>
</tr>
<tr>
<td>config.txt</td>
<td>config.txt</td>
</tr>
<tr>
<td>system.txt</td>
<td>system.txt</td>
</tr>
<tr>
<td>[uis.ms7]</td>
<td>[uis.ms7]</td>
</tr>
<tr>
<td></td>
<td>[idp.ms7]</td>
</tr>
</tbody>
</table>

The configuration files in the CONFIG1 (for point code 1) and CONFIG2 (for point code 2) directories should be copied to the appropriate node. Refer to Appendix A - Example Configuration Files for further information.

4.1 System Configuration

4.1.1 SS7G2x SIU

System and protocol information is configured using the SIU management module and commands in the config.txt and system.txt files. Further information on this can be obtained from the SIU user manual [3].

Note: These files are not contained in the Dialogic® User Part Development Package but for illustration an example is given in the appendix.

4.1.2 SPCI2S, SPCI4 and SS7HD

The GCT environment is configured using the gctload program and the system.txt file. The basic board configuration along with the Dialogic® MTP, SCCP, TCAP and INAP modules is achieved using the config.txt file.

Example configuration files for INTU are contained in Appendix A - Example Configuration Files using SS7HD and SS7G21SIU.

4.1.3 SIGTRAN M2PA

It is also possible to run the INTU application from 2 hosts connected in back-to-back with SIGTRAN M2PA links. Configuration files for such systems are contained in Appendix B - Example Configuration Files using SIGTRAN M2PA. When running INTU on a Windows® host system using Dialogic® M2PA, MTP3, SCCP, TCAP and INAP host binaries running on the host, the provided configuration files may be used without modification.
4.2 Protocol Configuration

The example application files given in the appendices will perform the appropriate protocol configuration shown below. If the user wishes to better understand or alter the configuration given, note the following sections.

Before configuring the protocol modules, determine the following information relative to each network entity:

- Local point code
- Local sub-system number
- Remote point code and
- Remote sub-system number

4.2.1 SCCP

The local point code and configuration options (e.g. for ITU-T or ANSI option) are contained in the main SCCP configuration message and should be set to the appropriate value as described in the programmer’s manual [1]. In addition, configuration messages are required for the local subsystem, remote point code and remote sub-system.

4.2.2 TCAP

TCAP may be configured for either ITU_T or ANSI operation in the flags option of the configuration message. The dialogue id ranges should be set to allow the appropriate number of ids split between incoming and outgoing dialogues (further details in the programmer’s manual [5]). Some applications may require initiation of dialogues in one direction only.

4.2.3 INAP

INAP should be configured for ANSI or ITU-T depending on the configuration of SCCP and TCAP. Also similar to TCAP, the ids should be split for incoming and outgoing dialogues. See programmer’s manual for further details [6].
5 Running the INTU application

Before running the INTU application, the GCT environment must first be initialized and the signaling links brought into service. This is achieved by running the gcload program, and activating the links using the MTPSL utility. SCCP sub-systems should be brought into service using ‘User In Service’ messages detailed in Section A.3 Local Sub-system ‘User In Service’ messages.

Refer to manuals [1], [5] or [6] for details as appropriate.

5.1 INTU Command Line Arguments

The module takes a number of command line arguments, which are summarized below. These include options for tracing the program as it progresses.

<table>
<thead>
<tr>
<th>Option</th>
<th>Default</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>-m</td>
<td>0x3d</td>
<td>INTU module Id</td>
</tr>
<tr>
<td>-l</td>
<td>0x35</td>
<td>INAP module Id</td>
</tr>
<tr>
<td>-n</td>
<td>2048</td>
<td>Number of incoming INAP dialogues to use</td>
</tr>
<tr>
<td>-b</td>
<td>0</td>
<td>Base incoming dialogue id</td>
</tr>
<tr>
<td>-o</td>
<td>0x0300</td>
<td>Display options</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Add together required values for tracing options given in table below (section 5.1.1). The default option displays state changes and a dialogue status count.</td>
</tr>
<tr>
<td>-h, -H</td>
<td>-</td>
<td>Displays help message</td>
</tr>
</tbody>
</table>

Example:

```
inu -b0x8000 -o0xffff
```

The above example would assume default values for the INAP module id, INTU module id and the number of incoming dialogues. Also all the trace options would be enabled and the base incoming dialogue id would be 0x8000.
5.1.1 INTU Display Options

<table>
<thead>
<tr>
<th>Tracing option</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTU_OPT_TR_DLG_REQ</td>
<td>0x0001</td>
<td>Trace transmitted dialogue msgs</td>
</tr>
<tr>
<td>INTU_OPT_TR_DLG_IND</td>
<td>0x0002</td>
<td>Trace received dialogue msgs</td>
</tr>
<tr>
<td>INTU_OPT_TR_SRV_REQ</td>
<td>0x0004</td>
<td>Trace transmitted service req msgs</td>
</tr>
<tr>
<td>INTU_OPT_TR_SRV_IND</td>
<td>0x0008</td>
<td>Trace received service ind msgs</td>
</tr>
<tr>
<td>INTU_OPT_TR_DLG_PARAM</td>
<td>0x0010</td>
<td>Include dialogue parameters in trace</td>
</tr>
<tr>
<td>INTU_OPT_TR_SRV_PARAM</td>
<td>0x0020</td>
<td>Include service req params in trace</td>
</tr>
<tr>
<td>INTU_OPT_TR_STATE</td>
<td>0x0100</td>
<td>Trace state changes</td>
</tr>
<tr>
<td>INTU_OPT_TR_ACTV_DLG</td>
<td>0x0200</td>
<td>Trace the dialogue status count</td>
</tr>
<tr>
<td>INTU_OPT_TR_NUM_TRANS</td>
<td>0x0400</td>
<td>Show the numbers translated to/from</td>
</tr>
</tbody>
</table>
6 References

The latest updates to the documentation are available on the Dialogic web site at http://www.dialogic.com/support/helpweb/signaling/default.htm
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>INAP</td>
<td>Intelligent Network Application Part</td>
</tr>
<tr>
<td>INTU</td>
<td>INAP Test Utility</td>
</tr>
<tr>
<td>ITU-T</td>
<td>International Telecommunications Union</td>
</tr>
<tr>
<td>SCCP</td>
<td>Signaling Connection Control Part</td>
</tr>
<tr>
<td>SCF</td>
<td>Service Control Function</td>
</tr>
<tr>
<td>SCP</td>
<td>Service Control Point</td>
</tr>
<tr>
<td>SIU</td>
<td>Signaling Interface Unit</td>
</tr>
<tr>
<td>SSF</td>
<td>Service Switching Function</td>
</tr>
<tr>
<td>SSP</td>
<td>Switched Signaling Point</td>
</tr>
</tbody>
</table>
Appendix A - Example Configuration Files using SS7HD and SS7G21SIU

This section provides example configuration files for use with INTU on Windows® host systems for SS7HD and SS7G21 SIU. Configuration of the Dialogic® SS7HD board host shows Dialogic® SCCP, TCAP and INAP modules are running on the host and Dialogic® MTP host binary running on the board. SIU configuration shows all protocol modules are running on the Dialogic® SS7G21 SIU. INTU is running as module ID 0x3d.

Before configuring the protocol modules it is useful to determine information such as the local point code and remote point code relative to each network entity. For this example configuration, the local (SSF) point code is 2 and the remote point code is 1. In the provided example configuration files, INTU is running on local point code 1 (0).

Example configuration

- **Operating system:** Windows®
- **Local point code (INTU) / SS7 hardware type:** 1 / SS7HD (PCI)
- **Remote point code (SSF) / SS7 hardware type:** 2 / SS7G21 SIU
- **INTU module ID (point code 2):** 0x3d
- **Modules running on board or on host:** SCCP/TCAP/INAP
- **Modules running SIU or on host:** SCCP/TCAP/INAP

![Diagram](image.png)

Figure 6. Example configuration
A.1 system.txt

This section provides two example system.txt files for a host with a Dialogic® SS7HD (PCI) board, and an SS7G21 SIU host. Both systems are running under Windows®.

The following example system.txt files are for point codes 1 and 2. All comments are denoted by “*”.

A.1.1 system.txt for point code 1 (SS7HD PCI)

* Example system.txt.
* Edit this file to reflect your configuration.

*
* Essential modules running on host:
*
LOCAL 0x20 * ssd/ssds - Board interface task
LOCAL 0x00 * tim_nt - Timer task
LOCAL 0xef * s7_log - SS7 message display task
*
* Optional modules running on the host:
*
LOCAL 0xcf * s7_mgt - Management/config task
LOCAL 0x3d * INTU module
LOCAL 0x35 * INAP module
LOCAL 0x14 * TCAP module
LOCAL 0x33 * SCCP module
*
REDIRECT 0x81 0x20 * MTP2 for SP 0 (SS7HD boards only)
REDIRECT 0x91 0x20 * MTP2 for SP 1 (SS7HD boards only)
REDIRECT 0xe1 0x20 * MTP2 for SP 2 (SS7HD boards only)
REDIRECT 0xf1 0x20 * MTP2 for SP 3 (SS7HD boards only)
REDIRECT 0x22 0x20 * MTP3 module
REDIRECT 0x10 0x20 * CT bus/Clocking control module
REDIRECT 0x8e 0x20 * On-board management module
*
* Redirection of status indications:
*
REDIRECT 0xdf 0xef * LIU/MTP2 status messages -> s7_log
*REDIRECT 0xef 0x2d * Other indications -> upe
*
* Now start-up all local tasks:
* (for Septel cP / PCI start-up ssds)
*
FORK_PROCESS ..\..\..\..\ssdh.exe -d
FORK_PROCESS ..\..\..\..\tim_nt.exe
FORK_PROCESS ..\..\..\..\tick_nt.exe
FORK_PROCESS ..\..\..\..\s7_mgt.exe -d
FORK_PROCESS ..\..\..\..\s7_log.exe
FORK_PROCESS ..\..\..\..\inap_nt.exe -t
FORK_PROCESS ..\..\..\..\tcp_nt.exe -t
FORK_PROCESS ..\..\..\..\sccp.exe -t
A.1.2 system.txt for point code 2 (SS7G21 SIU)

* Example system.txt.
* Edit this file to reflect your configuration.

* Module Id's running locally on the host machine: *
*
LOCAL 0x00 * tim_xxx - Timer task
LOCAL 0xb0 * rsi Module Id
LOCAL 0xef * REM_API_ID Module Id (s7_log)
LOCAL 0xfd * rsicmd Module Id
*LOCAL 0x14 * TCAP
*LOCAL 0x33 * SCCP
*LOCAL 0x35 * INAP
*
* Redirect modules running on the SIU to RSI: *
*
REDIRECT 0xdf 0xb0 * SIU_MGT module Id
REDIRECT 0x22 0xb0 * MTP3 module Id
REDIRECT 0x14 0xb0 * TCAP module Id
REDIRECT 0x33 0xb0 * SCCF module Id
REDIRECT 0x32 0xb0 * RMM module Id
REDIRECT 0x71 0xb0 * MTP2 module Id
REDIRECT 0x35 0xb0 * INAP messages
REDIRECT 0x4d 0x35 * redirect incoming messages to INAP
*
* Now start-up the Host tasks
*
FORK_PROCESS tim_nt.exe
FORK_PROCESS tick_nt.exe
FORK_PROCESS s7_log.exe -fs7log.lst
FORK_PROCESS rsi.exe -r./rsi_lnk.exe -l1
*FORK_PROCESS inap_nt.exe -t
*FORK_PROCESS tcp_nt.exe -t
*FORK_PROCESS sccp_nt.exe -t
*
* Start the Host-SIU link: *
*
FORK_PROCESS rsicmd.exe 0 0xef 0 192.168.0.1 9000
A.1.3 Using different operating systems and board configurations

The following subsections provide information regarding the system.txt file if using different operating systems or the SIU.

A.1.3.1 Running INTU with SPCI2S or SPC14

If using SPCI2S or SPC14 the following lines:

```
REDIRECT 0x81 0x20 * MTP2 for SP 0 (SS7HD boards only)
REDIRECT 0x91 0x20 * MTP2 for SP 1 (SS7HD boards only)
REDIRECT 0xe1 0x20 * MTP2 for SP 2 (SS7HD boards only)
REDIRECT 0xf1 0x20 * MTP2 for SP 3 (SS7HD boards only)
```

should be replaced by:

```
REDIRECT 0x71 0x20 * MTP2 module
```

Refer to [3] for further information.

A.1.3.2 Running INTU with other operating systems

If using operating systems other than Windows®, the names of some of the executable files used in the FORK_PROCESS commands need to be changed.

```
FORK_PROCESS SSDH.EXE -d
```

should be replaced by:

```
FORK_PROCESS SSDS.EXE -d
```

Refer to [3] for further information.
A.2 config.txt

This section provides two example config.txt files for a host with a Dialogic® SS7HD (PCI) board, and a Dialogic® SS7G21 SIU. Both systems (SS7HD host and SIU host) are running under Windows®.

All comments are denoted by ‘*’.

Use of the following two example config.txt files (one for the SS7HD host and one for the SS7G21 SIU) will allow the INAP / CAMEL transaction handling system to be configured as detailed in figure 6.

If connecting to other equipment, all the various parameters in the file need to be examined to determine if they are compatible with the configuration at the other end of the link, for example:

- Hardware type, e.g. which board type? Which SIU?
- point codes (OPC, DPC)
- signaling timeslot
A.2.1 config.txt for point code 1 (SS7HD PCI)

* Example config.txt.
* Edit this file to reflect your configuration.

*
* For SS7HD PCI boards:
* SS7_BOARD <board_id> <board_type> <flags> <code_file> <run_mode>
*
SS7_BOARD 0 SS7HDP 0x0043 ../DC4/ss7.dc4 mtp
*
* Configure individual E1/T1 interfaces:
* LIU_CONFIG <board_id> <liu_id> <liu_type> <line_code> <frame_format>
* <crc_mode>
LIU_CONFIG 0 0 5 1 1
LIU_CONFIG 0 1 5 1 1
LIU_CONFIG 0 2 5 1 1
LIU_CONFIG 0 3 5 1 1
*
* MTP parameters:
* *
* MTP_CONFIG <reserved> <reserved> <options>
MTP_CONFIG 0 0 0x0000
*
* Define linksets:
* MTP_LINKSET <linkset_id> <adjacent_spc> <num_links> <flags> <local_spc>
* <ssf>
MTP_LINKSET 0 2 2 0x0000 1 0x08
*
* Define signaling links:
* *
* MTP_LINK <link_id> <linkset_id> <link_ref> <slc> <board_id> <blink>
* <stream> <timeslot> <flags>
* Note 1: For PCCS6 boards the first LIU port is stream=16 whilst for other
* boards the first LIU port is stream=0.
* Note 2: The SS7HD board requires a compound parameter for blink of the
* form sp_id-sp_channel.
* *
* For SS7HD boards:
* *
MTP_LINK 0 0 0 0 0 0-0 2 16 0x0006
*
* Define a route for each remote signaling point:
* MTP_ROUTE <dpc> <linkset_id> <user_part_mask>
MTP_ROUTE 2 0 0x0008
*
* SCCP Parameters :
* * SCCP_CONFIG <local_pc> <ssf> <options>
* * SCCP_CONFIG 1 0x08 0x322
* *SCCP_SSR [<nc_id>] <ssr_id> RSP <remote_spc> <rsp_flags> [<pc_mask>]
* * SCCP_SSR 1 RSP 2 0 0
* *SCCP_SSR [<nc_id>] <ssr_id> LSS <local_ssn> <module_id> <lss_flags>
* <protocol>
* SCCP_SSR 2 LSS 0xfc 0x3d 0 INAP
* *SCCP_SSR [<nc_id>] <ssr_id> RSS <remote_spc> <remote_ssn> <rss_flags>
* * SCCP_SSR 3 RSS 2 0xfa 0
* TCAP Parameters:
* TCAP_CONFIG <base_ogdlg_id> <nog_dialogues> <base_icdlg_id>
 * <nic_dialogues> <options> <dlg_hunt> [<addr_format>]
TCAP_CONFIG 0x0 8192 0x8000 8192 0x0000 0 0
* Enable TCAP traces:
* TCAP_TRACE <op_evt_mask> <ip_evt_mask> <non_prim_mask>
TCAP_TRACE 0x7 0xf 0x0
* INAP_CONFIG <options>
* INAP_CONFIG 0
* INAP_FE <fe_ref> <options> <sccp_address>
* INAP_FE 0x00000001 0x00000000 0x4302000a
INAP_FE 0x00000002 0x00000000 0x4302000b
INAP_FE 0x00000003 0x00000000 0x4301000c
INAP_FE 0x00000004 0x00000000 0x4301000d
* INAP_AC <ac_ref> <ac>
* INAP_AC 0x00 0xa109060704000101010000
INAP_AC 0x01 0xa109060704000101010100
INAP_AC 0x02 0xa109060704000101010200
INAP_AC 0x03 0xa109060704000101010300
INAP_AC 0x04 0xa109060704000101010400
INAP_AC 0x05 0xa109060704000101010500
INAP_AC 0x06 0xa109060704000101010600
INAP_AC 0x10 0xa109060700118942010000
INAP_AC 0x20 0xa109060704000001013200
INAP_AC 0x21 0xa109060704000001013201
INAP_AC 0x34 0xa109060704000101140304
*
A.2.2 config.txt for point code 2 (SS7G21 SIU)

* SS7G2x Protocol Configuration File (config.txt)
* Define the network address of the partner SIU (dual operation only) :
 * SIU.REMADDR <remote_address>
 *
 * Define the number of hosts that this SIU will connect to :
 * SIUHOSTS <num_hosts>
 *
SIU_HOSTS 1
 *
 * Set physical Interface Parameters :
 * SS7.BOARD <bpos> <board_type> <flags>
 *
SS7_BOARD 1 SPCI4 0x0041
 *
 * LIU_CONFIG <port_id> <pcm> <liu_type> <line_code> <frame_format> <crc_mode>
 *
LIU_CONFIG 0 1-1 5 1 1 1 1
LIU_CONFIG 1 1-2 5 1 1 1 1
LIU_CONFIG 2 1-3 5 1 1 1 1
LIU_CONFIG 3 1-4 5 1 1 1 1
 *
 * MTP Parameters :
 * MTP_CONFIG <local_spc> <ssf> <options>
MTP_CONFIG 0 0 0x0000
 *
 * Define linksets :
 * MTP_LINKSET <linkset_id> <adjacent_spc> <num_links> <flags> <local_spc> <ssf>
MTP LINKSET 0 1 1 0x0000 2 0x8
MTP_LINKSET 1 1 1 0x8000 1 0x8 * inter-siu
 *
 * Define signalling links :
 * MTP_LINK <link_id> <linkset_id> <link_ref> <slc> <bpos> <blink> <stream> <timeslot> <flags>
MTP_LINK 0 0 0 0 0 0x10 0x0006
 *
 * Define a route for each remote signalling point :
 * MTP_ROUTE [<nc_id>] <route_id> <dpc> <linkset_id> <user_part_mask> <flags>
 *
 * SCCP Parameters :
 * SCCP_CONFIG <local_pc> <ssf> <options>
SCCP_CONFIG 2 0x08 0x0322
SCCP_RSP 200 0
SCCP_RSP 8 0x0d 1 tcap
SCCP_RSP 200 8 0
SCCP_SSR [<nc_id>] <ssr_id> RSP <remote_spc> <rsp_flags> [<pc_mask>]
SCCP_SSR 1 RSP 1 0
*
SCCP_SSR 2 LSS 0xfa 0xef 0 INAP
* *SCCP_SSR [<nc_id>] <ssr_id> RSS <remote_spc> <remote_ssn> <rss_flags>
* SCCP_SSR 3 RSS 1 0xfc 0
* * TCAP Parameters:
* TCAP_CONFIG <base_ogdlg_id> <nog_dialogues> <base_icdlg_id>
* <nic_dialogues> <options> <dlg_hunt> [<addr_format>]
TCAP_CONFIG 0x0 8192 0x8000 8192 0x0000 0 0
* * Enable TCAP traces:
* TCAP_TRACE <op_evt_mask> <ip_evt_mask> <non_prim_mask>
TCAP_TRACE 0x7 0xf 0x0
* INAP_CONFIG 0
* * INAP_FE <fe_ref> <options> <sccp_address>
* INAP_FE 0x00000001 0x00000001 0x4302000a
INAP_FE 0x00000002 0x00000001 0x4302000b
INAP_FE 0x00000003 0x00000000 0x4301000c
INAP_FE 0x00000004 0x00000000 0x4301000d
* * INAP_AC <ac_ref> <ac>
* INAP_AC 0x00 0xa109060704000101010000
INAP_AC 0x01 0xa109060704000101010100
INAP_AC 0x02 0xa109060704000101010200
INAP_AC 0x03 0xa109060704000101010300
INAP_AC 0x04 0xa109060704000101010400
INAP_AC 0x05 0xa109060704000101010500
INAP_AC 0x06 0xa109060704000101010600
INAP_AC 0x10 0xa109060700118942010000
INAP_AC 0x20 0xa109060704000001013200
INAP_AC 0x21 0xa109060704000001013201
INAP_AC 0x34 0xa1090607040000101140304
* INAP_TRACE 0xf 0xf 0x7f
* * End of file
A.2.3 Using different operating systems and board configurations

The following subsections provide information regarding the config.txt file if using different operating systems or board based configurations.

A.2.3.1 Running INTU with PCI2S or SPC14

If using Dialogic® SPCI2S or SPCI4S PCI boards, the ‘SS7_BOARD 0 SS7HDP’ command (from config.txt for point code 1) should be replaced with the following:

```
SEPTELPCI_BOARD 0 0x0043 ss7.dc3 MTP
LIU_CONFIG 0 0 5 1 1 1
```

The `MTP_LINK ‘blink’` parameter will need to be modified for use with SPCI2S or SPCI4S.

Refer to [3] for further information.

A.2.3.2 Running INTU with the SIU

If using the SIU, additional commands required by the SIU will need to be included. The example system.txt provided in this appendix is for information. Refer to [3] for further information.

A.2.3.3 Running INAP/TCAP/SCCP on the board

If using a board license button so that the INAP, TCAP, SCCP and MTP3 modules are run on the board instead of the host, remove the `FORK_PROCESS` command for the INAP host binary, the `LOCAL` declaration should be removed for the INAP module and a `REDIRECT` command (which redirects messages for that module to the board) should be added. Similar changes should also be made for the MTP3, SCCP and TCAP modules.

Refer to [4] or [7] and as appropriate.

A.2.3.4 Running INTU with other operating systems

There are no additional commands specific to various operating systems.

Refer to [2] and [3] as appropriate.
A.3 Local Sub-system ‘User In Service’ messages

This section provides two ‘User In Service’ (UIS) messages, one for INTU and another for SSF. These messages bring the local SCCP sub-systems into service, enabling the complete system to begin handling INAP / CAMEL traffic.

For this example INTU is point code 1 and SSF is point code 2 (14-bit point codes assumed). The local sub-system at point code 1 is 0xfc and the sub-system at point code 2 is 0xfa.

A.3.1 INTU UIS message – point code 1

* --Format id - Sub-system Allowed SSA (1)
* --Primitive type - N-STATE-REQ (1)
* -- Local sub-system number
*M-tc744-i00fc-fef-d33-r8000-p0101000000000000
*

A.3.2 SSF UIS message – point code 2

* --Format id - Sub-system Allowed SSA (1)
* --Primitive type - N-STATE-REQ (1)
* -- Local sub-system number
*M-tc744-i00fa-fef-d33-r8000-p0101000000000000
*
Appendix B - Example Configuration Files using SIGTRAN M2PA

This section provides example configuration files for use with INTU on Windows® host systems using SIGTRAN M2PA links. Dialogic® INAP, TCAP, SCCP, MTP3 and M2PA modules are running on the hosts. The INTU sample program is running as module ID 0x3d.

Before configuring the protocol modules it is useful to determine information such as the local point code and remote point code relative to each network entity. For this example configuration, the local (SSF) point code is 2 and the remote point code (running INTU) is 1 as shown in figure 7.

Example configuration

Operating system: Windows®

Link type: SIGTRAN M2PA

Remote point code (INTU): 1

Local point code (SSF): 2

INTU module ID (point code 2): 0x3d

Modules running on host: INAP, TCAP, SCCP, MTP3, M2PA

Figure 7. Example configuration
B.1 system.txt

This section provides an example system.txt file for SIGTRAN M2PA hosts running under Windows® using the example configuration described earlier in this appendix.

The following example system.txt file is valid for SIGTRAN hosts acting as point codes 1 and 2. All comments are denoted by ‘*’.

* Example system.txt.
* Edit this file to reflect your configuration.

*
LOCAL 0x00 * Timer Task
*
* Optional modules running on the host:
*
LOCAL 0xcf * s7_mgt - Management/config task
LOCAL 0xc2 * mbm - Management task
LOCAL 0xd0 * SCTPD module
LOCAL 0xd1 * SCTP module
LOCAL 0xc1 * M2PA module
LOCAL 0x22 * MTP3 module
LOCAL 0x33 * SCCP module
LOCAL 0x14 * TCAP module
LOCAL 0x35 * INAP module*
LOCAL 0xEF * S7_LOG
LOCAL 0x3d * intu
* Now start-up all local tasks:
*
FORK_PROCESS ..\..\..\..\tim_nt.exe
FORK_PROCESS ..\..\..\..\tick_nt.exe
FORK_PROCESS ..\..\..\..\sctpd.exe
FORK_PROCESS ..\..\..\..\sctp.exe
FORK_PROCESS ..\..\..\..\m2pa_nt.exe -t
FORK_PROCESS ..\..\..\..\mtp_nt.exe -t
FORK_PROCESS ..\..\..\..\mbm.exe -d
FORK_PROCESS ..\..\..\..\inap_nt.exe -t
FORK_PROCESS ..\..\..\..\tcp_nt.exe -t
FORK_PROCESS ..\..\..\..\sccp.exe -t
FORK_PROCESS ..\..\..\..\s7_mgt.exe -d
FORK_PROCESS ..\..\..\..\s7_log.exe -fss7.log
B.2 config.txt

This section provides two example config.txt files for SIGTRAN M2PA hosts running under Windows®
using the example configuration described earlier in this appendix. The following example config.txt
files are for point code 1 and point code 2. All comments are denoted by "*".

Using the two example config.txt files will allow an INAP / SIGTRAN transaction handling system to be
configured as detailed in figure 7.

If connecting to other equipment, all the various parameters in the file need to be examined to
determine if they are compatible with the configuration at the other end of the link, for example:
- point codes (OPC, DPC)
- signaling timeslot
- sub-system numbers
- Host IP addresses

Refer to [3] for SIGTRAN related parameter changes (such as port numbers, IP addresses, etc.)

B.2.1 config.txt for point code 1

**
* Example config.txt. *
* Edit this file to reflect your configuration. *
**
*
CNSYS:IPADDR=192.168.0.1,per=0;
* SNSLI:SNLINK=1,IPADDR=192.168.0.2,SNEND=s,SNTYPE=M2PA,M2PA=1,PPORT=3565;
* MTP Parameters:
* MTP_CONFIG <reserved> <reserved> <options>
MTP_CONFIG 0 0 0x00000000
* Define linksets:
* MTP_LINKSET <linkset_id> <adjacent_spc> <num_links> <flags> <local_spc>
MTP_LINKSET 0 2 1 0x00000008
* Define signaling links:
* MTP_LINK <link_id> <linkset_id> <link_ref> <slc> <board_id> <blink>
* <stream> <timeslot> <flags>
MTP_LINK 0 0 0 0 0 1 0 0 0x80000006
* Define a route for each remote signaling point:
* MTP_ROUTE <dpc> <linkset_id> <user_part_mask>
MTP_ROUTE 2 0 0x0008
* SCCP_CONFIG 1 0x08 0x32
* SCCP_SSR [<nc_id>] <ssr_id> RSP <remote_spc> <rsp_flags> [<pc_mask>]
* SCCP_SSR 1 RSP 2 0 0
* SCCP_SSR [<nc_id>] <ssr_id> LSS <local_ssn> <module_id> <lss_flags>
* SCCP_SSR 2 LSS 0xfc 0x3d 0 INAP
* SCCP_SSR [<nc_id>] <ssr_id> RSS <remote_spc> <remote_ssn> <rss_flags>
* SCCP_SSR 3 RSS 2 0xfa 0
*
* TCAP Parameters:
 * TCAP_CONFIG <base_ogdlg_id> <nog_dialogues> <base_icdlg_id>
 * <nic_dialogues> <options> <dlg_hunt> [<addr_format>]
 TCAP_CONFIG 0x0 8192 0x8000 8192 0x0000 0 0
 *
 * Enable TCAP traces:
 * TCAP_TRACE <op_evt_mask> <ip_evt_mask> <non_prim_mask>
 TCAP_TRACE 0x7 0xf 0x0
 *
 * INAP_CONFIG <options>
 *
 INAP_CONFIG 0
 *
 * INAP_FE <fe_ref> <options> <sccp_address>
 *
 INAP_FE 0x00000001 0x00000000 0x4302000a
 INAP_FE 0x00000002 0x00000000 0x4302000b
 INAP_FE 0x00000003 0x00000001 0x4301000c
 INAP_FE 0x00000004 0x00000001 0x4301000d
 *
 * INAP_AC <ac_ref> <ac>
 *
 INAP_AC 0x00 0xa109060704000101010000
 INAP_AC 0x01 0xa109060704000101010100
 INAP_AC 0x02 0xa109060704000101010200
 INAP_AC 0x03 0xa109060704000101010300
 INAP_AC 0x04 0xa109060704000101010400
 INAP_AC 0x05 0xa109060704000101010500
 INAP_AC 0x06 0xa109060704000101010600
 INAP_AC 0x10 0xa109060700118942010000
 INAP_AC 0x20 0xa109060704000001013200
 INAP_AC 0x21 0xa109060704000001013201
 INAP_AC 0x34 0xa109060704000101140304
 *
 * End of file
B.2.2 config.txt for point code 2

* Example config.txt.
* Edit this file to reflect your configuration.

CNSYS:IPADDR=192.168.0.2,PER=0;

SNSSLI:SNLINK=1,IPADDR=192.168.0.1,SNEND=C,SNTYPE=M2PA,M2PA=1,pport=3565;

MTP Parameters:
MTP CONFIG <reserved> <reserved> <options>
MTP_CONFIG 0 0 0x00000000

Define linksets:
MTP_LINKSET <linkset_id> <adjacent_spc> <num_links> <flags> <local_spc>
MTP_LINKSET 0 1 1 0x00002 0x08

Define signaling links:
MTP_LINK <link_id> <linkset_id> <link_ref> <slc> <board_id> <blink>
MTP_LINK 0 0 0 0 0 1 0 0 0x80000006

Define a route for each remote signaling point:
MTP_ROUTE <dpc> <linkset_id> <user_part_mask>
MTP_ROUTE 1 0 0x0008

SCCP_CONFIG 2 0x08 0x0322

SCCP_SSR [*nc_id*] <ssr_id> RSP <remote_spc> <rsp_flags> [<pc_mask>]
SCCP_SSR 1 RSP 1 0 0

SCCP_SSR [*nc_id*] <ssr_id> LSS <local_ssn> <module_id> <lss_flags>
SCCP_SSR 2 LSS 0xfa 0xef 0 INAP

SCCP_SSR [*nc_id*] <ssr_id> RSS <remote_spc> <remote_ssn> <rss_flags>
SCCP_SSR 3 RSS 1 0xfc 0

TCAP Parameters:
TCAP_CONFIG <base_ogdlg_id> <nog_dialogues> <base_icdlg_id>
TCAP_CONFIG 0x0 8192 0x8000 8192 0x0000 0 0

Enable TCAP traces:
TCAP_TRACE <op_evt_mask> <ip_evt_mask> <non_prim_mask>
TCAP_TRACE 0x7 0xf 0x0

INAP_CONFIG 0

INAP_FE <fe_ref> <options> <scap_address>

INAP_FE 0x00000001 0x00000001 0x4302000a
INAP_FE 0x00000002 0x00000001 0x4302000b
INAP_FE 0x00000003 0x00000000 0x4301000c
INAP_FE 0x00000004 0x00000000 0x4301000d

INAP_AC <ac_ref> <ac>
INAP AC 0x00 0xa1090607040000101010000
INAP AC 0x01 0xa1090607040000101010100
INAP AC 0x02 0xa1090607040000101010200
INAP AC 0x03 0xa1090607040000101010300
INAP AC 0x04 0xa1090607040000101010400
INAP AC 0x05 0xa1090607040000101010500
INAP AC 0x06 0xa1090607040000101010600
INAP AC 0x10 0xa109060700118942010000
INAP AC 0x20 0xa109060704000001013200
INAP AC 0x21 0xa109060704000001013201
INAP AC 0x34 0xa1090607040000101140304

INAP TRACE 0xf 0xf 0x7f

* End of file
B.3 Local Sub-system ‘User In Service’ messages

This section provides two ‘User In Service’ (UIS) messages, one for INTU and another for SSF. These messages bring the local SCCP sub-systems into service, enabling the complete system to begin handling INAP / CAMEL traffic.

For this example, INTU is point code 1 and SSF is point code 2 (14-bit point codes assumed). The local subsystem at point code 1 is 0xfc and at point code 2 is 0xfa.

B.3.1 INTU UIS message – point code 1

* --Format id - Sub-system Allowed SSA (1)
* --Primitive type - N-STATE-REQ (1)
* -- Local sub-system number
*M-tc744-i00fc-fef-d33-r8000-p0101000000000000
*

B.3.2 SSF UIS message – point code 2

* --Format id - Sub-system Allowed SSA (1)
* --Primitive type - N-STATE-REQ (1)
* -- Local sub-system number
*M-tc744-i00fa-fef-d33-r8000-p0101000000000000
*
Appendix C - INAP User - point code 2

This section provides an example script file, which may be used to represent the INAP user (SSF) at point code 2. The file can be used with s7_play and is supplied in the Dialogic® User Part Development Package. The 3 dialogues started by this file represent the message sequences shown in section 2.2.

Please note: The final 3 dialogue sequences in this example script file are commented out.

These can optionally be uncommented to show dialogue handling for ITU-T CS-1, CAMEL v1 and CAMEL v2 application contexts.

C.1 idp.ms7

This file contains 3 ETSI dialogues which will reflect the message sequences shown in the INTU User Guide. The first dialogue is a successful dialogue. The second dialogue shows an error. The last dialogue will cause a different message to be sent from INTU due to a deliberate mismatch in the InitialDP message.

Each dialogue sends an open request, an IntialDP operation, a delimit and finally a close with a pre-arranged end.

ETSI CS-1

This is an example of a successful dialogue as mentioned in the INTU user guide.

--- Orig Address
--- Dest Address
--- AC ref
--- Open Req
--- InvokeId param
--- component name
--- context prim 2 tag
--- Opcode Name
--- context prim 3 tag
--- invoke id tag
--- opCode
--- CalledPartyNumber
--- class param
--- invoke id
--- class
--- timeout name
--- sequence
--- context prim 0
tag
key
--- delimit
This dialogue is an example of a dialogue which will result in an error. The error will be

MissingCustomerRecord and is generated because the service key provided in the InitialDP message
will not match the service key provided inside INTU.

InitialDP with optional parameters, parameter data is dummy

This dialogue will result in a ReleaseCall being generated by INTU due to the
calledpartynumber provided in the InitialDP message not matching the 0800 number in INTU which is meant to be
translated.
Successful dialogue showing that INTU supports the ITU-T application context

---Orig Address
---Dest Address
--Open Req

InitialDP with optional parameters, parameter data is dummy

---invokeId param --component name --
context prim 2 tag
* InvokeREQ-- ^^len
 --InvokeID ^^len
--------------------CalledPartyNumber--mismatch
* --OpCode Name ^^len
--context prim 3 tag
* ^^len --invoke id tag
* ==opCode ^^len
--------------------CallingPartyNumber
* --class param --invoke id ^^len
* ==class ^^len
* --timeout name --op code
* ==sequence ^^len
* ====timeout --context prim 0
tag
* ^^len
key
*
* --delimit

---Orig Address
---Dest Address
--Open Req

InitialDP with optional parameters, parameter data is dummy

---invokeId param --component name --
context prim 2 tag
* InvokeREQ-- ^^len
 --InvokeID ^^len
--------------------CalledPartyNumber--mismatch
* --OpCode Name ^^len
--context prim 3 tag
* ^^len --invoke id tag
* ==opCode ^^len
--------------------CallingPartyNumber
* --class param --invoke id ^^len
* ==class ^^len
* --timeout name --op code
* ==sequence ^^len
* ====timeout --context prim 0
tag
* ^^len
key
*
* --delimit
Appendix C - INAP User - point code 2

*M-tc7f2-i0001-fef-d35-p0300
* ------pre-arranged
* --close
*M-tc7f2-i0001-fef-d35-p0207010100
* --d-m1000
* CAMEL v1
* Successful dialogue showing that INTU supports the Camel v1 application context
* -------Orig Address
* ------Dest Address
* ----AC ref
*M-tc7f2-i0002-fef-d35-p011004430100fc0304430200fa1b020000
* --invokeId param --component name --
* InvokeREQ-- ^len ^len ^len
* ==InvokeID --component type tag
* =--CalledPartyNumber
* =--invokeId id tag
* ^len ^len ^len
* =Opcode Name ^len
* =context prim 2 tag
* =--class param =--invoke id
* ^len ^len
* =--class param =--op code tag
* ^len ^len
* =--timeout name =--op code
* ^len ^len
* =--sequence
* ^len
* =--context prim 0
* =--delimit
*M-tc7f2-i0002-fef-d35-p0300
* --d-m1000
* ------pre-arranged
* --close
*M-tc7f2-i0002-fef-d35-p0207010100
* --d-m1000
* CAMEL v2
* Successful dialogue showing that INTU supports the Camel v2 application context
* -------Orig Address
* ------Dest Address
* ----AC ref
*M-tc7f2-i0003-fef-d35-p011004430100fc0304430200fa1b020000
* --invokeId param --component name --
* InvokeREQ-- ^len ^len ^len

42
Successful dialogue showing that INTU supports the ETSI CS-2 application context

```
--- Orig Address
--- Dest Address
--- Open Req  --- AC ref
M-tc7f2-i0004-fef-d35-p010104430100fc0304430200fa1b013400

--- InitialDP with optional parameters, parameter data is dummy

M-tc7f2-i0003-fef-d35-p0300

D-m1000

------- pre-arranged

--- close

M-tc7f2-i0003-fef-d35-p0207010100

D-m1000

ETSI CS-2

--- Successful dialogue showing that INTU supports the ETSI CS-2 application context

--- Orig Address
--- Dest Address
--- Open Req  --- AC ref
M-tc7f2-i0004-fef-d35-p010104430100fc0304430200fa1b013400

--- InitialDP with optional parameters, parameter data is dummy

M-tc7f2-i0004-fef-d35-p0300

D-m1000

------- pre-arranged
```
* --close
*M-tc7f2-10004-fef-d35-p0207010100
* *D=m1000

Appendix D - Sample Output

The following is sample output from INTU at point code 1.

INTU was started using:

```
intu -b0x8000 -o0xffff
```

INTU: Example INAP application (C) Dialogic Corporation 1998-2007. All Rights Reserved.

```
==============================================================
SS7-INAP-API Version 202.2
INTU module ID - 0x3d
INAP module ID - 0x35
Number of dialogues - 0x0800 (2048)
Base dialogue ID - 0x8000
Options set - 0xffff

INTU: DLG-IND OPEN, dialogue 0x8000
  Param : dest_address (0x0001) Len : 0x04
  43 01 00 fc
  Param : orig_address (0x0003) Len : 0x04
  43 02 00 fa
  Param : applic_context_index (0x001b) Len : 0x01
  00
INTU: State change for dialogue 0x8000 from IDLE to OPEN
INTU: Dialogues: Active [1], Completed [0], Successful [0], Failed [0]
INTU: SRV-IND Invoke - dialogue 0x8000 in OPEN state
  Param : ServiceKey (0x0003) Len : 0x04
  0a 0b 0c 0d
INTU: State change for dialogue 0x8000 from OPEN to PENDING_DELIMIT
INTU: DLG-IND DELIMIT, dialogue 0x8000
INTU: DLG-REQ OPEN_RSP, dialogue 0x8000
  Param : Result (0x0005) Len : 0x01
  00
INTU: Called Party [0800123456], Dest Routing Addr [01425651300]
INTU: SRV-REQ Invoke - dialogue 0x8000 in PENDING_DELIMIT state
INTU: DLG-REQ DELIMIT, dialogue 0x8000
INTU: DLG-REQ CLOSE, dialogue 0x8000
  Param : release_method (0x0007) Len : 0x01
  01
INTU: State change for dialogue 0x8000 from PENDING_DELIMIT to CLOSING
INTU: DLG-IND CLOSE, dialogue 0x8000
INTU: State change for dialogue 0x8000 from CLOSING to IDLE
INTU: Dialogues: Active [0], Completed [1], Successful [1], Failed [0]
```
Appendix E - SDL Diagrams

E1

STARTUP

Command Line Options

Options include:
- INTU Module id,
- INAP Module id,
- DLG_ID base,
- Number of DLG_IDs

DLG_ID base, num of DLG CBs

Set All DCBs (Dialogue Control Blocks) to IDLE

IDLE
INAP Test Utility (INTU) User Guide Issue 3

E2

Diagram showing the flow of events and commands:

- **IDLE**
- **DLG-IND**
 - `IN_get_dialogue_type`
 - Dialogue Type
 - **OPEN**
 - Initialise DCB structure using AC
 - `IN_initialise_component (in DLG CB)`
 - Log to screen
 - Print "Dialogue ID (xxxx) OPEN"
 - Log to screen
- **SRV-IND**
 - OPEN_RSP, CLOSE, NOTICE, P-ABORT, U-ABORT
 - **DLG-REQ**
 - U-ABORT
 - Log to screen
 - **IDLE**
Appendix E - SDL Diagrams

E3

```
OPEN

DLG-IND

SRV-IND

IN_get_component_type

Component Type

ERROR, RESULT

INVOKE

Log to screen

PRINT 'Unexpected SRV-IND'

Prepare DCB for U-ABORT

PENDING DELIMIT

IN_getDialogue_type

Dialogue Type

P-ABORT, U-ABORT, OPEN-RSP

Log to screen

IDLE

DELIMIT

CLOSE

NOTICE

OPEN

IDLE

Log to screen

Log to screen

Log to screen

Prepare DCB for U-ABORT

INITIALISE CB structure

IN_initialise_component (in DLG CB)

OPEN
```

Print 'Warning DLG re-opened'

PENDING DELIMIT
1

Decode into CB CPT

Reject Required?

NO

Operation is InitialDP?

YES

Service Key Supported?

NO

YES

Prepare DCB for ERROR (Missing Customer Record)

PENDING DELIMIT

YES

Prepare DCB for U-ABORT

Prepare DCB for REJECT

Prepare DCB for ERROR

NO
In this example, incoming invokeIDs are in range (0 - 127).

The Service Logic in this case is simple number translation.

Required Reply

Connect

Release Call

SRV-REQ INVOKE (Connect)

SRV-REQ INVOKE (Release Call)

DLG-REQ DELIMIT

DLG-REQ CLOSE

DLG-REQ CLOSE (Pre-arranged End)

IDLE

CLOSING

In this example, incoming invokeIDs are in range (0 - 127).

The Service Logic in this case is simple number translation.

Required Reply

Connect

Release Call

SRV-REQ INVOKE (Connect)

SRV-REQ INVOKE (Release Call)

DLG-REQ DELIMIT

DLG-REQ CLOSE

DLG-REQ CLOSE (Pre-arranged End)

IDLE

CLOSING
CLOSING

DLG-IND

IN_get_dialogue_type

Dialogue Type

OPEN

Log unexpected DLG OPEN

Initialise CB structure

N_initialise_component (in DLG CB)

OPEN

CLOSE

SRV-IND

DELIMIT, OPEN-RSP, NOTICE, P-ABORT, U-ABORT

LOG TO SCREEN

DLG-REQ

U-ABORT

IDLE
3

- DLG-REQ
 - OPEN-RSP
 - IN_code_error
 - IN_code_reject
 - SRV-REQ
 - ERROR
 - DLG-REQ
 - CLOSE
 - IDLE

5

- Log to screen
 - Print 'Warning DLG re-opened'
- Initialise CB
 - structure
- IN_initialise_component
- (in DLG CB)
- OPEN