
Dialogic® 3G-324M API
Programming Guide and Library Reference

October 2008

05-2558-005

Dialogic® 3G-324M API Programming Guide and Library Reference – October 2008

Copyright and Legal Notice

Copyright © 2007 - 2008, Dialogic Corporation. All Rights Reserved. You may not reproduce this document in whole or in part without permission in
writing from Dialogic Corporation at the address provided below.

All contents of this document are furnished for informational use only and subject to change without notice and do not represent a commitment on the
part of Dialogic Corporation or its subsidiaries (“Dialogic”). Reasonable effort is made to ensure the accuracy of the information contained in the
document. However, Dialogic does not warrant the accuracy of this information and cannot accept responsibility for errors or omissions that may be
contained in this document.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH DIALOGIC® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN A
SIGNED AGREEMENT BETWEEN YOU AND DIALOGIC, DIALOGIC ASSUMES NO LIABILITY WHATSOEVER, AND DIALOGIC DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF DIALOGIC PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY INTELLECTUAL PROPERTY
RIGHT OF A THIRD PARTY.

Dialogic products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Due to differing national regulations and approval requirements, certain Dialogic products may be suitable for use only in specific countries, and thus
may not function properly in other countries. You are responsible for ensuring that your use of such products occurs only in the countries where such
use is suitable. For information on specific products, contact Dialogic Corporation at the address indicated below or on the web at www.dialogic.com.

It is possible that the use or implementation of any one of the concepts, applications, or ideas described in this document, in marketing collateral
produced by or on web pages maintained by Dialogic may infringe one or more patents or other intellectual property rights owned by third parties.
Dialogic does not provide any intellectual property licenses with the sale of Dialogic products other than a license to use such product in accordance
with intellectual property owned or validly licensed by Dialogic and no such licenses are provided except pursuant to a signed agreement with
Dialogic. More detailed information about such intellectual property is available from Dialogic’s legal department at 9800 Cavendish Blvd., 5th Floor,
Montreal, Quebec, Canada H4M 2V9. Dialogic Corporation encourages all users of its products to procure all necessary intellectual property
licenses required to implement any concepts or applications and does not condone or encourage any intellectual property infringement
and disclaims any responsibility related thereto. These intellectual property licenses may differ from country to country and it is the
responsibility of those who develop the concepts or applications to be aware of and comply with different national license requirements.

Dialogic, Dialogic Pro, Brooktrout, Cantata, SnowShore, Eicon, Eicon Networks, Eiconcard, Diva, SIPcontrol, Diva ISDN, TruFax, Realblocs,
Realcomm 100, NetAccess, Instant ISDN, TRXStream, Exnet, Exnet Connect, EXS, ExchangePlus VSE, Switchkit, N20, Powering The Service-
Ready Network, Vantage, Connecting People to Information, Connecting to Growth and Shiva, among others as well as related logos, are either
registered trademarks or trademarks of Dialogic. Dialogic's trademarks may be used publicly only with permission from Dialogic. Such permission may
only be granted by Dialogic's legal department at 9800 Cavendish Blvd., 5th Floor, Montreal, Quebec, Canada H4M 2V9. Any authorized use of
Dialogic's trademarks will be subject to full respect of the trademark guidelines published by Dialogic from time to time and any use of Dialogic's
trademarks requires proper acknowledgement.

Using the AMR-NB resource in connection with one or more Dialogic® products does not grant the right to practice the AMR-NB standard. To seek a
patent license agreement to practice the standard, contact the VoiceAge Corporation at www.voiceage.com/licensing.php.

Any use case(s) shown and/or described herein represent one or more examples of the various ways, scenarios or environments in which Dialogic®
products can be used. Such use case(s) are non-limiting and do not represent recommendations of Dialogic as to whether or how to use Dialogic
products.

The other names of actual companies and products mentioned herein are the trademarks of their respective owners.

Publication Date: October 2008

Document Number: 05-2558-005

www.dialogic.com
www.voiceage.com/licensing.php
www.voiceage.com/licensing.php

Dialogic® 3G-324M API Programming Guide and Library Reference – October 2008 3
Dialogic Corporation

Contents

Revision History . 9

About This Publication . 13

1 Product Description . 15

1.1 Product Overview . 15
1.2 3G-324M Technical Specification Overview . 15

1.2.1 Introduction . 16
1.2.2 Call Signaling . 17
1.2.3 H.324 Base Protocol . 17
1.2.4 H.223 Multiplexer and Demultiplexer Protocol . 18
1.2.5 H.245 Session Control Protocol . 18
1.2.6 Media Components. 19
1.2.7 3G-324M Session Establishment (Standard) . 19
1.2.8 Media Oriented Negotiation Acceleration (MONA) . 19

1.3 Dialogic® 3G-324M API Implementation . 21

2 Device Handling . 23

2.1 Device Overview . 23
2.2 Device Types . 23

3 Event Handling . 26

3.1 Event Handling Overview . 26
3.2 Dialogic® Standard Runtime Library Event Management Functions 26
3.3 Dialogic® Standard Runtime Library Standard Attribute Functions 27

4 Error Handling . 28

5 Implementing a 3G-324M Session . 29

5.1 Major Implementation Steps . 29
5.2 Initialize Devices . 30

5.2.1 Initialize the 3G-324M Library . 30
5.2.2 Open and Configure the m3g Board Device. 31
5.2.3 Open and Configure the m3g Control Device. 32
5.2.4 Open and Configure the m3g Audio Device . 32
5.2.5 Open and Configure the m3g Video Device . 32
5.2.6 Get Local Capabilities. 33
5.2.7 Set Preferred Capabilities . 33

5.3 Connect Devices . 33
5.3.1 Connect Devices Overview. 34
5.3.2 Connecting Networks . 34
5.3.3 Connecting Audio and Video Media . 36
5.3.4 Transcoding Versus Native Connection . 38

5.4 Establish a Bearer Channel . 39
5.5 Establish a 3G-324M Session . 40

5.5.1 Start H.245 with MONA . 40

4 Dialogic® 3G-324M API Programming Guide and Library Reference – October 2008
Dialogic Corporation

Contents

5.5.2 Establish MONA MPCs . 41
5.5.3 Exchange Media Using MONA . 42

5.6 MONA ACP and Standard H.245 Logical Channel Establishment 42
5.6.1 Start H.245 – Standard Open Logical Channel Procedure 42
5.6.2 Get Matched Capabilities. 44
5.6.3 Open Audio/Video Logical Channels (OLC) . 45

5.7 Exchange Media . 46
5.7.1 Exchange Media Using m3g_StartMedia() . 47
5.7.2 Exchange Media Using m3g_ModifyMedia() . 47
5.7.3 Start Multimedia Play and Record . 49
5.7.4 H.245 UII Digit Detection/Generation . 49
5.7.5 Video Fast Update Request Detection/Generation . 50

5.8 Terminate a 3G-324M Session. 50
5.8.1 Stop Media Streaming . 50
5.8.2 Terminate the H.245 Session . 51

5.9 Disconnect the Bearer Channel . 52
5.10 Disconnect Devices . 52

5.10.1 Disconnect Media Port Connections . 52
5.10.2 Disconnect Network Device. 53

5.11 Close Devices. 53
5.12 Exit the application . 54

6 Interoperability and Compliance Information . 55

6.1 Interoperability Guidelines . 55
6.2 Statements of Compliance . 56

7 Video Quality Considerations . 58

8 Data Structure Considerations. 59

8.1 Using Inline Functions . 59
8.2 Handling the Version Number. 59

9 Building Applications . 60

9.1 Compiling and Linking . 60
9.1.1 Include Files. 60
9.1.2 Required Libraries . 60

9.2 Variables for Compiling and Linking . 61

10 Debugging . 62

10.1 Trace Utilities . 62
10.1.1 Parser Utility . 62

10.2 Call Statistics . 63

11 Function Summary by Category . 64

11.1 System Control Functions. 64
11.2 H.245 Control Functions . 65
11.3 Data Flow Functions . 65
11.4 Utility Functions . 66

12 Function Information. 67

12.1 Function Syntax Conventions . 67

Dialogic® 3G-324M API Programming Guide and Library Reference – October 2008 5
Dialogic Corporation

Contents

m3g_Close() – close a device . 68
m3g_CloseLC() – initiate closure of specified logical channel . 70
m3g_DisableEvents() – disable one or more unsolicited events. 74
m3g_EnableEvents() – enable one or more unsolicited events . 77
m3g_GetLocalCaps() – get default capabilities of the device . 81
m3g_GetMatchedCaps() – get common capabilities between remote and local endpoints 85
m3g_GetParm() – get current parameter setting for a device . 90
m3g_GetUserInfo() – get a user-defined handle for an SRL device . 93
m3g_ModifyMedia() – start and stop half-duplex streaming from a media device 96
m3g_Open() – open a device and return a unique device handle. 100
m3g_OpenEx() – open a device in sync or async mode . 105
m3g_OpenLC() – send an OpenLogicalChannel request . 110
m3g_Reset() – reset open devices that were improperly closed. 117
m3g_RespondToOLC() – respond to an OpenLogicalChannel request 120
m3g_SendH245MiscCmd() – send H.245 MiscellaneousCommand message. 125
m3g_SendH245UII() – send H.245 UserInputIndication message . 128
m3g_SetParm() – set parameter of a board device or control device . 131
m3g_SetTCS() – set H.245 TerminalCapabilitySet table . 134
m3g_SetVendorId() – set H.245 VendorIdentification message . 139
m3g_Start() – start and initialize 3G-324M library . 143
m3g_StartH245() – initiate H.223 multiplex/demultiplex . 145
m3g_StartMedia() – start media stream . 152
m3g_StartTrace() – initiate and configure 3G-324M tracing . 159
m3g_Stop() – stop 3G-324M library and release resources . 162
m3g_StopH245() – terminate H.245 session . 164
m3g_StopMedia() – stop media stream . 167
m3g_StopTrace() – stop 3G-324M tracing . 171

13 Events . 174

13.1 Event Types. 174
13.2 Event Information. 174

14 Data Structures . 183

M3G_AMR_OPTIONS – AMR-NB options. 185
M3G_AUDIO_CAPABILITY – audio capabilities . 186
M3G_AUDIO_OPTIONS – audio options. 187
M3G_CALL_STATISTICS – call statistics . 188
M3G_CAPABILITY – union of capabilities . 190
M3G_CAPS_LIST – capabilities list . 191
M3G_FASTUPDATE_GOB – H.245 FastUpdate Group of Blocks . 192
M3G_FASTUPDATE_MB – H.245 FastUpdate Macro Blocks. 193
M3G_G7231_OPTIONS – G.723.1 options . 194
M3G_H221_NONSTD – H.221 identifier . 195
M3G_H223_CAPABILITY – H.223 multiplex capabilities. 196
M3G_H223_LC_PARAMS – H.223 multiplex parameters . 198
M3G_H223_SESSION – H.223 multiplex configuration information . 201
M3G_H245_MISC_CMD – H.245 Miscellaneous Commands . 202

6 Dialogic® 3G-324M API Programming Guide and Library Reference – October 2008
Dialogic Corporation

Contents

M3G_H245_MISC_CMD_PARAMS – H.245 Miscellaneous Commands Parameters 204
M3G_H245_UII – DTMF digits in H.245 UserInputIndication message 205
M3G_H263_OPTIONS – H.263 options . 206
M3G_MONA_MPC – MONA media preconfigured channel . 208
M3G_MONA_TXRX_MPC_SUPPORT – MONA MPC Tx and Rx Bits. 209
M3G_MPEG4_OPTIONS – MPEG-4 options . 210
M3G_NONSTANDARD_ID – non-standard identifier . 211
M3G_OBJECT_ID – ASN.1 object identifier . 212
M3G_OCTET_STRING – ASN.1 OCTET STRING. 213
M3G_PARM_INFO – parameter information for a device . 214
M3G_REMOTE_CLOSED_LC – close request from remote endpoint . 218
M3G_REMOTE_OLC_REQ – request from remote endpoint . 219
M3G_REMOTE_OLCACK_RESP – response from remote endpoint. 220
M3G_SIMULTANEOUS_CAP_SET – local set of terminal capabilities 221
M3G_START_STRUCT – 3G-324M library configuration settings . 222
M3G_TEMPSPTRDFF – temporal and spatial resolution trade-off. 223
M3G_TRACE_INFO – trace information . 224
M3G_VENDORID_INFO – vendor information . 225
M3G_VIDEO_CAPABILITY – video capabilities . 226
M3G_VIDEO_OPTIONS – video options . 228

15 Error Codes . 229

Glossary . 232

Dialogic® 3G-324M API Programming Guide and Library Reference – October 2008 7
Dialogic Corporation

Contents

Figures

1 3G-324M Technical Specification . 16
2 Call Signaling. 17
3 Dialogic® API Libraries . 22
4 3G-324M (m3g) Devices . 25
5 3G-324M Device Initialization . 31
6 PSTN Network Connection (m3g to dti). 35
7 IP Network Connection (m3g to ipm). 35
8 Media Connections Overview . 36
9 Retrieving Media Ports and Making Port Connections . 37
10 3G-324M Session with MONA Sequence . 41
11 3G-324M Session (Standard) Sequence. 43
12 Open Logical Channel Sequence . 45
13 Exchange Media – m3g_StartMedia() Sequence . 47
14 Exchange Media – m3g_ModifyMedia() Sequence . 49
15 Terminate Session Sequence . 51
16 Disconnect Media Port Devices Sequence . 53

8 Dialogic® 3G-324M API Programming Guide and Library Reference – October 2008
Dialogic Corporation

Contents

Tables

1 Statement of Compliance with 3GPP TS 26.111 V7.1.0 . 56
2 Statement of Compliance with 3GPP TR 26.911 . 57
3 M3G_PARM_INFO Parameter Types and Parameter Values . 215

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 9

Dialogic Corporation

Revision History

This revision history summarizes the changes made in each published version of this document.

Document No. Publication Date Description of Revisions

05-2558-005 October 2008 Added programming guide content to create a combined Programming Guide and
Library Reference.

Programming Guide content: Added the following chapters: Product Description,
Device Handling, Event Handling, Error Handling, Implementing a 3G-324M
Session, Interoperability and Compliance Information, Video Quality
Considerations, Data Structure Considerations, Building Applications, and
Debugging.

Device Handling chapter : Added a note to board device that functions called on a
board device affect all channels on that device. [IPY00078711]

m3g_EnableEvents() and m3g_DisableEvents() functions: Added maskable events,
M3GEV_MONA_PREF_MSG_RCVD, M3GEV_SEND_MONA_PREF_MSG,
and M3GEV_CALL_STATISTICS. Added M3G_MONA_PREF_MSG_EVT_TYP
and M3G_CALL_STATISTICS_EVT_TYP to eventBitMask.

m3g_ModifyMedia() function: added information about when to use this function.

m3g_OpenLC() function: Updated example code for MONA support.

m3g_Reset() function: Clarified use of this function.

m3g_SetVendorId() function: Added statement that changes to vendor ID are in
effect until services are restarted.

m3g_StartH245() function: Updated third paragraph to state that this function should
be called after a control device is opened (rather than audio/video devices).
Added information about MONA. Updated example code for MONA support.

m3g_StartMedia() function: Updated second paragraph to include MONA MPCs.

m3g_StartTrace() function: Added default location for logfiles.

m3g_StopH245() function: Updated second paragraph due to MONA support.

Events chapter : Corrected data type for M3GEV_REMOTE_VENDORID_RCVD
(M3G_VENDORID_INFO not M3G_VENDOR_INFO). Added new events for
MONA support: M3GEV_MONA_PREF_MSG_RCVD,
M3GEV_TX_MPC_ESTABLISHED, M3GEV_RX_MPC_ESTABLISHED,
M3GEV_SEND_MONA_PREF_MSG, and M3GEV_CALL_STATISTICS.

Data Structures chapter : Added the following new structures:
M3G_CALL_STATISTICS, M3G_H221_NONSTD, M3G_MONA_MPC,
M3G_MONA_TXRX_MPC_SUPPORT, M3G_NONSTANDARD_ID,
M3G_OBJECT_ID.

M3G_CAPS_LIST data structure: Expanded description to state that capabilities are
listed in decreasing order of preference.

M3G_H223_SESSION data structure: Added isMONAEnabled for MONA support.

M3G_PARM_INFO data structure: Added M3G_E_PRM_EARLY_MES,
M3G_E_PRM_AUTO_VFU_PERIOD, M3G_E_PRM_H223_SYNC_TIMER.

M3G_TRACE_INFO data structure: Added default location for logfiles. Added more
detail to bitmask descriptions.

05-2558-004 April 2008 Function Summary by Category chapter : Added Utility Functions category for 3G-
324M tracing feature. Added m3g_SetVendorId() to H.245 Control Functions.

10 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

Revision History

05-2558-004
(continued)

April 2008 m3g_EnableEvents() function: Added M3G_REMOTE_VENDORID_RCVD event
and M3G_REMOTE_VENDORID_EVT_TYP bitmask.

m3g_ModifyMedia() function: Updated M3GEV_MODIFY_MEDIA_CMPLT event
description to show support for sr_getevtdatap() function. Updated Example
code “case M3GEV_MODIFY_MEDIA_CMPLT” to reflect this change.

m3g_SetVendorId() function: New. Added for vendor ID feature.

m3g_StartTrace() function: New. Added for 3G-324M tracing feature.

m3g_StopTrace() function: New. Added for 3G-324M tracing feature.

Events chapter : Added M3GEV_START_TRACE_CMPLT,
M3GEV_START_TRACE_FAIL, M3GEV_STOP_TRACE_CMPLT,
M3GEV_STOP_TRACE_FAIL, M3GEV_SET_VENDORID_CMPLT,
M3GEV_SET_VENDORID_FAIL, M3GEV_REMOTE_VENDORID_RCVD.

Data Structures chapter : Added the following new data structures:
M3G_TRACE_INFO and M3G_VENDORID_INFO.

Data Structures chapter : Corrected the data type of the version field in all applicable
structures from unsigned short to unsigned int (M3G_AUDIO_CAPABILITY,
M3G_CAPS_LIST, M3G_H223_SESSION, M3G_H245_MISC_CMD,
M3G_H245_UII, M3G_REMOTE_CLOSED_LC, M3G_REMOTE_OLC_REQ,
M3G_REMOTE_OLCACK_RESP, M3G_START_STRUCT,
M3G_VIDEO_CAPABILITY).

Data Structures chapter : Updated the description of the version field in all applicable
structures to refer to the symbolic constant M3G_LIBRARY_VERSION.

M3G_H223_LC_PARAMS structure: Added INIT inline function.

M3G_H223_SESSION structure: Added INIT inline function.

M3G_H245_CMD structure: Added INIT inline function.

M3G_H245_UII structure: Added INIT inline function.

M3G_PARM_INFO structure: Added INIT inline function. Corrected misspelling
(“FASTUPDATE” rather than “FASTUDPATE”) in
M3G_E_PRM_RELAY_FASTUPDATE_TO_MEDIA_DEV and
M3G_E_PRM_RELAY_FASTUPDATE_TO_H245.

05-2558-003 February 2008 m3g_ModifyMedia() function: Updated description (does not support mute or
resume channels.) Updated example code.

M3G_PARM_INFO data structure: Updated with new fields (skewAdjustment,
videoBitRate, videoFrameRate). Added parameter types
(M3G_E_PRM_TX_SKEW_ADJUSTMENT,
M3G_E_PRM_RX_SKEW_ADJUSTMENT, M3G_E_PRM_VIDEO_BIT_RATE,
M3G_E_PRM_VIDEO_FRAME_RATE) to Table 1. Added Data Type column to
this table.

Document No. Publication Date Description of Revisions

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 11

Dialogic Corporation

Revision History

05-2558-002 October 2007 MPEG-4 transcoding is now supported.

m3g_GetLocalCaps() and m3g_GetMatchedCaps() functions: Updated video
description to add MPEG-4 capabilities.

m3g_Open() function: Updated the audio device description to include statement
that it may be connected to a digital network interface device (dtiBxTy) or voice
device (dxxxBxCy) through the dev_Connect() and dev_Disconnect()
functions in Device Types section.

m3g_StartMedia() function: Updated the description to include statement that PCM
network device must be connected via the dev_Connect() function prior to
calling this function in Description section.

m3g_StopH245() function: Updated the description to include dev_Disconnect()
as an option when disconnecting the audio and video devices in Description
section.

Events chapter : Updated the M3GEV_REMOTE_CLOSE_LC_RCVD event
description to include dev_Disconnect() as an option when re-routing the
associated media stream from the H.223 aggregrate and stopping the media
stream in Event Information section.

Data Structures chapter : Added the following new data structure:
M3G_OCTET_STRING.

M3G_MPEG4_OPTIONS structure: Updated the structure declaration with
comments. Updated the decoderConfigLength and decoderConfigInfo fields
with more details in Field Descriptions section. Changed the visualBackChannel
field to state that Default value is M3G_FALSE in Field Descriptions section.

M3G_PARM_INFO structure: Updated the structure declaration with octetString field.
Added the octetString field along with description in Field Descriptions section.
Added the M3G_E_PRM_MPEG4_TX_DCI and
M3G_E_PRM_MPEG4_RX_DCI parameters to Table 1.

05-2558-001 February 2007 Initial version of document.

Document No. Publication Date Description of Revisions

12 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

Revision History

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 13

Dialogic Corporation

About This Publication

The following topics provide more information about this publication:

• Purpose

• Applicability

• Intended Audience

• How to Use This Publication

• Related Information

Purpose

This publication describes the features of the Dialogic® 3G-324M API library and provides
programming guidelines for those who choose to develop applications using this API library. It also
provides a reference to the functions, events, data structures, and error codes in the Dialogic® 3G-
324M API library.

Applicability

This document is published for Dialogic® Multimedia Software for AdvancedTCA Release 2.0 and
for Dialogic® Multimedia Kit Software Release 1.0 for PCIe.

This document may also be applicable to other Dialogic® software releases (including service
updates). Check the Release Guide for your software release to determine whether this document is
supported.

Intended Audience

This publication is intended for the following audience:

• System Integrators

• Independent Software Vendors (ISVs)

• Value Added Resellers (VARs)

• Original Equipment Manufacturers (OEMs)

This document assumes that its readers are familiar with the Linux operating system and have
experience using the C programming language.

14 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

About This Publication

How to Use This Publication

The information in this document is organized in two major parts:

• Programming Guide content, which describes the Dialogic® 3G-324M software features,
gives background information on the 3GPP 3G-324M technical specification, provides feature
implementation guidelines, and discusses debugging utilities.

• Library Reference content, which provides a reference to Dialogic® 3G-324M API functions,
data structures, events, and error codes.

Related Information

Refer to the following sources for more information:

• For information on the software release, system requirements, release features, and release
documentation, see the Release Guide for the software release you are using.

• For details on known issues and late-breaking updates or corrections to the release
documentation, see the Release Update for the software release you are using.

• For Dialogic® product documentation, see http://www.dialogic.com/manuals

• For Dialogic technical support, see http://www.dialogic.com/support

• For Dialogic® product information, see http://www.dialogic.com

• For 3GPP Technical Specification 3G TS 26.111, Codec for circuit-switched multimedia
telephony service, Modifications to H.324, see http://www.3gpp.org

• For ITU-T Recommendation H.324, Terminal for low bit-rate multimedia communication, see
http://www.itu.int/rec/recommendation.asp?type=folders&lang=e&parent=T-REC-H.324

• For ITU-T Recommendation H.245, Control protocol for multimedia communication, see
http://www.itu.int/rec/recommendation.asp?type=folders&lang=e&parent=T-REC-H.245

• For ITU-T Recommendation H.223, Multiplexing protocol for low bit-rate multimedia
communication, see
http://www.itu.int/rec/recommendation.asp?type=folders&lang=e&parent=T-REC-H.223

http://www.itu.int/rec/recommendation.asp?type=folders&lang=e&parent=T-REC-H.245
http://www.itu.int/rec/recommendation.asp?type=folders&lang=e&parent=T-REC-H.223
http://www.dialogic.com/manuals
http://www.itu.int/rec/recommendation.asp?type=folders&lang=e&parent=T-REC-H.324
http://www.3gpp.org
http://www.dialogic.com
http://www.dialogic.com/support

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 15
Dialogic Corporation

11.Product Description

This chapter describes the Dialogic® 3G-324M API software and provides information about the
3G-324M technical specification. Topics include:

• Product Overview . 15

• 3G-324M Technical Specification Overview . 15

• Dialogic® 3G-324M API Implementation. 21

1.1 Product Overview

The Dialogic® 3G-324M API software provides a standards-compliant interface that enables real-
time conversational multimedia communication services, specifically video services, to mobile
handsets and terminals over circuit-switched networks and packet-switched networks.

The Dialogic® 3G-324M API software is compliant with the 3G-324M technical specification, an
umbrella suite of standards produced by the 3rd Generation Partnership Project (3GPP). For
background information on the 3G-324M technical specification, see Section 1.2, “3G-324M
Technical Specification Overview”, on page 15.

The Dialogic® 3G-324M API software provides the following capabilities:

• Ability to control and manage 3G-324M multimedia sessions

Note: It does not include a call session control protocol such as SS7 ISUP for establishing a
bearer channel connection between 3G-324M endpoints.

• Ability to initiate/terminate a 3G-324M session (including H.245 and H.223)

• Ability to interconnect/disconnect H.223 multiplex inputs and outputs (through device
management API library functions)

For audio codec and video codec support by platform, see the Release Guide for your software
release.

The Dialogic® 3G-324M API can be used in conjunction with other Dialogic® API libraries, such
as the Dialogic® Multimedia API library and the Dialogic® Device Management API library, to
develop 3G multimedia applications.

1.2 3G-324M Technical Specification Overview

The 3G-324M technical specification is described in the following topics:

• Introduction

• Call Signaling

• H.324 Base Protocol

16 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

Product Description

• H.223 Multiplexer and Demultiplexer Protocol

• H.245 Session Control Protocol

• Media Components

• 3G-324M Session Establishment (Standard)

• Media Oriented Negotiation Acceleration (MONA)

1.2.1 Introduction

The 3G-324M technical specification is an umbrella suite of standards produced by the 3rd
Generation Partnership Project (3GPP). It provides a solution for video telephony between 3G-
324M endpoints over 3G wireless networks.

An extension to the ITU-T H.324 Recommendation for 3G video telephony, the 3G-324M
technical specification includes H.245 for session control; H.223 for bit streams to data packets
multiplexer/demultiplexer; H.223 Annex A and B for error handling of low and medium bit error
rate (BER) detection, correction, and concealment; and H.324 with Annexes A and C for operating
in a wireless environment. H.324 Annex K adds support for Media Oriented Negotiation
Acceleration (MONA).

A 3G-324M call involves a network call and a 3G-324M session. A number of different protocols
are used to establish a 3G-324M session. A 3G-324M endpoint includes a network interface, a
signaling channel, a multiplexer, and media components. The components of the 3G-324M
technical specification are shown in Figure 1. An asterisk represents a mandatory component.

Figure 1. 3G-324M Technical Specification

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 17
Dialogic Corporation

Product Description

1.2.2 Call Signaling

Call signaling is done in the PSTN network to set up a digital (64 Kbps) bearer channel between
two 3G-324M endpoints. Release 99 of the 3G-324M technical specification describes a 3G-324M
session in a traditional TDM (PSTN) network. Release 4 and later describe a 3G-324M session in
an IP network.

In a TDM network, the call setup of the bearer channel is typically accomplished using the ISUP
(SS7) or the ISDN protocol. The digital bearer channel contains no proprietary framing of data,
such as A-law or Mu-law companding; it is a clear channel transparent link.

In an IP network, the call is typically established using Bearer Independent Call Control (BICC).
The bearer channel in the IP network is an Nb User Plane (Nb UP) RTP connection. Following
successful call signaling, the network call is connected, a transparent data bearer channel is
established, and the flow of H.223 bitstream data begins the 3G-324M session; see Figure 2.

Figure 2. Call Signaling

1.2.3 H.324 Base Protocol

H.324 is the base protocol for providing real-time multimedia video telephony. It includes the
H.223 multiplex protocol and H.245 session control protocol. The H.324 protocol was amended for
mobile devices with the H.324M (also known as Annex C) mobile extension. H.324 Annex K adds
support for Media Oriented Negotiation Acceleration (MONA).

18 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

Product Description

1.2.4 H.223 Multiplexer and Demultiplexer Protocol

The H.223 protocol is an end-to-end low bitrate protocol in the form of a bitstream between two
multimedia endpoints. It provides the method to combine multiple media channels in physical
connection with bit-error resiliency and retransmission built in. This is important for wireless
applications where transmission errors are prevalent. The H.223 protocol is used for multiplexing
and demultiplexing control, audio, and video logical channels of the 3G-324M session into a single
bitstream. The bitstream can then be routed over an IP-based or circuit-switched bearer channel.

The H.223 protocol provides two layers: the adaptation layer and the MUX layer.

The adaptation layer provides three different modes of adapting control, audio, and video data for
transmission. These three modes are known as AL1, AL2 and AL3, and provide increasing levels
of error protection. A separate adaptation layer mode is defined for each of the three data streams
prior to multiplexing. The AL1 mode is used for the control channel and adds no additional error
protection to the one already provided in the upper layers of the H.245 control channel that it
services. The AL2 mode is used for audio and optionally video. The AL3 method may also be used
for video in place of AL2, as it provides increased error protection via defined retransmission
procedures.

Similarly, the MUX layer provides different modes of framing the multiplexer PDUs (MUX-
PDUs). These different modes are called multiplexer levels and provide increased levels of error
resilience. The three modes available for use are multiplexer Level 0 (ML0), Level 1(ML1), and
Level 2 (ML2).

When the bearer channel is first established, a mobile level detection procedure is started that sets
up the frame synchronization between endpoints. Each endpoint sends a frame synchronization
flag pattern that corresponds to the highest multiplexer level at which it is capable of operating. At
the same time, it detects the incoming flag pattern from its peer. If the synchronization flag pattern
received by the endpoint represents a lower multiplex level than it is transmitting, the endpoint
changes its transmitted multiplex level to the detected lower level. Each side retransmits its
respective synchronization flag patterns until a level is reached that both endpoints support. This
protocol helps set the error resiliency level. Once the multiplexer level is determined, the H.245
control channel (also known as Logical Channel 0) is opened automatically between endpoints.

1.2.5 H.245 Session Control Protocol

The H.245 protocol provides session control between 3G-324M endpoints. It provides the method
for endpoints to exchange media capabilities, open and close logical channels for media, and
specify the content of the media channels when they are opened.

The H.245 protocol begins with Terminal Capabilities Set (TCS) exchange and Master Slave
Determination (MSD) exchange.

During TCS exchange, each endpoint specifies its receiver capabilities so that its remote peer may
subsequently open logical channels and transmit in a media format and multiplexer format that are
supported by both endpoints. The local endpoint (transmitter) opens unidirectional logical channels
based on the capabilities provided by the remote endpoint (receiver) in the TCS exchange.
Unidirectional logical channels are opened in the forward direction, to specify audio or video

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 19
Dialogic Corporation

Product Description

media format from local to remote endpoint. Each endpoint opens one forward logical channel for
transmitting audio and one forward logical channel for transmitting video. Logical channels
identify the media capabilities which are used to specify codec type and format, and multiplexer
capabilities of the particular media channel.

MSD exchange determines that the endpoint with the highest terminal type becomes the master.
The endpoint deemed master is given priority in resolving conflicts during logical channel
establishment.

1.2.6 Media Components

The 3G-324M technical specification mandates support for the Adaptive Multi-Rate (AMR) codec
for audio and the H.263 codec for video. The AMR codec was originally developed for wireless
cellular. Dialogic supports AMR-NB and G.723.1 codecs for audio; and H.263 and MPEG-4
codecs for video. Codec support varies by platform; see the Release Guide for your software
release for more information.

1.2.7 3G-324M Session Establishment (Standard)

The 3G-324M session requires a few steps to set up a 3G-324M call. The following steps highlight
some of the exchanges that occur between endpoints to establish a 3G-324M session. This is also
referred to as the “standard” 3G-324M session establishment procedure in this document:

1. A bearer channel is established.

2. A training phase determines the H.223 multiplexing level.

3. Terminal Capabilities Set (TCS) messages and Master Slave Determination (MSD) messages
are exchanged.

4. Each endpoint opens video and audio logical channels in the forward direction that include the
type of media that is defined for that channel.

5. Multiplex Table Entries are exchanged to define how the logical channel data is organized into
multiplexer frames.

6. Media is exchanged between the endpoints.

Note: If Media Oriented Negotiation Acceleration Procedure (MONA) is enabled, a modified set of
exchanges occur; see Section 1.2.8.4, “3G-324M Session Establishment with MONA”, on page 21.

1.2.8 Media Oriented Negotiation Acceleration (MONA)

The H.324 Annex K Media Oriented Negotiation Acceleration (MONA) standard is described in
the following topics:

• Introduction

• Accelerated Connection Procedure (ACP)

• Media Preconfigured Channels (MPC)

• 3G-324M Session Establishment with MONA

20 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

Product Description

1.2.8.1 Introduction

The Media Oriented Negotiation Acceleration (MONA) standard is a group of complementary
procedures designed to significantly reduce delay in H.324 call setup time. The procedures include
Media Preconfigured Channels (MPC), Accelerated Connect Procedure (ACP), and Signaling
Preconfigured Channel (SPC). The MONA standard implemented by Dialogic uses MPC and ACP
procedures, which classifies products based on Dialogic® 3G-324M software as Class II MONA
terminals per H.324 Amendment K.7.2.1. Dialogic does not support the SPC procedure.

MONA provides a flexible, accelerated channel setup method that depends on an initial exchange
of Preference Messages and the execution of a common inference algorithm. MONA also provides
faster preconfigured channel setup mechanisms, which do not wait for standard H.245 message
acknowledgements, but provide a fallback if the initial media transmission attempts do not succeed.

With MONA, media channels are typically ready for streaming in less than a second, compared
with six to eight seconds using the standard H.245 logical channel establishment procedures.

The MONA feature in the Dialogic® 3G-324M software can be selectively controlled per call. If
MONA is disabled, the call proceeds using the standard H.245 logical channel establishment
procedures. If MONA is enabled, the MONA procedures are attempted. By default, the MONA
feature is disabled to maintain backward application compatibility.

To determine if MONA is supported in a Dialogic® software release, see the Release Guide for that
software release.

1.2.8.2 Media Preconfigured Channels (MPC)

The Media Preconfigured Channels (MPC) procedure establishes media channels at the earliest
possible moment within a 3G-324M session.

Terminals indicate support for MONA MPC by inserting MONA Preference Messages (PM) within
special framing flags before beginning the H.223 multiplex level detection procedure.

The MPC call setup procedure allows for media to be established as soon as the last PM is sent.
Media can be received on MPC channels as soon as the first PM is received. Results from the PM
exchange determine whether receiving and transmitting MPC channels are established and what
type of media is supported. It is possible that all media channels or a subset of media channels are
established using the MPC procedure. After media is established, MPCs are managed identically to
LCs.

For any media channels that are not established as MPCs, the application falls back to the standard
H.245 logical channel establishment procedures. The MONA procedure also attempts to use ACP
to establish media channels that were not started as MPCs.

1.2.8.3 Accelerated Connection Procedure (ACP)

The Accelerated Connection Procedure (ACP) allows media streaming to begin earlier in the 3G-
324M call.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 21
Dialogic Corporation

Product Description

ACP uses H.245 to establish logical channels (LC) in the same way that is used in standard H.245
LC establishment procedure; however, ACP allows media streaming to begin before OLC
acknowledgement is received and without the LC’s MES transaction being performed. The OLC is
initially assumed successful and is processed after media streaming has started. The Multiplex
Table Entry used to send or receive media data (on the LCs established using ACP) is embedded
within the TCS messages exchanged during the TCS exchange procedure.

From an application point of view, ACP and the standard H.245 logical channel establishment
procedures are handled in the same way. Underlying behavioral differences between ACP and
standard H.245 procedures are abstracted from the application. The common API behavior is an
exchange of TCS, MSD and OLC messages.

1.2.8.4 3G-324M Session Establishment with MONA

The 3G-324M session requires a few steps to set up a 3G-324M call. If MONA is supported in the
Dialogic® software and is enabled, the following steps highlight the exchanges that occur between
endpoints to establish a 3G-324M session:

1. A bearer channel is established.

2. MONA Preference Messages are exchanged (using MONA synchronization flags).

3. Media is exchanged for all common Media Preconfigured Channels (MPCs) as determined
from the MONA Preference Messages.

4. If all desired MPCs were not established, Accelerated Connection Procedure (ACP) is
initiated. This means that the Master Slave Determination (MSD) and Terminal Capabilities
Set (TCS) messages are exchanged, and logical channels are established as done in the
standard procedure. However, as part of the 3G-324M protocol exchange, ACP does not wait
for acknowledgement messages (TCSAck, MSDAck) before initiating logical channels and the
resulting media. Thus, OLCs and media may be transmitted after the remote peer’s TCS is
received, and before a TCSAck and an MSDAck are received. Similarly, media may be
initiated before receiving an OLCAck.

5. Media is exchanged for any logical channels opened using ACP or standard H.245 OLC.

For information on standard 3G-324M session establishment, see Section 1.2.7, “3G-324M
Session Establishment (Standard)”, on page 19.

1.3 Dialogic® 3G-324M API Implementation

The Dialogic® 3G-324M API provides the ability to control and manage a collection of 3G-324M
endpoints.

The 3G-324M API provides an abstraction for multiplexing and demultiplexing of multimedia
between a 3G-324M network and a circuit-switched network or a packet-switched network. It
provides an application interface to the H.245 control session and a means to establish audio and
video streams. The 3G-324M API enables the multiplexing and demultiplexing of the audio and
video streams to/from a bearer channel through its software component, the m3g device.

22 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

Product Description

The Dialogic® 3G-324M software consists of two primary components as follows:

3G-324M (m3g) API library
Provides software component device abstraction and application interface. It abstracts the
H.245 session control, an audio packet interface, and a video packet interface, and exposes
them as separate m3g devices:

• the m3g control device, used to represent the aggregate interface that connects to the
network transport.

• the m3g audio device, used to control the audio stream connection and set the audio media
capabilities.

• the m3g video device, used to control the video stream connection and set the video media
capabilities.

• the m3g board device, used to set global default values.

For more information on devices, see Chapter 2, “Device Handling”.

3G-324M (Mux3G) firmware
Handles the low-level 3G-324M protocol exchange. The firmware is the 3G session protocol
and multiplexing/demultiplexing engine. It controls the 3G-324M protocol stack
implementation, and provides user session input and session progress eventing through the
3G-324M API library. It carries out the protocol between the local device and the remote 3G-
324M endpoint. It provides the minimum interface necessary for 3G session control, without
requiring the application developer to have detailed protocol-specific knowledge.

Figure 3 illustrates the Dialogic® API libraries. The API library support varies by platform. For
support information, see the Release Guide for your software release.

Figure 3. Dialogic® API Libraries

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 23
Dialogic Corporation

22.Device Handling

This chapter describes the devices used in the Dialogic® 3G-324M software. Topics include:

• Device Overview . 23

• Device Types . 23

2.1 Device Overview

The Dialogic® 3G-324M software provides device handles to control the 3G-324M endpoint. The
device abstractions include board, control, audio, and video devices.

An m3g device represents one instance of a 3G-324M endpoint and terminates the 3G-324M peer-
to-peer protocol. The m3g device provides a connection to the aggregate data on the 3G network
bearer channel and internal connections for audio and video streams.

When the m3g device receives aggregate data from the 3G network bearer channel, it
demultiplexes the data into H.245 control messages, audio streams, and video streams. In the
reverse direction, audio and video streams are multiplexed with H.245 control messages and sent
on the aggregate 3G network bearer channel to the remote 3G-324M endpoint.

2.2 Device Types

Each 3G-324M endpoint is a composite or aggregate of several device types:

board device
The board device is used to set global default values. The board device handle is used in
m3g_SetParm() function calls to specify parameter values for all applicable control, audio,
and video device instances subsequently opened on the specified board. It is used in
m3g_EnableEvents() function calls to enable unsolicited events. It is also used by other
functions such as m3g_SetVendorId() and m3g_StartTrace().

The board device name is “m3gBm”, where “m” is the specified board number.

Note: Only one board, m3gB1, is currently supported.

Note: Any function called on a board device affects all instances on that board device. For
example, if an application resets the board device via m3g_Reset(), all channels are
reset on that board device. Similarly, if an application uses the m3g_SetVendorId()
and m3g_StartTrace() functions on the board device level, all channels on the board
device are affected by these functions. Be aware of this behavior, in particular if two
applications access the same board device.

control device
The control device is the primary handle for 3G-324M endpoint control. It is used to manage
the following functional interfaces:

24 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

Device Handling

• H.245 control – provides H.245 control operations for a given 3G-324M endpoint. This
device is automatically associated with the aggregate H.223 multiplex/demultiplex as
logical channel 0 when the device is opened.

• H.223 multiplex/demultiplex – permits physical connections to and from the H.223
multiplex/demultiplex over CT Bus timeslots or over IP using an Nb User Plane (Nb UP)
protocol. CT Bus timeslots may be used to connect to appropriate T1/E1 bearer channels
which transport the aggregate data off-board to route the H.223 multiplex/demultiplex to
other 3G-324M endpoints. The Nb UP may be used to route bearer control and transport
of the H.223 multiplex/demultiplex within the 3G core network Release 4 and later.

Connections and disconnections between the H.223 multiplex/demultiplex aggregate are made
using device management API functions. If the aggregate is routed over a DS0 timeslot on the
CT Bus, dev_Connect() and dev_Disconnect() are used. If the aggregate is routed over the
Nb UP, dev_PortConnect() and dev_PortDisconnect() are used.

The control device name is “m3gBmTn”, where “m” is the specified board number and “n” is
the specified channel number.

audio device
The audio device represents the audio connection to and from the H.223 multiplex. This device
type does not initiate or terminate audio streams. The audio device connects another R4 device
type, such as an IP media device (ipmBxCy) or a multimedia device (mmBxCy), which
provides the source and destination for the associated audio data streams, through the
dev_PortConnect() and dev_PortDisconnect() functions.

Similarly, the audio device may be connected to a digital network interface device (dtiBxTy) or
voice device (dxxxBxCy) through the dev_Connect() and dev_Disconnect() functions.

Prior to multiplexing/demultiplexing, each audio device must establish a connection to an R4
audio device using dev_PortConnect().

The audio device name is “m3gBmTn:AUDIOp”, where “m3gBmTn” is the specified control
device into and out of which the audio device should be multiplexed/demultiplexed; “p” in
“AUDIOp” represents the number of the audio instance and is used to differentiate multiple
audio devices which may comprise an H.223 aggregate.

Note: Only one audio streaming connection to and from the H.223 aggregate is currently
supported.

video device
This device represents the video connection to and from the H.223 multiplex. This device type
does not initiate or terminate video streams. The video device connects another R4 device
type, such as an IP media device (ipmBxCy) or a multimedia device (mmBxCy), which
provides the source and destination for the associated video data streams, through the
dev_PortConnect() and dev_PortDisconnect() functions.

Prior to multiplexing/demultiplexing, each video device must establish a connection to an R4
video device using dev_PortConnect().

The video device name is “m3gBmTn:VIDEOp”, where “m3gBmTn” is the specified control
device into and out of which the video device should be multiplexed/demultiplexed; “p” in
“VIDEOp” represents the number of the video instance and is used to differentiate multiple
video devices which may comprise an H.223 aggregate.

Note: Only one video streaming connection to and from the H.223 aggregate is currently
supported.

Figure 4 illustrates the 3G-324M devices.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 25
Dialogic Corporation

Device Handling

Figure 4. 3G-324M (m3g) Devices

Use the Dialogic® Standard Runtime Library device mapper functions to retrieve information
about devices in a system. For more information on device handling, see the Dialogic® Standard
Runtime Library API Programming Guide.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 26
Dialogic Corporation

33.Event Handling

This chapter describes how the Dialogic® 3G-324M software handles events. Topics include:

• Event Handling Overview . 26

• Dialogic® Standard Runtime Library Event Management Functions 26

• Dialogic® Standard Runtime Library Standard Attribute Functions. 27

3.1 Event Handling Overview

Dialogic® 3G-324M events are retrieved using Dialogic® Standard Runtime Library (SRL) event
retrieval mechanisms, including event handlers. The SRL is a device-independent library
containing event management functions and Standard Attribute functions.

This chapter lists SRL functions that are typically used by 3G-324M applications. For a list of 3G-
324M API events, see Chapter 13, “Events”.

For more information on event handling, see the Dialogic® Standard Runtime Library API
Programming Guide.

3.2 Dialogic® Standard Runtime Library Event
Management Functions

SRL event management functions retrieve and handle device termination events for library
functions. Applications typically use the following functions:

sr_enbhdlr()
enables event handler

sr_dishdlr()
disables event handler

sr_getevtdev()
gets device handle

sr_getevttype()
gets event type

sr_waitevt()
waits for next event

sr_waitevtEx()
waits for events on certain devices

See the Dialogic® Standard Runtime Library API Library Reference for function details.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 27
Dialogic Corporation

Event Handling

3.3 Dialogic® Standard Runtime Library Standard
Attribute Functions

SRL Standard Attribute functions return general device information, such as the device name or the
last error that occurred on the device. Applications typically use the following functions:

ATDV_ERRMSGP()
pointer to string describing the error that occurred during the last function call on the specified
device

ATDV_LASTERR()
error that occurred during the last function call on a specified device. See the function
description for possible errors for the function.

ATDV_NAMEP()
pointer to device name

ATDV_SUBDEVS()
number of subdevices

See the Dialogic® Standard Runtime Library API Library Reference for function details.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 28
Dialogic Corporation

44.Error Handling

This chapter describes error handling for the Dialogic® 3G-324M software.

All Dialogic® 3G-324M API functions return a value that indicates the success or failure of the
function call. Success is indicated by a return value of M3G_SUCCESS. Failure is indicated by a
value of M3G_ERROR.

If a function fails, call the Dialogic® Standard Runtime Library API functions
ATDV_LASTERR() and ATDV_ERRMSGP() for the reason for failure. These functions are
described in the Dialogic® Standard Runtime Library API Library Reference.

For a list of errors, see Chapter 15, “Error Codes”.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 29
Dialogic Corporation

55.Implementing a 3G-324M Session

This chapter describes an exemplary scenario for implementing a 3G-324M session using
Dialogic® 3G-324M software. Topics include:

• Major Implementation Steps . 29

• Initialize Devices . 30

• Connect Devices . 33

• Establish a Bearer Channel . 39

• Establish a 3G-324M Session . 40

• MONA ACP and Standard H.245 Logical Channel Establishment 42

• Exchange Media . 46

• Terminate a 3G-324M Session . 50

• Disconnect the Bearer Channel . 52

• Disconnect Devices . 52

• Close Devices . 53

• Exit the application . 54

5.1 Major Implementation Steps

The major steps to implement a 3G-324M session for multimedia play and record can be described
as follows.

Note: These steps assume that you enable Media Oriented Negotiation Acceleration (MONA) in your
application for faster media channel setup. For any media channels that are not established as
MPCs, the 3G-324M protocol falls back to the standard H.245 logical channel establishment
procedures.

1. Establish a 3G-324M session and exchange media:

a. Initialize Devices

b. Connect Devices

c. Establish a Bearer Channel

d. Establish a 3G-324M Session

e. MONA ACP and Standard H.245 Logical Channel Establishment

f. Exchange Media

2. Terminate a 3G-324M session:

a. Terminate a 3G-324M Session

b. Disconnect the Bearer Channel

c. Disconnect Devices

30 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

Implementing a 3G-324M Session

d. Close Devices

e. Exit the application

5.2 Initialize Devices

The following topics describe one way to initialize devices. For information on device types, see
Chapter 2, “Device Handling”.

• Initialize the 3G-324M Library

• Open and Configure the m3g Board Device

• Open and Configure the m3g Control Device

• Open and Configure the m3g Audio Device

• Open and Configure the m3g Video Device

• Get Local Capabilities

• Set Preferred Capabilities

5.2.1 Initialize the 3G-324M Library

Call m3g_Start() to initialize the 3G-324M library.

Figure 5 illustrates the steps to initialize devices, starting with 3G-324M library initialization.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 31
Dialogic Corporation

Implementing a 3G-324M Session

Figure 5. 3G-324M Device Initialization

5.2.2 Open and Configure the m3g Board Device

Call m3g_OpenEx() with the board device string to open the board device and initialize default
system level parameters for all 3G-324M endpoints in the system.

Call m3g_SetParm() with the board device handle to set system level parameters as needed. Call
m3g_EnableEvents() with the board device handle to configure event reporting for optional
(unsolicited) events.

Note: Any function called on a board device affects all instances on that board device. For example, if an
application resets the board device via m3g_Reset(), all channels are reset on that board device.
Similarly, if an application uses the m3g_SetVendorId() and m3g_StartTrace() functions on the
board device level, all channels on the board device are affected by these functions. Be aware of
this behavior, in particular if two applications access the same board device.

32 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

Implementing a 3G-324M Session

5.2.2.1 Enable MONA Events

To enable delivery of unsolicited MONA events, call m3g_EnableEvents() for a board device or a
control device as appropriate and set the M3G_MONA_PREF_MSG_EVT_TYP bitmask.
Enabling the following unsolicited events allows the application to be notified when the events are
received:

• M3GEV_SEND_MONA_PREF_MSG (MONA preference message sent)

• M3GEV_MONA_PREF_MSG_RCVD (MONA preference message received)

5.2.2.2 Enable Early MES Mode

The “early MES” mode transmits the H.245 MultiplexEntrySend (MES) message without waiting
to receive an H.245 OpenLogicalChannelAck (OLCAck) message. As a result, this mode uses one
less round trip of H.245 message groupings thereby shortening the time to establish logical
channels and media.

To enable early MES mode, use m3g_SetParm() and set M3G_E_PRM_EARLY_MES parameter
to true. It is beneficial to enable this mode in your application. Early MES is used during fallback to
MONA Accelerated Connection Procedure (ACP) and in standard H.245 logical channel
establishment.

5.2.3 Open and Configure the m3g Control Device

For every 3G-324M channel being used by the application, call m3g_OpenEx() with the control
device string to open the m3g control device and to configure the H.223 multiplex capabilities.

It is generally good practice to call m3g_Reset() with the m3g control device handle to reset the
3G-324M channel to an initialized state at the beginning of the application. This function is used to
make sure that the control, audio, and video devices that may not have been properly closed are
returned to an initial state.

Call m3g_SetParm() with the control device handle to set parameters as needed. Call
m3g_EnableEvents() with the control device handle to configure event reporting for optional
(unsolicited) events.

5.2.4 Open and Configure the m3g Audio Device

For every 3G-324M channel being used by the application, call m3g_OpenEx() to open the m3g
audio device to configure the audio stream to and from the H.223 multiplex.

5.2.5 Open and Configure the m3g Video Device

For every 3G-324M channel being used by the application, call m3g_OpenEx() to open the m3g
video device to configure the video stream to and from the H.223 multiplex.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 33
Dialogic Corporation

Implementing a 3G-324M Session

5.2.6 Get Local Capabilities

For every 3G-324M channel being used by the application, call m3g_GetLocalCaps() to get the
default capabilities supported by the specified device type. Call this function for control, audio, and
video device type.

Call m3g_GetLocalCaps() with the m3g control device handle to get the default H.223 multiplex
capabilities of the system.

Call m3g_GetLocalCaps() with the m3g audio device handle to get the default audio capabilities
of the system, such as audio codec types supported by the system.

Call m3g_GetLocalCaps() with the m3g video device handle to get the default video capabilities
of the system, such as video codec types supported by the system.

Default capabilities are returned in the M3G_GET_LOCAL_CAPS_CMPLT termination event.

5.2.7 Set Preferred Capabilities

Set the application’s preferred H.223, audio, and video capabilities.

Cache the H.223, audio, and video capability structures returned from m3g_GetLocalCaps() and
use these structures to make modifications to the default system capabilities.

Call m3g_SetTCS() with the m3g control device handle to set the local Terminal Capabilities Set
(TCS) for H.223, audio, and video. The local TCS can be the entire list of capabilities as received
by m3g_GetLocalCaps() or modified values based on the application specification. For
interoperability reasons, the H.223 and media capabilities specified should be left unchanged from
those values returned from m3g_GetLocalCaps(). Changing the default capability settings may
increase the risk of failures in subsequent logical channel establishment. Note that the order and
preference of the media capabilities can be changed, but the capabilities themselves should not be
changed.

The video receive capability preferences are listed in the array of capabilities in the
M3G_CAPS_LIST structure in decreasing order of preference. The most preferred video receive
capability is ordered first in the array, while the least preferred is ordered last. This preference is
indicated to the remote peer terminal by the ordering of capabilities listed within the
AlternativeCapabilitySets in the H.245 TerminalCapabilitySet (TCS) message.

5.3 Connect Devices

After completing the tasks described in Section 5.2, “Initialize Devices”, on page 30, proceed to
connect devices. The following topics describe how to connect devices:

• Connect Devices Overview

• Connecting Networks

• Connecting Audio and Video Media

34 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

Implementing a 3G-324M Session

• Transcoding Versus Native Connection

5.3.1 Connect Devices Overview

Before multiplexing starts and media is streaming in a 3G-324M session, the m3g device is to be
connected on one side to the network aggregate data and on the other side to audio and video media
terminations. The m3g device does not terminate the audio and video streams, but performs the
multiplexing/demultiplexing, and provides an audio and video connection to other Dialogic®
software components, such as the multimedia mm device.

For the m3g device, three full-duplex device connections (network, audio, and video) are to be
made to achieve multiplexing and demultiplexing capability. Use the Dialogic® Device
Management API library (dev_ functions) to connect devices. For more information, see the
Dialogic® Device Management API Library Reference.

Depending on your application, you may need to open other devices, such as the multimedia (mm)
device for multimedia play and record, the IP media streaming (ipm) device for connection to an IP
endpoint, or the conferencing (cnf) device for multimedia conferencing.

You decide when to connect and disconnect devices. Devices can be connected statically before
call establishment or dynamically once the multimedia services are required. In this section,
devices are connected after initialization and remain connected throughout the 3G call. It is up to
you to handle dynamic allocation of device resources and the appropriate events to suit your
application resource allocation.

5.3.2 Connecting Networks

On the network side, connect the m3g control device to the PSTN or IP-based network device,
representing the ingress or egress of the 3G-324M bearer channel. This is the multiplex connection
to the aggregate bitstream data provided by the bearer channel.

5.3.2.1 PSTN Network

In a PSTN network, connect the m3g control device to a Dialogic® Global Call digital network
interface (dti) device using the Dialogic® Global Call API. The dti device provides the PSTN
connection, and represents the 64 Kbps transparent clear channel or “unrestricted data” DS0
timeslot connection to the PSTN network. The dti device is set to non-companded, transparent
mode to assure that the timeslot carries the unmodified bitstream. Use dev_Connect() to connect
the m3g device to a dti device.

Note: In some Dialogic® software releases, transparent mode is enabled via gc_SetConfigData() with
CCPARM_TRANSPARENTMODE set to CCDM3FW_TRANSPARENTMODE_ENABLE. For
information on transparent mode support, see the Release Guide for your software release.

Figure 6 illustrates the m3g control device to dti device connection.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 35
Dialogic Corporation

Implementing a 3G-324M Session

Figure 6. PSTN Network Connection (m3g to dti)

5.3.2.2 IP Network

In an IP network, connect the m3g control device to a Dialogic® IP media streaming device (ipm
device). The ipm device is used to control the IP media session over RTP. When used as a transport
for 3G-324M bitstream, the ipm device uses the Nb UP protocol and special initialization messages
to set up the RTP session. The resulting IP/RTP packets contain an Nb UP packet header and a
payload carrying the aggregate bitstream. Use dev_PortConnect() to connect the m3g device to
an ipm device.

Figure 7 illustrates the m3g control device to ipm device connection.

Figure 7. IP Network Connection (m3g to ipm)

36 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

Implementing a 3G-324M Session

5.3.3 Connecting Audio and Video Media

For a 3G-324M session, media termination connections are made to a multimedia (mm) device, to
an IP media streaming (ipm) device, or to a conference (cnf) device using the Dialogic® Device
Management API library. To make port connections between devices, get device transmit (Tx)
media ports for audio and video, get device receive (Rx) media ports for audio and video, and
connect appropriate Tx-Rx pairs between devices using dev_PortConnect().

Figure 8 provides an overview of how to make media port connections.

Figure 8. Media Connections Overview

Audio from an m3g device can also be connected to voice-only devices, such as the digital trunk
interface (dti) device to connect 3G audio to a PSTN audio caller, or to a voice (dx) device for
playback/recording of audio files. The audio connections in this case are made using the
dev_Connect() function. The video connection will then be unsynchronized and can be made
independently to a separate device using the video port connections. For more information, see
Section 5.3.3.3, “Connecting Audio to Voice-Only Devices”, on page 38.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 37
Dialogic Corporation

Implementing a 3G-324M Session

5.3.3.1 Retrieving Media Ports

To get the audio and video Tx ports, call dev_GetTransmitPortInfo(). To get the audio and video
Rx ports, call dev_GetReceivePortInfo().

The following steps describe how to get transmit (Tx) and receive (Rx) media ports for the m3g and
mm devices (see steps in Figure 9):

a. Call dev_GetTransmitPortInfo() with the m3g audio handle and then with the m3g
video handle to get the audio and video Tx ports for the m3g device. The
DM_PORT_INFO_LIST of Tx ports for the m3g device are returned in the asynchronous
DMEV_GET_TX_PORT_INFO termination event.

b. Call dev_GetReceivePortInfo() with the m3g audio handle and then with the m3g video
handle to get the audio and video Rx ports for the m3g device. The
DM_PORT_INFO_LIST of Rx ports for the m3g device are returned in the asynchronous
DMEV_GET_RX_PORT_INFO termination event.

c. Call dev_GetTransmitPortInfo() with the mm handle to get the audio and video Tx
ports for the mm device. The DM_PORT_INFO_LIST of Tx ports for the mm device are
returned in the asynchronous DMEV_GET_TX_PORT_INFO termination event.

d. Call dev_GetReceivePortInfo() with the mm handle to get the audio and video Rx ports
for the mm device. The DM_PORT_INFO_LIST of Rx ports for the mm device are
returned in the asynchronous DMEV_GET_RX_PORT_INFO termination event.

e. Cache the audio and video port information for later use when connecting devices.

Figure 9 illustrates audio and video media connections made using the device management API
functions.

Figure 9. Retrieving Media Ports and Making Port Connections

38 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

Implementing a 3G-324M Session

5.3.3.2 Connecting Media Ports Between Devices

To make full-duplex audio and video connections between the m3g device and the mm device, call
dev_PortConnect(), once for each desired transmit media stream. The dev_PortConnect()
function creates a unidirectional packet connection between the transmit port of one device to the
receive port of another device.

In the following steps, two audio and two video transmit streams are created, one audio Tx stream
and one video Tx stream for each device (see steps in Figure 9):

1. To connect m3g device Tx video stream, call dev_PortConnect() with the m3g Tx video
port_info list and mm Rx video port_info list.

2. To connect m3g device Tx audio stream, call dev_PortConnect() with the m3g Tx audio
port_info list and mm Rx audio port_info list.

3. For multimedia play and record, to connect mm device Tx video stream, call
dev_PortConnect() with the mm Tx video port_info list and m3g Rx video port_info list.

4. For multimedia play and record, to connect mm device Tx audio stream, call
dev_PortConnect() with the mm Tx audio port_info list and m3g Rx audio port_info list.

5. In each case above, enable transcoding or native (no transcoding) connection by setting the
unFlags field of the DM_PORT_CONNECT_INFO data structure. See Section 5.3.4,
“Transcoding Versus Native Connection”, on page 38.

Note: Tx and Rx directions in these steps represent internal media stream direction relative to the device,
not relative to the 3G network.

5.3.3.3 Connecting Audio to Voice-Only Devices

The audio of an m3g device can be connected to a voice-only device, such as the voice (dx) device
or the digital trunk interface (dti) device, while the video is connected to a separate device. For
example, the audio from a 3G video caller can be connected to a traditional PSTN 2G voice-only
endpoint. While the audio is connected between endpoints, the video can be streamed from a
separate source, such as an mm device, to the 3G video caller. The audio connection is not
synchronized with the video in this case.

To make an audio connection between the m3g device and a voice-only device, call the
dev_Connect() function with the “m3g:BnTmAUDIO” device handle and the voice-only device
handle. The dev_Connect() function creates a full-duplex or half-duplex audio connection
between the two devices based on the full-duplex or half-duplex connection flags. To complete a
multimedia connection to the m3g device, connect the video ports to a separate device using the
dev_PortConnect() function as discussed in Section 5.3.3.2, “Connecting Media Ports Between
Devices”, on page 38.

5.3.4 Transcoding Versus Native Connection

You can make a connection to an m3g device in one of two modes: native (no transcoding) or
transcoding enabled.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 39
Dialogic Corporation

Implementing a 3G-324M Session

5.3.4.1 Native Connection

In a native connection, audio or video media is passed without modification from the 3G network
to the multimedia file. No audio or video transcoding is performed on the media from the 3G
network. The media is stored in a multimedia file using the 3G network codecs. In most cases, the
video codec is stored as H.263 or MPEG-4 for video and as AMR-NB for audio. Consider selecting
native connection mode to save on MIPs and to increase density.

To make a native unidirectional media stream connection, call dev_PortConnect() with unFlags
set to DMFL_TRANSCODE_NATIVE in the DM_PORT_CONNECT_INFO structure.

5.3.4.2 Transcoding Connection

Transcoding can be enabled to keep multimedia files in a singular format. Audio transcoding
allows the network coder, for example AMR-NB, to be stored as PCM data. Video transcoding is a
CPU-intensive process that provides translation between video coder types, such as H.263 and
MPEG-4, resolution types, bit rates, and frame rates. Enabling video transcoding also provides
greater control over video I-frame generation and stream manipulation, such as text overlay;
however, the greater control comes at the expense of CPU and reduced density.

Transcoding support varies by platform or software release. For support information, see the
product-specific Release Guide.

To enable transcoding on a unidirectional media stream, call dev_PortConnect() with unFlags set
to DMFL_TRANSCODE_ON in the DM_PORT_CONNECT_INFO structure. Transcoding takes
place between the two media coder formats specified in each device’s data structures.

For transport over 3G, the media coder settings are specified for the m3g device in the
m3g_SetTCS() and m3g_OpenLC() data structure initialization.

For multimedia play and record, the media coder settings are specified for the mm device in the
mm_Play() and mm_Record() data structure initialization. Transcoding is performed between
devices by translating the media stream definitions at the m3g device to and from the media
definitions at the mm device.

5.4 Establish a Bearer Channel

After completing the tasks described in Section 5.3, “Connect Devices”, on page 33, your
application is ready to receive a 3G call from the network or to make a 3G call to the network and
establish a bearer channel. The 3G call is established and connected using signaling means outside
of the 3G-324M protocol and the 3G-324M API library.

In a PSTN network, the bearer channel is typically established using ISUP or ISDN protocol. The
bearer channel in this network is a 64 Kbps clear channel, “unrestricted data” DS0 timeslot.

In an IP network, the call is typically established using BICC. The bearer channel in this network is
an Nb UP RTP connection.

40 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

Implementing a 3G-324M Session

5.5 Establish a 3G-324M Session

After a call is connected within the network and a bearer channel is established as described in
Section 5.4, “Establish a Bearer Channel”, on page 39, the 3G-324M protocol is started with the
remote 3G-324M endpoint. The role of the 3G-324M API begins after the application receives
indication that a bearer channel is established. At this time a 3G-324M session can be established
through 3G-324M protocol exchange.

These instructions assume that you have enabled Media Oriented Negotiation Acceleration
(MONA) in your application for faster media channel setup. For more information on MONA, see
Section 1.2.8, “Media Oriented Negotiation Acceleration (MONA)”, on page 19.

The following topics provide information about establishing a 3G-324M session with MONA
enabled:

• Start H.245 with MONA

• Establish MONA MPCs

• Exchange Media Using MONA

5.5.1 Start H.245 with MONA

To start a 3G-324M session with MONA, call m3g_StartH245() on the m3g control device handle
with MONA enabled to initialize the H.223 multiplex/demultiplex. MONA is enabled in the
M3G_H223_SESSION structure.

Before H.223 multiplex level framing, a MONA preference message is exchanged within the frame
header to identify the local Tx and Rx media preconfigured channels (MPC) supported by each
endpoint. The following unsolicited events are returned to indicate that the MONA preference
messages have been exchanged by the local and remote endpoints:

• M3GEV_SEND_MONA_PREF_MSG

• M3GEV_MONA_PREF_MSG_RCVD

Data about supported MPCs is delivered with each event. For more information about this data, see
the M3G_MONA_TXRX_MPC_SUPPORT data structure.

After m3g_StartH245() completes successfully, the following event is returned indicating that the
framing layer is sufficient to establish the H.223 abstraction layer:

• M3GEV_FRAMING_ESTABLISHED

In MONA procedures, the MPC-TX and MPC-RX bits are automatically set based on the
capabilities specified in m3g_SetTCS(). If the specified terminal capabilities match the format of
the MPCs as defined in the MONA standard, the respective MPC-TX bits are automatically set.
However, only one MPC-RX video bit may be set for a given call, with the priority given to H.263.
Thus, if the default capabilities are unchanged in the call to m3g_SetTCS(), the MPC-TX bits for
AMR, H.263, and MPEG-4 are enabled, and the MPC-RX bits for AMR and H.263 are enabled.

Figure 10 illustrates the bearer channel establishment and media exchange with MONA.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 41
Dialogic Corporation

Implementing a 3G-324M Session

Figure 10. 3G-324M Session with MONA Sequence

5.5.2 Establish MONA MPCs

Up to four MONA media preconfigured channels (MPCs) can be established based on the MONA
preference messages: audio Tx, audio Rx, video Tx, and video Rx.

After an exchange of MONA preference messages, the following events are returned to indicate
that the MPCs have been established and that media streaming can be started:

• M3GEV_TX_MPC_ESTABLISHED

• M3GEV_RX_MPC_ESTABLISHED

Data about the outgoing or incoming MPCs is delivered with each event. For more information
about this data, see the M3G_MONA_MPC data structure.

Each of these events can be returned twice, once for audio and once for video. Note that the
application may not receive four events if the MPC negotiation is unsuccessful for any media
channel direction. Whether the 3G endpoint does not support MONA or MONA preferences are
incompatible, this is a normal situation and the fallback scenario is for the media channels to be
opened using the standard H.245 logical channel establishment procedure.

42 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

Implementing a 3G-324M Session

5.5.3 Exchange Media Using MONA

After the MPCs are established, call m3g_ModifyMedia() to start media streaming for each
media channel direction that was established. For details, see the Modify Media approach in
Section 5.7.2, “Exchange Media Using m3g_ModifyMedia()”, on page 47.

See Figure 10 for an illustration of the messages exchanged using the MONA procedure.

If fewer than four MPCs are established, the ACP and standard H.245 logical channel
establishment procedures are used to establish the remaining media channels; see Section 5.6,
“MONA ACP and Standard H.245 Logical Channel Establishment”, on page 42.

5.6 MONA ACP and Standard H.245 Logical Channel
Establishment

After the application receives the M3GEV_FRAMING_ESTABLISHED,
M3GEV_MSD_ESTABLISHED, M3GEV_REMOTE_TCS_RCVD, and
M3GEV_LOCAL_TCS_ACKD events, the application will not receive any further
M3GEV_TX_MPC_ESTABLISHED or M3GEV_RX_MPC_ESTABLISHED events.

Any media channels that were not established as MONA MPCs must be established by getting
matched capabilities and by using the standard H.245 logical channel procedure for forward or
reverse logical channel establishment. As part of the MONA procedures, when MONA is enabled
during m3g_StartH245(), the MONA Accelerated Connection Procedure (ACP) will be attempted
as part of the remaining protocol exchange. From the application point of view, the procedure to
establish logical channels using ACP is the same as the standard H.245 logical channel procedure
described in this document.

Write your application to follow the standard H.245 open logical channel establishment procedure
whenever a media channel is not established as an MPC. If MONA is enabled during
m3g_StartH245(), any media channels that are not established using the MPC procedure will be
established using ACP following these steps. Similarly, if MONA is not enabled during
m3g_StartH245(), then all media channels will be established as logical channels using these
steps.

The following topics describe how to establish a 3G-324M session using MONA ACP and standard
H.245 logical channel procedure:

• Start H.245 – Standard Open Logical Channel Procedure

• Get Matched Capabilities

• Open Audio/Video Logical Channels (OLC)

5.6.1 Start H.245 – Standard Open Logical Channel Procedure

After MONA Preference Messages are exchanged, the 3G-324M protocol continues by
synchronizing to the H.223 multiplex level framing.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 43
Dialogic Corporation

Implementing a 3G-324M Session

This training phase at the H.223 level determines the error protection capabilities and multiplexing
level using the M3G_H223_CAPABILITY structure provided in m3g_SetTCS().

After the firmware establishes framing, the physical layer is established and the
M3GEVT_FRAMING_ESTABLISHED event is returned. The firmware then opens logical
channel 0 for H.245 messaging. The initial H.245 exchange, including Master Slave Determination
(MSD) and Terminal Capabilities Set (TCS) Exchange, is negotiated with values provided during
device initialization, described in Section 5.2, “Initialize Devices”, on page 30.

Figure 11 illustrates the sequence for standard 3G-324M session establishment.

Figure 11. 3G-324M Session (Standard) Sequence

5.6.1.1 Terminal Capabilities Set (TCS) Exchange

The TCS transactions are exchanged with the remote 3G-324M endpoint based on the settings
provided earlier in m3g_SetTCS(), as described in Section 5.2.7, “Set Preferred Capabilities”, on
page 33. Local TCS acknowledgement and receipt of remote TCS events are posted by the
firmware. The M3GEV_REMOTE_TCS_RCVD and the M3GEV_LOCAL_TCS_ACKD events
indicate successful exchange of TCS transactions for each endpoint.

44 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

Implementing a 3G-324M Session

5.6.1.2 Master Slave Determination (MSD) Exchange

The Master Slave Determination transactions are exchanged with the remote 3G-324M endpoint
using the terminal type specified in M3G_E_PRM_H245_TERMINAL_TYPE parameter setting
(M3G_PARM_INFO structure). When MSD negotiation is complete, the
M3GEV_MSD_ESTABLISHED event is returned to the application indicating master or slave
designation.

5.6.1.3 Required Events

The application should receive the following events before opening audio and video logical
channels:

• M3GEV_FRAMING_ESTABLISHED

• M3GEV_MSD_ESTABLISHED

• M3GEV_REMOTE_TCS_RCVD

• M3GEV_LOCAL_TCS_ACKD

5.6.1.4 Loss of Frame Synchronization

If the frame synchronization pattern is not found in the bitstream, the M3GEV_FRAMING_LOST
event is returned.

This condition can occur if the frame synchronization pattern is not detected within 5 seconds of
calling m3g_StartH245() after call connection. Additionally, this event is returned if the call is
lost or if the remote endpoint drops the 3G-324M session without tearing down logical channels.

If the M3GEV_FRAMING_LOST event is returned within 5 seconds of calling
m3g_StartH245(), this may indicate that (1) the data on the aggregate is not properly 3G-324M
encoded data, (2) the m3g_StartH245() function was called too early or too late and has timed
out, or (3) the data is not present in the bearer channel because the specified timeslot is incorrect.

5.6.2 Get Matched Capabilities

Before opening audio and video logical channels, call m3g_GetMatchedCaps() to determine the
matching capabilities between the local and remote 3G-324M endpoints. Call this function after the
events described in Section 5.6.1.3, “Required Events”, on page 44 have been received.

The m3g_GetMatchedCaps() function is provided as a convenience to determine the matched
capabilities and priority of capabilities between the remote and local 3G-324M endpoints. The
capabilities are listed in decreasing order of preference by the endpoint deemed the master in the
H.245 Master Slave Determination.

You can use the matched capabilities provided or modify these capabilities to select which
capabilities to use to open the forward logical channels for audio and video.

Note: The media or multiplexer format chosen by the local endpoint must be within the tolerances of
media formats supported by the remote endpoint as specified in the matched capability list. For
example, the local transmitter should not open a video logical channel with a video maxBitRate

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 45
Dialogic Corporation

Implementing a 3G-324M Session

value exceeding the bit rate value indicated by the remote video receiver. To improve
interoperability among third-party 3G vendors, choose audio and video codecs that are most
preferred by the master. These codecs are identified as the first transmit audio and video codecs in
the matched capability list.

5.6.3 Open Audio/Video Logical Channels (OLC)

After the low-level protocol exchange has succeeded and your application determines the matched
capabilities between 3G-324M endpoints as described in Section 5.6.1, “Start H.245 – Standard
Open Logical Channel Procedure”, on page 42, the application can begin opening the forward
logical channels for audio and video. The application also acknowledges or rejects the reverse open
logical channel requests from the remote endpoint.

Figure 12 illustrates the open logical channel sequence.

Figure 12. Open Logical Channel Sequence

5.6.3.1 Forward Logical Channels

Open Logical Channel (OLC) requests are sent from the local 3G-324M endpoint to the remote
3G-324M endpoint to specify the H.223 adaptation layer format and the media codec to be used in

46 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

Implementing a 3G-324M Session

the transmission of a given media channel. The remote endpoint acknowledges the OLC with an
OLCAck. By acknowledging the OLC request, the remote endpoint verifies that the OLC request
conforms to its negotiated terminal capabilities and that it will configure its multiplexer and media
codec to receive the media data with the specified parameters.

Call m3g_OpenLC() with the control handle and capabilityType set to
M3G_E_AUDIO_CAPABILITY to open the audio forward logical channel. Call this function with
capabilityType set to M3G_E_VIDEO_CAPABILITY to open the video forward logical channel.

The OLC is used to specify the media stream transmitted from the local endpoint to the remote
endpoint. The media capability, such as audio or video codec type of the channel, is specified by
the pMediaCapability parameter; the adaptation layer format of the channel is specified by the
pH223LCParameter parameter. The logical channel number is returned in the
OpenLogicalChannelAck received from the remote 3G endpoint, indicated by the
M3GEV_OPEN_LC_CMPLT event.

5.6.3.2 Reverse Logical Channels

The Open Logical Channel (OLC) requests from a remote 3G-324M endpoint specify the format of
the media channels streaming from the remote endpoint to the local endpoint. A reverse logical
channel request (audio or video) is acknowledged or rejected by the application.

Similarly to the local 3G-324M endpoint, the remote 3G-324M endpoint asynchronously requests
to open its logical channels specifying the adaptation layer and media codec to use for its media
channels. Any OLC received from the remote endpoint specifies the media channel in the direction
from the remote endpoint to the local endpoint. The application receives an
M3GEV_REMOTE_OLC_RCVD event upon receiving an OLC request from the remote endpoint
that conforms to its specified receive media capabilities. It must then use m3g_RespondToOLC()
to acknowledge or reject the request; an OLCAck or OLCReject message is sent to the remote 3G-
324M endpoint.

After the logical channel has been successfully opened, media streaming can begin in that
direction.

5.7 Exchange Media

After logical channels are opened as described in Section 5.6.3, “Open Audio/Video Logical
Channels (OLC)”, on page 45, media can flow in that direction. Two methods are available to start
media streams between the multimedia device and the H.223 multiplex/demultiplex.

The first method uses m3g_StartMedia() to start a full-duplex media stream after both the
forward and reverse logical channels are opened between the local and remote endpoints.

The second method uses m3g_ModifyMedia() to start a unidirectional media stream, which
corresponds to the direction of the individual forward or reverse logical channel that was
successfully opened.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 47
Dialogic Corporation

Implementing a 3G-324M Session

To simplify the start of bidirectional media streaming to a remote 3G endpoint, consider using the
m3g_StartMedia() approach. Conversely, you can achieve immediate unidirectional media in the
specified direction if media streams are started using the m3g_ModifyMedia() approach after
successful logical channel establishment.

The following topics describe how to exchange media:

• Exchange Media Using m3g_StartMedia()

• Exchange Media Using m3g_ModifyMedia()

• Start Multimedia Play and Record

• H.245 UII Digit Detection/Generation

• Video Fast Update Request Detection/Generation

5.7.1 Exchange Media Using m3g_StartMedia()

The m3g_StartMedia() function begins the H.223 multiplexing/demultiplexing of audio or video
data to enable media streaming to the 3G-324M network.

Call m3g_StartMedia() after both the forward and reverse logical channels are open for the media
type. Specify the m3g audio handle to start audio streaming. Specify the m3g video handle to start
video streaming. The system returns the M3GEV_START_MEDIA_CMPLT event after streaming
is successfully initiated.

Figure 13 illustrates the sequence when using m3g_StartMedia().

Figure 13. Exchange Media – m3g_StartMedia() Sequence

5.7.2 Exchange Media Using m3g_ModifyMedia()

The m3g_ModifyMedia() function begins the H.223 multiplexing/demultiplexing of audio or
video data in the specified half-duplex direction to the 3G-324M network.

48 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

Implementing a 3G-324M Session

Call m3g_ModifyMedia() with the appropriate audio or video handle after the corresponding
forward logical channel or reverse logical channel is open. Indicate the direction of the media
stream, such as transmit only (M3G_E_TX), receive only (M3G_E_RX), transmit and receive
(M3G_E_RXTX), or complete stop (M3G_E_IDLE). This direction is relative to the 3G network.
This is opposite to the direction specified for port connections in Section 5.3.3.2, “Connecting
Media Ports Between Devices”, on page 38, which was relative to the media termination device.

Example Scenario

The following example shows one way to start unidirectional media streaming corresponding to the
OLC direction, after the logical channel is open. The sequence in which logical channels may be
opened is non-deterministic. Each audio and video logical channel can be opened in parallel by
both endpoints in any order.

• Start forward logical channel audio Tx. Call m3g_ModifyMedia() with the m3g audio
handle and the direction M3G_E_TX.

• Start reverse logical channel audio Rx. Call m3g_ModifyMedia() with the m3g audio
handle and the direction M3G_E_RXTX to enable full-duplex audio.

• Start reverse logical channel video Rx. Call m3g_ModifyMedia() with the m3g video
handle and the direction M3G_E_RX.

• Start forward logical channel video Tx. Call m3g_ModifyMedia() with the m3g video
handle and the direction M3G_E_RXTX to enable full-duplex video.

Note: Tx and Rx directions above represent the media stream direction relative to the 3G
network.

The system returns the M3GEV_MODIFY_MEDIA_CMPLT event when streaming is
successfully initiated.

Figure 14 illustrates the sequence when using m3g_ModifyMedia().

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 49
Dialogic Corporation

Implementing a 3G-324M Session

Figure 14. Exchange Media – m3g_ModifyMedia() Sequence

5.7.3 Start Multimedia Play and Record

After the media streams are started between the H.223 multiplex/demultiplex and the multimedia
device, the mm device can be used to play or record multimedia files. The method of connection
between devices, native or transcoding, determines the media format that can be used to store
media files. For more on native and transcoding, see Section 5.3.4.1, “Native Connection”, on
page 39 and Section 5.3.4.2, “Transcoding Connection”, on page 39, respectively.

For a native connection, the multimedia file must be stored in AMR-NB or G.723 for audio, and
H.263 QCIF for video with a video bitrate less than 40 Kbps. For platforms that support MPEG-4,
the video can also be stored as native MPEG-4 data.

For a transcoding connection, the multimedia file can be stored in a supported format and it will be
transcoded to the proper format. When transcoding is enabled, the media characteristics for the 3G
network are specified in the m3g_OpenLC() initialization structures. The media characteristics of
the multimedia storage format are specified in the mm_Play() or mm_Record() data structure
initialization.

5.7.4 H.245 UII Digit Detection/Generation

Sending DTMF digits over the 3G network is typically accomplished by use of H.245
UserInputIndication (UII) messages. To initiate an H.245 UII message to the remote 3G terminal,
call m3g_SendH245UII() specifying the digit mask to be sent.

50 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

Implementing a 3G-324M Session

After receiving an incoming H.245 UII message from the remote terminal, an
M3GEV_H245_UII_RCVD event is queued containing the received digit mask. (See
m3g_EnableEvents() for more information on enabling events.)

Out-of-band DTMF digits received via UII messages may also be automatically forwarded to the
attached Dialogic® audio devices without application intervention. To do so, use m3g_SetParm()
with the M3G_E_PRM_RELAY_DIGIT_TO_MEDIA_DEV parameter set to true.

Similarly, when streaming to the 3G network, any RFC 2833 digits detected in the audio stream
from the Dialogic® audio devices may be automatically converted to H.245 UII messages. To do
so, use m3g_SetParm() with the M3G_E_PRM_RELAY_DIGIT_TO_H245UII parameter set to
true.

5.7.5 Video Fast Update Request Detection/Generation

In a 3G-324M session, an endpoint may need to request a full video frame update, called an I-
Frame update, from the remote endpoint to provide a reference video frame to facilitate decoding
or to refresh the video image. The endpoint requests an I-Frame from the remote terminal by
sending an H.245 Miscellaneous Command Video Fast Update (VFU) message.

To send an H.245 VFU request to a remote endpoint, call m3g_SendH245MiscCmd() with the
m3g control device handle and set h245MiscCmdType to M3G_E_FAST_UPDATE_PICTURE.
Requesting a VFU is helpful at the start of a recording, because the mm_Record() function waits
up to 5 seconds for an I-frame to start the recording to assure that the beginning of the video is not
corrupt.

In the opposite direction, a remote endpoint can send the H.245 VFU request to the application.
The M3GEV_H245_MISC_CMD_RCVD event is generated to indicate that the H.245 VFU is
received. To automatically generate an I-frame upon VFU request from the remote endpoint, use
the m3g_SetParm() function with M3G_E_PRM_RELAY_FASTUPDATE_TO_MEDIA_DEV
set to true. Automatic I-frame generation is only valid when a video transcoding connection is
made between the m3g device and the mm device during dev_PortConnect().

5.8 Terminate a 3G-324M Session

Sometime after media streaming has been established, the 3G-324M session can be terminated
through the 3G-324M protocol. The following topics describe how to tear down a 3G-324M call
and terminate the 3G-324M session:

• Stop Media Streaming

• Terminate the H.245 Session

5.8.1 Stop Media Streaming

Call m3g_StopMedia() with the m3g audio handle to stop audio streaming to and from the H.223
multiplex/demultiplex. Call this function with the m3g video handle to stop video streaming to and

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 51
Dialogic Corporation

Implementing a 3G-324M Session

from the H.223 multiplex/demultiplex. The system returns the M3GEV_STOP_MEDIA_CMPLT
event when media streaming termination is complete.

5.8.2 Terminate the H.245 Session

After stopping audio and video media streaming in both directions as described in Section 5.8.1,
“Stop Media Streaming”, on page 50, the final step in tearing down the 3G-324M session is to
terminate the H.245 session.

Call m3g_StopH245() to terminate and release all H.245 resources. If an H.245 EndSession
message was not received prior to this point from the remote endpoint, a call to m3g_StopH245()
triggers the firmware to close logical channels and send an EndSession message to the remote 3G
endpoint indicating that the session has ended and will be terminated without further
communication.

An M3GEV_ENDSESSION_RCVD event may be returned to the application to signify that the
remote endpoint terminated the H.245 session. An EndSession message must be the last 3G-324M
message sent from the remote endpoint signifying that the H.245 session has ended and no more
communication should be expected. If an EndSession message is returned to the 3G-324M protocol
stack, call m3g_StopH245() to terminate the local session.

Note: It is not necessary to call m3g_CloseLC() to initiate closure of a logical channel. This task is
performed as part of m3g_StopH245() functionality.

Figure 15 illustrates the terminate session sequence.

Figure 15. Terminate Session Sequence

52 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

Implementing a 3G-324M Session

5.9 Disconnect the Bearer Channel

After the 3G-324M session is terminated, a 3G call is ended by disconnecting the bearer channel
through the network. In a PSTN network, the bearer channel containing the data stream is
disconnected through ISDN or ISUP signaling methods. In an IP network, the call is typically
disconnected using BICC.

If a bearer channel is disconnected, closed or corrupted while a 3G-324M session is in progress, the
firmware will determine that the frame synchronization has been lost. An
M3GEV_FRAMING_LOST event is generated to the application. Subsequently the firmware will
internally tear down any active 3G-324M session and present the M3GEV_ENDSESSION_RCVD
event for each previously opened logical channel. No matter the disconnect method, you should
follow the process described in Section 5.8, “Terminate a 3G-324M Session”, on page 50 to ensure
that the Dialogic® 3G-324M software system clean-up occurs and that resources are properly
deallocated.

5.10 Disconnect Devices

All connections can optionally be disconnected after the 3G-324M session is stopped or can remain
connected for the next 3G call established with a remote endpoint. The following topics describe
how to disconnect devices:

• Disconnect Media Port Connections

• Disconnect Network Device

5.10.1 Disconnect Media Port Connections

To disconnect audio and video connections between the m3g device and the mm device, for
example, call dev_PortDisconnect(), once for each desired transmit media stream. The
dev_PortDisconnect() function removes the unidirectional packet connection between one or
more transmit ports of one device to the receive port of another device.

In the following steps, two audio and two video transmit streams are disconnected, one audio Tx
stream and one video Tx stream for each device:

1. To disconnect m3g device Tx video stream, call dev_PortDisconnect() with the m3g Tx
video port_info list.

2. To disconnect m3g device Tx audio stream, call dev_PortDisconnect() with the m3g Tx
audio port_info list.

3. To disconnect mm device Tx video stream, call dev_PortDisconnect() with the mm Tx video
port_info list.

4. To disconnect mm device Tx audio stream, call dev_PortDisconnect() with the mm Tx audio
port_info list.

Note: Tx and Rx direction represents the internal media stream direction relative to the device, not the
direction relative to the 3G network.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 53
Dialogic Corporation

Implementing a 3G-324M Session

Figure 16 illustrates the sequence for disconnecting media port devices.

Figure 16. Disconnect Media Port Devices Sequence

5.10.2 Disconnect Network Device

On the aggregate network side, the m3g device can be disconnected from the PSTN or IP-based
network device, representing the ingress or egress of the 3G-324M bearer channel to disconnect the
multiplexer output.

In a PSTN network, disconnect the m3g device from the Dialogic® Global Call digital network
interface (dti) device using the dev_Disconnect() function. Call this function once with the m3g
control handle and once with the dti handle to disconnect the aggregate timeslot connection.

In an IP network, disconnect the m3g device from the ipm device using dev_PortDisconnect().
Call this function once with the m3g control port list and once with the ipm port list, similar to the
method described in Section 5.10.1, “Disconnect Media Port Connections”, on page 52.

Before closing the devices and terminating the application, devices must be successfully
disconnected as indicated by disconnect completion events.

5.11 Close Devices

Before exiting an application, call the appropriate _Close() function on all the devices that were
opened by the application. This terminates the queuing of all library events for the device,
deallocates the resources that were reserved for the device, and returns the device to a known
terminated state. Call the _Close() function only after devices are disconnected and
DMEV_DISCONNECT or DMEV_PORT_DISCONNECT events are received.

For every 3G-324M channel being used by the application, follow these steps to properly close
devices:

1. To close the m3g control device, call m3g_Close() using the m3g control device handle.

2. To close the m3g audio device, call m3g_Close() using the m3g audio device handle.

3. To close the m3g video device, call m3g_Close() using the m3g video device handle.

54 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

Implementing a 3G-324M Session

4. To close the m3g board device which may have been opened to configure system-wide
settings, call m3g_Close() using the m3g board device handle.

5. Close all other devices in use, such as mm, ipm, and cnf devices using the appropriate
functions.

5.12 Exit the application

To exit the application, call m3g_Stop(). This function stops the Dialogic® 3G-324M library and
releases all allocated resources. The M3G_SUCCESS event is generated after the 3G-324M library
is successfully stopped.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 55
Dialogic Corporation

66.Interoperability and Compliance
Information

This chapter provides interoperability guidelines for the Dialogic® 3G-324M (m3g) device and
compliance information for the 3GPP 3G-324M Technical Specification.

• Interoperability Guidelines . 55

• Statements of Compliance . 56

6.1 Interoperability Guidelines

The Dialogic® 3G-324M (m3g) device should be compatible with a handset that supports at least
one entry from every item in the following list. Included in the list is a recommended usage that
will help to insure interoperability with the maximum number of handsets.

MuxLevel
L0, L1, L2, L2 with optional headers, L3

Recommended usage: L2

SRP (Simple Retransmission Protocol)
NSRP (Numbered SRP) with multiple messages per PDU, WNSRP (Windowed Numbered
SRP) with multiple messages per PDU, NSRP without multiple messages per PDU, WNSRP
without multiple messages per PDU

Recommended usage: WNSRP with multiple messages per PDU

Media Establishment Procedures
MONA-MPC, MONA-APC, LC with Early MES, LC Legacy

Recommended usage: MONA-MPC

Audio Adaptation Layer
AL1 framed (non-segmented), AL2 with sequence numbers (non-segmented), AL2 without
sequence numbers (non-segmented), AL3 as unidirectional/reverse data as null (non-
segmented)

Recommended usage: AL2 with sequence numbers

Note: Some handsets that support AL3 do not support reverse null data. It is strongly
suggested that the AL3 capability not be advertised in the TCS message. If AL3 is
advertised, the TerminalType must be set to a large value to insure that the m3g
device is the H.245 master.

Video Adaptation Layer
AL1 framed (segmented), AL2 with sequence numbers (segmented), AL2 without sequence
numbers (segmented), AL3 as unidirectional/reverse data as null (segmented)

Recommended usage: AL2 without sequence numbers

Note: See note about AL3 under Audio Adaptation Layer.

56 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

Interoperability and Compliance Information

Video Codec
H.263 QCIF/SQCIF as profile 0 level 20, MPEG-4 QCIF as simple profile level 0

Recommended usage: H.263 QCIF

Note: The Dialogic® software cannot generate MPEG-4 with data partitioning in the
transmit stream when transcoding, and will not interoperate with a handset that
requires this video format.

Audio Codec
AMR-NB 1 frame per SDU, G.723.1 2 frames per SDU

Recommended usage: AMR-NB

Maximum ALxSDU size
1024

Recommended usage: 512

Maximum average video bit rate
45 kbps

Recommended usage (transcoding): 40 kbps

Maximum average audio bandwidth
12.2 kbps

Recommended usage: 12.2 kbps

Further recommended settings to improve interoperability
Terminal Type: 192
Video AL2 SDU Size: 256
Frame Rate (transcoding): 6 fps

6.2 Statements of Compliance

The following is a Statement of Compliance for Dialogic® 3G-324M software with the 3GPP TS
26.111 V7.1.0, Codec for Circuit-Switched Multimedia Telephony Service, Modifications to
H.324. Release 7.

Table 1. Statement of Compliance with 3GPP TS 26.111 V7.1.0

Section Compliance

6.1 Compliant

6.4 Partially compliant:

Optional H.223 adaptation layers AL1M, AL2M, and AL3M not
supported

6.5 Partially compliant:

H.245 bidirectional LC procedures not supported

6.6 Partially compliant:

Optional MPEG-4 codec does not include RM, DP, HEC, RVLC
codec options when transcoding

Optional H.264 codec not supported

6.6.1 Compliant

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 57
Dialogic Corporation

Interoperability and Compliance Information

The following is a Statement of Compliance for Dialogic® 3G-324M software with the 3GPP TR
26.911, Codec for Circuit-Switched Multimedia Telephony Service, Terminal Implementer’s Guide
Release 4.

6.6.2 N/A (H.264 codec)

6.7 Partially compliant:

Optional AMR-WB not supported

6.8 N/A (data channels)

7 Compliant

8 Compliant

9 N/A

10 N/A

Table 1. Statement of Compliance with 3GPP TS 26.111 V7.1.0 (Continued)

Section Compliance

Table 2. Statement of Compliance with 3GPP TR 26.911

Section Compliance

5 Compliant

5.1 Compliant

6 Partially compliant:

Bidirectional LC establishment not supported

Optional LC replacement procedures not supported

6.1 N/A

7 Compliant

7.1 Compliant

7.2 Partially compliant:

H.263 Appendix I, J, K, T not supported

7.3 N/A (data channels)

7 Compliant

8 Compliant

9 N/A

10 N/A

11 Compliant

12 N/A

13 N/A

14 N/A

15 N/A

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 58
Dialogic Corporation

77.Video Quality Considerations

This chapter describes points to consider when working with video files, especially as they relate to
video quality.

For 3G-324M connections, the maximum total available bandwidth for audio, video, and H.245
control messages is limited to 64 kbps. Therefore, in order for the 3G endpoint to receive
reasonable audio and video quality, it is recommended that the peak bit rate for the video stream
transmitted should not exceed 30 kbps when the audio codec is AMR-NB, and should not exceed
35 kbps when the audio codec is G.723.1. It is also critical that the video stream is generated using
the constant bit rate (CBR) mode as opposed to the variable bit rate (VBR) mode and that video
frame sizes not exceed recommended maximum values. This is necessary to insure smooth
flowing, non-jittery video when displayed on a 3G handset. Since the transport total bandwidth is
limited to a maximum 64 kbps (8 K bytes per second), a video frame size of 4 K bytes, for
example, would take a minimum of a half second to be transmitted. At a frame rate of 10 fps, a
display frame update is expected approximately every 100 ms. Therefore, the display time of large
frames would be delayed and would be seen as stalled and/or jittery, non-smooth flowing video.

When video transcoding is used, along with the proper settings, the encoder will insure that the
video bit stream is appropriate for the transport. When video is played natively using native
connections, the source file that is being played must have the appropriate video stream
characteristics to match the needs of the transport and the 3G handset. (Transcoding connection
type is set in the Dialogic® Device Management API library, DM_PORT_CONNECT_INFO
structure.)

Several parameters can affect the bit rate of a given video stream. Depending on the content
creation tool, you can typically control the following parameters that trade off bit rate versus
quality:

• Image Size: it is recommended that the image size should be limited to QCIF or smaller.

• Frame Rate: it is recommended that the frame rate should not exceed 10 frames/sec.

• Bit Rate: as documented above.

• Maximum Packet (or Frame) Size: if this option is available, it is recommended that the
maximum video frame or packet size should not exceed 1000 bytes.

• Maximum time between I-Frames: it is recommended that the maximum time between I-
frames be set to no greater than 5 seconds.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 59
Dialogic Corporation

88.Data Structure Considerations

This chapter describes points to consider when working with data structures. Topics include:

• Using Inline Functions. 59

• Handling the Version Number . 59

8.1 Using Inline Functions

Some data structures in the 3G-324M library have an associated inline function. Use the inline
function, where available, to initialize the fields of the data structure, including the version number
field. For example, use the INIT_M3G_H223_SESSION() inline function to initialize the fields of
the M3G_H223_SESSION structure.

8.2 Handling the Version Number

Some data structures in the 3G-324M library have a version number field. This version number is
used to ensure that an application is binary compatible with future changes to this data structure.
This field should be set to the symbolic constant M3G_LIBRARY_VERSION which defines the
current version of the library.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 60
Dialogic Corporation

99.Building Applications

This chapter provides information for those choosing to build applications using the Dialogic® 3G-
324M API library. The following topics are discussed:

• Compiling and Linking . 60

• Variables for Compiling and Linking . 61

9.1 Compiling and Linking

An application that uses the Dialogic® 3G-324M API must include references to the Dialogic® 3G-
324M API header files and must include the appropriate library files. The following topics discuss
compiling and linking requirements:

• Include Files

• Required Libraries

9.1.1 Include Files

The following header files must be included in the application code in the order shown prior to
calling the library functions:

srllib.h
Contains function prototypes and equates for the Dialogic® Standard Runtime Library.

Note: srllib.h must be included in code before all other Dialogic® header files.

m3glib.h
The primary header file for the Dialogic® 3G-324M library. Contains function prototypes and
symbolic defines.

m3gerrs.h
Contains enumeration constants for Dialogic® 3G-324M error codes.

m3gevts.h
Contains symbolic constants for Dialogic® 3G-324M event codes.

9.1.2 Required Libraries

The following library files must be linked in the order shown:

libsrl.so
Dialogic® Standard Runtime Library API file. Required in all applications. Specify -lsrl in
makefile.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 61
Dialogic Corporation

Building Applications

libm3g.so
Dialogic® 3G-324M library file. Required in a 3G-324M application. Specify -lm3g in
makefile.

Note: When compiling an application, you must list Dialogic® libraries before all other libraries such as
operating system libraries.

By default, the library files are located in the directory given by the INTEL_DIALOGIC_LIB
environment variable.

9.2 Variables for Compiling and Linking

The following variables provide a standardized way of referencing the directories that contain
header files and shared objects:

INTEL_DIALOGIC_INC
Variable that points to the directory where header files are stored.

INTEL_DIALOGIC_LIB
Variable that points to the directory where shared library files are stored.

These variables are automatically set at login and should be used in compiling and linking
commands.

1010.Debugging

This chapter provides information about debugging Dialogic® 3G-324M software applications:

• Trace Utilities . 62

• Call Statistics . 63

10.1 Trace Utilities

Runtime tracing on a per channel or board basis is supported. This feature allows you to set tracing
of the following:

• H.245 messaging (with textual decode)

• raw binary H.223 multiplexed bitstreams

• raw binary audio streams

• raw binary video streams

• call statistics

Logging is directed to a user-specified file. The default location for log files is /usr/dialogic/data.

To initiate and configure tracing, use m3g_StartTrace(). The logging levels used in
m3g_StartTrace() are configured by setting the respective bits in the bitmask field in the
M3G_TRACE_INFO structure; see this data structure description for details. To stop tracing, use
m3g_StopTrace().

10.1.1 Parser Utility

A post-processing 3G log file parser is provided to parse log files created via m3g_StartTrace().
The parser utility is called m3g_parser and is used as follows from the command line:

m3g_parser <logfileName>

The tool takes one mandatory argument which is the filename of the resulting log file. After
executing the parser, the tool parses various 3G-specific trace entries into separate files for each
device. A log file is created for each device which has logged subject-related entries using the
following naming convention (where n is the m3g device number):

h245_n.txt
transmitted and received, timestamped H.245 messages in ASCII format for device n

h223tx_n.bin
transmitted H.223 multiplex bit stream in binary format for device n

h223rx_n.bin
received H.223 multiplex bit stream in binary format for device n
Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 62
Dialogic Corporation

Debugging
audiotx_n.bin
transmitted audio bit stream in binary format which is subsequently multiplexed for device n

audiorx_n.bin
received audio bit stream in binary format after demultiplexing via device n

videotx_n.bin
transmitted video bit stream in binary format which is subsequently multiplexed for device n

audiorx_n.bin
received video bit stream in binary format after demultiplexing via device n

stats_n.txt
call signaling and media statistics recorded for device n. Statistics include counts of multiplex
and media packets sent and received, stuffing bytes, and errors.

10.2 Call Statistics

Call statistics provide statistics such as call duration, a count of the transmitted and received
packets, total bytes, CRC and packet errors for the H.223 multiplex bit stream, audio and video and
for the session.

To use call statistics per call, enable the event bit M3G_CALL_STATISTICS_EVT_TYP in
m3g_EnableEvents(). The default is disabled.

When enabled, on the completion of every 3G-324M session, an M3GEV_CALL_STATISTICS
event is queued to the application. The event includes call statistics; see
M3G_CALL_STATISTICS data structure for details.

The M3GEV_CALL_STATISTICS event is queued after the 3G-324M session is terminated
immediately following the queuing of the M3GEV_STOP_H245_CMPLT event for
m3g_StopH245().
Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 63
Dialogic Corporation

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 64

Dialogic Corporation

1111.Function Summary by Category

This chapter describes the categories into which the Dialogic® 3G-324M API functions can be
logically grouped. Topics include:

• System Control Functions . 64

• H.245 Control Functions . 65

• Data Flow Functions . 65

• Utility Functions . 66

11.1 System Control Functions

The following functions provide device and library management capabilities:

m3g_Close()
closes the specified device

m3g_DisableEvents()
disables one or more unsolicited events

m3g_EnableEvents()
enables one or more unsolicited events

m3g_GetParm()
gets the current parameter settings for the specified device

m3g_GetUserInfo()
gets a user-defined device handle for an SRL device

m3g_Open()
opens the specified device

m3g_OpenEx()
opens the specified device in synchronous or asynchronous mode

m3g_Reset()
resets open devices that were improperly closed

m3g_SetParm()
sets a parameter for the specified device

m3g_Start()
starts and initializes the 3G-324M library

m3g_Stop()
stops the 3G-324M library and releases all allocated resources

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 65

Dialogic Corporation

Function Summary by Category

11.2 H.245 Control Functions

The following functions manage H.245 multimedia exchange messages and communication:

m3g_CloseLC()
initiates closure of specified logical channel number

m3g_GetLocalCaps()
gets the default capabilities supported by the specified device

m3g_GetMatchedCaps()
gets common capabilities between the local and the remote endpoints

m3g_OpenLC()
sends an OpenLogicalChannel request

m3g_RespondToOLC()
responds to an OpenLogicalChannel request

m3g_SendH245MiscCmd()
sends the specified H.245 MiscellaneousCommand message to the remote endpoint

m3g_SendH245UII()
sends DTMF digits in an H.245 UserInputIndication message to the remote endpoint

m3g_SetTCS()
sets the local set of terminal capabilities in the H.245 TerminalCapabilitySet table

m3g_SetVendorId()
configures information elements to be encoded in the H.245 VendorIdentification indication
message

m3g_StartH245()
initiates the H.223 multiplex and demultiplex

m3g_StopH245()
terminates the H.245 session

11.3 Data Flow Functions

The following functions manage the data flow between the media device and the H.223
multiplex/demultiplex:

m3g_ModifyMedia()
modifies the streaming characteristics to and from the specified media device

m3g_StartMedia()
starts the media stream between the media device and the H.223 multiplex/demultiplex

m3g_StopMedia()
stops the media stream between the media device and the H.223 multiplex/demultiplex

66 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

Function Summary by Category

11.4 Utility Functions

The following utility functions are available to configure and enable additional features:

m3g_StartTrace()
initiates and configures 3G-324M tracing to a user-specified log file

m3g_StopTrace()
stops 3G-324M tracing previously specified for a device or devices

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 67

Dialogic Corporation

1212.Function Information

This chapter provides an alphabetical reference to the functions in the Dialogic® 3G-324M API
library. A general description of the function syntax convention is provided before the detailed
function information.

All function prototypes are in the m3glib.h header file.

12.1 Function Syntax Conventions

The Dialogic® 3G-324M API functions typically use the following format:

int m3g_Function (deviceHandle, parameter1, parameter2, ... parametern)

where:

int
represents an integer return value that indicates if the function succeeded or failed. Possible
values are:

• 0 if the function succeeds

• <0 if the function fails

m3g_Function
represents the name of the function

deviceHandle
refers to an input field representing the type of device handle (board, control, audio, video)

parameter1, parameter2, ... parametern
represent input or output fields

68 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_Close() — close a device

m3g_Close()

close a device

Description

The m3g_Close() function closes the handle for a device that was previously opened and
terminates the queuing of all 3G-324M library events associated with this handle.

This function is only supported in synchronous mode. The function returns M3G_SUCCESS if the
specified device was successfully closed; otherwise, it returns M3G_ERROR.

Cautions

Audio, video and control devices associated with an H.223 bearer channel should be closed only
after terminating the associated H.245 session using m3g_StopH245().

Errors

If this function fails with M3G_ERROR, use the Standard Runtime Library (SRL) standard
attribute functions ATDV_LASTERR() and ATDV_ERRMSGP() to obtain the error code and a
pointer to the error description, respectively. Error codes are defined in m3gerrs.h.

For more information, see Chapter 15, “Error Codes”.

Example

/* Header Files: */
#include <srllib.h>
#include <m3glib.h>
#include <m3gevts.h>
#include <m3gerrs.h>
.
.
.

Name: int m3g_Close (deviceHandle)

Inputs: SRL_DEVICE_HANDLE deviceHandle • board, control, audio or video device handle

Returns: M3G_SUCCESS if successful
M3G_ERROR on failure

Includes: srllib.h
m3glib.h
m3gerrs.h

Category: System Control

Mode: synchronous

Parameter Description

deviceHandle specifies an SRL handle to a board, control, audio or video device
obtained from a previous open

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 69

Dialogic Corporation

close a device — m3g_Close()

/* Preconditions: 1) 3G-324M Library Session has already been started. */
/* 2) Assume global device table defined elsewhere */
int CloseDevs(int numDevices)
{
 int devNum;

 for(devNum=1; devNum<=numDevices; devNum++)
 {
 /* Close control device for 3G-324M endpoint */
 if (M3G_ERROR == m3g_Close(devTbl[devNum].cDev))
 {
 log("Error: m3g_Close(%s)failed – %s\n",
 ATDVNAMEP(devTbl[devNum].cDev), ATDV_ERRMSGP(devTbl[devNum].cDev));
 /* handle error… */
 }

 /* Close audio device for 3G-324M endpoint */
 if (M3G_ERROR == m3g_Close(devTbl[devNum].aDev))
 {
 log("Error: m3g_Close(%s)failed – %s\n",
 ATDVNAMEP(devTbl[devNum].aDev), ATDV_ERRMSGP(devTbl[devNum].aDev));
 /* handle error… */
 }

 /* Close video device for 3G-324M endpoint */
 if (M3G_ERROR == m3g_Close(devTbl[devNum].vDev))
 {
 log("Error: m3g_Close(%s)failed – %s\n",
 ATDVNAMEP(devTbl[devNum].vDev), ATDV_ERRMSGP(devTbl[devNum].vDev));
 /* handle error… */
 }
 }
 /* Close board device */
 if (M3G_ERROR == m3g_Close(boardDev))
 {
 log("Error: m3g_Close(m3gB1)failed –%s\n",
 ATDV_ERRMSGP(boardDev));
 /* handle error… */
 }

 return SUCCESS;
} /* End of CloseDevs */

See Also

• m3g_Open()

• m3g_StopH245()

70 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_CloseLC() — initiate closure of specified logical channel

m3g_CloseLC()

initiate closure of specified logical channel

Description

The m3g_CloseLC() function initiates closure of the specified logical channel number by sending
a message to the remote 3G-324M endpoint. If a forward logical channel is specified in lcn, a
CloseLogicalChannel message is sent. If a reverse logical channel is specified in lcn, a
RequestChannelClose message is sent.

The function completes only after receiving a CloseLogicalChannelAck or
RequestChannelCloseAck response from the remote 3G-324M endpoint as indicated via the
M3GEV_CLOSE_LC_CMPLT event. Upon receiving this event, use the Dialogic® Standard
Runtime Library function sr_getevtdatap() to retrieve the void data buffer embedded within the
event and cast it as a pointer to an unsigned short to decode the logical channel number that was
successfully closed.

When an incoming CloseLogicalChannel command or RequestChannelClose request is received
from the remote 3G-324M endpoint, an M3GEV_REMOTE_CLOSE_LC_RCVD event is queued
to the application which includes the logical channel number. Upon receiving this event, use the
Standard Runtime Library function sr_getevtdatap() to retrieve the void data buffer embedded
within the event and cast it as a pointer to an M3G_REMOTE_CLOSED_LC structure to obtain the
closed logical channel number and the reason.

Note that incoming CloseLogicalChannel commands are always implicitly and automatically
responded to via a CloseLogicalChannelAck response by the 3G-324M protocol stack. Similarly,
RequestChannelClose requests are always implicitly and automatically responded to via a
RequestChannelCloseAck response. The application is only responsible for properly re-routing the
associated media stream from the H.223 multiplex aggregate.

Note that as the m3g_StopMedia() function terminates the H.223 multiplexing and de-
multiplexing, it is possible for the application to maintain the packet stream connections between

Name: int m3g_CloseLC (deviceHandle, lcn, reason)

Inputs: SRL_DEVICE_HANDLE deviceHandle • control device handle

M3G_LOGICAL_CHANNEL_NUMBER lcn • number of logical channel to be closed

M3G_E_REQ_CHAN_CLOSE_REASON reason • reason

Returns: M3G_SUCCESS if successful
M3G_ERROR on failure

Includes: srllib.h
m3glib.h
m3gevts.h
m3gerrs.h

Category: H.245 Control

Mode: asynchronous

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 71

Dialogic Corporation

initiate closure of specified logical channel — m3g_CloseLC()

the H.223 multiplex and the actual audio and video media devices for the next 3G-324M
multiplexed call.

This function is only supported in asynchronous mode.

Termination Events

M3GEV_CLOSE_LC_CMPLT
Indicates a CloseLogicalChannelAck or RequestChannelCloseAck message has been
successfully received from the remote 3G-324M endpoint acknowledging the
CloseLogicalChannel command or RequestChannelClose request.

M3GEV_CLOSE_LC_FAIL
Indicates either a local failure to send the CloseLogicalChannel request or no
CloseLogicalChannel response was received. The error code is included in the event as
detailed in Chapter 13, “Events”.

Cautions

It is invalid to call this function with a board, audio or video device type handle.

Errors

If this function fails with M3G_ERROR, use the Standard Runtime Library (SRL) standard
attribute functions ATDV_LASTERR() and ATDV_ERRMSGP() to obtain the error code and a
pointer to the error description, respectively. Error codes are defined in m3gerrs.h.

For more information, see Chapter 15, “Error Codes”.

Example

/* Header Files: */
#include <srllib.h>
#include <m3glib.h>
#include <m3gevts.h>
#include <m3gerrs.h>
.
.
.

/* Preconditions: 1) 3G-324M Library H.245 Forward Logical Channel has already been */
/* established (not shown). */
/* 2) Call associated with bearer channel is disconnected (not shown). */

int handleDisconnectedCall(MYDEV * pMyDev)

Parameter Description

deviceHandle specifies an SRL handle to a control device

lcn specifies the logical channel number to be closed

reason M3G_E_REQ_CHAN_CLOSE_REASON enumeration type specifying
H.245 reason to be included in the CloseLogicalChannel or
RequestChannelClose message. For more information about possible
values, see the M3G_REMOTE_CLOSED_LC structure description.

72 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_CloseLC() — initiate closure of specified logical channel

{
 /* Disconnect and stop the media (not shown): */
 disconnectAndStopMedia(pMyDev);

 /* Close audio forward logical channel */
 if (M3G_ERROR == m3g_CloseLC(pMyDev->controlDevH, pMyDev->audioLCN,
 M3G_E_REQ_CHAN_CLOSE_NORMAL))
 {
 log("Error: m3g_CloseLC(%s)failed – %s\n",
 ATDVNAMEP(pMyDev->controlDevH), ATDV_LASTERR(pMyDev->controlDevH));
 /* handle error… */
 }

 /* Close video forward logical channel */
 if (M3G_ERROR == m3g_CloseLC(pMyDev->controlDevH, pMyDev->videoLCN,
 M3G_E_REQ_CHAN_CLOSE_NORMAL))
 {
 log("Error: m3g_CloseLC(%s)failed – %s\n",
 ATDVNAMEP(pMyDev->controlDevH), ATDV_LASTERR(pMyDev->controlDevH));
 /* handle error… */
 }

 /* Stop the H.245 Session (not shown): */
 stopH245(pMydev);

} /* End of handleDisconnectedCall */
.
.
.
/* SRL event handler: */
 for (;;)
 {
 if (-1 != sr_waitevt(500))
 process_event();
 }
.
.
.

void process_event(void)
{
 /* process the SRL events */
 int evType = sr_getevttype();
 int devH = sr_getevtdev();
 void *pSRLEvtData = sr_getevtdatap();

 switch(evType)
 {
 /*
 .
 . Other events not shown…
 .
 */

 /* Successful m3g_CloseLC termination: */
 case M3GEV_CLOSE_LC_CMPLT:
 {
 /* Assume application defined its device structure: */
 MYDEV * pMyDev;
 M3G_LOGICAL_CHANNEL_NUMBER lcn = *(M3G_LOGICAL_CHANNEL_NUMBER *) pSRLEvtData;
 m3g_GetUserInfo(devH, &pMyDev);

 /* Determine whether lcn is for audio or video: */
 if(AUDIO == getLCNMediaType(pMyDev, lcn))
 {
 pMyDev->isAudioFwdOLCAcked = false;
 pMyDev->fwdAudioLCN = 0;

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 73

Dialogic Corporation

initiate closure of specified logical channel — m3g_CloseLC()

 }
 else /* else video: */
 {
 pMyDev->isVideoFwdOLCAcked = false;
 pMyDev->fwdVideoLCN = 0;
 }

 /* If both audio and video CLCAcks received: */
 if ((!pMyDev->isAudioFwdOLCAcked) && (!pMyDev->isVideoFwdOLCAcked))
 {
 /* Stop the H.245 Session (not shown): */
 stopH245(pMydev);
 }
 break;
 }

 /* m3g_CLoseLC Failure indication: */
 case M3GEV_CLOSE_LC_FAIL:
 {
 M3G_E_ERROR_TYPE* pError = (M3G_E_ERROR_TYPE*) pSRLEvtData;
 log("ERROR: M3GEV_CLOSE_LC_FAIL for device = %s\n",
 ATDV_NAMEP(devH));
 log(" Error value = %d\n",(int)*pError);

 /* handle error…*/
 break;
 }

 default:
 printf("Received unknown event = %d for device = %s\n",
 evType, ATDV_NAMEP(devH));
 break;
 }
}

See Also

• m3g_OpenLC()

74 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_DisableEvents() — disable one or more unsolicited events

m3g_DisableEvents()

disable one or more unsolicited events

Description

The m3g_DisableEvents() function disables one or more unsolicited events for a board device or
for a control device. For more information on device types, see the Device Types section in the
m3g_Open() function reference.

Not all unsolicited events can be masked and disabled. The following unsolicited events can be
masked and disabled:

• M3GEV_H245_UII_RCVD (enabled by default)

• M3GEV_H245_MISC_CMD_RCVD (enabled by default)

• M3GEV_H245_MSD_EVT (disabled by default)

• M3GEV_H245_MES_EVT (disabled by default)

• M3GEV_REMOTE_VENDORID_RCVD (disabled by default)

• M3GEV_MONA_PREF_MSG_RCVD (disabled by default)

• M3GEV_SEND_MONA_PREF_MSG (disabled by default)

• M3GEV_CALL_STATISTICS (disabled by default)

To change default settings, use m3g_EnableEvents() and m3g_DisableEvents(). See
Chapter 13, “Events” for more information on these events.

If an event is enabled/disabled for a board device, the specified event is enabled/disabled for all
control channels opened on that board. If an event is enabled/disabled for a control device, the
specified event is only enabled/disabled for that individual control device.

This function is only supported in asynchronous mode.

Name: int m3g_DisableEvents (deviceHandle, eventBitmask)

Inputs: SRL_DEVICE_HANDLE deviceHandle • board or control device handle

unsigned int eventBitmask • bitmask of unsolicited events to disable

Returns: M3G_SUCCESS if successful
M3G_ERROR on failure

Includes: srllib.h
m3glib.h
m3gerrs.h

Category: System Control

Mode: asynchronous

Parameter Description

deviceHandle specifies an SRL handle to a board device or a control device

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 75

Dialogic Corporation

disable one or more unsolicited events — m3g_DisableEvents()

Cautions

None.

Errors

If this function fails with M3G_ERROR, use the Standard Runtime Library (SRL) standard
attribute functions ATDV_LASTERR() and ATDV_ERRMSGP() to obtain the error code and a
pointer to the error description, respectively. Error codes are defined in m3gerrs.h.

For more information, see Chapter 15, “Error Codes”.

Example

/* Header Files: */
#include <srllib.h>
#include <m3glib.h>
#include <m3gevts.h>
#include <m3gerrs.h>
.
.
.
/* Preconditions: 1) 3G-324M Library Session has already been started. */
/* 2) m3g_Open() has completed opening the board or a control device handle. */

int disableEvents(int devH)
{
 /* Disable all maskable 3G-324M events on specified board or control device: */

 /* Only M3GEV_H245_MSD_EVT and M3GEV_H245_MES_EVT events are disabled by default */
 unsigned int evBitMask = (M3G_H245_UII_EVT_TYP |
 M3G_H245_FASTUPDATE_EVT_TYP |
 M3G_H245_TEMP_SPAT_TRDFF_EVT_TYP |
 M3G_H245_VIDEO_FREEZE_EVT_TYP |
 M3G_H245_SYNC_GOB_EVT_TYP |
 M3G_LC_INACTIVE_EVT_TYP |
 M3G_SKEW_INDICATION_EVT_TYP);
 if (M3G_ERROR == m3g_DisableEvents(devH, evBitMask))
 {
 log("Error: m3g_DisableEvents(%s)failed - %s\n",
 ATDV_NAMEP(devH), ATDV_ERRMSGP(devH));
 /* handle error… */
 }

 return SUCCESS;
} /* End of disableEvents */
.
.
.

/* SRL event handler: */
 for (;;)
 {
 if (-1 != sr_waitevt(500))

eventBitMask a bitmask of bit field constants specifying unsolicited notification event
types to disable. The bitmask can be any combination of the bit field
constants. See m3g_EnableEvents() for a list of values.

Parameter Description

76 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_DisableEvents() — disable one or more unsolicited events

 process_event();
 }
.
.
.

void process_event(void)
{
 /* process the SRL events */
 int evType = sr_getevttype();
 int devH = sr_getevtdev();
 void *pSRLEvtData = sr_getevtdatap();

 switch(evType)
 {
 /*
 .
 . Other events not shown…
 .
 */

 /* Successful m3g_DisableEvents termination: */
 case M3GEV_DISABLE_EVENTS_CMPLT:
 log("M3GEV_DISABLE_EVENTS_CMPLT for device = %s\n",
 ATDV_NAMEP(devH));
 /* Device is ready for 3G-324M processing */
 deviceIsReady(devH); /* proceed with 3G-324M processing (not shown)*/
 break;

 /* m3g_DisableEvents Failure indication: */
 case M3GEV_DISABLE_EVENTS_FAIL:
 {
 M3G_E_ERROR_TYPE* pError = (M3G_E_ERROR_TYPE*) pSRLEvtData;
 log("ERROR: M3GEV_DISABLE_EVENTS_FAIL for device = %s\n",
 ATDV_NAMEP(devH));
 log(" Error value = %d\n",(int)*pError);

 /* handle error…*/
 break;
 }

 default:
 printf("Received unknown event = %d for device = %s\n",
 evType, ATDV_NAMEP(devH));
 break;
 }
}

See Also

• m3g_EnableEvents()

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 77

Dialogic Corporation

enable one or more unsolicited events — m3g_EnableEvents()

m3g_EnableEvents()

enable one or more unsolicited events

Description

The m3g_EnableEvents() function enables one or more unsolicited events for a board device or
for a control device. For more information on device types, see the Device Types section in the
m3g_Open() function reference.

Not all unsolicited events can be masked and enabled. The following unsolicited events can be
masked and enabled:

• M3GEV_H245_UII_RCVD (enabled by default)

• M3GEV_H245_MISC_CMD_RCVD (enabled by default)

• M3GEV_H245_MSD_EVT (disabled by default)

• M3GEV_H245_MES_EVT (disabled by default)

• M3GEV_REMOTE_VENDORID_RCVD (disabled by default)

• M3GEV_MONA_PREF_MSG_RCVD (disabled by default)

• M3GEV_SEND_MONA_PREF_MSG (disabled by default)

• M3GEV_CALL_STATISTICS (disabled by default)

To change default settings, use m3g_EnableEvents() and m3g_DisableEvents(). See
Chapter 13, “Events” for more information on these events.

If an event is enabled/disabled for a board device, the specified event is enabled/disabled for all
control channels opened on that board. If an event is enabled/disabled for a control device, the
specified event is only enabled/disabled for that individual control device.

This function is only supported in asynchronous mode.

Name: int m3g_EnableEvents (deviceHandle, eventBitmask)

Inputs: SRL_DEVICE_HANDLE deviceHandle • board or control device handle

unsigned int eventBitmask • bitmask of unsolicited events to enable

Returns: M3G_SUCCESS if successful
M3G_ERROR on failure

Includes: srllib.h
m3glib.h
m3gerrs.h

Category: System Control

Mode: asynchronous

Parameter Description

deviceHandle specifies an SRL handle to a board device or a control device

78 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_EnableEvents() — enable one or more unsolicited events

Cautions

None.

eventBitMask a bitmask of bit field constants specifying unsolicited notification event
types to enable. The bitmask can be any combination of the following bit
field constants:
• M3G_H245_UII_EVT_TYP – M3GEV_H245_UII_RCVD event

notification of incoming H.245 UII
• M3G_H245_FASTUPDATE_EVT_TYP –

M3GEV_H245_MISC_CMD_RCVD event notification of incoming
H.245 MiscellaneousCommand indication messages of type
videoFastUpdate, videoFastUpdateGOB, or videoFastUpdateMB

• M3G_H245_TEMP_SPAT_TRDFF_EVT_TYP –
M3GEV_H245_MISC_CMD_RCVD event notification of incoming
H.245 MiscellaneousCommand indication messages of type
videoTemporalSpatialTradeoff

• M3G_H245_VIDEO_FREEZE_EVT_TYP –
M3GEV_H245_MISC_CMD_RCVD event notification of incoming
H.245 MiscellaneousCommand indication messages of type
videoFreeze

• M3G_MES_EVTS_EVT_TYP – verbose notification of H.245
Multiplex Entry Send message transactions via the
M3GEV_H245_MES_EVT event

• M3G_VERBOSE_MSD_EVT_TYP – verbose notification of H.245
MasterSlaveDetermination message transactions via the
M3GEV_H245_MSD_EVT event

Note: This setting does not impact the notification of
M3GEV_MSD_ESTABLISHED or
M3GEV_MSD_FAILED events which are always enabled
and active.

• M3G_REMOTE_VENDORID_EVT_TYP –
M3GEV_REMOTE_VENDORID_RCVD event notification of
remote vendor and product information in incoming H.245
VendorIdentification message

• M3G_MONA_PREF_MSG_EVT_TYP –
M3GEV_MONA_PREF_MSG_RCVD event notification of the first
incoming MONA preference message and
M3GEV_SEND_MONA_PREF_MSG event notification of the last
MONA preference message sent

• M3G_CALL_STATISTICS_EVT_TYP –
M3GEV_CALL_STATISTICS event notification of statistics upon
call termination. Statistics include media and H.223 data
transmission, transmission errors, and call duration.

Parameter Description

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 79

Dialogic Corporation

enable one or more unsolicited events — m3g_EnableEvents()

Errors

If this function fails with M3G_ERROR, use the Standard Runtime Library (SRL) standard
attribute functions ATDV_LASTERR() and ATDV_ERRMSGP() to obtain the error code and a
pointer to the error description, respectively. Error codes are defined in m3gerrs.h.

For more information, see Chapter 15, “Error Codes”.

Example

/* Header Files: */
#include <srllib.h>
#include <m3glib.h>
#include <m3gevts.h>
#include <m3gerrs.h>
.
.
.
/* Preconditions: 1) 3G-324M Library Session has already been started. */
/* 2) m3g_Open() has opened the devH board or a control device handle. */

int enableEvents(int devH)
{
 /* Enable all maskable 3G-324M events on specified board or control device. */

 /* Only M3GEV_H245_MSD_EVT and M3GEV_H245_MES_EVT events are disabled on default */
 unsigned int evBitMask = (M3G_VERBOSE_MSD_EVT_TYP | M3G_MES_EVTS_EVT_TYP);
 if (M3G_ERROR == m3g_EnableEvents(devH, evBitMask))
 {
 log("Error: m3g_EnableEvents(%s)failed - %s\n",
 ATDV_NAMEP(devH), ATDV_ERRMSGP(devH));
 /* handle error… */
 }

 return SUCCESS;
} /* End of enableEvents */
.
.
.

/* SRL event handler: */
 for (;;)
 {
 if (-1 != sr_waitevt(500))
 process_event();
 }
.
.
.

void process_event(void)
{
 /* process the SRL events */
 int evType = sr_getevttype();
 int devH = sr_getevtdev();
 void *pSRLEvtData = sr_getevtdatap();

 switch(evType)
 {
 /*
 .
 . Other events not shown…
 .
 */

80 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_EnableEvents() — enable one or more unsolicited events

 /* Successful m3g_EnableEvents termination: */
 case M3GEV_ENABLE_EVENTS_CMPLT:
 log("M3GEV_ENABLE_EVENTS_CMPLT for device = %s\n",
 ATDV_NAMEP(devH));
 /* Device is ready for 3G-324M processing */
 deviceIsReady(devH); /* proceed with 3G-324M processing (not shown)*/
 break;

 /* m3g_EnableEvents Failure indication: */
 case M3GEV_ENABLE_EVENTS_FAIL:
 {
 M3G_E_ERROR_TYPE* pError = (M3G_E_ERROR_TYPE*) pSRLEvtData;
 log("ERROR: M3GEV_ENABLE_EVENTS_FAIL for device = %s\n",
 ATDV_NAMEP(devH));
 log(" Error value = %d\n",(int)*pError);

 /* handle error…*/
 break;
 }

 default:
 printf("Received unknown event = %d for device = %s\n",
 evType, ATDV_NAMEP(devH));
 break;
 }
}

See Also

• m3g_DisableEvents()

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 81

Dialogic Corporation

get default capabilities of the device — m3g_GetLocalCaps()

m3g_GetLocalCaps()

get default capabilities of the device

Description

The m3g_GetLocalCaps() function retrieves the default capabilities supported by the device type
specified in the deviceHandle parameter. The type of device and its capabilities are:

• control - H.223 multiplex capabilities

• audio - G.723.1 and AMR capabilities

• video - H.263 and MPEG-4 capabilities

Call this function for each device type in use.

This function is only supported in asynchronous mode.

Upon successful completion via receipt of the termination event, the M3G_CAPABILITY union is
returned via the M3G_CAPS_LIST structure. The M3G_CAPABILITY union elements are of the
applicable data type, M3G_ H223_CAPABILITY, M3G_AUDIO_CAPABILITY, or
M3G_VIDEO_CAPABILITY, respectively. You can use the default settings in the
M3G_CAPABILITY union, or modify the settings when calling m3g_SetTCS() to specify which
H.223 multiplex, audio and video capabilities will be subsequently used in any H.245
TerminalCapabilitySet message sent to the remote 3G-324M endpoint.

After the function returns M3G_SUCCESS, the application must wait for the
M3GEV_GET_LOCAL_CAPS_CMPLT event. Once the event has been returned, use the
Dialogic® Standard Runtime Library function sr_getevtdatap() to retrieve the void data buffer

Name: int m3g_GetLocalCaps (deviceHandle)

Inputs: SRL_DEVICE_HANDLE
deviceHandle

• control, audio or video device handle

Returns: M3G_SUCCESS if successful
M3G_ERROR on failure

Includes: srllib.h
m3glib.h
m3gevts.h
m3gerrs.h

Category: H.245 Control

Mode: asynchronous

Parameter Description

deviceHandle specifies an SRL handle to a control, audio or video device. The resulting
local capabilities returned in the M3G_CAPS_LIST structure are subject
to the type of device. A control, audio or video device returns H.223
capability, audio capability, or video capability information, respectively.

82 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_GetLocalCaps() — get default capabilities of the device

embedded within the event and cast it as M3G_CAPS_LIST to decode the local H.223 multiplex,
audio or video capabilities within each M3G_CAPABILITY.

Termination Events

M3GEV_GET_LOCAL_CAPS_CMPLT
Indicates the local capabilities have been successfully retrieved. The resulting
M3G_CAPS_LIST structure can be retrieved by calling sr_getevtdatap() to retrieve the data
buffer embedded within this event and casting it from data type void pointer to data type
M3G_CAPS_LIST structure pointer. The data within this buffer must be processed or copied
before the next SRL event is de-queued, at which point this buffer will de-allocated by the
Standard Runtime Library.

M3GEV_GET_LOCAL_CAPS_FAIL
Indicates the local capabilities for the specified device type could not be retrieved successfully.
The error code is included in the event as detailed in Chapter 13, “Events”.

Cautions

None.

Errors

If this function fails with M3G_ERROR, use the Standard Runtime Library (SRL) standard
attribute functions ATDV_LASTERR() and ATDV_ERRMSGP() to obtain the error code and a
pointer to the error description, respectively. Error codes are defined in m3gerrs.h.

For more information, see Chapter 15, “Error Codes”.

Example

/* Header Files: */
#include <srllib.h>
#include <m3glib.h>
#include <m3gevts.h>
#include <m3gerrs.h>
.
.
.
/* Preconditions: 1) 3G-324M Library Session has already been started. */
/* 2) m3g_Open() has been completed for the applicable */
/* control, audio and video device type */
/* 3) assumes globally defined devTbl[] exists for all */
/* devices */
int getDefaultCaps(int devIndex)
{

 M3G_CAPS_LIST * pLocalCaps = &h223Caps;
 /* Retrieve the default H.233 capabilities. */
 if (M3G_ERROR == m3g_GetLocalCaps(devTbl[devIndex].controlDevH))
 {
 log("Error: m3g_GetLocalCaps(%s) for H.223 failed - %s\n",
 ATDV_NAMEP(devH), ATDV_ERRMSGP(devH));
 /* handle error… */
 }

 /* Retrieve the default audio capabilities. */
 if (M3G_ERROR == m3g_GetLocalCaps(devTbl[devIndex].audioDevH))

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 83

Dialogic Corporation

get default capabilities of the device — m3g_GetLocalCaps()

 {
 log("Error: m3g_GetLocalCaps(%s) for audio failed - %s\n",
 ATDV_NAMEP(devH), ATDV_ERRMSGP(devH));
 /* handle error… */
 }

 /* Retrieve the default video capabilities. */
 if (M3G_ERROR == m3g_GetLocalCaps(devTbl[devIndex].videoDevH))
 {
 log("Error: m3g_GetLocalCaps(%s) for video failed - %s\n",
 ATDV_NAMEP(devH), ATDV_ERRMSGP(devH));
 /* handle error… */
 }

 return SUCCESS;
} /* End of getDefaultCaps */
.
.
.

/* SRL event handler: */
 for (;;)
 {
 if (-1 != sr_waitevt(500))
 process_event();
 }
.
.
.

void process_event(void)
{
 /* process the SRL events */
 int evType = sr_getevttype();
 int devH = sr_getevtdev();
 void *pSRLEvtData = sr_getevtdatap();

 switch(evType)
 {
 /*
 .
 . Other events not shown…
 .
 */

 /* Successful m3g_GetLocalCaps termination: */
 case M3GEV_GET_LOCAL_CAPS_CMPLT:
 {
 /* Assume application defined its device structure: */
 MYDEV * pMyDev;
 M3G_CAPS_LIST * pLocalCaps = pSRLEvtData;

 log("M3GEV_GET_LOCAL_CAPS_CMPLT for device = %s\n",
 ATDV_NAMEP(devH));

 /* Cache appropriate device type (h223, audio, or video) caps in */
 /* Simultaneous Caps structure to send in TCS: */
 m3g_GetUserInfo(devH, &pMyDev);

 switch (pMyDev->myType)
 {
 case H223TYPE:
 formatH223CapsInTCS(pMyDev->bearerChannel, pLocalCaps);
 /* Assume haveLocalCaps is bitmask to identify which caps have been received:
*/
 pMyDev->bearerChannel.rcvdLocalCaps |= HAVE_H223_CAPS;
 break;

84 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_GetLocalCaps() — get default capabilities of the device

 case AUDIOTYPE:
 formatAudioCapsInTCS(pMyDev->bearerChannel, pLocalCaps);
 /* Assume haveLocalCaps is bitmask to identify which caps have been received:
*/
 pMyDev->bearerChannel.rcvdLocalCaps |= HAVE_AUDIO_CAPS;
 break;
 case VIDEOTYPE:
 formatVideoCapsInTCS(pMyDev->bearerChannel, pLocalCaps);
 /* Assume haveLocalCaps is bitmask to identify which caps have been received:
*/
 pMyDev->bearerChannel.rcvdLocalCaps |= HAVE_VIDEO_CAPS;
 break;
 }
 /* If received all local capabilities associated with bearer channel: */
 if ((HAVE_VIDEO_CAPS | HAVE_VIDEO_CAPS | HAVE_VIDEO_CAPS) ==
 (pMyDev->bearerChannel.rcvdLocalCaps))
 {
 /* Set Default TCS: */
 setDefaultTCS(pMyDev->bearerChannel);
 }
 break;
 }

 /* m3g_GetLocalCaps Failure indication: */
 case M3GEV_GET_LOCAL_CAPS_FAIL:
 {
 M3G_E_ERROR_TYPE* pError = (M3G_E_ERROR_TYPE*) pSRLEvtData;
 log("ERROR: M3GEV_GET_LOCAL_CAPS_FAIL for device = %s\n",
 ATDV_NAMEP(devH));
 log(" Error value = %d\n",(int)*pError);

 /* handle error…*/
 break;
 }

 /*
 .
 . Other events not shown…
 .
 */

 default:
 printf("Received unknown event = %d for device = %s\n",
 evType, ATDV_NAMEP(devH));
 break;
 }
}

See Also

• m3g_SetTCS()

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 85

Dialogic Corporation

get common capabilities between remote and local endpoints — m3g_GetMatchedCaps()

m3g_GetMatchedCaps()

get common capabilities between remote and local endpoints

Description

The m3g_GetMatchedCaps() function retrieves common capabilities between the remote and the
local 3G-324M endpoints for the device type specified in the deviceHandle parameter. The type of
device and its capabilities are:

• control - H.223 multiplex capabilities

• audio - G.723.1 and AMR capabilities

• video - H.263 and MPEG-4 capabilities

Call this function for each device type in use.

Only call this function after H.245 MasterSlaveDetermination transactions and H.245
TerminalCapabilitySet transactions have completed in each direction with the remote 3G-324M
endpoint.

Name: int m3g_GetMatchedCaps (deviceHandle, pMatchedCapsList)

Inputs: SRL_DEVICE_HANDLE
deviceHandle

• control, audio or video device handle

M3G_CAPS_LIST
*pMatchedCapsList

• pointer to M3G_CAPS_LIST structure

Returns: M3G_SUCCESS if successful
M3G_ERROR on failure

Includes: srllib.h
m3glib.h
m3gevts.h
m3gerrs.h

Category: H.245 Control

Mode: synchronous

Parameter Description

deviceHandle specifies an SRL handle to a control, audio, or video device

pMatchedCapsList points to the M3G_CAPS_LIST structure. The resulting matched
capabilities returned in the M3G_CAPS_LIST structure are subject to
the type of device. A control, audio or video device returns H.223
capability, audio capability, or video capability information,
respectively. The M3G_CAPABILITY union elements are of the
applicable data type, M3G_ H223_CAPABILITY,
M3G_AUDIO_CAPABILITY, or M3G_VIDEO_CAPABILITY,
respectively.

86 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_GetMatchedCaps() — get common capabilities between remote and local endpoints

After successful completion of MasterSlaveDetermination transactions, the application should
receive the M3GEV_MSD_ESTABLISHED event. After remote terminal capabilities are received
in a TerminalCapabilitySet message from the remote 3G-324M endpoint, an
M3GEV_REMOTE_TCS_RCVD event is queued to the application. When local terminal
capabilities have been positively acknowledged via the remote, an M3GEV_LOCAL_TCS_ACKD
event is queued to the application. Therefore, only call m3g_GetMatchedCaps() after the
application receives these three events indicating that the capabilities have been successfully
exchanged between the local and remote 3G-324M endpoints.

The m3g_GetMatchedCaps() function populates the M3G_CAPS_LIST structure with
capabilities that are supported by both the remote and local endpoints.

Upon successful function completion, the application can choose to extract any of the transmit
M3G_CAPABILITY unions returned in the M3G_CAPS_LIST structure. The audio and video
capabilities returned in the M3G_CAPS_LIST array are listed in decreasing order of preference by
the endpoint deemed master in H.245 MasterSlaveDetermination. Thus, for H.245 compliant
behavior, the first audio or video transmit capability should be used in opening audio or video
logical channels.

The application can then optionally use these M3G_CAPABILITY unions as is, or after
modification, in a subsequent call to m3g_OpenLC(). The m3g_OpenLC() function opens an
H.245 logical channel for the specified audio or video stream via an OpenLogicalChannel message
sent to the remote 3G-324M endpoint. The audio and video capabilities may be modified in the call
to m3g_OpenLC(). However, modifying existing fields within the audio and video capability
array elements may lead to undefined behavior.

This function is only supported in synchronous mode. The function returns M3G_SUCCESS if the
specified common capability types were successfully retrieved; otherwise, it returns
M3G_ERROR.

Cautions

None.

Errors

If this function fails with M3G_ERROR, use the Standard Runtime Library (SRL) standard
attribute functions ATDV_LASTERR() and ATDV_ERRMSGP() to obtain the error code and a
pointer to the error description, respectively. Error codes are defined in m3gerrs.h.

For more information, see Chapter 15, “Error Codes”.

Example

/* Header Files: */
#include <srllib.h>
#include <m3glib.h>
#include <m3gevts.h>
#include <m3gerrs.h>
.
.
.
/* Preconditions: 1) 3G-324M Library Session has already been started. */

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 87

Dialogic Corporation

get common capabilities between remote and local endpoints — m3g_GetMatchedCaps()

/* 2) m3g_Open() has completed opening the */
/* applicable control, audio and or video devices */
/* associated with the 3G-324M bearer channel. */
/* 3) The control, audio, and or video devices have all been */
/* interconnected to their respective network and ipm or */
/* mm devices using the dev_PortConnect() or */
/* dev_Connect()functions. */
/* 4) The default simultaneous caps table has been set using */
/* the m3g_GetLocalCap() and m3g_SetTCS() function */
/* (not shown). */
.
.
.

/* SRL event handler: */
 for (;;)
 {
 if (-1 != sr_waitevt(500))
 process_event();
 }
.
.
.

void process_event(void)
{
 /* process the SRL events */
 int evType = sr_getevttype();
 int devH = sr_getevtdev();
 void *pSRLEvtData = sr_getevtdatap();

 switch(evType)
 {
 /*
 .
 . Other events not shown…
 .
 */

 /* Successful m3g_StartH245 termination: */
 case M3GEV_START_H245_CMPLT:
 log("M3GEV_START_H245_CMPLT for device = %s\n",
 ATDV_NAMEP(devH));
 /* Device must receive M3GEV_FRAMING_ESTABLISHED before it */
 /* can participate in MasterSlaveDetermination exchange. */
 break;

 /* m3g_StartH245 Failure indication: */
 case M3GEV_START_H245_FAIL:
 {
 M3G_E_ERROR_TYPE* pError = (M3G_E_ERROR_TYPE*) pSRLEvtData;
 log("ERROR: M3GEV_START_H245_FAIL for device = %s\n",
 ATDV_NAMEP(devH));
 log(" Error value = %d\n",(int)*pError);

 /* handle error…*/
 break;
 }

 /* Received TCS from remote 3G-324M endpoint: */
 case M3GEV_REMOTE_TCS_RCVD:
 {
 /* Assume application defined its device structure: */
 MYDEV * pMyDev;

 /* If both local and remote TCS transactions have completed, can */
 /* initiate the opening of logical channels. */

88 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_GetMatchedCaps() — get common capabilities between remote and local endpoints

 /* Cache this TCS transaction completion */
 m3g_GetUserInfo(devH, &pMyDev);
 pMyDev->isRemoteTCSCompleted = true;

 /* If both remote and local TCS transactions complete: */
 if(pMyDev->isLocalTCSCompleted)
 {
 /* Start opening appropriate logical channels */
 startOpeningLogicalChannels(pMyDev);
 }
 break;

 /* Received TCSAck from remote 3G-324M endpoint: */
 case M3GEV_LOCAL_TCS_ACKD:
 {
 /* Assume application defined its device structure: */
 MYDEV * pMyDev;

 /* If both local and remote TCS transactions have completed, can */
 /* initiate the opening of logical channels. */

 /* Cache this TCS transaction completion */
 m3g_GetUserInfo(devH, &pMyDev);
 pMyDev->isLocalTCSCompleted = true;

 /* If both remote and local TCS transactions complete: */
 if(pMyDev->isRemoteTCSCompleted)
 {
 /* Start opening appropriate logical channels */
 startOpeningLoigicalChannels(pMyDev);
 }
 break;

 default:
 printf("Received unknown event = %d for device = %s\n",
 evType, ATDV_NAMEP(devH));
 break;
 }
}
.
.
.
int startOpeningLogicalChannels(MYDEV *pMyDev)
{
 M3G_CAPS_LIST commonCaps;
 /* Retrieve the common H.233 capabilities: */
 if (M3G_ERROR == m3g_GetMatchedCaps(pMyDev->controlDevH, &commonCaps))
 {
 log("Error: m3g_GetMatchedCaps(%s)failed - %s\n",
 ATDV_NAMEP(devH), ATDV_ERRMSGP(devH));
 /* handle error… */
 }
 /* Configure the H.223 multiplex parameters for audio OLC (not shown)… */
 setOLCH223MuxParameters(pMyDev->h223AudioOLCParams, &commonCaps, AUDIO);

 /* Configure the H.223 multiplex parameters for video OLC (not shown)… */
 setOLCH223MuxParameters(pMyDev-> h223VideoOLCParams, &commonCaps, VIDEO);

 /* Retrieve the common audio capabilities: */
 if (M3G_ERROR == m3g_GetMatchedCaps(pMyDev->audioDevH, &commonCaps))
 {
 log("Error: m3g_GetMatchedCaps(%s)failed - %s\n",
 ATDV_NAMEP(devH), ATDV_ERRMSGP(devH));
 /* handle error… */
 }
 /* initiate OLC for Tx audio (not shown)… */

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 89

Dialogic Corporation

get common capabilities between remote and local endpoints — m3g_GetMatchedCaps()

 sendAudioOLC(pMyDev, &commonCaps);

 /* Retrieve the common video capabilities: */
 if (M3G_ERROR == m3g_GetMatchedCaps(pMyDev->videoDevH, &commonCaps))
 {
 log("Error: m3g_GetMatchedCaps(%s)failed - %s\n",
 ATDV_NAMEP(devH), ATDV_ERRMSGP(devH));
 /* handle error… */
 }
 /* initiate OLC for Tx video (not shown)… */
 sendVideoOLC(pMyDev, &commonCaps);

 return SUCCESS;
} /* End of startOpeningLogicalChannels */

See Also

• m3g_OpenLC()

• m3g_SetTCS()

• m3g_StartH245()

90 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_GetParm() — get current parameter setting for a device

m3g_GetParm()

get current parameter setting for a device

Description

The m3g_GetParm() function retrieves the current value of the specified parameter.

Parameters may be specified for a board device, a control device, or both types of devices. Setting
one or more parameters on a board device sets the default values for all control devices associated
with that board.

This function is only supported in asynchronous mode.

After the function returns M3G_SUCCESS, wait for the M3GEV_GET_PARM_CMPLT event.
After the event is returned, use the sr_getevtdatap() Dialogic® Standard Runtime Library
function to retrieve the data buffer embedded within the event and cast it as M3G_PARM_INFO to
decode the parameter value.

Termination Events

M3GEV_GET_PARM_CMPLT
Indicates specified parameter values were successfully retrieved. The resulting
M3G_PARM_INFO structure and its associated parameter value can be retrieved by calling
sr_getevtdatap() to retrieve the data buffer embedded within the
M3GEV_GET_PARM_CMPLT event and casting it from data type void to data type
M3G_PARM_INFO. The data within this buffer must be processed or copied before the next

Name: int m3g_GetParm (deviceHandle, parm)

Inputs: SRL_DEVICE_HANDLE deviceHandle • board or control device handle

M3G_E_PRM_TYPE parm • parameter type

Returns: M3G_SUCCESS if successful
M3G_ERROR on failure

Includes: srllib.h
m3glib.h
m3gevts.h
m3gerrs.h

Category: System Control

Mode: asynchronous

Parameter Description

deviceHandle specifies an SRL handle to a board or control device

parm parameter type specified by the M3G_E_PRM_TYPE enumeration value.
For more information, see Table 3, “M3G_PARM_INFO Parameter Types
and Parameter Values”, on page 215.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 91

Dialogic Corporation

get current parameter setting for a device — m3g_GetParm()

SRL event is de-queued, at which point this buffer will be de-allocated by the Standard
Runtime Library.

M3GEV_GETPARM_FAIL
Indicates that the specified parameter values were not retrieved. The error code is included in
the event as detailed in Chapter 13, “Events”.

Cautions

None.

Errors

If this function fails with M3G_ERROR, use the Standard Runtime Library (SRL) standard
attribute functions ATDV_LASTERR() and ATDV_ERRMSGP() to obtain the error code and a
pointer to the error description, respectively. Error codes are defined in m3gerrs.h.

For more information, see Chapter 15, “Error Codes”.

Example

/* Header Files: */
#include <srllib.h>
#include <m3glib.h>
#include <m3gevts.h>
#include <m3gerrs.h>
.
.
.
/* Preconditions: 1) 3G-324M Library Session has already been started. */
/* 2) m3g_Open() has completed opening the board device handle. */

int getDefaultH245TerminalType(int boardDevH)
{
 /* retrieve the H.223 multiplex level */
 parameterType = M3G_E_PRM_H245_TERMINAL_TYPE;

 if (M3G_ERROR == m3g_GetParm(boardDevH, parameterType))
 {
 log("Error: m3g_GetParm(%s)failed - %s\n",
 ATDV_NAMEP(boardDevH), ATDV_ERRMSGP(boardDevH));
 /* handle error… */
 }

 return SUCCESS;
} /* End of getDefaultH245TerminalType */
.
.
.

/* SRL event handler: */
 for (;;)
 {
 if (-1 != sr_waitevt(500))
 process_event();
 }

.

.

.

92 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_GetParm() — get current parameter setting for a device

void process_event(void)
{
 /* process the SRL events */
 int evType = sr_getevttype();
 int devH = sr_getevtdev();
 void *pSRLEvtData = sr_getevtdatap();

 switch(evType)
 {
 /*
 .
 . Other events not shown…
 .
 */

 /* Successful m3g_GetParm termination: */
 case M3GEV_GET_PARM_EVENTS_CMPLT:
 {
 M3G_PARM_INFO * pParmInfo = (M3G_PARM_INFO *) pSRLEvtDat;
 log("M3GEV_GET_PARM_CMPLT for device = %s\n",
 ATDV_NAMEP(devH));
 log("Default H.245 terminal type = %d\n",
 pParmInfo->parmValue. h245TerminalType);
 break;
 }

 /* m3g_GetParm Failure indication: */
 case M3GEV_GET_PARM_FAIL:
 {
 M3G_E_ERROR_TYPE* pError = (M3G_E_ERROR_TYPE*) pSRLEvtData;
 log("ERROR: M3GEV_SET_PARM_FAIL for device = %s\n",
 ATDV_NAMEP(devH));
 log(" Error value = %d\n",(int)*pError);

 /* handle error…*/
 break;
 }

 default:
 printf("Received unknown event = %d for device = %s\n",
 evType, ATDV_NAMEP(devH));
 break;
 }
}

See Also

• m3g_SetParm()

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 93

Dialogic Corporation

get a user-defined handle for an SRL device — m3g_GetUserInfo()

m3g_GetUserInfo()

get a user-defined handle for an SRL device

Description

The m3g_GetUserInfo() function retrieves a user-defined device handle for an SRL device which
was associated with it during m3g_Open() execution.

This function is only supported in synchronous mode. The function returns M3G_SUCCESS if the
specified parameter values were successfully returned; otherwise, it returns M3G_ERROR.

Cautions

You must allocate the address location referenced by ppUserInfo.

Errors

If this function fails with M3G_ERROR, use the Standard Runtime Library (SRL) standard
attribute functions ATDV_LASTERR() and ATDV_ERRMSGP() to obtain the error code and a
pointer to the error description, respectively. Error codes are defined in m3gerrs.h.

For more information, see Chapter 15, “Error Codes”.

Name: int m3g_GetUserInfo (deviceHandle, ppUserInfo)

Inputs: SRL_DEVICE_HANDLE deviceHandle • control, audio or video device handle

void ** ppUserInfo • pointer to void pointer

Returns: M3G_SUCCESS if successful
M3G_ERROR on failure

Includes: srllib.h
m3glib.h
m3gerrs.h

Category: System Control

Mode: synchronous

Parameter Description

deviceHandle specifies an SRL handle to a control, audio or video device handle

ppUserInfo points to a void pointer. Address location returns the void pointer specified
in m3g_Open() to be associated with the device.

You can use this void pointer as a handle to reference any user-instantiated
object, allowing for more rapid device lookup on an SRL device handle.

94 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_GetUserInfo() — get a user-defined handle for an SRL device

Example

/* Header Files: */
#include <srllib.h>
#include <m3glib.h>
#include <m3gevts.h>
#include <m3gerrs.h>
.
.
.
/* SRL event handler: */
 for (;;)
 {
 if (-1 != sr_waitevt(500))
 process_event();
 }
.
.
.

void process_event(void)
{
 /* process the SRL events */
 int evType = sr_getevttype();
 int devH = sr_getevtdev();
 void *pSRLEvtData = sr_getevtdatap();

 switch(evType)
 {
 /*
 .
 . Other events not shown…
 .
 */

 /* Successful m3g_EnableEvents termination: */
 case M3GEV_OPEN_CMPLT:
 {
 /* Assume user-defined structure: */
 MY_DEVICE_STRUCT * pMyDevStruct;

 log("M3GEV_OPEN_CMPLT for device = %s\n",
 ATDV_NAMEP(devH));

 /* Obtain user-defined handle associated with this SRL handle: */
 m3g_GetUserInfo(devH, &pMyDevStruct);

 /* Mark this device as having completed open processing (not shown)*/
 markDeviceAsOpen(pMyDevStruct);
 break;
 }

 /*
 .
 . Other events not shown…
 .
 */

 default:
 printf("Received unknown event = %d for device = %s\n",
 evType, ATDV_NAMEP(devH));
 break;
 }
}

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 95

Dialogic Corporation

get a user-defined handle for an SRL device — m3g_GetUserInfo()

See Also

• m3g_Open()

96 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_ModifyMedia() — start and stop half-duplex streaming from a media device

m3g_ModifyMedia()

start and stop half-duplex streaming from a media device

Description

The m3g_ModifyMedia() function starts and stops half-duplex media streaming from a specified
media device.

Only call this function after the required H.245 forward/reverse logical channels or MONA media
preconfigured channels (MPC) have been successfully opened between the local and the remote
3G-324M endpoints.

This function is only supported in asynchronous mode.

Termination Events

M3GEV_MODIFY_MEDIA_CMPLT
Indicates the specified streaming change was successfully completed. Upon receiving this
event, use the Dialogic® Standard Runtime Library function sr_getevtdatap() to retrieve the

Name: int m3g_ModifyMedia (deviceHandle, direction)

Inputs: SRL_DEVICE_HANDLE
deviceHandle

• audio or video device handle

M3G_E_DIRECTION direction • direction of media flow

Returns: M3G_SUCCESS if successful
M3G_ERROR on failure

Includes: srllib.h
m3glib.h
m3gevts.h
m3gerrs.h

Category: Data Flow

Mode: asynchronous

Parameter Description

deviceHandle specifies an SRL handle to an audio or video device

direction specifies the direction of the media flow. The M3G_E_DIRECTION data
type is an enumeration that defines the following values:

• M3G_E_IDLE - stop transmission and reception of media from this
device

• M3G_E_TX - enable transmission of media from this device

• M3G_E_RX - enable reception of media from this device

• M3G_E_TXRX - enable both transmission and reception of media from
this device

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 97

Dialogic Corporation

start and stop half-duplex streaming from a media device — m3g_ModifyMedia()

void data buffer embedded within the event and cast it as a pointer to an M3G_E_DIRECTION
enumeration to decode the associated directional change in media.

M3GEV_MODIFY_MEDIA_FAIL
Indicates the specified streaming change failed. The error code is included in the event as
detailed in Chapter 13, “Events”.

Cautions

• It is invalid to call this function with a control device type handle.

• It is invalid to request a directional change of media flow to match the current media direction.
If attempted, the function will fail and return a value of M3G_ERROR, and set the associated
error code to M3G_E_ERR_INV_STATE.

Errors

If this function fails with M3G_ERROR, use the Standard Runtime Library (SRL) standard
attribute functions ATDV_LASTERR() and ATDV_ERRMSGP() to obtain the error code and a
pointer to the error description, respectively. Error codes are defined in m3gerrs.h.

For more information, see Chapter 15, “Error Codes”.

Example

/* Header Files: */
#include <srllib.h>
#include <m3glib.h>
#include <m3gevts.h>
#include <m3gerrs.h>

/* Preconditions: */
/* 1) 3G-324M Library Session has already been started. */
/* 2) m3g_Open() has completed opening the control and */
/* media devices. */
/* 3) Only the H.245 reverse unidirectional logical channel */
/* for this audio device has been opened successfully. */
/* The forward logical channel has not yet been opened. */

int startAudioRcvOnly(int audioDevH)
{
 if (M3G_ERROR == m3g_ModifyMedia(audioDevH, M3G_E_RX))
 {
 log("Error: m3g_ModifyMedia (%s)failed - %s\n",
 ATDV_NAMEP(audioDevH), ATDV_ERRMSGP(audioDevH));
 /* handle error */
 }
 return SUCCESS;
} /* End of startAudioRcvOnly */

/* Preconditions: */
/* 1) 3G-324M Library Session has already been started. */
/* 2) m3g_Open() has completed opening the control and */
/* media devices. */
/* 3) Only the H.245 forward unidirectional logical channel */
/* for this audio device has been opened successfully. */
/* The reverse logical channel has not yet been opened. */

int startAudioXmtOnly(int audioDevH)
{

98 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_ModifyMedia() — start and stop half-duplex streaming from a media device

 if (M3G_ERROR == m3g_ModifyMedia(audioDevH, M3G_E_TX))
 {
 log("Error: m3g_ModifyMedia (%s)failed - %s\n",
 ATDV_NAMEP(audioDevH), ATDV_ERRMSGP(audioDevH));
 /* handle error */
 }
 return SUCCESS;
} /* End of startAudioXmtOnly */

/* Preconditions: */
/* 1) 3G-324M Library Session has already been started. */
/* 2) m3g_Open() has completed opening the control and */
/* media devices. */
/* 3) Both the H.245 forward and reverse unidirectional */
/* logical channels for this audio device have been */
/* opened successfully. */

int startAudioXmtAndRcv(int audioDevH)
{
 if (M3G_ERROR == m3g_ModifyMedia(audioDevH, M3G_E_TXRX))
 {
 log("Error: m3g_ModifyMedia (%s)failed - %s\n",
 ATDV_NAMEP(audioDevH), ATDV_ERRMSGP(audioDevH));
 /* handle error */
 }
 return SUCCESS;
} /* End of startAudioXmtAndRcv */

/* Preconditions: */
/* 1) 3G-324M Library Session has already been started. */
/* 2) m3g_Open() has completed opening the control and */
/* media devices. */
/* 3) Both the H.245 forward and reverse unidirectional */
/* logical channels for this audio device have been */
/* closed. */

int stopAudioXmtAndRcv(int audioDevH)
{
 if (M3G_ERROR == m3g_ModifyMedia(audioDevH, M3G_E_IDLE))
 {
 log("Error: m3g_ModifyMedia (%s)failed - %s\n",
 ATDV_NAMEP(audioDevH), ATDV_ERRMSGP(audioDevH));
 /* handle error */
 }
 return SUCCESS;
} /* End of stopAudioXmtAndRcv */
.
.
.
.
.
/* within SRL event handler: */
 for (;;)
 {
 if (-1 != sr_waitevt(500))
 process_event();
 }
.
.
.
void process_event(void)
{
 /* process the SRL events */
 int evType = sr_getevttype();
 int devH = sr_getevtdev();

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 99

Dialogic Corporation

start and stop half-duplex streaming from a media device — m3g_ModifyMedia()

 void *pSRLEvtData = sr_getevtdatap();
 switch(evType)
 {
 /*
 .
 . Other events not shown
 .
 */
 /* Successful m3g_ModifyMedia termination: */
 case M3GEV_MODIFY_MEDIA_CMPLT:
 {
 void *pEvtData = sr_getevtdatap();
 M3G_E_DIRECTION direction = *((M3G_E_DIRECTION*)pEvtData);
 log("M3GEV_MODIFY_MEDIA_CMPLT(dir=%d) for device = %s\n",
 direction, ATDV_NAMEP(devH));
 break;
 }

 /* m3g_ ModifyMedia Failure indication: */
 case M3GEV_MODIFY_MEDIA_FAIL:
 {
 M3G_E_ERROR_TYPE* pError = (M3G_E_ERROR_TYPE*) pSRLEvtData;
 log("ERROR: M3GEV_MODIFY_MEDIA_FAIL for device = %s\n",
 ATDV_NAMEP(devH));
 log(" Error value = %d\n",(int)*pError);
 /* handle error…*/
 break;
 }

 default:
 printf("Received unknown event = %d for device = %s\n",
 evType, ATDV_NAMEP(devH));
 break;
 }
}

See Also

• m3g_StartMedia()

100 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_Open() — open a device and return a unique device handle

m3g_Open()

open a device and return a unique device handle

Description

The m3g_Open() function opens the specified device and returns a unique device handle to
identify the device. All subsequent references to this device must be made using this handle until
the device is closed.

This function is only supported in asynchronous mode.

If the function is called with valid arguments, a valid device handle is returned immediately. Before
using this device handle in other function calls, you must wait for the M3GEV_OPEN_CMPLT
event indicating that the device resource allocation and instantiation process has completed.

Name: int m3g_Open (deviceName, pOpenInfo, pUserInfo)

Inputs: const char *deviceName • pointer to device name

M3G_OPEN_INFO *pOpenInfo • reserved for future use

void *pUserInfo • pointer to user-defined device handle

Returns: M3G_SUCCESS if successful
M3G_ERROR on failure

Includes: srllib.h
m3glib.h
m3gerrs.h

Category: System Control

Mode: asynchronous

Parameter Description

deviceName points to a character string defining the type, the board, and the channel of
the device to be opened. Valid formats include:
• m3gBmTn – control device where m is the board number and n is the

channel number
• m3gBm – board device where m is the board number
• m3gBmTn:AUDIOp – audio device of instance number p to be

multiplexed/demultiplexed in aggregate of control device m3gBmTn
• m3gBmTn:VIDEOp – video device of instance number p to be

multiplexed/demultiplexed in aggregate of control device m3gBmTn

Note: Board number m must be 1 in all device names (board, control,
audio, and video).

For more information on the types of devices, see Device Types section.

pOpenInfo Reserved for future use and currently ignored.

pUserInfo points to a user-defined device handle to associate with the SRL device
handle. To retrieve this handle, use m3g_GetUserInfo().

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 101

Dialogic Corporation

open a device and return a unique device handle — m3g_Open()

If the function is called and M3GEV_OPEN_FAIL is returned, a device handle is also returned.
You must call m3g_Close() to de-allocate the handle returned by m3g_Open().

Device Types

Each 3G-324M endpoint is a composite or aggregate of several device types:

board device
The board device is used to set global default values. The board device handle is used in
m3g_SetParm() function calls to specify parameter values for all applicable control, audio,
and video device instances subsequently opened on the specified board. It is used in
m3g_EnableEvents() function calls to enable unsolicited events. It is also used by other
functions such as m3g_SetVendorId() and m3g_StartTrace().

The board device name is “m3gBm”, where “m” is the specified board number.

Note: Only one board, m3gB1, is currently supported.

Note: Any function called on a board device affects all instances on that board device. For
example, if an application resets the board device via m3g_Reset(), all channels are
reset on that board device. Similarly, if an application uses the m3g_SetVendorId()
and m3g_StartTrace() functions on the board device level, all channels on the board
device are affected by these functions. Be aware of this behavior, in particular if two
applications access the same board device.

control device
The control device is the primary handle for 3G-324M endpoint control. It is used to manage
the following functional interfaces:

• H.245 control – provides H.245 control operations for a given 3G-324M endpoint. This
device is automatically associated with the aggregate H.223 multiplex/demultiplex as
logical channel 0 when the device is opened.

• H.223 multiplex/demultiplex – permits physical connections to and from the H.223
multiplex/demultiplex over CT Bus timeslots or over IP using an Nb User Plane (Nb UP)
protocol. CT Bus timeslots may be used to connect to appropriate T1/E1 bearer channels
which transport the aggregate data off-board to route the H.223 multiplex/demultiplex to
other 3G-324M endpoints. The Nb UP may be used to route bearer control and transport
of the H.223 multiplex/demultiplex within the 3G core network Release 4 and later.

Connections and disconnections between the H.223 multiplex/demultiplex aggregate are made
using device management API functions. If the aggregate is routed over a DS0 timeslot on the
CT Bus, dev_Connect() and dev_Disconnect() are used. If the aggregate is routed over the
Nb UP, dev_PortConnect() and dev_PortDisconnect() are used.

The control device name is “m3gBmTn”, where “m” is the specified board number and “n” is
the specified channel number.

audio device
The audio device represents the audio connection to and from the H.223 multiplex. This device
type does not initiate or terminate audio streams. The audio device connects another R4 device
type, such as an IP media device (ipmBxCy) or a multimedia device (mmBxCy), which

102 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_Open() — open a device and return a unique device handle

provides the source and destination for the associated audio data streams, through the
dev_PortConnect() and dev_PortDisconnect() functions.

Similarly, the audio device may be connected to a digital network interface device (dtiBxTy) or
voice device (dxxxBxCy) through the dev_Connect() and dev_Disconnect() functions.

Prior to multiplexing/demultiplexing, each audio device must establish a connection to an R4
audio device using dev_PortConnect().

The audio device name is “m3gBmTn:AUDIOp”, where “m3gBmTn” is the specified control
device into and out of which the audio device should be multiplexed/demultiplexed; “p” in
“AUDIOp” represents the number of the audio instance and is used to differentiate multiple
audio devices which may comprise an H.223 aggregate.

Note: Only one audio streaming connection to and from the H.223 aggregate is currently
supported.

video device
This device represents the video connection to and from the H.223 multiplex. This device type
does not initiate or terminate video streams. The video device connects another R4 device
type, such as an IP media device (ipmBxCy) or a multimedia device (mmBxCy), which
provides the source and destination for the associated video data streams, through the
dev_PortConnect() and dev_PortDisconnect() functions.

Prior to multiplexing/demultiplexing, each video device must establish a connection to an R4
video device using dev_PortConnect().

The video device name is “m3gBmTn:VIDEOp”, where “m3gBmTn” is the specified control
device into and out of which the video device should be multiplexed/demultiplexed; “p” in
“VIDEOp” represents the number of the video instance and is used to differentiate multiple
video devices which may comprise an H.223 aggregate.

Note: Only one video streaming connection to and from the H.223 aggregate is currently
supported.

Termination Events

M3GEV_OPEN_CMPLT
indicates the specified device type successfully opened

M3GEV_OPEN_FAIL
indicates the specified device type failed to open successfully. The error code is included in the
event as detailed in Chapter 13, “Events”.

Cautions

Only one device type can be opened at a time by m3g_Open(). Device name strings cannot be
concatenated to open one composite 3G-324M endpoint device.

Errors

If this function fails with M3G_ERROR, use the Standard Runtime Library (SRL) standard
attribute functions ATDV_LASTERR() and ATDV_ERRMSGP() to obtain the error code and a
pointer to the error description, respectively. Error codes are defined in m3gerrs.h.

For more information, see Chapter 15, “Error Codes”.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 103

Dialogic Corporation

open a device and return a unique device handle — m3g_Open()

Example

/* Header Files */
#include <srllib.h>
#include <m3glib.h>
#include <m3gevts.h>
#include <m3gerrs.h>
.
.
.
/* Preconditions: 1) 3G-324M Library Session has already been started. */
/* 2) Assume all 3G-324M devices are on a single board, m3gB1 */
/* 3) Assume global device table is defined elsewhere */
int OpenDevs(int numDevices)
{
 char devName[80];
 int devNum;

 /* Open board device to set device default settings */
 boardDev = m3g_Open(“m3gB1”, NULL);
 if (0 > boardDev)
 {
 log("Error: m3g_Open(m3gB1,NULL) failed – ERR = %d\n",
 boardDev);
 /* handle error… */
 }
 /* Use boardDev in m3g_SetParm() to configure board default settings (not shown…) */

 for(devNum=1; devNum<=numDevices; devNum++)
 {
 /* Open control device for 3G-324M endpoint */
 sprintf(devName, “m3gB1T%d”, devNum);
 devTbl[devNum].cDev = m3g_Open(devName, NULL, &devTbl[devNum]);
 if (0 > devTbl[devNum].cDev)
 {
 log("Error: m3g_Open(%s)failed\n", devName);
 /* handle error… */
 }

 /* Open audio device for 3G-324M endpoint */
 sprintf(devName, “m3gB1T%d:AUDIO1”, devNum);
 devTbl[devNum].aDev = m3g_Open(devName, NULL, &devTbl[devNum]);
 if (0 > devTbl[devNum].aDev)
 {
 log("Error: m3g_Open(%s)failed\n", devName);
 /* handle error… */
 }

 /* Open video device for 3G-324M endpoint */
 sprintf(devName, “m3gB1T%d:VIDEO1”, devNum);
 devTbl[devNum].vDev = m3g_Open(devName, NULL, &devTbl[devNum]);
 if (0 > devTbl[devNum].vDev)
 {
 log("Error: m3g_Open(%s)failed\n", devName);
 /* handle error… */
 }
 }
 return SUCCESS;
} /* End of OpenDevs */
.
.
.

/* SRL event handler: */
 for (;;)
 {
 if (-1 != sr_waitevt(500))

104 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_Open() — open a device and return a unique device handle

 process_event();
 }
.
.
.
void process_event(void)
{
 /* process the SRL events */
 int evType = sr_getevttype();
 int devH = sr_getevtdev();
 void *pSRLEvtData = sr_getevtdatap();

 switch(evType)
 {
 /*
 .
 . Other events not shown…
 .
 */
 /* Successful m3g_Open termination: */
 case M3GEV_OPEN_CMPLT:
 log("M3GEV_OPEN_CMPLT for device = %s\n",
 ATDV_NAMEP(devH));
 /* Device is ready for 3G-324M processing */
 deviceIsReady(devH); /* proceed with 3G-324M processing (not shown)*/
 break;

 /* m3g_Open Failure indication: */
 case M3GEV_OPEN_FAIL:
 {
 M3G_E_ERROR_TYPE* pError = (M3G_E_ERROR_TYPE*) pSRLEvtData;
 log("ERROR: Device = %s received M3GEV_OPEN_FAIL\n",
 ATDV_NAMEP(devH));
 log(" Error = %d\n", *pError);

 /* handle error…*/
 break;
 }
 default:
 printf("Received unknown event = %d for device = %s\n",
 evType, ATDV_NAMEP(devH));
 break;
 }
}

See Also

• m3g_Close()

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 105

Dialogic Corporation

open a device in sync or async mode — m3g_OpenEx()

m3g_OpenEx()

open a device in sync or async mode

Description

The m3g_OpenEx() function opens the specified device and returns a unique device handle to
identify the device. All subsequent references to this device must be made using this handle until
the device is closed.

The m3g_OpenEx() function allows you to choose synchronous or asynchronous mode. If you
require operation in synchronous mode, use m3g_OpenEx() instead of m3g_Open().

Name: int m3g_OpenEx (deviceName, pOpenInfo, pUserInfo, mode)

Inputs: const char *deviceName • pointer to device name

M3G_OPEN_INFO *pOpenInfo • reserved for future use

void *pUserInfo • pointer to user-defined device handle

unsigned short mode • mode of operation

Returns: M3G_SUCCESS if successful
M3G_ERROR on failure

Includes: srllib.h
m3glib.h
m3gerrs.h

Category: System Control

Mode: asynchronous or synchronous

Parameter Description

deviceName points to a character string defining the type, the board, and the channel of
the device to be opened. Valid formats include:
• m3gBmTn – control device where m is the board number and n is the

channel number
• m3gBm – board device where m is the board number
• m3gBmTn:AUDIOp – audio device of instance number p to be

multiplexed/demultiplexed in aggregate of control device m3gBmTn
• m3gBmTn:VIDEOp – video device of instance number p to be

multiplexed/demultiplexed in aggregate of control device m3gBmTn

Note: Board number m must be 1 in all device names (board, control,
audio, and video).

For more information on the types of devices, see Device Types section in
the m3g_Open() function description.

pOpenInfo Reserved for future use and currently ignored.

106 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_OpenEx() — open a device in sync or async mode

In synchronous mode, if the function is successful, a valid device handle is returned and can be
used for further processing.

In asynchronous mode, if the function is called with valid arguments, a valid device handle is
returned immediately. Before using this device handle in other function calls, you must wait for the
M3GEV_OPEN_CMPLT event indicating that the device resource allocation and instantiation
process has completed.

In asynchronous mode, if the function is called and M3GEV_OPEN_FAIL event is returned, a
device handle is also returned. You must call m3g_Close() to de-allocate the handle returned by
m3g_OpenEx().

Termination Events

M3GEV_OPEN_CMPLT
Indicates that the specified device type successfully opened.

M3GEV_OPEN_FAIL
Indicates that the specified device type failed to open successfully. The error code is included
in the event as detailed in Chapter 13, “Events”.

Cautions

Only one device type can be opened at a time by m3g_OpenEx(). Device name strings cannot be
concatenated to open one composite 3G-324M endpoint device.

Errors

If this function fails with M3G_ERROR, use the Standard Runtime Library (SRL) standard
attribute functions ATDV_LASTERR() and ATDV_ERRMSGP() to obtain the error code and a
pointer to the error description, respectively. Error codes are defined in m3gerrs.h.

For more information, see Chapter 15, “Error Codes”.

Synchronous Example

/* Synchronous m3g_OpenEx() sample code */

/* Header Files: */
#include <srllib.h>
#include <m3glib.h>
#include <m3gevts.h>
#include <m3gerrs.h>
.

pUserInfo points to a user-defined device handle to associate with the SRL device.
To retrieve this handle, use m3g_GetUserInfo().

mode specifies mode of operation. Valid values are:
• EV_ASYNC – asynchronous mode
• EV_SYNC – synchronous mode

There is no default setting for mode.

Parameter Description

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 107

Dialogic Corporation

open a device in sync or async mode — m3g_OpenEx()

.

.
/* Preconditions: 1) 3G-324M Library Session has already been started. */
/* 2) Assume all 3G-324M devices are on a single board, m3gB1 */
/* 3) Assume global device table is defined elsewhere */
int OpenDevs(int numDevices)
{
 char devName[80];
 int devNum;

 /* Open board device to set device default settings */
 boardDev = m3g_OpenEx("m3gB1", NULL, NULL, EV_SYNC);
 if (0 > boardDev)
 {
 log("Error: m3g_OpenEx(m3gB1,NULL) failed - ERR = %d\n",
 boardDev);
 /* handle error… */
 }
 /* Use boardDev in m3g_SetParm() to configure board default settings (not shown) */

 for(devNum=1; devNum<=numDevices; devNum++)
 {
 /* Open control device for 3G-324M endpoint */
 sprintf(devName, "m3gB1T%d", devNum);
 devTbl[devNum].cDev = m3g_OpenEx(devName, NULL, &devTbl[devNum], EV_SYNC);
 if (0 > devTbl[devNum].cDev)
 {
 log("Error: m3g_OpenEx(%s)failed\n", devName);
 /* handle error */
 }

 /* Open audio device for 3G-324M endpoint */
 sprintf(devName, "m3gB1T%d:AUDIO1", devNum);
 devTbl[devNum].aDev = m3g_OpenEx(devName, NULL, &devTbl[devNum], EV_SYNC);
 if (0 > devTbl[devNum].aDev)
 {
 log("Error: m3g_OpenEx(%s)failed\n", devName);
 /* handle error */
 }

 /* Open video device for 3G-324M endpoint */
 sprintf(devName, "m3gB1T%d:VIDEO1", devNum);
 devTbl[devNum].vDev = m3g_OpenEx(devName, NULL, &devTbl[devNum], EV_SYNC);
 if (0 > devTbl[devNum].vDev)
 {
 log("Error: m3g_OpenEx(%s)failed\n", devName);
 /* handle error */
 }
 }

 /*
 * All 3G device are immediately ready for 3G-324M processing. No open termination
 * events are queued.
 */
 return SUCCESS;
} /* End of OpenDevs */

Asynchronous Example

/* Asynchronous m3g_OpenEx() sample code */

/* Header Files: */
#include <srllib.h>
#include <m3glib.h>
#include <m3gevts.h>

108 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_OpenEx() — open a device in sync or async mode

#include <m3gerrs.h>
.
.
.
/* Preconditions: 1) 3G-324M Library Session has already been started. */
/* 2) Assume all 3G-324M devices are on a single board, m3gB1 */
/* 3) Assume global device table is defined elsewhere */
int OpenDevs(int numDevices)
{
 char devName[80];
 int devNum;

 /* Open board device to set device default settings */
 boardDev = m3g_OpenEx("m3gB1", NULL, NULL, EV_ASYNC);
 if (0 > boardDev)
 {
 log("Error: m3g_OpenEx(m3gB1,NULL) failed - ERR = %d\n",
 boardDev);
 /* handle error… */
 }
 /* Use boardDev in m3g_SetParm() to configure board default settings (not shown) */

 for(devNum=1; devNum<=numDevices; devNum++)
 {
 /* Open control device for 3G-324M endpoint */
 sprintf(devName, "m3gB1T%d", devNum);
 devTbl[devNum].cDev = m3g_OpenEx(devName, NULL, &devTbl[devNum], EV_ASYNC);
 if (0 > devTbl[devNum].cDev)
 {
 log("Error: m3g_OpenEx(%s)failed\n", devName);
 /* handle error */
 }

 /* Open audio device for 3G-324M endpoint */
 sprintf(devName, "m3gB1T%d:AUDIO1", devNum);
 devTbl[devNum].aDev = m3g_OpenEx(devName, NULL, &devTbl[devNum], EV_ASYNC);
 if (0 > devTbl[devNum].aDev)
 {
 log("Error: m3g_OpenEx(%s)failed\n", devName);
 /* handle error */
 }

 /* Open video device for 3G-324M endpoint */
 sprintf(devName, "m3gB1T%d:VIDEO1", devNum);
 devTbl[devNum].vDev = m3g_OpenEx(devName, NULL, &devTbl[devNum], EV_ASYNC);
 if (0 > devTbl[devNum].vDev)
 {
 log("Error: m3g_OpenEx(%s)failed\n", devName);
 /* handle error */
 }
 }
 return SUCCESS;
} /* End of OpenDevs */
.
.
.

/* SRL event handler: */
 for (;;)
 {
 if (-1 != sr_waitevt(500))
 process_event();
 }
.
.
.
void process_event(void)

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 109

Dialogic Corporation

open a device in sync or async mode — m3g_OpenEx()

{
 /* process the SRL events */
 int evType = sr_getevttype();
 int devH = sr_getevtdev();
 void *pSRLEvtData = sr_getevtdatap();

 switch(evType)
 {
 /*
 .
 . Other events not shown
 .
 */
 /* Successful m3g_OpenEx termination: */
 case M3GEV_OPEN_CMPLT:
 log("M3GEV_OPEN_CMPLT for device = %s\n",
 ATDV_NAMEP(devH));
 /* Device is ready for 3G-324M processing */
 deviceIsReady(devH); /* proceed with 3G-324M processing (not shown)*/
 break;

 /* m3g_OpenEx Failure indication: */
 case M3GEV_OPEN_FAIL:
 {
 M3G_E_ERROR_TYPE* pError = (M3G_E_ERROR_TYPE*) pSRLEvtData;
 log("ERROR: Device = %s received M3GEV_OPEN_FAIL\n",
 ATDV_NAMEP(devH));
 log(" Error = %d\n", *pError);

 /* handle error */
 break;
 }
 default:
 printf("Received unknown event = %d for device = %s\n",
 evType, ATDV_NAMEP(devH));
 break;
 }
}

See Also

• m3g_Close()

• m3g_Open()

110 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_OpenLC() — send an OpenLogicalChannel request

m3g_OpenLC()

send an OpenLogicalChannel request

Description

The m3g_OpenLC() function sends an OpenLogicalChannel request to multiplex a media
channel in H.223 from the local 3G-324M endpoint to the remote 3G-324M endpoint using the
specified adaptation layer format, interleaving the specified audio or video capability media format.

Call this function after invoking m3g_GetMatchedCaps() for compatible H.223 abstraction layer
capabilities to initialize the M3G_H223_LC_PARAMS structure, and either an audio or video
capability to initialize the M3G_CAPABILITY union with a transmit media capability obtained
from the intersection of common capabilities between the local and remote 3G-324M endpoint as

Name: int m3g_OpenLC (deviceHandle, pH223LCParameters, capabilityType,
pMediaCapability)

Inputs: SRL_DEVICE_HANDLE deviceHandle • control device handle

M3G_H223_LC_PARAMS *pH223LCParameters • pointer to M3G_H223_LC_PARAMS
structure

M3G_E_CAPABILITY capabilityType • type of capability specified in
M3G_CAPABILITY union

M3G_CAPABILITY *pMediaCapability • pointer to M3G_CAPABILITY union

Returns: M3G_SUCCESS if successful
M3G_ERROR on failure

Includes: srllib.h
m3glib.h
m3gevts.h
m3gerrs.h

Category: H.245 Control

Mode: asynchronous

Parameter Description

deviceHandle specifies an SRL handle to a control device

pH223LCParameters points to the M3G_H223_LC_PARAMS structure specifying the
H223LogicalChannelParameters elements to be encoded within the
OpenLogicalChannel message

capabilityType indicates the type of capability specified in the M3G_CAPABILITY
union, referenced by pMediaCapability. The data type is an
enumeration that defines the following values:
• M3G_E_AUDIO_CAPABILITY – audio capability
• M3G_E_VIDEO_CAPABILITY – video capability

pMediaCapability points to the M3G_CAPABILITY union which must only be of data
type M3G_AUDIO_CAPABILITY or M3G_VIDEO_CAPABILITY

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 111

Dialogic Corporation

send an OpenLogicalChannel request — m3g_OpenLC()

established from TerminalCapabilitySet exchange. The element settings of this structure and union
should be a transmit audio or video capability element copied from the results of
m3g_GetMatchedCaps(). Modifying settings of a matching capability returned from
m3g_GetMatchedCaps() may lead to undefined behavior.

When an OpenLogicalChannel request is received from the remote 3G-324M endpoint, an
M3GEV_REMOTE_OLC_RCVD event is queued to the application which includes information
about the requested H.223 abstraction layer and media formats. This logical channel request may
be positively acknowledged or rejected by calling m3g_RespondToOLC().

The m3g_OpenLC() function completes only after receiving an acknowledgement from the
remote 3G-324M endpoint. The function may receive an OpenLogicalChannelAck response from
the remote 3G-324M endpoint, indicated by the M3GEV_OPEN_LC_CMPLT event. The function
may receive an OpenLogicalChannelReject response from the remote 3G-324M endpoint,
indicated by the M3GEV_OPEN_LC_FAIL event.

This function is only supported in asynchronous mode.

Termination Events

M3GEV_OPEN_LC_CMPLT
Indicates an OpenLogicalChannelAck response has been successfully received from the
remote 3G-324M endpoint, acknowledging the OpenLogicalChannel request issued previously
on this control device. Upon receiving this event, use the Dialogic® Standard Runtime Library
function sr_getevtdatap() to retrieve the void data buffer embedded within the event and cast
it as a pointer to an M3G_REMOTE_OLCACK_RESP structure to decode the assigned
logical channel number and its forward direction media capability.

M3GEV_OPEN_LC_FAIL
Indicates the specified capability in the OpenLogicalChannel request was not positively
acknowledged from the remote 3G-324M endpoint. The error code is included in the event as
detailed in Chapter 13, “Events”.

Cautions

• It is invalid to call this function with a board, audio or video device type handle.

• No attempt at opening logical channels may be initiated until MasterSlaveDetermination and
TerminalCapabilitySet transactions, both the request and the response, have completed in each
direction with the remote 3G-324M endpoint.

• The specified media direction must be set to M3G_E_TX in the M3G_AUDIO_CAPABILITY
structure, as only forward, unidirectional logical channels may be opened.

Errors

If this function fails with M3G_ERROR, use the Standard Runtime Library (SRL) standard
attribute functions ATDV_LASTERR() and ATDV_ERRMSGP() to obtain the error code and a
pointer to the error description, respectively. Error codes are defined in m3gerrs.h.

For more information, see Chapter 15, “Error Codes”.

112 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_OpenLC() — send an OpenLogicalChannel request

Example

/* Header Files: */
#include <srllib.h>
#include <m3glib.h>
#include <m3gevts.h>
#include <m3gerrs.h>
.
.
.
/* Preconditions: 1) 3G-324M Library Session has already been started. */
/* 2) m3g_Open() has completed opening the */
/* applicable control, audio and or video devices */
/* associated with the 3G-324M bearer channel. */
/* 3) The control, audio, and or video devices have all been */
/* interconnected to their respective network and ipm or */
/* mm devices using the dev_PortConnect() or */
/* dev_Connect()functions. */
/* 4) The default simultaneous caps table has been set using */
/* the m3g_GetLocalCap() and m3g_SetTCS() */
/* function (not shown) */
.
.
.
/* SRL event handler: */
 for (;;)
 {
 if (-1 != sr_waitevt(500))
 process_event();
 }
.
.
.

void process_event(void)
{
 /* process the SRL events */
 int evType = sr_getevttype();
 int devH = sr_getevtdev();
 void *pSRLEvtData = sr_getevtdatap();

 switch(evType)
 {
 /*
 .
 . Other events not shown…
 .
 */

 /* Received TCS from remote 3G-324M endpoint: */
 case M3GEV_REMOTE_TCS_RCVD:
 {
 /* Assume application defined its device structure: */
 MYDEV * pMyDev;
 log("M3GEV_REMOTE_TCS_RCVD for device = %s\n",
 ATDV_NAMEP(devH));

 /* If both local and remote TCS transactions have completed, can */
 /* initiate the opening of logical channels if necessary. */

 /* Cache this TCS transaction completion */
 m3g_GetUserInfo(devH, &pMyDev);
 pMyDev->isRemoteTCSCompleted = true;

 /* If both remote and local TCS transactions complete: */
 if(pMyDev->isLocalTCSCompleted)

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 113

Dialogic Corporation

send an OpenLogicalChannel request — m3g_OpenLC()

 {
 /* Open any transmit media channels that may not have */
 /* been established via MONA MPC procedures */
 if(pMyDev->audioMPCEstablished == false)
 {
 openAudioLogicalChannel(pMyDev);
 }
 if(pMyDev->videoMPCEstablished == false)
 {
 openVideoLogicalChannel(pMyDev);
 }
 }
 break;
 }

 /* Received TCSAck from remote 3G-324M endpoint: */
 case M3GEV_LOCAL_TCS_ACKD:
 {
 /* Assume application defined its device structure: */
 MYDEV * pMyDev;
 log("M3GEV_REMOTE_TCS_ACKD for device = %s\n",
 ATDV_NAMEP(devH));

 /* If both local and remote TCS transactions have completed, can */
 /* initiate the opening of logical channels. */
 /* Cache this TCS transaction completion */
 m3g_GetUserInfo(devH, &pMyDev);
 pMyDev->isLocalTCSCompleted = true;

 /* If both remote and local TCS transactions complete: */
 if(pMyDev->isRemoteTCSCompleted)
 {
 /* Open any transmit media channels that may not have */
 /* been established via MONA MPC procedures */
 if(pMyDev->audioMPCEstablished == false)
 {
 openAudioLogicalChannel(pMyDev);
 }
 if(pMyDev->videoMPCEstablished == false)
 {
 openVideoLogicalChannel(pMyDev);
 }
 }
 break;
 }

 case M3GEV_SEND_MONA_PREF_MSG:
 case M3GEV_MONA_PREF_MSG_RCVD:
 {
 M3G_MONA_TXRX_MPC_SUPPORT* pMPC = (M3G_MONA_TXRX_MPC_SUPPORT*)pSRLEvtData;
 log("MONA Pref_Msg %s, rxMPC:0x%x txMPC:0x%x\n",
 (evType == M3GEV_SEND_MONA_PREF_MSG) ? "sent” : “rcvd”,
 pMPC->rxMPCMask, pMPC->txMPCMask);
 break;
 }

 case M3GEV_TX_MPC_ESTABLISHED:
 case M3GEV_RX_MPC_ESTABLISHED:
 {
 M3G_MONA_MPC* pMPC = (M3G_MONA_MPC*)pSRLEvtData;
 M3G_LOGICAL_CHANNEL_NUMBER lcn = pMPC->logicalChannelNumber;
 M3G_E_DIRECTION direction = (M3GEV_TX_MPC_ESTABLISHED==evtType) ? M3G_E_TX : M3G_E_RX;
 M3G_E_CAPABILITY mediaType = pMPC->capabilityType;

 /* Assume application defined its device structure: */
 MYDEV * pMyDev;
 m3g_GetUserInfo(devH, &pMyDev);

114 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_OpenLC() — send an OpenLogicalChannel request

 log(“MPC established: %s %s LCN:%d\n",
 (M3G_E_TX == direction) ? “TX” : “RX”,
 (M3G_E_AUDIO_CAPABILITY == mediaType) ? "AUDIO" : "VIDEO",
 lcn);

 if (M3G_E_AUDIO_CAPABILITY == pMPC->capabilityType)
 {
 /* Cache that this TX audio MPC is established so it need not be opened */
 /* via legacy H.245 openLogicalChannel procedures via m3g_OpenLC() */
 if (M3G_E_TX == direction)
 {
 pMyDev->audioMPCEstablished = true;
 }
 /* Activate audio streaming in specified direction */
 ActivateAudioMedia(direction);
 }
 else
 {

 /* Cache that this TX video MPC is established so it need not be opened */
 /* via legacy H.245 openLogicalChannel procedures via m3g_OpenLC() */
 if (M3G_E_TX == direction)
 {
 pMyDev->videoMPCEstablished = true;

 }
 /* Activate video streaming in specified direction */
 ActivateVideoMedia(direction);
 }
 break;
 }

 /* Received OLCAck from remote 3G-324M endpoint: */
 case M3GEV_OPEN_LC_CMPLT:
 {
 /* Assume application defined its device structure: */
 MYDEV * pMyDev;
 M3G_REMOTE_OLCACK_RESP* pOLCAckResp =
 (M3G_REMOTE_OLCACK_RESP *) pSRLEvtData;

 /* Cache this TCS transaction completion */
 m3g_GetUserInfo(devH, &pMyDev);

 /* Must determine if this was for our audio or video OLC (not shown): */
 if (true == isCapTypeAudio(&pOLCAckResp->mediaCapability))
 {
 pMyDev->isAudioFwdOLCAcked = true;
 pMyDev->fwdAudioLCN = pOLCAckResp->logicalChannelNumber;

 /* Activate audio streaming in transmit direction (not shown)*/
 ActivateAudioMedia(M3G_E_TX);
 }
 else /* else video: */
 {
 pMyDev->isVideoFwdOLCAcked = true;
 pMyDev->fwdVideoLCN = pOLCAckResp->logicalChannelNumber;

 /* Activate video streaming in transmit direction (not shown)*/
 ActivateVideoMedia(M3G_E_TX);
 }
 break;
 }

 /* m3g_OpenLC failure indication - perhaps received OLCReject or other failure: */
 case M3GEV_OPEN_LC_FAIL:
 {
 M3G_E_ERROR_TYPE* pError = (M3G_E_ERROR_TYPE*) pSRLEvtData;

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 115

Dialogic Corporation

send an OpenLogicalChannel request — m3g_OpenLC()

 log("ERROR: M3GEV_OPEN_LC_FAIL for device = %s\n",
 ATDV_NAMEP(devH));
 log(" Error value = %d\n",(int)*pError);

 /* handle error…*/
 break;
 }

 default:
 printf("Received unknown event = %d for device = %s\n",
 evType, ATDV_NAMEP(devH));
 break;
 }
}
.
.
.

int openAudioLogicalChannel(MYDEV *pMyDev)
{
 M3G_CAPS_LIST h223CommonCaps;
 M3G_CAPS_LIST audioCommonCaps;
 int index;

 /* Retrieve the common H.233 capabilities: */
 if (M3G_ERROR == m3g_GetMatchedCaps(pMyDev->controlDevH, &h223CommonCaps))
 {
 log("Error: m3g_GetMatchedCaps(%s)failed - %s\n",
 ATDV_NAMEP(devH), ATDV_ERRMSGP(devH));

 /* handle error… */
 }

 /* Retrieve the common audio capabilities: */
 if (M3G_ERROR == m3g_GetMatchedCaps(pMyDev->audioDevH, &audioCommonCaps))
 {
 log("Error: m3g_GetMatchedCaps(%s)failed - %s\n",
 ATDV_NAMEP(pMyDev->audioDevH), ATDV_ERRMSGP(pMyDev->audioDevH));

 /* handle error… */
 }
 /* Choose the MASTER’s most preferred audio capability from among the common types */
 /* This should be the first element in the matched capability list. */

 for(index = 0;

 ((index < audioCommonCaps.numCaps) && (index < MAX_CAPABILITIES_PER_DEVICE));
 index++)
 {
 /* Any additional capability selection criteria and logic not shown */
 if (true == isAudioPreferred(&audioCommonCaps.capability[index]))
 {
 if (M3G_ERROR == m3g_OpenLC(pMyDev->controlDevH,
 pMyDev->h223AudioOLCParams,
 M3G_E_AUDIO_CAPABILITY,
 &audioCommonCaps.capability[index]))
 {

 log("Error: m3g_OpenLC(%s)failed - %s\n",
 ATDV_NAMEP(pMyDev->controlDevH), ATDV_ERRMSGP(pMyDev->controlDevH));

 /* handle error… */
 }
 break;
 }
 } /* endFor */
} /* End of openAudioLogicalChannel */

116 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_OpenLC() — send an OpenLogicalChannel request

int openVideoLogicalChannel(MYDEV *pMyDev)
{
 M3G_CAPS_LIST h223CommonCaps;
 M3G_CAPS_LIST videoCommonCaps;
 int index;

 /* Retrieve the common H.233 capabilities: */
 if (M3G_ERROR == m3g_GetMatchedCaps(pMyDev->controlDevH, &h223CommonCaps))
 {
 log("Error: m3g_GetMatchedCaps(%s)failed - %s\n",
 ATDV_NAMEP(devH), ATDV_ERRMSGP(devH));
 /* handle error… */
 }

 /* Retrieve the common video capabilities: */
 if (M3G_ERROR == m3g_GetMatchedCaps(pMyDev->videoDevH, &videoCommonCaps))
 {
 log("Error: m3g_GetMatchedCaps(%s)failed - %s\n",
 ATDV_NAMEP(pMyDev->videoDevH), ATDV_ERRMSGP(pMyDev->videoDevH));
 /* handle error… */
 }

 /* Choose the MASTER’s most preferred video capability from among the common types */
 /* This should be the first element in the matched capability list. */
 for(index = 0;
 ((index < videoCommonCaps.numCaps) && (index < MAX_CAPABILITIES_PER_DEVICE));
 index++)
 {

 /* Any additional capability selection criteria and logic not shown */
 if (true == isVideoPreferred(&videoCommonCaps.capability[index]))
 {
 if (M3G_ERROR == m3g_OpenLC(pMyDev->controlDevH,
 pMyDev->h223VideoOLCParams,
 M3G_E_VIDEO_CAPABILITY,
 &videoCommonCaps.capability[index]))
 {
 log("Error: m3g_OpenLC(%s)failed - %s\n",
 ATDV_NAMEP(pMyDev->controlDevH), ATDV_ERRMSGP(pMyDev->controlDevH));
 /* handle error… */
 }
 break;
 }
 } /* endFor */

} /* End of openVideoLogicalChannel */

See Also

• m3g_CloseLC()

• m3g_GetMatchedCaps()

• m3g_RespondToOLC()

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 117

Dialogic Corporation

reset open devices that were improperly closed — m3g_Reset()

m3g_Reset()

reset open devices that were improperly closed

Description

The m3g_Reset() function resets all devices that may have been opened and not closed by a
previous process for the specified board device or control device, including associated audio and
video devices. The devices are reset to their initial state. The state of m3g devices includes
interconnections, capability settings, and streaming. It does not include parameter settings, as
parameters set via m3g_SetParm() are persistent through calling m3g_Reset().

A common use of this function is to call it at the beginning of an application in order to make sure
that the devices are properly reset. This function can also be called upon indication of an
unrecoverable error.

The function returns the M3GEV_RESET_COMPLT event if it successfully recovered one or more
devices, or if there were no devices to recover.

Termination Events

M3GEV_RESET_COMPLT
Indicates that the specified devices were successfully reset.

M3GEV_RESET_FAIL
Indicates that the specified devices failed to be reset. The error code is included in the event as
detailed in Chapter 13, “Events”.

Cautions

• This function disconnects all m3g device interconnections. Any previously configured port or
timeslot connections must be re-initialized by calling dev_PortConnect() or dev_Connect()
after calling m3g_Reset().

Name: int m3g_Reset(deviceHandle)

Inputs: SRL_DEVICE_HANDLE deviceHandle • board device or control device handle

Returns: M3G_SUCCESS for success
M3G_ERROR for failure

Includes: srllib.h
m3glib.h
m3gerrs.h

Category: System Control

Mode: asynchronous

Parameter Description

deviceHandle specifies an SRL handle to a board device or control device

118 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_Reset() — reset open devices that were improperly closed

• This function clears all default local terminal capabilities. Any previously specified
capabilities must be re-initialized by calling m3g_SetTCS() after calling m3g_Reset().

Errors

If this function fails with M3G_ERROR, use the Standard Runtime Library (SRL) standard
attribute functions ATDV_LASTERR() and ATDV_ERRMSGP() to obtain the error code and a
pointer to the error description, respectively. Error codes are defined in m3gerrs.h.

For more information, see Chapter 15, “Error Codes”.

Example

/* Header Files: */
#include <srllib.h>
#include <m3glib.h>
#include <m3gevts.h>
#include <m3gerrs.h>
.
.
.
/* Preconditions: 1) 3G-324M Library Session has already been started. */
/* 2) All 3G-324M devices have been opened. */
int HandleError(SRL_DEVICE_HANDLE devH, int evType)
{
 M3G_E_ERROR_TYPE* pError = (M3G_E_ERROR_TYPE*) pSRLEvtData;
 log("ERROR: Device = %s received failure event: %d\n",
 ATDV_NAMEP(devH), evType);
 log(" Error = %d\n", *pError);

 if (M3G_ERROR == m3g_Reset(devH))
 {
 log("Error: m3g_Reset(%s) failed - %s\n",
 ATDV_NAMEP(devH), ATDV_ERRMSGP(devH));
 /* handle error */
 }

 return SUCCESS;
} /* End of OpenDevs */
.
.
.

/* SRL event handler: */
 for (;;)
 {
 if (-1 != sr_waitevt(500))
 process_event();
 }
.
.
.
void process_event(void)
{
 /* process the SRL events */
 int evType = sr_getevttype();
 int devH = sr_getevtdev();
 void *pSRLEvtData = sr_getevtdatap();

 switch(evType)
 {
 /*
 .

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 119

Dialogic Corporation

reset open devices that were improperly closed — m3g_Reset()

 . Other events not shown
 .
 */

 /* For all device failure indications (excluding M3GEV_OPEN_FAIL): */
 case M3GEV_ENABLE_EVENTS_FAIL:
 case M3GEV_DISABLE_EVENTS_FAIL:
 case M3GEV_SET_PARM_FAIL:
 case M3GEV_GET_PARM_FAIL:
 case M3GEV_START_H245_FAIL:
 case M3GEV_MSD_FAILED:
 case M3GEV_STOP_H245_FAIL:
 case M3GEV_GET_LOCAL_CAPS_FAIL:
 case M3GEV_SET_TCS_FAIL:
 case M3GEV_OPEN_LC_FAIL:
 case M3GEV_RESPOND_TO_LC_FAIL:
 case M3GEV_CLOSE_LC_FAIL:
 case M3GEV_START_MEDIA_FAIL:
 case M3GEV_MODIFY_MEDIA_FAIL:
 case M3GEV_STOP_MEDIA_FAIL:
 case M3GEV_SEND_H245_UII_FAIL:
 case M3GEV_SEND_H245_MISC_CMD_FAIL:
 HandleError(devH, evType);
 break;
 }

 case M3GEV_RESET_CMPLT:
 /* Set 3G device to initial state as defined within user application code (
 not shown): */
 ReinitalizeState(devH);
 break;

 case M3GEV_RESET_FAIL:
 {
 M3G_E_ERROR_TYPE* pError = (M3G_E_ERROR_TYPE*) pSRLEvtData;
 log("ERROR: M3GEV_RESET_FAIL for device = %s\n",
 ATDV_NAMEP(devH));
 log(" Error value = %d\n",(int)*pError);

 /*
 * No further course of action for m3g_Reset failures.
 Simply exit at this point...
 */
 exit(1);
 break;
 }

 default:
 printf("Received unknown event = %d for device = %s\n",
 evType, ATDV_NAMEP(devH));
 break;
 }

See Also

None.

120 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_RespondToOLC() — respond to an OpenLogicalChannel request

m3g_RespondToOLC()

respond to an OpenLogicalChannel request

Description

The m3g_RespondToOLC() function sends a response to an incoming OpenLogicalChannel
request from the remote 3G-324M endpoint. The response may be either OpenLogicalChannelAck
or OpenChannelReject, as specified in the olcResponse parameter.

Call this function after receiving the M3GEV_REMOTE_OLC_RCVD event, which indicates that
an incoming OpenLogicalChannel request was received from the remote 3G-324M endpoint.

The M3GEV_REMOTE_OLC_RCVD event includes information about the requested H.223
adaptation layer and media formats. Upon receiving this event, use the Dialogic® Standard
Runtime Library function sr_getevtdatap() to retrieve the void data buffer embedded within the
event and cast it as a pointer to an M3G_REMOTE_OLC_REQ structure.

Name: int m3g_RespondToOLC (deviceHandle, lcn, olcResponse)

Inputs: SRL_DEVICE_HANDLE deviceHandle • control device handle

M3G_LOGICAL_CHANNEL_NUMBER
lcn

• logical channel number of incoming request

M3G_E_OLC_RESP_TYPE olcResponse • M3G_E_OLC_RESP_TYPE response to
incoming OpenLogicalChannel request

Returns: M3G_SUCCESS if successful
M3G_ERROR on failure

Includes: srllib.h
m3glib.h
m3gevts.h
m3gerrs.h

Category: H.245 Control

Mode: asynchronous

Parameter Description

deviceHandle specifies an SRL handle to a control device

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 121

Dialogic Corporation

respond to an OpenLogicalChannel request — m3g_RespondToOLC()

This function is only supported in asynchronous mode.

Termination Events

M3GEV_RESPOND_TO_LC_CMPLT
Indicates either the specified OpenLogicalChannelAck response or the
OpenLogicalChannelReject response was successfully sent to the remote 3G-324M endpoint.

M3GEV_RESPOND_TO_LC_FAIL
Indicates either the specified OpenLogicalChannelAck response or the
OpenLogicalChannelReject response failed to be sent to the remote 3G-324M endpoint. The
error code is included in the event as detailed in Chapter 13, “Events”.

lcn specifies the logical channel number of the incoming
OpenLogicalChannel request

olcResponse indicates whether to positively acknowledge the request through the
OpenLogicalChannelAck message or to reject the request through the
OpenLogicalChannelReject message. Cause code for a rejection is also
provided.

The data type is an enumeration that defines the following values:
• M3G_E_OLCACK – OLCAck response
• M3G_E_OLCREJ_UNSPECIFIED – OLCReject cause unspecified
• M3G_E_OLCREJ_UNS_REV_PARM – OLCReject cause

unsuitableReverseParameters
• M3G_E_OLCREJ_DATATYP_NOT_SUP – OLCReject cause

dataTypeNotSupported
• M3G_E_OLCREJ_DATATYP_NOT_AVAIL – OLCReject cause

dataTypeNotAvailable
• M3G_E_OLCREJ_DATATYP_AL_UNSUP – OLCReject cause

dataTypeALCombintationNotSupported
• M3G_E_OLCREJ_MC_CHAN_NOT_ALWD – OLCReject cause

multicatChannelNotAllowed
• M3G_E_OLCREJ_INSUFF_BW – OLCReject cause

insufficientBandwidth
• M3G_E_OLCREJ_STACK_FAILED – OLCReject cause

separateStackEstablishmentFailed
• M3G_E_OLCREJ_INV_SESSIONID – OLCReject cause

invalidSessionID
• M3G_E_OLCREJ_MS_CONFLICT – OLCReject cause

masterSlaveConflict
• M3G_E_OLCREJ_WAIT_COMM_MODE – OLCReject cause

waitForCommunicationMode
• M3G_E_OLCREJ_INV_DEP_CHAN – OLCReject cause

invalidDependentChannel
• M3G_E_OLCREJ_REP_FOR_REJ – OLCReject cause

replacementForRejected
• M3G_E_OLCREJ_SECURITY_DENIED – OLCReject cause

securityDenied

Parameter Description

122 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_RespondToOLC() — respond to an OpenLogicalChannel request

Cautions

• It is invalid to call this function with a board, audio or video device type handle.

• It is invalid to call this function unless an M3GEV_REMOTE_OLC_RCVD event was
received on this control device.

Errors

If this function fails with M3G_ERROR, use the Standard Runtime Library (SRL) standard
attribute functions ATDV_LASTERR() and ATDV_ERRMSGP() to obtain the error code and a
pointer to the error description, respectively. Error codes are defined in m3gerrs.h.

For more information, see Chapter 15, “Error Codes”.

Example

/* Header Files: */
#include <srllib.h>
#include <m3glib.h>
#include <m3gevts.h>
#include <m3gerrs.h>
.
.
.
/* Preconditions: 1) 3G-324M Library Session has already been started. */
/* 2) m3g_Open() has completed opening the */
/* applicable control, audio and or video devices */
/* associated with the 3G-324M bearer channel. */
/* 3) The control, audio, and or video devices have all been */
/* interconnected to their respective network and ipm or */
/* mm devices using the dev_PortConnect() or */
/* dev_Connect()functions. */
/* 4) The default simultaneous caps table has been set using */
/* the m3g_GetLocalCap() and m3g_SetTCS() functions */
/* (not shown). */
.
.
.

/* SRL event handler: */
 for (;;)
 {
 if (-1 != sr_waitevt(500))
 process_event();
 }
.
.
.

void process_event(void)
{
 /* process the SRL events */
 int evType = sr_getevttype();
 int devH = sr_getevtdev();
 void *pSRLEvtData = sr_getevtdatap();

 switch(evType)
 {
 /*
 .
 . Other events not shown…
 .

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 123

Dialogic Corporation

respond to an OpenLogicalChannel request — m3g_RespondToOLC()

 */

 /* Received OLC from remote 3G-324M endpoint: */
 case M3GEV_REMOTE_OLC_RCVD:
 {
 /* Assume application defined its device structure: */
 MYDEV *pMyDev;
 M3G_REMOTE_OLC_REQ *pOLCReq = (M3G_REMOTE_OLC_REQ*) pSRLEvtData;

 m3g_GetUserInfo(devH, &pMyDev);

 /* If the requested capability is satisfactory for reverse direction to receive */
 if(true == isRequestedCapsOK(pMyDev, pOLCReq))
 {
 /* Respond with OLCAck: */
 if (M3G_ERROR == m3g_RespondToOLC(pMyDev->controlDevH,
 pOLCReq->logicalChannelNumber,
 M3G_E_OLCACK))
 {
 log("Error: m3g_RespondToOLC(%s)failed - %s\n",
 ATDV_NAMEP(pMyDev->audioDevH), ATDV_ERRMSGP(pMyDev->audioDevH));
 /* handle error… */
 }
 /* Check if audio dataType: */
 if(M3G_E_AUDIO_CAPABILITY == pOLCReq->capabilityType)
 {
 setLCNMediaType(pMyDev, pOLCReq->logicalChannelNumber, AUDIO);
 pMyDev->audioReverseCap = pOLCReq->mediaCapability;
 }
 /* Else if video dataType: */
 else if(M3G_E_VIDEO_CAPABILITY == pOLCReq->capabilityType)
 {
 setLCNMediaType(pMyDev, pOLCReq->logicalChannelNumber, VIDEO);
 pMyDev->videoReverseCap = pOLCReq->mediaCapability;
 }
 }
 else /* Not requested reverse capability not acceptable. */
 {
 /* Respond with OLCReject: */
 if (M3G_ERROR == m3g_RespondToOLC(pMyDev->controlDevH,
 pOLCReq->logicalChannelNumber,
 M3G_E_OLCREJ_DATATYP_NOT_SUP))
 {
 log("Error: m3g_RespondToOLC(%s)failed - %s\n",
 ATDV_NAMEP(pMyDev->controlDevH), ATDV_ERRMSGP(pMyDev->controlDevH));
 /* handle error… */
 }
 }
 break;
 }

 /* Successful m3g_RespondToOLC termination: */
 case M3GEV_RESPOND_TO_LC_CMPLT:
 {
 /* Assume application defined its device structure: */
 MYDEV * pMyDev;
 M3G_LOGICAL_CHANNEL_NUMBER lcn = *(M3G_LOGICAL_CHANNEL_NUMBER *) pSRLEvtData;

 m3g_GetUserInfo(devH, &pMyDev);

 /* Must determine if this was for our audio or video OLCAck (not shown): */
 if (AUDIO == getLCNMediaType(pMyDev, lcn))
 {
 pMyDev->isAudioRevOLCAcked = true;
 pMyDev->revAudioLCN = lcn;
 /* If OLCs have been acknowledged in both forward and reverse directions */
 if (true == isBothAudioOLCsComplete(pMyDev))

124 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_RespondToOLC() — respond to an OpenLogicalChannel request

 {
 /* start media for this device (not shown)… */
 startAudioMedia(pMyDev));
 }
 }
 else /* else video: */
 {
 pMyDev->isAudioRevOLCAcked = true;
 pMyDev->revAudioLCN = logicalChannelNumber;
 /* If OLCs have been acknowledged in both forward and reverse directions */
 if (true == isBothVideoOLCsComplete(pMyDev))
 {
 /* start media for this device (not shown)… */
 startVideoMedia(pMyDev));
 }
 }
 }

 /* m3g_RespondToOLC Failure indication: */
 case M3GEV_RESPOND_TO_OLC_FAIL:
 {
 M3G_E_ERROR_TYPE* pError = (M3G_E_ERROR_TYPE*) pSRLEvtData;
 log("ERROR: M3GEV_RESPOND_TO_OLC_FAIL for device = %s\n",
 ATDV_NAMEP(devH));
 log(" Error value = %d\n",(int)*pError);

 /* handle error…*/
 break;
 }

 default:
 printf("Received unknown event = %d for device = %s\n",
 evType, ATDV_NAMEP(devH));
 break;
 }
}

See Also

• m3g_OpenLC()

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 125

Dialogic Corporation

send H.245 MiscellaneousCommand message — m3g_SendH245MiscCmd()

m3g_SendH245MiscCmd()

send H.245 MiscellaneousCommand message

Description

The m3g_SendH245MiscCmd() function sends the specified H.245 MiscellaneousCommand
message to the remote 3G-324M endpoint.

The h245MiscCmdType parameter within the M3G_H245_MISC_CMD structure identifies the
type of MiscellaneousCommand specified within the M3G_H245_MISC_CMD_PARAMS union.

When an H.245 MiscellaneousCommand is received from the remote 3G-324M endpoint, an
M3GEV_H245_MISC_CMD_RCVD event type is queued to the application. Call the Dialogic®
Standard Runtime Library function sr_getevtdatap() to cast the returned value to the
M3G_H245_MISC_CMD structure.

This function is only supported in asynchronous mode.

Termination Events

M3GEV_SEND_H245_MISC_CMD_CMPLT
Indicates the specified H.245 MiscellaneousCommand indication message was sent
successfully.

M3GEV_SEND_H245_MISC_CMD_FAIL
Indicates the specified H.245 MiscellaneousCommand indication message failed to be sent.
The error code is included in the event as detailed in Chapter 13, “Events”.

Name: int m3g_SendH245MiscCmd (deviceHandle, pMiscCmd)

Inputs: SRL_DEVICE_HANDLE deviceHandle • control device handle

M3G_H245_MISC_CMD *pMiscCmd • pointer to M3G_H245_MISC_CMD structure

Returns: M3G_SUCCESS if successful
M3G_ERROR on failure

Includes: srllib.h
m3glib.h
m3gevts.h
m3gerrs.h

Category: H.245 Control

Mode: asynchronous

Parameter Description

deviceHandle specifies an SRL handle to a control device

pMiscCmd points to the M3G_H245_MISC_CMD structure which specifies the
command types. For more information, see the M3G_H245_MISC_CMD
structure description.

126 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_SendH245MiscCmd() — send H.245 MiscellaneousCommand message

Cautions

It is invalid to call this function prior to completion of the H.245 Terminal Capability Set (TCS)
and H.245 Master Slave Determination (MSD) exchange. This completion is identified by receipt
of the M3GEV_REMOTE_TCS_RCVD event for the remote capability acknowledgement, the
M3GEV_LOCAL_TCS_ACKD event for the local capability acknowledgement, and the
M3GEV_MSD_ESTABLISHED event indicating completion of MSD exchange.

Errors

If this function fails with M3G_ERROR, use the Standard Runtime Library (SRL) standard
attribute functions ATDV_LASTERR() and ATDV_ERRMSGP() to obtain the error code and a
pointer to the error description, respectively. Error codes are defined in m3gerrs.h.

For more information, see Chapter 15, “Error Codes”.

Example

/* Header Files: */
#include <srllib.h>
#include <m3glib.h>
#include <m3gevts.h>
#include <m3gerrs.h>
.
.
.
/* Preconditions: 1) 3G-324M Library Session has already been started. */
/* 2) m3g_Open() has completed opening the */
/* control and audio and media devices. */
/* 3) The H.245 forward and reverse logical channels for this */
/* video device have been opened successfully and is */
/* streaming to/from the remote H.223 endpoint. */

/* send H.245 MiscellaneousCommand type videoFastUpdatePicture to remote 3G-324M endpoint: */
int sendFastUpdate(MYDEV pMyDev)
{
 M3G_H245_MISC_CMD h245MiscCmdBuf = {0};
 h245MiscCmdBuf.version = M3G_LIBRARY_VERSION;
 h245MiscCmdBuf.h245MiscCmdType = M3G_E_FAST_UPDATE_PICTURE;
 /* Note fastUpdatePicture requires no additional parameters in h245MiscCmdParams element */
 if (M3G_ERROR == m3g_SendH245MiscCmd(pMyDev->controlDevH, &h245MiscCmdBuf))
 {
 log("Error: m3g_SendH245MiscCmd(%s)failed - %s\n",
 ATDV_NAMEP(pMyDev->controlDevH), ATDV_ERRMSGP(pMyDev->controlDevH));
 /* handle error… */
 }

 return SUCCESS;
} /* End of sendFastUpdate */

.

.

.
/* SRL event handler: */
 for (;;)
 {
 if (-1 != sr_waitevt(500))
 process_event();
 }
.
.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 127

Dialogic Corporation

send H.245 MiscellaneousCommand message — m3g_SendH245MiscCmd()

.
void process_event(void)
{
 /* process the SRL events */
 int evType = sr_getevttype();
 int devH = sr_getevtdev();
 void *pSRLEvtData = sr_getevtdatap();

 switch(evType)
 {
 /*
 .
 . Other events not shown…
 .
 */

 /* Successful m3g_SendH245MiscCmd termination: */
 case M3GEV_SEND_H245_MISC_CMD_CMPLT:
 log("M3GEV_H24_UII_CMPLT for device = %s\n",
 ATDV_NAMEP(devH));
 break;

 /* m3g_SendH245MiscCmd Failure indication: */
 case M3GEV_SEND_H245_MISC_CMD_FAIL:
 {
 M3G_E_ERROR_TYPE* pError = (M3G_E_ERROR_TYPE*) pSRLEvtData;
 log("ERROR: M3GEV_SEND_MISC_CMD_FAIL for device = %s\n",
 ATDV_NAMEP(devH));
 log(" Error value = %d\n",(int)*pError);

 /* handle error…*/
 break;
 }

 /* Received H.245 MiscCmd message from a remote 3G-324M endpoint: */
 case M3GEV_H245_MISC_CMD_RCVD:
 {
 /* Assume application defined its device structure: */
 MYDEV * pMyDev;
 M3G_H245_MISC_CMD* pMiscCmd = (M3G_H245_MISC_CMD*) pSRLEvtData;
 m3g_GetUserInfo(devH, &pMyDev);

 log("M3GEV_H245_MISC_CMD_RCVD for device = %s\n",
 ATDV_NAMEP(devH));

 /* Process MiscCmd (not shown): */
 processMiscCmd(pMyDev, pMiscCmd);
 break;

 default:
 printf("Received unknown event = %d for device = %s\n",
 evType, ATDV_NAMEP(devH));
 break;
 }
}

See Also

None.

128 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_SendH245UII() — send H.245 UserInputIndication message

m3g_SendH245UII()

send H.245 UserInputIndication message

Description

The m3g_SendH245UII() function sends DTMF (alphanumeric) digits in an H.245
UserInputIndication message to the remote 3G-324M endpoint. The digit buffer format and content
are specified in the M3G_H245_UII structure.

Call this function only after H.245 MasterSlaveDetermination transactions and H.245
TerminalCapabilitySet transactions have completed in each direction with the remote 3G-324M
endpoint.

When DTMF digits are received from the remote 3G-324M endpoint, an
M3GEV_H245_UII_RCVD event is queued to the application. Upon receiving this event, call the
Dialogic® Standard Runtime Library function sr_getevtdatap() and cast the returned value to an
M3G_H245_UII structure containing the digit string received from the remote.

This function is only supported in asynchronous mode.

Termination Events

M3GEV_SEND_H245_UII_CMPLT
Indicates the specified alphanumeric digit string was sent successfully.

M3GEV_SEND_H245_UII_FAIL
Indicates the specified alphanumeric digit string failed to be sent. The error code is included in
the event as detailed in Chapter 13, “Events”.

Name: int m3g _SendH245UII (deviceHandle, pH245UII)

Inputs: SRL_DEVICE_HANDLE deviceHandle • control device handle

M3G_H245_UII *pH245UII • pointer to M3G_H245_UII structure

Returns: M3G_SUCCESS if successful
M3G_ERROR on failure

Includes: srllib.h
m3glib.h
m3gevts.h
m3gerrs.h

Category: H.245 Control

Mode: asynchronous

Parameter Description

deviceHandle specifies an SRL handle to a control device

pH245UII points to an M3G_H245_UII structure containing the digit string buffer

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 129

Dialogic Corporation

send H.245 UserInputIndication message — m3g_SendH245UII()

Cautions

It is invalid to call this function prior to completion of MasterSlaveDetermination (MSD)
transactions and TerminalCapabilitySet (TCS) transactions exchange. This TerminalCapabilitySet
completion is identified by receipt of both the M3GEV_REMOTE_TCS_RCVD event for the
remote capabilities and the M3GEV_LOCAL_TCS_ACKD event for the acknowledgement of the
local capabilities.

Errors

If this function fails with M3G_ERROR, use the Standard Runtime Library (SRL) standard
attribute functions ATDV_LASTERR() and ATDV_ERRMSGP() to obtain the error code and a
pointer to the error description, respectively. Error codes are defined in m3gerrs.h.

For more information, see Chapter 15, “Error Codes”.

Example

/* Header Files: */
#include <srllib.h>
#include <m3glib.h>
#include <m3gevts.h>
#include <m3gerrs.h>
.
.
.
/* Preconditions: 1) 3G-324M Library Session has already been started. */
/* 2) m3g_Open() has completed opening the */
/* control and audio and media devices. */
/* 3) The H.245 forward logical channel for this audio device */
/* has been opened successfully and the audio is streaming */
/* to/from the H.223 multiplex. */

/* User has input DTMF, so send H.245 UII message containing digits to remote 3G-324M endpoint:
*/
int sendUIIDigits(MYDEV pMyDev, const char* digitBuf)
{
 M3G_H245_UII h245UIIBuf;
 int numDigits = strlen(digitBuf);
 h245UIIBuf.version = M3G_LIBRARY_VERSION;
 h245UIIBuf.numDIgits = numDigits < MAX_NUM_DIGITS ? numDigits : MAX_NUM_DIGITS;
 memcpy(h245UIIBuf.digitBuffer, digitBuf, h245UIIBuf.numDIgits);
 if (M3G_ERROR == m3g_SendH245UII(pMyDev->controlDevH, &h245UIIBuf))
 {
 log("Error: m3g_SendH245UII (%s)failed - %s\n",
 ATDV_NAMEP(pMyDev->controlDevH), ATDV_ERRMSGP(pMyDev->controlDevH));
 /* handle error… */
 }

 return SUCCESS;
} /* End of sendUIIDigits */
.
.
.

/* SRL event handler: */
 for (;;)
 {
 if (-1 != sr_waitevt(500))
 process_event();
 }

130 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_SendH245UII() — send H.245 UserInputIndication message

.

.

.

void process_event(void)
{
 /* process the SRL events */
 int evType = sr_getevttype();
 int devH = sr_getevtdev();
 void *pSRLEvtData = sr_getevtdatap();

 switch(evType)
 {
 /*
 .
 . Other events not shown…
 .
 */

 /* Successful m3g_SendH245UII termination: */
 case M3GEV_SEND_H245_UII_CMPLT:
 log("M3GEV_H24_UII_CMPLT for device = %s\n",
 ATDV_NAMEP(devH));
 break;

 /* m3g_SendH245UII Failure indication: */
 case M3GEV_SEND_H245_UII_FAIL:
 {
 M3G_E_ERROR_TYPE* pError = (M3G_E_ERROR_TYPE*) pSRLEvtData;
 log("ERROR: M3GEV_SEND_H245_UII_FAIL for device = %s\n",
 ATDV_NAMEP(devH));
 log(" Error value = %d\n",(int)*pError);

 /* handle error…*/
 break;
 }

 /* Received UII digits from remote 3G-324M endpoint: */
 case M3GEV_H245_UII_RCVD:
 {
 M3G_H245_UII* pH245UIIBuf = (M3G_H245_UII*) pSRLEvtData;
 /* Assume application defined its device structure: */
 MYDEV * pMyDev;
 m3g_GetUserInfo(devH, &pMyDev);

 log("M3GEV_H245_UII_RCVD for device = %s\n",
 ATDV_NAMEP(devH));

 /* Process digit(s) prompt (not shown): */
 processDigitPrompt(pMyDev, pH245UIIBuf);
 break;
 }

 default:
 printf("Received unknown event = %d for device = %s\n",
 evType, ATDV_NAMEP(devH));
 break;
 }
}

See Also

None.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 131

Dialogic Corporation

set parameter of a board device or control device — m3g_SetParm()

m3g_SetParm()

set parameter of a board device or control device

Description

The m3g_SetParm() function sets values for the specified parameter via the M3G_PARM_INFO
structure referenced by the pParmInfo parameter.

Parameters may be specified for a board device, a control device, or both types of devices. Setting
one or more parameters on a board device sets the default values for all control devices associated
with that board.

This function is only supported in asynchronous mode.

Termination Events

M3GEV_SET_PARM_CMPLT
Indicates specified parameter values were successfully set. This event does not return any data.

M3GEV_SET_PARM_FAIL
Indicates that the specified events were unsuccessfully set. The error code is included in the
event as detailed in Chapter 13, “Events”.

Name: int m3g_SetParm (deviceHandle, pParmInfo)

Inputs: SRL_DEVICE_HANDLE deviceHandle • board or control device handle

M3G_PARM_INFO *pParmInfo • pointer to an M3G_PARM_INFO structure

Returns: M3G_SUCCESS if successful
M3G_ERROR on failure

Includes: srllib.h
m3glib.h
m3gevts.h
m3gerrs.h

Category: System Control

Mode: asynchronous

Parameter Description

deviceHandle specifies an SRL handle to a board or control device

pParmInfo points to the M3G_PARM_INFO structure specifying the parameter and
its respective value to set. For more information, see Table 3,
“M3G_PARM_INFO Parameter Types and Parameter Values”, on
page 215.

132 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_SetParm() — set parameter of a board device or control device

Cautions

You are responsible for allocating and de-allocating the M3G_PARM_INFO structure referenced
by the pParmInfo parameter.

Errors

If this function fails with M3G_ERROR, use the Standard Runtime Library (SRL) standard
attribute functions ATDV_LASTERR() and ATDV_ERRMSGP() to obtain the error code and a
pointer to the error description, respectively. Error codes are defined in m3gerrs.h.

For more information, see Chapter 15, “Error Codes”.

Example

/* Header Files: */
#include <srllib.h>
#include <m3glib.h>
#include <m3gevts.h>
#include <m3gerrs.h>
.
.
.
/* Preconditions: 1) 3G-324M Library Session has already been started. */
/* 2) m3g_Open() has completed opening the board device handle. */

int setDefaultH245TerminalType(int boardDevH)
{
 /* Set H.245 terminalType to 255 to improve probability of becoming Master */
 M3G_PARM_INFO parmInfo = {0};
 parmInfo.version = M3G_LIBRARY_VERSION;
 parmInfo.parameterType = M3G_E_PRM_H245_TERMINAL_TYPE;
 parmInfo.parmValue. h245TerminalType = 255;

 if (M3G_ERROR == m3g_SetParm(boardDevH, &parmInfo))
 {
 log("Error: m3g_SetParm(%s)failed - %s\n",
 ATDV_NAMEP(boardDevH), ATDV_ERRMSGP(boardDevH));
 /* handle error… */
 }

 return SUCCESS;
} /* End of setDefaultH245TerminalType */
.
.
.

/* SRL event handler: */
 for (;;)
 {
 if (-1 != sr_waitevt(500))
 process_event();
 }
.
.
.

void process_event(void)
{
 /* process the SRL events */
 int evType = sr_getevttype();

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 133

Dialogic Corporation

set parameter of a board device or control device — m3g_SetParm()

 int devH = sr_getevtdev();
 void *pSRLEvtData = sr_getevtdatap();

 switch(evType)
 {
 /*
 .
 . Other events not shown…
 .
 */

 /* Successful m3g_SetParm termination: */
 case M3GEV_SET_PARM_EVENTS_CMPLT:
 log("M3GEV_SET_PARM_CMPLT for device = %s\n",
 ATDV_NAMEP(devH));
 break;

 /* m3g_SetParm Failure indication: */
 case M3GEV_SET_PARM_FAIL:
 {
 M3G_E_ERROR_TYPE* pError = (M3G_E_ERROR_TYPE*) pSRLEvtData;
 log("ERROR: M3GEV_SET_PARM_FAIL for device = %s\n",
 ATDV_NAMEP(devH));
 log(" Error value = %d\n",(int)*pError);

 /* handle error…*/
 break;
 }

 default:
 printf("Received unknown event = %d for device = %s\n",
 evType, ATDV_NAMEP(devH));

 break;
 }
}

See Also

• m3g_GetParm()

134 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_SetTCS() — set H.245 TerminalCapabilitySet table

m3g_SetTCS()

set H.245 TerminalCapabilitySet table

Description

The m3g_SetTCS() function sets the default local set of terminal capabilities in the H.245
TerminalCapabilitySet table using the M3G_SIMULTANEOUS_CAP_SET array. This array
contains elements of the default capability settings obtained from multiple calls to the
m3g_GetLocalCaps() function, or modified capability settings.

The H.223, audio, and video capability list elements within the
M3G_SIMULTANEOUS_CAP_SET structure are initialized by calling m3g_GetLocalCaps() for
each device type.

Name: int m3g_SetTCS (deviceHandle, numSimultaneousSets, pSimultaneousCapList)

Inputs: SRL_DEVICE_HANDLE deviceHandle • control device handle

unsigned short numSimultaneousSets • number of elements specified in
pSimultaneousCapList

M3G_SIMULTANEOUS_CAP_SET
*pSimultaneousCapList

• pointer to array of
M3G_SIMULTANEOUS_CAP_SET
structure elements

Returns: M3G_SUCCESS if successful
M3G_ERROR on failure

Includes: srllib.h
m3glib.h
m3gevts.h
m3gerrs.h

Category: H.245 Control

Mode: asynchronous

Parameter Description

deviceHandle specifies an SRL handle to a control device

numSimultaneousSets specifies the number of elements of type
M3G_SIMULTANEOUS_CAP_SET specified in
pSimultaneousCapList array.

Must be set to 1 for this release. Only one audio and one video
stream is currently supported for each 3G-324M endpoint.

pSimultaneousCapList points to an array of M3G_SIMULTANEOUS_CAP_SET elements.
Each M3G_SIMULTANEOUS_CAP_SET structure must contain
one M3G_CAPS_LIST array of data type
M3G_ H223_CAPABILITY, and optionally either one array of type
M3G_AUDIO_CAPABILITY, and or one array of type
M3G_VIDEO_CAPABILITY.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 135

Dialogic Corporation

set H.245 TerminalCapabilitySet table — m3g_SetTCS()

After the default local capability is set, call m3g_StartH245(), and the 3G-324M protocol stack
will first synchronize the H.223 layer and then participate in MasterSlaveDetermination and
TerminalCapabilitySet exchanges with the remote 3G-324M endpoint.

A TerminalCapabilitySetAck (or TerminalCapabilitySetReject) response is automatically and
implicitly sent to acknowledge an incoming TerminalCapabilitySet from the remote endpoint.
When remote terminal capabilities are received in a TerminalCapabilitySet message from the
remote endpoint, an M3GEV_REMOTE_TCS_RCVD event is queued to the application. When
local terminal capabilities have been positively acknowledged via the remote, an
M3GEV_LOCAL_TCS_ACKD event is queued to the application.

While the H.245 specification permits TerminalCapabilitySet messages to be exchanged at any
time, no attempt at opening logical channels may be initiated until MasterSlaveDetermination and
TerminalCapabilitySet transactions, meaning both a request and a response, have completed in
each direction with the remote 3G-324M endpoint. At that point, the intersection of the local and
remote terminal capability sets are subsequently retrieved by calling the m3g_GetMatchedCaps()
function for the control device and each audio and/or video device handle to retrieve compatible
H.223, audio and video capabilities respectively.

This function is only supported in asynchronous mode.

Termination Events

M3GEV_SET_TCS_CMPLT
Indicates the specified default capability set table was successfully set on this control device.

M3GEV_SET_TCS_FAIL
Indicates the specified default capability set table failed to be set on this control device. The
error code is included in the event as detailed in Chapter 13, “Events”.

Cautions

• It is invalid to call this function with an audio or video device type handle.

• The numSimultaneousSets parameter must be set to 1 for this release.

Errors

If this function fails with M3G_ERROR, use the Standard Runtime Library (SRL) standard
attribute functions ATDV_LASTERR() and ATDV_ERRMSGP() to obtain the error code and a
pointer to the error description, respectively. Error codes are defined in m3gerrs.h.

For more information, see Chapter 15, “Error Codes”.

Example

/* Header Files: */
#include <srllib.h>
#include <m3glib.h>
#include <m3gevts.h>
#include <m3gerrs.h>
.
.
.

136 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_SetTCS() — set H.245 TerminalCapabilitySet table

/* Preconditions: 1) 3G-324M Library Session has already been started. */
/* 2) m3g_Open() has completed for the applicable */
/* control, audio and video device type */
/* 3) assumes globally defined devTbl[] exists for all devices */
/* */
int getDefaultCaps(int devIndex)
{

 M3G_CAPS_LIST * pLocalCaps = &h223Caps;
 /* Retrieve the default H.233 capabilities. */
 if (M3G_ERROR == m3g_GetLocalCaps(devTbl[devIndex].controlDevH,
 NULL));
 {
 log("Error: m3g_GetLocalCaps(%s) for H.223 failed - %s\n",
 ATDV_NAMEP(devTbl[devIndex].controlDevH),
 ATDV_ERRMSGP(devTbl[devIndex].controlDevH));
 /* handle error… */
 }

 /* Retrieve the default audio capabilities. */
 if (M3G_ERROR == m3g_GetLocalCaps(devTbl[devIndex].audioDevH,
 NULL));
 {
 log("Error: m3g_GetLocalCaps(%s) for audio failed - %s\n",
 ATDV_NAMEP(devTbl[devIndex].audioDevH),
 ATDV_ERRMSGP(devTbl[devIndex].audioDevH));
 /* handle error… */
 }

 /* Retrieve the default video capabilities. */
 if (M3G_ERROR == m3g_GetLocalCaps(devTbl[devIndex].videoDevH,
 NULL));
 {
 log("Error: m3g_GetLocalCaps(%s) for video failed - %s\n",
 ATDV_NAMEP(devTbl[devIndex].videoDevH),
 ATDV_ERRMSGP(devTbl[devIndex].videoDevH));
 /* handle error… */
 }

 return SUCCESS;
} /* End of getDefaultCaps */
.
.
.

/* SRL event handler: */
 for (;;)
 {
 if (-1 != sr_waitevt(500))
 process_event();
 }
.
.
.

void process_event(void)
{
 /* process the SRL events */
 int evType = sr_getevttype();
 int devH = sr_getevtdev();
 void *pSRLEvtData = sr_getevtdatap();

 switch(evType)
 {
 /*
 .
 . Other events not shown…

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 137

Dialogic Corporation

set H.245 TerminalCapabilitySet table — m3g_SetTCS()

 .
 */

 /* Successful m3g_GetLocalCaps termination: */
 case M3GEV_GET_LOCAL_CAPS_CMPLT:
 {
 /* Assume application defined its device structure: */
 MYDEV * pMyDev;
 M3G_CAPS_LIST * pLocalCaps = pSRLEvtData;

 log("M3GEV_GET_LOCAL_CAPS_CMPLT for device = %s\n",
 ATDV_NAMEP(devH));

 /* Cache appropriate device type (h223, audio, or video) caps in */
 /* Simultaneous Caps struct to send in TCS: */
 m3g_GetUserInfo(devH, &pMyDev);

 switch (pMyDev->myType)
 {
 case H223TYPE:
 pMyDev->bearerChannel.simultaneousCaps.pH223Capabilities = pLocalCaps;
 break;
 case AUDIOTYPE:
 pMyDev->bearerChannel.simultaneousCaps.pAudioCapabilities = pLocalCaps;
 break;
 case VIDEOTYPE:
 pMyDev->bearerChannel.simultaneousCaps.pVideoCapabilities = pLocalCaps;
 break;
 }

 /* If received all local capabilities associated with bearer channel: */
 if ((NULL != pMyDev->bearerChannel.simultaneousCaps.pH223Capabilities) &&
 (NULL != pMyDev->bearerChannel.simultaneousCaps.pAudioCapabilities) &&
 NULL != pMyDev->bearerChannel.simultaneousCaps.pVideoCapabilities))
 {
 /* Set default TCS using optionally customized defaults: */
 /* Note only one audio & video device per bearer channel is supported currently:
*/
 if (M3G_ERROR == m3g_SetTCS(controlDevH, 1,
 &pMyDev->bearerChannel.simultaneousCaps));
 {
 log("Error: m3g_SetTCS(%s) failed - %s\n",
 ATDV_NAMEP(devH), ATDV_ERRMSGP(devH));
 /* handle error… */
 }
 break;
 }

 /* m3g_ GetLocalCaps Failure indication: */
 case M3GEV_GET_LOCAL_CAPS_FAIL:
 {
 M3G_E_ERROR_TYPE* pError = (M3G_E_ERROR_TYPE*) pSRLEvtData;
 log("ERROR: M3GEV_GET_LOCAL_CAPS_FAIL for device = %s\n",
 ATDV_NAMEP(devH));
 log(" Error value = %d\n",(int)*pError);

 /* handle error…*/
 break;
 }

 case M3GEV_SET_TCS_CMPLT:
 log("M3GEV_SET_TCS_CMPLT for device = %s\n",
 ATDV_NAMEP(devH));
 /* Assuming event handlers are enabled for relevant MSD and TCS unsolicited events,
*/
 /* We can now initiate the H.245 session: */
 if (M3G_ERROR == m3g_StartH245(devH))

138 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_SetTCS() — set H.245 TerminalCapabilitySet table

 {
 log("Error: m3g_StartH245 (%s) failed - %s\n",
 ATDV_NAMEP(devH), ATDV_ERRMSGP(devH));
 /* handle error… */
 }
 break;

 /* m3g_SetTCS Failure indication: */
 case M3GEV_SET_TCS_FAIL:
 {
 M3G_E_ERROR_TYPE* pError = (M3G_E_ERROR_TYPE*) pSRLEvtData;
 log("ERROR: M3GEV_SET_TCS_FAIL for device = %s\n",
 ATDV_NAMEP(devH));
 log(" Error value = %d\n",(int)*pError);

 /* handle error…*/
 break;
 }

 /*
 .
 . Other events not shown…
 .
 */

 default:
 printf("Received unknown event = %d for device = %s\n",
 evType, ATDV_NAMEP(devH));
 break;
 }
}

See Also

• m3g_GetLocalCaps()

• m3g_StartH245()

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 139

Dialogic Corporation

set H.245 VendorIdentification message — m3g_SetVendorId()

m3g_SetVendorId()

set H.245 VendorIdentification message

Description

The m3g_SetVendorId() function configures the information elements to be encoded in the
H.245 VendorIdentification indication message. The H.245 VendorIdentification message is
automatically sent during H.245 signaling within the 3G-324M session immediately after the
H.245 MasterSlaveDetermination message. This function may only be called on a board device and
is used to configure the vendor and product information elements for all 3G-324M interfaces.

Changes to the vendor identification information made with m3g_SetVendorId() are effective
until the function is called again or until Dialogic® Services are restarted.

The default values for H.245 VendorIdentification message information elements are as follows:

vendor
3.111.112

productNumber
Dialogic HMP

versionNumber
the current product kernel version number

Note that the remote vendor and product information can be retrieved from the H.245
VendorIdentification message from the remote peer by enabling the
M3GEV_REMOTE_VENDORID_EVT_TYP bitmask using m3g_EnableEvents() and by
parsing the embedded M3G_VENDORID_INFO structure from any events received of that type.

This function is only supported in asynchronous mode.

Name: int m3g_SetVendorId (deviceHandle, * pVendorIdInfo)

Inputs: SRL_DEVICE_HANDLE deviceHandle • board device handle

M3G_VENDORID_INFO *pVendorIdInfo • pointer to M3G_VENDORID_INFO structure

Returns: M3G_SUCCESS if successful
M3G_ERROR on failure

Includes: srllib.h
m3glib.h
m3gevts.h
m3gerrs.h

Category: H.245 Control

Mode: asynchronous

Parameter Description

deviceHandle specifies an SRL handle to a board device

pVendorIdInfo pointer to the M3G_VENDORID_INFO structure

140 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_SetVendorId() — set H.245 VendorIdentification message

Termination Events

M3GEV_SET_VENDORID_CMPLT
Indicates the specified vendor and product information elements have been successfully
configured for the board.

M3GEV_SET_VENDORID_FAIL
Indicates the specified vendor and product information elements have failed to be configured
for the board.

Cautions

None.

Errors

If this function fails with M3G_ERROR, use the Standard Runtime Library (SRL) standard
attribute functions ATDV_LASTERR() and ATDV_ERRMSGP() to obtain the error code and a
pointer to the error description, respectively. Error codes are defined in m3gerrs.h.

For more information, see Chapter 15, “Error Codes”.

Example

/* Header Files: */
#include <srllib.h>
#include <m3glib.h>
#include <m3gevts.h>
#include <m3gerrs.h>
.
.
.
/* Preconditions: 1) 3G-324M Library Session has already been started. */
/* 2) m3g_Open() has completed opening the board device. */

int setVendorId(int boardDevH)
{
 M3G_VENDORID_INFO vendorIdInfo;
 vendorIdInfo.version = M3G_LIBRARY_VERSION2;
 vendorIdInfo.vendor.oidType = M3G_E_OBJECTID_TYPE;
 vendorIdInfo.vendor.oid.length = 7;
 vendorIdInfo.vendor.oid.objectId[0] = 1;
 vendorIdInfo.vendor.oid.objectId[1] = 2;
 vendorIdInfo.vendor.oid.objectId[2] = 3;
 vendorIdInfo.vendor.oid.objectId[3] = 4;
 vendorIdInfo.vendor.oid.objectId[4] = 5;
 vendorIdInfo.vendor.oid.objectId[5] = 6;
 vendorIdInfo.vendor.oid.objectId[6] = 7;
 vendorIdInfo.productNumber.length = 6;
 vendorIdInfo.productNumber.octet[0] = 5;
 vendorIdInfo.productNumber.octet[1] = 4;
 vendorIdInfo.productNumber.octet[2] = 3;
 vendorIdInfo.productNumber.octet[3] = 2;
 vendorIdInfo.productNumber.octet[4] = 1;
 vendorIdInfo.versionNumber.octet[5] = 0;
 vendorIdInfo.productNumber.length = 4;
 vendorIdInfo.versionNumber.octet[0] = 6;
 vendorIdInfo.versionNumber.octet[1] = 0;
 vendorIdInfo.versionNumber.octet[2] = 2;
 vendorIdInfo.versionNumber.octet[3] = 0;

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 141

Dialogic Corporation

set H.245 VendorIdentification message — m3g_SetVendorId()

 if (M3G_ERROR == m3g_SetVendorId(boardDevH, &vendorIdInfo))
 {
 log("Error: m3g_SetVendorId(%s)failed - %s\n",
 ATDV_NAMEP(boardDevH), ATDV_ERRMSGP(boardDevH));
 /* handle error… */
 }

 return SUCCESS;
} /* End of setVendorId */
.
.
.

/* SRL event handler: */
 for (;;)
 {
 if (-1 != sr_waitevt(500))
 process_event();
 }
.
.
.

void process_event(void)
{
 /* process the SRL events */
 int evType = sr_getevttype();
 int devH = sr_getevtdev();
 void *pSRLEvtData = sr_getevtdatap();

 switch(evType)
 {
 /*
 .
 . Other events not shown…
 .
 */

 /* Successful m3g_SetVendorId termination: */
 case M3GEV_SET_VENDORID_CMPLT:
 log("M3GEV_SET_VENDORID_CMPLT for device = %s\n",
 ATDV_NAMEP(devH));
 break;

 /* m3g_SetVendorId Failure indication: */
 case M3GEV_SET_VENDORID_FAIL:
 {
 M3G_E_ERROR_TYPE* pError = (M3G_E_ERROR_TYPE*) pSRLEvtData;
 log("ERROR: M3GEV_START_TRACE_FAIL for device = %s\n",
 ATDV_NAMEP(devH));
 log(" Error value = %d\n",(int)*pError);

 /* handle error…*/
 break;
 }

 default:
 printf("Received unknown event = %d for device = %s\n",
 evType, ATDV_NAMEP(devH));
 break;
 }
}

142 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_SetVendorId() — set H.245 VendorIdentification message

See Also

None.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 143

Dialogic Corporation

start and initialize 3G-324M library — m3g_Start()

m3g_Start()

start and initialize 3G-324M library

Description

The m3g_Start() function starts and initializes the 3G-324M library. Session configuration
information is specified in the M3G_START_STRUCT data structure pointed to by this function.

This function is only supported in synchronous mode. The function returns M3G_SUCCESS if the
3G-324M library was successfully started; otherwise, it returns M3G_ERROR on failure.

Cautions

This function must be called and successfully complete, before any other 3G-324M library
function is called.

Errors

If this function fails with M3G_ERROR, it is recommended that you verify the following:

• Dialogic services are successfully started with licensed 3G-324M devices in the system.

• The number of devices specified in M3G_START_STRUCT, numEndpoints field, does not
exceed the number of licensed 3G-324M endpoints in the system installation.

Example

/* Header Files */
#include <srllib.h>
#include <m3glib.h>
#include <m3gevts.h>
#include <m3gerrs.h>
.
.
.

Name: int m3g_Start (M3G_START_STRUCT* pStartParams)

Inputs: pStartParams • pointer to the 3G-324M library startup structure

Returns: M3G_SUCCESS if successful
M3G_ERROR on failure

Includes: srllib.h
m3glib.h
m3gerrs.h

Category: System Control

Mode: synchronous

Parameter Description

pStartParams points to the M3G_START_STRUCT structure which specifies 3G-324M
session configuration settings

144 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_Start() — start and initialize 3G-324M library

/* Start 3G-324M Library Session. */
/* Preconditions: 3G-324M Library Session has not yet been started. */

int start3G324M()
{
 M3G_START_STRUCT myStartParams;
 INIT_M3G_START_STRUCT(M3G_START_STRUCT &myStartParams);
 /* Allocate one E1 trunk for 3G-324M endpoints. */
 myStartParams.numEndpoints = 30;

 /* Start 3G-324M library session. */
 if (M3G_ERROR == m3g_Start(&myStartParams))
 {
 /* handle error… */
 }

 return SUCCESS;
} /* End of start3G324M */

See Also

• m3g_Stop()

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 145

Dialogic Corporation

initiate H.223 multiplex/demultiplex — m3g_StartH245()

m3g_StartH245()

initiate H.223 multiplex/demultiplex

Description

Before any 3G-324M signaling may take place, the respective call must be established and
connected using signaling means outside the 3G-324M protocol and this API library.

Once the call is established, the m3g_StartH245() function initiates the H.223 multiplex and
demultiplex using the specified parameters. Next, it initiates H.245 message transaction sequence,
starting with the MasterSlaveDetermination and TerminalCapabilitySet transaction exchanges.

Only call this function on a control device after it has been opened and successfully connected
using dev_Connect() and dev_PortConnect() functions, in the device management API library.

After successful completion of this function, the application must receive the
M3GEV_FRAMING_ESTABLISHED event indicating the framing layer is sufficient to establish
the H.223 Abstraction Layer and its upper service access points. Until then, most subsequent H.223
or H.245 related function calls on this control device will fail with an error code of
M3G_E_ERR_INV_STATE.

Conversely, at any point after this function completes, the application could receive the
M3GEV_FRAMING_LOST event indicating an error condition has occurred in the framing layer
which prevents proper functioning of the H.223 multiplex layer. No further 3G-324M functions
may be called or complete successfully until the error condition is resolved as signified by the

Name: int m3g_StartH245 (deviceHandle, pH223Params)

Inputs: SRL_DEVICE_HANDLE deviceHandle • control device handle

M3G_H223_SESSION pH223Params • pointer to M3G_H223_SESSION structure

Returns: M3G_SUCCESS if successful
M3G_ERROR on failure

Includes: srllib.h
m3glib.h
m3gevts.h
m3gerrs.h

Category: H.245 Control

Mode: asynchronous

Parameter Description

deviceHandle specifies an SRL handle to a control device

pH223Params points to an M3G_H223_SESSION structure specifying H.223 multiplex
layer parameters.

To use MONA procedures, enable MONA support in the
M3G_H223_SESSION structure.

146 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_StartH245() — initiate H.223 multiplex/demultiplex

M3GEV_FRAMING_ESTABLISHED event. Until then, most subsequent H.223 or H.245 related
function calls on this control device will fail with an error code of M3G_E_ERR_INV_STATE.

After successful completion of this function, the application should also be prepared to receive the
M3GEV_MSD_ESTABLISHED event indicating the result of the MasterSlaveDetermination
transactions which transpire only after calling this function.

Any time an H.245 session is active between the local and remote 3G-324M endpoint, the
application must also be prepared to receive the unsolicited M3GEV_ENDSESSION_RCVD
event. This event indicates an H.245 EndSession command has been received from the remote 3G-
324M endpoint and as a result, the current H.245 session has been terminated.

Should the MasterSlaveDetermination transactions fail for any reason, the application should
receive the M3GEV_MSD_FAILED event. Upon receiving an M3GEV_FRAMING_LOST,
M3GEV_MSD_FAILED, or M3GEV_ENDSESSION_RCVD event, the next action from the
application should be to close H.245 session and re-start H.245 sequence via m3g_StopH245()
and m3g_StartH245(), respectively.

Similarly, both the M3GEV_REMOTE_TCS_RCVD and the M3GEV_LOCAL_TCS_ACKD
events indicate successful exchange of TerminalCapabilitySet transactions for each endpoint.

The application is responsible for allocating and de-allocating the M3G_H223_SESSION buffer
referenced by the pH223Params pointer parameter.

This function is only supported in asynchronous mode.

Termination Events

M3GEV_START_H245_CMPLT
Indicates the H.245 protocol has been successfully initiated. This event does not imply any
status regarding the H.223 framing layer, H.245 MasterSlaveDetermination, nor H.245
TerminalCapabilitySet exchange.

M3GEV_START_H245_FAIL
Indicates the H.245 protocol has failed to initiate. The error code is included in the event as
detailed in Chapter 13, “Events”.

Cautions

None.

Errors

If this function fails with M3G_ERROR, use the Standard Runtime Library (SRL) standard
attribute functions ATDV_LASTERR() and ATDV_ERRMSGP() to obtain the error code and a
pointer to the error description, respectively. Error codes are defined in m3gerrs.h.

For more information, see Chapter 15, “Error Codes”.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 147

Dialogic Corporation

initiate H.223 multiplex/demultiplex — m3g_StartH245()

Example

/* Header Files: */
#include <srllib.h>
#include <m3glib.h>
#include <m3gevts.h>
#include <m3gerrs.h>
.
.
.
/* Preconditions: 1) 3G-324M Library Session has already been started. */
/* 2) m3g_Open() has completed opening the applicable */
/* control, audio and or video devices */
/* associated with the 3G-324M bearer channel. */
/* 3) The control device has been interconnected to its */
/* respective network timeslot or Nb UP device interface */
/* using the dev_Connect() or dev_PortConnect() */
/* functions respectively. */
/* 4) The audio or video devices have been connected to their */
/* respective ipm or mm devices which source or sink the */
/* the media stream using the dev_PortConnect() function. */
/* 5) The default simultaneous caps table has been set using */
/* the m3g_GetLocalCaps() and m3g_SetTCS() */
/* function (not shown) */
/* 6) Event handlers have been enabled for the following */
/* events (not shown): */
/* M3GEV_START_H245_CMPLT, */
/* M3GEV_START_H245_FAIL, */
/* M3GEV_FRAMING_ESTABLISHED, */
/* M3GEV_FRAMING_LOST, */
/* M3GEV_MSD_ESTABLISHED, */
/* M3GEV_MSD_FAILED, */
/* M3GEV_REMOTE_TCS_RCVD */
/* M3GEV_LOCAL_TCS_ACKD */
/* M3GEV_ENDSESSION_RCVD */
/* M3GEV_ENDSESSION_SENT */
/* M3GEV_SEND_MONA_PREF_MSG */
/* M3GEV_MONA_PREF_MSG _RCVD */
/* M3GEV_TX_MPC_ESTABLISHED */
/* M3GEV_RX_MPC_ESTABLISHED */

int startH245(int controlDevH)
{
 M3G_H223_SESSION h223Params =
 {
 M3G_LIBRARY_VERSION, /* version */
 M3G_E_H223_MUX_LEVEL2, /* defaultH223MuxLevel */
 254, /* maxALSDUSize */
 M3G_TRUE, /* isWNSRPEnabled */
 M3G_TRUE, /* isMultipleMsgsPerPdu */
 M3G_TRUE /* isMONAEnabled */
 }

 /* Initiate the H.245 session. */
 if (M3G_ERROR == m3g_StartH245(controlDevH, &h223Params))
 {
 log("Error: m3g_StartH245(%s)failed - %s\n",
 ATDV_NAMEP(devH), ATDV_ERRMSGP(devH));
 /* handle error… */
 }

 return SUCCESS;
} /* End of startH245 */
.
.
.

148 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_StartH245() — initiate H.223 multiplex/demultiplex

/* SRL event handler: */
 for (;;)
 {
 if (-1 != sr_waitevt(500))
 process_event();
 }
.
.
.

void process_event(void)
{
 /* process the SRL events */
 int evType = sr_getevttype();
 int devH = sr_getevtdev();
 void *pSRLEvtData = sr_getevtdatap();

 switch(evType)
 {
 /*
 .
 . Other events not shown…
 .
 */

 /* Successful m3g_StartH245 termination: */
 case M3GEV_START_H245_CMPLT:
 log("M3GEV_START_H245_CMPLT for device = %s\n",
 ATDV_NAMEP(devH));
 /* Device must receive M3GEV_FRAMING_ESTABLISHED before it */
 /* can participate in MasterSlaveDetermination exchange. */
 break;

 /* m3g_StartH245 Failure indication: */
 case M3GEV_START_H245_FAIL:
 {
 M3G_E_ERROR_TYPE* pError = (M3G_E_ERROR_TYPE*) pSRLEvtData;
 log("ERROR: M3GEV_START_H245_FAIL for device = %s\n",
 ATDV_NAMEP(devH));
 log(" Error value = %d\n",(int)*pError);

 /* handle error…*/
 break;
 }

 /* Framing layer is successfully established between local and */
 /* remote 3G-324M endpoint. */
 case M3GEV_FRAMING_ESTABLISHED:
 log("M3GEV_FRAMING_ESTABLISHED for device = %s\n",
 ATDV_NAMEP(devH));
 /* Device is now ready to participate in exchange of */
 /* MasterSlaveDetermination message and TerminalCapabilitySet */
 /* messages once local terminal capabilities are specified. */
 break;

 /* Framing layer failed to establish between local and remote */
 /* 3G-324M endpoint. */
 case M3GEV_FRAMING_LOST:
 {
 M3G_E_ERROR_TYPE* pError = (M3G_E_ERROR_TYPE*) pSRLEvtData;
 log("ERROR: M3GEV_FRAMING_LOST for device = %s\n",
 ATDV_NAMEP(devH));
 log(" Error value = %d\n",(int)*pError);

 /* handle error…*/
 break;

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 149

Dialogic Corporation

initiate H.223 multiplex/demultiplex — m3g_StartH245()

 }

 /* MasterSlaveDetermination transactions completed between local and */
 /* remote 3G-324M endpoints. */
 case M3GEV_MSD_ESTABLISHED:
 {
 const char* msdStr[] =
 {
 "M3G_E_H245_MASTER",
 "M3G_E_H245_SLAVE",
 "M3G_E_H245_IDENTICAL_MSD_NUMBERS"
 };
 M3G_E_H245_MSD_RESULT msdResult = *(M3G_E_H245_MSD_RESULT*)pSRLEvtData;
 log("Device %s MSD result: =%s\n", ATDV_NAMEP(devH), msdStr[msdResult]);
 break;
 }

 /* Error in MasterSlaveDetermination between local and remote */
 /* 3G-324M endpoint. */
 case M3GEV_MSD_FAILED:
 {
 M3G_E_ERROR_TYPE* pError = (M3G_E_ERROR_TYPE*) pSRLEvtData;
 log("ERROR: M3GEV_MSD_FAILED for device = %s\n",
 ATDV_NAMEP(devH));
 log(" Error value = %d\n",(int)*pError);
 /* handle error…*/
 break;
 }

 /* Received TCS from remote 3G-324M endpoint: */
 case M3GEV_REMOTE_TCS_RCVD:
 {
 /* Assume application defined its device structure: */
 MYDEV * pMyDev;
 log("M3GEV_REMOTE_TCS_RCVD for device = %s\n",
 ATDV_NAMEP(devH));
 /* If both local and remote TCS transactions have completed, can */
 /* initiate the opening of logical channels. */
 /* Cache this TCS transaction completion */
 m3g_GetUserInfo(devH, &pMyDev);
 pMyDev->isRemoteTCSCompleted = true;

 /* If both remote and local TCS transactions complete: */
 if(pMyDev->isLocalTCSCompleted)
 {
 /* Open any transmit media channels that may not have */
 /* been established via MONA MPC procedures */
 if(pMyDev->audioMPCEstablished == false)
 {
 openAudioLogicalChannel(pMyDev);
 }
 if(pMyDev->videoMPCEstablished == false)
 {
 openVideoLogicalChannel(pMyDev);
 }
 }
 break;
 }

 /* Received TCSAck from remote 3G-324M endpoint: */
 case M3GEV_LOCAL_TCS_ACKD:

 {
 /* Assume application defined its device structure: */
 MYDEV * pMyDev;
 log("M3GEV_REMOTE_TCS_ACKD for device = %s\n",
 ATDV_NAMEP(devH));

150 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_StartH245() — initiate H.223 multiplex/demultiplex

 /* If both local and remote TCS transactions have completed, can */
 /* initiate the opening of logical channels. */
 /* Cache this TCS transaction completion */

 m3g_GetUserInfo(devH, &pMyDev);
 pMyDev->isLocalTCSCompleted = true;

 /* If both remote and local TCS transactions complete: */
 if(pMyDev->isRemoteTCSCompleted)

 {
 /* Open any transmit media channels that may not have */
 /* been established via MONA MPC procedures */
 if(pMyDev->audioMPCEstablished == false)
 {
 openAudioLogicalChannel(pMyDev);
 }
 if(pMyDev->videoMPCEstablished == false)
 {
 openVideoLogicalChannel(pMyDev);
 }
 }
 break;
 }
 case M3GEV_SEND_MONA_PREF_MSG:
 case M3GEV_MONA_PREF_MSG_RCVD:
 {
 M3G_MONA_TXRX_MPC_SUPPORT* pMPC = (M3G_MONA_TXRX_MPC_SUPPORT*)pSRLEvtData;
 log("MONA Pref_Msg %s, rxMPC:0x%x txMPC:0x%x\n",
 (evType == M3GEV_SEND_MONA_PREF_MSG) ? "sent” : “rcvd”,
 pMPC->rxMPCMask, pMPC->txMPCMask);
 break;
 }
 case M3GEV_TX_MPC_ESTABLISHED:
 case M3GEV_RX_MPC_ESTABLISHED:
 {
 M3G_MONA_MPC* pMPC = (M3G_MONA_MPC*)pSRLEvtData;
 M3G_LOGICAL_CHANNEL_NUMBER lcn = pMPC->logicalChannelNumber;
 M3G_E_DIRECTION direction=(M3GEV_TX_MPC_ESTABLISHED==evtType)? M3G_E_TX : M3G_E_RX;
 M3G_E_CAPABILITY mediaType = pMPC->capabilityType;

 /* Assume application defined its device structure: */
 MYDEV * pMyDev;
 m3g_GetUserInfo(devH, &pMyDev);
 log(“MPC established: %s %s LCN:%d\n",
 (M3G_E_TX == direction) ? “TX” : “RX”,
 (M3G_E_AUDIO_CAPABILITY == mediaType) ? "AUDIO" : "VIDEO",
 lcn);
 if (M3G_E_AUDIO_CAPABILITY == pMPC->capabilityType)

 {
 /* Cache that this TX audio MPC is established so it need not be opened */
 /* via legacy H.245 openLogicalChannel procedures via m3g_OpenLC() */

 if (M3G_E_TX == direction)
 {
 pMyDev->audioMPCEstablished = true;
 }

 /* Activate audio streaming in specified direction */
 ActivateAudioMedia(direction);
 }
 else
 {

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 151

Dialogic Corporation

initiate H.223 multiplex/demultiplex — m3g_StartH245()

 /* Cache that this TX video MPC is established so it need not be opened */
 /* via legacy H.245 openLogicalChannel procedures via m3g_OpenLC() */
 if (M3G_E_TX == direction)
 {
 pMyDev->videoMPCEstablished = true;
 }

 /* Activate video streaming in specified direction */
 ActivateVideoMedia(direction);
 }
 break;
 }
 default:
 printf("Received unknown event = %d for device = %s\n",
 evType, ATDV_NAMEP(devH));
 break;
 }
 }

See Also

• m3g_StopH245()

152 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_StartMedia() — start media stream

m3g_StartMedia()

start media stream

Description

The m3g_StartMedia() function starts transmitting and/or receiving media streams between the
specified media device and the H.223 multiplex/demultiplex.

Only call this function after the required H.245 forward/reverse logical channels or MONA media
preconfigured channels (MPC) have been successfully opened between the local and the remote
3G-324M endpoints.

The direction of media initiated is determined by the logical channel opened at the time of the
function call. If the forward logical channel for this device is successfully opened, the transmit
direction is enabled. If the reverse logical channel is successfully opened, the receive direction is
enabled. If both forward and reverse logical channels are successfully opened, bi-directional media
flow is enabled.

The actual R4 device type that transmits or receives the associated audio or video data streams,
such as an ipmBxCy or an mmBxCy device, must be interconnected on the packet stream via
dev_PortConnect() prior to calling this function. If connecting to a PCM network device such as
an dtiBxTy or dxxxBxCy device, this must be connected via the dev_Connect() function prior to
calling this function.

This function is only supported in asynchronous mode.

Termination Events

M3GEV_START_MEDIA_CMPLT
Indicates streaming between the H.223 aggregate and the specified media device has been
successfully initiated.

Name: int m3g_StartMedia (deviceHandle)

Inputs: SRL_DEVICE_HANDLE deviceHandle • audio or video device handle

Returns: M3G_SUCCESS if successful
M3G_ERROR on failure

Includes: srllib.h
m3glib.h
m3gevts.h
m3gerrs.h

Category: Data Flow

Mode: asynchronous

Parameter Description

deviceHandle specifies an SRL handle to an audio or video device

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 153

Dialogic Corporation

start media stream — m3g_StartMedia()

M3GEV_ START_MEDIA_FAIL
Indicates streaming between the H.223 aggregate and the specified media device has failed to
initiate. The error code is included in the event as detailed in Chapter 13, “Events”.

Cautions

None.

Errors

If this function fails with M3G_ERROR, use the Standard Runtime Library (SRL) standard
attribute functions ATDV_LASTERR() and ATDV_ERRMSGP() to obtain the error code and a
pointer to the error description, respectively. Error codes are defined in m3gerrs.h.

For more information, see Chapter 15, “Error Codes”.

Example

/* Header Files: */
#include <srllib.h>
#include <m3glib.h>
#include <m3gevts.h>
#include <m3gerrs.h>
.
.
.
/* Preconditions: 1) 3G-324M Library Session has already been started. */
/* 2) m3g_Open() has completed opening the */
/* applicable control, audio and or video devices */
/* associated with the 3G-324M bearer channel. */
/* 3) The control, audio, and or video devices have all been */
/* interconnected to their respective network and ipm or */
/* mm devices using the dev_PortConnect() or */
/* dev_Connect()functions. */
/* 4) H.245 MasterSlaveDetermination and */
/* TerminalCapabilitySet transaction exchange has */
/* completed (not shown). */
.
.
.
/* SRL event handler: */
 for (;;)
 {
 if (-1 != sr_waitevt(500))
 process_event();
 }
.
.
.

void process_event(void)
{
 /* process the SRL events */
 int evType = sr_getevttype();
 int devH = sr_getevtdev();
 void *pSRLEvtData = sr_getevtdatap();

 switch(evType)
 {
 /*
 .

154 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_StartMedia() — start media stream

 . Other events not shown…
 .
 */

 /* Received TCS from remote 3G-324M endpoint: */
 case M3GEV_REMOTE_TCS_RCVD:
 {
 /* Assume application defined its device structure: */
 MYDEV * pMyDev;

 /* If both local and remote TCS transactions have completed, can */
 /* initiate the opening of logical channels. */

 /* Cache this TCS transaction completion */
 m3g_GetUserInfo(devH, &pMyDev);
 pMyDev->isRemoteTCSCompleted = true;

 /* If both remote and local TCS transactions complete: */
 if(true == pMyDev->isLocalTCSCompleted)
 {
 /* Start opening appropriate logical channels */
 startOpeningLogicalChannels(pMyDev);
 }
 break;
 }

 /* Received TCSAck from remote 3G-324M endpoint: */
 case M3GEV_LOCAL_TCS_ACKD:
 {
 /* Assume application defined its device structure: */
 MYDEV * pMyDev;

 /* If both local and remote TCS transactions have completed, can */
 /* initiate the opening of logical channels. */

 /* Cache this TCS transaction completion */
 m3g_GetUserInfo(devH, &pMyDev);
 pMyDev->isLocalTCSCompleted = true;

 /* If both remote and local TCS transactions complete: */
 if(true == pMyDev->isRemoteTCSCompleted)
 {
 /* Start opening appropriate logical channels */
 startOpeningLoigicalChannels(pMyDev);
 }
 break;
 }

 /* Received OLCAck from remote 3G-324M endpoint: */
 case M3GEV_OPEN_LC_CMPLT:
 {
 /* Assume application defined its device structure: */
 MYDEV * pMyDev;
 M3G_REMOTE_OLCACK_RESP* pOLCAckResp =
 (M3G_REMOTE_OLCACK_RESP *) pSRLEvtData;

 /* Cache this TCS transaction completion */
 m3g_GetUserInfo(devH, &pMyDev);

 /* Must determine if this was for our audio or video OLC (not shown): */
 if (true == isCapTypeAudio(&pOLCAckResp->mediaCapability))
 {
 pMyDev->isAudioFwdOLCAcked = true;
 pMyDev->fwdAudioLCN = pOLCAckResp->logicalChannelNumber;
 /* If OLCs have been acknowledged in both forward and reverse directions */
 if (true == isBothAudioOLCsComplete(pMyDev))
 {

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 155

Dialogic Corporation

start media stream — m3g_StartMedia()

 /* start media for this device (not shown)… */
 startAudioMedia(pMyDev));
 }
 }
 else /* else video: */
 {
 pMyDev->isVideoFwdOLCAcked = true;
 pMyDev->fwdVideoLCN = pOLCAckResp->logicalChannelNumber;
 /* If OLCs have been acknowledged in both forward and reverse directions */
 if (true == isBothVideoOLCsComplete(pMyDev))
 {
 /* start media for this device (not shown)… */
 startVideoMedia(pMyDev));
 }
 }
 break;
 }

 /* Received OLC from remote 3G-324M endpoint: */
 case M3GEV_REMOTE_OLC_RCVD:
 {
 /* Assume application defined its device structure: */
 MYDEV * pMyDev;
 M3G_REMOTE_OLC_REQ * pOLCReq = (M3G_REMOTE_OLC_REQ *) pSRLEvtData;

 m3g_GetUserInfo(devH, &pMyDev);

 /* If the requested capability is satisfactory for reverse direction to receive */
 if(true == isRequestedCapsOK(pMyDev, pOLCReq))
 {
 /* Respond with OLCAck: */
 if (M3G_ERROR == m3g_RespondToOLC(pMyDev->controlDevH,
 pOLCReq->logicalChannelNumber,
 M3G_E_OLCACK))
 {
 log("Error: m3g_RespondToOLC(%s)failed - %s\n",
 ATDV_NAMEP(pMyDev->audioDevH), ATDV_ERRMSGP(pMyDev->audioDevH));
 /* handle error… */
 }
 /* Check if audio dataType: */
 if (M3G_E_AUDIO_CAPABILITY == pOLCReq->capabilityType)
 {
 pMyDev->revAudioLCN = pOLCReq->logicalChannelNumber;
 pMyDev->revAudioCap = pOLCReq->mediaCapability;
 }
 /* Else if video dataType: */
 else if (M3G_E_VIDEO_CAPABILITY == pOLCReq->capabilityType)
 {
 pMyDev->revVideoLCN = pOLCReq->logicalChannelNumber;
 pMyDev->revVideoCap = pOLCReq->mediaCapability;
 }
 }
 else /* Not requested reverse capability not acceptable. */
 {
 /* Respond with OLCReject: */
 if (M3G_ERROR == m3g_RespondToOLC(pMyDev->controlDevH,
 pOLCReq->logicalChannelNumber,
 M3G_E_OLCREJ_DATATYP_NOT_SUP))
 {
 log("Error: m3g_RespondToOLC(%s)failed - %s\n",
 ATDV_NAMEP(pMyDev->controlDevH), ATDV_ERRMSGP(pMyDev->controlDevH));
 /* handle error… */
 }
 }
 break;
 }

156 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_StartMedia() — start media stream

 /* Successful m3g_RespondToOLC termination: */
 case M3GEV_RESPOND_TO_LC_CMPLT:
 {
 /* Assume application defined its device structure: */
 MYDEV * pMyDev;
 M3G_LOGICAL_CHANNEL_NUMBER lcn = *(M3G_LOGICAL_CHANNEL_NUMBER *) pSRLEvtData;

 m3g_GetUserInfo(devH, &pMyDev);

 /* Must determine if this was for our audio or video OLCAck (not shown): */
 if (AUDIO == getLCNMediaType(pMyDev, lcn))
 {
 pMyDev->isAudioRevOLCAcked = true;
 /* If OLCs have been acknowledged in both forward and reverse directions */
 if (true == isBothAudioOLCsComplete(pMyDev))
 {
 /* start media for this device (not shown)… */
 startAudioMedia(pMyDev));
 }
 }
 else /* else video: */
 {
 pMyDev->isVideoRevOLCAcked = true;
 /* If OLCs have been acknowledged in both forward and reverse directions */
 if (true == isBothVideoOLCsComplete(pMyDev))
 {
 /* start media for this device (not shown)… */
 startVideoMedia(pMyDev));
 }
 }
 }

 /* Successful m3g_StartMedia termination: */
 case M3GEV_START_MEDIA_CMPLT:
 log("M3GEV_START_MEDIA_CMPLT for device = %s\n",
 ATDV_NAMEP(devH));
 break;

 /* m3g_StartMedia Failure indication: */
 case M3GEV_START_MEDIA_FAIL:
 {
 M3G_E_ERROR_TYPE* pError = (M3G_E_ERROR_TYPE*) pSRLEvtData;
 log("ERROR: M3GEV_START_MEDIA_FAIL for device = %s\n",
 ATDV_NAMEP(devH));
 log(" Error value = %d\n",(int)*pError);

 /* handle error…*/
 break;
 }

 default:
 printf("Received unknown event = %d for device = %s\n",
 evType, ATDV_NAMEP(devH));
 break;
 }
}
.
.
.
int startOpeningLogicalChannels(MYDEV *pMyDev)
{
 M3G_CAPS_LIST commonCaps;
 /* Retrieve the common H.233 capabilities: */
 if (M3G_ERROR == m3g_GetMatchedCaps(pMyDev->controlDevH, &commonCaps))
 {
 log("Error: m3g_GetMatchedCaps(%s)failed - %s\n",

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 157

Dialogic Corporation

start media stream — m3g_StartMedia()

 ATDV_NAMEP(devH), ATDV_ERRMSGP(devH));
 /* handle error… */
 }
 /* Configure the H.223 multiplex parameters for audio OLC (not shown)… */
 setOLCH223MuxParameters(&pMyDev->h223AudioOLCParams, &commonCaps, AUDIO);

 /* Configure the H.223 multiplex parameters for video OLC (not shown)… */
 setOLCH223MuxParameters(&pMyDev-> h223VideoOLCParams, &commonCaps, VIDEO);

 /* Retrieve the common audio capabilities: */
 if (M3G_ERROR == m3g_GetMatchedCaps(pMyDev->audioDevH, &commonCaps))
 {
 log("Error: m3g_GetMatchedCaps(%s)failed - %s\n",
 ATDV_NAMEP(pMyDev->audioDevH), ATDV_ERRMSGP(pMyDev->audioDevH));
 /* handle error… */
 }
 /* initiate OLC for Tx audio */
 sendAudioOLC(pMyDev, &commonCaps);

 /* Retrieve the common video capabilities: */
 if (M3G_ERROR == m3g_GetMatchedCaps(pMyDev->videoDevH, &commonCaps))
 {
 log("Error: m3g_GetMatchedCaps(%s)failed - %s\n",
 ATDV_NAMEP(pMyDev->videoDevH), ATDV_ERRMSGP(pMyDev->videoDevH));
 /* handle error… */
 }
 /* initiate OLC for Tx video (not shown)… */
 sendVideoOLC(pMyDev, &commonCaps);

 return SUCCESS;
} /* End of startOpeningLogicalChannels */

int sendAudioOLC(MYDEV *pMyDev, M3G_CAPS_LIST* pCommonAudioCaps)
{
 int index;

 /* Choose the preferred audio capability from among the common types: */
 for(index = 0;
 ((index < pCommonAudioCaps->numCaps) && (index < MAX_CAPABILITIES_PER_DEVICE));
 index++)
 {
 /* Capaibility selection logic not shown */
if (true == isAudioPreferred(pCommonAudioCaps->capability[index]))
{
 if (M3G_ERROR == m3g_OpenLC(pMyDev->controlDevH,
 pMyDev->h223AudioOLCParams,
 M3G_E_AUDIO_CAPABILITY,
 &pCommonAudioCaps->capability[index]))
 {
 log("Error: m3g_OpenLC(%s)failed - %s\n",
 ATDV_NAMEP(pMyDev->controlDevH), ATDV_ERRMSGP(pMyDev->controlDevH));
 /* handle error… */
 }
 break;
}
 } /* endFor */
 return SUCCESS;
} /* End of sendAudioOLC */

int sendVideoOLC(MYDEV *pMyDev, M3G_CAPS_LIST* pCommonVideoCaps)
{
 int index;

 /* Choose the preferred video capability from among common types: */
 for(index = 0;

158 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_StartMedia() — start media stream

 ((index < pCommonVideoCaps->numCaps) && (index < MAX_CAPABILITIES_PER_DEVICE));
 index++)
 {
 /* Capaibility selection logic not shown */
if (true == isVideoPreferred(pCommonVideoCaps->capability[index]))
{
 if (M3G_ERROR == m3g_OpenLC(pMyDev->controlDevH,
 pMyDev->h223VideoOLCParams,
 M3G_E_VIDEO_CAPABILITY,
 &pCommonVideoCaps->capability[index]))
 {
 log("Error: m3g_OpenLC(%s)failed - %s\n",
 ATDV_NAMEP(pMyDev->controlDevH), ATDV_ERRMSGP(pMyDev->controlDevH));
 /* handle error… */
 }
 break;
}
 } /* endFor */
 return SUCCESS;
} /* End of sendVideoOLC */

int startAudioMedia(MYDEV *pMyDev)
{
 if (M3G_ERROR == m3g_StartMedia(pMyDev->audioDevH))
 {
log("Error: m3g_StartMedia(%s)failed - %s\n",
 ATDV_NAMEP(pMyDev->audioDevH), ATDV_ERRMSGP(pMyDev->audioDevH));
/* handle error… */
 }
}

int startVideoMedia(MYDEV *pMyDev)
{
 if (M3G_ERROR == m3g_StartMedia(pMyDev->videoDevH))
 {
log("Error: m3g_StartMedia(%s)failed - %s\n",
 ATDV_NAMEP(pMyDev->videoDevH), ATDV_ERRMSGP(pMyDev->videoDevH));
/* handle error… */
 }
}

See Also

• m3g_StopMedia()

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 159

Dialogic Corporation

initiate and configure 3G-324M tracing — m3g_StartTrace()

m3g_StartTrace()

initiate and configure 3G-324M tracing

Description

The m3g_StartTrace() function initiates and configures 3G-324M tracing to a user-specified log
file. This function may be called for a control device or board device only. If called on a board
device, tracing is applied to all 3G-324M devices opened on the board. The default location for log
files is /usr/dialogic/data.

A post-processing log file parser utility is provided. The parser utility is called m3g_parser and is
used as follows from the command line:

 m3g_parser <logfile>

After executing the parser, a separate log file is created for every channel for each category that has
been enabled in the specified log file. For details on the categories or levels of tracing, see the
M3G_TRACE_INFO structure.

This function is only supported in asynchronous mode.

Termination Events

M3GEV_START_TRACE_CMPLT
Indicates the specified tracing level(s) has been successfully initiated for the given device(s).

Name: int m3g_StartTrace (deviceHandle, *pTraceInfo)

Inputs: SRL_DEVICE_HANDLE deviceHandle • control or board device handle

M3G_TRACE_INFO *pTraceInfo • pointer to M3G_TRACE_INFO

Returns: M3G_SUCCESS if successful
M3G_ERROR on failure

Includes: srllib.h
m3glib.h
m3gevts.h
m3gerrs.h

Category: Utility

Mode: asynchronous

Parameter Description

deviceHandle specifies an SRL handle to a control device or board device

pTraceInfo pointer to M3G_TRACE_INFO structure which contains configuration
information for tracing

160 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_StartTrace() — initiate and configure 3G-324M tracing

M3GEV_START_TRACE_FAIL
Indicates the specified tracing level(s) for the given device(s) has failed to initiate. The error
code is included in the event.

Cautions

3G-324M tracing can only be enabled for either the board device or individual devices. It cannot be
enabled and configured at both the board level and individual device level.

Errors

If this function fails with M3G_ERROR, use the Standard Runtime Library (SRL) standard
attribute functions ATDV_LASTERR() and ATDV_ERRMSGP() to obtain the error code and a
pointer to the error description, respectively. Error codes are defined in m3gerrs.h.

For more information, see Chapter 15, “Error Codes”.

Example

/* Header Files: */
#include <srllib.h>
#include <m3glib.h>
#include <m3gevts.h>
#include <m3gerrs.h>
.
.
.
/* Preconditions: 1) 3G-324M Library Session has already been started. */
/* 2) m3g_Open() has completed opening the board device handle */

int startH245Tracing(int boardDevH)
{
 const char h245LogFileName[] = "/usr/dialogic/log/h245messages.txt";

 M3G_TRACE_INFO traceInfo;
 traceInfo.version = M3G_LIBRARY_VERSION;
 traceInfo.logfile = h245LogFileName;
 traceInfo.bitmask = M3G_TRACE_H245;

 if (M3G_ERROR == m3g_StartTrace(boardDevH, &traceInfo))
 {
 log("Error: m3g_StartTrace(%s)failed - %s\n",
 ATDV_NAMEP(boardDevH), ATDV_ERRMSGP(boardDevH));
 /* handle error… */
 }

 return SUCCESS;
} /* End of startH245Tracing */
.
.
.

/* SRL event handler: */
 for (;;)
 {
 if (-1 != sr_waitevt(500))
 process_event();
 }
.
.
.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 161

Dialogic Corporation

initiate and configure 3G-324M tracing — m3g_StartTrace()

void process_event(void)
{
 /* process the SRL events */
 int evType = sr_getevttype();
 int devH = sr_getevtdev();
 void *pSRLEvtData = sr_getevtdatap();

 switch(evType)
 {
 /*
 .
 . Other events not shown…
 .
 */

 /* Successful m3g_StartTrace termination: */
 case M3GEV_START_TRACE_CMPLT:
 log("M3GEV_START_TRACE_CMPLT for device = %s\n",
 ATDV_NAMEP(devH));
 break;

 /* m3g_StartTrace Failure indication: */
 case M3GEV_START_TRACE_FAIL:
 {
 M3G_E_ERROR_TYPE* pError = (M3G_E_ERROR_TYPE*) pSRLEvtData;
 log("ERROR: M3GEV_START_TRACE_FAIL for device = %s\n",
 ATDV_NAMEP(devH));
 log(" Error value = %d\n",(int)*pError);

 /* handle error…*/
 break;
 }

 default:
 printf("Received unknown event = %d for device = %s\n",
 evType, ATDV_NAMEP(devH));
 break;
 }
}

See Also

• m3g_StopTrace()

162 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_Stop() — stop 3G-324M library and release resources

m3g_Stop()

stop 3G-324M library and release resources

Description

The m3g_Stop() function stops the 3G-324M library and releases all allocated resources. This
function must be the last 3G-324M function called before exiting the application.

This function is only supported in synchronous mode. The function returns M3G_SUCCESS if the
3G-324M library was successfully stopped; otherwise, it returns M3G_ERROR on failure.

Cautions

• The 3G-324M library must have been previously started using m3g_Start() before calling this
function.

• Close all devices opened through m3g_Open() before calling this function.

• This function must be the last 3G-324M function called before exiting the application.

Errors

If this function fails with M3G_ERROR, use the Standard Runtime Library (SRL) standard
attribute functions ATDV_LASTERR() and ATDV_ERRMSGP() to obtain the error code and a
pointer to the error description, respectively. Error codes are defined in m3gerrs.h.

For more information, see Chapter 15, “Error Codes”.

Example

/* Header Files */
#include <srllib.h>
#include <m3glib.h>
#include <m3gevts.h>
#include <m3gerrs.h>
.
.
.
/* Stop 3G-324M Library Session */
/* Preconditions: A 3G-324M library session has already been started via m3g_Start() */

Name: int m3g_Stop()

Inputs: none

Returns: M3G_SUCCESS if successful
M3G_ERROR on failure

Includes: srllib.h
m3glib.h
m3gerrs.h

Category: System Control

Mode: synchronous

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 163

Dialogic Corporation

stop 3G-324M library and release resources — m3g_Stop()

int stop3G324M()
{
 /* Stop the 3G-324M library session */
 if (M3G_ERROR == m3g_Stop())
 {
 /* handle error… */
 }
 return SUCCESS;
} /* End of stop3G324M */

See Also

• m3g_Start()

164 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_StopH245() — terminate H.245 session

m3g_StopH245()

terminate H.245 session

Description

After all H.245 message exchange has completed with the remote 3G-324M endpoint, the
m3g_StopH245() function terminates the H.245 session. If the local endpoint is the first to
terminate the H.245 session, it first sends an EndSession command message. Call this function
when the 3G-324M associated call has been disconnected, or upon graceful application
termination.

Only call this function after the associated H.245 logical channel usage is complete and media
channels have been stopped using m3g_StopMedia(). All the associated audio and video media
devices may only be disconnected from their respective H.223 multiplex channels after the H.245
processing has completed and all H.223 multiplexing has terminated. At that point, the audio and
video devices may be disconnected using dev_PortDisconnect() or dev_Disconnect(), while the
control channel may be disconnected using either dev_Disconnect() or dev_PortDisconnect()
depending on whether the transport type is the CT bus or an Nb UP interface, respectively.

Any subsequent H.245 transactions on this control device may only take place after successfully
restarting the H.245 session via the m3g_StartH245() function.

Any time an H.245 session is active between the local and remote 3G-324M endpoint, be prepared
to receive the unsolicited M3GEV_ENDSESSION_RCVD event. This event indicates an H.245
EndSession command has been received from the remote 3G-324M endpoint and as a result, the
current H.245 session has been terminated. You must then call m3g_StopH245() to deallocate
H.245 session associated resources.

This function is only supported in asynchronous mode.

Name: int m3g_StopH245 (deviceHandle)

Inputs: SRL_DEVICE_HANDLE deviceHandle • control device handle

Returns: M3G_SUCCESS if successful
M3G_ERROR on failure

Includes: srllib.h
m3glib.h
m3gevts.h
m3gerrs.h

Category: H.245 Control

Mode: asynchronous

Parameter Description

deviceHandle specifies an SRL handle to a control device

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 165

Dialogic Corporation

terminate H.245 session — m3g_StopH245()

Termination Events

M3GEV_STOP_H245_CMPLT
Indicates the H.245 session has been successfully terminated.

M3GEV_ STOP_H245_FAIL
Indicates the H.245 session has failed to terminate gracefully. The error code is included in the
event as detailed in Chapter 13, “Events”.

Cautions

None.

Errors

If this function fails with M3G_ERROR, use the Standard Runtime Library (SRL) standard
attribute functions ATDV_LASTERR() and ATDV_ERRMSGP() to obtain the error code and a
pointer to the error description, respectively. Error codes are defined in m3gerrs.h.

For more information, see Chapter 15, “Error Codes”.

Code Example

/* Header Files: */
#include <srllib.h>
#include <m3glib.h>
#include <m3gevts.h>
#include <m3gerrs.h>
.
.
.
/* Preconditions: 1) 3G-324M Library Session has already been started. */
/* 2) m3g_Open() has completed opening the applicable */
/* control, audio and or video devices */
/* associated with the 3G-324M bearer channel. */
/* 3) An H.245 session has been initiated between the local */
/* and remote 3G-324M endpoint. */
/*
int terminate3G324MCall (int controlDevH)
{
 /* Terminate the H.245 session. */
 if (M3G_ERROR == m3g_StopH245(controlDevH))
 {
 log("Error: m3g_StopH245(%s)failed - %s\n",
 ATDV_NAMEP(devH), ATDV_ERRMSGP(devH));
 /* handle error… */
 }

 return SUCCESS;
} /* End of terminate3G324MCall */
.
.
.

/* SRL event handler: */
 for (;;)
 {
 if (-1 != sr_waitevt(500))
 process_event();
 }
.

166 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_StopH245() — terminate H.245 session

.

.

void process_event(void)
{
 /* process the SRL events */
 int evType = sr_getevttype();
 int devH = sr_getevtdev();
 void *pSRLEvtData = sr_getevtdatap();

 switch(evType)
 {
 /*
 .
 . Other events not shown…
 .
 */

 /* Received EndSession message from remote 3G-324M endpoint. */
 case M3GEV_ENDSESSION_RCVD:
 log("M3GEV_ENDSESSION_RCVD for device = %s\n",
 ATDV_NAMEP(devH));
 /* Must now call m3g_StopH245() to deallocate H.245 session resources. */
 /* devices from their respective source or sinks (not shown)… */
 if (M3G_ERROR == m3g_StopH245(controlDevH))
 {
 log("Error: m3g_StopH245(%s)failed - %s\n",
 ATDV_NAMEP(devH), ATDV_ERRMSGP(devH));
 /* handle error… */
 }
 break;

 /* Successful m3g_StopH245 termination: */
 case M3GEV_STOP_H245_CMPLT:
 log("M3GEV_STOP_H245_CMPLT for device = %s\n",
 ATDV_NAMEP(devH));
 /* May now disconnect H.223 multiplex from CT bus and audio and video */
 /* devices from their respective source or sinks (not shown)… */
 break;

 /* m3g_StopH245 Failure indication: */
 case M3GEV_STOP_H245_FAIL:
 {
 M3G_E_ERROR_TYPE* pError = (M3G_E_ERROR_TYPE*) pSRLEvtData;
 log("ERROR: M3GEV_STOP_H245_FAIL for device = %s\n",
 ATDV_NAMEP(devH));
 log(" Error value = %d\n",(int)*pError);

 /* handle error…*/
 break;
 }

 default:
 printf("Received unknown event = %d for device = %s\n",
 evType, ATDV_NAMEP(devH));
 break;
 }
}

See Also

• m3g_StartH245()

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 167

Dialogic Corporation

stop media stream — m3g_StopMedia()

m3g_StopMedia()

stop media stream

Description

The m3g_StopMedia() function stops transmitting and/or receiving media data streams between
the specified media device and the H.223 multiplex/demultiplex.

This function is only supported in asynchronous mode.

Termination Events

M3GEV_STOP_MEDIA_CMPLT
Indicates streaming between the H.223 aggregate and the specified media device has been
successfully terminated.

M3GEV_ STOP_MEDIA _FAIL
Indicates streaming between the H.223 aggregate and the specified media device has failed to
gracefully terminate. The error code is included in the event as detailed in Chapter 13,
“Events”.

Cautions

It is invalid to call this function unless the audio device or video device is currently streaming as the
result of a prior call to m3g_StartMedia() or m3g_ModifyMedia().

Errors

If this function fails with M3G_ERROR, use the Standard Runtime Library (SRL) standard
attribute functions ATDV_LASTERR() and ATDV_ERRMSGP() to obtain the error code and a
pointer to the error description, respectively. Error codes are defined in m3gerrs.h.

Name: int m3g_StopMedia (deviceHandle)

Inputs: SRL_DEVICE_HANDLE deviceHandle • audio or video device handle

Returns: M3G_SUCCESS if successful
M3G_ERROR on failure

Includes: srllib.h
m3glib.h
m3gevts.h
m3gerrs.h

Category: Data Flow

Mode: asynchronous

Parameter Description

deviceHandle specifies SRL handle to an audio or video device

168 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_StopMedia() — stop media stream

For more information, see Chapter 15, “Error Codes”.

Example

/* Header Files: */
#include <srllib.h>
#include <m3glib.h>
#include <m3gevts.h>
#include <m3gerrs.h>
.
.
.
/* Preconditions: 1) 3G-324M Library H.245 forward and reverse logical channel have */
/* already been established (not shown). */
/* 2) Call associated with bearer channel disconnected (not shown). */
int handleDisconnectedCall(MYDEV * pMyDev)
{

 /* Disconnect and stop the media (not shown): */
 disconnectAndStopMedia(pMyDev);

 /* Close audio forward logical channel */
 if (M3G_ERROR == m3g_CloseLC(pMyDev->controlDevH, pMyDev->audioLCN,
M3G_E_REQ_CHAN_CLOSE_NORMAL))
 {
 log("Error: m3g_CloseLC(%s)failed - %s\n",
 ATDVNAMEP(pMyDev->controlDevH), ATDV_LASTERR(pMyDev->controlDevH));
 /* handle error… */
 }

 /* Close video forward logical channel */
 if (M3G_ERROR == m3g_CloseLC(pMyDev->controlDevH, pMyDev->videoLCN,
3G_E_REQ_CHAN_CLOSE_NORMAL))
 {
 log("Error: m3g_CloseLC(%s)failed - %s\n",
 ATDVNAMEP(pMyDev->controlDevH), ATDV_LASTERR(pMyDev->controlDevH));
 /* handle error… */
 }

 /* Stop the H.245 Session (not shown): */
 stopH245(pMydev);

} /* End of handleDisconnectedCall */

int disconnectAndStopMedia(MYDEV * pMyDev)
{
 /* Disconnect audio devices: */
 dev_PortDisconnect(pMyDev->audioDevH,pMyDev->audioPortList, pMyDev);
 dev_PortDisconnect(pMyDev->ipmAud, pMyDev->ipmPortList, pMyDev);

 /* Stop streaming between audio i/o and H.223 multiplex: */
 if (M3G_ERROR == m3g_StopMedia(pMyDev->audioDevH))
 {
 log("Error: m3g_StopMedia(%s)failed - %s\n",
 ATDVNAMEP(pMyDev->audioDevH), ATDV_LASTERR(pMyDev->audioDevH));
 /* handle error… */
 }

 /* Disconnect video devices: */
 dev_PortDisconnect(pMyDev->videoDevH,pMyDev->videoPortList, pMyDev);
 dev_PortDisconnect(pMyDev->ipmVid, pMyDev->ipmPortList, pMyDev);

 /* Stop streaming between video i/o and H.223 multiplex: */
 if (M3G_ERROR == m3g_StopMedia(pMyDev->video DevH))
 {
 log("Error: m3g_StopMedia(%s)failed - %s\n",

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 169

Dialogic Corporation

stop media stream — m3g_StopMedia()

 ATDVNAMEP(pMyDev->audioDevH), ATDV_LASTERR(pMyDev->videoDevH));
 /* handle error… */
 }
} /* End of disconnectAndStopMedia */
.
.
.
/* SRL event handler: */
 for (;;)
 {
 if (-1 != sr_waitevt(500))
 process_event();
 }
.
.
.
void process_event(void)
{
 /* process the SRL events */
 int evType = sr_getevttype();
 int devH = sr_getevtdev();
 void *pSRLEvtData = sr_getevtdatap();

 switch(evType)
 {
 /*
 .
 . Other events not shown…
 .
 */

 /* Successful m3g_CloseLC termination: */
 case M3GEV_CLOSE_LC_CMPLT:
 {
 /* Assume application defined its device structure: */
 MYDEV * pMyDev;
 M3G_LOGICAL_CHANNEL_NUMBER lcn = *(M3G_LOGICAL_CHANNEL_NUMBER *) pSRLEvtData;
 m3g_GetUserInfo(devH, &pMyDev);

 /* Determine whether lcn is for audio or video: */
 if(AUDIO == getLCNMediaType(pMyDev, lcn))
 {
 pMyDev->isAudioFwdOLCAcked = false;
 pMyDev->fwdAudioLCN = 0;
 }
 else /* else video: */
 {
 pMyDev->isVideoFwdOLCAcked = false;
 pMyDev->fwdVideoLCN = 0;
 }

 /* If both audio and video CLCAcks received: */
 if ((!pMyDev->isAudioFwdOLCAcked) && (!pMyDev->isVideoFwdOLCAcked))
 {
 /* Stop the H.245 Session (not shown): */
 stopH245(pMydev);
 }
 break;
 }

 /* m3g_CLoseLC Failure indication: */
 case M3GEV_CLOSE_LC_FAIL:
 {
 M3G_E_ERROR_TYPE* pError = (M3G_E_ERROR_TYPE*) pSRLEvtData;
 log("ERROR: M3GEV_CLOSE_LC_FAIL for device = %s\n",
 ATDV_NAMEP(devH));
 log(" Error value = %d\n",(int)*pError);

170 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_StopMedia() — stop media stream

 /* handle error…*/
 break;
 }

 /* Successful m3g_StopMedia termination: */
 case M3GEV_STOP_MEDIA_CMPLT:
 log("M3GEV_STOP_MEDIA_CMPLT for device = %s\n",
 ATDV_NAMEP(devH));
 break;

 /* m3g_ StopMedia Failure indication: */
 case M3GEV_STOP_MEDIA_FAIL:
 {
 M3G_E_ERROR_TYPE* pError = (M3G_E_ERROR_TYPE*) pSRLEvtData;
 log("ERROR: M3GEV_STOP_MEDIA_FAIL for device = %s\n",
 ATDV_NAMEP(devH));
 log(" Error value = %d\n",(int)*pError);

 /* handle error…*/
 break;
 }

 default:
 printf("Received unknown event = %d for device = %s\n",
 evType, ATDV_NAMEP(devH));
 break;
 }
}

See Also

• m3g_StartMedia()

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 171

Dialogic Corporation

stop 3G-324M tracing — m3g_StopTrace()

m3g_StopTrace()

stop 3G-324M tracing

Description

The m3g_StopTrace() function stops all tracing to a log file previously specified using
m3g_StartTrace(). This function may be called for a control device or board device only. If called
on a board device, tracing is stopped for all devices opened on the board.

This function is only supported in asynchronous mode.

Termination Events

M3GEV_STOP_TRACE_CMPLT
Indicates the specified tracing level(s) has been successfully stopped for the given device(s).

M3GEV_STOP_TRACE_FAIL
Indicates the specified tracing level(s) for the given device(s) has failed to stop. The error code
is included in the event.

Cautions

None.

Errors

If this function fails with M3G_ERROR, use the Standard Runtime Library (SRL) standard
attribute functions ATDV_LASTERR() and ATDV_ERRMSGP() to obtain the error code and a
pointer to the error description, respectively. Error codes are defined in m3gerrs.h.

For more information, see Chapter 15, “Error Codes”.

Name: int m3g_StopTrace (deviceHandle)

Inputs: SRL_DEVICE_HANDLE deviceHandle • control or board device handle

Returns: M3G_SUCCESS if successful
M3G_ERROR on failure

Includes: srllib.h
m3glib.h
m3gevts.h
m3gerrs.h

Category: Utility

Mode: asynchronous

Parameter Description

deviceHandle specifies an SRL handle to a control device or board device

172 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

m3g_StopTrace() — stop 3G-324M tracing

Example

/* Header Files: */
#include <srllib.h>
#include <m3glib.h>
#include <m3gevts.h>
#include <m3gerrs.h>
.
.
.
/* Preconditions: 1) 3G-324M Library Session has already been started. */
/* 2) m3g_Open() has completed opening the board device handle */

int stopTracing(int boardDevH)
{
 if (M3G_ERROR == m3g_StopTrace(boardDevH))
 {
 log("Error: m3g_StopTrace(%s)failed - %s\n",
 ATDV_NAMEP(boardDevH), ATDV_ERRMSGP(boardDevH));
 /* handle error… */
 }

 return SUCCESS;
} /* End of stopTracing */
.
.
.

/* SRL event handler: */
 for (;;)
 {
 if (-1 != sr_waitevt(500))
 process_event();
 }
.
.
.

void process_event(void)
{
 /* process the SRL events */
 int evType = sr_getevttype();
 int devH = sr_getevtdev();
 void *pSRLEvtData = sr_getevtdatap();

 switch(evType)
 {
 /*
 .
 . Other events not shown…
 .
 */

 /* Successful m3g_StopTrace termination: */
 case M3GEV_STOP_TRACE_CMPLT:
 log("M3GEV_STOP_TRACE_CMPLT for device = %s\n",
 ATDV_NAMEP(devH));
 break;

 /* m3g_StopTrace Failure indication: */
 case M3GEV_STOP_TRACE_FAIL:
 {
 M3G_E_ERROR_TYPE* pError = (M3G_E_ERROR_TYPE*) pSRLEvtData;
 log("ERROR: M3GEV_STOP_TRACE_FAIL for device = %s\n",
 ATDV_NAMEP(devH));
 log(" Error value = %d\n",(int)*pError);

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 173

Dialogic Corporation

stop 3G-324M tracing — m3g_StopTrace()

 /* handle error…*/
 break;
 }

 default:
 printf("Received unknown event = %d for device = %s\n",
 evType, ATDV_NAMEP(devH));
 break;
 }
}

See Also

• m3g_StartTrace()

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 174

Dialogic Corporation

1313.Events

This chapter provides information about the events that may be returned by the Dialogic® 3G-
324M software. Topics include:

• Event Types . 174

• Event Information . 174

13.1 Event Types

The Dialogic® 3G-324M software uses the following types of events:

termination events
Termination events are returned after the completion of a function call. These events apply to
the asynchronous programming model only. The 3G-324M software provides a pair of
termination events for a function, to indicate successful completion or failure.

unsolicited events
Unsolicited events are not requested by the application. They are triggered by, and provide
information about, external events. Unsolicited events apply to both synchronous and
asynchronous programming models.

Events are defined in the m3gevts.h header file.

Use sr_waitevt(), sr_enbhdlr() or other SRL functions to collect an event code, depending on the
programming model in use. For more information, see the Dialogic® Standard Runtime Library
API Library Reference.

13.2 Event Information

Events used by the Dialogic® 3G-324M software are described in this section. For each event, the
following information is provided:

• The name of the event.

• The type of event: termination or unsolicited. See Section 13.1, “Event Types”, on page 174
for more information.

• The type of device with which the event is associated: board, control, audio, or video.

• A short description explaining why the event is received and what the event indicates. Also
included is whether an unsolicited event can be masked (enabled or disabled). Note that only
certain unsolicited events can be masked.

• The data type, if any, of additional data that is delivered within the event.

Use the Dialogic® Standard Runtime Library function sr_getevtdatap() to retrieve the data
buffer and cast it to the specified data type to process additional pertinent data. Note that the

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 175

Dialogic Corporation

Events

data within this buffer must be copied or processed before the next SRL event is de-queued, at
which point this buffer will be de-allocated by the SRL.

The following events are used by the Dialogic® 3G-324M software:

M3GEV_CALL_STATISTICS
Unsolicited event. Associated with control device type. Indicates the recorded statistics for the
currently completed 3G call. These statistics include media and H.223 data transmission,
transmission errors (CRC and malformed headers), and call duration as indicated in the
attached data. This event can be masked. Data type: M3G_CALL_STATISTICS

M3GEV_CLOSE_LC_CMPLT
Termination event for m3g_CloseLC(). Associated with control device type. Indicates that
the specified CloseLogicalChannel or RequestChannelClose message was successfully sent to
the remote 3G-324M endpoint. Data type: M3G_LOGICAL_CHANNEL_NUMBER

M3GEV_CLOSE_LC_FAIL
Termination event for m3g_CloseLC(). Associated with control device type. Indicates a local
failure to send the CloseLogicalChannel or RequestChannelClose request, or no response was
received from the remote 3G-324M endpoint. Data type: M3G_E_ERROR_TYPE

M3GEV_DISABLE_EVENTS_CMPLT
Termination event for m3g_DisableEvents(). Associated with board and control device types.
Indicates that the specified events were successfully disabled.

M3GEV_DISABLE_EVENTS_FAIL
Termination event for m3g_DisableEvents(). Associated with board and control device types.
Indicates that the specified events failed to be disabled and remain enabled. Data type:
M3G_E_ERROR_TYPE

M3GEV_ENABLE_EVENTS_CMPLT
Termination event for m3g_EnableEvents(). Associated with board and control device types.
Indicates that the specified events were successfully enabled.

M3GEV_ENABLE_EVENTS_FAIL
Termination event for m3g_EnableEvents(). Associated with board and control device types.
Indicates that the specified events failed to be enabled. Data type: M3G_E_ERROR_TYPE

M3GEV_ENDSESSION_RCVD
Unsolicited event. Associated with control device type. Indicates that an H.245 EndSession
command was received from the remote 3G-324M endpoint and as a result, the current H.245
session was terminated.

M3GEV_ENDSESSION_SENT
Unsolicited event. Associated with control device type. Indicates that an H.245 EndSession
command was sent to the remote 3G-324M endpoint to terminate the current H.245 session.

M3GEV_FRAMING_ESTABLISHED
Unsolicited event. Associated with control device type. Indicates that the H.223 Abstraction
Layer framing and its service access points (SAPs) have been established. This event is
received in one of two scenarios: (1) m3g_StartH245() completed successfully, or (2) the
framing layer recovered from a previous framing layer error as signaled by the
M3GEV_FRAMING_LOST event.

176 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

Events

M3GEV_FRAMING_LOST
Unsolicited event. Associated with control device type. Indicates that an error condition
occurred in the framing layer which prevents the proper behavior of the H.223 multiplex layer.
The H.223 framing must be restarted by calling m3g_StopH245() followed by
m3g_StartH245().

M3GEV_GET_LOCAL_CAPS_CMPLT
Termination event for m3g_GetLocalCaps(). Associated with control, audio, and video
device types. Indicates that the local capabilities for the specified device were retrieved
successfully. Data type: M3G_CAPS_LIST

M3GEV_GET_LOCAL_CAPS_FAIL
Termination event for m3g_GetLocalCaps(). Associated with control, audio, and video
device types. Indicates that the local capabilities for the specified device failed to be retrieved.
Data type: M3G_E_ERROR_TYPE

M3GEV_GET_PARM_CMPLT
Termination event for m3g_GetParm(). Associated with board and control device types.
Indicates that the specified parameter value was successfully retrieved as specified in the SRL
event data block. Data type: M3G_PARM_INFO

M3GEV_GET_PARM_FAIL
Termination event for m3g_GetParm(). Associated with board and control device types.
Indicates that the specified parameter value failed to be retrieved. Data type:
M3G_E_ERROR_TYPE

M3GEV_H245_MES_EVT
Unsolicited event. Associated with control device type. Indicates that an H.245
MultiplexEntrySend related transaction message was sent or received as specified in the SRL
event data block. This event is only received if MultiplexEntrySend eventing is enabled via
m3g_EnableEvents(). This event can be masked. (Default is disabled.) Data type:
M3G_MES

M3GEV_H245_MSD_EVT
Unsolicited event. Associated with control device type. Indicates that an H.245
MasterSlaveDetermination related transaction message was sent or received as specified in the
SRL event data block. This event is only received if verbose MasterSlaveDetermination
eventing is enabled via m3g_EnableEvents(). This event can be masked. (Default is
disabled.) Data type: M3G_E_MSD_EVT_TYPE

M3GEV_H245_MISC_CMD_ RCVD
Unsolicited event. Associated with control device type. Indicates that an H.245
MiscellaneousCommand indication message was received as specified in the SRL event data
block. The type of MiscellaneousCommand indication message and associated parameters
may be obtained from the SRL event data block. This event can be masked. (Default is
enabled.) Data type: M3G_H245_MISC_CMD

M3GEV_H245_UII_RCVD
Unsolicited event. Associated with control device type. Indicates that an H.245 UII DTMF
digit was received from the remote 3G-324M endpoint. This event can be masked. (Default is
enabled.) Data type: M3G_H245_UII

M3GEV_LOCAL_TCS_ACKD
Unsolicited event. Associated with control device type. Indicates that a TerminalCapabilitySet
request message was successfully sent to the remote 3G-324M endpoint which acknowledged

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 177

Dialogic Corporation

Events

with a TerminalCapabilitySetAck response. After M3GEV_MSD_ESTABLISHED,
M3GEV_REMOTE_TCS_RCVD, and M3GEV_LOCAL_TCS_ACKD events are all
received, use m3g_GetMatchedCaps() to retrieve common capabilities between the remote
and local 3G-324M endpoints.

M3GEV_MODIFY_MEDIA_CMPLT
Termination event for m3g_ModifyMedia(). Associated with audio and video device types.
Indicates that the specified change to streaming between the H.223 aggregate and the specified
media device successfully completed.

M3GEV_MODIFY_MEDIA_FAIL
Termination event for m3g_ModifyMedia(). Associated with audio and video device types.
Indicates that the specified change to streaming between the H.223 aggregate and the specified
media device failed. Data type: M3G_E_ERROR_TYPE

M3GEV_MONA_PREF_MSG_RCVD
Unsolicited event. Associated with control device type. Indicates that the first MONA
Preference Message was received from the remote peer indicating its transmit and receive
MONA MPC capabilities. Note that an event is only dispatched on the first MONA Preference
Message received from the remote peer. This event can be masked. Data type:
M3G_MONA_TXRX_MPC_SUPPORT

M3GEV_MSD_ESTABLISHED
Unsolicited event. Associated with control device type. Indicates that the H.245
MasterSlaveDetermination exchange with the remote 3G-324M endpoint completed. After
M3GEV_MSD_ESTABLISHED, M3GEV_REMOTE_TCS_RCVD, and
M3GEV_LOCAL_TCS_ACKD events are all received, use m3g_GetMatchedCaps() to
retrieve common capabilities between the remote and local 3G-324M endpoints. Data type:
M3G_E_H245_MSD_RESULT

M3GEV_MSD_FAILED
Unsolicited event. Associated with control device type. Indicates that the H.245
MasterSlaveDetermination exchange with the remote 3G-324M endpoint failed. The
recommended next action is to re-close the H.245 session and re-start the H.245 sequence
using m3g_StopH245() and m3g_StartH245() respectively. Data type:
M3G_E_ERROR_TYPE

M3GEV_OPEN_CMPLT
Termination event for m3g_Open() and m3g_OpenEx(). Associated with all device types.
Indicates that the specified device type successfully opened.

M3GEV_OPEN_FAIL
Termination event for m3g_Open() and m3g_OpenEx(). Associated with all device types.
Indicates that the specified device type failed to be opened. Data type:
M3G_E_ERROR_TYPE

M3GEV_OPEN_LC_CMPLT
Termination event for m3g_OpenLC(). Associated with control device type. Indicates that an
OpenLogicalChannelAck message was successfully received from the remote 3G-324M
endpoint, acknowledging the OpenLogicalChannel request issued previously on this control
device. Data type: M3G_REMOTE_OLCACK_RESP

178 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

Events

M3GEV_OPEN_LC_FAIL
Termination event for m3g_OpenLC(). Associated with control device type. Indicates that
the specified capability in the OpenLogicalChannel request was not positively acknowledged
from the remote 3G-324M endpoint. Data type: M3G_E_ERROR_TYPE

M3GEV_REMOTE_CLOSE_LC_RCVD
Unsolicited event. Associated with control device type. Indicates a CloseLogicalChannel or
ChannelCloseRequest message was received from the remote 3G-324M endpoint. These
incoming messages are always implicitly and automatically responded to via a
CloseLogicalChannelAck or RequestChannelCloseAck response by the 3G-324M protocol
stack. The application is only responsible for properly re-routing the associated media stream
from the H.223 aggregate and stopping the media stream using dev_PortDisconnect() or
dev_Disconnect() and m3g_StopMedia(), respectively. Data type:
M3G_LOGICAL_CHANNEL_NUMBER

M3GEV_REMOTE_OLC_RCVD
Unsolicited event. Associated with control device type. Indicates that an OpenLogicalChannel
request message from the remote 3G-324M endpoint was received. This request must be
positively acknowledged or rejected by calling m3g_RespondToOLC(). Data type:
M3G_REMOTE_OLC_REQ

M3GEV_REMOTE_TCS_RCVD
Unsolicited event. Associated with control device type. Indicates that a TerminalCapabilitySet
request message from the remote 3G-324M endpoint was received. After
M3GEV_MSD_ESTABLISHED, M3GEV_REMOTE_TCS_RCVD, and
M3GEV_LOCAL_TCS_ACKD events are all received, use m3g_GetMatchedCaps() to
retrieve common capabilities between the remote and local 3G-324M endpoints.

M3GEV_REMOTE_VENDORID_RCVD
Unsolicited event. Associated with board device type. Indicates that an H.245
VendorIdentification message from the remote 3G-324M endpoint was received. This event
can be masked. Data type: M3G_VENDORID_INFO

M3GEV_RESET_COMPLT
Termination event for m3g_Reset(). Indicates that the specified devices were successfully
reset or that there were no devices to recover.

M3GEV_RESET_FAIL
Termination event for m3g_Reset(). Indicates that the specified devices failed to be reset.
Data type: M3G_E_ERROR_TYPE

M3GEV_RESPOND_TO_LC_CMPLT
Termination event for m3g_RespondToOLC(). Associated with control device type.
Indicates that an OpenLogicalChannelAck or OpenLogicalChannelReject message was
successfully sent to the remote 3G-324M endpoint, acknowledging the OpenLogicalChannel
request issued previously on this control device. Data type:
M3G_LOGICAL_CHANNEL_NUMBER

M3GEV_RESPOND_TO_LC_FAIL
Termination event for m3g_RespondToOLC(). Associated with control device type.
Indicates that the specified OpenLogicalChannelAck or OpenLogicalChannelReject response
failed to be sent to the remote 3G-324M endpoint. Data type: M3G_E_ERROR_TYPE

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 179

Dialogic Corporation

Events

M3GEV_RX_MPC_ESTABLISHED
Unsolicited event. Associated with control device type. Indicates that a Media Preconfigured
Channel has been established permitting the receipt of media from the remote peer. The H.223
and media transcoding configuration is specified in the attached data. Data type:
M3G_MONA_MPC

M3GEV_SEND_H245_MISC_CMD_CMPLT
Termination event for m3g_SendH245MiscCmd(). Associated with control device type.
Indicates that the specified H.245 MiscellaneousCommand indication message was sent
successfully.

M3GEV_SEND_H245_MISC_CMD_FAIL
Termination event for m3g_SendH245MiscCmd(). Associated with control device type.
Indicates that the specified H.245 MiscellaneousCommand indication message failed to be
sent. Data type: M3G_E_ERROR_TYPE

M3GEV_SEND_H245_UII_CMPLT
Termination event for m3g_SendH245UII(). Associated with control device type. Indicates
that the specified alphanumeric digit string was sent successfully.

M3GEV_SEND_H245_UII_FAIL
Termination event for m3g_SendH245UII(). Associated with control device type. Indicates
that the specified alphanumeric digit string failed to be sent. Data type:
M3G_E_ERROR_TYPE

M3GEV_SEND_MONA_PREF_MSG
Unsolicited event. Associated with control device type. Indicates that the last MONA
Preference Message was sent with specified transmit and receive MONA MPC capabilities.
Note that an event will only be dispatched on the last MONA Preference Message sent to the
remote peer. Data type: M3G_MONA_TXRX_MPC_SUPPORT

M3GEV_SET_PARM_CMPLT
Termination event for m3g_SetParm(). Associated with board and control device types.
Indicates that the specified parameter value was successfully set.

M3GEV_SET_PARM_FAIL
Termination event for m3g_SetParm(). Associated with board and control device types.
Indicates that the specified parameter value failed to be set. Data type:
M3G_E_ERROR_TYPE

M3GEV_SET_TCS_CMPLT
Termination event for m3g_SetTCS(). Associated with control device type. Indicates that the
specified local capabilities were successfully set.

M3GEV_SET_TCS_FAIL
Termination event for m3g_SetTCS(). Associated with control device type. Indicates that the
local capabilities failed to be set on the device. Data type: M3G_E_ERROR_TYPE

M3GEV_SET_VENDORID_CMPLT
Termination event for m3g_SetVendorId(). Associated with board device type. Indicates the
specified vendor and product information elements have been successfully configured for the
board.

180 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

Events

M3GEV_SET_VENDORID_FAIL
Termination event for m3g_SetVendorId(). Associated with board device type. Indicates the
specified vendor and product information elements have failed to be configured for the board.
Data type: M3G_E_ERROR_TYPE

M3GEV_START_H245_CMPLT
Termination event for m3g_StartH245(). Associated with control device type. Indicates that
the H.245 protocol was successfully initiated.

Note: This event does not imply any status regarding H.223 framing layer, H.245
MasterSlaveDetermination, nor H.245 TerminalCapabilitySet exchange.

M3GEV_START_H245_FAIL
Termination event for m3g_StartH245(). Associated with control device type. Indicates that
the H.245 protocol failed to initiate. Data type: M3G_E_ERROR_TYPE

M3GEV_START_MEDIA_CMPLT
Termination event for m3g_StartMedia(). Associated with audio and video device types.
Indicates streaming between the H.223 aggregate and the specified media device was
successfully initiated.

M3GEV_START_MEDIA_FAIL
Termination event for m3g_StartMedia(). Associated with audio and video device types.
Indicates streaming between the H.223 aggregate and the specified media device failed to
initiate. Data type: M3G_E_ERROR_TYPE

M3GEV_START_TRACE_CMPLT
Termination event for m3g_StartTrace(). Associated with control and board device types.
Indicates the specified tracing level(s) has been successfully initiated for the given device(s).

M3GEV_START_TRACE_FAIL
Termination event for m3g_StartTrace(). Associated with control and board device types.
Indicates the specified tracing level(s) for the given device(s) has failed to initiate. Data type:
M3G_E_ERROR_TYPE

M3GEV_STOP_H245_CMPLT
Termination event for m3g_StopH245(). Associated with control device type. Indicates that
the H.245 protocol successfully terminated.

M3GEV_STOP_H245_FAIL
Termination event for m3g_StopH245(). Associated with control device type. Indicates that
the H.245 protocol failed to terminate gracefully. Data type: M3G_E_ERROR TYPE

M3GEV_STOP_MEDIA_CMPLT
Termination event for m3g_StopMedia(). Associated with audio and video device types.
Indicates that streaming between the H.223 aggregate and the specified media device was
successfully terminated.

M3GEV_STOP_MEDIA_FAIL
Termination event for m3g_StopMedia(). Associated with audio and video device types.
Indicates that streaming between the H.223 aggregate and the specified media device failed to
terminate. Data type: M3G_E_ERROR_TYPE

M3GEV_STOP_TRACE_CMPLT
Termination event for m3g_StopTrace(). Associated with control and board device types.
Indicates the specified tracing level(s) has been successfully stopped for the given device(s).

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 181

Dialogic Corporation

Events

M3GEV_STOP_TRACE_FAIL
Termination event for m3g_StopTrace(). Associated with control and board device types.
Indicates the specified tracing level(s) for the given device(s) has failed to stop. Data type:
M3G_E_ERROR_TYPE

M3GEV_TX_MPC_ESTABLISHED
Unsolicited event. Associated with control device type. Indicates that a Media Preconfigured
Channel has been established permitting the sending of media from the local endpoint to the
remote peer. The H.223 and media transcoding configuration is specified in the attached data.
Data Type: M3G_MONA_MPC

182 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

Events

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 183

Dialogic Corporation

1414.Data Structures

This chapter provides an alphabetical reference to the data structures used by the Dialogic® 3G-
324M software. The following data structures are described:

• M3G_AMR_OPTIONS. 185

• M3G_AUDIO_CAPABILITY. 186

• M3G_AUDIO_OPTIONS . 187

• M3G_CALL_STATISTICS. 188

• M3G_CAPABILITY . 190

• M3G_CAPS_LIST . 191

• M3G_FASTUPDATE_GOB . 192

• M3G_FASTUPDATE_MB . 193

• M3G_G7231_OPTIONS . 194

• M3G_H221_NONSTD . 195

• M3G_H223_CAPABILITY. 196

• M3G_H223_LC_PARAMS. 198

• M3G_H223_SESSION . 201

• M3G_H245_MISC_CMD . 202

• M3G_H245_MISC_CMD_PARAMS. 204

• M3G_H245_UII . 205

• M3G_H263_OPTIONS . 206

• M3G_MONA_MPC . 208

• M3G_MONA_TXRX_MPC_SUPPORT . 209

• M3G_MPEG4_OPTIONS. 210

• M3G_NONSTANDARD_ID. 211

• M3G_OBJECT_ID . 212

• M3G_OCTET_STRING . 213

• M3G_PARM_INFO. 214

• M3G_REMOTE_CLOSED_LC . 218

• M3G_REMOTE_OLC_REQ. 219

• M3G_REMOTE_OLCACK_RESP. 220

• M3G_SIMULTANEOUS_CAP_SET . 221

184 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

Data Structures

• M3G_START_STRUCT. 222

• M3G_TEMPSPTRDFF . 223

• M3G_TRACE_INFO . 224

• M3G_VENDORID_INFO . 225

• M3G_VIDEO_CAPABILITY . 226

• M3G_VIDEO_OPTIONS. 228

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 185

Dialogic Corporation

AMR-NB options — M3G_AMR_OPTIONS

M3G_AMR_OPTIONS

AMR-NB options

Description

The M3G_AMR_OPTIONS structure specifies capabilities specific to the AMR-NB algorithm.
This structure is a member of the M3G_AUDIO_OPTIONS structure.

Note: This structure is not currently supported.

186 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

M3G_AUDIO_CAPABILITY — audio capabilities

M3G_AUDIO_CAPABILITY

audio capabilities
typedef struct
{
 unsigned int version;
 unsigned short tableEntryNumber;
 M3G_E_DIRECTION direction;
 M3G_E_AUDIO_TYPE coderType;
 unsigned char maxFramesPerSDU;
 M3G_AUDIO_OPTIONS options;
} M3G_AUDIO_CAPABILITY;

Description

The M3G_AUDIO_CAPABILITY structure specifies audio capabilities. This structure is a
member of the M3G_CAPABILITY data structure.

Field Descriptions

The fields of the M3G_AUDIO_CAPABILITY data structure are described as follows:

version
version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Set to the symbolic constant
M3G_LIBRARY_VERSION which defines the current version of the library.

direction
direction of specified audio in perspective of local endpoint. Valid values are:

• M3G_E_IDLE – no streaming
• M3G_E_TX – transmit from local to remote
• M3G_E_RX – receive from remote to local
• M3G_E_TXRX – bi-directional streaming

For the local 3G-324M endpoint, only M3G_E_TX and M3G_E_RX may be used in the
terminal capability settings in m3g_SetTCS() as asymmetric media (audio and video)
transcoding is supported. The remote 3G-324M endpoint, however, may specify symmetric
media capabilities (M3G_E_TXRX) in its TerminalCapabilitySet message.

tableEntryNumber
table entry number of capability within CapabilityTableEntry of H.245 TerminalCapabilitySet
message. Read-only field provided for information. This field is not used in
OpenLogicalChannel requests.

coderType
type of audio codec. Valid values are:

• M3G_E_G7231 – G.723.1 transcoding
• M3G_E_GSM_AMR_NB – GSM adaptive multi-rate narrow band (AMR-NB) codec

maxFramesPerSDU
maximum number of audio frames per AL-SDU. Valid range is 1 - 256. Default value returned
in m3g_GetLocalCaps() is 2 for G.723.1 and 1 for AMR.

options
M3G_AUDIO_OPTIONS union specifying additional elements unique to the supported codec
algorithms.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 187

Dialogic Corporation

audio options — M3G_AUDIO_OPTIONS

M3G_AUDIO_OPTIONS

audio options
typedef union
{
 M3G_G7231_OPTIONS g7231;
 M3G_AMR_OPTIONS amr;
} M3G_AUDIO_OPTIONS;

Description

The M3G_AUDIO_OPTIONS union specifies elements unique to the supported audio codec
algorithms. This union is a member of the M3G_AUDIO_CAPABILITY structure.

Field Descriptions

The fields of the M3G_AUDIO_OPTIONS union are described as follows:

g7231
structure specifying capabilities specific to G.723.1. See the M3G_G7231_OPTIONS
structure for more information.

amr
structure specifying capabilities specific to AMR-NB. See the M3G_AMR_OPTIONS
structure for more information.

188 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

M3G_CALL_STATISTICS — call statistics

M3G_CALL_STATISTICS

call statistics
typedef struct
{
 unsigned int callDuration;
 unsigned int rxMediaCrcErrs;
 unsigned int rxAudioPacketErrs;
 unsigned int rxVideoPacketErrs;
 unsigned int rxTotalBytes;
 unsigned int rxMediaBytes;
 unsigned int rxAudioBytes;
 unsigned int rxVideoBytes;
 unsigned int rxStuffingBytes;
 unsigned int rxMediaPackets;
 unsigned int rxAudioPackets;
 unsigned int rxVideoPackets;
 unsigned int rxMuxPdus;
 unsigned int rxMuxPduBytes;
 unsigned int txTotalBytes;
 unsigned int txMediaBytes;
 unsigned int txAudioBytes;
 unsigned int txVideoBytes;
 unsigned int txStuffingBytes;
 unsigned int txMediaPackets;
 unsigned int txAudioPackets;
 unsigned int txVideoPackets;
 unsigned int txMuxPdus;
 unsigned int txMuxPduBytes;
} M3G_CALL_STATISTICS;

Description

The M3G_CALL_STATISTICS structure provides call statistics on quality of service related items
such as media and H.223 data transmission, errors, and call duration. This information is specified
in the M3GEV_CALL_STATISTICS event.

Field Descriptions

The fields of the M3G_CALL_STATISTICS data structure are described as follows:

callDuration
 duration of call in milliseconds

rxMediaCrcErrs
number of CRC errors detected in media packets received by the demultiplexer

rxAudioPacketErrs
number of errors detected in audio packets received by the demultiplexer

rxVideoPacketErrs
number of errors detected in video packets received by the demultiplexer

rxTotalBytes
total number of bytes received by the demultiplexer

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 189

Dialogic Corporation

call statistics — M3G_CALL_STATISTICS

rxMediaBytes
number of bytes dedicated to media minus any adaptation layer (AL) overhead received by the
demultiplexer

rxAudioBytes
number of bytes dedicated to audio received by the demultiplexer

rxVideoBytes
number of bytes dedicated to video received by the demultiplexer

rxStuffingBytes
number of bytes recognized as stuffing received by the demultiplexer

rxMediaPackets
number of packets dedicated to media received by the demultiplexer

rxAudioPackets
number of packets dedicated to audio received by the demultiplexer

rxVideoPackets
number of packets dedicated to video received by the demultiplexer

rxMuxPdus
number of MUX-PDUs received by the demultiplexer

rxMuxPduBytes
number of bytes in MUX-PDUs received by the demultiplexer

txTotalBytes
total number of bytes transmitted by the multiplexer

txMediaBytes
number of bytes dedicated to media minus any adaptation layer (AL) overhead transmitted by
the multiplexer

txAudioBytes
number of bytes dedicated to audio transmitted by the multiplexer

txVideoBytes
number of bytes dedicated to video transmitted by the multiplexer

txStuffingBytes
number of stuffing bytes transmitted by the multiplexer

txMediaPackets
number of packets dedicated to media transmitted by the multiplexer

txAudioPackets
number of packets dedicated to audio transmitted by the multiplexer

txVideoPackets
number of packets dedicated to video transmitted by the multiplexer

txMuxPdus
number of MUX-PDUs transmitted by the multiplexer

txMuxPduBytes
number of bytes in MUX-PDUs transmitted by the multiplexer

190 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

M3G_CAPABILITY — union of capabilities

M3G_CAPABILITY

union of capabilities
typedef union
{
 M3G_H223_CAPABILITY h223Capability;
 M3G_AUDIO_CAPABILITY audioCapability;
 M3G_VIDEO_CAPABILITY videoCapability;
} M3G_CAPABILITY;

Description

The M3G_CAPABILITY union specifies H.223 multiplex, audio or video capabilities. An array of
this union is contained in the M3G_CAPS_LIST structure.

Field Descriptions

The fields of the M3G_CAPABILITY union are described as follows:

h223Capability
M3G_H223_CAPABILITY structure that specifies the H.223 multiplex capabilities

audioCapability
M3G_AUDIO_CAPABILITY structure that specifies the audio capabilities

videoCapability
M3G_VIDEO_CAPABILITY structure that specifies the video capabilities

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 191

Dialogic Corporation

capabilities list — M3G_CAPS_LIST

M3G_CAPS_LIST

capabilities list
typedef struct
{
 unsigned int version;
 unsigned short numCaps;
 M3G_E_CAPABILITY capabilityType;
 M3G_CAPABILITY capability[MAX_CAPABILITIES_PER_DEVTYPE];
} M3G_CAPS_LIST;

Description

The M3G_CAPS_LIST structure specifies capabilities. This structure is used by
m3g_GetLocalCaps() and m3g_SetTCS() to indicate capabilities for the local endpoint. This
structure is used by m3g_GetMatchedCaps() to indicate capabilities common between local and
remote endpoints.

The audio and video capabilities in the M3G_CAPS_LIST array are listed in decreasing order of
preference. The most preferred capability is ordered first in the array, while the least preferred is
ordered last.

Field Descriptions

The fields of the M3G_CAPS_LIST data structure are described as follows:

version
version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Set to the symbolic constant
M3G_LIBRARY_VERSION which defines the current version of the library.

numCaps
number of elements in the capability array up to a maximum of twenty

capabilityType
data type contained in the M3G_CAPABILITY union. Valid values are:

• M3G_E_H223_CAPABILITY – H.223 multiplex capability type
• M3G_E_AUDIO_CAPABILITY – audio capability type
• M3G_E_VIDEO_CAPABILITY – video capability type

capability
array of numCaps M3G_CAPABILITY data types specifying H.223, audio or video
capabilities

Example

For an example of this data structure, see the Example section for the m3g_GetLocalCaps(),
m3g_SetTCS(), and m3g_GetMatchedCaps() functions.

192 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

M3G_FASTUPDATE_GOB — H.245 FastUpdate Group of Blocks

M3G_FASTUPDATE_GOB

H.245 FastUpdate Group of Blocks
typedef structure
{
 unsigned int numFirstGOB;
 unsigned int numGOBs;
} M3G_FASTUPDATE_GOB;

Description

The M3G_FASTUPDATE_GOB structure specifies information transmitted or received within an
H.245 MiscellaneousCommand indication message type of videoFastUpdateGOB to or from the
remote 3G-324M endpoint.

This structure is a member of the M3G_H245_MISC_CMD_PARAMS union.

Field Descriptions

The fields of the M3G_FASTUPDATE_GOB data structure are described as follows:

numFirstGOB
number of first Group of Blocks (GOB) in H.263 video stream to update. Valid range is 0 – 17.

numGOBs
number of GOBs in H.263 video stream to update. Valid range is 1 – 18.

Example

For an example of this data structure, see the Example section for the m3g_SendH245MiscCmd()
function.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 193

Dialogic Corporation

H.245 FastUpdate Macro Blocks — M3G_FASTUPDATE_MB

M3G_FASTUPDATE_MB

H.245 FastUpdate Macro Blocks
typedef structure
{
 unsigned int numFirstGOB;
 unsigned int numFirstMB;
 unsigned int numMBs;
} M3G_FASTUPDATE_MB;

Description

The M3G_FASTUPDATE_MB structure specifies information transmitted or received within an
H.245 MiscellaneousCommand indication message type of videoFastUpdateMB to or from the
remote 3G-324M endpoint.

This structure is a member of the M3G_H245_MISC_CMD_PARAMS union.

Field Descriptions

The fields of the M3G_FASTUPDATE_MB data structure are described as follows:

numFirstGOB
number of first group of blocks (GOB) in H.263 video stream to update. Valid range is 0 – 255.

numFirstMB
number of first macro block (MB) in H.263 video stream to update. Valid range is 0 – 8192.

numMBs
number of MBs in H.263 video stream to update. Valid range is 1 – 8192.

Example

For an example of this data structure, see the Example section for the m3g_SendH245MiscCmd()
function.

194 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

M3G_G7231_OPTIONS — G.723.1 options

M3G_G7231_OPTIONS

G.723.1 options
typedef struct
{
 M3G_BOOL silenceSup;
} M3G_G7231_OPTIONS;

Description

The M3G_G7231_OPTIONS structure specifies capabilities specific to the G.723.1 algorithm.
This structure is a member of the M3G_AUDIO_OPTIONS structure.

Field Descriptions

The field of the M3G_G7231_OPTIONS structure is described as follows:

silenceSup
boolean value specifying whether silence suppression is supported

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 195

Dialogic Corporation

H.221 identifier — M3G_H221_NONSTD

M3G_H221_NONSTD

H.221 identifier
typedef struct
{
 unsigned char t35CountryCode;
 unsigned char t35Extension;
 unsigned short manufacturerCode;
} M3G_H221_NONSTD;

Description

The M3G_H221_NONSTD structure is used to encode H.221 identifiers.

Field Descriptions

The fields of the M3G_H221_NONSTD data structure are described as follows:

t35CountryCode
octets as defined in Annex A/T.35

t35Extension
octet assigned nationally, unless t35CountryCode is 0xFF, in which case the second octet
contains the country code according to Annex B/T.35

manufacturerCode
two octets assigned nationally

196 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

M3G_H223_CAPABILITY — H.223 multiplex capabilities

M3G_H223_CAPABILITY

H.223 multiplex capabilities
typedef struct
{
 unsigned int version;
 unsigned short adaptationLayerMedia;
 unsigned short ALxM_AnnexC_Media;
 unsigned short maxAL2SDUSize;
 unsigned short maxAL3SDUSize;
 M3G_BOOL frameH223AnnexA;
 M3G_BOOL frameH223DoubleFlag;
 M3G_BOOL frameAnnexB;
 M3G_BOOL frameAnnexBWithHead;
 unsigned short maxAL1MPDUSize;
 unsigned short maxAL2MPDUSize;
 unsigned short maxAL3MPDUSize;
 M3G_BOOL rsCodeCapability;
 M3G_BOOL mobileOpXmitCap;
 unsigned char bitRate;
} M3G_H223_CAPABILITY;

Description

The M3G_H223_CAPABILITY structure specifies H.223 multiplex capabilities. This structure is a
member of the M3G_CAPABILITY data structure.

Field Descriptions

The fields of the M3G_H223_CAPABILITY data structure are described as follows:

version
version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Set to the symbolic constant
M3G_LIBRARY_VERSION which defines the current version of the library.

adaptationLayerMedia
bitmask used to indicate adaptation layers supported per audio and video. Valid values are:

• M3G_AUDIO_AL1

• M3G_AUDIO_AL2

• M3G_AUDIO_AL3

• M3G_VIDEO_AL1

• M3G_VIDEO_AL2

• M3G_VIDEO_AL3

Default value returned in m3g_GetLocalCaps() is M3G_AUDIO_AL2 | M3G_VIDEO_AL3.

ALxM_AnnexC_Media
bitmask used to indicate H.223 Annex C adoption layer media support. Valid values are:

• M3G_NO_ANNEXC

• M3G_AUDIO_AL1M

• M3G_AUDIO_AL2M

• M3G_AUDIO_AL3M

• M3G_VIDEO_AL1M

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 197

Dialogic Corporation

H.223 multiplex capabilities — M3G_H223_CAPABILITY

• M3G_VIDEO_AL2M

• M3G_VIDEO_AL3M

Default value returned in m3g_GetLocalCaps() is M3G_NO_ANNEXC.

maxAL2SDUSize
maximum AL2 SDU size. Valid range is 0 - 65535. Default value returned in
m3g_GetLocalCaps() is 200.

maxAL3SDUSize
maximum AL3 SDU size. Valid range is 0 - 65535. Default value returned in
m3g_GetLocalCaps() is 200.

frameH223AnnexA
boolean used to indicate support for Annex A framing. Default value returned in
m3g_GetLocalCaps() is M3G_TRUE.

frameH223DoubleFlag
boolean used to indicate support for double flags in framing. Default value returned in
m3g_GetLocalCaps() is M3G_TRUE.

frameAnnexB
boolean used to indicate support for Annex B framing. Default value returned in
m3g_GetLocalCaps() is M3G_TRUE.

frameAnnexBWithHead
boolean used to indicate support for Annex B framing with optional headers. Default value
returned in m3g_GetLocalCaps() is M3G_TRUE.

maxAL1MPDUSize
maximum Annex C AL1M PDU size. Valid range is 0 - 65535. Default value returned in
m3g_GetLocalCaps() is 0.

maxAL2MPDUSize
maximum Annex C AL2M PDU size. Valid range is 0 - 65535. Default value returned in
m3g_GetLocalCaps() is 0.

maxAL3MPDUSize
maximum Annex C AL3M PDU size. Valid range is 0 - 65535. Default value returned in
m3g_GetLocalCaps() is 0.

rsCodeCapability
boolean used to indicate support for receipt of Annex C Reed-Solomon encoded PDUs.
Default value returned in m3g_GetLocalCaps() is M3G_TRUE.

mobileOpXmitCap
boolean used to indicate whether the mobileOperationTransmitCapability element is encoded
in the H223Capability inside Terminal Capability Set messages. The H.245
mobileOperationTransmitCapability element settings are specified by the frameH223AnnexA,
frameH223DoubleFlag, frameAnnexB, and frameAnnexBWithHead structure elements.
Default value returned in m3g_GetLocalCaps() is M3G_TRUE.

bitRate
value identifying the unframed bitrate to transmit the output of the H.223 multiplex. Supported
values are 320 and 640 (in units of 100 bps). Default value is 640.

198 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

M3G_H223_LC_PARAMS — H.223 multiplex parameters

M3G_H223_LC_PARAMS

H.223 multiplex parameters
typedef structure
{
 unsigned int version;
 M3G_E_ADAPTATION_LYR_TYPE adaptationLayerType;
 M3G_BOOL segmentable;
 unsigned char AL3_ControlFieldSize;
 unsigned int AL3_SendBufferSize;
 M3G_E_ALxM_HEADER_TYPE ALxM_HeaderFormat;
 M3G_BOOL ALxM_ALPDUInterleaving;
 M3G_E_ALxM_CRC_TYPE ALxM_CRCType;
 M3G_E_ADAPTATION_LYR_ARQ_TYPE ALxM_ARQType;
 unsigned char ALxM_ARQMaxNumRetrans;
 unsigned int ALxM_ARQSendBufferSize;
 M3G_BOOL AL1M_SplitSDU;
 unsigned char ALxM_RCPCCodeRate;
} M3G_H223_LC_PARAMS;

Description

The M3G_H223_LC_PARAMS structure specifies H.223 multiplex parameters to be encoded in
the OpenLogicalChannel message. This structure is used by m3g_OpenLC().

Use the INIT_M3G_H223_LC_PARAMS() inline function to initialize the structure.

Field Descriptions

The fields of the M3G_H223_LC_PARAMS data structure are described as follows:

version
version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Set to the symbolic constant
M3G_LIBRARY_VERSION which defines the current version of the library.

adaptationLayerType
type of adaptation layer to use. The data type is an enumeration that defines the following
values:

• M3G_E_AL1_FRAMED – Adaptation Layer 1 framed transfer mode
• M3G_E_AL1_UNFRAMED – Adaptation Layer 1 unframed transfer mode
• M3G_E_AL2_WITH_SEQ_NUMS – Adaptation Layer 2 with sequence numbers
• M3G_E_AL2_WITHOUT_SEQ_NUMS – Adaptation Layer 2 without sequence

numbers
• M3G_E_AL3 – Adaptation Layer 3
• M3G_E_AL1M_FRAMED – AL1M (H.223 Annex C/D) framed transfer mode. Not

currently supported.
• M3G_E_AL1M_UNFRAMED – AL1M (H.223 Annex C/D) unframed transfer mode.

Not currently supported.
• M3G_E_AL2M – AL2M (H.223 Annex C/D). Not currently supported.
• M3G_E_AL3M – AL3M (H.223 Annex C/D). Not currently supported.

segmentable
boolean indicating if channel is designated to be segmentable. Audio channels must be
configured as non-segmentable (M3G_FALSE) while video channels must be configured as
segmentable (M3G_TRUE).

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 199

Dialogic Corporation

H.223 multiplex parameters — M3G_H223_LC_PARAMS

AL3_ControlFieldSize
size of AL3 control field in octets. Valid range is 0 – 2.

• 0 – not present; valid only in non-AL3 adaptation layers
• 1 – control field size of one octet
• 2 – control field size of two octets

AL3_SendBufferSize
size of AL3 send buffer in octets. Valid range is 0 – 16777215.

• 0 – not present; valid only in non-AL3 adaptation layers
• > 0 – send buffer size; must be specified for AL3 adaptation layers

ALxM_HeaderFormat
AL1M, AL2M or AL3M header format. The data type is an enumeration that defines the
following values:

• M3G_E_ALx_HEADER_SEBCH16 – Systematic Extended Bose-Chaudhuri-
Hocquenghem (16, 5) header format

• M3G_E_ALx_HEADER_GOLAY24 – EGolay (24, 12) header format. Ignored in non-
ALxM adaptation layer types.

AlxM_ALPDUInterleaving
boolean indicating whether channel supports AL PDU interleaving for AL1M, AL2M and
AL3M. Ignored in non-ALxM adaptation layer types.

ALxM_CRCType
AL1M and AL3M Cyclic Redundancy Check (CRC) lengths. The data type is an enumeration
that defines the following values:

• M3G_E_AL_CRC_4 – AL1M and AL3M 4 bit CRC
• M3G_E_AL_CRC_12 – AL1M and AL3M 2 bit CRC
• M3G_E_AL_CRC_20 – AL1M and AL3M 20 bit CRC
• M3G_E_AL_CRC_28 – AL1M and AL3M 28 bit CRC
• M3G_E_AL_CRC_8 – AL1M and AL3M 8 bit CRC
• M3G_E_AL_CRC_16 – AL1M and AL3M 16 bit CRC
• M3G_E_AL_CRC_32 – AL1M and AL3M 32 bit CRC
• M3G_E_AL_CRC_NONE – no CRC.

Field is ignored if adaptation layer is not AL1M or AL3M.

ALxM_ARQType
AL1M and AL3M Automatic Repeat Request (ARQ) mode. The data type is an enumeration
that defines the following values:

• M3G_E_AL_ARQ_NONE – FEC_ONLY mode
• M3G_E_AL_ARQ_TYPEI_FINITE – ARQ type I mode with finite retransmissions
• M3G_E_AL_ARQ_TYPEI_INFINITE – ARQ type I mode with infinite retransmisssions
• M3G_E_AL_ARQ_TYPEII_FINITE – ARQ type II mode with finite retransmissions
• M3G_E_AL_ARQ_TYPEII_INFINITE – ARQ type II mode with infinite

retransmisssions. Ignored if adaptation layer is not AL1M or AL3M. Not supported by
H.223 Annex D.

ALxM_ARQMaxNumRetrans
maximum number of ARQ retransmissions for ARQ Type I and Type II finite types. Valid
range is 0 – 16. Ignored if configuration is not ARQ type I or type II finite retransmission for
AL1M or AL3M.

200 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

M3G_H223_LC_PARAMS — H.223 multiplex parameters

ALxM_ARQSendBufferSize
size of ARQ send buffer in octets. Valid range is 0 to 166777215. Ignored if configuration is
not ARQ type I or type II for AL1M or AL3M.

AL1M_SplitSDU
boolean used to indicate support for SDU splitting for AL1M. Ignored if adaptation layer is
not AL1M. Not supported by H.223 Annex D.

ALxM_RCPCCodeRate
H.223 Annex C Rate Compatible Punctured Convolutional Code Rate for AL1M and AL3M.
Value is expressed in units of 8/n, where n is 8 to 32. Ignored if adaptation layer is not AL1M
or AL3M.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 201

Dialogic Corporation

H.223 multiplex configuration information — M3G_H223_SESSION

M3G_H223_SESSION

H.223 multiplex configuration information
typedef struct
{
 unsigned int version;
 M3G_E_H223_MUX_LVL_TYPE defaultH223MuxLevel;
 unsigned int maxALSDUSize;
 M3G_BOOL isWNSRPEnabled;
 M3G_BOOL isMultipleMsgsPerPdu;
 M3G_BOOL isMONAEnabled;
} M3G_H223_SESSION;

Description

The M3G_H223_SESSION structure specifies the default configuration of the H.223 multiplex
layer. This structure is used by m3g_StartH245().

Use the INIT_M3G_H223_SESSION() inline function to initialize the structure.

Field Descriptions

The fields of the M3G_H223_SESSION data structure are described as follows:

version
version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Set to the symbolic constant
M3G_LIBRARY_VERSION which defines the current version of the library.

defaultH223MuxLevel
Specifies whether the H.223 multiplex level is initiated at level 0, level 1, level 2 or level 3.

maxALSDUSize
Specifies the maximum size of the Abstraction Layer Service Data Unit (AL-SDU) in octets.

isWNSRPEnabled
Boolean specifying whether Windowed NSRP control frame signaling is supported.

isMultipleMsgsPerPdu
Boolean specifying whether multiple messages may be sent per PDU.

isMONAEnabled
Boolean specifying whether Media Oriented Negotiation Acceleration (MONA) support is
enabled for the 3G call. If enabled, Media Preconfigured Channels (MPC) and Accelerated
Connection Procedure (ACP) are supported for the call. Supported MPCs signaled within
MONA Preference Messages are assigned per the terminal capability set specified in
m3g_SetTCS(). If the default terminal capabilities are used (preferred method), the default
MPC-TX bits are 1, 4, 5 to signify AMR, MPEG-4 and H.263 transmit capabilities,
respectively; the default MPC-RX bits are 1 and 5 to signify AMR and H.263 receive
capabilities, respectively.

Example

For an example of this data structure, see the Example section for the m3g_StartH245() function.

202 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

M3G_H245_MISC_CMD — H.245 Miscellaneous Commands

M3G_H245_MISC_CMD

H.245 Miscellaneous Commands
typedef structure
{
 unsigned int version;
 M3G_LOGICAL_CHANNEL_NUMBER logicalChannelNumber;
 M3G_E_H245_MISC_CMD_TYPE h245MiscCmdType;
 M3G_MISC_CMD_PARAMS h245MiscCmdParams;
} M3G_H245_MISC_CMD;

Description

The M3G_H245_MISC_CMD structure specifies information transmitted or received within an
H.245 MiscellaneousCommand indication message to or from the remote 3G-324M endpoint. This
structure is encoded within the m3g_SendH245MiscCmd() function and received via the
M3GEV_H245_MISC_CMD_RCVD event.

Use the INIT_M3G_H245_MISC_CMD() inline function to initialize the structure.

Field Descriptions

The fields of the M3G_H245_MISC_CMD data structure are described as follows:

version
version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Set to the symbolic constant
M3G_LIBRARY_VERSION which defines the current version of the library.

logicalChannelNumber
number of H.245 logical channel

h245MiscCmdType
type of H.245 MiscellaneousCommand. The data type is an enumeration that defines the
following values:

• M3G_E_FAST_UPDATE_PICTURE – send/received videoFastUpdatePicture command
to enter fast-update mode.

• M3G_E_FAST_UPDATE_GOB – send/received videoFastUpdateGOB command to
perform fast-update on one or more groups of blocks (GOB) as specified in the
fastUpdateGOB structure within h245MiscCmdParams union.

• M3G_E_FAST_UPDATE_MB – send/received videoFastUpdateMB command to
perform fast-update on one or more macro blocks (MB) as specified in the fastUpdateMB
structure within h245MiscCmdParams union.

• M3G_E_TEMP_SPAT_TRDFF – send/received videoTemporalSpatialTradeoff command
to set the trade-off between spatial and temporal resolution to the value as specified in the
tempSpatialTrdff structure within h245MiscCmdParams union.

• M3G_E_VIDEO_FREEZE – send/received videoFreezePicture command to freeze the
current picture once complete.

• M3G_E_SYNC_EVERY_GOB – send/received videoSendSyncEveryGOB command to
use synchronization for every GOB until a videoSendSyncEveryGOBCancel is received.

• M3G_E_NOSYNC_EVERY_GOB – send/received videoSendSyncEveryGOBCancel
command to re-determine the frequency of GOB synchronizations.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 203

Dialogic Corporation

H.245 Miscellaneous Commands — M3G_H245_MISC_CMD

h245MiscCmdParams
union that specifies parameters of H.245 MiscellaneousCommand. See
M3G_H245_MISC_CMD_PARAMS for more information.

Example

For an example of this data structure, see the Example section for the m3g_SendH245MiscCmd()
function.

204 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

M3G_H245_MISC_CMD_PARAMS — H.245 Miscellaneous Commands Parameters

M3G_H245_MISC_CMD_PARAMS

H.245 Miscellaneous Commands Parameters
typedef union
{
 void* noParams;
 M3G_FASTUPDATE_GOB fastUpdateGOB;
 M3G_FASTUPDATE_MB fastUpdateMB;
 M3G_TEMPSPTRDFF tempSpatialTrdff;
} M3G_H245_MISC_CMD_PARAMS;

Description

The M3G_H245_MISC_CMD_PARAMS union specifies parameters of H.245
MiscellaneousCommand. This union is a member of the M3G_H245_MISC_CMD structure.

Field Descriptions

The fields of the M3G_H245_MISC_CMD_PARAMS union are described as follows:

fastUpdateGOB
specifies parameter information for videoFastUpdateGOB command. See
M3G_FASTUPDATE_GOB structure for more information.

fastUpdateMB
specifies parameter information for videoFastUpdateMB command. See
M3G_FASTUPDATE_MB structure for more information.

tempSpatialTrdff
specifies parameter information for videoTemporalSpatialTradeoff command. See
M3G_TEMPSPTRDFF for more information.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 205

Dialogic Corporation

DTMF digits in H.245 UserInputIndication message — M3G_H245_UII

M3G_H245_UII

DTMF digits in H.245 UserInputIndication message
typedef structure
{
 unsigned int version;
 unsigned short numDigits;
 unsigned char digitBuffer[MAX_NUM_DIGITS];
} M3G_H245_UII;

Description

The M3G_H245_UII structure is encoded within the m3g_SendH245UII() function or within the
M3GEV_H245_UII_RCVD event. This structure specifies DTMF digits transmitted or received in
an H.245 UserInputIndication message to or from the remote 3G-324M endpoint.

Use the INIT_M3G_H245_UII() inline function to initialize the structure.

Field Descriptions

The fields of the M3G_H245_UII data structure are described as follows:

version
version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Set to the symbolic constant
M3G_LIBRARY_VERSION which defines the current version of the library.

numDigits
number of digits specified in the digit buffer

digitBuffer
DTMF digits to be transmitted or that were received via H.245 UserInputIndication
message(s)

Example

For an example of this data structure, see the Example section for the m3g_SendH245UII()
function.

206 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

M3G_H263_OPTIONS — H.263 options

M3G_H263_OPTIONS

H.263 options
typedef struct
{
 unsigned short bppMaxKb;
 unsigned char sqcifMPI;
 unsigned char qcifMPI;
 M3G_BOOL unrestrictedVector;
 M3G_BOOL arithmeticCoding;
 M3G_BOOL advancedPrediction;
 M3G_BOOL pbFrames;
 M3G_BOOL temporalSpatialTradeoffCap;
 M3G_BOOL errorCompensation;
} M3G_H263_OPTIONS;

Description

The M3G_H263_OPTIONS structure specifies capabilities specific to the H.263 algorithm. This
structure is a member of the M3G_VIDEO_OPTIONS union.

Field Descriptions

The fields of the M3G_H263_OPTIONS structure are described as follows:

bppMaxKb
maximum number of bits per encoded picture, measured in units of 1024 bits, that the receiver
may decode. Valid range is 64 – 65535 or 0 (not present). Default value returned in
m3g_GetLocalCaps() is 0.

sqcifMPI
Sub Quarter Common Intermediate Format minimum picture interval in units of 1/29.97. Valid
range is 0 – 32 where 0 is no capability. Supported values are: 2, 3, and 5 which represent 15,
10 and 6 frames/sec respectively. Default value returned in m3g_GetLocalCaps() is 2.

Note: Only one H.263 format may be specified inside an OpenLogicalChannel request.
Thus when formatting an H.263 videoCapability for use in m3g_OpenLC(), only
sqcifMPI or qcifMPI may be non-zero, but not both.

qcifMPI
Quarter Common Intermediate Format minimum picture interval in units of 1/29.97. Valid
range is 0 – 32 where 0 is no capability. Supported values are: 2, 3, and 5 which represent 15,
10 and 6 frames/sec respectively. Default value returned in m3g_GetLocalCaps() is 2.

Note: Only one H.263 format may be specified inside an OpenLogicalChannel request.
Thus when formatting an H.263 videoCapability for use in m3g_OpenLC(), only
sqcifMPI or qcifMPI may be non-zero, but not both.

unrestrictedVector
boolean used to indicate support of unrestricted motion vector of H.263 Annex D. Default
value returned in m3g_GetLocalCaps() is M3G_FALSE.

arithmeticCoding
boolean used to indicate support of syntax-based arithmetic encoding. Default value returned
in m3g_GetLocalCaps() is M3G_FALSE.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 207

Dialogic Corporation

H.263 options — M3G_H263_OPTIONS

advancedPrediction
boolean used to indicate support of syntax-based advance prediction of H.263 Annex F.
Default value returned in m3g_GetLocalCaps() is M3G_FALSE.

pbFrames
boolean used to indicate support of interleaving P and B frames. Default value returned in
m3g_GetLocalCaps() is M3G_FALSE.

temporalSpatialTradeoffCap
boolean used to indicate support of capability to trade off between temporal and spatial
resolution. Default value returned in m3g_GetLocalCaps() is M3G_FALSE.

errorCompensation
boolean used to indicate support of error compensation as defined in H.263 Appendix I.
Default value returned in m3g_GetLocalCaps() is M3G_FALSE.

208 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

M3G_MONA_MPC — MONA media preconfigured channel

M3G_MONA_MPC

MONA media preconfigured channel
typedef struct
{
 unsigned int version;
 M3G_LOGICAL_CHANNEL_NUMBER logicalChannelNumber;
 M3G_H223_LC_PARAMS h223MultiplexParams;
 M3G_E_CAPABILITY capabilityType;
 M3G_CAPABILITY mediaCapability;
} M3G_MONA_MPC;

Description

The M3G_MONA_MPC structure provides information on the newly established MONA media
preconfigured channel (MPC) including the logical channel number, H.223, and media transcoding
configuration. This information is included in the M3GEV_TX_MPC_ESTABLISHED event and
the M3GEV_RX_MPC_ESTABLISHED event.

Field Descriptions

The fields of the M3G_MONA_MPC data structure are described as follows:

version
version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Set to the symbolic constant
M3G_LIBRARY_VERSION which defines the current version of the library.

logicalChannelNumber
logical channel number associated with the media preconfigured channel

h223MultiplexParams
H.223 multiplex parameters to use for this channel

capabilityType
media capability type of the logical channel being acknowledged. The data type is an
enumeration that defines the following values:

• M3G_E_AUDIO_CAPABILITY – audio capability type
• M3G_E_VIDEO_CAPABILITY – video capability type

mediaCapability
capability describing the established media preconfigured channel

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 209

Dialogic Corporation

MONA MPC Tx and Rx Bits — M3G_MONA_TXRX_MPC_SUPPORT

M3G_MONA_TXRX_MPC_SUPPORT

MONA MPC Tx and Rx Bits
typedef struct
{
 unsigned short rxMPCMask;
 unsigned short txMPCMask;
} M3G_MONA_TXRX_MPC_SUPPORT;

Description

The M3G_MONA_TXRX_MPC_SUPPORT data structure specifies the Media Oriented
Negotiation Acceleration Procedure (MONA) Media Preconfigured Channel Transmit and Receive
Bits (MPC-TX and MPC-RX) as defined by Table K.5/H.324. This data is delivered in the
M3GEV_SEND_MONA_PREF_MSG event and the M3GEV_MONA_PREF_MSG_RCVD
event.

Field Descriptions

The fields of the M3G_MONA_TXRX_MPC_SUPPORT data structure are described as follows:

rxMPCMask
low order 13 bits of mask used to describe which MPC configurations the MONA terminal is
capable of receiving as per Table K.5/H.324

txMPCMask
low order 13 bits of mask used to describe which MPC configurations the MONA terminal is
capable of sending as per Table K.5/H.324

Bits are assigned as follows as per Table K.15/H.324:

• M3G_MPC_AMR_BIT

• M3G_MPC_AMR_WB_BIT

• M3G_MPC_H264_BIT

• M3G_MPC_MPEG4_BIT

• M3G_MPC_H263_BIT

• M3G_MPC_RESERVED_BIT6

• M3G_MPC_RESERVED_BIT7

• M3G_MPC_RESERVED_BIT8

• M3G_MPC_RESERVED_BIT9

• M3G_MPC_RESERVED_BIT10

• M3G_MPC_RESERVED_BIT11

• M3G_MPC_OPERATOR_BIT12

• M3G_MPC_OPERATOR_BIT13

210 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

M3G_MPEG4_OPTIONS — MPEG-4 options

M3G_MPEG4_OPTIONS

MPEG-4 options
typedef struct
{
 unsigned char profileAndLevel;
 unsigned char object;
 unsigned char decoderConfigLength;
 unsigned char decoderConfigInfo[OCTET_STRING_SIZE]; /* used in local and
 * remote H.245 OLC
 * Request messages only;
 * ignored in Terminal
 * Capability Set messages
 */
 M3G_BOOL visualBackChannel;
} M3G_MPEG4_OPTIONS;

Description

The M3G_MPEG4_OPTIONS structure specifies capabilities specific to the MPEG-4 algorithm.
This structure is a member of the M3G_VIDEO_OPTIONS union.

Field Descriptions

The fields of the M3G_MPEG4_OPTIONS structure are described as follows:

profileAndLevel
process the particular profiles in combination with the level as given in Table G.1, “FLC table
for profile_and_level_indication” of the ISO/IEC 14496-2 standard. Default value returned in
m3g_GetLocalCaps() is 1.

object
set of tools to be used by the decoder of the bitstream contained in the logical channel as given
in Table 6-10, “FLC table for video_object_type indication” of the ISO/IEC 14496-2 standard.
Default value returned in m3g_GetLocalCaps() is 1.

decoderConfigLength
length of decoderConfigurationInformation octet string. This element is only used in encoding
or decoding of H.245 OpenLogicalChannel requests.

decoderConfigInfo
optionally used in OpenLogicalChannel requests to specify the configuration of the decoder
for a particular object (bitstream). (See subclause 6.2.1, “Start Codes” and subclauses K.3.1,
“VideoObject” to K.3.4, “FaceObject” of the ISO/IEC 14496-2 standard.) If no octet string is
specified in m3g_OpenLC() for an MPEG-4 logical channel, the default
decoderConfigurationInformation octet string will be specified as “00-00-01-b0-08-00-00-01-
b5-09-00-00-01-00-00-00-01-20-00-84-5d-4c-28-2c-20-90-a2-8f”.

visualBackChannel
boolean indicating the transmitter receives backward channel messages or the receiver sends
backward channel messages that are provided in ISO/IEC 14496-2. Default is M3G_FALSE.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 211

Dialogic Corporation

non-standard identifier — M3G_NONSTANDARD_ID

M3G_NONSTANDARD_ID

non-standard identifier
typedef struct
{
 M3G_E_NONSTD_TYPE oidType;
 union
 {
 M3G_OBJECT_ID oid;
 M3G_H221_NONSTD h221NonStd;
 } oidValue;
} M3G_NONSTANDARD_ID;

Description

The M3G_NONSTANDARD_ID structure is used to encode vendor information in the H.245
vendorIdentification indication message in the format of a non-standard identifier as defined by
ITU-T Recommendation H.245.

Field Descriptions

The fields of the M3G_NONSTANDARD_ID data structure are described as follows:

oidType
identifier format:

• M3G_E_OID_TYPE – object identifier
• M3G_E_H221_ID_TYPE – H.221 type of identifier
• M3G_E_NONSTD_TYPE – non-standard type of identifier

oidValue
nested union defining the identifier

212 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

M3G_OBJECT_ID — ASN.1 object identifier

M3G_OBJECT_ID

ASN.1 object identifier
typedef struct
{
 unsigned char length;
 unsigned char objectId[OBJECTID_SIZE];
} M3G_OBJECT_ID;

Description

The M3G_OBJECT_ID structure is used to encode ASN.1 object identifiers.

Field Descriptions

The fields of the M3G_OBJECT_ID data structure are described as follows:

length
length of the object identifier in octets

objectId
array of octets of specified length. Note that this differs from a C-style string as zero values do
not represent the NULL terminator.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 213

Dialogic Corporation

ASN.1 OCTET STRING — M3G_OCTET_STRING

M3G_OCTET_STRING

ASN.1 OCTET STRING
typedef struct
{
 unsigned char length;
 unsigned char octet[OCTET_STRING_SIZE];
} M3G_OCTET_STRING;

Description

The M3G_OCTET_STRING structure represents an ASN.1 OCTET STRING type. This structure
is a member of the M3G_PARM_INFO data structure.

Field Descriptions

The fields of the M3G_OCTET_STRING data structure are described as follows:

length
length of ASN.1 OCTET STRING in octets up to a maximum of 255.

octet
array of octets composing ASN.1 OCTET STRING. Currently only used to specify
decoderConfigurationInformation octet strings for MPEG-4 transcoding.

214 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

M3G_PARM_INFO — parameter information for a device

M3G_PARM_INFO

parameter information for a device
typedef struct
{
 unsigned int version;
 M3G_E_PRM_TYPE parameterType;
 union
 {
 M3G_BOOL boolParam;
 M3G_H245_TERMINAL_TYPE h245TerminalType;
 M3G_MAX_CCSRL_SEGMENT_SIZE maxCCSRLSegmentSize;
 M3G_AMR_PAYLOAD_FORMAT amrPayloadFormat;
 M3G_BITMASK bitmask; /* for internal use only */
 M3G_OCTET_STRING octetString;
 M3G_SKEW_ADJUSTMENT skewAdjustment;
 M3G_VIDEO_BIT_RATE videoBitRate;
 M3G_VIDEO_FRAME_RATE videoFrameRate;
 } parmValue;
} M3G_PARM_INFO;

Description

The M3G_PARM_INFO structure contains parameters used to configure a device. The structure is
used by the m3g_SetParm() and m3g_GetParm() functions.

Parameters may be specified for a board device, a control device, or both types of devices. Setting
one or more parameters on a board device sets the default values for all control devices associated
with that board. Not all parameters may be set on both board and control devices; for example,
M3G_E_PRM_AMR_PAYLOAD_FORMAT can be set on a board device only. See Table 3 for
details.

Use the INIT_M3G_PARM_INFO() inline function to initialize the structure.

Field Descriptions

The fields of the M3G_PARM_INFO data structure are described as follows:

version
version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Set to the symbolic constant
M3G_LIBRARY_VERSION which defines the current version of the library.

parameterType
data type contained in the parmValue union. See Table 3.

parmValue
union specifying parameter values. See Table 3.

Parameter type, description, and parameter values are described in Table 3, in alphabetical order by
parameter type.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 215

Dialogic Corporation

parameter information for a device — M3G_PARM_INFO

Table 3. M3G_PARM_INFO Parameter Types and Parameter Values

Parameter Type Data Type Description/Values

M3G_E_PRM_AMR_
PAYLOAD_FORMAT

M3G_AMR_PAYLOAD_
FORMAT

Supported on board device only. Adaptive multi-rate codec payload
format. Valid values:
• AMR_PAYLOAD_BW_EFFICIENT – bandwidth efficient mode
• AMR_PAYLOAD_OCTET_ALIGNED – octet aligned mode

M3G_E_PRM_
AUDIOVISUALSYNC

M3G_BOOL Supported on board device and control device. Enables audio and
video synchronization when both media streams are present in an
H.223 multiplex. Valid values:
• M3G_FALSE – false
• M3G_TRUE [default] – true

M3G_E_PRM_AUTO_VFU_
PERIOD

M3G_VFU_TIMER_VAL Supported on board device and control device. When an incoming
video logical channel is first opened, immediately and automatically
send an H.245 videoFastUpdatePicture Miscellaneous Command
message to the remote encoder. The parameter value specifies the
timer interval in seconds for subsequent periodic generation of the
videoFastUpdatePicture command or zero for disabled. The default
value is zero.

M3G_E_PRM_EARLY_MES M3G_BOOL Supported on board device and control device. When opening logical
channel using standard H.245 procedures, send MES messages prior
to receiving positive acknowledgement of the OLCAck to minimize
media transmission delay. Valid values:
• M3G_FALSE – false
• M3G_TRUE [default] – true

M3G_E_PRM_H223_SYNC_
TIMER

M3G_H223_SYNC_
TIMER_VAL

Supported on board device and control device. Specifies the timer
value in milliseconds for the H.223 synchronization timer for which the
H.223 multiplexer must synchronize upon flags received within the
incoming bitstream. The default value is 5000 msec.

M3G_E_PRM_H245_
TERMINAL_TYPE

M3G_H245_TERMINAL
_TYPE

Supported on board device and control device. The value of H.245
terminal types is used in the H.245 MasterSlaveDetermination
procedure. The terminal type values are compared and the terminal
with the larger terminal type number is determined to be the master. If
the terminal type numbers are the same, the
statusDeterminationNumbers, which are randomly set internally, are
compared using modulo arithmetic to determine which terminal is the
master. The default value is 50.

M3G_E_PRM_MAX_
CCSLR_SEGMENT

M3G_MAX_CCSLR_
SEGMENT

Supported on board device and control device. Maximum size in
octets of a control channel segmentation and reassembly layer
(CCSRL) segment to allow. The default value is 255.

M3G_E_PRM_MPEG4_
TX_DCI

M3G_OCTET_STRING Supported on control device only. Used in gateway deployments to
specify the transmitted decoderConfigurationInformation octet string
used within MPEG-4 transcoding after an MPEG-4 logical channel has
been established. The associated parmValue union element is
processed as an octetString.

See the M3G_OCTET_STRING structure, which represents an ASN.1
OCTET STRING type.

M3G_E_PRM_MPEG4_
RX_DCI

M3G_OCTET_STRING Supported on control device only. Used in gateway deployments to
specify the received decoderConfigurationInformation octet string
used within MPEG-4 transcoding after an MPEG-4 logical channel has
been established. The associated parmValue union element is
processed as an octetString.

See the M3G_OCTET_STRING structure, which represents an ASN.1
OCTET STRING type.

216 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

M3G_PARM_INFO — parameter information for a device

M3G_E_PRM_RELAY_
DIGIT_TO_MEDIA_DEV

M3G_BOOL Supported on board device and control device. Relay H.245 UII digits
from remote 3G-324M endpoint to local media devices as proprietary
RFC 2833 encoding. Valid values:
• M3G_FALSE [default] – false
• M3G_TRUE – true

M3G_E_PRM_RELAY_
DIGIT_TO_H245UII

M3G_BOOL Supported on board device and control device. Relay DTMF digits
detected in an audio stream from local media devices to remote 3G-
324M endpoint via H.245 UII message. Valid values:
• M3G_FALSE [default] – false
• M3G_TRUE – true

M3G_E_PRM_RELAY_
FASTUPDATE_TO_H245

M3G_BOOL Supported on board device and control device. Relay proprietary RFC
2833 encoded videoFastUpdate message from local media devices to
remote 3G-324M endpoint as an H.245 MiscellaneousCommand.
Valid values:
• M3G_FALSE – false
• M3G_TRUE [default] – true

M3G_E_PRM_RELAY_
FASTUPDATE_TO_
MEDIA_DEV

M3G_BOOL Supported on board device and control device. Relay H.245
MiscellaneousCommand type videoFastUpdate message from remote
3G-324M endpoint to local media devices as proprietary RFC 2833
encoding. Valid values:
• M3G_FALSE – false
• M3G_TRUE [default] – true

M3G_E_PRM_RELAY_
TEMPORALSPATIALTRADE
OFF_TO_MEDIA_DEV

M3G_BOOL Supported on board device and control device. Relay H.245
MiscellaneousCommand of type videoTemporalSpatialTradeoff
message from remote 3G-324M endpoint to local media devices as
proprietary RFC 2833 encoding. Valid values:
• M3G_FALSE – false
• M3G_TRUE [default] – true

M3G_E_PRM_RELAY_
TEMPORALSPATIALTRADE
OFF_TO_H245

M3G_BOOL Supported on board device and control device. Relay proprietary RFC
2833 encoded videoTemporalSpatialTradeoff message from local
media devices to remote 3G-324M endpoint as an H.245
MiscellaneousCommand. Valid values:
• M3G_FALSE – false
• M3G_TRUE [default] – true

M3G_E_PRM_RELAY_
VIDEOFREEZE_TO_
MEDIA_DEV

M3G_BOOL Supported on board device and control device. Relay H.245
MiscellaneousCommand of type videoFreezePicture from remote 3G-
324M endpoint to local media devices as proprietary RFC 2833
encoding. Valid values:
• M3G_FALSE – false
• M3G_TRUE [default] – true

M3G_E_PRM_RELAY_
VIDEOFREEZE_TO_
H245

M3G_BOOL Supported on board device and control device. Relay proprietary RFC
2833 encoded videoFreezePicture message from local media devices
to remote 3G-324M endpoint as an H.245 MiscellaneousCommand.
Valid values:
• M3G_FALSE – false
• M3G_TRUE [default] – true

M3G_E_PRM_RETRANSMI
T_ON_IDLE

M3G_BOOL Supported on board device and control device. Send retransmissions
of Numbered Simple Retransmission Protocol (NSRP) and Windowed
NSRP (WNSRP) commands for H.245 messages during the call setup
stages only. Valid values:
• M3G_FALSE [default] – false
• M3G_TRUE – true

Parameter Type Data Type Description/Values

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 217

Dialogic Corporation

parameter information for a device — M3G_PARM_INFO

Example

For an example of this data structure, see the Example section for the m3g_SetParm() function.

M3G_E_PRM_RX_
SKEW_ADJUSTMENT

M3G_SKEW_
ADJUSTMENT

Supported on board device and control device. Received audio and
visual (AV) skew adjustment. This offset is added to adjust the AV
delivery from nominal. This value is also added to any AV skew added
by the remote endpoint via the H.245 Skew Indication message. A
positive value delays the audio stream. A negative value delays the
video stream.

Valid range is 500 to -500 in units of milliseconds.

Note: The application is responsible for resetting this value back to
nominal at the end of the call.

M3G_E_PRM_
SKEWINDICATION

M3G_BOOL Supported on board device and control device. Relay H.245
h223SkewIndication messages as proprietary RFC 2833 encoding
between (both to and from) the H.223 multiplex and local media
devices. Valid values:
• M3G_FALSE – false
• M3G_TRUE [default] – true

M3G_E_PRM_TX_
SKEW_ADJUSTMENT

M3G_SKEW_
ADJUSTMENT

Supported on board device and control device. Transmitted audio and
visual (AV) skew adjustment. This offset is added to adjust the AV
delivery from nominal. A positive value delays the audio stream. A
negative values delays the video stream.

Valid range is 500 to -500 in units of milliseconds.

Note: The application is responsible for resetting this value back to
nominal at the end of the call.

M3G_E_PRM_VIDEO_
BIT_RATE

M3G_VIDEO_BIT_
RATE

Supported on board device and control device. Video coder bit rate.

Valid range is 20000 to 54000 in units of bits per second. Default value
is 40000.

Note: The application is responsible for resetting this value back to
nominal at the end of the call.

M3G_E_PRM_VIDEO_
FRAME_RATE

M3G_VIDEO_FRAME_
RATE

Supported on board device and control device. Video coder frame rate
in units of frames per second. Valid values:
• VIDEO_FRAME_RATE_6_FPS (default) – 6 frames per second

(fps)
• VIDEO_FRAME_RATE_10_FPS – 10 fps
• VIDEO_FRAME_RATE_15_FPS – 15 fps

Parameter Type Data Type Description/Values

218 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

M3G_REMOTE_CLOSED_LC — close request from remote endpoint

M3G_REMOTE_CLOSED_LC

close request from remote endpoint
typedef struct
{
 unsigned in t version;
 M3G_LOGICAL_CHANNEL_NUMBER logicalChannelNumber;
 M3G_E_CHAN_CLOSE_REASON reason;
} M3G_REMOTE_CLOSED_LC;

Description

The M3G_REMOTE_CLOSED_LC structure is encoded within the
M3GEV_REMOTE_CLOSE_LC_RCVD event to indicate that the remote 3G-324M endpoint
requested the closure of a logical channel.

Field Descriptions

The fields of the M3G_REMOTE_CLOSED_LC data structure are described as follows:

version
version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Set to the symbolic constant
M3G_LIBRARY_VERSION which defines the current version of the library.

logicalChannelNumber
number of H.245 logical channel requested by remote 3G-324M endpoint to close

reason
H.245 reason provided in the CloseLogicalChannel message or the RequestChannelClose
message:

• M3G_E_REQ_CHAN_CLOSE_UNKNOWN – unknown
• M3G_E_REQ_CHAN_CLOSE_NORMAL – normal
• M3G_E_REQ_CHAN_CLOSE_REOPEN – reopen
• M3G_E_REQ_CHAN_CLOSE_RESERV_FAIL – reservationFailure

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 219

Dialogic Corporation

request from remote endpoint — M3G_REMOTE_OLC_REQ

M3G_REMOTE_OLC_REQ

request from remote endpoint
typedef struct
{
 unsigned int version;
 M3G_LOGICAL_CHANNEL_NUMBER logicalChannelNumber;
 M3G_H223_LC_PARAMS h223MultiplexParams;
 M3G_E_CAPABILITY capabilityType;
 M3G_CAPABILITY mediaCapability;
} M3G_REMOTE_OLC_REQ;

Description

The M3G_REMOTE_OLC_REQ structure is encoded within the
M3GEV_REMOTE_OLC_RCVD event. The structure specifies information received in an H.245
OpenLogicalChannel request from the remote 3G-324M endpoint.

Field Descriptions

The fields of the M3G_REMOTE_OLC_REQ data structure are described as follows:

version
version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Set to the symbolic constant
M3G_LIBRARY_VERSION which defines the current version of the library.

logicalChannelNumber
number of H.245 reverse logical channel requested by remote endpoint to open

h223MultiplexParams
H.223 multiplex parameters to use for this channel. See M3G_H223_LC_PARAMS for more
information.

capabilityType
media capability type of the logical channel being requested. The data type is an enumeration
that defines the following values:

• M3G_E_AUDIO_CAPABILITY – audio capability type
• M3G_E_VIDEO_CAPABILITY – video capability type

mediaCapability
media capability being requested to open in reverse channel. See M3G_CAPABILITY for
more information.

Example

For an example of this data structure, see the Example section for m3g_RespondToOLC().

220 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

M3G_REMOTE_OLCACK_RESP — response from remote endpoint

M3G_REMOTE_OLCACK_RESP

response from remote endpoint
typedef struct
{
 unsigned int version;
 M3G_LOGICAL_CHANNEL_NUMBER logicalChannelNumber;
 M3G_E_CAPABILITY capabilityType;
} M3G_REMOTE_OLCACK_RESP;

Description

The M3G_REMOTE_OLCACK_RESP structure is encoded within the
M3GEV_OPEN_LC_CMPLT event. The structure specifies information from the
OpenLogicalChannelAck response received from the remote 3G-324M endpoint.

Field Descriptions

The fields of the M3G_REMOTE_OLCACK_RESP data structure are described as follows:

version
version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Set to the symbolic constant
M3G_LIBRARY_VERSION which defines the current version of the library.

logicalChannelNumber
number of H.245 forward logical channel acknowledged by remote endpoint

capabilityType
the media capability type of the logical channel being acknowledged. The data type is an
enumeration that defines the following values:

• M3G_E_AUDIO_CAPABILITY – audio capability type
• M3G_E_VIDEO_CAPABILITY – video capability type

Example

For an example of this data structure, see the Example section for m3g_StartMedia().

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 221

Dialogic Corporation

local set of terminal capabilities — M3G_SIMULTANEOUS_CAP_SET

M3G_SIMULTANEOUS_CAP_SET

local set of terminal capabilities
typedef struct
{
 M3G_CAPS_LIST * pH223Capabilities;
 M3G_CAPS_LIST * pAudioCapabilities;
 M3G_CAPS_LIST * pVideoCapabilities;
} M3G_SIMULTANEOUS_CAP_SET;

Description

The M3G_SIMULTANEOUS_CAP_SET structure specifies the default local set of terminal
capabilities. This structure is used by the m3g_SetTCS() function.

Field Descriptions

The fields of the M3G_SIMULTANEOUS_CAP_SET data structure are described as follows:

version
version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Set to the symbolic constant
M3G_LIBRARY_VERSION which defines the current version of the library.

pH223Capabilities
pointer to an array of M3G_CAPS_LIST containing H.223 multiplex capabilities

pAudioCapabilities
pointer to an array of M3G_CAPS_LIST containing audio capabilities

pVideoCapabilities
pointer to an array of M3G_CAPS_LIST containing video capabilities

Example

For an example of this data structure, see the Example section for m3g_SetTCS().

222 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

M3G_START_STRUCT — 3G-324M library configuration settings

M3G_START_STRUCT

3G-324M library configuration settings
typedef struct
{
 unsigned int version;
 unsigned short numVirtBoards;
 unsigned short numEndpoints;
} M3G_START_STRUCT;

Description

The M3G_START_STRUCT structure contains configuration settings used by the m3g_Start()
function to instantiate the 3G-324M library.

It is recommended that you use the INIT_M3G_START_STRUCT macro, in the m3glib.h header
file, to initialize the structure. You can then override any of the default values initialized by the
macro before calling m3g_Start().

Field Descriptions

The fields of the M3G_START_STRUCT data structure are described as follows:

version
version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Set to the symbolic constant
M3G_LIBRARY_VERSION which defines the current version of the library.

numVirtBoards
number of virtual boards that the 3G-324M library instantiates

numEndpoints
number of 3G-324M endpoints or channels that the 3G-324M library instantiates on each
virtual board.

To instantiate the maximum number of 3G-324M endpoints licensed, set to 0. When set to 0,
the number of licensed 3G-324M endpoints that are instantiated by the library will be returned
in numEndpoints upon successful completion of m3g_Start().

Example

For an example of this data structure, see the Example section for m3g_Start().

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 223

Dialogic Corporation

temporal and spatial resolution trade-off — M3G_TEMPSPTRDFF

M3G_TEMPSPTRDFF

temporal and spatial resolution trade-off
typedef unsigned int M3G_TEMPSPTRDFF;

Description

The M3G_TEMPSPTRDFF is a scalar typedef. It indicates to the receiving video decoder the
current trade-off between temporal and spatial resolution. A value of 0 indicates a high spatial
resolution and a value of 31 indicates a high frame rate. The values from 0 to 31 indicate
monotonically a higher frame rate.

This typedef is a member of the M3G_H245_MISC_CMD_PARAMS union.

224 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

M3G_TRACE_INFO — trace information

M3G_TRACE_INFO

trace information
typedef struct
{
 unsigned int version;
 const char * logfile;
 unsigned int * bitmask;
} M3G_TRACE_INFO;

Description

The M3G_TRACE_INFO structure specifies configuration information for 3G-324M tracing for a
device or devices. This structure is used by the m3g_StartTrace() function.

Use the INIT_M3G_TRACE_INFO() inline function to initialize the structure.

Field Descriptions

The fields of the M3G_TRACE_INFO data structure are described as follows:

version
version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Set to the symbolic constant
M3G_LIBRARY_VERSION which defines the current version of the library.

logfile
null-terminated C-style character string specifying log file name to be opened for the given
device or devices. If a zero length string or empty string (null terminator only) is specified, the
logging defaults to the system logger within /var/log/messages. The pointer to the character
string must not be NULL. If a file name without a full path is specified, the default location for
log files is /usr/dialogic/data.

bitmask
bitmask to configure tracing for a given device or devices:

• M3G_TRACE_H245 – record all H.245 messages
• M3G_TRACE_H223 – record both transmit and receive H.223 multiplexed bitstreams
• M3G_TRACE_AUDIO – record audio bitstreams multiplexed and demultiplexed
• M3G_TRACE_VIDEO – record video bitstreams multiplexed and demultiplexed
• M3G_TRACE_INTERNALS – enable internal 3G-324M module debug tracing showing

parameters, call flow, and functional call processing
• M3G_TRACE_STATISTICS – record 3G-324M session statistics

Example

For an example of this data structure, see the Example section for m3g_StartTrace().

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 225

Dialogic Corporation

vendor information — M3G_VENDORID_INFO

M3G_VENDORID_INFO

vendor information
typedef struct
{
 unsigned int version;
 M3G_NONSTANDARD_ID vendor;
 M3G_OCTET_STRING productNumber;
 M3G_OCTET_STRING versionNumber;
} M3G_VENDORID_INFO;

Description

The M3G_VENDORID_INFO structure specifies information transmitted and received within an
H.245 vendorIdentification indication message to and from the remote 3G-324M endpoint. This
structure is used by the m3g_SetVendorId() function.

Use the INIT_M3G_VENDORID_INFO() inline function to initialize the structure.

Field Descriptions

The fields of the M3G_VENDORID_INFO data structure are described as follows:

version
version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Set to the symbolic constant
M3G_LIBRARY_VERSION which defines the current version of the library.

vendor
equipment manufacturer sourcing the vendorIdentification message encoded as an H.245
nonstandard identifier object

productNumber
product number of the equipment sourcing the H.245 vendorIdentification message encoded
within an ASN.1 octet string

versionNumber
version number of the product sourcing the H.245 vendorIdentification message encoded
within an ASN.1 octet string

Example

For an example of this data structure, see the Example section for m3g_StartTrace().

226 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

M3G_VIDEO_CAPABILITY — video capabilities

M3G_VIDEO_CAPABILITY

video capabilities
typedef struct
{
 unsigned int version;
 unsigned short tableEntryNumber;
 M3G_E_DIRECTION direction;
 M3G_E_VIDEO_TYPE coderType;
 unsigned int maxBitRate;
 M3G_VIDEO_OPTIONS options;
} M3G_VIDEO_CAPABILITY;

Description

The M3G_VIDEO_CAPABILITY structure specifies video capabilities. This structure is a
member of the M3G_CAPABILITY union.

Field Descriptions

The fields of the M3G_VIDEO_CAPABILITY data structure are described as follows:

version
version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Set to the symbolic constant
M3G_LIBRARY_VERSION which defines the current version of the library.

tableEntryNumber
table entry number of capability within CapabilityTableEntry of H.245 TerminalCapabilitySet
message. Read-only field provided for information. This field is not used in
OpenLogicalChannel requests.

direction
direction of specified video from the perspective of the local endpoint. The data type is an
enumeration that defines the following values:

• M3G_E_IDLE – no streaming
• M3G_E_TX – transmit from local to remote
• M3G_E_RX – receive from remote to local
• M3G_E_TXRX – bi-directional streaming

For the local 3G-324M endpoint, only M3G_E_TX and M3G_E_RX may be used in the
terminal capability settings in m3g_SetTCS() as asymmetric media (audio and video)
transcoding is supported. The remote 3G-324M endpoint, however, may specify symmetric
media capabilities (M3G_E_TXRX) in its TerminalCapabilitySet message.

coderType
type of video codec. The data type is an enumeration that defines the following values:

• M3G_E_H263 – H.263 codec
• M3G_E_MPEG4 – MPEG-4 codec

maxBitRate
maximum bit rate between 1 – 9200. Default value returned in m3g_GetLocalCaps() is 560.

options
union specifying the additional elements unique to the supported codec algorithms. See
M3G_VIDEO_OPTIONS for more information.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 227

Dialogic Corporation

video capabilities — M3G_VIDEO_CAPABILITY

Example

For an example of this data structure, see the Example section for m3g_GetLocalCaps().

228 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

M3G_VIDEO_OPTIONS — video options

M3G_VIDEO_OPTIONS

video options
typedef union
{
 M3G_H263_OPTIONS h263;
 M3G_MPEG4_OPTIONS mpeg4;
} M3G_VIDEO_OPTIONS;

Description

The M3G_VIDEO_OPTIONS union specifies elements unique to the supported video codec
algorithms. This union is a member of the M3G_VIDEO_CAPABILITY structure.

Field Descriptions

The fields of the M3G_VIDEO_OPTIONS union are described as follows:

h263
structure that specifies capabilities specific to the H.263 algorithm. See
M3G_H263_OPTIONS structure for more information.

mpeg4
structure that specifies capabilities specific to the MPEG-4 algorithm. See
M3G_MPEG4_OPTIONS structure for more information.

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 229

Dialogic Corporation

1515.Error Codes

This chapter describes the error codes used in the Dialogic® 3G-324M API library.

Errors are defined in m3gerrs.h.

The following error codes may be returned either by the 3G-324M library function or through error
codes included in M3GEV_ failure events. For more information on events, see Chapter 13,
“Events”.

M3G_E_ERR_BUSY
Device is busy

M3G_E_ERR_ERR_TIMEOUT
Timer expired while pending on a transaction response

M3G_E_ERR_IN_STREAM_OVFLOW
Input stream overflow

M3G_E_ERR_IN_STREAM_UNDRUN
Input stream underrun

M3G_E_ERR_INTERNAL
Internal error

M3G_E_ERR_INV_ARGUMENT_VALUE
Argument value is invalid

M3G_E_ERR_INV_MODE
Invalid mode argument

M3G_E_ERR_INV_PARM_ID
Device does not support this parameter ID

M3G_E_ERR_INV_STATE
Invalid state to execute this function

M3G_E_ERR_INVALID_CAPS_FOR_DEVICE
Specified capabilities cannot be support on this device

M3G_E_ERR_INVALID_DEVICE
Supplied device handle is invalid

M3G_E_ERR_LIB_NOT_STARTED
3G-324M library has not been started

M3G_E_ERR_NO_MATCH_FOUND
No match or set intersection could be found in the specified capabilities

M3G_E_ERR_NO_MEM
Library cannot obtain the memory to perform this operation

M3G_E_ERR_O_STREAM_ OVFLOW
Output stream overflow

230 Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008
Dialogic Corporation

Error Codes

M3G_E_ERR_O_STREAM_UNDRUN
Output stream underrun

M3G_E_ERR_OLC_REJ_DATA_TYPE_COMB_NOT_ALWD
Received OpenLogicalChannelReject response with cause multicastChannelNotAllowed

M3G_E_ERR_OLC_REJ_DATA_TYPE_COMB_NOT_SUP
Received OpenLogicalChannelReject response with cause
dataTypeALCombinationNotSupported

M3G_E_ERR_OLC_REJ_DATA_TYPE_NOT_AVAILABLE
Received OpenLogicalChannelReject response with cause dataTypeNotAvailable

M3G_E_ERR_OLC_REJ_DATA_TYPE_NOT_SUPPORTED
Received OpenLogicalChannelReject response with cause dataTypeNotSupported

M3G_E_ERR_OLC_REJ_INSUFF_BW
Received OpenLogicalChannelReject response with cause insufficientBandwdith

M3G_E_ERR_OLC_REJ_INV_DEP_CHANNEL
Received OpenLogicalChannelReject response with cause invalidDependentChannel

M3G_E_ERR_OLC_REJ_INVALID_SESSIONID
Received OpenLogicalChannelReject response with cause invalidSessionID

M3G_E_ERR_OLC_REJ_M_S_CONFLICT
Received OpenLogicalChannelReject response with cause masterSlaveConflict

M3G_E_ERR_OLC_REJ_REPLCMT_FOR_REJECTED
Received OpenLogicalChannelReject response with cause replacementForRejected

M3G_E_ERR_OLC_REJ_SEP_STCK_EST_FAILED
Received OpenLogicalChannelReject response with cause separateStackEstablishmentFailed

M3G_E_ERR_OLC_REJ_UNKOWN_DATA_TYPE
Received OpenLogicalChannelReject response with cause unknownDataType

M3G_E_ERR_OLC_REJ_UNS_REV_PARMS
Received OpenLogicalChannelReject response with cause unsuitableReverseParameters

M3G_E_ERR_OLC_REJ_UNSPECIFIED
Received OpenLogicalChannelReject response with cause unspecified

M3G_E_ERR_OLC_REJ_WAIT_FOR_COMM_MODE
Received OpenLogicalChannelReject response with cause waitForCommunicationMode

M3G_E_ERR_PHYSICAL_LAYER
Error in physical layer must be resolved

M3G_E_ERR_PROTOCOL
Protocol error

M3G_E_ERR_STREAM_OPEN_ERR
Error in opening stream

M3G_E_ERR_TCS_REJ_DESC_CAP_EXCEEDED
Received TerminalCapabilitySetReject response with cause descriptorCapacityExceeded

M3G_E_ERR_TCS_REJ_TBL_ENT_CAP_EXCEEDED
Received TerminalCapabilitySetReject response with cause tableEntryCapacityExceeded

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 231

Dialogic Corporation

Error Codes

M3G_E_ERR_TCS_REJ_UND_TBL_ENTRY_USED
Received TerminalCapabilitySetReject response with cause undefinedTableEntryUsed

M3G_E_ERR_TCS_REJ_UNSPECIFIED
Received TerminalCapabilitySetReject response with cause unspecified

M3G_E_KERN_MEM
Kernel memory error

M3G_E_NO_ERROR
Function completed successfully with no error

M3G_E_NO_RESOURCE
No resources are available

M3G_E_REJECTED_BY_PEER
Requested transaction is rejected by peer

M3G_E_UNSUPPORTED
Requested action is unsupported

Dialogic® 3G-324M API Programming Guide and Library Reference — October 2008 232

Dialogic Corporation

Glossary

3GPP: 3rd Generation Partnership Project. A cooperation of international standards bodies for the development of
technical specifications for cellular systems that support voice and high-speed data, known as third-generation (3G)
systems. Established in 1998, 3GPP comprises North American, European, Japanese, Korean, and Chinese
standards development organizations.

3G-324M: Based on ITU-T H.324 recommendation modified by 3GPP for purposes of 3GPP circuit switched
network based video telephony.

ACP: Accelerated Connect Procedure

H.223 Annex A: ITU-T recommendation covering multiplexing protocol for low bit rate multimedia mobile
communication over low error-prone channels.

H.223 Annex B: ITU-T recommendation covering multiplexing protocol for low bit rate multimedia mobile
communication over moderate error-prone channels.

H.223 Annex C: ITU-T recommendation covering multiplexing protocol for low bit rate multimedia mobile
communication over highly error-prone channels.

H.223 Annex D: ITU-T recommendation covering optional multiplexing protocol for low bit rate multimedia
mobile communication over highly error-prone channels.

H.245: ITU-T recommendation covering control protocol for multimedia communication.

H.324: ITU-T recommendation for low bit rate circuit-switched multimedia service in 3GPP networks.

H.324 Annex K: ITU-T recommendation adding support for Media Oriented Negotiation Acceleration (MONA).

Media Oriented Negotiation Acceleration (MONA): A group of complementary standards designed to
significantly reduce delay in H.324 call setup time. The standards include Accelerated Connect Procedure (ACP),
Media Preconfigured Channels (MPC), and Signaling Preconfigured Channel (SPC).

MPC: Media Preconfigured Channels

MSD: Master Slave Determination

OLC: Open Logical Channel

SPC: Signaling Preconfigured Channel

TCS: Terminal Capabilities Set

	Contents
	Figures
	Tables
	Revision History
	About This Publication
	Purpose
	Applicability
	Intended Audience
	How to Use This Publication
	Related Information

	1. Product Description
	1.1 Product Overview
	1.2 3G-324M Technical Specification Overview
	1.2.1 Introduction
	1.2.2 Call Signaling
	1.2.3 H.324 Base Protocol
	1.2.4 H.223 Multiplexer and Demultiplexer Protocol
	1.2.5 H.245 Session Control Protocol
	1.2.6 Media Components
	1.2.7 3G-324M Session Establishment (Standard)
	1.2.8 Media Oriented Negotiation Acceleration (MONA)
	1.2.8.1 Introduction
	1.2.8.2 Media Preconfigured Channels (MPC)
	1.2.8.3 Accelerated Connection Procedure (ACP)
	1.2.8.4 3G-324M Session Establishment with MONA

	1.3 Dialogic® 3G-324M API Implementation

	2. Device Handling
	2.1 Device Overview
	2.2 Device Types

	3. Event Handling
	3.1 Event Handling Overview
	3.2 Dialogic® Standard Runtime Library Event Management Functions
	3.3 Dialogic® Standard Runtime Library Standard Attribute Functions

	4. Error Handling
	5. Implementing a 3G-324M Session
	5.1 Major Implementation Steps
	5.2 Initialize Devices
	5.2.1 Initialize the 3G-324M Library
	5.2.2 Open and Configure the m3g Board Device
	5.2.3 Open and Configure the m3g Control Device
	5.2.4 Open and Configure the m3g Audio Device
	5.2.5 Open and Configure the m3g Video Device
	5.2.6 Get Local Capabilities
	5.2.7 Set Preferred Capabilities

	5.3 Connect Devices
	5.3.1 Connect Devices Overview
	5.3.2 Connecting Networks
	5.3.3 Connecting Audio and Video Media
	5.3.4 Transcoding Versus Native Connection

	5.4 Establish a Bearer Channel
	5.5 Establish a 3G-324M Session
	5.5.1 Start H.245 with MONA
	5.5.2 Establish MONA MPCs
	5.5.3 Exchange Media Using MONA

	5.6 MONA ACP and Standard H.245 Logical Channel Establishment
	5.6.1 Start H.245 - Standard Open Logical Channel Procedure
	5.6.2 Get Matched Capabilities
	5.6.3 Open Audio/Video Logical Channels (OLC)

	5.7 Exchange Media
	5.7.1 Exchange Media Using m3g_StartMedia()
	5.7.2 Exchange Media Using m3g_ModifyMedia()
	5.7.3 Start Multimedia Play and Record
	5.7.4 H.245 UII Digit Detection/Generation
	5.7.5 Video Fast Update Request Detection/Generation

	5.8 Terminate a 3G-324M Session
	5.8.1 Stop Media Streaming
	5.8.2 Terminate the H.245 Session

	5.9 Disconnect the Bearer Channel
	5.10 Disconnect Devices
	5.10.1 Disconnect Media Port Connections
	5.10.2 Disconnect Network Device

	5.11 Close Devices
	5.12 Exit the application

	6. Interoperability and Compliance Information
	6.1 Interoperability Guidelines
	6.2 Statements of Compliance

	7. Video Quality Considerations
	8. Data Structure Considerations
	8.1 Using Inline Functions
	8.2 Handling the Version Number

	9. Building Applications
	9.1 Compiling and Linking
	9.1.1 Include Files
	9.1.2 Required Libraries

	9.2 Variables for Compiling and Linking

	10. Debugging
	10.1 Trace Utilities
	Runtime tracing on a per channel or board basis is supported. This feature allows you to set tracing of the following:
	. H.245 messaging (with textual decode)
	. raw binary H.223 multiplexed bitstreams
	. raw binary audio streams
	. raw binary video streams
	. call statistics

	10.1.1 Parser Utility
	The tool takes one mandatory argument which is the filename of the resulting log file. After executing the parser, the tool pars...
	h245_n.txt
	h223tx_n.bin
	h223rx_n.bin
	audiotx_n.bin
	audiorx_n.bin
	videotx_n.bin
	audiorx_n.bin
	stats_n.txt

	10.2 Call Statistics

	11. Function Summary by Category
	11.1 System Control Functions
	11.2 H.245 Control Functions
	11.3 Data Flow Functions
	11.4 Utility Functions

	12. Function Information
	12.1 Function Syntax Conventions
	m3g_Close()
	m3g_CloseLC()
	m3g_DisableEvents()
	m3g_EnableEvents()
	m3g_GetLocalCaps()
	m3g_GetMatchedCaps()
	m3g_GetParm()
	m3g_GetUserInfo()
	m3g_ModifyMedia()
	m3g_Open()
	m3g_OpenEx()
	m3g_OpenLC()
	m3g_Reset()
	m3g_RespondToOLC()
	m3g_SendH245MiscCmd()
	m3g_SendH245UII()
	m3g_SetParm()
	m3g_SetTCS()
	m3g_SetVendorId()
	m3g_Start()
	m3g_StartH245()
	m3g_StartMedia()
	m3g_StartTrace()
	m3g_Stop()
	m3g_StopH245()
	m3g_StopMedia()
	m3g_StopTrace()

	13. Events
	13.1 Event Types
	13.2 Event Information

	14. Data Structures
	M3G_AMR_OPTIONS
	M3G_AUDIO_CAPABILITY
	M3G_AUDIO_OPTIONS
	M3G_CALL_STATISTICS
	M3G_CAPABILITY
	M3G_CAPS_LIST
	M3G_FASTUPDATE_GOB
	M3G_FASTUPDATE_MB
	M3G_G7231_OPTIONS
	M3G_H221_NONSTD
	M3G_H223_CAPABILITY
	M3G_H223_LC_PARAMS
	M3G_H223_SESSION
	M3G_H245_MISC_CMD
	M3G_H245_MISC_CMD_PARAMS
	M3G_H245_UII
	M3G_H263_OPTIONS
	M3G_MONA_MPC
	M3G_MONA_TXRX_MPC_SUPPORT
	M3G_MPEG4_OPTIONS
	M3G_NONSTANDARD_ID
	M3G_OBJECT_ID
	M3G_OCTET_STRING
	M3G_PARM_INFO
	M3G_REMOTE_CLOSED_LC
	M3G_REMOTE_OLC_REQ
	M3G_REMOTE_OLCACK_RESP
	M3G_SIMULTANEOUS_CAP_SET
	M3G_START_STRUCT
	M3G_TEMPSPTRDFF
	M3G_TRACE_INFO
	M3G_VENDORID_INFO
	M3G_VIDEO_CAPABILITY
	M3G_VIDEO_OPTIONS

	15. Error Codes
	Glossary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Updated TIPs settings to fix web compatibility issue. The PDF documents can be opened with Acrobat and Reader 4.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

