
Dialogic® Device Management
API
Library Reference

October 2009

05-2222-010

Dialogic® Device Management API Library Reference

Copyright and Legal Notice

Copyright © 2003 - 2009, Dialogic Corporation. All Rights Reserved. You may not reproduce this document in whole or in part without permission in
writing from Dialogic Corporation at the address provided below.

All contents of this document are subject to change without notice and do not represent a commitment on the part of Dialogic Corporation or its
subsidiaries (“Dialogic”). Reasonable effort is made to ensure the accuracy of the information contained in the document. However, due to ongoing
product improvements and revisions, Dialogic Corporation and its subsidiaries do not warrant the accuracy of this information and cannot accept
responsibility for errors or omissions that may be contained in this document.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH DIALOGIC® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS EXPLICITLY SET
FORTH BELOW OR AS PROVIDED IN A SIGNED AGREEMENT BETWEEN YOU AND DIALOGIC, DIALOGIC ASSUMES NO LIABILITY
WHATSOEVER, AND DIALOGIC DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF DIALOGIC
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT OF A THIRD PARTY.

Dialogic products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Due to differing national regulations and approval requirements, certain Dialogic products may be suitable for use only in specific countries, and thus
may not function properly in other countries. You are responsible for ensuring that your use of such products occurs only in the countries where such
use is suitable. For information on specific products, contact Dialogic Corporation at the address indicated below or on the web at www.dialogic.com.

It is possible that the use or implementation of any one of the concepts, applications, or ideas described in this document, in marketing collateral
produced by or on web pages maintained by Dialogic Corporation or its subsidiaries may infringe one or more patents or other intellectual property
rights owned by third parties. Dialogic Corporation or its subsidiaries do not provide any intellectual property licenses with the sale of Dialogic products
other than a license to use such product in accordance with intellectual property owned or validly licensed by Dialogic Corporation or its subsidiaries.
More detailed information about such intellectual property is available from Dialogic Corporation's legal department at 9800 Cavendish Blvd., 5th
Floor, Montreal, Quebec, Canada H4M 2V9. Dialogic Corporation encourages all users of its products to procure all necessary intellectual
property licenses required to implement any concepts or applications and does not condone or encourage any intellectual property
infringement and disclaims any responsibility related thereto. These intellectual property licenses may differ from country to country and it
is the responsibility of those who develop the concepts or applications to be aware of and comply with different national license
requirements.

Dialogic, Dialogic Pro, Brooktrout, Diva, Cantata, SnowShore, Eicon, Eicon Networks, NMS Communications, NMS (stylized), Eiconcard, SIPcontrol,
Diva ISDN, TruFax, Exnet, EXS, SwitchKit, N20, Making Innovation Thrive, Connecting to Growth, Video is the New Voice, Fusion, Vision,
PacketMedia, NaturalAccess, NaturalCallControl, NaturalConference, NaturalFax and Shiva, among others as well as related logos, are either
registered trademarks or trademarks of Dialogic. Dialogic's trademarks may be used publicly only with permission from Dialogic. Such permission may
only be granted by Dialogic's legal department at 9800 Cavendish Blvd., 5th Floor, Montreal, Quebec, Canada H4M 2V9. Any authorized use of
Dialogic's trademarks will be subject to full respect of the trademark guidelines published by Dialogic from time to time and any use of Dialogic's
trademarks requires proper acknowledgement.

Windows is a registered trademark of Microsoft Corporation in the United States and/or other countries. The other names of actual companies and
products mentioned herein are the trademarks of their respective owners.

Using the AMR-NB resource in connection with one or more Dialogic® products mentioned herein does not grant the right to practice the AMR-NB
standard. To seek a patent license agreement to practice the standard, contact the VoiceAge Corporation at http://www.voiceage.com/licensing.php.

Publication Date: October 2009

Document Number: 05-2222-010

http://www.voiceage.com/licensing.php
http://www.voiceage.com/licensing.php

Dialogic® Device Management API Library Reference 3
Dialogic Corporation

Contents

Revision History . 5

About This Publication . 10
Purpose . 10
Applicability . 10
Intended Audience. 10
How to Use This Publication . 11
Related Information . 11

1 Function Summary by Category . 12

1.1 Dialogic® Device Management API Header File . 12
1.2 Device Connection Functions . 12
1.3 Resource Reservation Functions. 13
1.4 Event Handling Functions . 13
1.5 Error Processing Functions . 14

2 Function Information . 15

2.1 Function Syntax Conventions . 15
dev_Connect() – connect devices . 16
dev_Disconnect() – disconnect devices . 34
dev_ErrorInfo() – get error info . 37
dev_GetReceivePortInfo() – retrieve device receive ports information . 39
dev_GetResourceReservationInfo() – get resource reservation information 42
dev_GetResourceReservationInfoEx() – get resource reservation information 45
dev_GetResultInfo() – get event info. 49
dev_GetTransmitPortInfo() – retrieve device transmit ports information 52
dev_PortConnect() – create connections between transmit and receive ports 55
dev_PortDisconnect() – sever connections between transmit and receive ports 62
dev_ReleaseResource() – release a resource . 64
dev_ReleaseResourceEx() – release a resource . 67
dev_ReserveResource() – reserve a resource . 71
dev_ReserveResourceEx() – reserve a resource . 74

3 Events . 80

3.1 Overview of Dialogic® Device Management API Events . 80
3.2 Device Connection Events. 80
3.3 Resource Reservation Events . 81

4 Data Structures . 83

DEV_ERRINFO – error information . 84
DEV_RESOURCE_LIST – list of coders to be reserved or released . 85
DEV_RESOURCE_RESERVATIONINFO – resource reservation information 86
DEV_RESOURCE_RESERVATIONINFO_EX – resource reservation information 88
DM_CONNECT_STATUS_LIST – status for port connections . 89

4 Dialogic® Device Management API Library Reference
Dialogic Corporation

Contents

DM_EVENT_INFO – event-related information. 90
DM_PORT_CONNECT_INFO – port connection information . 92
DM_PORT_CONNECT_INFO_LIST – port connection information list . 93
DM_PORT_INFO – port information . 94
DM_PORT_INFO_LIST – port information list . 95
resourceInfo – resource reservation information . 96

5 Error Codes . 97

Dialogic® Device Management API Library Reference 5

Dialogic Corporation

Revision History

This revision history summarizes the changes made in each published version of this document.

Document No. Publication Date Description of Revisions

05-2222-010 October 2009 dev_Connect() function: Indicated that M3G connections are not supported in
Dialogic® HMP Software 3.0WIN.

dev_GetResultInfo() function: Indicated that this function is not supported in
Dialogic® HMP Software 3.0WIN.

dev_GetResourceReservationInfoEx() function: Indicated that this function is not
supported in Dialogic® HMP Software 3.0WIN.

dev_PortConnect() function: Added Dialogic® HMP Software 4.1LIN to Connection
Type table in Supported Connections section.

dev_ReleaseResourceEx() function: Indicated that this function is not supported in
Dialogic® HMP Software 3.0WIN.

dev_ReserveResourceEx() function: Indicated that this function is not supported in
Dialogic® HMP Software 3.0WIN.

05-2222-009 November 2008 Function Summary by Category chapter : Emphasized that Ex functions should be
used instead of non-Ex functions in Resource Reservation Functions. Added
Error Processing Functions (inadvertently omitted in previous version).

Function Information chapter : Removed Platform line from function syntax table. In
general, functions are supported across platforms, with a few exceptions.

dev_Connect() function: In Description, added a paragraph to clarify usage. In
Asynchronous Operation, replaced dev_ErrorInfo() with dev_GetResultInfo()
for processing failure events. In Supported Connections, updated to show that
both synchronous and asynchronous modes are supported for all connections.
In Supported Connections, added “M3G Audio Device and CNF”, “M3G Audio
Device and Voice / DTI,” and “M3G Control Device and DTI.” [IPY00044585]

dev_Disconnect() function: In Asynchronous Operation, replaced dev_ErrorInfo()
with dev_GetResultInfo() for processing failure events. In Errors, removed
clause about failure event. [IPY00043214]

dev_GetResultInfo() function: Minor edits in Description and Caution.

dev_GetResourceReservationInfoEx() function: In Asynchronous Operation,
replaced dev_ErrorInfo() with dev_GetResultInfo() for processing failure
events. In Errors, removed clause about failure event from introductory
paragraph. Updated asynchronous example code to remove
ATDV_LASTERR().

dev_GetReceivePortInfo(), dev_GetTransmitPortInfo(), dev_PortConnect() and
dev_PortDisconnect() functions: In Asynchronous Operation, replaced SRL
functions with dev_GetResultInfo() for processing failure events. In Errors,
removed clause about failure event and SRL functions from introductory
paragraph, and replaced with dev_ErrorInfo().

dev_PortConnect() function: Updated to clarify that this function creates half-duplex
connections between “internal” ports of the specified device. Added M3G and
CNF devices to Multimedia Scenario section and added note about
external/internal ports and connections. Added Supported Connections section.
[IPY00078800]

6 Dialogic® Device Management API Library Reference
Dialogic Corporation

Revision History

05-2222-009
(cont.)

November 2008 dev_PortDisconnect() function: In Description, clarified that these are “internal”
ports.

dev_ReleaseResourceEx(), dev_ReserveResourceEx() functions: In Asynchronous
Operation, replaced dev_ErrorInfo() with dev_GetResultInfo() for processing
failure events. In Errors, removed clause about failure event.

Events chapter : Added information about using dev_GetResultInfo() for processing
failure events.

DM_PORT_INFO_LIST structure: Added INIT_DM_PORT_INFO_LIST inline
function and updated unVersion field description.

Error Codes chapter : Removed details about failure events as this information
belongs in the Events chapter.

05-2222-008 June 2008 Function Summary by Category chapter : Added a new Event Handling category.

dev_PortConnect() function: Updated example code to add a comment about
checking transcoding support for video. Also added an if statement for
DM_PORT_MEDIA_TYPE_VIDEO.

dev_GetResultInfo() function: Added this new function.

DM_EVENT_INFO structure: Added this new data structure.

DM_PORT_CONNECT_INFO structure: Added notes to the unFlags field of this data
structure.

DM_PORT_INFO structure: Added a note that the DM_PORT_MEDIA_TYPE_NBUP
value is deprecated.

05-2222-007 August 2007 Made global changes to reflect Dialogic brand.

Function Summary by Category chapter : Removed table of function support by
platform section.

dev_GetResourceReservationInfoEx() function: Updated Platform line to show
support for Dialogic® HMP software; added note in Description section.

dev_ReserveResourceEx() function: Updated Platform line to show support for
Dialogic® HMP software; added note in Description section.

dev_ReleaseResourceEx() function: Updated Platform line to show support for
Dialogic® HMP software; added note in Description section.

Document No. Publication Date Description of Revisions

Dialogic® Device Management API Library Reference 7

Dialogic Corporation

Revision History

05-2222-006 May 2007 Function Summary by Category chapter : Added new functions to Device Connection
Functions. Added table of function support by platform.

Function Information chapter : Added the following new Device Connection functions:
dev_GetReceivePortInfo(), dev_GetTransmitPortInfo(), dev_PortConnect() and
dev_PortDisconnect().

dev_Connect() function: Updated example code to include inline functions
INIT_MM_AUDIO_CODEC, INIT_MM_VIDEO_CODEC,
INIT_MM_PLAY_RECORD_LIST, INIT_MM_PLAY_INFO.

dev_GetResourceReservationInfo() function: Updated example code to include inline
function INIT_DEV_RESOURCE_RESERVATIONINFO and other edits.

dev_GetResourceReservationInfoEx() function: Updated example code to include
inline function INIT_DEV_RESOURCE_RESERVATIONINFO_EX and other
edits.

dev_PortConnect() function: Updated example code to include inline function
INIT_DM_PORT_CONNECT_INFO_LIST.

dev_ReleaseResourceEx() function: Updated example code to include inline
function INIT_DEV_RESOURCE_LIST.

dev_ReserveResourceEx() function: Added caution about cleaning up resources
before exiting. Updated example code to include inline function
INIT_DEV_RESOURCE_LIST.

Events chapter : Added eight new events associated with the new Device Connection
functions.

Data Structures chapter : Added the following new data structures:
DM_CONNECT_STATUS_LIST, DM_PORT_CONNECT_INFO,
DM_PORT_CONNECT_INFO_LIST, DM_PORT_INFO,
DM_PORT_INFO_LIST.

DEV_RESOURCE_LIST structure: Added INIT_DEV_RESOURCE_LIST inline
function. Changed version data type from ‘int’ to ‘unsigned int’.

DEV_RESOURCE_RESERVATIONINFO structure: Added
INIT_DEV_RESOURCE_RESERVATIONINFO inline function. Changed version
data type from ‘int’ to ‘unsigned int’.

DEV_RESOURCE_RESERVATIONINFO_EX structure: Added
INIT_DEV_RESOURCE_RESERVATIONINFO_EX inline function. Changed
version data type from ‘int’ to ‘unsigned int’.

Document No. Publication Date Description of Revisions

8 Dialogic® Device Management API Library Reference
Dialogic Corporation

Revision History

05-2222-005 September 2006 Global change: Revisions included adding new Dialogic® Multimedia Platform for
AdvancedTCA references, function operations, data structures, and events.

Purpose section: Updated the description of the API to include Dialogic® Multimedia
Platform for AdvancedTCA.

Function Summary by Category chapter : Specified which Resource Reservation
Functions are on Dialogic® HMP software and Dialogic® Multimedia Platform for
AdvancedTCA.

Function Information chapter : Added three new functions:
dev_GetResourceReservationEx(), dev_ReleaseResourceEx(),
dev_ReserveResourceEx(). Added Dialogic® Multimedia Platform for
AdvancedTCA to dev_Connect(), dev_Disconnect(), and dev_ErrorInfo()
functions.

Data Structures chapter : Added three new data structures: DEV_RESOURCE_LIST,
DEV_RESOURCE_RESERVATIONINFO_EX, and resourceInfo.

Events chapter : Added four new Resource Reservation Events:
DMEV_RELEASE_RESOURCE, DMEV_RELEASE_RESOURCE _FAIL,
DMEV_RESERVE_RESOURCE, and DMEV_RESERVE_RESOURCE_FAIL.
Added dev_GetResourceReservationInfoEx() function to existing events
DMEV_GET_RESOURCE_RESERVATIONINFO and
DMEV_GET_RESOURCE_RESERVATIONINFO_FAIL.

05-2222-004 August 2006 dev_Connect() function: Added new connection types to the section on Supported
Connections.

05-2222-003 August 2005 Added multimedia features. updated some function operations, and made a few
corrections.

Purpose section: Updated the description of the API to include ability to connect IP
media and multimedia devices.

dev_Connect() function: Added section on Supported Connections. Removed
section on Implicit Disconnection (as well as corresponding caution) as not
applicable. Changed Cautions section to indicate that multiple connections are
not possible. Added Multimedia Sample and Example A (Multimedia
Asynchronous). Corrected the T.38 Sample, which referred to the IPML define
MEDIATYPE_LOCAL_T38_INFO instead of
MEDIATYPE_LOCAL_UDPTL_T38_INFO.

dev_Disconnect() function: Changed Cautions section to indicate that disconnecting
a device that is not connected generates an error now, rather than being
ignored, as occurred previously. Added cross reference to dev_Connect()
example code. Replaced the T.38 Sample with a cross reference to identical
sample in dev_Connect().

Document No. Publication Date Description of Revisions

Dialogic® Device Management API Library Reference 9

Dialogic Corporation

Revision History

05-2222-002 September 2004 dev_ReleaseResource() and dev_ReserveResource() functions: Corrected function
header, description, operation, cautions, and example code to indicate that the
Resource Reservation operations on the Low Bit Rate codec (resource type
RESOURCE_IPM_LBR) are supported in synchronous mode only
(asynchronous mode is not supported).

Resource Reservation Events: Removed the following Resource Reservation events
because asynchronous mode is not supported for the Resource Reservation
functions:
DMEV_RELEASE_RESOURCE
DMEV_RELEASE_RESOURCE_FAIL
DMEV_RESERVE_RESOURCE
DMEV_RESERVE_RESOURCE_FAIL

dev_ReleaseResource() function: Reworded caution to say that the function requires
the device to be open or else it generates an EIPM_INV_STATE error (deleted
“and that it have a resource of the specified type reserved for it”).

05-2222-001 September 2003 Initial version of document.

Document No. Publication Date Description of Revisions

Dialogic® Device Management API Library Reference 10

Dialogic Corporation

About This Publication

The following topics provide information about this publication.

• Purpose

• Applicability

• Intended Audience

• How to Use This Publication

• Related Information

Purpose

This publication contains reference information for functions, parameters, data structures, values,
events, and error codes in the Dialogic® Device Management API. The API provides run-time
control and management of configurable system devices, including functions to reserve resources
and to manage connections between devices for communication and sharing of resources.

Applicability

This document is published for the following releases: Dialogic® Host Media Processing Software
Release 4.1LIN (Dialogic® HMP Software 4.1LIN), Dialogic® Host Media Processing Software
Release 3.1LIN (Dialogic® HMP Software 3.1LIN), Dialogic® Host Media Processing Software
Release 3.0WIN (Dialogic® HMP Software 3.0WIN), Dialogic® Multimedia Platform for ATCA
(MMP for ATCA), and Dialogic® Multimedia Kit for PCIe (MMK for PCIe). The information in
this document applies to all releases unless indicated otherwise.

This document may also be applicable to other software releases (including service updates) on
Linux or Windows® operating systems. Check the Release Guide for your software release to
determine whether this document is supported.

Intended Audience

This information is intended for:

• Distributors

• System Integrators

• Toolkit Developers

• Independent Software Vendors (ISVs)

• Value Added Resellers (VARs)

Dialogic® Device Management API Library Reference 11

Dialogic Corporation

About This Publication

• Original Equipment Manufacturers (OEMs)

• End Users

How to Use This Publication

This publication assumes that you are familiar with and have prior experience with the Linux or
Windows® operating system and the C programming language.

The information in this publication is organized as follows:

• Chapter 1, “Function Summary by Category” introduces the categories of functions and
provides a brief description of each function.

• Chapter 2, “Function Information” provides an alphabetical reference to all the functions in
the Dialogic® Device Management API library.

• Chapter 3, “Events” describes the events that are generated by the Dialogic® Device
Management API functions.

• Chapter 4, “Data Structures” describes the data structures used with Dialogic® Device
Management API functions, including fields and valid values.

• Chapter 5, “Error Codes” presents a listing of error codes that are returned by the API.

Related Information

See the following for additional information:

• http://www.dialogic.com/manuals/ (for Dialogic® product documentation)

• http://www.dialogic.com/support/ (for Dialogic technical support)

• http://www.dialogic.com/ (for Dialogic® product information)

http://www.dialogic.com/manuals/
http://www.dialogic.com/manuals/
http://www.dialogic.com/support/
http://www.dialogic.com

Dialogic® Device Management API Library Reference 12

Dialogic Corporation

11.Function Summary by Category

This chapter contains an overview of the Dialogic® Device Management API functions and the
categories into which they are grouped. Major topics include the following:

• Dialogic® Device Management API Header File . 12

• Device Connection Functions . 12

• Resource Reservation Functions . 13

• Event Handling Functions . 13

• Error Processing Functions . 14

1.1 Dialogic® Device Management API Header File

The Dialogic® Device Management API contains functions that provide run-time control and
management of configurable system devices. The Dialogic® Device Management API functions,
parameters, data structures, values, events, and error codes are mainly defined in the devmgmt.h
header file. The Dialogic® Device Management API functions have a “dev_” prefix.

Note: The header file also contains other functions, such as those belonging to the Dialogic® Board
Management Library, which have a “brd_” prefix. The Dialogic® Board Management Library
functions and their associated data belong to a separate API category and are not addressed by this
document. Their presence in the header file does not indicate that they are supported.

1.2 Device Connection Functions

Device Connection functions manage the connections between devices, allowing communication
and sharing of resources. They include the following functions:

dev_Connect()
Establishes either a half-duplex or a full-duplex connection for communication between the
two specified channel devices.

dev_Disconnect()
Disconnects or breaks the connection between the receive channel of the specified device and
the transmit channel of the device that was associated with it.

dev_GetReceivePortInfo()
Retrieves device receive port information.

dev_GetTransmitPortInfo()
Retrieves device transmit port information.

dev_PortConnect()
Establishes port to port connections.

Dialogic® Device Management API Library Reference 13

Dialogic Corporation

Function Summary by Category

dev_PortDisconnect()
Disconnects or breaks the connection between ports.

1.3 Resource Reservation Functions

Resource Reservation functions manage configurable system devices at run time. They provide the
ability to reserve low bit rate codecs (e.g., G.723 or G.729) for an IP media device on media
processing software.

They include the following functions:

Note: The “Ex()” functions supercede and should be used instead of the non-Ex() versions. The Ex()
functions provide improved information about available resources.

dev_GetResourceReservationInfo()
Provides the current reservation information for the specified resource (s) and device in a
DEV_RESOURCE_RESERVATIONINFO data structure. Superceded by
dev_GetResourceReservationInfoEx().

dev_GetResourceReservationInfoEx()
Provides the current reservation information for the specified resource(s) and device in the
DEV_RESOURCE_RESERVATIONINFO_EX data structure.

dev_ReleaseResource()
Releases a specified resource previously reserved for the device. Superceded by
dev_ReleaseResourceEx().

dev_ReleaseResourceEx()
Releases specified resource(s) previously reserved for the device.

dev_ReserveResource()
Reserves a resource for use by the specified device, such as reserving a low bit rate codec
resource (e.g., G.723 or G.729) for an IP media device. Superceded by
dev_ReserveResourceEx().

dev_ReserveResourceEx()
Reserves resource(s) for use by the specified device, such as reserving a low bit rate codec
resource (e.g., G.723 or G.729) for an IP media device.

1.4 Event Handling Functions

Event Handling functions provide event handling information. This category includes the following
function:

dev_GetResultInfo()
Gathers information concerning a given event. This event information may be used for trace
logging, debugging, and error handling.

14 Dialogic® Device Management API Library Reference
Dialogic Corporation

Function Summary by Category

1.5 Error Processing Functions

Error Processing functions provide error processing information. They include the following
functions:

dev_ErrorInfo()
Obtains the error information for the last error in the Dialogic® Device Management API or
one of its subsystems and provides it in the DEV_ERRINFO error information structure.

Dialogic® Device Management API Library Reference 15

Dialogic Corporation

22.Function Information

This chapter is arranged in alphabetical order by function name and contains detailed information
on each function in the Dialogic® Device Management API.

2.1 Function Syntax Conventions

The Dialogic® Device Management API functions use the following format:

dev_FunctionName (DeviceHandle, Parameter1, Parameter2, ..., ParameterN, mode)

where:

dev_FunctionName
represents the name of the function. Functions in the Dialogic® Device Management API use
the prefix “dev_” in the function name.

DeviceHandle
is an input parameter that specifies a valid handle obtained for a device when the device was
opened

Parameter1, Parameter2, ..., ParameterN
represent input or output parameters

mode
is an input parameter that specifies how the function should be executed, typically either
asynchronously or synchronously. Some functions can be executed in only one mode and so do
not provide this parameter.

16 Dialogic® Device Management API Library Reference
Dialogic Corporation

dev_Connect() — connect devices

dev_Connect()

connect devices

Description

The dev_Connect() function establishes either a half-duplex or a full-duplex connection for
communication between the two specified channel devices. If half-duplex communication is used,
the first device listens to the second device (i.e., devHandle1 listens to devHandle2). The
connection remains until broken by dev_Disconnect().

Note: The terms listen and receive are used synonymously.

By default, the dev_Connect() function connects audio linear ports and video native ports. In this
case, “linear” means audio in straight PCM format. This is the lowest common denominator from
which other forms of compressed audio can be derived using a codec. Thus, audio transcoding is
achieved using dev_Connect(). For video, the video stream is available only in its native format
(the one in which it was generated), so this function does not perform video transcoding.

Name: int dev_Connect (devHandle1, devHandle2, connType, mode)

Inputs: int devHandle1 • a valid channel device

int devHandle2 • a valid channel device

eCONN_TYPE connType • type of connection to make between the devices

unsigned short mode • asynchronous or synchronous function mode

Returns: DEV_SUCCESS if successful
-1 if failure

Includes: srllib.h
devmgmt.h

Category: Device Connection

Mode: asynchronous or synchronous

Parameter Description

devHandle1 specifies a valid channel device handle obtained when the channel was
opened

devHandle2 specifies a valid channel device handle obtained when the channel was
opened

connType specifies a connection type from among the following valid values:
• DM_FULLDUP – Specifies full-duplex communication (default)
• DM_HALFDUP – Specifies half-duplex communication where the

first device listens to the second device (i.e., devHandle1 listens to
devHandle2)

mode specifies how the function should be executed. Set this to one of the
following:
• EV_ASYNC – asynchronously
• EV_SYNC – synchronously (default)

Dialogic® Device Management API Library Reference 17

Dialogic Corporation

connect devices — dev_Connect()

Supported Connections

The dev_Connect() function can create connections between devices including:

Multimedia and IP Media
A full-duplex or half-duplex connection between an IP media device and a multimedia device.
Requires a valid IP media device handle obtained through the ipm_Open() function and a
valid multimedia device handle obtained through the mm_Open() function. Both
synchronous and asynchronous modes are supported. In the half-duplex connection, either
type of device can listen to the other.

T.38 Fax and IP Media
A full-duplex connection between an IP media device and a T.38 UDP fax device. Requires a
valid T.38 UDP fax device handle obtained through the fx_open() function and a valid IP
media device handle obtained through the ipm_Open() function. Both synchronous and
asynchronous modes are supported.

CNF Audio Conferencing Party and Voice
A full-duplex or half-duplex connection between an audio conferencing party device (CNF
API) and a voice device. Requires a valid audio conferencing party device handle obtained
through the cnf_OpenParty() function and a valid voice device handle obtained through the
dx_open() function. Both synchronous and asynchronous modes are supported. In the half-
duplex connection, either type of device can listen to the other.

CNF Audio Conferencing Party and IP Media
A full-duplex or half-duplex connection between an audio conferencing party device (CNF
API) and an IP media device. Requires a valid audio conferencing party device handle
obtained through the cnf_OpenParty() function and a valid IP media device handle obtained
through the ipm_Open() function. Both synchronous and asynchronous modes are supported.
In the half-duplex connection, the IP device can listen to the conferencing party device.

CNF Audio Conferencing Party and CNF Audio Conferencing Party
A full-duplex connection between two audio conferencing party devices (CNF API). Requires
valid audio conferencing party device handles obtained through the cnf_OpenParty()
function. Both synchronous and asynchronous modes are supported.

CNF Audio Conferencing Party and Digital Network Interface (DTI) Device
A full-duplex or half-duplex connection between an audio conferencing party device (CNF
API) and a DTI device. Requires a valid audio conferencing party device handle obtained
through the cnf_OpenParty() function and a valid DTI device handle obtained through the
dt_open() function. Both synchronous and asynchronous modes are supported. In the half-
duplex connection, either type of device can listen to the other.

M3G Audio Device and CNF Audio Conferencing Party
A full-duplex or half-duplex connection between a 3G-324M audio device (M3G API) and an
audio conferencing party device (CNF API). Requires a valid M3G audio device handle
obtained through the m3g_Open() function and a valid device handle obtained through the
cnf_OpenParty() function. Both synchronous and asynchronous modes are supported. In a
half-duplex connection, either type of device can listen to the other.

This connection type is not supported in Dialogic® HMP Software 3.0WIN.

M3G Audio Device and Voice / Digital Network Interface (DTI) Device
A full-duplex or half-duplex connection between a 3G-324M audio device (M3G API) and a
voice device or DTI device. Requires a valid M3G audio device handle obtained through the

18 Dialogic® Device Management API Library Reference
Dialogic Corporation

dev_Connect() — connect devices

m3g_Open() function and a valid device handle obtained through the dx_open() or
dt_open() function. Both synchronous and asynchronous modes are supported. In a half-
duplex connection, either type of device can listen to the other.

This connection type is not supported in Dialogic® HMP Software 3.0WIN.

M3G Control Device and Digital Network Interface (DTI) Device
A full-duplex or half-duplex connection between a 3G-324M control device (M3G API) and a
DTI device. Requires a valid M3G control device handle obtained through the m3g_Open()
function and a valid DTI device handle obtained through the dt_open() function. Both
synchronous and asynchronous modes are supported. In a half-duplex connection, either type
of device can listen to the other.

This connection type is not supported in Dialogic® HMP Software 3.0WIN.

To break the connection made by dev_Connect(), use the dev_Disconnect() function.

To connect other device types, use the technology-specific routing functions, such as dx_listen()
and dt_listen().

Asynchronous Operation

To run this function asynchronously, set the mode parameter to EV_ASYNC. The function returns
0 to indicate it has initiated successfully. The function generates a DMEV_CONNECT termination
event for each device to indicate successful completion of the function operation. The function
always generates one event for each device regardless of whether the connection type is full-duplex
or half-duplex (i.e., a successful half- or full-duplex connection will generate two events). The
application program must wait for the completion events that indicate the connection was
successful. Use the Dialogic® Standard Runtime Library (SRL) functions to process the
termination events. The device handle for the connected device can be obtained from the successful
termination event by using the sr_getevtdev() function.

This function generates a DMEV_CONNECT_FAIL error event for each device to indicate failure
of the function operation. The function always generates one event for each device regardless of
whether the failed connection type is full-duplex or half-duplex. Use dev_GetResultInfo() to
retrieve the error information.

Synchronous Operation

To run this function synchronously, set the mode parameter to EV_SYNC. This function returns 0
to indicate successful completion and -1 to indicate failure. Use dev_ErrorInfo() to retrieve the
error information.

Note: Synchronous operation is not supported for multimedia device connection or disconnection.

Cautions

• The dev_Connect() function must be called from the same process that opens the devices and
obtains the device handles used in the function.

• To break a connection made by dev_Connect(), you must use the dev_Disconnect()
function.

• Multiple connections on a device are not allowed. Once a dev_Connect() has been
successfully performed on a device, the device is considered to be connected regardless of

Dialogic® Device Management API Library Reference 19

Dialogic Corporation

connect devices — dev_Connect()

whether the device is listening or being listened to. If you attempt to perform dev_Connect()
more than once on a device without first disconnecting the device, the function generates an
EDEV_DEVICEBUSY error. This also means that you cannot create a full-duplex connection
by performing two half-duplex connections on the same devices. To create a full-duplex
connection in this situation, you must first disconnect the half-duplex connection and then
create a full-duplex connection.

• If dev_Connect() fails in doing either part of a full-duplex connection, the operation as a
whole fails and no connection will be made (i.e., it does not create a half-duplex connection).

Multimedia Sample

The following sample programming sequence describes how to connect a multimedia device to an
IP media channel using a half-duplex connection and then play a multimedia clip over IP. It is
intended as a basic guideline to show some of the steps involved in general terms.

• Use the ipm_Open() function to open the IP media device and get the device handle.

• Use the mm_Open() function to open the multimedia device and get the device handle.

• Use the dev_Connect() function to make a half-duplex connection (DM_HALFDUP)
between the IP media device and the multimedia device, specifying the IP media device as
devHandle1 (listen/receive) and the multimedia device as devHandle2 (transmit). For playing
multimedia, the IP media device (devHandle1) must listen to the multimedia device
(devHandle2).

• Wait for the DMEV_CONNECT events for both the IP media device and the multimedia
device to confirm that the dev_Connect() function was successful.

• Set MediaData[0].eMediaType = MEDIATYPE_VIDEO_LOCAL_RTP_INFO. Set
MediaData[1].eMediaType = MEDIATYPE_AUDIO_LOCAL_RTP_INFO. Then use the
ipm_GetLocalMediaInfo() function and get the local multimedia port and IP address
information from the IPMEV_GET_LOCAL_MEDIA_INFO event.

• Obtain the remote end multimedia port and IP address by using Global Call in 3PCC mode for
SDP/SIP, or by using a call control framework other than Global Call for other use cases.

• Initialize the IPM_MEDIA_INFO data structure with all media information, including local
and remote IP port and address obtained earlier. For full multimedia transmission (audio and
video), set eMediaType to the following:

• MEDIATYPE_AUDIO_LOCAL_RTP_INFO

• MEDIATYPE_AUDIO_LOCAL_RTCP_INFO

• MEDIATYPE_AUDIO_LOCAL_CODER_INFO

• MEDIATYPE_VIDEO_LOCAL_RTP_INFO

• MEDIATYPE_VIDEO_LOCAL_RTCP_INFO

• MEDIATYPE_VIDEO_LOCAL_CODER_INFO

• MEDIATYPE_AUDIO_REMOTE_RTP_INFO

• MEDIATYPE_AUDIO_REMOTE_RTCP_INFO

• MEDIATYPE_AUDIO_REMOTE_CODER_INFO

• MEDIATYPE_VIDEO_REMOTE_RTP_INFO

• MEDIATYPE_VIDEO_REMOTE_RTCP_INFO

• MEDIATYPE_VIDEO_REMOTE_CODER_INFO

• Use the ipm_StartMedia() function to start the media session.

20 Dialogic® Device Management API Library Reference
Dialogic Corporation

dev_Connect() — connect devices

• Wait for the IPMEV_STARTMEDIA event to confirm that the ipm_StartMedia() function
was successful.

• Initialize the parameters for the mm_Play() function, including a list of multimedia files to
play and the runtime control information.

• Use the mm_Play() function to transmit the multimedia data from the multimedia device to
the IP media device.

• Wait for the MMEV_PLAY_ACK event to confirm that the mm_Play() function started
successfully.

• Wait for the MMEV_PLAY event to confirm that the mm_Play() function completed
successfully.

• Use the ipm_Stop() function to tear down the media session.

• Use the dev_Disconnect() function on the IP media device (listening device) to break the
half-duplex connection.

• Wait for the DMEV_DISCONNECT event on the IP device.

To record multimedia using a half-duplex connection, you can use the same procedure but with
the following differences:

• When you use the dev_Connect() function to create the half-duplex connection between the
IP media device and the multimedia device, specify the multimedia device as devHandle1
(receive) and the IP media device as devHandle2 (transmit). For recording, the multimedia
device (devHandle1) must listen to the IP media device (devHandle2).

• Use the mm_Record() function rather than mm_Play(), and wait for the corresponding
MMEV_RECORD_ACK and MMEV_RECORD events.

• Use the dev_Disconnect() function on the multimedia device (receive device) to break the
half-duplex connection.

Note: If you want to both play and record over the same connection, you can use the dev_Connect()
function to establish a full-duplex connection between the IP media device and the multimedia
device (as long as the devices are not already connected). To completely break the full-duplex
connection when done, you must call the dev_Disconnect() function twice: once for the IP media
device and once for the multimedia device.

T.38 Fax Sample

The following sample programming sequence describes how to make and break a T.38 fax session
over an IP media channel. It is intended as a basic guideline to show some of the steps involved in
general terms.

• Use the ipm_Open() function to open the IP media device and get the device handle.

• Use the dx_open() function to open the voice resource device and get the device handle.

• Use the dx_getfeaturelist() function to get feature information on the voice device handle.

• Check the ft_fax feature table information to see if it is a valid fax device (FT_FAX).

• Use the fx_open() function to open the fax resource device and get the device handle.

• Check the ft_fax feature table information to see if it is a valid T.38 fax device
(FT_FAX_T38UDP).

• Use the dev_Connect() function to make a full-duplex connection (DM_FULLDUP) between
the IP media device and the fax device.

Dialogic® Device Management API Library Reference 21

Dialogic Corporation

connect devices — dev_Connect()

• Wait for the DMEV_CONNECT events for both the IP media device and the fax device to
confirm that the dev_Connect() function was successful.

• Set MediaData[0].eMediaType = MEDIATYPE_LOCAL_UDPTL_T38_INFO, and use the
ipm_GetLocalMediaInfo() function to get the local T.38 port and IP address information.

• Wait for the IPMEV_GET_LOCAL_MEDIA_INFO event.

• Obtain the remote end T.38 port and IP address. This would usually be obtained by using a
signaling protocol such as H.323 or SIP.

• Use the ipm_StartMedia() function and specify the remote T.38 port and IP address obtained
earlier.

• Wait for the IPMEV_STARTMEDIA event to confirm that the ipm_StartMedia() function
was successful.

• Use the fx_sendfax() function to start the fax transmission.

• Wait for the TFX_FAXSEND event to confirm that the fx_sendfax() function was successful.

• Use the ipm_Stop() function to conclude the session.

• Use the dev_Disconnect() function on the IP media device and on the fax device to break both
sides of the full-duplex connection.

Errors

If this function returns -1 to indicate failure, use dev_ErrorInfo() to retrieve the error information.
Possible errors for this function include:

EDEV_DEVICEBUSY
At least one of the devices specified is currently in use by another Device Management API
function call.

EDEV_FAX_SUBSYSTEMERR
A subsystem error occurred during an internal call to a fax library function because the
subsystem function was unable to start (this is not a Device Management API error). See the
fax library documentation for the fax error codes and descriptions.

EDEV_INVALIDCONNTYPE
An invalid connection type (connType) was specified (e.g., T.38 UDP fax connection must be
full-duplex).

EDEV_INVALIDDEVICEHANDLE
An invalid device handle was specified. For the dev_Connect() function, the Supported
Connections do not allow connection of the specified types of devices. Valid handles are listed
in Supported Connections.

EDEV_INVALIDMODE
An invalid mode was specified for executing the function synchronously or asynchronously
(EV_SYNC or EV_ASYNC).

EDEV_IPM_SUBSYSTEMERR
A subsystem error occurred during an internal call to an IP media library function because the
subsystem function was unable to start (this is not a Device Management API error). See the IP
media library documentation for the IP media error codes and descriptions.

22 Dialogic® Device Management API Library Reference
Dialogic Corporation

dev_Connect() — connect devices

EDEV_MM_SUBSYSTEMERR
A subsystem error occurred during an internal call to a multimedia library function because the
subsystem function was unable to start (this is not a Device Management API error). See the
multimedia library documentation for the multimedia error codes and descriptions.

See also Chapter 5, “Error Codes” for additional information.

Example A (Multimedia Asynchronous)

The following example code shows how the function is used in asynchronous mode.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>

#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>
#include <ipmlib.h>
#include <devmgmt.h>
#include <mmlib.h>

static int ipm_handle = -1;
static int mm_handle = -1;

static DF_IOTT iott = {0};
static int fd = 0;
static IPM_MEDIA_INFO info, local_info;

static bool ipm_handle_disconnected = false;
static bool mm_handle_disconnected = false;

long IpmEventHandler(unsigned long evthandle)
{
 int evttype = sr_getevttype();

 switch(evttype)
 {
 case DMEV_CONNECT:
 printf("DMEV_CONNECT event received by IPM device.\n");
 {
 local_info.MediaData[0].eMediaType=MEDIATYPE_VIDEO_LOCAL_RTP_INFO;
 local_info.MediaData[1].eMediaType=MEDIATYPE_AUDIO_LOCAL_RTP_INFO;

 if(ipm_GetLocalMediaInfo(ipm_handle, &local_info, EV_ASYNC) == -1)
 {
 printf("ipm_GetLocalMediaInfo() failed.\n");
 exit(1);
 }
 }
 break;

 case IPMEV_GET_LOCAL_MEDIA_INFO:
 printf("IPMEV_GET_LOCAL_MEDIA_INFO event received.\n");
 {
 info.unCount = 12;

 local_info.MediaData[0].eMediaType=MEDIATYPE_VIDEO_LOCAL_RTP_INFO;
 local_info.MediaData[0].eMediaType=MEDIATYPE_AUDIO_LOCAL_RTP_INFO;

 info.MediaData[0].eMediaType=MEDIATYPE_AUDIO_LOCAL_RTP_INFO;
 info.MediaData[0].mediaInfo.PortInfo.unPortId =
local_info.MediaData[2].mediaInfo.PortInfo.unPortId;

Dialogic® Device Management API Library Reference 23

Dialogic Corporation

connect devices — dev_Connect()

 strcpy(info.MediaData[0].mediaInfo.PortInfo.cIPAddress,
local_info.MediaData[2].mediaInfo.PortInfo.cIPAddress);

 info.MediaData[1].eMediaType=MEDIATYPE_AUDIO_LOCAL_RTCP_INFO;
 info.MediaData[1].mediaInfo.PortInfo.unPortId =
local_info.MediaData[3].mediaInfo.PortInfo.unPortId;
 strcpy(info.MediaData[1].mediaInfo.PortInfo.cIPAddress,
local_info.MediaData[3].mediaInfo.PortInfo.cIPAddress);

 info.MediaData[2].eMediaType=MEDIATYPE_AUDIO_REMOTE_RTP_INFO;
 info.MediaData[2].mediaInfo.PortInfo.unPortId = 4800;
 strcpy(info.MediaData[2].mediaInfo.PortInfo.cIPAddress, "146.152.86.45");

 info.MediaData[3].eMediaType=MEDIATYPE_AUDIO_REMOTE_RTCP_INFO;
 info.MediaData[3].mediaInfo.PortInfo.unPortId = 4801;
 strcpy(info.MediaData[3].mediaInfo.PortInfo.cIPAddress, "146.152.86.45");

 info.MediaData[4].eMediaType=MEDIATYPE_AUDIO_LOCAL_CODER_INFO;
 // AudioCoderInfo
 info.MediaData[4].mediaInfo.CoderInfo.eCoderType=CODER_TYPE_G711ULAW64K;
 info.MediaData[4].mediaInfo.CoderInfo.eFrameSize=CODER_FRAMESIZE_20;
 info.MediaData[4].mediaInfo.CoderInfo.unFramesPerPkt=1;
 info.MediaData[4].mediaInfo.CoderInfo.eVadEnable=CODER_VAD_DISABLE;
 info.MediaData[4].mediaInfo.CoderInfo.unCoderPayloadType=0;
 info.MediaData[4].mediaInfo.CoderInfo.unRedPayloadType=0;

 info.MediaData[5].eMediaType=MEDIATYPE_AUDIO_REMOTE_CODER_INFO;
 // AudioCoderInfo
 info.MediaData[5].mediaInfo.CoderInfo.eCoderType=CODER_TYPE_G711ULAW64K;
 info.MediaData[5].mediaInfo.CoderInfo.eFrameSize=CODER_FRAMESIZE_20;
 info.MediaData[5].mediaInfo.CoderInfo.unFramesPerPkt=1;
 info.MediaData[5].mediaInfo.CoderInfo.eVadEnable=CODER_VAD_DISABLE;
 info.MediaData[5].mediaInfo.CoderInfo.unCoderPayloadType=0;
 info.MediaData[5].mediaInfo.CoderInfo.unRedPayloadType=0;

 info.MediaData[6].eMediaType=MEDIATYPE_VIDEO_LOCAL_RTP_INFO;
 info.MediaData[6].mediaInfo.PortInfo.unPortId =
 local_info.MediaData[0].mediaInfo.PortInfo.unPortId;
 strcpy(info.MediaData[6].mediaInfo.PortInfo.cIPAddress,
 local_info.MediaData[0].mediaInfo.PortInfo.cIPAddress);

 info.MediaData[7].eMediaType=MEDIATYPE_VIDEO_LOCAL_RTCP_INFO;
 info.MediaData[7].mediaInfo.PortInfo.unPortId =
 local_info.MediaData[1].mediaInfo.PortInfo.unPortId;
 strcpy(info.MediaData[7].mediaInfo.PortInfo.cIPAddress,
 local_info.MediaData[1].mediaInfo.PortInfo.cIPAddress);

 info.MediaData[8].eMediaType=MEDIATYPE_VIDEO_REMOTE_RTP_INFO;
 info.MediaData[8].mediaInfo.PortInfo.unPortId = 4900;
 strcpy(info.MediaData[8].mediaInfo.PortInfo.cIPAddress, "146.152.86.45");

 info.MediaData[9].eMediaType=MEDIATYPE_VIDEO_REMOTE_RTCP_INFO;
 info.MediaData[9].mediaInfo.PortInfo.unPortId = 4901;
 strcpy(info.MediaData[9].mediaInfo.PortInfo.cIPAddress, "146.152.86.45");

 // This is assuming local will always be == remote for coder info...
 info.MediaData[10].eMediaType=MEDIATYPE_VIDEO_LOCAL_CODER_INFO;
 info.MediaData[10].mediaInfo.VideoCoderInfo.unVersion=0;
 info.MediaData[10].mediaInfo.VideoCoderInfo.eCoderType=CODER_TYPE_H263;
 info.MediaData[10].mediaInfo.VideoCoderInfo.unFrameRate = 1500;
 info.MediaData[10].mediaInfo.VideoCoderInfo.unSamplingRate = 90000;
 info.MediaData[10].mediaInfo.VideoCoderInfo.unCoderPayloadType = 34;
 info.MediaData[10].mediaInfo.VideoCoderInfo.unProfileID = 0;
 info.MediaData[10].mediaInfo.VideoCoderInfo.unLevelID = 10;
 info.MediaData[10].mediaInfo.VideoCoderInfo.unSizeofVisualConfigData = 0;
 info.MediaData[10].mediaInfo.VideoCoderInfo.szVisualConfigData = NULL;

24 Dialogic® Device Management API Library Reference
Dialogic Corporation

dev_Connect() — connect devices

 info.MediaData[11].eMediaType=MEDIATYPE_VIDEO_REMOTE_CODER_INFO;
 info.MediaData[11].mediaInfo.VideoCoderInfo.unVersion=0;
 info.MediaData[11].mediaInfo.VideoCoderInfo.eCoderType=CODER_TYPE_H263;
 info.MediaData[11].mediaInfo.VideoCoderInfo.unFrameRate = 1500;
 info.MediaData[11].mediaInfo.VideoCoderInfo.unSamplingRate = 90000;
 info.MediaData[11].mediaInfo.VideoCoderInfo.unCoderPayloadType = 34;
 info.MediaData[11].mediaInfo.VideoCoderInfo.unProfileID = 0;
 info.MediaData[11].mediaInfo.VideoCoderInfo.unLevelID = 10;
 info.MediaData[11].mediaInfo.VideoCoderInfo.unSizeofVisualConfigData = 0;
 info.MediaData[11].mediaInfo.VideoCoderInfo.szVisualConfigData = NULL;

 if(ipm_StartMedia(ipm_handle, &info, DATA_IP_TDM_BIDIRECTIONAL, EV_ASYNC) == -1)
 {
 printf("ipm_StartMedia() failed.\n");
 exit(1);
 }
 }
 break;

 case DMEV_DISCONNECT:
 printf("DMEV_DISCONNECT event received.\n");
 ipm_handle_disconnected = true;
 if(mm_handle_disconnected)
 {
 // keep the event. Propogate to waitevt() in Main
 return 1;
 }
 break;

 case IPMEV_STARTMEDIA:
 printf("IPMEV_STARTMEDIA event received.\n");
 {
 int item = 0;

 MM_PLAY_INFO play_info;
 MM_PLAY_RECORD_LIST playlist[2];
 MM_MEDIA_ITEM_LIST mediaitemlist1;
 MM_MEDIA_ITEM_LIST mediaitemlist2;
 MM_AUDIO_CODEC AudioCodecType;
 MM_VIDEO_CODEC VideoCodecType;

 // Create Audio
 INIT_MM_AUDIO_CODEC(&AudioCodecType);
 AudioCodecType.unCoding = 1;
 AudioCodecType.unSampleRate = 8000;
 AudioCodecType.unBitsPerSample = 16;
 mediaitemlist1.item.audio.codec = AudioCodecType;
 mediaitemlist1.item.audio.unMode = 0x0020; // VOX File
 mediaitemlist1.item.audio.unOffset = 0;
 mediaitemlist1.item.audio.szFileName = "Audio.aud";

 mediaitemlist1.ItemChain = EMM_ITEM_EOT;

 // Create Video
 INIT_MM_VIDEO_CODEC(&VideoCodecType);
 VideoCodecType.Coding = EMM_VIDEO_CODING_DEFAULT;
 VideoCodecType.Profile = EMM_VIDEO_PROFILE_DEFAULT;
 VideoCodecType.Level = EMM_VIDEO_LEVEL_DEFAULT;
 VideoCodecType.ImageWidth = EMM_VIDEO_IMAGE_WIDTH_DEFAULT;
 VideoCodecType.ImageHeight = EMM_VIDEO_IMAGE_HEIGHT_DEFAULT;
 VideoCodecType.BitRate = EMM_VIDEO_BITRATE_DEFAULT;
 VideoCodecType.FramesPerSec = EMM_VIDEO_FRAMESPERSEC_DEFAULT;
 mediaitemlist2.item.video.codec = VideoCodecType;
 mediaitemlist2.item.video.unMode = 0; // Normal Mode
 mediaitemlist2.item.video.szFileName = "Video.vid";

 mediaitemlist2.ItemChain = EMM_ITEM_EOT;

Dialogic® Device Management API Library Reference 25

Dialogic Corporation

connect devices — dev_Connect()

 INIT_MM_PLAY_RECORD_LIST(&playlist[item]);
 playlist[item].ItemType = EMM_MEDIA_TYPE_AUDIO;
 playlist[item].list = &mediaitemlist1;
 playlist[item].ItemChain = EMM_ITEM_CONT;
 item++;
 INIT_MM_PLAY_RECORD_LIST(&playlist[item]);
 playlist[item].ItemType = EMM_MEDIA_TYPE_VIDEO;
 playlist[item].list = &mediaitemlist2;
 playlist[item].ItemChain = EMM_ITEM_EOT;

 INIT_MM_PLAY_INFO(&play_info);
 play_info.eFileFormat = EMM_FILE_FORMAT_PROPRIETARY;
 play_info.list = playlist;

 mm_Play(mm_handle, &play_info, NULL, NULL);
 }
 break;

 case IPMEV_STOPPED:
 printf("IPMEV_STOPPED event received.\n");
 if(dev_Disconnect(ipm_handle, EV_ASYNC) == -1)
 {
 printf("dev_Disconnect() failed.\n");
 exit(1);
 }

 if(dev_Disconnect(mm_handle, EV_ASYNC) == -1)
 {
 printf("dev_Disconnect() failed.\n");
 exit(1);
 }
 break;

 case IPMEV_ERROR:
 printf("IPMEV_ERROR event received on IPM channel.\n");
 exit(-1);
 break;

 default:
 printf("Unknow event %d received.\n", evttype);
 break;
 }

 return 0;
}

long MMEventHandler(unsigned long evthandle)
{
 int evttype = sr_getevttype();

 switch(evttype)
 {
 case MMEV_OPEN:
 printf("MMEV_OPEN event received.\n");
 break;

 case DMEV_CONNECT:
 printf("DMEV_CONNECT event received by MM device.\n");
 break;

 case MMEV_PLAY_ACK:
 printf("Play has been initiated.\n");
 break;

 case MMEV_PLAY:
 printf("Play has finished.\n");

26 Dialogic® Device Management API Library Reference
Dialogic Corporation

dev_Connect() — connect devices

 // keep the event. Propogate to waitevt() in Main
 return 1;
 break;

 case DMEV_DISCONNECT:
 printf("DMEV_DISCONNECT event received.\n");
 mm_handle_disconnected = true;
 if(ipm_handle_disconnected)
 {
 // keep the event. Propogate to waitevt() in Main
 return 1;
 }
 break;

 default:
 printf("Unknown event %d received on MM channel.\n", evttype);
 break;
 }

 return 0;
}

void main()
{
 ipm_handle = ipm_Open("ipmB1C1", NULL, EV_SYNC);
 if(ipm_handle == -1)
 {
 printf("ipm_Open() failed.\n");
 exit(1);
 }

 int mm_handle = mm_Open("mmB1C1", NULL, NULL);
 if(mm_handle == -1)
 {
 printf("mm_open() failed.\n");
 exit(1);
 }

 if(sr_enbhdlr(ipm_handle, EV_ANYEVT, IpmEventHandler) == -1)
 {
 printf("sr_enbhdlr() failed.\n");
 exit(1);
 }

 if(sr_enbhdlr(mm_handle, EV_ANYEVT, MMEventHandler) == -1)
 {
 printf("sr_enbhdlr() failed.\n");
 exit(1);
 }

 if(dev_Connect(ipm_handle, mm_handle, DM_FULLDUP, EV_ASYNC) == -1)
 {
 printf("dev_Connect() failed.\n");
 exit(1);
 }

 // Wait for Connection and Multimedia Play to complete
 sr_waitevt(-1);

 if(dev_Disconnect(ipm_handle, EV_ASYNC) == -1)
 {
 printf("dev_Disconnect() failed.\n");
 exit(1);
 }

 if(dev_Disconnect(mm_handle, EV_ASYNC) == -1)
 {

Dialogic® Device Management API Library Reference 27

Dialogic Corporation

connect devices — dev_Connect()

 printf("dev_Disconnect() failed.\n");
 exit(1);
 }

 // Wait for DisConnect to complete
 sr_waitevt(-1);

 if(sr_dishdlr(mm_handle, EV_ANYEVT, MMEventHandler) == -1)
 {
 printf("sr_dishdlr() failed.\n");
 exit(1);
 }

 if(sr_dishdlr(ipm_handle, EV_ANYEVT, IpmEventHandler) == -1)
 {
 printf("sr_dishdlr() failed.\n");
 exit(1);
 }

 if(mm_Close(mm_handle, NULL) == -1)
 {
 printf("mm_close() failed.\n");
 exit(1);
 }

 if(ipm_Close(ipm_handle, NULL) == -1)
 {
 printf("ipm_Close() failed.\n");
 exit(1);
 }
}

Example B (T.38 Fax Asynchronous)

The following example code shows how the function is used in asynchronous mode.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>

#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>
#include <ipmlib.h>
#include <devmgmt.h>

static int ipm_handle = -1;
static int fax_handle = -1;

static DF_IOTT iott = {0};
static int fd = 0;
static IPM_MEDIA_INFO info;

static bool ipm_handle_disconnected = false;
static bool fax_handle_disconnected = false;

long IpmEventHandler(unsigned long evthandle)
{
 int evttype = sr_getevttype();

 switch(evttype)
 {
 case DMEV_CONNECT:
 printf("DMEV_CONNECT event received.\n");

28 Dialogic® Device Management API Library Reference
Dialogic Corporation

dev_Connect() — connect devices

 {
 info.MediaData[0].eMediaType = MEDIATYPE_LOCAL_UDPTL_T38_INFO;

 if(ipm_GetLocalMediaInfo(ipm_handle, &info, EV_ASYNC) == -1)
 {
 printf("ipm_GetLocalMediaInfo() failed.\n");
 exit(1);
 }
 }
 break;

 case IPMEV_GET_LOCAL_MEDIA_INFO:
 printf("IPMEV_GET_LOCAL_MEDIA_INFO event received.\n");

 {
 info.unCount = 1;
 info.MediaData[0].eMediaType = MEDIATYPE_REMOTE_UDPTL_T38_INFO;
 info.MediaData[0].mediaInfo.PortInfo.unPortId = 6001; // remote IP port
 strcpy(info.MediaData[0].mediaInfo.PortInfo.cIPAddress, "146.152.84.56");

 info.MediaData[1].eMediaType = MEDIATYPE_FAX_SIGNAL;
 info.MediaData[1].mediaInfo.FaxSignal.eToneType = TONE_CED;

 if(ipm_StartMedia(ipm_handle, &info, DATA_IP_TDM_BIDIRECTIONAL, EV_ASYNC) == -1)
 {
 printf("ipm_StartMedia() failed.\n");
 exit(1);
 }
 }
 break;

 case DMEV_DISCONNECT:
 printf("DMEV_DISCONNECT event received.\n");

 ipm_handle_disconnected = true;

 if(fax_handle_disconnected)
 {
 return 1;
 }
 break;

 case IPMEV_STARTMEDIA:
 printf("IPMEV_STARTMEDIA event received.\n");

 fd = dx_fileopen("onepg_high.tif", O_RDONLY|O_BINARY);

 if(fd == -1)
 {
 printf("dx_fileopen() failed.\n");
 exit(1);
 }

 fx_setiott(&iott, fd, DF_TIFF, DFC_EOM);

 iott.io_type |= IO_EOT;
 iott.io_firstpg = 0;
 iott.io_pgcount = -1;
 iott.io_phdcont = DFC_EOP;

 if(fx_initstat(fax_handle, DF_TX) == -1)
 {
 printf("fx_initstat() failed.\n");
 exit(1);
 }

Dialogic® Device Management API Library Reference 29

Dialogic Corporation

connect devices — dev_Connect()

 if(fx_sendfax(fax_handle, &iott, EV_ASYNC) == -1)
 {
 printf("fx_sendfax() failed.\n");
 exit(1);
 }
 break;

 case IPMEV_STOPPED:
 printf("IPMEV_STOPPED event received.\n");
 if(dev_Disconnect(ipm_handle, EV_ASYNC) == -1)
 {
 printf("dev_Disconnect() failed.\n");
 exit(1);
 }

 if(dev_Disconnect(fax_handle, EV_ASYNC) == -1)
 {
 printf("dev_Disconnect() failed.\n");
 exit(1);
 }
 break;

 case IPMEV_ERROR:
 printf("IPMEV_ERROR event received on IPM channel.\n");
 exit(-1);
 break;

 default:
 printf("Unknow event %d received.\n", evttype);
 break;
 }

 return 0;
}

long FaxEventHandler(unsigned long evthandle)
{
 int evttype = sr_getevttype();

 switch(evttype)
 {
 case TFX_FAXSEND:
 printf("TFX_FAXSEND event received.\n");

 if(ipm_Stop(ipm_handle, STOP_ALL, EV_ASYNC) == -1)
 {
 printf("ipm_Stop() failed.\n");
 exit(1);
 }
 break;

 case TFX_FAXERROR:
 printf("TFX_FAXERROR event received.\n");
 exit(1);
 break;

 case DMEV_CONNECT:
 printf("DMEV_CONNECT event received.\n");
 break;

 case DMEV_DISCONNECT:
 printf("DMEV_DISCONNECT event received.\n");
 fax_handle_disconnected = true;
 if(ipm_handle_disconnected)
 {
 return 1;
 }

30 Dialogic® Device Management API Library Reference
Dialogic Corporation

dev_Connect() — connect devices

 break;

 default:
 printf("Unknown event %d received on fax channel.\n", evttype);
 break;
 }

 return 0;
}

void main()
{
 ipm_handle = ipm_Open("ipmB1C1", NULL, EV_SYNC);
 if(ipm_handle == -1)
 {
 printf("ipm_Open() failed.\n");
 exit(1);
 }

 int vox_handle = dx_open("dxxxB2C1", 0);
 if(vox_handle == -1)
 {
 printf("dx_open() failed.\n");
 exit(1);
 }

 FEATURE_TABLE feature_table;
 if(dx_getfeaturelist(vox_handle, &feature_table) == -1)
 {
 printf("dx_getfeaturelist() failed.\n");
 exit(1);
 }

 if(dx_close(vox_handle) == -1)
 {
 printf("dx_close() failed.\n");
 exit(1);
 }

 if(feature_table.ft_fax & FT_FAX)
 {
 if(feature_table.ft_fax & FT_FAX_T38UDP)
 {
 fax_handle = fx_open("dxxxB2C1", 0);

 if(fax_handle == -1)
 {
 printf("fx_open() failed.\n");
 exit(1);
 }
 }
 else
 {
 printf("Not a T.38 fax device.\n");
 exit(1);
 }
 }
 else
 {
 printf("Not a fax device.\n");
 exit(1);
 }

 if(sr_enbhdlr(ipm_handle, EV_ANYEVT, IpmEventHandler) == -1)
 {
 printf("sr_enbhdlr() failed.\n");
 exit(1);

Dialogic® Device Management API Library Reference 31

Dialogic Corporation

connect devices — dev_Connect()

 }

 if(sr_enbhdlr(fax_handle, EV_ANYEVT, FaxEventHandler) == -1)
 {
 printf("sr_enbhdlr() failed.\n");
 exit(1);
 }

 if(dev_Connect(ipm_handle, fax_handle, DM_FULLDUP, EV_ASYNC) == -1)
 {
 printf("dev_Connect() failed.\n");
 exit(1);
 }

 sr_waitevt(-1);

 if(sr_dishdlr(fax_handle, EV_ANYEVT, FaxEventHandler) == -1)
 {
 printf("sr_dishdlr() failed.\n");
 exit(1);
 }

 if(sr_dishdlr(ipm_handle, EV_ANYEVT, IpmEventHandler) == -1)
 {
 printf("sr_dishdlr() failed.\n");
 exit(1);
 }

 if(fx_close(fax_handle) == -1)
 {
 printf("fx_close() failed.\n");
 exit(1);
 }

 if(ipm_Close(ipm_handle, NULL) == -1)
 {
 printf("ipm_Close() failed.\n");
 exit(1);
 }
}

Example C (T.38 Fax Synchronous)

The following example code shows how the function is used in synchronous mode.

#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>
#include <ipmlib.h>
#include <devmgmt.h>

void main()
{
 int FaxHandle = fx_open("dxxxB1C1", 0);

 if(FaxHandle == -1)
 {
 printf("Can not open fax channel.\n");
 // Perform system error processing
 exit(1);
 }

 int IpmHandle = ipm_Open("ipmB1C1", 0, EV_SYNC);

 if(IpmHandle == -1)

32 Dialogic® Device Management API Library Reference
Dialogic Corporation

dev_Connect() — connect devices

 {
 printf("Can not open IPM handle.\n");
 // Perform system error processing
 exit(1);
 }

 if(dev_Connect(IpmHandle, FaxHandle, DM_FULLDUP, EV_SYNC) == -1)
 {
 printf("dev_Connect() failed.\n");
 exit(1);
 }

 IPM_MEDIA_INFO info;

 ...
 // Setup IPM_MEDIA_INFO structure

 if(ipm_StartMedia(IpmHandle, &info, DATA_IP_TDM_BIDIRECTIONAL, EV_SYNC) == -1)
 {
 printf("ipm_StartMedia() failed.\n");
 exit(1);
 }

 if(fx_initstat(FaxHandle, DF_TX) == -1)
 {
 printf("fx_initstat() failed.\n");
 exit(1);
 }

 DF_IOTT iott;
 ...
 // Setup DF_IOTT entries for sending fax

 if(fx_sendfax(FaxHandle, &iott, EV_SYNC) == -1)
 {
 printf("fx_sendfax() failed.\n");
 exit(1);
 }

 if(ipm_Stop(IpmHandle, STOP_ALL, EV_SYNC) == -1)
 {
 printf("ipm_Stop() failed.\n");
 exit(1);
 }

 if(dev_Disconnect(IpmHandle, EV_SYNC) == -1)
 {
 printf("dev_Disconnect() for IPM channel failed.\n");
 exit(1);
 }

 if(dev_Disconnect(FaxHandle, EV_SYNC) == -1)
 {
 printf("dev_Disconnect() for Fax channel failed.\n");
 exit(1);
 }

 if(fx_close(FaxHandle) == -1)
 {
 printf("fx_close() failed.\n");
 }

Dialogic® Device Management API Library Reference 33

Dialogic Corporation

connect devices — dev_Connect()

 if(ipm_Close(IpmHandle) == -1)
 {
 printf("ipm_Close() failed.\n");
 }
}

See Also

• dev_Disconnect()

34 Dialogic® Device Management API Library Reference
Dialogic Corporation

dev_Disconnect() — disconnect devices

dev_Disconnect()

disconnect devices

Description

The dev_Disconnect() function breaks the connection between the receive channel of the
specified device and the transmit channel of the device that was associated with it by means of the
dev_Connect() function. To break a full-duplex connection that was originally established
between the devices with dev_Connect(), you must call dev_Disconnect() for each device.

To break a half-duplex connection between a multimedia device and an IP media device, you must
disconnect the receive side, which is typically the IP media device for an mm_Play() and the
multimedia device for an mm_Record().

Note: The terms listen and receive are used synonymously.

Asynchronous Operation

To run this function asynchronously, set the mode parameter to EV_ASYNC. The function returns
0 to indicate it has initiated successfully. The function generates a DMEV_DISCONNECT
termination event to indicate successful completion of the function operation. The application
program must wait for the completion event that indicates the disconnection was successful. Use
the Dialogic® Standard Runtime Library (SRL) functions to process the termination events.

This function generates a DMEV_DISCONNECT_FAIL error event to indicate failure of the
function operation. Use dev_GetResultInfo() to retrieve the error information.

Name: int dev_Disconnect (devHandle, mode)

Inputs: int devHandle • a valid channel device

unsigned short mode • asynchronous or synchronous function mode

Returns: DEV_SUCCESS if successful
-1 if failure

Includes: srllib.h
devmgmt.h

Category: Device Connection

Mode: asynchronous or synchronous

Parameter Description

devHandle specifies a valid channel device handle obtained when the channel was
opened

mode specifies how the function should be executed. Set this to one of the
following:
• EV_ASYNC – asynchronously
• EV_SYNC – synchronously (default)

Dialogic® Device Management API Library Reference 35

Dialogic Corporation

disconnect devices — dev_Disconnect()

Synchronous Operation

To run this function synchronously, set the mode parameter to EV_SYNC. This function returns 0
to indicate successful completion and -1 to indicate failure. Use dev_ErrorInfo() to retrieve the
error information.

Note: Synchronous operation is not supported for multimedia device connection or disconnection.

Cautions

• The dev_Disconnect() function must be called from the same process that opens the device
and obtains the device handle used in the function.

• To break a connection made by dev_Connect(), you must use the dev_Disconnect()
function.

• If you attempt to perform dev_Disconnect() on a device that is not connected (for example, if
it is called on a device without having successfully used dev_Connect() on the device, or if it
is called twice in a row on a device), the function generates an EDEV_NOTCONNECTED
error.

• If you have a full-duplex connection that was originally established between the devices with
dev_Connect(), and you break only one half of the connection with dev_Disconnect(), a
half-duplex connection will remain between the devices until you perform dev_Disconnect()
on the other device in the connection.

Errors

If this function returns -1 to indicate failure, use dev_ErrorInfo() to retrieve the error information.
Possible errors for this function include:

EDEV_DEVICEBUSY
At least one of the devices specified is currently in use by another Dialogic® Device
Management API function call.

EDEV_FAX_SUBSYSTEMERR
A subsystem error occurred during an internal call to a fax library function because the
subsystem function was unable to start (this is not a Dialogic® Device Management API
error). See the fax library documentation for the fax error codes and descriptions.

EDEV_INVALIDDEVICEHANDLE
An invalid device handle was specified. For the dev_Connect() function, the Supported
Connections do not allow connection of these types of devices. (Valid handles include IP
media, multimedia, and T.38 UDP fax devices.)

EDEV_INVALIDMODE
An invalid mode was specified for executing the function synchronously or asynchronously
(EV_SYNC or EV_ASYNC).

EDEV_INVALIDSTATE
Device is in an invalid state for the current function call. For example, the dev_Disconnect()
function may have been called before both devices were fully connected by the
dev_Connect() function.

36 Dialogic® Device Management API Library Reference
Dialogic Corporation

dev_Disconnect() — disconnect devices

EDEV_IPM_SUBSYSTEMERR
A subsystem error occurred during an internal call to an IP media library function because the
subsystem function was unable to start (this is not a Dialogic® Device Management API
error). See the IP media library documentation for the IP media error codes and descriptions.

EDEV_MM_SUBSYSTEMERR
A subsystem error occurred during an internal call to a multimedia library function because the
subsystem function was unable to start (this is not a Dialogic® Device Management API
error). See the multimedia library documentation for the multimedia error codes and
descriptions.

EDEV_NOTCONNECTED
An attempt was made to perform dev_Disconnect() on a device that is not connected.

See also Chapter 5, “Error Codes” for additional information.

Example (Synchronous/Asynchronous)

For examples that show how the function is used to disconnect devices in synchronous or
asynchronous mode, see the example code in the dev_Connect() function.

See Also

• dev_Connect()

Dialogic® Device Management API Library Reference 37

Dialogic Corporation

get error info — dev_ErrorInfo()

dev_ErrorInfo()

get error info

Description

The dev_ErrorInfo() function obtains the error information for the last error in the Dialogic®
Device Management API or one of its subsystems and provides it in the DEV_ERRINFO error
information structure. The error codes returned in the structure are listed in Chapter 5, “Error
Codes”.

Cautions

• Call dev_ErrorInfo() only when a Dialogic® Device Management API function fails;
otherwise, the data in the DEV_ERRINFO structure will be invalid.

• If the error is a subsystem error, to identify the error code, you must include the header file for
the technology-specific subsystem (e.g., ipmlib.h or faxlib.h).

• The Dialogic® Device Management API errors are thread-specific (they are only in scope for
that thread). Subsystem errors are device-specific.

Errors

None.

Example

The following example code shows how the function is used.

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>
#include <ipmlib.h>

Name: int dev_ErrorInfo (pErrInfo)

Inputs: DEV_ERRINFO *pErrInfo • pointer to error information structure

Returns: DEV_SUCCESS if successful
-1 if failure

Includes: srllib.h
devmgmt.h

Category: Error Processing

Mode: synchronous

Parameter Description

pErrInfo specifies a pointer to DEV_ERRINFO error information structure. Upon
successful completion of the function operation, the structure is filled with
results. See the DEV_ERRINFO data structure in Chapter 4, “Data
Structures” for more information.

38 Dialogic® Device Management API Library Reference
Dialogic Corporation

dev_ErrorInfo() — get error info

#include <devmgmt.h>

void main()
{
 int iphandle, faxhandle;
 int retval;
 DEV_ERRINFO error_info;

 faxhandle=fx_open("dxxxB2C1", NULL);
 iphandle=ipm_Open("ipmB1C1", NULL, EV_SYNC);

 if ((faxhandle == -1) || (iphandle == -1))
 {
 /* handle error opening a device */
 }

 /* ... */
 retval=dev_Connect(iphandle, faxhandle, DM_FULLDUP, EV_SYNC);
 if(retval==-1)
 {
 /* The dev_Connect() call failed. This may be because of an error on either
 the fax or the IP device. Use dev_ErrorInfo() to find out, and then print
 an error message. */

 if (dev_ErrorInfo(&error_info) != -1)
 {
 switch (error_info.dev_ErrValue)
 {
 case EDEV_INVALIDDEVICEHANDLE:
 printf("Error because of an invalid handle.\n");
 break;
 case EDEV_INVALIDCONNTYPE:
 printf("Error because of an invalid connection type.\n");
 break;
 case EDEV_IPM_SUBSYSTEMERR:
 printf("Error %d in IPM subsystem.\n", error_info.dev_SubSystemErrValue);
 break;
 case EDEV_FAX_SUBSYSTEMERR:
 printf("Error %d in FAX subsystem.\n", error_info.dev_SubSystemErrValue);
 break;
 default:
 printf("Error type %d in dev_Connect()\n", error_info.dev_ErrValue);
 break;
 }

 /* Print out the string error message returned as well */
 printf(" Error during dev_Connect(): %s\n", error_info.dev_Msg);
 }
 }

 /* ... */
 fx_close(faxhandle);
 ipm_Close(iphandle, NULL);

 return 0;
}

See Also

None.

Dialogic® Device Management API Library Reference 39

Dialogic Corporation

retrieve device receive ports information — dev_GetReceivePortInfo()

dev_GetReceivePortInfo()

retrieve device receive ports information

Description

The dev_GetReceivePortInfo() function retrieves device receive ports information and returns it
in the data associated with the DMEV_GET_RX_PORT_INFO event.

Asynchronous Operation

The function returns DEV_SUCCESS to indicate it has initiated successfully. The function
generates a DMEV_GET_RX_PORT_INFO event to indicate successful completion of the
function operation. Use the Dialogic® Standard Runtime Library (SRL) functions to process the
termination event.

This function generates a DMEV_GET_RX_PORT_INFO_FAIL event to indicate failure of the
function operation. Use the dev_GetResultInfo() function to obtain the error information.

The user-supplied pointer pUserContext is returned with either event and can be retrieved using
sr_getUserContext(). The pointer to the DM_PORT_INFO_LIST structure is returned with either
event and can be retrieved using sr_getevtdatap().

For more information on SRL functions, see the Dialogic® Standard Runtime Library API Library
Reference.

Name: dev_GetReceivePortInfo (devHandle, pUserContext)

Inputs: int devHandle • a valid channel device

void *pUserContext • a pointer to user-specific context

Returns: DEV_SUCCESS if successful
-1 if failure

Includes: srllib.h
devmgmt.h
port_connect.h

Category: Device Connection

Mode: asynchronous

Parameter Description

devHandle specifies a valid channel device handle obtained when the channel was
opened

pUserContext specifies a user-supplied pointer that can be retrieved using
sr_getUserContext() when the completion event is received

40 Dialogic® Device Management API Library Reference
Dialogic Corporation

dev_GetReceivePortInfo() — retrieve device receive ports information

Cautions

The dev_GetReceivePortInfo() function must be called from the same process that opens the
device and obtains the device handle used in the function.

Errors

If this function returns -1 to indicate failure, use dev_ErrorInfo() to retrieve the error information.
Possible errors for this function include:

EDEV_BADPARM
Invalid argument or parameter

EDEV_INVALIDDEVICEHANDLE
Invalid device handle specified

EDEV_SUBSYSTEMERR
Internal error

Example

#include <srllib.h>
#include <ipmlib.h>
#include <port_connect.h>
#include <string.h>
#include <iostream>

using namespace std;

int main(int argc, char** argv)
{
 int ret;
 int rc;
 int dev1;
 long evt;
 void* evt_data;
 int evt_len;
 const char szDev1[] = "ipmB1C1";

 ret = 0;
 dev1 = -1;
 try
 {

 // Open device (ipm)
 dev1 = ipm_Open(szDev1, NULL, EV_ASYNC);
 if (-1 == dev1) {
 cout << "ipm_Open error";
 cout << " handle = " << dev1 << endl;
 throw 1;
 }
 sr_waitevt(-1);
 evt = sr_getevttype();
 if (IPMEV_OPEN != evt) {
 cout << "ipm_Open error";
 cout << " event = " << evt << endl;
 throw 2;
 }

 // Obtain Device Receive Ports
 rc = dev_GetReceivePortInfo(dev1, NULL);
 if (-1 == rc) {

Dialogic® Device Management API Library Reference 41

Dialogic Corporation

retrieve device receive ports information — dev_GetReceivePortInfo()

 cout << "dev_GetReceivePortInfo error";
 cout << " rc = " << rc << endl;
 throw 3;
 }
 sr_waitevt(-1);
 evt = sr_getevttype();
 if (DMEV_GET_RX_PORT_INFO != evt) {
 cout << "dev_GetReceivePortInfo error";
 cout << " event = " << evt << endl;
 throw 4;
 }
 evt_data = sr_getevtdatap();
 int evt_len = sr_getevtlen();
 DM_PORT_INFO_LIST port_info_list1 = {};
 memcpy(&port_info_list1, evt_data, evt_len);

 // Print number of ports
 cout << "Number of RX ports: " << port_info_list1.unCount << endl;

 }
 catch (int point) {
 ret = -1;
 cerr << "Error point #" << point << " reached" << endl;
 }

 if (dev1 != -1) {
 rc = ipm_Close(dev1, NULL);
 dev1 = -1;
 }

 return ret;
}

See Also

• dev_GetTransmitPortInfo()

42 Dialogic® Device Management API Library Reference
Dialogic Corporation

dev_GetResourceReservationInfo() — get resource reservation information

dev_GetResourceReservationInfo()

get resource reservation information

Description

Note: The dev_GetResourceReservationInfoEx() function supercedes and should be used instead of
the dev_GetResourceReservationInfo() function. The _Ex() function provides improved
information about available resources.

The dev_GetResourceReservationInfo() function obtains the current reservation information for
the specified resource and device and provides it in the resource reservation information structure.

Asynchronous Operation

To run this function asynchronously, set the mode parameter to EV_ASYNC. The function returns
0 to indicate it has initiated successfully. The function generates a
DMEV_GET_RESOURCE_RESERVATIONINFO termination event to indicate successful
completion of the function operation. The application program must process for the completion

Name: int dev_GetResourceReservationInfo (devHandle, pResourceInfo, mode)

Inputs: int devHandle • a valid channel device

DEV_RESOURCE_RESERVAT
IONINFO *pResourceInfo

• pointer to resource reservation information structure

unsigned short mode • asynchronous or synchronous function mode

Returns: DEV_SUCCESS if successful
-1 if failure

Includes: srllib.h
devmgmt.h

Category: Resource Reservation

Mode: asynchronous or synchronous

Parameter Description

devHandle specifies a valid channel device handle obtained when the channel was
opened

pResourceInfo specifies a pointer to a resource reservation information structure. Before
executing the function, set the resourceType field to the resource type for
which you want to obtain information. Upon successful completion of the
function operation, the structure is filled with results. See the
DEV_RESOURCE_RESERVATIONINFO data structure in Chapter 4,
“Data Structures” for more information.

mode specifies how the function should be executed. Set this to one of the
following:
• EV_ASYNC – asynchronously
• EV_SYNC – synchronously

Dialogic® Device Management API Library Reference 43

Dialogic Corporation

get resource reservation information — dev_GetResourceReservationInfo()

event that indicates the operation was successful. Use the Dialogic® Standard Runtime Library
(SRL) functions to process the termination event.

This function generates a DMEV_GET_RESOURCE_RESERVATIONINFO_FAIL error event to
indicate failure of the function operation.

Note: Typically, asynchronous mode allows an application to continue with execution of other code while
waiting for a response from the device to a previous request. In the Resource Reservation functions,
various operations on the low bit rate codec are handled in a single thread of execution, so in this
case, using synchronous mode for the function may be sufficient.

Synchronous Operation

To run this function synchronously, set the mode parameter to EV_SYNC. This function returns 0
to indicate successful completion and -1 to indicate failure. Use dev_ErrorInfo() to retrieve the
error information.

Cautions

• This function requires that the device be open; otherwise, it generates a subsystem error (for
example, EDEV_IPM_SUBSYSTEMERR.

• If the specified resource is invalid or not available, it generates a subsystem error (for example,
EDEV_IPM_SUBSYSTEMERR).

Errors

If this function returns -1 to indicate failure, use dev_ErrorInfo() to retrieve the error information.
Possible errors for this function include:

EDEV_INVALIDDEVICEHANDLE
An invalid device handle was specified. For the dev_Connect() function, the Supported
Connections do not allow connection of these types of devices. (Valid handles include IP
media, multimedia, and T.38 UDP fax devices.)

EDEV_INVALIDMODE
An invalid mode was specified for executing the function synchronously or asynchronously
(EV_SYNC or EV_ASYNC).

EDEV_IPM_SUBSYSTEMERR
A subsystem error occurred during an internal call to an IP media library function because the
subsystem function was unable to start (this is not a Dialogic® Device Management API
error). See the IP media library documentation for the IP media error codes and descriptions.

See also Chapter 5, “Error Codes” for additional information.

Example

The following example code shows how the function is used in synchronous mode.

44 Dialogic® Device Management API Library Reference
Dialogic Corporation

dev_GetResourceReservationInfo() — get resource reservation information

#include "srllib.h"
#include "ipmlib.h"
#include "devmgmt.h"

void CheckEvent();
typedef long int (*HDLR)(unsigned long);

void main()
{
 int devHandle; // channel handle
 .
 .
 // Resister event handler thru SRL
 sr_enbhdlr(EV_ANYDEV, EV_ANYEVT, (HDLR)CheckEvent);

 // Open channel
 if ((devHandle = ipm_Open("ipmB1C1",0)) == -1) {
 printf("Cannot open channel\n");
 // Perform system error processing
 exit(1);
 }

 //e.g. total number of RESOURCE_IPM_LBR in the system is 5

 // Reserve Low Bit Rate Codec for the specified channel
 if (dev_ReserveResource(devHandle, RESOURCE_IPM_LBR, EV_SYNC) ==-1)
 {
 printf("Cannot Reserve LBR resource.\n");
 // Perform system error processing
 }

 // Get Low Bit Rate Codec reservation information
 DEV_RESOURCE_RESERVATIONINFO resInfo;

 INIT_DEV_RESOURCE_RESERVATIONINFO(&resInfo);
 resInfo.resourceType = RESOURCE_IPM_LBR;
 if (dev_GetResourceReservationInfo(devHandle, &resInfo, EV_SYNC) ==-1)
 {
 printf("Cannot Get LBR resource reservation information.\n");
 // Perform system error processing
 }
 printf("LBR Usage for %s: ReservationStatus = %s\n, curReservePoolCount = %d,
 maxReservePoolCount = %d\n", ATDV_NAMEP(devHandle), (resInfo.curReserveCount == 1)
 ? "Reserved" : "Unreserved", resInfo.curReservePoolCount,
 resInfo.maxRecervePoolCount);

 //Output is "LBR Usage for ipmB1C1: ReservationStatus = Reserved, curReservePoolCount = 1,
 maxReservePoolCount = 5"
}

See Also

None.

Dialogic® Device Management API Library Reference 45

Dialogic Corporation

get resource reservation information — dev_GetResourceReservationInfoEx()

dev_GetResourceReservationInfoEx()

get resource reservation information

Description

The dev_GetResourceReservationInfoEx() function obtains the current reservation information
for the specified resource(s) and device, and provides it in the resource reservation information
structure.

Note: The dev_GetResourceReservationInfoEx() function supercedes and should be used instead of the
dev_GetResourceReservationInfo() function. The _Ex() function provides improved information
about available resources.

Note: The dev_GetResourceReservationInfoEx() function is not supported in Dialogic® HMP
Software 3.0WIN.

Name: int dev_GetResourceReservationInfoEx(devHandle, pResourceInfo, mode)

Inputs: int devHandle • valid channel device

DEV_RESOURCE_RESERVAT
IONINFO_EX
*pResourceInfo

• pointer to resource reservation information structure

unsigned short mode • asynchronous or synchronous function mode

Returns: DEV_SUCCESS if successful
-1 if failure

Includes: srllib.h
devmgmt.h

Category: Resource Reservation

Mode: asynchronous or synchronous

Parameter Description

devHandle specifies a valid channel device handle obtained when the channel was
opened

pResourceInfo specifies a pointer to a resource reservation information structure
DEV_RESOURCE_RESERVATIONINFO_EX. Before executing the
function, set the rsInfo[i].resourceType field to the resource type for which
you want to obtain information. Set the count field to the number of items
in rsInfo array that have been filled. Upon successful completion of the
function operation, the structure is filled with results.

mode specifies how the function should be executed. Set this to one of the
following:

• EV_ASYNC - asynchronously

• EV_SYNC - synchronously

46 Dialogic® Device Management API Library Reference
Dialogic Corporation

dev_GetResourceReservationInfoEx() — get resource reservation information

Asynchronous Operation

To run this function asynchronously, set the mode parameter to EV_ASYNC. The function returns
0 to indicate it has initiated successfully. The function generates a
DMEV_GET_RESOURCE_RESERVATIONINFO termination event to indicate successful
completion of the function operation. The application program must process for the completion
event that indicates the operation was successful. Use the Dialogic® Standard Runtime Library
(SRL) functions to process the termination event.

This function generates a DMEV_GET_RESOURCE_RESERVATIONINFO_FAIL error event to
indicate failure of the function operation. Use dev_GetResultInfo() to retrieve the error
information.

Synchronous Operation

To run this function synchronously, set the mode parameter to EV_SYNC. This function returns 0
to indicate successful completion and -1 to indicate failure. Use dev_ErrorInfo() to retrieve the
error information.

It is better to use asynchronous mode because dev_GetResourceReservationInfoEx() is not
executed in a single thread of execution.

Set up the data structure to obtain resource reservation information for all the audio coders, as
follows:

DEV_RESOURCE_RESERVATIONINFO_EX resInfo;
INIT_DEV_RESOURCE_RESERVATIONINFO_EX(&resInfo);
resInfo.rsInfo[0].resourceType = RESOURCE_IPM_ALL_AUDIO_CODERS;
resInfo.count = 1;

Cautions

• This function requires that the device be open; otherwise, it generates a subsystem error (for
example, EDEV_IPM_SUBSYSTEMERR).

• If the specified resource is invalid or not available, it generates a subsystem error (for example,
EDEV_IPM_SUBSYSTEMERR).

Errors

If this function returns -1 to indicate failure, use dev_ErrorInfo() to retrieve the error information.

Possible errors for this function include:

EDEV_INVALIDDEVICEHANDLE
An invalid device handle was specified.

EDEV_INVALIDMODE
An invalid mode was specified for executing the function synchronously or asynchronously.

EDEV_IPM_SUBSYSTEMERR
A subsystem error occurred during an internal call to an IP media library function because the
subsystem function was unable to start (this is not a Dialogic® Device Management API
error).

Dialogic® Device Management API Library Reference 47

Dialogic Corporation

get resource reservation information — dev_GetResourceReservationInfoEx()

Asynchronous Code Example

int main()
{

int nDeviceID; // channel handle
INIT_DEV_RESOURCE_RESERVATIONINFO_EX(&devResourceReservationInfoEx);

// Register event handler function with srl
sr_enbhdlr(EV_ANYDEV ,EV_ANYEVT ,CheckEvent);

// Open channel
if ((nDeviceID = ipm_Open("ipmB1C1", NULL, EV_SYNC)) == -1)
{
 printf("Cannot open channel\n");
 // Perform system error processing
 return -1;
}

/*
. .
Main Processing
. .
*/

devResourceReservationInfoEx.rsInfo[0].resourceType = RESOURCE_IPM_G726;
devResourceReservationInfoEx.rsInfo[1].resourceType = RESOURCE_IPM_G729;
devResourceReservationInfoEx.count = 2;

if (dev_GetResourceReservationInfoEx(nDeviceID, &devResourceReservationInfoEx, EV_ASYNC) == -1)

 {
 printf("dev_GetResourceReservationInfoEx failed for device name
 %s \n", ATDV_NAMEP(nDeviceID));
 /*
 . .
 Perform Error Processing
 . .
 */
 }
/* Continue processing */
return 0;
}

Synchronous Code Example

#include "srllib.h"
#include "ipmlib.h"
#include "devmgmt.h"

void CheckEvent();
typedef long int (*HDLR)(unsigned long);

void main()
{
int devHandle; // channel handle
int i;
. .
// Open channel
if ((devHandle = ipm_Open("ipmB1C1",0)) == -1) {
printf("Cannot open channel\n");
// Perform system error processing
exit(1);
}

48 Dialogic® Device Management API Library Reference
Dialogic Corporation

dev_GetResourceReservationInfoEx() — get resource reservation information

// Get Low Bit Rate Codec reservation information
DEV_RESOURCE_RESERVATIONINFO_EX resInfo;
INIT_DEV_RESOURCE_RESERVATIONINFO_EX(&resInfo);
resInfo.rsInfo[0].resourceType = RESOURCE_IPM_G729;
resInfo.rsInfo[1].resourceType = RESOURCE_IPM_G723;
resInfo.count = 2;

if (dev_GetResourceReservationInfoEx(devHandle, &resInfo, EV_SYNC) ==-1)
{
printf("Cannot Get resource reservation information.\n");
// Perform system error processing
}

printf("Usage for %s:\n",ATDV_NAMEP(devHandle));

for (int i = 0; i < resInfo.count; i++)
{
 printf(" ResourceType = %d: Reserved = %d, availableResourceCount = %d\n",
 resInfo.rsInfo[i].resourceType,
 resInfo.rsInfo[i].curReserveCount,
 resInfo.rsInfo[i].availableResourceCount);

}
..
..
..
/* Continue processing */

]

See Also

• dev_ReleaseResourceEx()

• dev_ReserveResourceEx()

Dialogic® Device Management API Library Reference 49

Dialogic Corporation

get event info — dev_GetResultInfo()

dev_GetResultInfo()

get event info

Description

The dev_GetResultInfo() function collects information about a given event. For Dialogic®
Dialogic® Device Management API events, the event type ID and event data block act as identifiers
for extended event information. The dev_GetResultInfo() function uses this data to collect event
information and populate a DM_EVENT_INFO structure for the event. The event information may
be used for trace logging, debugging, and error handling.

Note: This function is not supported in Dialogic® HMP Software 3.0WIN.

In order to use this function in a thread of execution other than the one in which the data block was
gathered, the application must make a copy of the event data block using the
sr_createevtdatapcopy() function, or retrieve the event data block using the sr_getevtdatapex()
function with the SR_EVENTDATASCOPE_TAG_USER flag.

Even though the data length returned from the sr_getevtdatalen() function associated with a
specific device management library event may be zero, the data pointer will be non-zero. This
pointer is a reference pointer in all cases and is used with this function. As a result, the event data
block pointer must be used in the call to this function in all cases.

For more information on SRL functions, see the Dialogic® Standard Runtime Library
documentation.

Name: int dev_GetResultInfo(devHandle, eventType, peventData, pdevInfo)

Inputs: long devHandle • SRL device handle

unsigned long eventType • SRL event type

void* peventData • pointer to SRL event data

PDM_EVENT_INFO pdevInfo • pointer to device management event information

Returns: 0 if successful
-1 if failure

Includes: devmgmt.h

Category: Event Handling

Mode: Synchronous

Parameter Description

devHandle SRL device handle returned by sr_getevtdev()

eventType SRL event type returned by sr_getevttype() pointer to SRL event data
returned by sr_getevtdatap()

peventData pointer to device management event

pdevInfo pointer to the DM_EVENT_INFO structure to be filled with information
pertaining to the given event

50 Dialogic® Device Management API Library Reference
Dialogic Corporation

dev_GetResultInfo() — get event info

Caution

In order to use this function in an execution thread other than the one in which the event data block
was gathered, the application must make a copy of the event data block as stated in the Description
section. Then the application must call sr_destroy() on the return pointer for either of those
functions.

Errors

If this function returns -1 to indicate a failure, use dev_ErrorInfo() to retrieve the reason for the
error.

Example

The following example shows a simple retrieval of device management event information.

/*
 * ASSUMPTION: An event has been generated by a call to dev_PortConnect() on device
 * with handle a_hDev.
 */
int retrieveEvent(long a_hDev)
{
 Int retCode = -1;

 if (sr_waitevt(10000) == -1)
 {
 printf("wait event failure\n");
 return 0;
 }

 long evttype = sr_getevttype();
 long evtdev = sr_getevtdev();
 void * pevtdata = sr_getevtdatap();

 if (evtdev != a_hDev)
 {
 printf("event for unknown device handle [%ld]\n", evtdev);
 }
 else
 {
 switch(evttype)
 {
 case DMEV_PORT_CONNECT:
 printf("DMEV_PORT_CONNECT event received by device handle [%ld]\n",
 evtdev);
 retCode = 0;
 break;

 case DMEV_PORT_CONNECT_FAIL:
 DM_EVENT_INFO devInfo;
 INIT_DM_EVENT_INFO(&devInfo);
 if(dev_GetResultInfo(evtdev, evttype, pevtdatap, &devInfo) == -1)
 {
 DEV_ERRINFO errInfo;
 dev_ErrorInfo(&errInfo);
 printf("Error: DMEV_PORT_CONNECT_FAIL event received\n /
 dev_GetResultInfo() failure: err(%d), sserr(%d) - %s\n”,
 errInfo.dev_ErrValue,
 errInfo.dev_SubSystemErrValue,
 errInfo.dev_Msg);
 }
 else

Dialogic® Device Management API Library Reference 51

Dialogic Corporation

get event info — dev_GetResultInfo()

 {
 printf("Error: DMEV_PORT_CONNECT_FAIL event received\n /
value(%d), subsystem value(%d), message(%s), subsystem message(%s), further information / -
 %s\n",
 devInfo.nValue,
 devInfo.nSubSystemValue,
 devInfo.szMsg,
 devInfo.szSubSystemMsg,
 devInfo.szAdditionalInfo);
 }
 break;

 default:
 printf("ERROR: unexpected event received for handle [%ld]: 0x%x\n",
 evtdev, evttype);
 };
 }
 return retCode;
}

See Also

None.

52 Dialogic® Device Management API Library Reference
Dialogic Corporation

dev_GetTransmitPortInfo() — retrieve device transmit ports information

dev_GetTransmitPortInfo()

retrieve device transmit ports information

Description

The dev_GetTransmitPortInfo() function retrieves device transmit ports information and returns
it in the data associated with the DMEV_GET_TX_PORT_INFO event.

Asynchronous Operation

The function returns DEV_SUCCESS to indicate it has initiated successfully. The function
generates a DMEV_GET_TX_PORT_INFO event to indicate successful completion of the
function operation. Use the Dialogic® Standard Runtime Library (SRL) functions to process the
termination event.

This function generates a DMEV_GET_TX_PORT_INFO_FAIL event to indicate failure of the
function operation. Use the dev_GetResultInfo() function to obtain the error information.

The user-supplied pointer pUserContext is returned with either event and can be retrieved using
sr_getUserContext(). The pointer to the DM_PORT_INFO_LIST structure is returned with either
event and can be retrieved using sr_getevtdatap().

For more information on SRL functions, see the Dialogic® Standard Runtime Library API Library
Reference.

Name: dev_GetTransmitPortInfo (devHandle, pUserContext)

Inputs: int devHandle • a valid channel device

void *pUserContext • a pointer to user-specific context

Returns: DEV_SUCCESS if successful
-1 if failure

Includes: srllib.h
devmgmt.h
port_connect.h

Category: Device Connection

Mode: asynchronous

Parameter Description

devHandle specifies a valid channel device handle obtained when the channel was
opened

pUserContext specifies a user-supplied pointer that can be retrieved using
sr_getUserContext() when the completion event is received

Dialogic® Device Management API Library Reference 53

Dialogic Corporation

retrieve device transmit ports information — dev_GetTransmitPortInfo()

Cautions

The dev_GetTransmitPortInfo() function must be called from the same process that opens the
device and obtains the device handle used in the function.

Errors

If this function returns -1 to indicate failure, use dev_ErrorInfo() to retrieve the error information.
Possible errors for this function include:

EDEV_BADPARM
Invalid argument or parameter

EDEV_INVALIDDEVICEHANDLE
Invalid device handle specified

EDEV_SUBSYSTEMERR
Internal error

Example

#include <srllib.h>
#include <ipmlib.h>
#include <port_connect.h>
#include <string.h>
#include <iostream>

using namespace std;

int main(int argc, char** argv)
{
 int ret;
 int rc;
 int dev2;
 long evt;
 void* evt_data;
 int evt_len;
 const char szDev2[] = "ipmB1C2";

 ret = 0;
 dev2 = -1;
 try
 {

 // Open device (ipm)
 dev2 = ipm_Open(szDev2, NULL, EV_ASYNC);
 if (-1 == dev2) {
 cout << "ipm_Open error";
 cout << " handle = " << dev2 << endl;
 throw 1;
 }
 sr_waitevt(-1);
 evt = sr_getevttype();
 if (IPMEV_OPEN != evt) {
 cout << "ipm_Open error";
 cout << " event = " << evt << endl;
 throw 2;
 }

 // Obtain Device Transmit Ports
 rc = dev_GetTransmitPortInfo(dev2, NULL);
 if (-1 == rc) {

54 Dialogic® Device Management API Library Reference
Dialogic Corporation

dev_GetTransmitPortInfo() — retrieve device transmit ports information

 cout << "dev_GetReceivePortInfo error";
 cout << " rc = " << rc << endl;
 throw 3;
 }
 sr_waitevt(-1);
 evt = sr_getevttype();
 if (DMEV_GET_TX_PORT_INFO != evt) {
 cout << "dev_GetTransmitPortInfo error";
 cout << " event = " << evt << endl;
 throw 4;
 }
 evt_data = sr_getevtdatap();
 int evt_len = sr_getevtlen();
 DM_PORT_INFO_LIST port_info_list1 = {};
 memcpy(&port_info_list1, evt_data, evt_len);

 // Print number of ports
 cout << "Number of TX ports: " << port_info_list1.unCount << endl;

 }
 catch (int point) {
 ret = -1;
 cerr << "Error point #" << point << " reached" << endl;
 }

 if (dev2 != -1) {
 rc = ipm_Close(dev2, NULL);
 dev2 = -1;
 }

 return ret;
}

See Also

• dev_GetReceivePortInfo()

Dialogic® Device Management API Library Reference 55

Dialogic Corporation

create connections between transmit and receive ports — dev_PortConnect()

dev_PortConnect()

create connections between transmit and receive ports

Description

The dev_PortConnect() function creates half-duplex connections between one or more internal
transmit ports of the specified device and internal receive ports of another device or the same
device, based on the contents of the connection structures. The receive ports are typically ports of
other devices, although they can be receive ports of the same device, which would result in a loop-
back connection. Use this function for making internal connections between packet interfaces.

The ports discussed in this function reference information for dev_PortConnect() refer to internal
ports.

Connections are created from the transmit ports and receive ports provided in the list of
DM_PORT_CONNECT_INFO structures. Connections may be made from a single transmit port
to multiple receive ports by repeating the transmit port in the source DM_PORT_INFO_LIST
structure. Connections may also be made from a single transmit port to multiple receive ports by
calling dev_PortConnect() multiple times using the same transmit ports and different receive
ports in the DM_PORT_CONNECT_INFO_LIST structure.

The Dialogic® Device Management API library checks for compatible port pairs before initiating a
connection and rejects the request if a mismatch is detected; see Supported Connections.

Name: dev_PortConnect (devHandle, pConnectList, pUserContext)

Inputs: int devHandle • a valid channel device

CPDM_PORT_CONNECT_INFO_LIST
pConnectList

• a pointer to the list of connection structures

void *pUserContext • a pointer to user-specific context

Returns: DEV_SUCCESS if successful
-1 if failure

Includes: srllib.h
devmgmt.h
port_connect.h

Category: Device Connection

Mode: asynchronous

Parameter Description

devHandle specifies a valid channel device handle obtained when the channel was
opened

pConnectList specifies a pointer to the list of connection structures,
DM_PORT_CONNECT_INFO_LIST

pUserContext specifies a user-supplied pointer that can be retrieved using
sr_getUserContext() when the completion event is received

56 Dialogic® Device Management API Library Reference
Dialogic Corporation

dev_PortConnect() — create connections between transmit and receive ports

The dev_PortConnect() function allows granular control over which ports to connect; for
example, audio only or video only. If there are multiple receive ports in the port list, the device will
simultaneously transmit to the internal receive ports of multiple devices, creating a one-to-many
connection. A transcoding flag in DM_PORT_CONNECT_INFO is used to indicate if the
connection is native, or if transcoding should be performed; see Supported Connections for more
information. See Multimedia Scenario for usage example.

Asynchronous Operation

The function returns DEV_SUCCESS to indicate it has initiated successfully. The function
generates a DMEV_PORT_CONNECT event to indicate successful completion of the function
operation. Use the Dialogic® Standard Runtime Library (SRL) functions to process the termination
event.

This function generates a DMEV_PORT_CONNECT_FAIL event to indicate failure of the
function operation. Use dev_GetResultInfo() to obtain the error information.

The user-supplied pointer is returned with either event and can be retrieved using
sr_getUserContext(). The pointer to the DM_CONNECT_STATUS_LIST structure is returned
with either event and can be retrieved using sr_getevtdatap().

For more information on SRL functions, see the Dialogic® Standard Runtime Library
documentation.

Multimedia Scenario

The following describes how to establish full-duplex audio and video connections between two
devices. In this example, the two devices are the multimedia (MM) device and the IP media (IPM)
device. CNF multimedia conferencing and 3G-324M (M3G) devices can be substituted in the
example.

Note: These ports are not the external IPM ports that are transmitting/receiving RTP packets; they are
internal connections. Therefore, when receiving RTP packets from the outside world, an IPM
device will transmit this data internally to another device (in this case an MM device).

• Use dev_GetTransmitPortInfo() and dev_GetReceivePortInfo() to retrieve the internal
transmit port and the internal receive port information for the MM device.

• Use dev_GetTransmitPortInfo() and dev_GetReceivePortInfo() to retrieve the internal
transmit port and internal receive port information for the IPM device.

• Create a full-duplex connection by calling dev_PortConnect() twice: first to create the
connections from the internal transmit ports of the MM device to the internal receive ports of
the IPM device, and then again to create the connections from the internal transmit ports of the
IPM device to the internal receive ports of the MM device. Indicate the connection type (native
or transcoding) in DM_PORT_CONNECT_INFO.

Dialogic® Device Management API Library Reference 57

Dialogic Corporation

create connections between transmit and receive ports — dev_PortConnect()

Supported Connections

The dev_PortConnect() function can create connections between devices including:

Multimedia and IP Media
A half-duplex connection between an internal port of an IP media device and an internal port
of a multimedia device. Requires a valid IP media device handle obtained through
ipm_Open() and a valid multimedia device handle obtained through mm_Open().

IP Media and IP Media
A half-duplex connection between internal ports of two IP media devices. Requires a valid IP
media device handle obtained through ipm_Open(). Used for hairpinning.

M3G and IP Media
A half-duplex connection between an internal port of an IP media device and an internal port
of a 3G-324M (M3G) device (audio or video). Requires a valid IP media device handle
obtained through ipm_Open() and a valid M3G device handle obtained through
m3g_Open().

M3G and Multimedia
A half-duplex connection between an internal port of a multimedia device and an internal port
of a 3G-324M (M3G) device (audio or video). Requires a valid multimedia device handle
obtained through mm_Open() and a valid M3G device handle obtained through
m3g_Open().

M3G and CNF Multimedia Conferencing
A half-duplex connection between an internal port of a 3G-324M (M3G) device and an
internal port of a multimedia conferencing device. Requires a valid multimedia conferencing
party device handle (MCX) obtained through cnf_OpenParty() and a valid M3G device
handle obtained through m3g_Open().

M3G and M3G
A half-duplex connection between internal ports of two 3G-324M (M3G) devices (audio or
video). Requires valid M3G device handles obtained through m3g_Open(). Used for
hairpinning.

The connection types that are supported, native or transcoding, vary by software release. The
connection type is specified in the unFlags field of the DM_PORT_CONNECT_INFO structure.
The media type such as audio or video is specified in the port_media_type field of the
DM_PORT_INFO structure. In the table, HMP 3.0WIN refers to Dialogic® HMP Software
3.0WIN, HMP 3.1LIN refers to Dialogic® HMP Software 3.1LIN, HMP 4.1LIN refers to
Dialogic® HMP Software 4.1LIN, MMP for ATCA refers to Dialogic® Multimedia Platform for
ATCA, and MMK for PCIe refers to Dialogic® Multimedia Kit for PCIe.

Connection Type
HMP

3.0WIN
HMP

3.1LIN
HMP

4.1LIN
MMK 1.0
for PCIe

MMP 2.0
for ATCA

MMP 1.1
for ATCA

Native audio S S S S S S

Native video S S S S S S

Transcoding audio N N S S S N

Transcoding video N N S S S N

Legend: S=Supported, N=Not supported

58 Dialogic® Device Management API Library Reference
Dialogic Corporation

dev_PortConnect() — create connections between transmit and receive ports

Cautions

• The dev_PortConnect() function must be called from the same process that opens the device
and obtains the device handle used in the function.

• A call to dev_PortConnect() must complete, as indicated by the termination event, before a
second dev_PortConnect() call can be made successfully on the same device; otherwise, the
second connection results in an EDEV_INVALIDSTATE error.

• If dev_PortConnect() is unable to complete one or more connections defined by the source
and destination DM_PORT_INFO_LIST structures, the function returns the
DMEV_PORT_CONNECT_FAIL event. Connections that were successfully completed,
however, will not be automatically disconnected. The application can check the status of each
connection by retrieving and examining the DM_CONNECT_STATUS_LIST structure.

• If dev_PortConnect() is called on device A and a connection is made to destination port X
(of device B), and then dev_PortConnect() is called on device C and a second connection is
also made to destination port X (of device B), the data received by device B may be corrupted.
The first connection made from device A to port X is not implicitly disconnected when the
second dev_PortConnect() call is made.

Errors

If this function returns -1 to indicate failure, use dev_ErrorInfo() to retrieve the error information.
Possible errors for this function include:

EDEV_BADPARM
Invalid argument or parameter

EDEV_INVALIDDEVICEHANDLE
Invalid device handle specified

EDEV_SUBSYSTEMERR
Internal error

Example

This example illustrates a half-duplex connection between two devices. The internal transmit ports
of ipmB1C2 are connected to the internal receive ports of ipmB1C1.

 #include <srllib.h>
 #include <ipmlib.h>
 #include <port_connect.h>
 #include <string.h>
 #include <iostream>

 using namespace std;

 int CreateConnectInfoList(
 PDM_PORT_CONNECT_INFO_LIST pconn_lst,
 CPDM_PORT_INFO_LIST pport_lst1,
 CPDM_PORT_INFO_LIST pport_lst2
)
 {
 INIT_DM_PORT_CONNECT_INFO_LIST(&pconn_lst);
 // Loop through all transmit ports of 1st device
 int k = 0;
 int i;
 for (i = 0; i < pport_lst1->unCount; ++i) {

Dialogic® Device Management API Library Reference 59

Dialogic Corporation

create connections between transmit and receive ports — dev_PortConnect()

 DM_PORT_MEDIA_TYPE type_tx =
 pport_lst1->port_info[i].port_media_type;
 // find appropriate RX port on 2nd device
 bool bFound = false;
 int j;
 for (j = 0; j < pport_lst2->unCount; ++j) {
 DM_PORT_MEDIA_TYPE type_rx =
 pport_lst2->port_info[j].port_media_type;
 if (type_tx == type_rx) {
 bFound = true;
 break;
 }
 }
 if (!bFound) {
 continue;
 }
 // create element of connect list
 // Check the transcoding support for video (DM_PORT_MEDIA_TYPE_VIDEO) in the software
 release before setting unFlags to DMFL_TRANSCODE_ON. Only set if video transcoding
 is supported.

 if (type_tx == DM_PORT_MEDIA_TYPE_AUDIO)
 info.unFlags = DMFL_TRANSCODE_ON;
 else
 info.unFlags = DMFL_TRANSCODE_NATIVE;
 info.port_info_tx = pport_lst1->port_info[i];
 info.port_info_rx = pport_lst2->port_info[j];
 ++k;
 }
 pconn_lst->unCount = k;
 return k;
 }

 int main(int argc, char** argv)
 {
 int ret;
 int rc;
 int dev1, dev2;
 long evt;
 void* evt_data;
 int evt_len;
 const char szDev1[] = "ipmB1C1";
 const char szDev2[] = "ipmB1C2";

 ret = 0;
 dev1 = -1;
 try
 {

 // Open device (ipmB1C1)
 dev1 = ipm_Open(szDev1, NULL, EV_ASYNC);
 if (-1 == dev1) {
 cout << "ipm_Open error";
 cout << " handle = " << dev1 << endl;
 throw 11;
 }
 sr_waitevt(-1);
 evt = sr_getevttype();
 if (IPMEV_OPEN != evt) {
 cout << "ipm_Open error";
 cout << " event = " << evt << endl;
 throw 12;
 }

 // Open device (ipmB1C2)
 dev2 = ipm_Open(szDev2, NULL, EV_ASYNC);
 if (-1 == dev2) {

60 Dialogic® Device Management API Library Reference
Dialogic Corporation

dev_PortConnect() — create connections between transmit and receive ports

 cout << "ipm_Open error";
 cout << " handle = " << dev2 << endl;
 throw 21;
 }
 sr_waitevt(-1);
 evt = sr_getevttype();
 if (IPMEV_OPEN != evt) {
 cout << "ipm_Open error";
 cout << " event = " << evt << endl;
 throw 22;
 }

 // Obtain Device 1 Receive Ports
 rc = dev_GetReceivePortInfo(dev1, NULL);
 if (-1 == rc) {
 cout << "dev_GetReceivePortInfo error";
 cout << " rc = " << rc << endl;
 throw 13;
 }
 sr_waitevt(-1);
 evt = sr_getevttype();
 if (DMEV_GET_RX_PORT_INFO != evt) {
 cout << "dev_GetReceivePortInfo error";
 cout << " event = " << evt << endl;
 throw 14;
 }
 evt_data = sr_getevtdatap();
 evt_len = sr_getevtlen();
 DM_PORT_INFO_LIST port_info_list1 = {};
 memcpy(&port_info_list1, evt_data, evt_len);

 // Print number of ports
 cout << "Number of RX ports: "
 << port_info_list1.unCount << endl;

 // Obtain Device 2 Transmit Ports
 rc = dev_GetTransmitPortInfo(dev2, NULL);
 if (-1 == rc) {
 cout << "dev_GetTransmitPortInfo error";
 cout << " rc = " << rc << endl;
 throw 23;
 }
 sr_waitevt(-1);
 evt = sr_getevttype();
 if (DMEV_GET_TX_PORT_INFO != evt) {
 cout << "dev_GetTransmitPortInfo error";
 cout << " event = " << evt << endl;
 throw 24;
 }
 evt_data = sr_getevtdatap();
 evt_len = sr_getevtlen();
 DM_PORT_INFO_LIST port_info_list2 = {};
 memcpy(&port_info_list2, evt_data, evt_len);

 DM_PORT_CONNECT_INFO_LIST connectList;
 int num_matched_ports;
 num_matched_ports = CreateConnectInfoList(
 &connectList,
 &port_info_list2,
 &port_info_list1
);
 if (0 == num_matched_ports) {
 cout << "No matched ports found" << endl;
 throw 50;
 }
 // Connect transmit ports of dev2 to receive ports of dev1
 rc = dev_PortConnect(dev2, &connectList, NULL);

Dialogic® Device Management API Library Reference 61

Dialogic Corporation

create connections between transmit and receive ports — dev_PortConnect()

 if (-1 == rc) {
 cout << "dev_PortConnect error";
 cout << " rc = " << rc << endl;
 throw 51;
 }
 sr_waitevt(-1);
 evt = sr_getevttype();
 if (DMEV_PORT_CONNECT != evt) {
 cout << "dev_PortConnect error";
 cout << " event = " << evt << endl;
 throw 52;
 }
 /* Ports now connected */

 // Disconnect transmit ports of dev2 from receive ports of dev1
 rc = dev_PortDisconnect(dev2, &connectList, NULL);
 if (-1 == rc) {
 cout << "dev_PortDisconnect error";
 cout << " rc = " << rc << endl;
 throw 61;
 }
 sr_waitevt(-1);
 evt = sr_getevttype();
 if (DMEV_PORT_DISCONNECT != evt) {
 cout << "dev_PortDisconnect error";
 cout << " event = " << evt << endl;
 throw 62;
 }
 /* Ports now disconnected */

 }
 catch (int point) {
 ret = -1;
 cerr << "Error point #" << point << " reached" << endl;
 }

 if (dev1 != -1) {
 rc = ipm_Close(dev1, NULL);
 dev1 = -1;
 }

 if (dev2 != -1) {
 rc = ipm_Close(dev2, NULL);
 dev2 = -1;
 }

 return ret;
 }

See Also

• dev_PortDisconnect()

62 Dialogic® Device Management API Library Reference
Dialogic Corporation

dev_PortDisconnect() — sever connections between transmit and receive ports

dev_PortDisconnect()

sever connections between transmit and receive ports

Description

The dev_PortDisconnect() function severs connections between one or more internal transmit
ports of the specified device and internal receive ports of another device or the same device, based
on the contents of the connection structures.

Asynchronous Operation

The function returns DEV_SUCCESS to indicate it has initiated successfully. The function
generates a DMEV_PORT_DISCONNECT event to indicate successful completion of the function
operation. Use the Dialogic® Standard Runtime Library (SRL) functions to process the termination
event.

This function generates a DMEV_PORT_DISCONNECT_FAIL event to indicate failure of the
function operation. Use dev_GetResultInfo() to obtain the error information.

The user-supplied pointer is returned with either event and can be retrieved using
sr_getUserContext(). For more information on this function, see the Dialogic® Standard Runtime
Library API Library Reference.

Name: dev_PortDisconnect (devHandle, pConnectList, pUserContext)

Inputs: int devHandle • a valid channel device

CPDM_PORT_CONNECT_INFO_LIST
pConnectList

• a pointer to the list of connection structures

void *pUserContext • a pointer to user-specific context

Returns: DEV_SUCCESS if successful
-1 if failure

Includes: srllib.h
devmgmt.h
port_connect.h

Category: Device Connection

Mode: asynchronous

Parameter Description

devHandle specifies a valid channel device handle obtained when the channel was
opened

pConnectList specifies a pointer to the list of connection structures,
DM_PORT_CONNECT_INFO_LIST

pUserContext specifies a user-supplied pointer that can be retrieved using
sr_getUserContext() when the completion event is received

Dialogic® Device Management API Library Reference 63

Dialogic Corporation

sever connections between transmit and receive ports — dev_PortDisconnect()

Cautions

• The dev_PortDisconnect() function must be called from the same process that opens the
device and obtains the device handle used in the function.

• In a full-duplex connection, when disconnecting, call dev_PortDisconnect() twice: once to
disconnect the transmit ports of device A from the receive ports of device B, and then again to
disconnect the transmit ports of device B from the receive ports of device A.

Errors

If this function returns -1 to indicate failure, use dev_ErrorInfo() to retrieve the error information.
Possible errors for this function include:

EDEV_BADPARM
Invalid argument or parameter

EDEV_INVALIDDEVICEHANDLE
Invalid device handle specified

EDEV_SUBSYSTEMERR
Internal error

Example

For an example, see dev_PortConnect().

See Also

• dev_PortConnect()

64 Dialogic® Device Management API Library Reference
Dialogic Corporation

dev_ReleaseResource() — release a resource

dev_ReleaseResource()

release a resource

Description

Note: The dev_ReleaseResourceEx() function supercedes and should be used instead of the
dev_ReleaseResource() function. The _Ex() function provides improved information about
available resources.

The dev_ReleaseResource() function releases a specified resource previously reserved for the
device. When you release a resource, it returns to the pool of available resources.

Synchronous Operation

Resource Reservation operations on the low bit rate codec are handled in a single thread of
execution; therefore, resource type RESOURCE_IPM_LBR is supported in synchronous mode
only.

Name: int dev_ReleaseResource (devHandle, resType, mode)

Inputs: int devHandle • a valid channel device

eDEV_RESOURCE_TYPE
resType

• a resource type

unsigned short mode • synchronous function mode

Returns: DEV_SUCCESS if successful
-1 if failure

Includes: srllib.h
devmgmt.h

Category: Resource Reservation

Mode: synchronous

Parameter Description

devHandle specifies a valid channel device handle obtained when the channel was
opened

resType specifies a resource type. The following is the only valid value:
• RESOURCE_IPM_LBR – specifies the resource for IP media low bit

rate codecs (e.g., G.723 or G.729). A board device handle is not valid
when using this resource type; the device handle must be a valid IP
media channel device. This resource type is supported in synchronous
mode only.

mode specifies how the function should be executed. For resource type
RESOURCE_IPM_LBR, set this to:
• EV_SYNC – synchronously

Dialogic® Device Management API Library Reference 65

Dialogic Corporation

release a resource — dev_ReleaseResource()

To run this function synchronously, set the mode parameter to EV_SYNC. This function returns 0
to indicate successful completion and -1 to indicate failure. Use dev_ErrorInfo() to retrieve the
error information.

Cautions

• This function requires that the device be open and that it have a resource of the specified type
reserved for it; otherwise, it generates a subsystem error (e.g.,
EDEV_IPM_SUBSYSTEMERR).

• If the specified resource is actively being used, it cannot be released and generates a subsystem
error (e.g., EDEV_IPM_SUBSYSTEMERR).

• Resource type RESOURCE_IPM_LBR is not supported in asynchronous mode and will not
generate the necessary events.

• If you use this function to release the RESOURCE_IPM_LBR resource multiple times for
the same device (without reserving the resource again), it is ignored. It does not return an error
or change the resource pool allocation.

• If you close the device, it releases all resources reserved for it.

Errors

If this function returns -1 to indicate failure, use dev_ErrorInfo() to retrieve the error information.
Possible errors for this function include:

EDEV_INVALIDDEVICEHANDLE
An invalid device handle was specified. For the dev_Connect() function, the Supported
Connections do not allow connection of these types of devices. (Valid handles include IP
media, multimedia, and T.38 UDP fax devices.)

EDEV_INVALIDMODE
An invalid mode was specified for executing the function synchronously or asynchronously
(EV_SYNC or EV_ASYNC).

EDEV_IPM_SUBSYSTEMERR
A subsystem error occurred during an internal call to an IP media library function because the
subsystem function was unable to start (this is not a Dialogic® Device Management API
error). See the IP media library documentation for the IP media error codes and descriptions.

See also Chapter 5, “Error Codes” for additional information.

Example

The following example code shows how the function is used in synchronous mode.

#include "srllib.h"
#include "ipmlib.h"
#include "devmgmt.h"

void main()
{
 int devHandle; // channel handle
 .
 .

 // Open channel

66 Dialogic® Device Management API Library Reference
Dialogic Corporation

dev_ReleaseResource() — release a resource

 if ((devHandle = ipm_Open("ipmB1C1", NULL, EV_SYNC)) == -1)
 {
 printf("Cannot open channel\n");
 exit(1);
 }

 // UnReserve Low Bit Rate Codec for the specified channel
 if (dev_ReleaseResource(devHandle, RESOURCE_IPM_LBR, EV_SYNC) ==-1)
 {
 printf("Cannot Release LBR resource.\n");
 // Perform system error processing
 }
}

See Also

None.

Dialogic® Device Management API Library Reference 67

Dialogic Corporation

release a resource — dev_ReleaseResourceEx()

dev_ReleaseResourceEx()

release a resource

Description

The dev_ReleaseResourceEx() function releases specified resource(s) previously reserved for the
device. When you release a resource, it returns to the pool of available resources.

When using any of the RESOURCE_IPM types, the IPM device must be stopped when issuing this
API call.

Note: The dev_ReleaseResourceEx() function supercedes and should be used instead of the
dev_ReleaseResource() function. The _Ex() function provides improved information about
available resources.

Note: The dev_ReleaseResourceEx() function is not supported in Dialogic® HMP Software 3.0WIN.

Asynchronous Operation

To run this function asynchronously, set the mode parameter to EV_ASYNC. The function returns
0 to indicate it has initiated successfully. The function generates a

Name: int dev_ReleaseResourceEx(devHandle, pResourceList, mode)

Inputs: int devHandle • valid channel device

DEV_RESOURCE_LIST
*pResourceList

• pointer to resource reservation list structure

unsigned short mode • asynchronous or synchronous function mode

Returns: DEV_SUCCESS if successful
-1 if failure

Includes: srllib.h
devmgmt.h

Category: Resource Reservation

Mode: asynchronous or synchronous

Parameter Description

devHandle specifies a valid channel device handle obtained when the channel was
opened

pResourceList pointer to resource reservation structure DEV_RESOURCE_LIST.

When using any of the RESOURCE_IPM types, a board device handle is
not valid; the device handle must be a valid IP media channel device.

mode specifies how the function should be executed. Set this to one of the
following:

• EV_ASYNC - asynchronously

• EV_SYNC - synchronously

68 Dialogic® Device Management API Library Reference
Dialogic Corporation

dev_ReleaseResourceEx() — release a resource

DMEV_RELEASE_RESOURCE termination event to indicate successful completion of the
function operation. The application must process for the completion event that indicates the
operation was successful. Use the Dialogic® Standard Runtime Library (SRL) functions to process
the termination event.

This function generates a DMEV_RELEASE_RESOURCE _FAIL error event to indicate failure of
the function operation. Use dev_GetResultInfo() to retrieve the error information.

Synchronous Operation

To run this function synchronously, set the mode parameter to EV_SYNC. This function returns 0
to indicate successful completion and -1 to indicate failure. Use dev_ErrorInfo() to retrieve the
error information.

Note: It is better to use asynchronous mode because dev_ReleaseResourceEx() is not executed in a
single thread of execution as is dev_ReleaseResource().

Cautions

• This function requires that the device be open; otherwise, it generates a subsystem error (e.g.,
EDEV_IPM_SUBSYSTEMERR).

• If the specified resource is invalid, it generates a subsystem error (e.g.,
EDEV_IPM_SUBSYSTEMERR).

• If you use this function to release the RESOURCE_IPM_xxx resources multiple times for the
same device (without reserving the resource again), it is ignored. It does not return an error or
change the resource pool allocation.

• This function requires that the IPM device be idle when the call is issued. Otherwise it
generates a subsystem error (e.g., EDEV_IPM_SUBSYSTEMERR).

Errors

If this function returns -1 to indicate failure, use dev_ErrorInfo() to retrieve the error information.

Possible errors for this function include:

EDEV_INVALIDDEVICEHANDLE
An invalid device handle was specified.

EDEV_INVALIDMODE
An invalid mode was specified for executing the function synchronously or asynchronously.

EDEV_IPM_SUBSYSTEMERR
A subsystem error occurred during an internal call to an IP media library function because the
subsystem function was unable to start (this is not a Dialogic® Device Management API
error).

Asynchronous Code Example

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>
#include <devmgmt.h>

Dialogic® Device Management API Library Reference 69

Dialogic Corporation

release a resource — dev_ReleaseResourceEx()

long int CheckEvent(void *pdummy)
{
 IPM_MEDIA_INFO MediaInfo, *pMediaInfo;
 unsigned int i;
 int nDeviceID = sr_getevtdev();
 int nEventType = sr_getevttype();
 void* pVoid = sr_getevtdatap();

 switch(nEventType)
 {
 /*
 .
 .
 . Other events
 .
 .
 */
 case DMEV_RELEASE_RESOURCE:
 printf("Received DMEV_RELEASE_RESOURCE for device name = %s\n",
 ATDV_NAMEP(nDeviceID));

 break;

 default:
 printf("Received unknown event = %d for device name = %s\n",
 nEventType, ATDV_NAMEP(nDeviceID));
 break;

 }
return 0;
}
int main()
{
int devHandle; // channel handle
DEV_RESOURCE_LIST devResourceList;
IPM_MEDIA_INFO MediaInfo;

// Register event handler function with srl
sr_enbhdlr(EV_ANYDEV ,EV_ANYEVT ,CheckEvent);

// Open channel
if ((devHandle = ipm_Open("ipmB1C1", NULL, EV_SYNC)) == -1)
{
 printf("Cannot open channel\n");
 // Perform system error processing
 return -1;
}

/*
. .
Main Processing
. .
*/
/*
Release G726 G729 coders for IP device handle, nDeviceHandle.
ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm_Open().
Coders were previously reserved.
*/

INIT_DEV_RESOURCE_LIST(&devResourceList);
devResourceList.rsList[0] = RESOURCE_IPM_G729;
devResourceList.rsList[1] = RESOURCE_IPM_G726;
devResourceList.count = 2;

70 Dialogic® Device Management API Library Reference
Dialogic Corporation

dev_ReleaseResourceEx() — release a resource

// Release Codec for the specified channel
 if (dev_ReleaseResourceEx(devHandle, &devResourceList, EV_ASYNC) ==-1)
 {
 printf("Cannot Release Coder resources.\n");
 return 1;

 // Perform system error processing
 }else
 printf("Release succeeded.\n");

 /* Continue processing */

return 0;
}

Synchronous Code Example

#include "srllib.h"
#include "ipmlib.h"
#include "devmgmt.h"
void main()
{
 int devHandle; // channel handle
 DEV_RESOURCE_LIST devResList;

 // ASSUMPTION: devHandle is a valid device handle obtained from a previous ipm_Open call

 INIT_DEV_RESOURCE_LIST(&devResourceList);
 devResourceList.rsList[0] = RESOURCE_IPM_G726;
 devResourceList.rsList[1] = RESOURCE_IPM_G729;
 devResourceList.count = 2;

 // UnReserve Low Bit Rate Codec for the specified channel

 if (dev_ReleaseResourceEx(devHandle, &devResourceList, EV_SYNC) ==-1)
 {
 printf("Cannot Release resources.\n");
 // Perform system error processing
 }
 else
 printf("Release succeeded.\n");

 /*
 . .
 . Continue processing
 ..
 . .
 */

}

See Also

• dev_GetResourceReservationInfoEx()

• dev_ReserveResourceEx()

Dialogic® Device Management API Library Reference 71

Dialogic Corporation

reserve a resource — dev_ReserveResource()

dev_ReserveResource()

reserve a resource

Description

Note: The dev_ReserveResourceEx() function supercedes and should be used instead of the
dev_ReserveResource() function. The _Ex() function provides improved information about
available resources.

The dev_ReserveResource() function reserves a resource for use by the specified device. This
allows an application to reserve resources during initial setup and can be especially useful for
complex setups, where the setup might fail during an intermediate step for lack of a critical
resource. In such cases, it is sometimes necessary to backtrack and then retry the operation with an
alternate resource. Reserving the resource before-hand ensures that the dependency on the resource
is met before proceeding with the setup.

Name: int dev_ReserveResource (devHandle, resType, mode)

Inputs: int devHandle • a valid channel device

eDEV_RESOURCE_TYPE
resType

• a resource type

unsigned short mode • synchronous function mode

Returns: DEV_SUCCESS if successful
-1 if failure

Includes: srllib.h
devmgmt.h

Category: Resource Reservation

Mode: synchronous

Parameter Description

devHandle specifies a valid channel device handle obtained when the channel was
opened

resType specifies a resource type. The following is the only valid value:
• RESOURCE_IPM_LBR – specifies the resource for IP media low bit

rate codecs (e.g., G.723 or G.729). A board device handle is not valid
when using this resource type; the device handle must be a valid IP
media channel device. This resource type is supported in synchronous
mode only.

mode specifies how the function should be executed. For resource type
RESOURCE_IPM_LBR, set this to:
• EV_SYNC – synchronously

72 Dialogic® Device Management API Library Reference
Dialogic Corporation

dev_ReserveResource() — reserve a resource

Synchronous Operation

Resource Reservation operations on the low bit rate codec are handled in a single thread of
execution; therefore, resource type RESOURCE_IPM_LBR is supported in synchronous mode
only.

To run this function synchronously, set the mode parameter to EV_SYNC. This function returns 0
to indicate successful completion and -1 to indicate failure. Use dev_ErrorInfo() to retrieve the
error information.

Cautions

• If you use this function to reserve the RESOURCE_IPM_LBR resource multiple times for
the same device (without releasing the resource), it is ignored. It does not return an error or
change the resource pool allocation.

• This function requires that the device be open; otherwise, it generates a subsystem error (e.g.,
EDEV_IPM_SUBSYSTEMERR).

• If no resource of the specified type is available, it generates a subsystem error (e.g.,
EDEV_IPM_SUBSYSTEMERR).

• If you close the device, it releases all resources reserved for it.

Errors

If this function returns -1 to indicate failure, use dev_ErrorInfo() to retrieve the error information.
Possible errors for this function include:

EDEV_INVALIDDEVICEHANDLE
An invalid device handle was specified. For the dev_Connect() function, the Supported
Connections do not allow connection of these types of devices. (Valid handles include IP
media, multimedia, and T.38 UDP fax devices.)

EDEV_INVALIDMODE
An invalid mode was specified for executing the function synchronously or asynchronously
(EV_SYNC or EV_ASYNC).

EDEV_IPM_SUBSYSTEMERR
A subsystem error occurred during an internal call to an IP media library function because the
subsystem function was unable to start (this is not a Dialogic® Device Management API
error). See the IP media library documentation for the IP media error codes and descriptions.

See also Chapter 5, “Error Codes” for additional information.

Example

The following example code shows how the function is used in synchronous mode.

#include "srllib.h"
#include "ipmlib.h"
#include "devmgmt.h"

void main()
{
 int devHandle; // channel handle

Dialogic® Device Management API Library Reference 73

Dialogic Corporation

reserve a resource — dev_ReserveResource()

 .
 .
 // Open channel
 if ((devHandle = ipm_Open("ipmB1C1", NULL, EV_SYNC)) == -1)
 {
 printf("Cannot open channel\n");
 // Perform system error processing
 exit(1);
 }

 // Reserve Low Bit Rate Codec for the specified channel
 if (dev_ReserveResource(devHandle, RESOURCE_IPM_LBR, EV_SYNC) ==-1)
 {
 printf("Cannot Reserve LBR resource.\n");
 // Perform system error processing
 }
}

See Also

None.

74 Dialogic® Device Management API Library Reference
Dialogic Corporation

dev_ReserveResourceEx() — reserve a resource

dev_ReserveResourceEx()

reserve a resource

Description

The dev_ReserveResourceEx() function reserves resource(s) for use by the specified device. This
allows an application to reserve resources during initial setup and can be especially useful for
complex setups, where the setup might fail during an intermediate step for lack of a critical
resource. In such cases, it is sometimes necessary to backtrack and then retry the operation with an
alternate resource. Reserving the resource(s) beforehand ensures that the dependency on the
resource is met before proceeding with the setup.

When using any of the RESOURCE_IPM types, the IPM device must be idle when issuing this
API call. If there is an ongoing streaming operation, it must either be completed or stopped prior to
issuing this API call. Also, the application must call ipm_GetLocalMediaInfo() after every
dev_ReserveResourceEx() call to RESOURCE_IPM types.

Note: The dev_ReserveResourceEx() function supercedes and should be used instead of the
dev_ReserveResource() function. The _Ex() function provides improved information about
available resources.

Note: The dev_ReserveResourceEx() function is not supported in Dialogic® HMP Software 3.0WIN.

Name: int dev_ReserveResourceEx(devHandle, pResourceList, mode)

Inputs: int devHandle • valid channel device

DEV_RESOURCE_LIST
*pResourceList

• pointer to resource reservation list structure

unsigned short mode • asynchronous or synchronous function mode

Returns: DEV_SUCCESS if successful
-1 if failure

Includes: srllib.h
devmgmt.h

Category: Resource Reservation

Mode: asynchronous or synchronous

Parameter Description

devHandle specifies a valid channel device handle obtained when the channel was
opened

Dialogic® Device Management API Library Reference 75

Dialogic Corporation

reserve a resource — dev_ReserveResourceEx()

Asynchronous Operation

To run this function asynchronously, set the mode parameter to EV_ASYNC. The function returns
0 to indicate it has initiated successfully. The function generates a
DMEV_RESERVE_RESOURCE termination event to indicate successful completion of the
function operation. The application must process for the completion event that indicates the
operation was successful. Use the Dialogic® Standard Runtime Library (SRL) functions to process
the termination event.

This function generates a DMEV_RESERVE_RESOURCE _FAIL error event to indicate failure of
the function operation. Use dev_GetResultInfo() to retrieve the error information.

Synchronous Operation

To run this function synchronously, set the mode parameter to EV_SYNC. This function returns 0
to indicate successful completion and -1 to indicate failure. Use dev_ErrorInfo() to retrieve the
error information.

It is better to use asynchronous mode because dev_ReserveResourceEx() is not executed in a
single thread of execution as is dev_ReserveResource().

Cautions

• The coders specified in a call to dev_ReserveResourceEx() override the set of coders
previously reserved when the function completes successfully. When the call fails, the set of
reserved coders obtained through the previous successful call is still valid.

• The application must call dev_ReleaseResourceEx() to release resources. It can use
RESOURCE_IPM_ALL_AUDIO_CODERS to release all audio coders that it has reserved
without having to list every single one of them.

• This function requires that the device be open; otherwise, it generates a subsystem error (e.g.,
EDEV_IPM_SUBSYSTEMERR).

• If the specified resource is unavailable or invalid, it generates a subsystem error (e.g.,
EDEV_IPM_SUBSYSTEMERR). Use dev_ErrorInfo() to obtain the technology-specific
error code.

• The current call to reserve a set of coders replaces any set of coders that were previously
reserved. Therefore, the application must send the complete list of coders it needs to reserve.

• This function requires that the IPM device be idle when the call is issued. Otherwise it
generates an error (e.g., EDEV_IPM_SUBSYSTEMERR).

pResourceList pointer to resource reservation structure DEV_RESOURCE_LIST.

When using any of the RESOURCE_IPM types, a board device handle is
not valid; the device handle must be a valid IP media channel device.

mode specifies how the function should be executed. Set this to one of the
following:

• EV_ASYNC - asynchronously

• EV_SYNC - synchronously

Parameter Description

76 Dialogic® Device Management API Library Reference
Dialogic Corporation

dev_ReserveResourceEx() — reserve a resource

• The application should always clean up resources before exiting. The application should stop
the RTP session by using ipm_Stop(). Otherwise the next startup will result in
dev_ReserveResourceEx() failure.

Errors

If this function returns -1 to indicate failure, use dev_ErrorInfo() to retrieve the error information.

Possible errors for this function include:

EDEV_INVALIDDEVICEHANDLE
An invalid device handle was specified.

EDEV_INVALIDMODE
An invalid mode was specified for executing the function synchronously or asynchronously.

EDEV_IPM_SUBSYSTEMERR
A subsystem error occurred during an internal call to an IP media library function because the
subsystem function was unable to start (this is not a Dialogic® Device Management API
error).

EIPM_RESOURCESINUSE
A resource in use error is returned if all IPM coder resources are in use and not available for
reservation.

Asynchronous Code Example

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>
#include <devmgmt.h>

long int CheckEvent(void *)
{
 IPM_MEDIA_INFO MediaInfo, *pMediaInfo;
 unsigned int i;
 int nDeviceID = sr_getevtdev();
 int nEventType = sr_getevttype();
 void* pVoid = sr_getevtdatap();

 switch(nEventType)
 {
 /*
 .
 .
 . Other events
 .
 .
 */

 /* Expected reply to dev_ReserveResourceEx */
 case DMEV_RESERVE_RESOURCE:
 printf("Received DMEV_RESERVE_RESOURCE for device name = %s\n",
 ATDV_NAMEP(nDeviceID));

Dialogic® Device Management API Library Reference 77

Dialogic Corporation

reserve a resource — dev_ReserveResourceEx()

 /* It is necessary to call ipm_GetLocalMediaInfo() after a call
 * to dev_ReserveResourceEx().
 * Get the local IP information for IP device handle,
 * nDeviceHandle.
 * ASSUMPTION: A valid nDeviceHandle was obtained from prior call
 * to ipm_Open().
 */

 MediaInfo.unCount = 1;
 MediaInfo.MediaData[0].eMediaType = MEDIATYPE_LOCAL_RTP_INFO;
 if(ipm_GetLocalMediaInfo(nDeviceID, &MediaInfo, EV_ASYNC) == - 1)
 {
 printf("ipm_GetLocalMediaInfo failed for device name %s with error = %d\n",
 ATDV_NAMEP(nDeviceID), ATDV_LASTERR(nDeviceID));
 /*
 . .
 Perform Error Processing
 . .
 */
 }

 break;
/* Expected reply to ipm_GetLocalMediaInfo */
 case IPMEV_GET_LOCAL_MEDIA_INFO:
 printf("Received IPMEV_GET_LOCAL_MEDIA_INFO for device name = %s\n",
 ATDV_NAMEP(nDeviceID));
 pMediaInfo = (IPM_MEDIA_INFO*)pVoid;
 for(i=0; i<pMediaInfo->unCount; i++)
 {
 switch(pMediaInfo->MediaData[i].eMediaType)
 {
 case MEDIATYPE_VIDEO_LOCAL_RTP_INFO:
 printf("MediaType=MEDIATYPE_VIDEO_LOCAL_RTP_INFO\n");
 printf("PortId=%d\n",pMediaInfo-
 >MediaData[i].mediaInfo.PortInfo.unPortId);
 printf("IP=%s\n",pMediaInfo->MediaData[i].mediaInfo.PortInfo.cIPAddress);
 break;
 case MEDIATYPE_VIDEO_LOCAL_RTCP_INFO:
 printf("MediaType=MEDIATYPE_VIDEO_LOCAL_RTCP_INFO\n");
 printf("PortId=%d\n",pMediaInfo-
 >MediaData[i].mediaInfo.PortInfo.unPortId);
 printf("IP=%s\n",pMediaInfo-
 >MediaData[i].mediaInfo.PortInfo.cIPAddress);
 break;
 case MEDIATYPE_AUDIO_LOCAL_RTP_INFO:
 printf("MediaType=MEDIATYPE_AUDIO_LOCAL_RTP_INFO\n");
 printf("PortId=%d\n",pMediaInfo-
 >MediaData[i].mediaInfo.PortInfo.unPortId);
 printf("IP=%s\n",pMediaInfo-
 >MediaData[i].mediaInfo.PortInfo.cIPAddress);
 break;
 case MEDIATYPE_AUDIO_LOCAL_RTCP_INFO:
 printf("MediaType=MEDIATYPE_AUDIO_LOCAL_RTCP_INFO\n");
 printf("PortId=%d\n",pMediaInfo-
 >MediaData[i].mediaInfo.PortInfo.unPortId);
 printf("IP=%s\n",pMediaInfo-
 >MediaData[i].mediaInfo.PortInfo.cIPAddress);
 break;
 }
 }

 default:
 printf("Received unknown event = %d for device name = %s\n", nEventType,
ATDV_NAMEP(nDeviceID));
 break;
 }

78 Dialogic® Device Management API Library Reference
Dialogic Corporation

dev_ReserveResourceEx() — reserve a resource

}
int main()
{

int devHandle; // channel handle
DEV_RESOURCE_LIST devResourceList;

// Register event handler function with srl
sr_enbhdlr(EV_ANYDEV ,EV_ANYEVT ,CheckEvent);

// Open channel
if ((devHandle = ipm_Open("ipmB1C1", NULL, EV_SYNC)) == -1)
{
 printf("Cannot open channel\n");
 // Perform system error processing
 return -1;
}

/*
. .
Main Processing
. .
*/
/*
Reserve G726 G729 coders for IP device handle, nDeviceHandle.
ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm_Open().
*/

INIT_DEV_RESOURCE_LIST(&devResourceList);
devResourceList.rsList[0] = RESOURCE_IPM_G729;
devResourceList.rsList[1] = RESOURCE_IPM_G726;
devResourceList.count = 2;

// Reserve Low Bit Rate Codec for the specified channel
 if (dev_ReserveResourceEx(devHandle, &devResourceList, EV_ASYNC) ==-1)
 {
 printf("Cannot Reserve LBR Coder resourceS.\n");
 return 1;

 // Perform system error processing
 }else
 printf("Reserve succeeded.\n");
 /* Continue processing */

return 0;
}

Synchronous Code Example

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>
#include <devmgmt.h>

using namespace std;

int main()
{

int devHandle; // channel handle
DEV_RESOURCE_LIST devResourceList;
IPM_MEDIA_INFO MediaInfo;

Dialogic® Device Management API Library Reference 79

Dialogic Corporation

reserve a resource — dev_ReserveResourceEx()

// Open channel
if ((devHandle = ipm_Open("ipmB1C1", NULL, EV_SYNC)) == -1)
{
// printf("Cannot open channel\n");
 // Perform system error processing
 return -1;
}

INIT_DEV_RESOURCE_LIST(&devResourceList);
devResourceList.rsList[0] = RESOURCE_IPM_G729;
devResourceList.rsList[1] = RESOURCE_IPM_G726;
devResourceList.count = 2;

// Reserve Low Bit Rate Codec for the specified channel
if (dev_ReserveResourceEx(devHandle, &devResourceList, EV_SYNC) ==-1)
{
 printf("Cannot Reserve LBR Coder resourceS.\n");
// Perform system error processing
}else
 printf("Reserve succeeded.\n");

/* It is necessary to call ipm_GetLocalMediaInfo() after a call
* to dev_ReserveResourceEx().
* Get the local IP information for IP device handle,
* nDeviceHandle.
* ASSUMPTION: A valid nDeviceHandle was obtained from prior call * to ipm_Open().
*/

MediaInfo.unCount = 1;
MediaInfo.MediaData[0].eMediaType = MEDIATYPE_LOCAL_RTP_INFO;
if(ipm_GetLocalMediaInfo(devHandle, &MediaInfo, EV_SYNC) == -1)
{
 printf("ipm_GetLocalMediaInfo failed for device name %s with error =
 %d, %s\n", ATDV_NAMEP(devHandle), ATDV_LASTERR(devHandle),
 ATDV_ERRMSGP(devHandle));
// Perform system error processing

}else
 printf("GetLocalMediaInfo succeeded.\n");

/*

* Continue processing

*/

ipm_Close(devHandle, NULL);

return 0;
}

See Also

• dev_GetResourceReservationInfoEx()

• dev_ReleaseResourceEx()

Dialogic® Device Management API Library Reference 80

Dialogic Corporation

33.Events

This chapter describes the events that are generated by the Dialogic® Device Management API
functions.

• Overview of Dialogic® Device Management API Events. 80

• Device Connection Events. 80

• Resource Reservation Events. 81

3.1 Overview of Dialogic® Device Management API
Events

When running in asynchronous mode, the functions in the Dialogic® Device Management API
generate termination events to indicate the result of the function operation. Typically, each function
generates a different set of events. The events applicable to a function are documented in Chapter 2,
“Function Information”.

The Dialogic® Device Management API events contain a “DMEV_” prefix and the failure events
are typically identified by a “_FAIL” suffix; for example, DMEV_CONNECT_FAIL. No change of
state is triggered by the failure event. If an error occurs during execution of an asynchronous
function, a failure event is sent to the application. To retrieve error information for a failure event,
use dev_GetResultInfo().

To collect termination event codes, use Dialogic® Standard Runtime Library (SRL) functions. For
detailed information on event handling and management, see the Dialogic® Standard Runtime
Library documentation.

3.2 Device Connection Events

The following events are generated by the Dialogic® Device Management API for the Device
Connection functions:

DMEV_CONNECT
Termination event generated for each device specified in the dev_Connect() function to
indicate successful completion of the function operation.

DMEV_CONNECT_FAIL
Termination event generated for each device specified in the dev_Connect() function to
indicate failure of the function operation.

DMEV_DISCONNECT
Termination event generated to indicate successful completion of the dev_Disconnect()
function operation.

Dialogic® Device Management API Library Reference 81

Dialogic Corporation

Events

DMEV_DISCONNECT_FAIL
Termination event generated to indicate failure of the dev_Disconnect() function operation.

DMEV_GET_RX_PORT_INFO
Termination event generated to indicate successful completion of the
dev_GetReceivePortInfo() function operation.

DMEV_GET_RX_PORT_INFO_FAIL
Termination event generated to indicate failure of the dev_GetReceivePortInfo() function
operation.

DMEV_GET_TX_PORT_INFO
Termination event generated to indicate successful completion of the
dev_GetTransmitPortInfo() function operation.

DMEV_GET_TX_PORT_INFO_FAIL
Termination event generated to indicate failure of the dev_GetTransmitPortInfo() function
operation.

DMEV_PORT_CONNECT
Termination event generated to indicate successful completion of the dev_PortConnect()
function operation.

DMEV_PORT_CONNECT_FAIL
Termination event generated to indicate failure of the dev_PortConnect() function operation.

DMEV_PORT_DISCONNECT
Termination event generated to indicate successful completion of the dev_PortDisconnect()
function operation.

DMEV_PORT_DISCONNECT_FAIL
Termination event generated to indicate failure of the dev_PortDisconnect() function
operation.

3.3 Resource Reservation Events

The following events are generated by the Dialogic® Device Management API for the Resource
Reservation functions:

DMEV_GET_RESOURCE_RESERVATIONINFO
Termination event generated to indicate successful completion of the
dev_GetResourceReservationInfo() and dev_GetResourceReservationInfoEx() function
operations.

DMEV_GET_RESOURCE_RESERVATIONINFO_FAIL
Termination event generated to indicate failure of the dev_GetResourceReservationInfo()
and dev_GetResourceReservationInfoEx() function operations

DMEV_RELEASE_RESOURCE
Termination event to indicate successful completion of the dev_ReleaseResourceEx()
function operation.

82 Dialogic® Device Management API Library Reference

Dialogic Corporation

Events

DMEV_RELEASE_RESOURCE _FAIL
Termination event generated to indicate failure of the dev_ReleaseResourceEx() function
operation.

DMEV_RESERVE_RESOURCE
Termination event to indicate successful completion of the dev_ReserveResourceEx()
function operation.

DMEV_RESERVE_RESOURCE_FAIL
Termination event generated to indicate failure of the dev_ReserveResourceEx() function
operation.

Dialogic® Device Management API Library Reference 83

Dialogic Corporation

44.Data Structures

This chapter provides information on the data structures used by Dialogic® Device Management
API functions. The data structures are used to control the operation of functions and to return
information. For each data structure, its definition is given, followed by details on its fields. The
following data structures are included in this chapter:

• DEV_ERRINFO . 84

• DEV_RESOURCE_LIST . 85

• DEV_RESOURCE_RESERVATIONINFO . 86

• DEV_RESOURCE_RESERVATIONINFO_EX . 88

• DM_CONNECT_STATUS_LIST . 89

• DM_EVENT_INFO . 90

• DM_PORT_CONNECT_INFO. 92

• DM_PORT_CONNECT_INFO_LIST . 93

• DM_PORT_INFO . 94

• DM_PORT_INFO_LIST . 95

• resourceInfo . 96

84 Dialogic® Device Management API Library Reference
Dialogic Corporation

DEV_ERRINFO — error information

DEV_ERRINFO

error information
typedef struct errinfo
{
 int dev_ErrValue;
 int dev_SubSystemErrValue;
 char dev_Msg[DEV_MAXERRMSGSIZE];
} DEV_ERRINFO;

Description

The DEV_ERRINFO structure is used with the dev_ErrorInfo() function to provide error
information for the functions in the Device Management API.

Field Descriptions

The fields of the DEV_ERRINFO data structure are described as follows:

dev_ErrValue
The error value returned for the last error generated by a Device Management API function
call. The defines for the valid Device Management API error values are in the devmgmt.h
header file and have a “EDEV_” prefix; also see Chapter 5, “Error Codes”. If the error value
returned indicates a subsystem error type, such as DEV_IPM_SUBSYSTEMERR or
DEV_FAX_SUBSYSTEMERR, check the dev_SubSystemErrValue field to obtain the
subsystem error value.

dev_SubSystemErrValue
If the dev_ErrValue field indicates a subsystem error type, the dev_SubSystemErrValue field
contains the error value returned by the subsystem for the last error generated by a Device
Management API function call. The defines for the valid subsystem error values are in the
technology-specific subsystem header file, which must be included in your program and used
to identify the error. For example, if the dev_ErrValue field returns a
DEV_IPM_SUBSYSTEMERR, indicating that an error occurred during an internal call to an
IP media library function, the dev_SubSystemErrValue field returns an error value equivalent
to an “EIPM_” error define from ipmlib.h.

dev_Msg
The descriptive error message for the error. This is the Device Management API error
description, unless dev_ErrValue reports a subsystem error, in which case it is the error
description for the subsystem error code.

Dialogic® Device Management API Library Reference 85
Dialogic Corporation

list of coders to be reserved or released — DEV_RESOURCE_LIST

DEV_RESOURCE_LIST

list of coders to be reserved or released
typedef struct resourcelist
{ unsigned int version; // struct version
 int count; // number of items filled in rslist
 eDEV_RESOURCE_TYPE rsList[MAX_CODER_RESOURCE_TYPE];
} DEV_RESOURCE_LIST;

Description

The DEV_RESOURCE_LIST structure is used by the dev_ReserveResourceEx() and
dev_ReleaseResourceEx() functions to specify a list of coders to be reserved or released. The list
of coders is specified in the array of enums rsList and the number entries filled in rsList is specified
in the count field.

The INIT_DEV_RESOURCE_LIST inline function is provided to initialize the structure.

Field Descriptions

The fields of the DEV_RESOURCE_LIST data structure are described as follows:

version
The version number of the data structure. Use the inline function to initialize this field to the
current version.

count
The number of rsList elements to follow. Maximum number of coder resource types is defined
in MAX_CODER_RESOURCE_TYPE.

rsList
An array of eDEV_RESOURCE_TYPE elements.

86 Dialogic® Device Management API Library Reference
Dialogic Corporation

DEV_RESOURCE_RESERVATIONINFO — resource reservation information

DEV_RESOURCE_RESERVATIONINFO

resource reservation information
typedef struct getresourceinfo
{
 unsigned int version; // struct version
 eDEV_RESOURCE_TYPE resourceType; // resource type
 int curReserveCount; // current num. of resourceType reserved for device
 int curReservePoolCount; // current number of resourceType reserved in pool
 int maxReservePoolCount; // maximum number of resourceType available in pool
} DEV_RESOURCE_RESERVATIONINFO;

Description

The DEV_RESOURCE_RESERVATIONINFO structure is used with the
dev_GetResourceReservationInfo() function to provide resource reservation information.

The INIT_DEV_RESOURCE_RESERVATIONINFO inline function is provided to initialize the
structure.

Field Descriptions

The fields of the DEV_RESOURCE_RESERVATIONINFO data structure are described as
follows:

version
The version number of the data structure. Use the inline function to initialize this field to the
current version.

resourceType
The resource type for which the reservation information is returned in the data structure. The
following is the only valid value:

• RESOURCE_IPM_LBR – specifies the resource for IP media low bit rate codecs. A
board device handle is not valid when using this resource type; the device handle must be
a valid IP media channel device.

curReserveCount
The current number of resourceType reserved for the device. Valid values:

• 0 – No resource of resourceType is reserved for the device.
• 1 – One resource of resourceType is reserved for the device.
• n – The specified number of resources of resourceType are reserved for the device.

Note: Some resource types, such as RESOURCE_IPM_LBR, do not permit reservation of
more than one resource per device.

curReservePoolCount
The number of system-wide resources of resourceType currently reserved for devices (that is,
the number of reserved resources in the system resource pool).

maxReservePoolCount
The maximum number of resources of resourceType allowed in the system. For Dialogic®
Host Media Processing (HMP) software, the maximum number of RESOURCE_IPM_LBR

Dialogic® Device Management API Library Reference 87
Dialogic Corporation

resource reservation information — DEV_RESOURCE_RESERVATIONINFO

resources is specified through the Dialogic® HMP software License Manager. (If you change
the setting, you must restart the Dialogic® HMP software for it to take effect.)

Note: The number of available system resources of resourceType can be calculated by subtracting
curReservePoolCount from maxReservePoolCount.

88 Dialogic® Device Management API Library Reference
Dialogic Corporation

DEV_RESOURCE_RESERVATIONINFO_EX — resource reservation information

DEV_RESOURCE_RESERVATIONINFO_EX

resource reservation information
typedef struct getresourceinfo
{ unsigned int version; // struct version
 int count; // number of items filled in rsInfo
 ResourceInfo rsInfo[MAX_CODER_RESOURCE_TYPE];
} DEV_RESOURCE_RESERVATIONINFO_EX;

Description

The DEV_RESOURCE_RESERVATIONINFO_EX structure is used with the
dev_GetResourceReservationInfoEx() function to provide resource reservation information. See
also resourceInfo structure.

The INIT_DEV_RESOURCE_RESERVATIONINFO_EX inline function is provided to initialize
the structure.

Field Descriptions

The fields of the DEV_RESOURCE_RESERVATIONINFO_EX data structure are described as
follows:

version
The version number of the data structure. Use the inline function to initialize this field to the
current version.

count
The number of resourceInfo data structures to follow. Maximum number of coder resource
types is defined in MAX_CODER_RESOURCE_TYPE.

rsInfo
An array of resourceInfo structures.

Dialogic® Device Management API Library Reference 89
Dialogic Corporation

status for port connections — DM_CONNECT_STATUS_LIST

DM_CONNECT_STATUS_LIST

status for port connections
typedef struct DM_CONNECT_STATUS_LIST
{
 unsigned int unVersion;
 unsigned int unCount;
 CONNECT_STATUS connect_status[MAX_DM_PORT_INFO];
 } DM_CONNECT_STATUS_LIST, *PDM_CONNECT_STATUS_LIST;

typedef const DM_CONNECT_STATUS_LIST* CPDM_CONNECT_STATUS_LIST;

Description

The DM_CONNECT_STATUS_LIST structure contains the status of each connection being
created or severed. It is used with the dev_PortConnect() and dev_PortDisconnect() functions.

The INIT_DM_CONNECT_STATUS_LIST inline function is provided to initialize the structure.

Field Descriptions

The fields of the DM_CONNECT_STATUS_LIST data structure are described as follows:

unVersion
The version number of the data structure. Use the inline function to initialize this field to the
current version.

unCount
The number (1-n) of connect_status elements. Maximum number of values is defined in
MAX_DM_PORT_INFO.

connect_status
The pass or error condition array for each requested connection. Valid values:

• DM_STAT_UNKNOWN

• DM_STAT_CONNECT

• DM_STAT_DISCONNECT

• DM_STAT_CONNECT_FAIL

• DM_STAT_DISCONNECT_FAIL

90 Dialogic® Device Management API Library Reference

DM_EVENT_INFO — event-related information

DM_EVENT_INFO

event-related information
typedef struct devinfo
{
 unsigned int unVersion;
 int nValue;
 int nSubSystemValue;
 char szMsg[DEV_MAXMSGSIZE];
 char szSubSystemMsg[DEV_MAXMSGSIZE];
 char szAdditionalInfo[DEV_MAXMSGSIZE];
} DM_EVENT_INFO, *PDM_EVENT_INFO;

typedef const DM_EVENT_INFO* CPDM_EVENT_INFO;

Description

The DM_EVENT_INFO data structure is used for transferring event-related information to the
application. This is accomplished by passing the device management event data pointer returned by
the sr_getevtdatap(), sr_getevtdatapex() or sr_createevtdatapcopy() function to the
dev_GetResultInfo() function.

For more information about SRL functions, see the Standard Runtime Library documentation.

The INIT_DM_EVENT_INFO inline function is provided to initialize the structure.

Field Descriptions

The fields of the DM_EVENT_INFO data structure are described as follows:

unVersion
The version number of the data structure. Use the inline function to initialize this field to the
current version.

nValue
An integer code to represent information related to the state of the device management library
at the time the event was generated. This may be a general purpose code or an error code. Valid
values include:

• DM_EVENT_CODE_SUCCESS

• DM_EVENT_CODE_INVALID_DEVICE_HANDLE

• DM_EVENT_CODE_DX_SUBSYSTEMERR

• DM_EVENT_CODE_IPM_SUBSYSTEMERR

• DM_EVENT_CODE_CNF_SUBSYSTEMERR

• DM_EVENT_CODE_M3G_SUBSYSTEMERR

• DM_EVENT_CODE_MM_SUBSYSTEMERR

• DM_EVENT_CODE_DTI_SUBSYSTEMERR

• DM_EVENT_CODE_T38_SUBSYSTEMERR

• DM_EVENT_CODE_SUBSYSTEMERR

• DM_EVENT_CODE_INVALIDSTATE

• DM_EVENT_CODE_NOTCONNECTED

• DM_EVENT_CODE_MAX

Dialogic® Device Management API Library Reference 91

event-related information — DM_EVENT_INFO

nSubSystemValue
An integer code to represent information related to the state of the library that owns the given
device associated with the event. Values are specific to that library.

szMsg
A null terminated string containing a translation of the integer code in nValue or meaningful
phrase related to nValue.

szSubSystemMsg
A null terminated string containing a translation of the integer code in nSubSystemValue or
meaningful phrase related to nSubSystemValue.

szAdditionalInfo
A null terminated string potentially containing a more descriptive statement related to the
event or cause of the error related to a failure event.

92 Dialogic® Device Management API Library Reference
Dialogic Corporation

DM_PORT_CONNECT_INFO — port connection information

DM_PORT_CONNECT_INFO

port connection information
typedef struct
{
 unsigned int unVersion;
 unsigned int unFlags;
 DM_PORT_INFO port_info_tx;
 DM_PORT_INFO port_info_rx;
} DM_PORT_CONNECT_INFO, *PDM_PORT_CONNECT_INFO;

typedef const DM_PORT_CONNECT_INFO* CPDM_PORT_CONNECT_INFO;

Description

The DM_PORT_CONNECT_INFO structure specifies transmit and receive port information for a
connection. This structure is a child structure of the DM_PORT_CONNECT_INFO_LIST
structure.

The INIT_DM_PORT_CONNECT_INFO inline function is provided to initialize the structure.

Field Descriptions

The fields of DM_PORT_CONNECT_INFO data structure are described as follows:

unVersion
The version number of the data structure. Use the inline function to initialize this field to the
current version.

unFlags
Flags specifying details of the connection to establish:

• DMFL_TRANSCODE_ON - default mode

• DMFL_TRANSCODE_NATIVE - native (no transcoding)

Note: The unFlags value is ignored for ports of type DM_PORT_MEDIA_TYPE_H223
(specified in DM_PORT_INFO). For ports of type
DM_PORT_MEDIA_TYPE_VIDEO, make sure your software release supports
video transcoding before setting the flag to DMFL_TRANSCODE_ON. See the
Supported Connections section in dev_PortConnect() or see the Release Guide for
your software release for information on transcoding support. For software releases
that do not support video transcoding, set the flag to
DMFL_TRANSCODE_NATIVE.

port_info_tx
Transmit port information, specified in the DM_PORT_INFO structure.

port_info_rx
Receive port information, specified in the DM_PORT_INFO structure.

Dialogic® Device Management API Library Reference 93
Dialogic Corporation

port connection information list — DM_PORT_CONNECT_INFO_LIST

DM_PORT_CONNECT_INFO_LIST

port connection information list
typedef struct DM_PORT_CONNECT_INFO_LIST
{
 unsigned int unVersion;
 unsigned int unCount;
 DM_PORT_CONNECT_INFO port_connect_info[MAX_DM_PORT_INFO];
} DM_PORT_CONNECT_INFO_LIST, *PDM_PORT_CONNECT_INFO_LIST;

typedef const DM_PORT_CONNECT_INFO_LIST* CPDM_PORT_CONNECT_INFO_LIST;

Description

The DM_PORT_CONNECT_INFO_LIST structure specifies a list of
DM_PORT_CONNECT_INFO structures. It is used with the dev_PortConnect() and
dev_PortDisconnect() functions.

The INIT_DM_PORT_CONNECT_INFO_LIST inline function is provided to initialize the
structure.

Field Descriptions

The fields of the DM_PORT_CONNECT_INFO_LIST data structure are described as follows:

unVersion
The version number of the data structure. Use the inline function to initialize this field to the
current version.

unCount
The number (1-n) of port_connect_info elements to follow. Maximum number of structures is
defined in MAX_DM_PORT_INFO.

port_connect_info
An array of DM_PORT_CONNECT_INFO structures that specify the details of the
connection to establish or tear down.

94 Dialogic® Device Management API Library Reference
Dialogic Corporation

DM_PORT_INFO — port information

DM_PORT_INFO

port information
typedef struct DM_PORT_INFO
{
 unsigned int unVersion;
 DM_DEVICE_ID device_ID;
 DM_PORT_ID port_ID;
 DM_PORT_MEDIA_TYPE port_media_type;
} DM_PORT_INFO, *PDM_PORT_INFO;

typedef const DM_PORT_INFO* CPDM_PORT_INFO;

Description

The DM_PORT_INFO structure contains details about the port used in the connection. It is a child
structure of the DM_PORT_INFO_LIST structure.

The INIT_DM_PORT_INFO inline function is provided to initialize the structure.

Field Descriptions

The fields of the DM_PORT_INFO data structure are described as follows:

unVersion
The version number of the data structure. Use the inline function to initialize this field to the
current version.

device_ID
Globally unique device ID which identifies a device. A value of DM_DEVICE_ID_NULL
indicates an undefined device.

port_ID
Locally unique port ID. A value of DM_PORT_ID_NULL indicates an undefined port.

Note: This field should not be modified.

port_media_type
Indicates the media type associated with the port. Valid values:

• DM_PORT_MEDIA_TYPE_NONE

• DM_PORT_MEDIA_TYPE_AUDIO

• DM_PORT_MEDIA_TYPE_VIDEO

• DM_PORT_MEDIA_TYPE_H223

Note: The DM_PORT_MEDIA_TYPE_NBUP value is deprecated. Use the
DM_PORT_MEDIA_TYPE_H223 value instead.

Dialogic® Device Management API Library Reference 95
Dialogic Corporation

port information list — DM_PORT_INFO_LIST

DM_PORT_INFO_LIST

port information list
typedef struct DM_PORT_INFO_LIST
{
 unsigned int unVersion;
 unsigned int unCount;
 DM_PORT_INFO port_info[MAX_DM_PORT_INFO];
} DM_PORT_INFO_LIST, *PDM_PORT_INFO_LIST;

typedef const DM_PORT_INFO_LIST* CPDM_PORT_INFO_LIST;

Description

The DM_PORT_INFO_LIST structure specifies a list of DM_PORT_INFO structures. It is used
with dev_GetTransmitPortInfo() and dev_GetReceivePortInfo() to return device port
information.

The INIT_DM_PORT_INFO_LIST structure is provided to initialize the structure.

Field Descriptions

The fields of the DM_PORT_INFO_LIST data structure are described as follows:

unVersion
The version number of the data structure. Use the inline function to initialize this field to the
current version.

unCount
The number (1-n) of port_info elements that follow.

port_info
Refers to an array of DM_PORT_INFO data structures.

96 Dialogic® Device Management API Library Reference
Dialogic Corporation

resourceInfo — resource reservation information

resourceInfo

resource reservation information
typedef struct resourceInfo
{ eDEV_RESOURCE_TYPE resourceType; // resource type
 int curReserveCount; // current num. of resourceType reserved for device
 int availableResourceCount; // number of resourceType available in pool
} ResourceInfo;

Description

The resourceInfo structure is used within the DEV_RESOURCE_RESERVATIONINFO_EX
structure, which is passed in the dev_GetResourceReservationInfoEx() function to provide
resource reservation information.

Field Descriptions

The fields of the resourceInfo data structure are described as follows:

resourceType
The resource type for which the reservation information is returned in the data structure
resourceInfo. The valid values are as follows:

• RESOURCE_IPM_ALL_AUDIO_CODERS

• RESOURCE_IPM_G711_30MS

• RESOURCE_IPM_G711_20MS

• RESOURCE_IPM_G711_10MS

• RESOURCE_IPM_G723

• RESOURCE_IPM_G726

• RESOURCE_IPM_G729

• RESOURCE_IPM_AMR_NB

• RESOURCE_IPM_EVRC

• RESOURCE_IPM_GSM_EFR

A board device handle is not valid when using these resource types; the device handle must be
a valid IP media channel device.

Note: Using the AMR-NB resource in connection with one or more Dialogic® products
mentioned herein does not grant the right to practice the AMR-NB standard. To seek
a patent license agreement to practice the standard, contact the VoiceAge Corporation
at http://www.voiceage.com/licensing.php.

curReserveCount
The current number of resourceType reserved for the device. The following values are used:

• 0 – No resource of resourceType is reserved for the device.
• 1 – One resource of resourceType is reserved for the device.
• n – The specified number of resources of resourceType are reserved for the device.

Note: The RESOURCE_IPM_<type> resource types do not permit reservation of more than
one resource per device.

availableResourceCount
The number of resources of resourceType available to be reserved in the system. This number
depends on the resources reserved and used at runtime.

http://www.voiceage.com/licensing.php
http://www.voiceage.com/licensing.php
http://www.voiceage.com/licensing.php

Dialogic® Device Management API Library Reference 97

Dialogic Corporation

55.Error Codes

This chapter describes the error codes supported by the Dialogic® Device Management API.

The functions return a value indicating the outcome of the function operation. In most cases, the
function returns DEV_SUCCESS (or 0) for a successful outcome and -1 for an unsuccessful
outcome or an error. If a function fails, use dev_ErrorInfo() to retrieve the error information.

If an error occurs during execution of an asynchronous function, a failure event is sent to the
application. For more information on events, see Chapter 3, “Events”.

Notes: 1. Use dev_ErrorInfo() only when a Dialogic® Device Management API function fails;
otherwise, the data in the DEV_ERRINFO structure will be invalid.

2. If the error is a subsystem error, to identify the error code, you must include the header file for
the technology-specific subsystem (for example, ipmerror.h, ipmlib.h, and faxlib.h).

3. The Dialogic® Device Management API errors are thread-specific (they are only in scope for
that thread). Subsystem errors are device-specific.

The API contains the following error codes, listed in alphabetical order.

EDEV_DEVICEBUSY
At least one of the devices specified is currently in use by another Dialogic® Device
Management API function call. This can occur for the Device Connection functions.

EDEV_FAX_SUBSYSTEMERR
A subsystem error occurred during an internal call to a fax library function because the
subsystem function was unable to start (this is not a Dialogic® Device Management API
error). This error may occur when calling the dev_Connect() function if the connection to the
fax device fails, or the dev_Disconnect() function if the disconnection fails. See the fax
library documentation for the fax error codes and descriptions.

EDEV_INVALIDCONNTYPE
An invalid connection type (connType) was specified for the dev_Connect() function (for
example, T.38 UDP fax connection must be full-duplex).

EDEV_INVALIDDEVICEHANDLE
An invalid device handle was specified for a Device Connection function or for a Resource
Reservation function. For the dev_Connect() function, the Supported Connections do not
allow connection of the specified types of devices. Valid handles are listed in Supported
Connections.

EDEV_INVALIDMODE
An invalid mode was specified for a function that can be executed synchronously or
asynchronously (EV_SYNC or EV_ASYNC).

EDEV_INVALIDSTATE
Device is in an invalid state for the current function call. For example, the dev_Disconnect()
function may have been called before both devices were fully connected by the
dev_Connect() function.

98 Dialogic® Device Management API Library Reference
Dialogic Corporation

Error Codes

EDEV_IPM_SUBSYSTEMERR
A subsystem error occurred during an internal call to an IP media library function because the
subsystem function was unable to start (this is not a Dialogic® Device Management API
error). This error may occur when calling the dev_Connect() function if the connection to the
IP media device fails, or the dev_Disconnect() function if the disconnection fails. See the IP
media library documentation for the IP media error codes and descriptions.

EDEV_MM_SUBSYSTEMERR
A subsystem error occurred during an internal call to a multimedia library function because the
subsystem function was unable to start (this is not a Dialogic® Device Management API
error). See the multimedia library documentation for the multimedia error codes and
descriptions.

EDEV_NOTCONNECTED
An attempt was made to perform dev_Disconnect() on a device that is not connected.

	Dialogic® Device Management API
	Contents
	Revision History
	About This Publication
	Purpose
	Applicability
	Intended Audience
	How to Use This Publication
	Related Information

	1. Function Summary by Category
	1.1 Dialogic® Device Management API Header File
	1.2 Device Connection Functions
	1.3 Resource Reservation Functions
	1.4 Event Handling Functions
	1.5 Error Processing Functions

	2. Function Information
	2.1 Function Syntax Conventions
	dev_Connect()
	dev_Disconnect()
	dev_ErrorInfo()
	dev_GetReceivePortInfo()
	dev_GetResourceReservationInfo()
	dev_GetResourceReservationInfoEx()
	dev_GetResultInfo()
	dev_GetTransmitPortInfo()
	dev_PortConnect()
	dev_PortDisconnect()
	dev_ReleaseResource()
	dev_ReleaseResourceEx()
	dev_ReserveResource()
	dev_ReserveResourceEx()

	3. Events
	3.1 Overview of Dialogic® Device Management API Events
	3.2 Device Connection Events
	3.3 Resource Reservation Events

	4. Data Structures
	DEV_ERRINFO
	DEV_RESOURCE_LIST
	DEV_RESOURCE_RESERVATIONINFO
	DEV_RESOURCE_RESERVATIONINFO_EX
	DM_CONNECT_STATUS_LIST
	DM_EVENT_INFO
	DM_PORT_CONNECT_INFO
	DM_PORT_CONNECT_INFO_LIST
	DM_PORT_INFO
	DM_PORT_INFO_LIST
	resourceInfo

	5. Error Codes

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Updated TIPs settings to fix web compatibility issue. The PDF documents can be opened with Acrobat and Reader 4.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

