
Dialogic® Fax Software
Reference

Copyright © 1994-2009 Dialogic Corporation

05-2341-002

2

Copyright © 1994-2009 Dialogic Corporation. All Rights Reserved. You may not reproduce this document in whole
or in part without permission in writing from Dialogic Corporation at the address provided below.

All contents of this document are furnished for informational use only and are subject to change without notice and
do not represent a commitment on the part of Dialogic Corporation or its subsidiaries (“Dialogic”). Reasonable
effort is made to ensure the accuracy of the information contained in the document. However, Dialogic does not
warrant the accuracy of this information and cannot accept responsibility for errors, inaccuracies or omissions that
may be contained in this document.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH DIALOGIC® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN A SIGNED AGREEMENT
BETWEEN YOU AND DIALOGIC, DIALOGIC ASSUMES NO LIABILITY WHATSOEVER, AND DIALOGIC
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF DIALOGIC
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT OF A
THIRD PARTY.

Dialogic products are not intended for use in medical, life saving, life sustaining, critical control or safety systems,
or in nuclear facility applications.

Due to differing national regulations and approval requirements, certain Dialogic products may be suitable for use
only in specific countries, and thus may not function properly in other countries. You are responsible for ensuring
that your use of such products occurs only in the countries where such use is suitable. For information on specific
products, contact Dialogic Corporation at the address indicated below or on the web at www.dialogic.com.

It is possible that the use or implementation of any one of the concepts, applications, or ideas described in this
document, in marketing collateral produced by or on web pages maintained by Dialogic may infringe one or more
patents or other intellectual property rights owned by third parties. Dialogic does not provide any intellectual
property licenses with the sale of Dialogic products other than a license to use such product in accordance with
intellectual property owned or validly licensed by Dialogic and no such licenses are provided except pursuant to a
signed agreement with Dialogic. More detailed information about such intellectual property is available from
Dialogic’s legal department at 9800 Cavendish Blvd., 5th Floor, Montreal, Quebec, Canada H4M 2V9. Dialogic
encourages all users of its products to procure all necessary intellectual property licenses required to
implement any concepts or applications and does not condone or encourage any intellectual property
infringement and disclaims any responsibility related thereto. These intellectual property licenses may differ
from country to country and it is the responsibility of those who develop the concepts or applications to be
aware of and comply with different national license requirements.

Dialogic, Dialogic Pro, Brooktrout, Diva, Cantata, SnowShore, Eicon, Eicon Networks, NMS Communications,
NMS (stylized), Eiconcard, SIPcontrol, Diva ISDN, TruFax, Exnet, EXS, SwitchKit, N20, Making Innovation
Thrive, Connecting to Growth, Video is the New Voice, Fusion, Vision, PacketMedia, NaturalAccess,
NaturalCallControl, NaturalConference, NaturalFax and Shiva, among others as well as related logos, are either
registered trademarks or trademarks of Dialogic Corporation or its subsidiaries. Dialogic's trademarks may be used
publicly only with permission from Dialogic. Such permission may only be granted by Dialogic’s legal department
at 9800 Cavendish Blvd., 5th Floor, Montreal, Quebec, Canada H4M 2V9. Any authorized use of Dialogic's
trademarks will be subject to full respect of the trademark guidelines published by Dialogic from time to time and
any use of Dialogic’s trademarks requires proper acknowledgement.

Windows and Win32 are registered trademarks of Microsoft Corporation in the United States and/or other countries,
Other names of actual companies and product mentioned herein are the trademarks of their respective owners.

Publication Date: January 2009

Document Number: 05-2341-002

http://www.dialogic.com/

3

THIRD-PARTY COPYRIGHT NOTICE

The Dialogic® Fax API Library for Linux makes use of the gd graphics library from Boutell.Com Inc.
The following copyright statements apply to the gd library:

Portions copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 by Cold Spring
Harbor Laboratory. Funded under Grant P41-RR02188 by the National Institutes of Health.

Portions copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 by Boutell.Com, Inc.

Portions relating to GD2 format copyright 1999, 2000, 2001, 2002, 2003, 2004 Philip Warner.

Portions relating to PNG copyright 1999, 2000, 2001, 2002, 2003, 2004 Greg Roelofs.

Portions relating to gdttf.c copyright 1999, 2000, 2001, 2002, 2003, 2004 John Ellson
(ellson@graphviz.org).

Portions relating to gdft.c copyright 2001, 2002, 2003, 2004 John Ellson (ellson@graphviz.org).

Portions relating to JPEG and to color quantization copyright 2000, 2001, 2002, 2003, 2004, Doug
Becker and copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Thomas
G. Lane. This software is based in part on the work of the Independent JPEG Group. See the file
README-JPEG.TXT for more information.

Portions relating to WBMP copyright 2000, 2001, 2002, 2003, 2004 Maurice Szmurlo and Johan Van
den Brande.

Permission has been granted to copy, distribute and modify gd in any context without fee,
including a commercial application, provided that this notice is present in user-accessible
supporting documentation.

This does not affect your ownership of the derived work itself, and the intent is to assure proper credit
for the authors of gd, not to interfere with your productive use of gd. If you have questions, ask.
“Derived works” includes all programs that utilize the library. Credit must be given in user-accessible
documentation.

This software is provided “AS IS”. The copyright holders disclaim all warranties, either express or
implied, including but not limited to implied warranties of merchantability and fitness for a particular
purpose, with respect to this code and accompanying documentation.

Although their code does not appear in gd 2.0.4, the authors wish to thank David Koblas, David
Rowley, and Hutchison Avenue Software Corporation for their prior contributions.

4

5

Table of Contents
1. Introduction... 17
1.1. Purpose and Audience.. 17
1.2. Using This Guide ... 17
1.3. Related Publications... 17
1.4. Documentation Conventions.. 18
1.5. What’s in This Guide ... 18
2. Basics of Fax Software.. 21
2.1. Introduction to Fax Software ... 21
2.2. Product Terminology ... 21
2.3. Product Features... 23
2.4. Fax API/Library Overview .. 29
2.5. Voice and Fax Integration.. 30
2.6. Modes of Operation ... 30

2.6.1. Synchronous Mode.. 31
2.6.2. Asynchronous Mode ... 31

2.7. System Configuration Models.. 32
2.7.1. Stand-Alone Model ... 33
2.7.2. TDM Bus Model ... 34

2.8. Complying with the Telephone Consumer Protection Act 35
3. Fax API for Dialogic® DM3 Boards .. 37
3.1. Overview of Fax API for Dialogic® DM3 Boards 37
3.2. Device Discovery... 37
3.3. Programming Considerations... 38
3.4. Color Fax ... 40

3.4.1. Color Fax Features .. 40
3.4.2. Using the Dialogic® Fax API Library for Color Fax........................... 41

4. Background on Fax Communications... 45
4.1. Overview.. 45
4.2. Fax Terminology.. 45
4.3. Structure of a Fax Call ... 47

4.3.1. Phase A - Set Up Fax Call... 47
4.3.2. Phase B - Pre-Message Procedure... 48
4.3.3. Phase C - Transmit Message ... 48
4.3.4. Phase D - Post-Message Procedure ... 48
4.3.5. Phase E - Release Fax Call.. 49

Dialogic® Fax Software Reference

 6

4.4. Types of Fax Transmission .. 49
4.4.1. Normal Fax Transmission ... 49
4.4.2. Polling Fax Transmission (Fax on Demand)....................................... 50
4.4.3. Turnaround Polling Fax Transmission .. 54

4.5. File Storage Formats .. 56
4.5.1. Raw Files... 56
4.5.2. TIFF/F Files... 57
4.5.3. ASCII Files.. 57

4.6. Data Encoding Schemes... 58
4.7. Error Correction Mode (ECM)... 59
4.8. Image Scaling... 59
4.9. Image Resolution ... 60
4.10. Subaddress Fax Routing... 60
5. Implementing Send Fax Capability ... 61
5.1. Overview.. 61
5.2. Guidelines for Implementing Fax .. 62
5.3. Opening and Closing a Fax Channel Device ... 63
5.4. Setting the Initial State of a Fax Channel... 64
5.5. Specifying Fax Data for Transmission in a DF_IOTT Table Entry............. 64

5.5.1. Declaring a Table of DF_IOTT Entries... 65
5.5.2. Connecting DF_IOTT Table Entries ... 66
5.5.3. Sending Data from Device or Memory ... 66
5.5.4. Specifying File Storage Format... 67
5.5.5. Sending Raw Files... 67
5.5.6. Sending TIFF/F Files... 69
5.5.7. Sending ASCII Files.. 70
5.5.8. Specifying Encoding Scheme for Data Transmission 72
5.5.9. Setting Phase D Continuation Values.. 73
5.5.10. Merging Images from Different Sources or Sub-Page Addressing... 77

5.6. Setting Parameters for Send Fax .. 79
5.6.1. Selecting a Transmission Baud Rate ... 79
5.6.2. Specifying a Preferred Encoding Scheme for Transmission 79
5.6.3. Defining a Fax Page Header.. 82
5.6.4. Retransmitting a Fax ... 82

5.7. Setting the Bit Mask for a Send Fax Function ... 83
5.7.1. Mode of Operation .. 83
5.7.2. Enable Phase B Event Generation... 84
5.7.3. Enable Phase D Event Generation... 85
5.7.4. Enable Operator Intervention (Voice Request) 86

Table of Contents

 7

5.7.5. Select Resolution for Fax Transmission.. 86
5.7.6. Enable Subaddress Fax Routing.. 87

5.8. Issuing a Send Fax Function .. 90
5.8.1. Send Fax Issued by the Transmitter .. 90
5.8.2. Send Fax Issued by the Called Application... 91
5.8.3. Status of Fax Transmission ... 91

5.9. Stopping a Fax Transmission or Reception.. 91
5.10. Replacing Bad Scan Lines ... 92
5.11. Creating User-Defined I/O Functions .. 92
6. Implementing Receive Fax Capability .. 93
6.1. Overview.. 93
6.2. Setting Parameters for Receive Fax ... 94

6.2.1. Specifying Encoding Scheme to Store Incoming Fax Data................. 94
6.2.2. Storing Incoming Fax Data ... 95
6.2.3. Setting Acceptable Percentage of Bad Scan Lines.............................. 98
6.2.4. Selecting Preferred Maximum Receive Baud Rate 98
6.2.5. Replacing Bad Scan Lines... 99
6.2.6. Routing Fax Data to Multiple Subaddresses 99
6.2.7. Setting Fax Modem Receive Level ... 101

6.3. Setting the Bit Mask for a Receive Fax Function 101
6.3.1. File Format for Incoming Fax Data... 101
6.3.2. Mode of Operation .. 102
6.3.3. Enable Phase B Event Generation... 103
6.3.4. Enable Phase D Event Generation... 103
6.3.5. Enable Operator Intervention (Voice Request) 105
6.3.6. Selectable Receive Width.. 105
6.3.7. Selectable Receive Length .. 106
6.3.8. Resolution for Storing Incoming Fax Data 106

6.4. Issuing a Receive Fax Function ... 107
6.4.1. Receive Fax Issued by the Receiver .. 107
6.4.2. Receive Fax Issued by the Transmitter.. 108
6.4.3. Status of Fax Reception... 108

6.5. Creating User-Defined I/O Functions .. 108
7. Specifying Fonts in ASCII to Fax Conversion.. 109
7.1. Overview.. 109
7.2. Fonts Supported in ASCII to Fax Conversion ... 109
7.3. Using fx_setparm() and fx_getparm() to Select Fonts 110
7.4. Overriding Fonts Set with fx_setparm() ... 111

7.4.1. Specify a Font in DF_ASCIIDATA.. 111

Dialogic® Fax Software Reference

 8

7.4.2. Use Control Characters in ASCII Document Prior to Sending 112
7.5. Preserving Proprietary Fonts as Default Fonts... 112

7.5.1. Location of Proprietary Fonts.. 113
7.5.2. Steps to Enable Proprietary Fonts ... 113

8. Fax Demo Programs for Linux .. 115
8.1. Overview.. 115
8.2. Fax Demo Programs Overview.. 115
8.3. Fax Demo Programs Physical Connections ... 117
8.4. Fax Demo Programs Software ... 117
8.5. Before Running the Fax Demo Programs .. 118

8.5.1. Modify fax.cfg Configuration File... 118
8.5.2. Fax Demo Program Execution Considerations 119

8.6. Running the Fax Demo Programs .. 120
8.6.1. Starting faxdemo.. 120
8.6.2. Starting faxasync ... 121
8.6.3. Starting faxsr ... 121

8.7. Fax Demo Program Flow... 123
9. Fax Demo Program for Windows® .. 127
10. Fax Data Structures .. 129
10.1. Overview.. 129
10.2. Declaring Fax Data Structures ... 130
10.3. DF_ASCIIDATA – ASCII Data Description .. 130

10.3.1. DF_ASCIIDATA Definition... 131
10.3.2. DF_ASCIIDATA Field Descriptions .. 131
10.3.3. DF_ASCIIDATA Usage Rules ... 135

10.4. DF_DCS – Digital Command Signal ... 137
10.5. DF_DIS – Digital Identification Signal ... 138
10.6. DF_IOTT – Fax Transmit Data Description .. 138

10.6.1. DF_IOTT Definition ... 139
10.6.2. DF_IOTT Field Descriptions .. 139

10.7. DF_TXNSF – Transmit NSF Message .. 144
10.7.1. DF_TXNSF Definition.. 144
10.7.2. DF_TXNSF Field Descriptions... 144

10.8. DF_UIO – User-Defined I/O ... 145
10.8.1. DF_UIO Definition ... 145
10.8.2. DF_UIO Field Descriptions .. 145
10.8.3. DF_UIO Usage Rules.. 145

11. Using the Fax Library... 147

Table of Contents

 9

11.1. Overview.. 147
11.2. Function Categories ... 147

11.2.1. Send Fax.. 149
11.2.2. Receive Fax ... 149
11.2.3. Set Initial Fax State ... 150
11.2.4. Initialize DF_IOTT.. 150
11.2.5. Configuration .. 150
11.2.6. Extended Attribute .. 151
11.2.7. Resource Management .. 153
11.2.8. TDM Bus Routing ... 154
11.2.9. Miscellaneous.. 154
11.2.10. Convenience Functions ... 156

11.3. Error Handling ... 157
11.3.1. Synchronous Mode.. 158
11.3.2. Asynchronous Mode ... 158

11.4. Include (Header) Files.. 159
11.5. Compiling Applications ... 159
12. Fax Library Function Reference ... 161
Fax Library Overview.. 161
ATFX_BADIOTT() - returns a pointer to an invalid DF_IOTT 164
ATFX_BADPAGE() - returns the fax page number... 166
ATFX_BADSCANLINES() - returns the number of bad scan lines 168
ATFX_BSTAT() - returns a bitmap to indicate Phase B status 171
ATFX_CHTYPE() - returns the fax channel’s base hardware type.................. 175
ATFX_CODING() - returns most recently negotiated fax encoding scheme... 178
ATFX_ECM() - returns information on use of ECM for fax data transfer 181
ATFX_ESTAT() - returns Phase E information ... 184
ATFX_FXVERSION() - returns the fax library version number string 186
ATFX_LASTIOTT() - returns a pointer to the last processed DF_IOTT......... 188
ATFX_PGXFER() - returns the number of transferred fax pages 190
ATFX_PHDCMD() - returns the Phase D command 192
ATFX_PHDRPY() - returns the Phase D reply .. 195
ATFX_RESLN() - returns the vertical resolution of the page 198
ATFX_RTNPAGES() - returns the number of RTN pages 201
ATFX_SCANLINES() - returns the number of scan lines in the last page 204
ATFX_SPEED() - returns the fax transfer speed.. 207
ATFX_STATE() - returns the current state of the fax channel......................... 210
ATFX_TERMMSK() - returns a bitmap of termination reasons 212
ATFX_TFBADTAG() - returns the invalid TIFF/F tag number 214

Dialogic® Fax Software Reference

 10

ATFX_TFNOTAG() - returns missing TIFF/F mandatory tag number............ 216
ATFX_TFPGBASE() - returns the base page numbering scheme.................... 218
ATFX_TRCOUNT() - returns the number of bytes transferred 220
ATFX_WIDTH() - returns the decimal value of the negotiated width............. 222
fx_close() - closes a fax channel device.. 225
fx_getctinfo() - returns information about a fax channel device handle 228
fx_getDCS() - returns the most recent DCS message 231
fx_getDIS() - returns the most recent DIS message.. 234
fx_GetDllVersion() - returns the fax DLL version number 237
fx_getNSF() - returns the remote station's NSF message 239
fx_getparm() - returns the current parameter setting .. 243
fx_getxmitslot() - provides TDM bus time slot number 246
fx_initstat() - sets the initial fax state .. 249
fx_libinit() - initializes the fax library DLL .. 252
fx_listen() - connects fax listen channel to TDM bus time slot 254
fx_open() - opens a fax channel or board device .. 258
fx_originate() - allows the DCS on hold feature ... 261
fx_rcvfax() - receives fax data .. 267
fx_rcvfax2() - receives fax data (file descriptor argument) 283
fx_rtvContinue() - used for remote terminal verification.................................. 288
fx_sendascii() - send a single ASCII file .. 291
fx_sendfax() - transmits fax data... 295
fx_sendraw() - send a single page of raw fax data.. 317
fx_sendtiff() - send pages of a single TIFF/F file ... 321
fx_setiott() - sets up a DF_IOTT structure with default values 325
fx_setparm() - sets the fax parameter.. 330
fx_setuio() - registers user-defined I/O functions ... 358
fx_stopch() - forces termination of a fax send or receive 361
fx_unlisten() - disconnects fax receive channel from TDM bus 364
Appendix A - TIFF/F Tags and Values .. 367
Overview.. 367
Input to the Library from Disk Storage.. 367
Output from the Library to Disk Storage ... 369
Appendix B - Fax Phase D Status Values... 371
Appendix C - Fax Phase E Status Values... 375
Appendix D - Fax Error Codes.. 379

Appendix E - Fax Event Codes ... 383
Appendix F - ASCII to Fax Tables ... 385

Table of Contents

 11

Overview.. 385
ASCII to Fax Command Set .. 385
Appendix G - Acronyms List .. 391
Glossary .. 393
Index.. 399

Dialogic® Fax Software Reference

 12

13

List of Tables
Table 1. Fax Features and Specifications.. 24
Table 2. Normal Fax Transmission Sequence... 50
Table 3. Polling Fax Transmission Sequence ... 52
Table 4. Polling Fax Transmission Sequence - Called Application Transmit

Only ... 53
Table 5. Turnaround Polling Fax Transmission Sequence 55
Table 6. Guidelines for Creating Fax Applications... 62
Table 7. DF_IOTT Fields for Raw Files ... 68
Table 8. DF_IOTT Fields for TIFF/F Files... 69
Table 9. DF_IOTT Fields for ASCII Files.. 71
Table 10. Phase D Continuation Values ... 73
Table 11. Fax Data Structures... 129
Table 12. DF_ASCIIDATA Fields ... 131
Table 13. Maximum Values for Margins .. 136
Table 14. DF_IOTT Fields.. 140
Table 15. DF_TXNSF Fields .. 144
Table 16. DF_UIO Fields.. 145
Table 17. Categories of Fax Functions ... 148
Table 18. TIFF/F Tags Input to Library.. 368
Table 19. TIFF/F Tags Output from Library... 369
Table 20. Phase D Command Values - Transmitter to Receiver....................... 372
Table 21. Phase D Reply Values - Receiver to Transmitter.............................. 373
Table 22. General Phase E Status Values ... 375
Table 23. Phase E Status Values Returned to the Transmitter 376
Table 24. Phase E Status Values Returned to the Receiver 377
Table 25. Fax Error Codes .. 379
Table 26. Fax Event Codes ... 383
Table 27. ASCII to Fax Command Set ... 386
Table 28. Acronyms Translated .. 391

Dialogic® Fax Software Reference

 14

15

List of Figures
Figure 1. Proprietary Extended ASCII Character Set (Modified ASCII 437

Character Set) .. 388
Figure 2. Katakana Japanese Character Set (Modified ASCII 437 Character

Set)... 389

Dialogic® Fax Software Reference

 16

17

1. Introduction

1.1. Purpose and Audience

This guide is written for application developers who choose to create fax
applications using the Dialogic® Fax API library. The guide provides a complete
reference to the Fax API library functions, parameters, data structures, and error
codes supported in the Linux and Windows® environment, on Dialogic® DM3
Boards and on Dialogic® Springware Boards.

1.2. Using This Guide

This guide assumes that you are familiar with the Linux or Windows® operating
system and the C programming language.

1.3. Related Publications

See the following documents for more information:

• Dialogic® Voice API Programming Guide
• Dialogic® Voice API Library Reference
• Dialogic® Standard Runtime Library API Programming Guide
• Dialogic® Standard Runtime Library API Library Reference
• Dialogic® Global Call API Programming Guide
• Dialogic® Global Call API Library Reference
• Dialogic® Digital Network Interface Software Reference

In addition, see the Release Guide and Release Update that accompany a specific
Dialogic® Software Release for system requirements, product support, feature
support, known issues, and last-minute updates. The latest release-specific
information is also available at the Dialogic Technical Support website at
http://www.dialogic.com/support/contact.

Dialogic® Fax Software Reference

 18

1.4. Documentation Conventions

The following documentation conventions are used in this manual:

Format Examples Description

boldface followed
by parentheses

dx_play() API function call

boldface chdev parameter, field

italics \dlgc\samples

asrdemo.exe

Chapter 1

• directory name

• file name

• chapter name, manual title

courier font #include <srllib.h> sample code

1.5. What’s in This Guide

This guide is organized into the following chapters and appendixes:

Chapter 1 provides an introduction to this guide, its purpose and audience, related
publications, and documentation conventions.

Chapter 2 is an overview of the Dialogic® Fax API. Included is information on
product support, product features, the fax library, voice/fax integration, system
configuration models, and the Telephone Consumer Protection Act of 1991.

Chapter 3 describes Dialogic® Fax API programming considerations for boards
based on Dialogic® DM3 architecture (Dialogic® DM3 boards).

Chapter 4 presents the basics of fax communication. It covers fax terminology,
the structure of a fax call (ITU-T T.30 protocol), fax data formats, data encoding
schemes, types of fax transmission, and more.

Chapter 5 discusses the implementation of fax send capability in an application.
It presents guidelines and direction on using the Dialogic® Fax API and other
function calls to send a fax.

1. Introduction

 19

Chapter 6 covers the implementation of fax reception capability in an application.
It presents guidelines and direction on using the Dialogic® Fax API and other
function calls to receive a fax.

Chapter 7 discusses the fonts supported in ASCII to fax conversion.

Chapter 8 discusses the Dialogic® fax demo programs for Linux.

Chapter 9 discusses the Dialogic® fax demo programs for Windows®.

Chapter 10 describes the data structures used with Dialogic® Fax API library
functions.

Chapter 11 gives basic information about using the Dialogic® Fax API. It
describes the categories of fax functions, error handling, and required include and
library files.

Chapter 12 provides an alphabetical reference to the Dialogic® Fax API library
functions and specifies the platform (Dialogic® DM3, Dialogic® Springware)
supported by each function.

Appendixes provide a reference for TIFF/F Tags and Values, Fax Phase D Status
Values, Fax Phase E Status Values, Fax Error Codes, Fax Event Codes, ASCII to
Fax Tables, and acronyms used.

A Glossary and an Index are provided at the end of this guide for reference.

21

2. Basics of Fax Software

2.1. Introduction to Fax Software

This chapter discusses the basics of fax software. It lists the Dialogic® products
that support the Dialogic® Fax software, describes product features, and provides
a general overview of fax software and system configuration models.

The Dialogic® Fax software provides a fax library fully integrated with the
Dialogic® Voice library. This integration enables developers to build fax
applications or add fax capability to existing voice applications and create unified
messaging systems.

The Dialogic® Fax software is supported on specific boards and runs on Linux
and Windows® operating systems. It consists of fax library and header files,
device drivers, sample demonstration programs, and a documentation set. The
Voice and Fax libraries provide C-language interface.

2.2. Product Terminology

The following terminology is used to describe Dialogic® products that support the
Dialogic® Fax API.

Product Description

Dialogic® VFX Integrated four-channel voice/fax boards based on
Dialogic® Springware architecture. Each channel can
process voice or fax. Through a time division multiplexing
(TDM) bus interface, fax resources can be shared by other
voice processing resources.

Dialogic®

VFX/41JCT-LS
Four-port, voice/fax board with on-board analog telephone
interfaces (loop start) and CT Bus connector. It is SCbus
compatible with bus adapter. This board replaces older
Dialogic® VFX Boards such as the Dialogic®
VFX/40ESCplus and the Dialogic® VFX/PCI. The
Dialogic® VFX/41JCT-LS Board uses enhanced DSP fax.

Dialogic® Fax Software Reference

 22

Product Description

DSP-Based Group
3 Fax (DSP Fax)

Also known as Softfax. Multiple-port, software-based fax
solution. This software allows you to use the Dialogic® Fax
API to develop fax applications on non-VFX Springware
Boards.

Typically, Dialogic® Springware Fax Boards have the
prefix “VFX”. Dialogic® Springware Voice Boards
typically are prefaced with “D,” such as the Dialogic®
D/240JCT-T1 Board. Some of these voice boards also
support fax.

Unlike the Dialogic® VFX Boards, fax modem capability is
implemented in software rather than hardware. In addition,
ASCII to fax capability is provided by the fax library
rather than by the digital signal processor (DSP). However,
fax imaging capability is still provided by the DSP on the
board itself.

There are two types of DSP fax: basic and enhanced. See
Table 1. Fax Features and Specifications for a list of
features. Support for enhanced DSP fax is available on the
Dialogic® VFX/41JCT-LS Board only. See the Release
Guide for your Dialogic® Software Release for the
products that support basic and enhanced DSP fax.

On some products, DSP fax resources are in a 1:1 ratio
with voice resources. However, an application may need
only a limited number of DSP fax resources in relation to
voice channels. This configuration is provided by products
such as the Dialogic® D/82JCT-U Board, which offers DSP
fax resources that may be shared among the voice
channels. The DSP fax resource is automatically assigned
to a channel through the fx_open() function and de-
assigned (or made available) with the fx_close() function.
See the Dialogic® Voice API Library Reference for more
information on resource sharing, such as the
dx_GetRscStatus() function, which allows you to check
whether a resource is assigned to a channel.

Check the Release Guide and Release Update for your
Dialogic® Software Release for any hardware-specific

2. Basics of Fax Software

 23

Product Description
limitations on resource sharing and for information on the
boards and channels that support DSP fax.

Dialogic® DM3
Fax

Refers to boards based on Dialogic® DM3 architecture that
support the Dialogic® Fax API. Examples are the Dialogic®

DM/F, Dialogic® DM/VF (previously called Dialogic®

VFN), and Dialogic® DM/V Boards.

Dialogic® DM3 Boards is a collective name used in this
document to refer to products that are based on the
Dialogic® DM3 mediastream architecture. Typically
Dialogic® DM3 Board names have the prefix “DM,” such
as Dialogic® DM/V160-LP and Dialogic® DM/V2400A-
PCI.

For a list of products that support Dialogic® Fax software, see the Release Guide
and Release Update for your Dialogic® Software Release.

2.3. Product Features

This section describes features of fax products in table format. Table 1. Fax
Features and Specifications summarizes fax features and specifications by
product.

Dialogic® fax products are compatible with ITU-T Group 3 (T.4, T.30) and ETSI
NET/30.

Complete technical specifications for fax products can be found on the Dialogic®
Products website at http://www.dialogic.com/purchase.htm. See the Glossary for
definitions of unfamiliar terms. See the Release Guide for the Dialogic® Software
Release you are using for information on hardware support.

The fax products described here do not support PCX and DCX file formats for
sending and receiving faxes.

Dialogic® Fax Software Reference

 24

Table 1. Fax Features and Specifications

Fax Features and Specifications

D
ia

lo
gi

c ®
 D

M
3

B
as

ic
 D

SP
 F

ax

En
ha

nc
ed

 D
SP

 F
ax

Data rate

Transmit 9,600 bits per second (bps) • • •

Transmit 14,400 bps • • •

Receive 9,600 bps • • •

Receive 14,400 bps • •

Variable speed selection • • •

Automatic step-down to lower speed if necessary • • •

File storage format

Raw MH encoded fax data from file or memory • • •

Raw MR encoded fax data from file or memory •

Raw MMR encoded fax data from file or memory • • •

TIFF/F (Tagged Image File Format, Class F) MH encoded • • •

TIFF/F (Tagged Image File Format, Class F) MR encoded •

TIFF/F (Tagged Image File Format, Class F) MMR encoded • • •

ASCII for transmit only • • •

Japanese Katakana text for transmit only • •

Selectable storage of multi-page fax in a single TIFF/F, multiple
TIFF/F or multiple raw files

• • •

2. Basics of Fax Software

 25

Table 1. Fax Features and Specifications (cont.)

Fax Features and Specifications

D
ia

lo
gi

c
®
 D

M
3

B
as

ic
 D

SP
 F

ax

En
ha

nc
ed

 D
SP

 F
ax

Data transmission encoding scheme (over the phone line)

MH (Modified Huffman) • • •

MR (Modified Read) • • •

MMR (Modified Modified Read) • •

Selectable data transmission encoding scheme • • •

Selection of single, specified image resolution for all fax data
during fax transmission

• • •

Data reception encoding scheme (over the phone line)

MH (Modified Huffman) • • •

MR (Modified Read) • • •

MMR (Modified Modified Read) • •

Selectable data reception encoding scheme • • •

ASCII to Fax conversion

On the fly conversion—direct transmission of text files • • •

Supports multiple fonts and language character sets • •

Supports entire selection of Windows® fonts (Windows® only) • •

Dialogic® Fax Software Reference

 26

Table 1. Fax Features and Specifications (cont.)

Fax Features and Specifications

D
ia

lo
gi

c
®
 D

M
3

B
as

ic
 D

SP
 F

ax

En
ha

nc
ed

 D
SP

 F
ax

ASCII to Fax conversion

Supports use of tilde (~) and <ESC> in formatting ASCII
documents; supports italicized text

 • •

Supports embedded formatting commands • • •

Creates page headers automatically • • •

User-definable page header option • • •

Merges ASCII and raw image on same page • •
1

 •

Error Correction

Detects, reports and replaces faulty scan lines • • •

Supports T.30 Error Correction Mode (ECM) • •

Image widths and scaling

Supports multiple image widths: 215 mm (8.5 in), 255 mm (10
in), and 303 mm (11.9 in)

•
2

 • •

Selectable maximum receive width and preferred receive length • • •

Automatic horizontal and vertical scaling between page sizes • • •

1
 For Dialogic® DSP Fax, no automatic page break occurs when page size exceeded.

2
 On Dialogic® DM/F and DM/VF Boards, all image widths are supported. On Dialogic® DM/V

Boards, only 215 mm width is supported.

2. Basics of Fax Software

 27

Table 1. Fax Features and Specifications (cont.)

Fax Features and Specifications

 D
ia

lo
gi

c
® D

M
3

F

B
as

ic
 D

SP
 F

ax

En
ha

nc
ed

 D
SP

 F
ax

Fill bit processing

Automatic fill bit insertion on transmit • • •

Automatic fill bit removal on receive • • •

Polling modes

Normal and turnaround • • •

Mixed coded images on one fax page

Allows images from multiple sources (text and graphics) on one
fax page (sub-pages)

• • •

Allows pages and sub-pages of different encoding schemes,

resolutions, and widths
3

• • •

T.30 subaddress messaging

Supports T.30 subaddress message protocol, which allows a fax
to be routed to one or more telephone numbers once received

 • •

3
 If the widths of the consecutive sub-pages are different, the sub-pages are scaled to match the

negotiated width. For Dialogic® DSP Fax, the resolution of each sub-page to be sent must be of the
same resolution or you must explicitly set the resolution for the entire fax transfer.

Dialogic® Fax Software Reference

 28

Table 1. Fax Features and Specifications (cont.)

Fax Features and Specifications

D
ia

lo
gi

c
®
 D

M
3

B
as

ic
 D

SP
 F

ax

En
ha

nc
ed

 D
SP

 F
ax

System configuration model

Supports stand-alone model • • •

Supports TDM bus configuration • • •

International fax support

Supports German computer-based fax—automatically inserts
two lines in the fax header

• • •

Supports Japanese Katakana character set for fax page and
header

 • •

Fax header

Automatically creates one-line fax page header on every
transmitted page

• • •

User-definable fax page header text option • • •

Other

Color fax (JPEG and JBIG format) •

Operator intervention (issue and accept voice request during
data transmission and reception)

 • •

Reporting completion of T.30 Phase B and Phase D • • •

Non-standard facilities (NSF), digital command signal (DCS),
and digital information signal (DIS) information returned to the
application, allowing proprietary communications above T.30

• • •

2. Basics of Fax Software

 29

2.4. Fax API/Library Overview

The C-language application programming interface (API) included with the
Dialogic® Fax software provides a library of functions used to create fax
applications. Fax data structures are also a part of the fax library. These fax
functions interface with the voice driver and are tightly integrated with the
Dialogic® Voice library. This architecture enables you to add fax capability to an
existing voice application. Your application can play or record voice files on one
channel while another channel receives or sends fax calls; or the same channel
can alternately process fax and voice calls.

The fax library, together with the voice libraries, provide the interface to the
voice driver. The fax library contains all fax-specific functions. The voice
libraries include the main voice library and the Dialogic® Standard Runtime
Library. For more information on voice libraries, see the Dialogic® Voice API
Library Reference and the Dialogic® Standard Runtime Library API Library
Reference.

By convention, fax-specific functions begin with fx_, such as fx_sendfax() and
fx_setparm(). Voice-specific functions typically begin with dx_, such as
dx_play() and dx_getdigit(). Functions that are part of the Standard Runtime
Library begin with sr_.

For more information on fax functions, see Chapter 3. Fax API for Dialogic®
DM3 Boards, Chapter 11. Using the Fax Library, and Chapter 12. Fax Library
Function Reference.

The fax library uses several fax data structures. These structures are described in
detail in Chapter 10. Fax Data Structures.

Dialogic® Fax Software Reference

 30

2.5. Voice and Fax Integration

To develop fax and integrated voice/fax applications, you need to use Dialogic®
Fax library functions in conjunction with Dialogic® Voice library functions and
Dialogic® Standard Runtime Library functions. For example, specific Voice
library functions control the hook state of your phone line, receiving and
processing touch-tone digits, and so on, while the Fax library controls such
functions as sending and receiving faxes, and setting fax parameters.

On Dialogic® Springware Boards and on Dialogic® DM/VF Boards (previously
called Dialogic® VFN), a fax resource channel uses the same physical hardware
channel as a voice resource channel, so a single channel can process either a
voice call or a fax call; however, both voice and fax input/output cannot occur at
the same time on the same device channel.

For DSP fax, Dialogic® DM/V Boards, and Dialogic® DM/F Boards, a fax
resource channel typically handles fax only and has no voice capability. On
Dialogic® DM3 Boards, fax and voice capability is determined by the media load
in use. For information about media loads, see the Configuration Guide for
Dialogic® DM3 products.

See the function reference examples in this guide to see how Voice library
functions are used with Fax library functions. Also see Section 5.3. Opening and
Closing a Fax Channel Device for information on fax channel device operation.
Information on discovering devices on Dialogic® DM3 Boards is described in
Section 3.2. Device Discovery.

2.6. Modes of Operation

The fx_sendfax(), fx_rcvfax(), fx_rcvfax2(), and fx_originate() functions
have a mode argument that specifies the mode of operation for the function –
synchronous or asynchronous. All other fax functions operate synchronously.

This section provides an overview of synchronous and asynchronous modes of
operation.

2. Basics of Fax Software

 31

NOTE: In this guide, the terms synchronous and asynchronous indicate only the
function’s mode of operation.

2.6.1. Synchronous Mode

Synchronous mode operation allows you to assign distinct applications to
different channels in a system by simultaneously loading separate applications,
each dedicated to a single channel.

In synchronous mode, a fax send or receive function returns control to the
application only after the function has completed processing or an error has
occurred. For example, a fax send function must transmit all the fax data (or
return a processing error) before the application can issue another function call on
the channel device.

For a full discussion of synchronous programming models, see the Dialogic®

Standard Runtime Library API Programming Guide .

2.6.2. Asynchronous Mode

Asynchronous mode operation enables a single program to control multiple
channels. Multiple tasks can be coordinated via the same process, controlling, for
example, the timing and sequence of each task in a single call session.

In asynchronous mode, a send or receive fax function returns control to the
application immediately after successful invocation. The application can then
issue other functions while the first asynchronous function continues processing
(for example, sending or receiving fax data). This allows the application to open
several channels and issue functions on each channel from a single process. The
application then monitors events from the channels it is controlling and maintains
a state machine for every channel. Based on the event received from a channel,
the application issues the next appropriate function for that channel.

The Dialogic® Standard Runtime Library generates events to indicate whether a
function completed successfully or failed. See Section 11.3. Error Handling for
more information on errors and Appendix E for a list of event codes.

NOTE: The application must keep track of all functions it is processing and
monitor events generated by the Standard Runtime Library.

Dialogic® Fax Software Reference

 32

For a full discussion of asynchronous programming models, see the Dialogic®

Standard Runtime Library API Programming Guide.

2.7. System Configuration Models

The Dialogic® Fax software supports the following system configuration models
on specific Dialogic® products:

• Stand-alone configuration. Used for system configurations that do not
require TDM bus channel routing; for example, using on-board RJ-11
analog jacks to connect to the telephone network. Supported on
Dialogic® VFX products.

• TDM Bus configuration. Used for system configurations that route
channels to CT Bus time slots. Supported on the Dialogic® VFX/41JCT-
LS, Dialogic® DSP-Based Group 3 Fax (also known as Dialogic® DSP
Fax), and other fax products that have a TDM bus connection.

2. Basics of Fax Software

 33

2.7.1. Stand-Alone Model

In a stand-alone configuration model, the voice and fax resource channels are
connected to the on-board network interface. There is no time slot routing.

This model is not supported on Dialogic® DM3 Boards.

The program flow for the stand-alone model is as follows:

Step Action

1 Open channels:

• Open channel for voice using the Dialogic®
Voice API.

• Open channel for fax using the Dialogic® Fax
API.

2 Call voice functions to set up the call.

3 Initiate fax send and receive on the channel:

• Initialize the fax channel to send/receive faxes.

• Send/receive faxes.

4 Continue with the application.

5 At the end of the application, close the open
channels:

• Close channel for voice using the Dialogic®
Voice API.

• Close channel for fax using the Dialogic® Fax
API.

Dialogic® Fax Software Reference

 34

2.7.2. TDM Bus Model

In a TDM bus configuration model, you set up your application resource channels
(network, voice, fax, and so on) to communicate with one another on the TDM
bus by transmitting data on an assigned TDM bus transmit time slot
(automatically assigned during download) and by listening to data transmitted on
another resource's TDM bus transmit time slot.

Step Action

1 Open channels:

• Open channel for voice.

• Open channel for fax.

• Open network time slot (digital only).

2 Set TDM bus routing: fax/voice and network
channel set for full duplex.

3 Set up the call using call functions:

• Analog

• Digital

4 Before sending or receiving a fax on the channel:

• Disconnect TDM bus routing: voice and network
channel (full duplex).

• Set TDM bus routing: fax resource and network
channel (full duplex).

5 Initiate fax send and receive on the channel:

• Initialize the fax channel to send/receive faxes.

• Send/receive faxes.

6 After completing the fax send and receive on the
channel, disconnect TDM bus routing: fax
resource and network channel (full duplex).

2. Basics of Fax Software

 35

Step Action

7 To complete the call, additional voice processing
may be required. Connect original voice channel
to the TDM bus time slot: set TDM bus routing
voice and network channel for full duplex.

8 Continue with the application currently set for
Dialogic® Voice API.

9 At the end of the application, close the open
channels:

• Close the channel for voice.

• Close the channel for fax.

• Close the network time slot (digital only).

In this TDM bus model to include fax resources, note the following:

• TDM bus routing for the voice resource is set to communicate with the
network resource in full duplex, that is, two-way communication, send and
receive, between the two resources over the TDM bus.

• Before a fax send and receive is initiated (Step 5), the voice resource is
disconnected from the TDM bus (Step 4). In this model, the same network
channel (or time slot) is used for both voice and fax resources.

• Before a new resource is introduced, TDM bus time slot assignment is
disconnected from the current resource and set for the new resource.

2.8. Complying with the Telephone Consumer Protection
Act

The Telephone Consumer Protection Act of 1991 makes it unlawful for any
person to use a computer or other electronic device, including fax machines, to
send any message unless this message clearly contains, in a margin at the top or
bottom of each transmitted page or on the first page of the transmission, the
following information:

• date and time the message is sent

Dialogic® Fax Software Reference

 36

• an identification of the business, other entity, or individual sending the
message

• the telephone number of the sending machine or such business, other entity,
or individual. The telephone number provided may not be a 900 number or
any other number for which charges exceed local or long-distance
transmission charges.

To program this information into your fax application, complete the following
steps:

• Use the fx_setparm() function to set the company/sender in the
FC_HDRUSER parameter and the telephone number in the FC_LOCALID
parameter.

• By default, the fax sending functions will send a header at the top of every
page containing the date and time as well as the parameters set through the
fx_setparm() function.

This function is discussed in detail in Chapter 12. Fax Library Function
Reference.

37

3. Fax API for Dialogic® DM3 Boards

3.1. Overview of Fax API for Dialogic® DM3 Boards

TheDialogic® Fax API supports Dialogic® hardware products that are based on
the Dialogic® DM3 mediastream architecture, in addition to Dialogic® Springware
products.

Information on Dialogic® DM3 support is provided throughout this document as
appropriate. This chapter provides programming considerations specific to
Dialogic® DM3 Boards and describes the color fax functionality.

Not all functions and parameters are supported on both Dialogic® DM3 Boards
and Dialogic® Springware Boards. Information on these restrictions is noted in
the function descriptions.

Similarly, not all data structures are supported and used on both Dialogic® DM3
Boards and Dialogic® Springware Boards. Information on these restrictions is
noted in the data structure descriptions.

3.2. Device Discovery

To determine whether a Dialogic® DM3 Board supports fax, follow this
procedure:

1. Use Dialogic® Standard Runtime Library device mapper functions to return
information about the structure of the system, such as a list of all the physical
boards in a system, a list of all virtual boards on a physical board, and a list
of all subdevices on a virtual board. For more information on these functions,
see the Dialogic® Standard Runtime Library API Library Reference. The
device mapper functions include SRLGetAllPhysicalBoards(),
SRLGetVirtualBoardsOnPhysicalBoard(), and more.

2. Use dx_open() to open the board device (virtual board device, not physical
board device) and retrieve the device handle. The board device is in the
format dxxxBn, such as dxxxB1.

Dialogic® Fax Software Reference

 38

NOTE: Device enumeration on Dialogic® DM3 Boards differs depending on
the media load in use. For example, a Dialogic® DM/V600A-2E1
Board that uses media load 5 (enhanced voice and fax) has more
than 15 virtual boards. For more information on media loads, see the
Configuration Guide for Dialogic® DM3 products.

3. To determine whether the board device supports fax before you attempt to
open the fax device, use dx_getfeaturelist() and specify the board device
handle obtained in step 2. The FEATURE_TABLE structure contains the
features of the device.

4. If this is a fax only channel, close this voice device handle using dx_close(),
as the handle will no longer be used.

5. Use fx_open() on the voice channel device to open the associated fax device
and retrieve the fax handle. The function will succeed if the channel device
has fax capabilities; otherwise the function will fail.

6. If desired, call fx_getctinfo() to find out more about the fax device, such as
product ID, device family, and network interface. The CT_DEVINFO
structure contains this fax device information.

3.3. Programming Considerations

The following programming considerations are provided to help you develop
applications on Dialogic® DM3 Boards:

• Use the TDM bus routing device information function, fx_getctinfo(), to
obtain information about Dialogic® DM3 devices, which is returned in a
CT_DEVINFO data structure. This information can be used to identify
whether a logical device belongs to Dialogic® DM3 hardware. For details on
this structure, see the Dialogic® Voice API Library Reference.

• In flexible routing configurations, you must issue fx_listen() prior to calling
fx_sendfax(), fx_rcvfax(), or fx_originate(). Otherwise, these functions
will return an error.

• DM3 Boards do not support the use of a voice handle for fax commands; that
is, you cannot use the device handle from dx_open() to call Fax API
functions. You must use fx_open() to open a channel device for fax
processing and use that fax device handle.

3. Fax API for Dialogic® DM3 Boards

 39

• DM3 Boards support the use of fx_open() on a board device as well as a
channel device. To determine the number of subdevices (or channels)
available, use fx_open() on the board device followed by
ATDV_SUBDEVS(). If fx_open() returns -1, then the subdevice does not
support fax. For more information on ATDV_SUBDEVS(), see the
Dialogic® Standard Runtime Library API Library Reference. For more on
device discovery, see Section 3.2. Device Discovery.

• Applications that create multiple handles for a single fax device should set
the parameters consistently on all the handles that perform fax operations, for
example, on fx_sendfax() and fx_rcvfax().

• The only font that is supported on Dialogic® DM3 Fax Boards is the normal
font. The compressed font is not supported on DM3 Fax Boards. Because of
this, on DM3 Boards the default font for the fax header is different from
Dialogic® VFX Boards. On DM3 Boards, the normal font (ID 0) is used in
the fax header, while on Springware Boards, the compressed font (ID 3) is
the default. Because of these font restrictions on DM3 Fax Boards (and
because of the fixed left and right margins on DM3 Fax Boards as noted in
Section 10.3.3. DF_ASCIIDATA Usage Rules), DM3 Fax Boards provide
fewer characters per line in the fax header. This means that the header may
wrap to a second line.

• On Dialogic® DM3 Boards, regardless of the page length you specify, the
converted fax image has no maximum size (unlimited length). No pagination
is performed by the firmware. Font is fixed at 10 lines per inch (each line is
approximately 1/10 inch in height); prints approximately 12 characters per
inch; 16 scan lines of MH data; 16 (horizontal) by 16 (vertical) pixels or 80
characters maximum per line. Top Margin is set to 3, Left Margin to 14, and
Right Margin to 94.

• When sending raw and ASCII files, the width of the image is limited to 1728
pixels per line. The io_width field in the DF_IOTT data structure only
supports the DF_WID1728 value.

NOTE: All programmers for Dialogic® DM3 fax devices need to be aware that
unrouting cannot be accomplished while the fax device is busy. If faxing
is in an unknown state, first call fx_stopch() and when that terminates,
then route or unroute via fx_listen() or fx_unlisten() respectively.

Dialogic® Fax Software Reference

 40

3.4. Color Fax

Color fax functionality supports the sending and receiving of JPEG/JBIG files to
and from Group 3 color fax devices.

3.4.1. Color Fax Features

Features of color fax include the following:

• Fax API Library support

• Transmission and reception of JPEG encoded color facsimile images to and
from color fax devices

• Transmission and reception of JBIG grayscale facsimile images to and from
fax devices

• Encoding of color fax images using the JPEG format as specified in ITU
Rec. T.81 and T.42 standards and the ITU Rec. T.4 Annex E standard (ITU
Rec. T.4 Annex E defines the specific JPEG profile for color fax)

• Encoding of fax images using the JBIG format as specified in ITU Rec. T.82
and T.43 standards and the ITU Rec. T.85 standard (ITU Rec. T.85 defines a
specific profile for bilevel JBIG encoded fax images)

The following baseline JPEG options are supported (as defined in ITU Rec. T.4
Annex E):

• Baseline DCT with Huffman entropy coding

• CIElab color space (L=Luminance [also used for grayscale], A=green/red
hue, and B=blue/yellow hue)

• 8 bits/pel/component

• 4:1:1 sub-sampling

• One scan per image file

• Default CIE illuminant D.50

• Default gamut for LAB

• G3FAX APP1 marker: Version=1994 and resolution=200 dpi

3. Fax API for Dialogic® DM3 Boards

 41

3.4.2. Using the Dialogic® Fax API Library for Color Fax

This section includes information about the Dialogic® Fax API library used for
color fax.

• Two keywords are used: DF_JPEG_GREY (for JBIG formatted files) and
DF_JPEG_COLOR (for JPEG formatted files). They are intended to be used
with a DF_IOTT structure (iott.io_coding field) that has io_datatype =
DF_RAW.

• To enable the JPEG mode for sending or receiving, set FC_TXCODING in
dx_setparm() to DF_JPEG_COLOR (this implies automatic DF_MMR and
DF_ECM).

• To enable the JBIG mode for sending or receiving, set FC_TXCODING in
dx_setparm() to DF_JPEG_GREY (this implies automatic DF_MMR and
DF_ECM).

• To receive in JPEG, the application must receive the fax in raw format. Also,
FC_TXCODING must be set to DF_JPEG_COLOR.

• To receive in JBIG, the application must receive the fax in raw format. Also,
FC_TXCODING must be set to DF_JPEG_GREY and DF_JPEG_COLOR.

The Fax API allows you to control many aspects of the T.30 protocol. The only
commands you have to configure are the line settings:

• FC_TXCODING

• FC_TXBAUDRATE

• FC_RXBAUDRATE

The basic approach is to extend FC_TXCODING:

#define DF_MH 0 // 1-D Group 3 Modified Huffmann encoding
#define DF_MR 1 // 2-D Group 3, T.4 Modified Read encoding
#define DF_MMR 2 // T.6 Modified Modified Read encoding
#define DF_JPEG_GREY 3 // set ECM and T6 + JPEG (<--- ignore DF_ECM value)
#define DF_JPEG_COLOR 4 // set ECM and T6 + JPEG Full Color
#define DF_ECM 0x8000 // OR with FC_TXCODING value to use ECM

This is valid for sending and receiving.

Dialogic® Fax Software Reference

 42

Sending a JPEG/JBIG Fax

To send a JPEG or JBIG fax, follow these instructions:

1. Set fx_setparm() FC_TXCODING = DF_JPEG_GREY (for JBIG) or
DF_JPEG_COLOR (for JPEG).

2. Fill the DF_IOTT structure:

 Iott->io_type = IO_DEV | IO_EOT;
 Iott->io_fhandle = dx_fileopen("d:\\F21_200.jpg", _O_RDONLY | _O_BINARY , 0);
 Iott->io_bufferp = NULL;
 Iott->io_offset = 0;
 Iott->io_length = -1;
 Iott->io_nextp = (DF_IOTT *) NULL;
 Iott->io_prevp = (DF_IOTT *) NULL;
 Iott->io_width = DF_WID1728;
 Iott->io_resln = DF_RESHI;
 Iott->io_coding = DF_JPEG_COLOR (for JPEG: DF_JPEG_GREY or DF_JPEG_COLOR)
 Iott->io_phdcont = DFC_AUTO;
 Iott->io_datatype = DF_RAW #(mandatory for a JPEG)

NOTE: A file can also be sent from memory (IO_MEM instead of IO_DEV).

Sending a JPEG-only File

To send a JPEG-only file:

FC_TXCODING set to DF_JPEG_COLOR
 JPEG Color
 (MPS)
 JPEG Color
 (MPS)
 JPEG Color
 (EOP)

Additional information to note when sending a JPEG-only file:

• If DF_IOTT contains a JPEG file, and the FC_TXCODING is not correct
(for example, JPEG Color file and FC_TXCODING is JPEG_GREY), an
error is reported.

• If DF_IOTT doesn't contain a JPEG entry, turn off JPEG, even if
TX_CODING expects JPEG.

• When there is a JPEG file to send, headers are turned off for ALL the pages
(also MH/MR/MMR/ASCII file).

3. Fax API for Dialogic® DM3 Boards

 43

• If you are sending a JPEG file, check that the DIS of the receiving side
supports JPEG.

• If the user forces an MPS as Phase D command, or if there is a different
JPEG value (Disable/GREY/Color), then an EOM is forced.

Receiving a JPEG/JBIG File

To receive a JPEG or JBIG file:

NOTE: The only mode supported is RAW.

• FC_TXCODING = DF_JPEG_GREY (for JBIG) or DF_JPEG_COLOR (for
JPEG).

• If the application sets FC_TXCODING to DF_JPEG_GREY or
DF_JPEG_COLOR, and if the fx_rcvfax() is not issued with the DF_RAW,
the function will return an error.

• ATFX_CODING() reports DF_JPEG_GREY or DF_JPEG_COLOR.

• FC_RXCODING specifies the receive file, except if ATFX_CODING()
reports DF_JPEG_GREY or DF_JPEG_COLOR.

• Backward compatibility is preserved with MH/MR/MMR reception.

Receiving a JPEG/JBIG Fax – Example

To receive a JPEG fax:

 FIS_PrmJPEG_JP_JPEG | FIS_PrmJPEG_JP_FULL_COLOR
 DCS = QFC3_MsgReportCapsEvt_JPEG_JP_DISABLED
 ATFX_CODING = DF_MH, DF_MR or DF_MMR
 -> receive raw file
 EOM
 DCS = QFC3_MsgReportCapsEvt_JPEG_JP_JPEG
 ATFX_CODING = DF_JPEG_GREY
 -> receive raw file
 EOM
 DCS = QFC3_MsgReportCapsEvt_JPEG_JP_FULL_COLOR
 ATFX_CODING = DF_JPEG_GREY
 -> receive raw file
 EOP

Dialogic® Fax Software Reference

 44

45

4. Background on Fax
Communications

4.1. Overview

This chapter presents general background information on fax technology. It
introduces the relevant fax terminology, describes the structure of a fax call as
encompassed in the ITU-T T.30 fax protocol recommendation, and discusses the
types of fax transmission. This chapter also mentions fax library functions and
structures as they relate to the topic discussed.

4.2. Fax Terminology

To understand how the Dialogic® Fax API functions apply to sending and
receiving fax documents, you should understand the distinction among the
following terms.

Term Definition

caller An application or station that places a call. Also
referred to as a calling application or station.

called An application or station that receives a call.

fax transmitter An application or station that sends or is capable
of sending a fax document.

fax receiver An application or station that receives or is
capable of receiving a fax document.

fax session The five phases of a fax call as defined by the
ITU-T T.30 protocol recommendation. They are:

• Phase A (set up fax call)
• Phase B (pre-message procedure)
• Phase C (transmit message)
• Phase D (post-message procedure)
• Phase E (release fax call)

Dialogic® Fax Software Reference

 46

Term Definition

normal transmission A type of fax transmission where the caller station
transmits a fax to the called station.

polling transmission
(fax on demand)

A type of fax transmission where the called station
is asked (polled) to transmit a fax back to the
caller station. Also referred to as polled
transmission.

turnaround polling
transmission

A type of fax transmission where the caller and
called stations alternate between transmit and
receive modes during the same call.

The fax library allows fax application to be a caller or called application, and a
fax transmitter or fax receiver. This distinction is important in a polling
transmission where the called application transmits documents back to the caller.
Polling transmission is described later in this chapter.

NOTE: The discussion of fax transmission and reception in this chapter is based
on the use of the fax application as both a caller and called application.
Your fax application will be either the caller or the called application.
The other station (the remote station) may be a fax machine or another
fax application.

As a fax transmitter, an application can perform the following fax procedures:

• Send a complete fax document or send data from various sources with
independently defined page and document boundaries.

• Send an indication to the receiver requesting the receiver to send a fax
document to the transmitter (polling).

• Both of the above during the same call.

As a fax receiver, an application can perform the following fax procedures:

• Receive incoming fax data.

• Indicate to the transmitter if polling is acceptable.

• Indicate to the caller that the called application only has fax transmission
capabilities (caller can only receive a fax or disconnect).

4. Background on Fax Communications

 47

4.3. Structure of a Fax Call

T.30 is an ITU-T recommendation that specifies a fax communications protocol
for Group 3 fax. This recommendation describes how to establish and terminate
communications between Group 3 fax machines. ITU-T is the International
Telecommunication Union, a United Nations agency that develops and
recommends international telecommunications standards.

The recommendation specifies five separate phases in a fax call or session. These
phases are implemented using fax library API functions along with fax library
data structures that accomplish the proper negotiation of each phase.

The five consecutive phases indicating the flow of a fax session are:

• Phase A - set up fax call (begin fax session)

• Phase B - pre-message procedure

• Phase C - transmit message

• Phase D - post-message procedure

• Phase E - release fax call and disconnect (end fax session)

4.3.1. Phase A - Set Up Fax Call

Phase A establishes communication between two stations: caller and called. This
usually begins with a request for service and, in some cases, dialing the other
station.

NOTE: The connection between the caller and called stations is implemented by
functions other than Dialogic® Fax API functions. For analog TDM bus
and stand-alone configurations, see the Dialogic® Voice API Library
Reference; for digital TDM bus configurations, see the Dialogic® Digital
Network Interface Software Reference. For Dialogic® DM3 products,
also see the Dialogic® Global Call API Programming Guide and
Dialogic® Global Call API Library Reference.

Once the line connection with the called party is established, the following takes
place during Phase A:

• fax tone detection

Dialogic® Fax Software Reference

 48

• digital handshake detection

The caller station typically sends an 1,100 Hz tone known as the CNG tone. The
called station responds with a 2,100 Hz tone, the CED.

In preparation for Phase B, the caller station is initially given fax transmitter
status, and the called station is initially given fax receiver status. (The initial fax
state for the fax application must be set by the application prior to issuing the first
send or receive function of a fax session.)

4.3.2. Phase B - Pre-Message Procedure

Phase B is used by the transmitter and receiver to negotiate the parameters for
sending and receiving the fax document/page, such as polling, type of data,
transmission speed, resolution, width, and more.

In this phase, the receiver identifies its capabilities to the transmitter, and the
parameter values used depend on the capabilities of the receiver.

4.3.3. Phase C - Transmit Message

Phase C transmits the fax document page based on the parameters negotiated
between the caller and called applications in Phase B.

4.3.4. Phase D - Post-Message Procedure

Phase D defines a continuation value to indicate to the receiver what to do after
the transfer of the fax document/page is completed.

The fax send function transmits data from various sources with independently
defined page and document boundaries. Phase D continuation values allow
multiple send functions to be linked together to transmit data from many
document file sources, building a fax transmission dynamically.

Phase D continuation values are used in a table of DF_IOTT structures to indicate
Phase D commands to the receiver. The DF_IOTT table defines parameters for
transmitting one or more files containing fax data. Each DF_IOTT table entry
contains parameters describing the characteristics of the fax data to be sent. For

4. Background on Fax Communications

 49

details on DF_IOTT, see Section 10.6. DF_IOTT – Fax Transmit Data
Description.

4.3.5. Phase E - Release Fax Call

Phase E releases the fax call. The caller station sends a disconnect signal (DCN)
and both fax stations disconnect from the phone line.

4.4. Types of Fax Transmission

Fax transmission is categorized as follows:

• normal

• polling

• turnaround polling

4.4.1. Normal Fax Transmission

A normal fax transmission occurs when a caller station sends a fax to the called
station.

When the initial fax connection is made between the caller and the called stations,
set the caller application to be the transmitter and the called application to be
the receiver.

• The caller application issues a send function to transmit the fax to the called
application.

• The called application issues a receive function to indicate readiness to
receive a fax transmission.

• The caller application transmits the fax to the called application or
disconnects for a reason indicated by an error code.

The following chart shows the sequence of a normal fax transmission in a caller
and called fax application.

Dialogic® Fax Software Reference

 50

Table 2. Normal Fax Transmission Sequence

Caller Application Called Application

Fax TRANSMITTER:

• set initial fax state: CALLER

• send function issued

• (send function completes)

Fax RECEIVER:

• set initial fax state: CALLED

• receive function issued

• (receive function completes)

Fax Transfer Status:

• Fax transmitted to CALLED

Fax Transfer Status:

• Fax received from CALLER

4.4.2. Polling Fax Transmission (Fax on Demand)

A polling fax transmission occurs when the called station is asked (polled) to
send a fax to the calling station.

As in a normal fax transmission, when the initial fax connection is made between
the caller and the called stations, set the caller to be the fax transmitter and the
called to be the fax receiver.

To initiate a polling fax transmission, the caller application requests (polls) the
called application to send a fax document to the caller. To make this request, the
caller application issues a receive function rather than a send function as would
be issued by the caller to indicate a normal fax transmission.

4. Background on Fax Communications

 51

The called application accepts or rejects a poll request based on the value of the
poll bit set in the initial called application’s receive function.

• Polling Valid. If polling is valid and the caller issues a receive function, the
called application's receive function returns a zero (in synchronous mode) or
a completion event occurs (in asynchronous mode).

After the called application examines the reason for termination and
determines that a poll has occurred, the applications switch roles: the caller
application becomes the fax receiver and the called application becomes the
fax transmitter. The called application then transmits the fax document to the
caller by issuing a send function.

The called application must respond as quickly as possible with the send
function.

• Polling Invalid. If polling is invalid and the caller issues a receive function,
the called application indicates to the caller that it is not capable of a fax
transmission and the fax session is terminated.

If the caller does not poll, the call progresses as in a normal fax transmission.

The caller application becomes the fax receiver under the following conditions:

• The caller polls by issuing an initial receive function.

• The poll bit is set to polling valid in the called application's receive function.
Setting the poll bit causes the receive function to notify the application when
polling has occurred.

Dialogic® Fax Software Reference

 52

The following chart shows the sequence of a polling fax transmission in a caller
and called fax application.

Table 3. Polling Fax Transmission Sequence

Caller Application Called Application

Fax TRANSMITTER:

• set initial fax state: CALLER

• receive function issued
(poll request)

• (receive function still active)

• (receive function still active)

CALLER is now a RECEIVER:

• (receive function still active)

• (receive function completes)

Fax RECEIVER:

• set initial fax state: CALLED

• receive function issued
(poll bit = polling valid)

• (receive function completes)

• (examine termination reason:
polling occurred)

CALLED is now a TRANSMITTER:

• send function issued

• (send function completes)

Fax Transfer Status:

• Fax received from CALLED

Fax Transfer Status:

• Fax transmitted to CALLER

4. Background on Fax Communications

 53

Blocking Incoming Faxes

A called application wishing to block incoming fax transfers and only transmit
fax data indicates to the caller that a poll is required by issuing an initial send
function. When a send function is initially issued by the called application, the
caller cannot transmit a fax.

The following chart shows the sequence of a valid polling fax transmission where
the called application issues an initial send function indicating transmit only:

Table 4. Polling Fax Transmission Sequence - Called Application
Transmit Only

Caller Application Called Application

Fax TRANSMITTER:

• set initial fax state: CALLER

• receive function issued

CALLER is now a RECEIVER:

• (receive function completes)

Fax RECEIVER:

• set initial fax state: CALLED

• send function issued

CALLED is now a TRANSMITTER:

• (send function completes)

Fax Transfer Status:

• Fax received from CALLED

Fax Transfer Status:

• Fax transmitted to CALLER

Dialogic® Fax Software Reference

 54

4.4.3. Turnaround Polling Fax Transmission

A turnaround polling fax transmission occurs when two stations alternate
between send and receive modes during the same call. Each station becomes a fax
transmitter and receiver at different times during the call.

The first fax sent in this fax session completes as a normal fax transmission.

To indicate that there is more fax data to follow, the caller application (the initial
fax transmitter) specifies the proper transmit data continuation value at the end of
the initial fax data transmission. (This value is set in the io_phdcont field of the
DF_IOTT structure which is used by the send function.)

The caller application then follows the initial send function with a receive
function to indicate that the current transmitter now wishes to become the fax
receiver.

The poll bit set in the receive function of the initial receiver (called) application
determines whether polling by the transmitter (caller) is valid.

• Polling invalid. If the poll bit is set to polling invalid, the called application
will remain the fax receiver.

• Polling valid. If the poll bit is set to polling valid, the called application's
receive function returns a zero (in synchronous mode) or a completion event
occurs (in asynchronous mode). After the called application examines the
reason for termination and determines that a poll has occurred, the
applications switch roles. The caller application becomes the fax receiver and
the called application becomes the fax transmitter. The channel remains open
and the called application must respond as quickly as possible by issuing a
send function. This send function is issued by the new transmitter application
to send the fax to the new receiver application.

If the caller does not poll, the called application remains the fax receiver as in a
normal fax transmission.

NOTE: In a valid turnaround polling fax transmission, the caller application is
the transmitter, then the receiver.

4. Background on Fax Communications

 55

The following chart shows the sequence of a turnaround polling fax transmission
in a caller and called fax application.

Table 5. Turnaround Polling Fax Transmission Sequence

Caller Application Called Application

Fax TRANSMITTER:

• set initial fax state: CALLER

• send function issued (continuation
value: indicates additional fax data to
follow)

• (send function completes)

Fax RECEIVER:

• set initial fax state: CALLED

• receive function issued (poll bit =
polling valid)

• (receive function still active)

Fax Transfer Status:

• Fax transmitted to CALLED

Fax Transfer Status:

• Fax received from CALLER
(waiting to receive more fax data)
(receive function still active)

CALLER is still a TRANSMITTER:

• receive function issued (poll request)

• (receive function still active)

CALLER is now a RECEIVER:

• (receive function still active)

• (receive function completes)

CALLED is still a RECEIVER:

• (receive function completes)

• (examine termination reason: polling
occurred)

CALLED is now a TRANSMITTER:

• send function issued

• (send function completes)

Fax Transfer Status:

• Fax received from CALLED

Fax Transfer Status:

• Fax transmitted to CALLER

Dialogic® Fax Software Reference

 56

4.5. File Storage Formats

Fax data can be stored in one of the following formats. Support for file storage
formats varies by product; see Section 2.3. Product Features.

• raw or unstructured format

• TIFF/F (Tagged Image File Format meeting Class F specifications)

• ASCII for transmit only (includes the proprietary extended ASCII character
set and the Katakana character set)

4.5.1. Raw Files

Fax data stored in raw, unformatted files contains only a single page of fax data
per file. A description of the data, such as width, resolution, and encoding scheme
is specified in the DF_IOTT structure.

NOTE: The raw data must be in a fill order of Least Significant Bit (LSB) first.

Storage

Raw MH encoded data is recorded by the fax library with a fill order of Least
Significant Bit (LSB) first and may not have EOL (End Of Line) sequences byte
aligned.

Raw MR encoded data is recorded by the fax library with a fill order of Least
Significant Bit (LSB) first.

Raw MMR encoded data is also recorded by the fax library with a fill order of
Least Significant Bit (LSB) first. There is no zero fill, EOL (End Of Line)
sequences, or byte alignment for MMR stored files.

Transmission

Raw, unformatted files for transmission are treated as a byte stream of
compressed fax data with the width, resolution, and encoding scheme of the
stored data specified in the fields of the DF_IOTT structure.

4. Background on Fax Communications

 57

For transmission, raw MH encoded data must include EOL (End Of Line) flags,
but may or may not contain RTC (Return To Control) sequences. RTC sequences
are inserted by the firmware at the end of Phase C (message transmission) if the
raw data does not contain them.

4.5.2. TIFF/F Files

TIFF/F refers to Tagged Image File Format meeting Class F specifications.

A TIFF/F file stores MH, MR, or MMR encoded data with additional header
information and tags. Information such as the starting page number, page count,
and data type is specified in the DF_IOTT structure. Incoming fax data stored in
TIFF/F format is written by the fax library with tags specified in Appendix A.
TIFF/F files that include all mandatory tags (or subset) with valid values are
accepted for transmission.

4.5.3. ASCII Files

During transmission, ASCII text files are converted to an encoded fax image. A
description of the data, such as width, resolution, and encoding scheme, is
specified in the DF_IOTT structure. You can define additional attributes using
the DF_ASCIIDATA structure. Note that the DF_ASCIIDATA structure is not
used on Dialogic® DM3 Boards. For more information, see Section
10.3.3. DF_ASCIIDATA Usage Rules in the DF_ASCIIDATA structure
description.

To set fonts for use in ASCII to fax conversion, see Chapter 7. Specifying Fonts
in ASCII to Fax Conversion.

Dialogic® Fax Software Reference

 58

4.6. Data Encoding Schemes

Several data encoding methods exist that compress fax data and reduce the size of
the file to be transmitted, thereby increasing the speed of a fax transmission.

The following data encoding schemes are supported for transmitting fax data and
storing incoming fax data. Support for data encoding schemes varies by product;
for details, see Section 2.3. Product Features.

• Modified Huffman (MH) ITU-T T.4 Recommendation for Group 3 fax.

• Modified Read (MR) ITU-T T.4 Recommendation for Group 3 fax (transmit
only). If negotiated during Phase B of the T.30 protocol, MH and MMR
stored fax data is converted to MR line encoded data.

• Modified Modified Read (MMR) ITU-T T.6 Recommendation for Group 4
fax.

MH is a one-dimensional encoding scheme that compresses each horizontal scan
line of the image.

Modified Read (MR) and Modified Modified Read (MMR) are two-dimensional
encoding schemes that make use of the high degree of vertical correlation
between each scan line in the fax image to achieve a higher compression than
MH.

The highest data compression is achieved using the MMR encoding scheme.

Although not all fax machines can receive MR or MMR encoded data, some fax
products are capable of converting MH or MMR stored fax data to MH, MR, or
MMR line encoding schemes during fax transmission, and converting incoming
fax data to MH or MMR for data storage during fax reception.

NOTE: An error is returned to the application if unsupported encoding schemes
are used.

4. Background on Fax Communications

 59

4.7. Error Correction Mode (ECM)

Error Correction Mode (ECM) is a T.30 recommendation that provides more
efficient error handling for noisy or distorted fax transmissions. It enables the
receiver to check for and request retransmission of garbled data.

The ECM switch allows you to explicitly enable ECM T.30 protocol for a fax
transmission. The use of ECM for a fax transmission is determined during
Phase B negotiations and is based on the capabilities of the receiving station
(remote station).

The encoding scheme in which the data is presented for transmission does not
determine the phone line encoding scheme for data transmission. Rather, during
Phase B negotiations, the FC_TXCODING fax parameter values (fx_setparm()
function) and the receiving station’s capabilities determine the phone line
encoding scheme, and whether to use ECM.

MMR line encoding always requires the use of ECM.

For more information on setting the ECM switch, see fx_setparm() in
Chapter 12. Fax Library Function Reference.

4.8. Image Scaling

Image scaling refers to the process by which the original image dimensions are
reduced so that the full image (although in reduced form) is received at the
remote station. The aspect ratio of the original image is maintained.

Image scaling is used when the remote station’s recording width is smaller than
the original image for transmission.

Dialogic® Fax Software Reference

 60

4.9. Image Resolution

Resolution refers to the level of picture detail of a fax image. The standard
horizontal resolution is 203 lines per inch across the page. Two grades of
vertical resolution are available:

• high or fine resolution at 196 lines per inch

• low or coarse resolution at 98 lines per inch

For more information on setting image resolution, see Sections 5.7.5. Select
Resolution for Fax Transmission, 6.3.8. Resolution for Storing Incoming Fax
Data, and 10.6. DF_IOTT – Fax Transmit Data Description.

4.10. Subaddress Fax Routing

A subaddress is a T.30 message protocol that allows a fax to be routed to one or
more telephone numbers (or extensions) once it is received by the fax station.

This feature is not supported on Dialogic® DM3 Boards.

Subaddress fax routing allows applications to do the following:

• Transmit subaddress fax routing information: Applications can send a
20-character (maximum) string that contains a combination of one or more
phone numbers and/or extensions to allow a remote receiver with the
capability of using the T.30 subaddress message to route the received fax
data.

• Receive subaddress fax routing information: Based on the contents of the
T.30 subaddress message received from the transmitter, applications can
route incoming fax data to one or more phone numbers and/or extensions.

For more information on implementing this feature, see Sections 5.7.6. Enable
Subaddress Fax Routing and 6.2.6. Routing Fax Data to Multiple Subaddresses.

61

5. Implementing Send Fax Capability

5.1. Overview

This chapter and the next provide guidelines on how to use the Dialogic® Fax API
library to implement fax capability in an application. Fax library functions and
data structures used in completing a task are discussed in these chapters. For
complete reference information on functions and data structures, see Chapters
10. Fax Data Structures, 11. Using the Fax Library, and 12. Fax Library
Function Reference.

This chapter focuses on the send fax capability and covers the following topics:

• 5.2. Guidelines for Implementing Fax

• 5.3. Opening and Closing a Fax Channel Device

• 5.4. Setting the Initial State of a Fax Channel

• 5.5. Specifying Fax Data for Transmission in a DF_IOTT Table Entry

• 5.6. Setting Parameters for Send Fax

• 5.7. Setting the Bit Mask for a Send Fax Function

• 5.8. Issuing a Send Fax Function

• 5.9. Stopping a Fax Transmission or Reception

• 5.10. Replacing Bad Scan Lines

• 5.11. Creating User-Defined I/O Functions

Support for the features described in this guide varies by product. For a listing of
features by product, see Section 2.3. Product Features.

Dialogic® Fax Software Reference

 62

5.2. Guidelines for Implementing Fax

Follow these guidelines to implement fax capability in an application.

Table 6. Guidelines for Creating Fax Applications

Step Action

1. Open a channel for voice and a channel for fax. Open a network channel
if applicable.

2. If your system configuration uses the TDM bus, assign time slot routing
for TDM bus. The program flow for these system configurations is given
in Section 2.7. System Configuration Models.

3. Set the initial state of the fax channel using fx_initstat(). Following T.30
protocol, the caller is initially set to be the transmitter of a fax and the
called station is initially set to be the receiver of a fax.

4. Configure your fax device channel using fx_setparm(). Several
parameters are available to define values such as:

• fax header

• transmit and receive baud rate

• retransmission count

• preferred data transmission encoding scheme (over the phone line)

5. When sending a fax, define a DF_IOTT table entry for each document
(raw, TIFF/F, and ASCII) to be transmitted. This table entry provides a
description of the fax data to be transmitted and includes information
such as the type of data, number of pages, width, resolution, and Phase D
continuation values. You can use the fx_setiott() function to initialize
the DF_IOTT structure.

6. When sending ASCII documents, you can further describe the ASCII
data using the DF_ASCIIDATA structure. If you do not use this data
structure, certain default values are assumed for your ASCII document.

5. Implementing Send Fax Capability

 63

Step Action

7. Set up the call by using Voice API functions; that is, dial the number,
wait for rings, and so on.

8. Initiate send fax or receive fax on the channel using fx_sendfax(),
fx_rcv(), or fx_rcv2(). Send fax convenience functions can also be used
instead of fx_sendfax().

9. After the send fax and receive fax functions are completed, use the Voice
API functions to disconnect the call.

10. At the end of the application, close the open channels.

Details on these guidelines are provided later in this chapter. For information on
voice functionality, see the Dialogic® Voice API Library Reference.

5.3. Opening and Closing a Fax Channel Device

Before performing any operation on a fax channel device, open the device using
fx_open(). For additional information on device discovery on Dialogic® DM3
Boards, see Section 3.2. Device Discovery.

NOTE: Compatibility is maintained with older VFX products for applications
using the device handle from dx_open() to call Fax API functions.
However, for Dialogic® DSP fax and Dialogic® DM3 Fax products, you
must use fx_open() to open a device channel for fax processing. You
cannot use dx_open() for this operation. The same is true for
dx_close() and fx_close().

The fx_open() function returns a unique device handle for that particular open
process on that channel. The channel device handle is referred to as dev:

 int dev;
 dev = fx_open(channel_name,mode)

To use a fax library function on the channel, you must identify the channel with
its channel device handle, dev. The channel name is used only when opening a
channel, and all actions thereafter must use the handle dev.

Dialogic® Fax Software Reference

 64

You can open and use a fax channel without ever opening the board it is on. No
board-channel hierarchy is imposed by the driver.

In applications that create child processes from a parent process, device handles
are not inheritable from the parent process to the child process. Make sure that
devices are opened in the child process.

Both the voice and fax channel need to be open for fax resource capability.

The voice driver supports specific fax library functions with
synchronous/asynchronous modes of operation.

5.4. Setting the Initial State of a Fax Channel

Set the initial state of the fax channel using fx_initstat(). Following T.30
protocol, the caller station is initially set to be the transmitter (DF_TX) of a fax
and the called station is initially set to be the receiver (DF_RX) of a fax.

Use this function once before issuing the first send or receive function of a fax
session. Fax session refers to the completion of a fax call from Phase A through
Phase E, as defined by the T.30 protocol.

5.5. Specifying Fax Data for Transmission in a DF_IOTT
Table Entry

The DF_IOTT structure contains fields describing the fax data for one fax
document to be transmitted. Each structure describes one source for fax data: raw,
TIFF/F, or ASCII. A linked list or array of DF_IOTT structures (table) can be
created to specify multiple fax documents for transmission using the fax send
function, fx_sendfax(). A pointer argument in the fax send function points to the
DF_IOTT table.

The DF_IOTT table may contain entries specifying fax data of different widths,
resolutions, and encoding schemes. Before the fax data is transmitted, the validity
of each DF_IOTT table entry is verified.

For complete reference information on all fields in the DF_IOTT structure, see
Section 10.6. DF_IOTT – Fax Transmit Data Description.

5. Implementing Send Fax Capability

 65

The following topics on DF_IOTT are discussed:

• 5.5.1. Declaring a Table of DF_IOTT Entries

• 5.5.2. Connecting DF_IOTT Table Entries

• 5.5.3. Sending Data from Device or Memory

• 5.5.4. Specifying File Storage Format

• 5.5.5. Sending Raw Files

• 5.5.6. Sending TIFF/F Files

• 5.5.7. Sending ASCII Files

• 5.5.8. Specifying Encoding Scheme for Data Transmission

• 5.5.9. Setting Phase D Continuation Values

• 5.5.10. Merging Images from Different Sources or Sub-Page Addressing

5.5.1. Declaring a Table of DF_IOTT Entries

The following usage notes and cautions apply when declaring a table of
DF_IOTT entries:

• Declare the DF_IOTT entries that are passed as an argument to fx_sendfax()
as global or static in your application.

• Do not modify the DF_IOTT entries until after fx_sendfax() has completed.
The DF_IOTT entries must exist for the duration of the fax transmission.

• In asynchronous mode, the fax library must repeatedly access the DF_IOTT
entries during the fax transmission even after fx_sendfax() has returned
control to the application. Each channel controlled by the single process must
have its own separate DF_IOTT table.

• The io_type field of the last DF_IOTT table entry must contain an IO_EOT
to identify it as the last table entry.

• If the IO_EOT flag is set in the io_type field, then all the other flags are
ignored.

Dialogic® Fax Software Reference

 66

The fx_setiott() function can be used to initialize DF_IOTT structure values. For
more information, see Chapter 12. Fax Library Function Reference.

5.5.2. Connecting DF_IOTT Table Entries

When sending more than one fax document in a single fx_send() operation, you
must build a linked list or array of DF_IOTT structures (table).

This DF_IOTT table may represent a combination of data in MH or MMR
encoding schemes, or in ASCII format. The valid encoding scheme or format of
the stored files specified for transmission depends on the capability of the fax
product.

Specify the link between DF_IOTT table entries using the io_type logical OR
field as follows:

• If the next entry is linked to the current one, specify IO_LINK and use
io_nextp to point to the next DF_IOTT entry.

• If the entry is the last DF_IOTT entry in the chain, specify IO_EOT.

• If the next entry is contiguous, specify IO_CONT and set io_nextp and
io_prevp fields to NULL. This is the default setting.

If neither IO_EOT nor IO_LINK is specified, the next entry is contiguous (next
element in the array).

The fax library automatically builds the backward links for the DF_IOTT chain
when fx_sendfax() is issued. The io_prevp field of the first DF_IOTT entry is
set to NULL.

5.5.3. Sending Data from Device or Memory

Use the io_type field of the DF_IOTT structure to specify whether you are
sending data from a device or from memory.

• For data stored on a disk device, specify IO_DEV.

• For data stored in memory, specify IO_MEM.

5. Implementing Send Fax Capability

 67

IO_MEM is only valid when io_datatype is set for raw data (DF_RAW) or
ASCII (DF_ASCII).

5.5.4. Specifying File Storage Format

Use the io_datatype field of the DF_IOTT structure to specify the file storage
format for transmission as follows:

• For a raw, compressed unstructured file, specify DF_RAW.

• For a TIFF/F file, specify DF_TIFF.

• For an ASCII text file (converted to a fax image at the time of transmission),
specify DF_ASCII.

5.5.5. Sending Raw Files

Fax data stored as a raw file contains no information on the format of the fax
data. When the raw data is sent, the width, resolution, and encoding scheme for
the stored raw fax data must be specified in the DF_IOTT structure.

If the width and resolution of the data in the raw file do not match the capabilities
of the receiving station, automatic image scaling is provided.

Raw files negotiated for transfer in MH or MR line encoding scheme are sent
with a fill order of Least Significant Bit (LSB) first; End of Line (EOL)
sequences are not byte aligned.

Table 7. DF_IOTT Fields for Raw Files lists DF_IOTT fields used to send raw
files:

Dialogic® Fax Software Reference

 68

Table 7. DF_IOTT Fields for Raw Files

Field Value or Description

io_datatype DF_RAW

io_width Width of the stored raw fax data

io_resln Vertical resolution for the stored raw fax data

io_coding Encoding scheme for raw files: DF_MH for Modified
Huffman, DF_MR for Modified Read, and DF_MMR for
Modified Modified Read. See Section 5.5.8. Specifying
Encoding Scheme for more information.

io_offset The starting byte location in the file/memory for the data
transfer. Setting io_offset to zero starts the transfer from the
beginning of the file/memory.

io_length The number of bytes to transfer. This field is used with the
io_type value.

io_type The entry type:

• If io_type is set to IO_DEV and io_length is set to -1,
data is transferred until the end of the file is reached.

• If io_type is set to IO_MEM, io_length indicates the
exact number of bytes to transfer from the buffer.

• If io_type is set to IO_MEM, io_bufferp points to the
buffer in memory containing the raw image data.

5. Implementing Send Fax Capability

 69

5.5.6. Sending TIFF/F Files

The DF_IOTT structure may be set to send all or part of a single or multi-page
TIFF/F file.

The fax library defaults to sending a single TIFF/F page beginning at page zero.
To transmit TIFF/F files with a base 1 page numbering scheme, use the
FC_TFPGBASE channel parameter in fx_setparm().

To send a subset of a TIFF/F file, use the io_pgcount and io_firstpg fields; see
Table 8. DF_IOTT Fields for TIFF/F Files.

The io_pgcount value specifies the number of pages to send, and the io_firstpg
value specifies the first page number to send. If the value of io_firstpg is zero
(default), the number of pages specified by io_pgcount is sent. For example, to
send document pages 0, 1, and 2 of a TIFF/F file, set io_firstpg to 0 and
io_pgcount to 3.

If the width and resolution of the data in the TIFF/F file do not match the
capabilities of the receiving station, automatic image scaling is provided.

Table 8. DF_IOTT Fields for TIFF/F Files lists DF_IOTT fields used to send
TIFF/F files.

Table 8. DF_IOTT Fields for TIFF/F Files

Field Value or Description

io_datatype DF_TIFF

io_firstpg The first page number to send. The first page in the file is
referenced as page zero.

io_pgcount The number of pages to send. If io_pgcount is -1 (default),
all remaining pages in the file are sent.

io_coding This field is ignored. The fax library reads the TIFF/F tags
embedded in the file to determine the encoding scheme of
the stored data.

Dialogic® Fax Software Reference

 70

Handling Multi-Page TIFF/F Files

In a multi-page TIFF/F file transmission, all pages preceding the final page are set
to DFC_EOM (FC_SENDCONT parameter in fx_setparm()) on Dialogic®

Springware Boards and DFC_AUTO on Dialogic® DM3 Boards. The last selected
page of the specified TIFF/F file uses the Phase D continuation value set in
io_phdcont (DF_IOTT structure).

NOTE: On Dialogic® DM3 Boards, DFC_EOM is not supported.

To change the default intermediate page continuation value, set the
FC_SENDCONT parameter to a different value or to DFC_AUTO. For more
information, see Section 5.5.9. Setting Phase D Continuation Values and
fx_setparm().

Troubleshooting

For TIFF/F files to be sent successfully, the TIFF/F file must contain:

• all mandatory TIFF/F tags (or subset)

• valid TIFF/F tag values

• correct TIFF/F file header values

• valid PageNumber tag values

For a table of TIFF/F tags and values, see Appendix A. For information on error
codes returned, see Appendix D.

5.5.7. Sending ASCII Files

ASCII files are converted to a fax image at the time of fax transmission and sent
at the width, resolution, and other values as specified in DF_IOTT.

The fax image is encoded over the phone line in MH or in the encoding scheme
specified by the FC_TXCODING parameter of fx_setparm().

Converted ASCII files negotiated for transfer in the MH or MR line encoding
scheme are sent with a fill order of Least Significant Bit (LSB) first; End of Line
(EOL) sequences are byte aligned.

5. Implementing Send Fax Capability

 71

Table 9. DF_IOTT Fields for ASCII Files lists DF_IOTT fields used to send
ASCII files.

Table 9. DF_IOTT Fields for ASCII Files

Field Value or Description

io_datatype DF_ASCII

io_width Width of the fax image

io_resln Vertical resolution of the fax image

io_offset Byte offset in ASCII file/memory to start reading the ASCII
data. Setting io_offset to zero starts reading the ASCII data
from the beginning of the file/memory.

io_length Number of bytes of ASCII data to read, convert, and send.
This field is used with the io_type field.

io_type Entry type:

• If io_type is set to IO_DEV and io_length is set to -1,
data is transferred until the end of the file is reached.

• If io_type is set to IO_MEM, io_length indicates the
exact number of bytes of ASCII data to read from the
buffer. This allows the application to select a portion of an
ASCII file for transmission.

• If io_type is set to IO_MEM, io_bufferp points to the
buffer in memory containing the ASCII data.

io_datap A pointer to an optional DF_ASCIIDATA structure that
contains parameters and values for the ASCII data. If this
pointer is NULL, the DF_ASCIIDATA structure defaults
are used. For information on this structure, see Chapter
10. Fax Data Structures.

io_coding This field is ignored for ASCII file transfer.

Dialogic® Fax Software Reference

 72

5.5.8. Specifying Encoding Scheme for Data Transmission

The encoding scheme used in transmitting data over the phone line varies by
product. For product support, see Section 2.3. Product Features. The negotiated
encoding scheme is determined by the receiver’s capability.

The io_coding field in the DF_IOTT structure specifies the transmission
encoding scheme and is used only in sending raw files. The available values for
io_coding are:

• DF_MH – Modified Huffman

• DF_MR – Modified Read

• DF_MMR – Modified Modified Read

For TIFF/F and ASCII files, the io_coding field is ignored.

Some fax products provide the option to specify the preferred line encoding
scheme for fax transmission. This option uses the FC_TXCODING parameter in
fx_setparm(). For more information on FC_TXCODING, see Section
5.6.2. Specifying a Preferred Encoding Scheme for Transmission and the
fx_setparm() function reference.

The transmitting channel uses the FC_TXCODING value during Phase B
negotiation with the remote receiver. The fax image data provided via the
DF_IOTT structures is automatically converted to the negotiated line encoding
scheme at the time of transmission. The final negotiated line encoding scheme for
transmission depends on the receiver's capability.

To determine the negotiated line encoding scheme, call ATFX_CODING() after
the negotiation of Phase B is completed.

5. Implementing Send Fax Capability

 73

5.5.9. Setting Phase D Continuation Values

Each DF_IOTT table entry specifies a continuation value for Phase D (post-
message procedure) of the T.30 protocol in the io_phdcont field.

The io_phdcont field defines the way in which a following DF_IOTT entry is
connected to the current DF_IOTT entry. Based on the io_phdcont field value, a
message is sent from the transmitter to the receiver at the end of the current
DF_IOTT entry’s fax data. By selecting the appropriate value, you can transmit
more data from the next DF_IOTT entry or terminate the fax session.

The io_phdcont field can have one of the values listed in Table 10. Phase D
Continuation Values.

Table 10. Phase D Continuation Values

Value Description

DFC_AUTO Automatic Phase D Messaging. The fax driver
automatically determines the T.30 protocol Phase D
continuation value based on the width, resolution, and
position of the DF_IOTT entries. Possible values
automatically assigned are DFC_EOM, DFC_EOP, and
DFC_MPS.

This setting forces negotiation of Phase B when a page of a
different width and/or resolution is found. If the following
page has the same format as the current page, this setting
bypasses Phase B negotiation for each page and saves
transmit time.

This is the default setting on Dialogic® DM3 Boards.

DFC_MPG Merge-Page. The data specified for the DF_IOTT entry
directly following the current DF_IOTT entry is
concatenated to the same page.

DFC_EOP End of Procedure (T.30). Terminate current fax session;
progress to Phase E; and disconnect fax call.

Dialogic® Fax Software Reference

 74

Value Description

DFC_EOM End of Message (T.30). End of current fax document page;
more fax data to follow at different resolution or width;
return to Phase B and negotiate parameters for next fax
document page.

This setting forces the negotiation of Phase B after each
page.

This is the default setting on Dialogic® Springware Boards.

NOTE: On Dialogic® DM3 Boards,.DFC_EOM is not
supported.

DFC_MPS Multi-Page Signal (T.30). End of current fax document
page; next fax document page is in the same format as the
current page; proceed directly to Phase C.

This setting bypasses Phase B negotiation for each page and
saves transmit time.

Hints

• DFC_AUTO and DFC_MPG are Dialogic® Fax library terms, not T.30
protocol terminology.

• DFC_EOP, DFC_EOM, and DFC_MPS are provided for backward
compatibility and for applications where specific T.30 Phase D continuation
values are required.

• If a DF_IOTT entry specifies DFC_EOP as a Phase D continuation value,
but it is not the last entry in the table, ATDV_LASTERR() returns an
EFX_BADIOTT error.

More detail on each Phase D continuation value is provided next.

5. Implementing Send Fax Capability

 75

Automatic Phase D Messaging - DFC_AUTO

To enable automatic Phase D messaging, set the io_phdcont field in the
DF_IOTT entry to DFC_AUTO.

By specifying DFC_AUTO for each DF_IOTT entry, Phase D messaging is
simplified. The application does not have to determine the correct Phase D
continuation value for each DF_IOTT entry; the fax library does this
automatically. The fax library uses DFC_EOM, DFC_MPS, or DFC_EOP as the
continuation value based on the width, resolution, and position of the DF_IOTT
entry in the chain as well as the remote receiver's capability.

For example, if you specify DFC_AUTO for the last DF_IOTT entry in the chain,
the fax library automatically issues an EOP after transmitting all files specified in
the last DF_IOTT entry.

For fax data containing more than one image file per page (also known as sub-
page addressing), you must use DFC_MPG. For more information, see Section
5.5.10. Merging Images from Different Sources or Sub-Page Addressing.

Merge Page - DFC_MPG

To concatenate data for the DF_IOTT entry directly following the current
DF_IOTT entry to the same page, specify DFC_MPG as the Phase D
continuation value. This concatenation is also known as sub-page addressing.

When you use DFC_MPG, the DFC_MPG entries in a chain are followed by a
DF_IOTT entry that specifies DFC_AUTO or a Phase D continuation value
(DFC_EOP, DFC_EOM, or DFC_MPS) for the last entry of the multi-source fax
page.

For more information on sub-page addressing, see Section 5.5.10. Merging
Images from Different Sources or Sub-Page Addressing.

Dialogic® Fax Software Reference

 76

End of Procedure - DFC_EOP

To disconnect the fax call after Phase E is completed, specify DFC_EOP as the
Phase D continuation value in the io_phdcont field for a DF_IOTT entry.

After Phase E, the line is still open and the application sets the channel on-hook,
if necessary.

End of Message - DFC_EOM

To transmit more data in a different format, specify DFC_EOM as the Phase D
continuation value in the io_phdcont field. This value allows you to:

• Change the type of data you are sending for the next DF_IOTT entry in a
multiple page or multiple source fax transmission.

• Request turnaround polling fax transmission. After the current DF_IOTT
entry's fax data is sent, you can send a message to the receiver requesting that
the transmitter and receiver switch roles.

When initiating a turnaround polling fax transmission, set the io_phdcont
field to DFC_EOM for the last DF_IOTT entry. This allows the fax session to
return to Phase B after the initial fax data transmission is completed. The caller
application (transmitter) can then continue with the turnaround polling fax
transmission by issuing the fx_rcvfax() or fx_rcvfax2() function to indicate a
poll request; see Section 4.4.3. Turnaround Polling Fax Transmission.

The current width and resolution values for the fax session remain in effect until a
Phase D continuation value of DFC_EOM is reached in a DF_IOTT entry.

If the width and/or resolution of the data described in the next DF_IOTT entry is
different from the current entry, specify DFC_EOM in the current entry to
renegotiate Phase B.

5. Implementing Send Fax Capability

 77

Multi-Page Signal - DFC_MPS

To transmit more data in the same format as the current page, use DFC_MPS as
the Phase D continuation value in the io_phdcont field.

All fields of the next DF_IOTT entry should be set to transmit data of the same
format (image width, resolution, and so on) as the current DF_IOTT entry’s data.

NOTE: When transmitting a multi-page TIFF/F file from a single DF_IOTT
structure, the value specified in the io_phdcont field of the DF_IOTT
structure is the Phase D continuation value after all the pages specified
in that DF_IOTT structure are sent. The Phase D continuation value
used between each page of the multi-page TIFF/F file is specified by the
FC_SENDCONT parameter (see fx_setparm()).

5.5.10. Merging Images from Different Sources or Sub-Page
Addressing

A single page of fax data can be formed from images stored in different sources.
Each stored image is considered a sub-page.

To concatenate fax data described in the next DF_IOTT entry to the current
DF_IOTT entry on the same page, specify DFC_MPG in the io_phdcont field.

For example, to create a page of fax data from three different files (TIFF/F, raw,
and ASCII), three DF_IOTT entries are required. For each of the first two
DF_IOTT entries, set the io_phdcont field to DFC_MPG to concatenate the data
to the following DF_IOTT entry's data. For the third DF_IOTT entry, specify
DFC_AUTO or a Phase D continuation value (DFC_EOP, DFC_EOM, or
DFC_MPS) in the io_phdcont field for the last entry of the page.

NOTE: DFC_MPG and DFC_AUTO are Dialogic® Fax library terms, not T.30
protocol terminology.

The following rules and restrictions apply to sub-page addressing and the use of
the DFC_MPG value.

Dialogic® Fax Software Reference

 78

DFC_MPG Usage

• DFC_MPG cannot be specified for the last DF_IOTT entry in a chain or
array. The last entry in the chain or array should specify DFC_AUTO or a
T.30 protocol Phase D continuation value (DFC_EOP, DFC_EOM, or
DFC_MPS).

• A DF_IOTT entry for a TIFF/F file specifying DFC_MPG is limited to
sending a single page of data for the entry: a one-page TIFF/F file or one
page of a multi-page TIFF/F file.

When selecting a page from a multi-page TIFF/F file, set the io_firstpg field
to the desired page number and the io_pgcount field to 1.

Resolution

• The resolution for the fax data page is determined by the resolution specified
for the first sub-page entry or by the resolution specified in the fx_sendfax()
sndflag argument.

Width

• If the width of consecutive sub-pages is different, the sub-pages are scaled to
match the negotiated width.

Encoding Schemes

• Stored encoded data to be specified as a sub-page may be in one of the
supported encoding schemes: MMR, MH. Support for this feature varies by
product. For a listing of features by product, see Section 2.3. Product
Features.

ASCII Sub-Pages

• If you concatenate multiple ASCII sub-pages on the same page, the top
margin, bottom margin, page length, and page padding values specified in
the first DF_ASCIIDATA structure apply to the entire page.

• The left and right margins, font, and line spacing can be set differently for
each DF_ASCIIDATA structure sub-page. The margins specified for ASCII
sub-pages only apply to the ASCII data and do not affect the image sub-
pages.

5. Implementing Send Fax Capability

 79

• Multiple ASCII/image sub-pages concatenated to a single fax page may
result in an image that exceeds the length of a single page. This may occur
due to the choice of graphical attributes for the ASCII data, the size of the
ASCII sub-pages or a large image sub-page. Your application must specify
the correct choice of graphical attributes for the ASCII data and know how
much space will be taken by an image sub-page.

− If an image is present at the bottom of the page that exceeds the page
length, the page is extended.

− If the page length specified in the first ASCII sub-page is exceeded
while an ASCII sub-page is being processed, the remaining ASCII text is
placed on the next fax page.

• Formfeed characters in ASCII sub-pages are ignored.

If the DFC_MPG continuation value is not used properly, ATDV_LASTERR()
returns an EFX_BADIOTT error code.

5.6. Setting Parameters for Send Fax

The fax parameters described in this section are set using fx_setparm(). For
more information on fx_setparm(), see Chapter 12. Fax Library Function
Reference.

5.6.1. Selecting a Transmission Baud Rate

Using the FC_TXBAUDRATE parameter in fx_setparm(), you can specify an
initial transmission baud rate lower than the default, which is the highest
supported baud rate for a product. Issue fx_setparm() prior to issuing
fx_sendfax().

Support for transmission baud rate varies by product. For a listing of features by
product, see Section 2.3. Product Features.

5.6.2. Specifying a Preferred Encoding Scheme for Transmission

Using the FC_TXCODING parameter in fx_setparm(), you can specify the
preferred line encoding scheme in which to transmit fax data.

Dialogic® Fax Software Reference

 80

The available values for FC_TXCODING are:

• DF_MH - Modified Huffman

• DF_MR - Modified Read

• DF_MMR - Modified Modified Read

• DF_ECM - Error Correction Mode switch (logically OR this bit flag with an
encoding scheme)

• DF_JPEG_COLOR (not supported on Dialogic® Springware Boards)

• DF_JPEG_GREY (not supported on Dialogic® Springware Boards)

The transmitting channel uses the FC_TXCODING value during Phase B
negotiation with the remote receiver. The fax image data provided via the
DF_IOTT structures is automatically converted to the negotiated line encoding
scheme at the time of transmission. The final negotiated line encoding scheme for
transmission depends on the receiver's capability.

To determine the negotiated line encoding scheme, call ATFX_CODING() after
the negotiation of Phase B is completed.

ECM can be explicitly specified for Phase B negotiation in fax transmission. Use
of ECM is determined by the receiver’s capability.

The following guidelines are provided on the use of FC_TXCODING and the
ECM switch:

• When you send fax data using MH line encoding, scan line correction can
occur after each scan line.

• When you send fax data using MR line encoding, scan line correction can
occur after every other scan line (coarse resolution) or every fourth scan line
(fine resolution).

• For applications that require transmitted MH or MR encoded fax data to be
received error-free, set ECM as an option. Fax machines and applications
with ECM and MH or MR capability will receive the fax data exactly as it
was sent.

• Sending fax data using MMR line encoding always requires ECM.

5. Implementing Send Fax Capability

 81

Using ECM adds time to the fax transfer based on the size of the fax and the
quality of the transmission line.

The following chart shows the highest compression line encoding scheme for a
fax transmission determined by the FC_TXCODING value in the transmitter
application and the capabilities of the fax receiver.

 Fax Receiver Capabilities

FC_TXCODING
Parameter Setting

MH

MH
w/ECM

MR

MR
w/ECM

MMR
w/ECM

DF_MH MH MH MH MH MH

DF_MH | DF_ECM MH MH
w/ECM

MH MH
w/ECM

MH
w/ECM

DF_MR MH MH MR MR MR

DF_MR | DF_ECM MH MH
w/ECM

MR MR
w/ECM

MR
w/ECM

DF_MMR MH MH MR MR MMR
w/ECM

DF_MMR | DF_ECM MH MH
w/ECM

MR MR
w/ECM

MMR
w/ECM

Setting the FC_TXCODING parameter to DF_MMR|DF_ECM specifies that
ECM is used whenever the receiver is capable of ECM for receiving a fax at
MMR, MR, or MH line encoding.

Setting the FC_TXCODING parameter to DF_MMR specifies that ECM is not
used even if the receiver is capable of ECM for receiving a fax at MR or MH line
encoding. Note that MMR line encoding always requires ECM.

Dialogic® Fax Software Reference

 82

5.6.3. Defining a Fax Page Header

Fax page header parameters can be set to print a special line of text in a
compressed font at the top of every transmitted fax page. This is referred to as the
user-definable page header option in Table 1. Fax Features and Specifications.

There are two possible formats for the fax page header, which is controlled by the
FC_HDRATTRIB and other FC_HDRname parameters in fx_setparm(). The
default format specified in FC_HDRATTRIB is DF_HDRFMT1.

To create a custom fax page header, set the FC_HDRATTRIB parameter to
DF_HDRFMT2 and set the FC_HDRUSER2 parameter to the string to be
displayed. The string in FC_HDRUSER2 may contain %R and %P to display the
remote ID and page number.

For more information, see the parameter descriptions in the fx_setparm()
function reference section.

The Telephone Consumer Protection Act requires that a fax transmission include
specific information identifying the sender. For more information on the
requirements, see Section 2.8. Complying with the Telephone Consumer
Protection Act.

5.6.4. Retransmitting a Fax

When a fax page is not successfully received, the fax receiver sends a Phase D
status value of DFS_RTN (Retrain Negative) or DFS_PIN (Procedure Interrupt
Negative) to the transmitter. The fax transmitter can automatically retransmit a
fax page that is not successfully received.

If operator intervention (also called voice request) is disabled, only RTN (Retrain
Negative) is sent to indicate unsuccessful reception of a fax page.

The number of attempts to retransmit pages from a file is set by the
FC_RETRYCNT parameter in fx_setparm(); the default is zero retries. The
unsuccessfully received page can be retransmitted once (DF_RETRY1), twice
(DF_RETRY2), or three times (DF_RETRY3).

5. Implementing Send Fax Capability

 83

After the specified number of retry attempts, you can set the transmitter to
disconnect the fax call. To do so, logically OR the DF_RETRYn value with the
DF_RETRYDCN value.

Retry counter parameter values are set with fx_setparm() and read with
fx_getparm().

5.7. Setting the Bit Mask for a Send Fax Function

The sndflag parameter of the fx_sendfax() function is a logical OR bit mask that
can be set to indicate one or more conditions. For more information, see the
following:

• 5.7.1. Mode of Operation

• 5.7.2. Enable Phase B Event Generation

• 5.7.3. Enable Phase D Event Generation

• 5.7.4. Enable Operator Intervention (Voice Request)

• 5.7.5. Select Resolution for Fax Transmission

• 5.7.6. Enable Subaddress Fax Routing

5.7.1. Mode of Operation

Two modes of operation are available for the send fax functions:

• synchronous mode – sndflag bit mask set to EV_SYNC

• asynchronous mode – sndflag bit mask set to EV_ASYNC

In synchronous mode, the function does not return control to the application until
fx_sendfax() completes (zero returned) or an error has occurred (-1 returned);
see Section 11.3. Error Handling.

In asynchronous mode, the function returns control to the application
immediately after invocation. fx_sendfax() returns a zero to indicate successful
invocation and a -1 to indicate an invocation error. Once control is returned to the
application, the application may continue to send fax data on the specified device
or issue voice/fax calls on other devices. The completion (or error termination) of

Dialogic® Fax Software Reference

 84

fx_sendfax() is indicated to the application via events generated by the
Dialogic® Standard Runtime Library.

The following events are valid for fx_sendfax():

Event Indicates…

TFX_FAXERROR Error in processing

TFX_FAXSEND Successful completion of fx_sendfax()

See the Dialogic® Standard Runtime Library API Library Reference for event
information.

5.7.2. Enable Phase B Event Generation

To enable Phase B event generation, specify DF_PHASEB in sndflag of the
fx_sendfax() function.

When this bit is set, a TFX_PHASEB event is generated each time Phase B of the
T.30 protocol is completed while fx_sendfax() is transmitting fax data.

If you issue fx_sendfax() in synchronous mode (EV_SYNC), you must install an
event handler to handle Phase B events using the sr_enbhdlr() function of the
Dialogic® Standard Runtime Library. For event handler details, see the Dialogic®

Standard Runtime Library API Library Reference.

When a TFX_PHASEB event occurs, you can call these fax extended attributes
for the following information:

Fax Extended Attribute Returns…

ATFX_BSTAT() Phase B status information

ATFX_CODING() Negotiated line encoding scheme for the data transfer

ATFX_SPEED() Baud rate of the data transfer

ATFX_STATE() State of the fax channel device

5. Implementing Send Fax Capability

 85

5.7.3. Enable Phase D Event Generation

To enable Phase D event generation, specify DF_PHASED in sndflag of the
fx_sendfax() function.

When this bit is set, a TFX_PHASED event is generated each time Phase D of the
T.30 protocol is completed during the send fax operation. A Phase D event is
generated for every page except for the last page. After the last page, if your
application is running in synchronous mode, fx_sendfax() completes; or in
asynchronous mode, a TFX_FAXSEND event occurs.

Phase D events allow the application to monitor the progress of the fax
transmission on a page-by-page basis.

If you issue fx_sendfax() in synchronous mode (EV_SYNC), you must install an
event handler to handle Phase D events using the sr_enbhdlr() function of the
Dialogic® Standard Runtime Library. See the Dialogic® Standard Runtime
Library API Library Reference for event handler details.

When a TFX_PHASED or TFX_FAXSEND event occurs, you can call these fax
extended attributes for the following information:

Fax Extended Attribute Returns…

ATFX_PHDCMD() Phase D command

ATFX_PHDRPY() Phase D reply

ATFX_WIDTH() Width of the page

ATFX_RESLN() Resolution of the page

ATFX_SCANLINES() Total number of scan lines transferred

ATFX_BADSCANLINES() Number of bad scan lines transferred per page

ATFX_SPEED() Baud rate of the data transfer

ATFX_STATE() State of the fax channel device

ATFX_TRCOUNT() Number of bytes transferred

Dialogic® Fax Software Reference

 86

5.7.4. Enable Operator Intervention (Voice Request)

This feature is not supported on Dialogic® DM3 Boards.

You can enable your application to send or receive an operator intervention
(voice request) from a remote station.

DF_ACCEPT_VRQ in the sndflag argument enables the application to accept an
operator intervention request from the remote station.

DF_ISSUE_VRQ in the sndflag argument enables the application to send an
operator intervention request (DFS_PRI_EOP) to the remote station after the last
fax page of the fx_sendfax() fax session is transmitted.

If fx_sendfax() completes successfully, the function returns a 0 in synchronous
mode or a TFX_FAXSEND event occurs in asynchronous mode. The fax session
is completed, but the connection between the two stations is still active for voice
communication.

To determine the reason for termination of fx_sendfax(), call
ATFX_TERMMSK(). This function returns a TM_FXTERM bitmap value
indicating normal completion of the function, or TM_VOICEREQ indicating
completion due to a voice request issued or received.

5.7.5. Select Resolution for Fax Transmission

When the sndflag argument specifies a resolution, all fax data associated with the
fx_sendfax() call is transmitted at this resolution regardless of any resolutions
previously specified. The resolution specified by the sndflag argument can be:

• DF_TXRESHI: high vertical resolution (fine) – 196 lines or pels per inch
• DF_TXRESLO: low vertical resolution (coarse) – 98 lines or pels per inch
• DF_TXRES_300_300: 300 (horizontal) x 300 (vertical) resolution

(supported on Dialogic® DM3 Boards only)
• DF_TXRES_200_400: 200 (horizontal) x 400 (vertical) resolution

(supported on Dialogic® DM3 Boards only)

The DF_IOTT entries for the fax may contain an arbitrary combination of raw,
TIFF/F, and ASCII files at different resolutions, specified in the io_resln field for

5. Implementing Send Fax Capability

 87

raw and ASCII files. By setting the resolution bit in sndflag, the entire chain of
DF_IOTT entries is sent at the specified resolution.

For example, if the DF_IOTT array specifies a TIFF/F file at high resolution
followed by a raw file at low resolution, after the transmission of the TIFF/F file,
Phase B would be entered to negotiate the change in resolution for the raw file.
By setting sndflag to DF_TXRESLO, the entire fax session takes place at low
resolution. In this case, the high resolution data in the TIFF/F file is internally
converted to low resolution at the time of transmission.

By default, the resolution in the TIFF/F file or in the DF_IOTT entry is used in
the fax transmission. The sndflag argument overrides this resolution.

5.7.6. Enable Subaddress Fax Routing

This feature is not supported on Dialogic® DM3 Boards.

As described in Section 4.10. Subaddress Fax Routing, a subaddress is a T.30
message protocol that allows a fax to be routed to one or more telephone numbers
(or extensions) after it is received by the fax machine or server.

The T.30 subaddress message is a 20-character string containing a combination of
one or more phone numbers and/or extensions sent during Phase B negotiation.

To enable subaddress fax routing during fax transmission:

• Set the FC_ENDDOC parameter in fx_setparm() to
DFS_REMOTESUBADDR.

• Set the FC_SENDCONT parameter in fx_setparm() to DFC_AUTO.

• Set the DF_TXSUBADDR bit in the sndflag parameter of fx_sendfax().

When subaddress fax routing is enabled, the fax library issues an MPS
(DFC_MPS) message between each page of a multiple page TIFF/F file. The
width and resolution of the fax transmission are set by the first TIFF/F page and
remain the same for the entire fax transmission regardless of changes in width or
resolution.

Dialogic® Fax Software Reference

 88

To return Phase B status after a TFX_PHASEB event, use the ATFX_BSTAT()
extended attribute function. To return the setting of the fax channel for
subaddress fax routing, use the FC_REMOTESUBADDR parameter (Windows®
only) in fx_getparm().

Sending Fax to a Single Subaddress

To send subaddress fax routing information with a fax transmission to a single
subaddress, use the following procedure:

1. Initialize a table of DF_IOTT entries for fax data to be sent to the
subaddress.

For the last entry in a table of DF_IOTT entries, set io_phdcont to
DFC_EOP (End of Procedure) and io_type to IO_EOT.

2. Set the following fax parameters using fx_setparm():

• Set the FC_TXSUBADDR parameter to the desired subaddress: phone
number and/or extension.

• If a multi-page fax is to be sent to the subaddress, set the
FC_SENDCONT parameter value to DFC_AUTO.

DFC_AUTO automatically sets the FC_SENDCONT parameter value to
DFC_MPS, allowing all pages of the multi-page fax to be transmitted to
the specified subaddress in the least amount of time.

3. Set the initial state of the fax channel to transmitter using fx_initstat().

4. Dial the number of the receiving fax machine/server. See the Dialogic® Voice
API Library Reference for functions to use for dialing.

5. Call fx_sendfax() with the DF_TXSUBADDR bit set in the sndflag
parameter.

5. Implementing Send Fax Capability

 89

Sending Fax to Multiple Subaddresses

To send subaddress fax routing information with a fax transmission to multiple
subaddresses, use the following procedure:

1. Initialize a table of DF_IOTT entries for fax data to be sent to the
subaddress.

The specified fax data is sent to the first subaddress. For the last entry in a
table of DF_IOTT entries, set io_phdcont to DFC_EOM (End of Message)
and io_type to IO_EOT (last DF_IOTT entry). The DFC_EOM causes
renegotiation of Phase B and indicates to the receiver that more fax data will
be transferred.

2. Set the following fax parameters using fx_setparm():

• Set the FC_TXSUBADDR parameter to the desired subaddress: phone
number(s) and/or extension(s).

• If a multi-page fax is to be sent to the subaddress, set the
FC_SENDCONT parameter value to DFC_AUTO.

DFC_AUTO automatically sets the FC_SENDCONT parameter value to
DFC_MPS, allowing all pages of the multi-page fax to be transmitted to
the specified subaddress in the least amount of time.

3. Set the initial state of the fax channel to transmitter using fx_initstat().

4. Dial the number of the receiving fax machine/server. See the Dialogic® Voice
API Library Reference for information on dialing.

5. Call fx_sendfax() with the DF_TXSUBADDR bit set in the sndflag
parameter. After fx_sendfax() completes, the fax session is still active.

6. Call fx_setparm() to update the FC_TXSUBADDR parameter with the new
subaddress.

7. Initialize a DF_IOTT table for fax data for the new subaddress.

NOTE: To route more than two DF_IOTT tables of fax data to different
subaddresses, set io_phdcont for each entry in the table to
DFC_EOM (End of Message) as in Step 1 above except for the final
entry in the last DF_IOTT table. Set io_phdcont for the final entry
to DFC_EOP and io_type to IO_EOT to end the fax session.

Dialogic® Fax Software Reference

 90

8. Call fx_sendfax() with the DF_TXSUBADDR bit set in the sndflag
parameter.

9. Repeat steps 2 through 8 until all fax data has been sent to all specified
subaddresses during the same fax session.

5.8. Issuing a Send Fax Function

After defining fax data in one or more DF_IOTT structures and following other
recommended steps as outlined in Section 5.2. Guidelines for Implementing Fax,
you can issue the fx_sendfax() function in your application.

The fx_sendfax() function transmits fax data as specified by a table of DF_IOTT
entries. This function can be issued by the caller application or the called
application. The called application issues fx_sendfax() in a polling fax
transmission or to block incoming faxes. See Section 4.4. Types of Fax
Transmission for more information on the types of fax transmission and
application flow.

When the initial fax connection is made, the caller station is initially set as the fax
transmitter and the called station as the fax receiver.

5.8.1. Send Fax Issued by the Transmitter

The transmitter (which can be the caller or the called application depending on
the type of fax transmission) issues fx_sendfax() to send fax data to the receiver
as specified by DF_IOTT entries. Any receiver incompatibility disconnects the
call and ATDV_LASTERR() returns an error code of EFX_DISCONNECT.

In synchronous mode, the function returns a -1 to indicate that an error has
occurred. In asynchronous mode, a TFX_FAXERROR event is generated.

In a turnaround polling fax transmission, set the io_phdcont field to
DFC_EOM for the last DF_IOTT entry before issuing the initial fx_sendfax()
function. For more information, see Sections 4.4.3. Turnaround Polling Fax
Transmission and 5.5.9. Setting Phase D Continuation Values.

5. Implementing Send Fax Capability

 91

5.8.2. Send Fax Issued by the Called Application

A called application issues an initial fx_sendfax() function to the caller
application to indicate that the called application is only capable of transmitting a
fax.

• If the caller is capable of receiving or wishes to receive a fax transmission,
the caller issues an fx_rcvfax() or fx_rcvfax2() function to receive the fax
data.

• If the caller is not capable of receiving or does not wish to receive a fax
transmission, the called application disconnects the fax call.

The called application can also issue fx_sendfax() in a polling fax transmission.
For more information, see Sections 4.4.2. Polling Fax Transmission and
4.4.3. Turnaround Polling Fax Transmission.

5.8.3. Status of Fax Transmission

Status information on the fax transmission is available using the fax extended
attribute functions.

• During fax transmission, the state of the channel device is set to
CS_SENDFAX. To obtain the current state of the channel device, issue
ATFX_STATE().

• If the function successfully completes, the final Phase D status is available
using ATFX_PHDCMD() and ATFX_PHDRPY(). For more information
on Phase D status values, see Appendix B.

• To obtain a pointer to the last DF_IOTT entry that was processed, issue
ATFX_LASTIOTT().

5.9. Stopping a Fax Transmission or Reception

At any time, you can stop a fax transmission or reception in progress by issuing
the fx_stopch() function.

Dialogic® Fax Software Reference

 92

5.10. Replacing Bad Scan Lines

Before stored MH or MR encoded fax data is transmitted, the fax library checks
the integrity of every scan line in the data stream. Scan lines that do not have the
correct pixel count are replaced. (If the image was stored without scan line errors,
the data being transmitted should have no bad scan lines.)

When a scan line error is detected, Bad Line Replacement (BLR) automatically
replaces the bad scan line(s) with the last scan line that had the correct pixel
count.

To determine the number of bad scan lines detected and replaced, call
ATFX_BADSCANLINES().

MMR encoded data always requires the use of T.30 Error Correction Mode
(ECM). The capabilities of the receiving station determine if ECM is used.

5.11. Creating User-Defined I/O Functions

In your fax application, you may want to replace standard I/O functions lseek(),
read(), and write() with your own I/O functions.

To register user-defined I/O functions, set up a DF_UIO structure with pointers to
the application’s own seek, read, and write functions. Call fx_setuio() to register
the functions with the fax library. The fax library stores the pointers to the user-
defined seek, read, and write functions and calls them with the same arguments as
it would call the standard I/O seek and read functions.

For user-defined I/O functions to access fax data, set the IO_UIO bit in the
io_type field of the DF_IOTT structure. The io_fhandle field of the DF_IOTT
structure specifies the file descriptor passed to the functions.

NOTE: User-defined I/O functions are called only for the DF_IOTT table entries
with IO_UIO bit set in io_type. For all other DF_IOTT table entries, the
standard I/O functions are used.

For more information on the DF_UIO structure, see Section 10.8. DF_UIO –
User-Defined I/O.

93

6. Implementing Receive Fax
Capability

6.1. Overview

This chapter provides guidelines on how to use the Dialogic® Fax API library to
implement receive fax capability in an application. Fax library functions and data
structures used in completing a task are included in this chapter. For complete
reference information on functions and data structures, see Chapters 10. Fax
Data Structures, 11. Using the Fax Library, and 12. Fax Library Function
Reference.

The following topics are covered in this chapter:

• 6.2. Setting Parameters for Receive Fax

• 6.3. Setting the Bit Mask for a Receive Fax Function

• 6.4. Issuing a Receive Fax Function

• 6.5. Creating User-Defined I/O Functions

Support for the features described varies by product. For a listing of features by
product, see Section 2.3. Product Features.

Dialogic® Fax Software Reference

 94

6.2. Setting Parameters for Receive Fax

The fax parameters described in this section are specified using fx_setparm().

• 6.2.1. Specifying Encoding Scheme to Store Incoming Fax Data

• 6.2.2. Storing Incoming Fax Data

• 6.2.3. Setting Acceptable Percentage of Bad Scan Lines

• 6.2.4. Selecting Preferred Maximum Receive Baud Rate

• 6.2.5. Replacing Bad Scan Lines

• 6.2.6. Routing Fax Data to Multiple Subaddresses

• 6.2.7. Setting Fax Modem Receive Level

6.2.1. Specifying Encoding Scheme to Store Incoming Fax Data

The incoming fax data may be stored in one of the following encoding schemes
based on the capability of the receiving station: MH or MMR.

On most Dialogic® products, the encoding scheme for storing incoming fax data
is determined by the FC_RXCODING parameter in the fx_setparm() function.
For details on product support, see Section 2.3. Product Features.

• When incoming fax data is stored in TIFF/F files, the encoding scheme
specified in the FC_RXCODING parameter is included in the TIFF/F tags
embedded in the stored file. For TIFF/F tag details, see Appendix A.

• When incoming fax data is stored in raw image files, the application must
keep track of the encoding scheme by referring to the value specified in the
FC_RXCODING parameter.

The fax software automatically converts the incoming fax data to the encoding
scheme specified in the FC_RXCODING parameter regardless of the encoding
scheme negotiated during Phase B of the fax transfer.

To determine the negotiated line encoding scheme, call ATFX_CODING() after
the negotiation of Phase B has completed.

6. Implementing Receive Fax Capability

 95

6.2.2. Storing Incoming Fax Data

Incoming fax data is delimited by Phase D command values sent from the
transmitter to the receiver. The transmitter application sets these values using the
FC_ENDDOC parameter in fx_setparm().

Storing in a Single TIFF/F File

For most applications, a multi-page fax document is stored in a single TIFF/F file.

The DFS_EOP value indicates to the receiver that all incoming pages will be
stored in a single, multi-page TIFF/F file. This is the default setting.

For information on specifying the file storage format (TIFF/F or raw), see Section
6.3.1. File Format for Incoming Fax Data.

Storing in Multiple TIFF/F Files

An application can store each page (or group of pages) of a multi-page fax in a
separate TIFF/F file.

The DFS_MPS and/or DFS_EOM value tells the receiver to store individual
pages of a multi-page fax in separate TIFF/F files. When you execute
fx_rcvfax() or fx_rcvfax2() in a loop delimited by a DFS_MPS or DFS_EOM
(and the default, DFS_EOP), the application will specify a different file each time
the receive fax function is issued.

Dialogic® Fax Software Reference

 96

Incoming fax data stored as TIFF/F files can be delimited by the following
Phase D command values, sent from the transmitter to the receiver:

• DFS_EOP (End of Procedure) - default. Indicates to the receiver that the fax
procedure has completed. This setting stores all incoming pages into a single
multi-page TIFF/F file. The fax phone line is still active after a DFS_EOP.
To terminate the call, set the voice channel on-hook.

• DFS_MPS (Multi-Page Signal). Indicates to the receiver that there is more
fax data to follow, and the next page is in the same format as the page just
received. The application proceeds to T.30 Phase C.

• DFS_EOM (End of Message). Indicates to the receiver that there is more fax
data to follow. The application returns to T.30 Phase B and negotiates
parameters for the next page.

By default, incoming fax data is delimited by the reception of DFS_EOP from the
transmitter. For example, if the FC_ENDDOC parameter is set to DFS_EOM, the
incoming fax is delimited on DFS_EOM as well as the default value of
DFS_EOP.

When the receiver station receives DFS_EOM or DFS_EOP from the transmitter,
fx_rcvfax() completes, returns a 0 (in synchronous mode) or a TFX_FAXRECV
event is generated (in asynchronous mode), and control is returned to the
application.

The application must then check the Phase D command using
ATFX_PHDCMD() to determine if more fax pages will follow or if the last
page of the fax has been stored (DFS_EOP). If there are more fax pages to
follow, the application must issue another fx_rcvfax() function specifying a
different file for storage. When the last page of the fax has been stored, a
DFS_EOP value is present indicating the end of fax reception.

NOTE: If fx_sendfax() is called to send a multiple-page TIFF/F with
io_phdcont=DFC_EOM, once the first page of the fax is received, a
TDX_PHASED event is issued but no TFX_FAXRECV event is
returned. TFX_FAXRECV is returned when all fax pages are
transmitted.

6. Implementing Receive Fax Capability

 97

Storing in a Raw File

Incoming fax data stored in a raw file contains unstructured fax data that does not
conform to TIFF/F or other formats.

Incoming fax data stored in a raw file in MH or MMR encoding is written with a
fill order of LSB (Least Significant Bit) first.

• For MH: EOL (end of line) sequences are not byte aligned.

• For MMR: No EOL (end of line) sequences, byte alignment, or zero fill.

Storage in raw files is automatically delimited by all of the following Phase D
status command values sent from transmitter to receiver. This means that the
receive function returns control to the application on all FC_ENDDOC values.
The transmitter application sets these values using the FC_ENDDOC parameter
in fx_setparm().

• DFS_EOM (End of Message)

• DFS_EOP (End of Procedure)

• DFS_MPS (Multi-Page Signal)

At the end of every fax page received for storage in a raw file, the fx_rcvfax()
function completes, returns a 0 (in synchronous mode) or a TFX_FAXRECV
event occurs (in asynchronous mode). The application must then check the
Phase D command using ATFX_PHDCMD() to determine if more fax pages
will follow (DFS_EOM or DFS_MPS) or if the last page of the fax has been
stored (DFS_EOP). If there is another page of fax data to follow, the application
must issue another fx_rcvfax() function for that page specifying a different raw
file for storage. When the last page of the fax has been stored, a DFS_EOP
Phase D value is present indicating the end of fax reception.

Dialogic® Fax Software Reference

 98

6.2.3. Setting Acceptable Percentage of Bad Scan Lines

You can specify the percentage of bad scan lines acceptable during a fax page
reception before an RTP (Retrain Positive) and an RTN (Retrain Negative)
message are sent to the transmitter at the completion of the fax page. To set this
percentage, use the fax channel parameters FC_RTP and FC_RTN in
fx_setparm().

To determine the number of pages received that required an RTN (Retrain
Negative) to be returned to the remote station, call the fax extended attribute
ATFX_RTNPAGES() (this function not supported on Dialogic® DM3 Boards).

6.2.4. Selecting Preferred Maximum Receive Baud Rate

You can specify the maximum preferred baud rate for fax data reception.

To receive fax transmissions at a lower baud rate than the default, set the
FC_RXBAUDRATE parameter in fx_setparm() to one of the supported baud
rates. The default baud rates are the highest supported rates for a product (see
Section 2.3. Product Features).

This parameter is useful when receiving fax transmissions over known noisy
lines. By setting a lower baud rate than the default, no time is wasted in
negotiating baud rates.

6. Implementing Receive Fax Capability

 99

6.2.5. Replacing Bad Scan Lines

Noise on the telephone line can cause scan line errors. During the reception of
MH encoded fax data, the integrity of every scan line in the data stream is
checked. When a scan line error is detected, Bad Line Replacement (BLR)
automatically replaces the bad scan line(s) with the last correctly received scan
line.

MMR encoded data uses T.30 Error Correction Mode (ECM), which helps to
ensure error-free transfer. The fax library verifies the integrity of the MMR
encoded data before storage. The capabilities of the remote station determine if
ECM is used.

To return the number of bad scan lines detected and replaced on a received page,
call the fax extended attribute ATFX_BADSCANLINES().

If the number of bad scan lines received per page is higher than the percentage of
bad scan lines you will accept, the fax channel may request retraining before
receiving the next page or retransmission of the current page (see the FC_RTN
and FC_RTP parameters in fx_setparm()).

NOTE: When fax data is stored in a TIFF/F file, the bad scan line count is
written to the BadFaxLines TIFF/F tag. To verify that the bad scan lines
were replaced before storage, the CleanFaxData TIFF/F tag is set to
zero.

6.2.6. Routing Fax Data to Multiple Subaddresses

This feature is not supported on Dialogic® DM3 Boards.

When the T.30 subaddress message is received from the transmitter during
Phase B negotiation, the fax data following the negotiation can be routed to the
subaddress specified.

One model for implementing the subaddress feature is to store the subaddresses in
a file and the incoming fax data in separate files, one file containing the fax data
for each subaddress. After receiving fax data for all subaddresses and the fax
session is complete, the application can distribute the fax data as specified in each
subaddress.

Dialogic® Fax Software Reference

 100

Set the application to receive fax data containing subaddress information as
follows:

1. Set the FC_ENDDOC fax parameter to DFS_REMOTESUBADDR in
fx_setparm() to keep fax pages destined for different subaddresses in
separate files. When this bit is set and a T.30 subaddress message is received
from the transmitter, control is returned to the application after fx_rcvfax()
or fx_rcvfax2() receives the fax data specified for the subaddress sent
during the last Phase B negotiation.

NOTE: When the FC_ENDDOC parameter is set with the
DFS_REMOTESUBADDR flag and an EOM is received by the
remote fax machine, the application may receive both a
TFX_PHASED and a TFX_FAXRECV event for the same page.
Under normal circumstances the last TFX_PHASED is replaced by
the TFX_FAXRECV, but in this case the fx_rcvfax() or
fx_rcvfax2() function will not know that it needs to return to the
application until after it has already completed Phase D.

2. Set the DF_PHASEB rcvflag bit in fx_rcvfax() or fx_rcvfax2(). This bit
enables the generation of Phase B events.

3. After a Phase B event is generated, call the ATFX_BSTAT() function to see
if the DFS_REMOTESUBADDR bit flag is set. If this bit is set, the
incoming fax data contains valid subaddress information.

4. Store the subaddress information contained in the fx_getparm()
FC_REMOTESUBADDR fax parameter (Windows® only) for later use
when directing the fax data to the phone number(s) and/or extension(s)
specified in the subaddress message.

5. When fx_rcvfax() or fx_rcvfax2() completes, check the Phase D command
from the sender using ATFX_PHDCMD(). If the Phase D command is not
DFS_EOP (End Of Procedure), call fx_rcvfax() or fx_rcvfax2() again to
receive more fax data from the transmitter.

The application must call fx_rcvfax() immediately after subaddress
information is received, or an EFX_NXTCMDRX error may be generated
indicating a time-out while waiting for the next fx_rcvfax() call.

6. Continue to check for T.30 SUB messages during Phase B negotiation, and
collect the subaddress information for each subaddress during the fax session

6. Implementing Receive Fax Capability

 101

for later routing. When a DFS_EOP is returned by ATFX_PHDCMD() in
Step 5, no additional fax data is sent for the fax session.

6.2.7. Setting Fax Modem Receive Level

This feature is not supported on Dialogic® DM3 Boards.

You can specify the fax modem receiver sensitivity from -43 dBm to -47 dBm.
(Default is -46 dBm.) To set this, use the FC_MDM_RX_LVL parameter in
fx_setparm().

6.3. Setting the Bit Mask for a Receive Fax Function

The rcvflag parameter of the fx_rcvfax() and fx_rcvfax2() functions is a logical
OR bit mask that can be set to indicate one or more conditions. For more
information, see the following:

• 6.3.1. File Format for Incoming Fax Data

• 6.3.2. Mode of Operation

• 6.3.3. Enable Phase B Event Generation

• 6.3.4. Enable Phase D Event Generation

• 6.3.5. Enable Operator Intervention (Voice Request)

• 6.3.6. Selectable Receive Width

• 6.3.7. Selectable Receive Length

• 6.3.8. Resolution for Storing Incoming Fax Data

6.3.1. File Format for Incoming Fax Data

Once received, fax data can be stored in one of the following formats:

• raw, unstructured file – rcvflag bit mask set to DF_RAW

• TIFF/F structured, formatted file – rcvflag bit mask set to DF_TIFF

Dialogic® Fax Software Reference

 102

For information on delimiters for multi-page fax documents, see Section
6.2.2. Storing Incoming Fax Data.

6.3.2. Mode of Operation

Two modes of operation are available for the receive fax functions:

• synchronous mode – rcvflag bit mask set to EV_SYNC

• asynchronous mode – rcvflag bit mask set to EV_ASYNC

In synchronous mode (EV_SYNC), the function does not return control to the
application until fx_rcvfax() completes or an error has occurred.

In asynchronous mode (EV_ASYNC), the function returns control to the
application immediately after it is invoked. The fx_rcvfax() function returns a
zero to indicate successful invocation and a -1 to indicate an invocation error. If
successfully invoked, the function returns control to the application and the
specified device continues to receive fax data. Once control is returned to the
application, the application may issue voice/fax calls on other devices. The
completion (or error termination) of fx_rcvfax() is indicated through events
generated by the Dialogic® Standard Runtime Library.

The following events are valid for fx_rcvfax():

Event Description

TFX_FAXERROR Error in processing

TFX_FAXRECV Successful completion of fx_rcvfax()

See the Dialogic® Standard Runtime Library API Library Reference for event
handling information.

6. Implementing Receive Fax Capability

 103

6.3.3. Enable Phase B Event Generation

To enable Phase B event generation, specify DF_PHASEB in rcvflag of the
receive fax function.

When this bit is set, a TFX_PHASEB event is returned each time Phase B is
completed during the receive fax operation.

When a TFX_PHASEB event occurs, the application can call these fax extended
attributes for the following information:

Fax Extended Attribute Indicates

ATFX_BSTAT() Phase B information available

ATFX_CODING() Negotiated line encoding scheme for the data transfer

ATFX_SPEED() Baud rate of the data transfer

ATFX_STATE() State of the fax channel device

If you issue fx_rcvfax() or fx_rcvfax2() in synchronous mode (EV_SYNC),
you must install an event handler to handle Phase B events using sr_enbhdlr()
of the Dialogic® Standard Runtime Library. See the Dialogic® Standard Runtime
Library API Library Reference for event handler details.

6.3.4. Enable Phase D Event Generation

To enable Phase D event generation, specify DF_PHASED in rcvflag of the
receive function.

When this bit is set, a TFX_PHASED event is returned each time Phase D is
completed during the receive fax operation, except for the last page. After the last
page, fx_rcvfax() completes (synchronous mode) or a TFX_FAXRECV event
occurs (asynchronous mode).

Phase D events allow the application to monitor the progress of the fax session on
a page-by-page basis.

Dialogic® Fax Software Reference

 104

When a TFX_PHASED or TFX_FAXRECV event occurs, the application can
call these fax extended attributes for the following information:

Fax Extended Attribute Returns

ATFX_BADSCANLINES() Number of bad scan lines transferred (per
page)

ATFX_PHDCMD() Phase D command

ATFX_PHDRPY() Phase D reply

ATFX_RESLN() Resolution of the page

ATFX_SCANLINES() Total number of scan lines transferred

ATFX_SPEED() Baud rate of the data transfer

ATFX_STATE() State of the fax channel device

ATFX_TRCOUNT() Number of bytes transferred

ATFX_WIDTH() Width of the page

NOTES: 1. When you enable Phase D events, the generation of the Phase D
event is skipped for the last fax page received of the fx_rcvfax()
call since a TFX_FAXRECV event is generated indicating the
successful completion of the fx_rcvfax() function.

2. If you issue the fx_rcvfax() function in synchronous mode
(EV_SYNC), an event handler must be installed to handle Phase D
events using the sr_enbhdlr() function of the Dialogic® Standard
Runtime Library.

3. If the RTN message is returned to the TRANSMITTER, the
generation of the Phase D event would occur on that page each time
Phase D event generation is enabled. In this case, Phase D event
would not be skipped for the last page of the fx_sendfax() call if
the RTN message is returned from the RECEIVER on the last page.

4. If the RTN message is returned to the TRANSMITTER, either
TFX_FAXSEND or TFX_FAXERROR would be generated. If none
of the pages are sent successfully, TFX_FAXERROR event is
generated indicating fax failure. If one of the pages is sent
successfully, TFX_FAXSEND event is generated indicating the
successful completion of the fx_sendfax() function.

6. Implementing Receive Fax Capability

 105

6.3.5. Enable Operator Intervention (Voice Request)

DF_ACCEPT_VRQ in the rcvflag argument enables the application to accept an
operator intervention request from the remote station. This feature is not
supported on Dialogic® DM3 Boards.

DF_ISSUE_VRQ in the rcvflag argument enables the application to send an
operator intervention request (PIN/PIP) to the remote station after the last fax
page of the receive fax operation is received. This feature is not supported on
Dialogic® DM3 Boards.

To indicate successful completion, fx_rcvfax() returns a 0 in synchronous mode
or a TFX_FAXRECV event occurs in asynchronous mode. The fax session is
completed, but the connection between the two stations is still active for voice
communication.

To determine the reason for termination of fx_rcvfax(), call the
ATFX_TERMMSK(). This function returns a TM_FXTERM bit value to
indicate normal completion or TM_VOICEREQ to indicate termination due to a
voice request issued or received.

6.3.6. Selectable Receive Width

Set the rcvflag bit mask to restrict the maximum width (in number of pixels) at
which the application receives fax data. Possible values are:

DF_1728MAX
DF_2048MAX
DF_2432MAX (default)

The DF_2432MAX value (default) allows reception of fax data at a width of
1728, 2048, or 2432 pixels. The transmitter is notified of the maximum width of
the transmitted page during negotiation of Phase B. It is up to the transmitting fax
machine to scale large pages to the maximum receive width specified.

Dialogic® Fax Software Reference

 106

T.30 protocol specifies that a receiver in a fax session be able to receive fax data
at the following width combinations:

1728 pixels only
1728 and 2048 pixels
1728, 2048, and 2432 pixels (default)

6.3.7. Selectable Receive Length

Set the rcvflag bit mask to indicate the preferred page length for receiving fax
data:

DF_A4MAXLEN (approximately 11 inches)
DF_B4MAXLEN (approximately 14 inches)
DF_NOMAXLEN (unlimited) (default)

You can override the default setting via parameter initialization during
installation.

The transmitter is notified of the receiver’s preferred page length during
negotiation of Phase B. The receiving fax channel does not actually paginate the
incoming image to the specified page length; the transmitter must send the image
so that the maximum specified length is not exceeded.

6.3.8. Resolution for Storing Incoming Fax Data

Resolution can be specified using the rcvflag argument:

• DF_RXRESHI: high vertical resolution (fine) – 196 lines or pels per inch
• DF_RXRESLO: low vertical resolution (coarse) – 98 lines or pels per inch
• DF_RXRES_300_300: 300 (horizontal) x 300 (vertical) resolution

(supported on Dialogic® DM3 Boards only)
• DF_RXRES_200_400: 200 (horizontal) x 400 (vertical) resolution

(supported on Dialogic® DM3 Boards only)

When the rcvflag argument specifies a resolution, all fax data associated with
fx_rcvfax() or fx_rcvfax2() is stored at this resolution regardless of the
resolution specified by the transmitter. These bit flags can be used to reduce

6. Implementing Receive Fax Capability

 107

storage requirements or to support third-party utility programs that can only
handle certain resolutions.

6.4. Issuing a Receive Fax Function

When the initial fax connection is made between the caller and the called
applications, the caller application is initially set to be the fax transmitter and the
called application is initially set to be the fax receiver, as in a normal fax
transmission.

6.4.1. Receive Fax Issued by the Receiver

When the receiver issues fx_rcvfax() and the transmitter does not poll, the call
progresses as in a normal fax transmission; that is, the transmitter sends fax data
to the receiver.

If the transmitter polls, the poll bit in the fx_rcvfax() function issued by the
receiver indicates whether a poll by the transmitter is valid.

• Polling Invalid. If the poll bit is set to DF_NOPOLL, the receiver
application remains the receiver of the fax data. A poll by the transmitter is
invalid; the fx_rcvfax() function fails and the fax session is terminated. In
this case, ATDV_LASTERR() returns an EFX_DISCONNECT error.

If the receiver’s poll bit is set to DF_NOPOLL, the transmitter can only send
fax data to the receiver, as in a normal fax transmission.

• Polling Valid. If the poll bit is set to DF_POLL and the transmitter
application polls, the receiver’s fx_rcvfax() function returns a 0 in
synchronous mode or a TFX_FAXRECV event occurs in asynchronous
mode. The receiver application calls the fax extended attribute
ATFX_TERMMSK() and determines that a poll has occurred
(TM_POLLED). The receiver application can now become the fax
transmitter.

The fax session remains active and the original receiver must immediately
issue a send function to complete the poll and become the new fax
transmitter.

If the transmitter does not poll, the receiver’s fx_rcvfax() function
completes as it would for a normal fax transmission.

Dialogic® Fax Software Reference

 108

6.4.2. Receive Fax Issued by the Transmitter

When the transmitter issues the fx_rcvfax() function, this indicates a poll
request; that is, the transmitter application wishes to be a fax receiver.

• Polling Valid. If the poll bit is set to DF_POLL on the receiver side, polling
is valid. The initial receiver and transmitter switch roles. The fax is sent to
the new fax receiver.

• Polling Invalid. If the poll bit is set to DF_NOPOLL on the receiver side,
polling is invalid. The fx_rcvfax() function in the transmitter application
fails and the fax session is terminated. In this case, ATDV_LASTERR()
returns a EFX_NOPOLL error.

6.4.3. Status of Fax Reception

Status information on the fax reception is available using the fax extended
attribute functions.

• During fax reception, the state of the channel device is set to
CS_RECVFAX. To obtain the current state of the channel device, call
ATFX_STATE().

• To obtain the final transfer Phase D status, call ATFX_PHDCMD() and
ATFX_PHDRPY(). For more information on Phase D status values, see
Appendix B.

6.5. Creating User-Defined I/O Functions

In your fax application, you may want to replace the use of the standard I/O
functions lseek(), read(), and write() with your own I/O functions.

To receive fax data using user-defined I/O functions, you must OR the rcvflag
argument of the fx_rcvfax2() function with the IO_UIO bit. The fax library calls
the user-defined seek and write functions every time fax data is written to the I/O
device. The fd argument in fx_rcvfax2() specifies the file descriptor passed to
the I/O functions.

For information on the DF_UIO structure, see Section 10.8. DF_UIO – User-
Defined I/O.

109

7. Specifying Fonts in ASCII to Fax
Conversion

7.1. Overview

This chapter discusses the use of fonts on Windows® operating systems when an
ASCII text file is converted to fax format and transmitted. The following topics
are covered:

• 7.2. Fonts Supported in ASCII to Fax Conversion

• 7.3. Using fx_setparm() and fx_getparm() to Select Fonts

• 7.4. Overriding Fonts Set with fx_setparm()

• 7.5. Preserving Proprietary Fonts as Default Fonts

The information in this chapter does not apply to Dialogic® DM3 Boards. For
ASCII to fax information applicable to Dialogic® DM3 Boards, see Section
10.3.3. DF_ASCIIDATA Usage Rules.

7.2. Fonts Supported in ASCII to Fax Conversion

Dialogic® DSP fax uses Windows® font handles in ASCII to fax conversion rather
than proprietary fonts from Dialogic. (These proprietary fonts -- see ASCII to Fax
tables in Appendix F -- were used on older generation fax boards.) By using
Windows® font handles, you can choose from the entire selection of fonts
available in Windows® or you can supply your own font resources.

For details on how to create font handles and font resources, see your Software
Development Kit documentation. For information on how to enable proprietary
fonts as default fonts in ASCII to fax conversion in Dialogic® DSP fax, see
Section 7.5. Preserving Proprietary Fonts as Default Fonts.

Dialogic® Fax Software Reference

 110

On DSP fax, the conversion of ASCII text to fax format is performed on the host
CPU rather than on the fax board. The following font features are available on
boards that support DSP fax:

• two fonts available per channel, reset to the default for each fx_open()

• two fonts active for each fx_sendfax()

• no limitation on language or character set

• no limitation on point sizes

For ASCII to fax information applicable to Dialogic® DM3 boards, see Section
10.3.3. DF_ASCIIDATA Usage Rules.

7.3. Using fx_setparm() and fx_getparm() to Select
Fonts

Use the following parameter IDs with fx_setparm() and fx_getparm() to select
or return fonts: FC_FONT0 and FC_FONT3. The parameter IDs are defined as
follows:

• FC_FONT0 – defaults to OEM_FIXED_FONT 12-point. The font specified
by FC_FONT0 is applied by default to the fax document.

• FC_FONT3 – defaults to OEM_FIXED_FONT 9-point. FC_FONT3
defines a second font to be available for use. It also sets the font for the
header.

If you use DSP fax out of the box, your ASCII to fax document (without any
special control characters within the document itself) is rendered in a default 12-
point font similar to the Windows® standard OEM_FIXED_FONT. Headers are
rendered in a default 9-point font.

You can select two fonts for each fax channel device by specifying font handles
using fx_setparm() and FC_FONT0 and FC_FONT3 as parameter IDs.

Each parameter ID initializes a font handle to make the specified font available
for use in rendering an ASCII document. Two font handles can be active at one
time on a fax channel device; they are stored in the fax library. The font handle
must remain open for the duration of the fax transmission; that is, the font handle

7. Specifying Fonts in ASCII to Fax Conversion

 111

must not be deleted until the fax transmission has completed. You must delete the
handle when it is no longer needed.

You can replace the default values with any other Windows® font or your own
font resource. For details on how to create font handles and font resources, see
your Software Development Kit documentation.

To override the default font or specify the use of a different font, see Section
7.4. Overriding Fonts Set with fx_setparm() for more information.

If you don’t specify FC_FONT0 or FC_FONT3, your ASCII document will use
the default font previously available.

For more information on fx_getparm() and fx_setparm(), see Chapter 12. Fax
Library Function Reference.

7.4. Overriding Fonts Set with fx_setparm()

As described in Section 7.3. Using fx_setparm() and fx_getparm() to Select
Fonts, fonts used in ASCII to fax conversion are selected for each fax device
channel using fx_setparm(). The following methods override the default font
specified in fx_setparm(). These methods are optional and are described in order
of precedence.

• using the font field of the DF_ASCIIDATA data structure

• using control characters in the ASCII document prior to sending

7.4.1. Specify a Font in DF_ASCIIDATA

The font field in the DF_ASCIIDATA data structure specifies the font in use for
a specific ASCII document associated with a specific DF_IOTT structure. Valid
values are DF_FONT_0 and DF_FONT_3.

This font overrides FC_FONT0 and becomes the default font for the current fax
transmission. The subsequent fax transmission reverts to using the font specified
in FC_FONT0 as the default font.

Dialogic® Fax Software Reference

 112

For example, if you want a specific ASCII document (associated with a specific
DF_IOTT structure) to use FC_FONT3 as the default font, then specify
DF_FONT_3 as the value in the font field.

For further information on DF_ASCIIDATA, see Section 10.3. DF_ASCIIDATA
– ASCII Data Description.

7.4.2. Use Control Characters in ASCII Document Prior to Sending

To apply a second font in your fax document in addition to the default font, you
must edit your ASCII document and insert the proper control characters before
the line on which the change will take place. The new format takes effect on the
next full line of text. These control characters override the font set in the
DF_ASCIIDATA data structure. This method may be useful when applying a
font to specific parts of your document (such as headings) rather than to the entire
document.

For example, if you want to use the font specified by FC_FONT3, insert
<ESC>F3 or ~F3 in your ASCII document before the line on which the change
will take place. The new format takes effect on the next full line of text. To return
to the default font, insert <ESC>F0 or ~F0.

For further information on control characters, see the ASCII to Fax tables in
Appendix F.

7.5. Preserving Proprietary Fonts as Default Fonts

In Dialogic® VFX products, ASCII to fax conversion is performed in the
firmware and ASCII documents are rendered using proprietary fonts from
Dialogic (see ASCII to Fax tables in Appendix F).

The use of Windows® font handles in DSP fax enables you to specify any
Windows® font or to supply your own font resources. The default fonts provided
by Dialogic® DSP fax are Windows® fonts.

You can enable proprietary fonts as default fonts in ASCII to fax conversion in
DSP fax by following the directions in this section.

7. Specifying Fonts in ASCII to Fax Conversion

 113

7.5.1. Location of Proprietary Fonts

The proprietary font files are provided with the Dialogic® Software Release and
installed by default in the …\dialogic\fonts subdirectory. To enable applications
to use these fonts, you must package and re-distribute these font files with their
applications.

7.5.2. Steps to Enable Proprietary Fonts

To use the proprietary fonts for rendering ASCII to fax documents, modify your
application as follows:

1. Call the Win32® API AddFontResource(font_filename) to notify the
operating system of the presence of new fonts, namely, the proprietary fonts.
You will also need to notify other applications of the new fonts. For more
information, see your Software Development Kit documentation.

2. Establish an LFONT structure with the appropriate parameter to prepare for
the creation of a new font.

3. Call the Win32 API CreateFontIndirect() to obtain a font handle.

4. Use the fx_setparm() function call to store this font handle in the fax
library.

5. Call the Win32 API RemoveFontResource() to remove the font. You will
also need to notify other applications of the removal.

For more information on the Win32 API, see the Microsoft Win32 API
Programmer’s Reference.

Example

The following example shows one way to specify the use of proprietary fonts
(Japanese Katakana character set) in rendering ASCII to fax documents.

To see an example of how to specify the use of a Windows® font, see the example
for fx_setparm() and FC_FONT0.

// …
// open device using fx_open()
// …
// The next line of code is required when your application needs to use old

Dialogic® Fax Software Reference

 114

// Dialogic fonts.
// It specifies the font-resource filename. Assume in same directory as
// application.

LOGFONT lFont;
HFONT hFont;

ret = AddFontResource("katakna0.fon");

memset(&lFont, 0, sizeof(lFont));
lFont.lfCharSet = OEM_CHARSET;
strcpy(lFont.lfFaceName, "Katakna0");

hFont = CreateFontIndirect(&lFont);

if ((fx_setparm (dev, FC_FONT_0, (void *)&hFont)) == -1)
{
printf("LastError: %d, ErrorMsg = %s\n", ATDV_LASTERR (dev),
 ATDV_ERRMSGP(dev));
 fx_close (dev);
 exit (0);
}

115

8. Fax Demo Programs for Linux

8.1. Overview

This chapter provides the following information on fax demonstration programs
supported on Linux:

• An overview of fax synchronous and asynchronous demos

• The physical connections necessary to run the fax demos

• The software required to run the fax demos

• Running the demos

• The fax demo programs flow

8.2. Fax Demo Programs Overview

The following Dialogic® fax demo programs for stand-alone applications are
included with the Dialogic® fax software:

• faxdemo

• faxasync

• faxsr

These fax demo programs are not supported on Dialogic® DM3 Boards.

The faxdemo demonstrates the use of the Dialogic® Fax API functions in
synchronous mode in a normal fax reception and transmission application. When
executed, the program initializes the channel to wait for rings and receive a fax
when a call is placed to this channel.

By default. the received file is stored as a TIFF/F file. The file name takes the
form <channel_name>.tif (for example, dxxxB1C1.tif). If the file type specified
on the command line is raw, the received file is stored as a raw unformatted

Dialogic® Fax Software Reference

 116

image file. The file name takes the form <channel_name>.raw (for example,
dxxxB1C1.raw).

After the fax is received, the channel waits a few seconds and dials the number
specified on the command line and transmits the received fax file. Set this number
to the phone number of a fax machine.

The fax demo faxasync demonstrates the use of the Dialogic® Fax API functions
in asynchronous mode with multi-channel control within a single process in a
normal fax reception and transmission application. When faxasync is executed,
the program reads fax.cfg and intializes the channels specified in fax.cfg to wait
for rings. When a call is placed from a fax machine to any one of these channels,
the channel picks up the call and receives the fax into a file.

If the file type specified in fax.cfg is tiff, the received file is stored as a TIFF/F
file. The file name takes the form <channel_name>.tif (for example,
dxxxB1C1.tif). If the file type specified in fax.cfg is raw, the received file is stored
as a raw unformatted image file. The file name takes the form
<channel_name>.raw (for example, dxxxB1C1.raw).

After the fax is received, the channel waits a few seconds and dials the number
specified in fax.cfg for that channel and transmits the received fax file. Set this
number to the phone number of a fax machine.

The fax demo faxsr sends or receives faxes using the Dialogic® Fax API on a
single voice/fax channel. Send up to four files specified on the command line.
File extensions are used to determine data type, .raw for raw files and .tif for
TIFF/F files. Files with any other extension are assumed to be ASCII format. Use
the DF_ASCIIDATA structure to change the default settings for faxing ASCII
information.

faxsr can also receive faxes and store them to disk in either raw or TIFF/F format.
The extension of the specified receive file is used to determine how the fax is
stored, .raw for raw format or .tif for TIFF/F format. If raw is specified and the
fax contains more than one page, additional pages are stored in files with
incrementing extensions, for example, filename02.raw, filename03.raw, etc.

8. Fax Demo Programs for Linux

 117

8.3. Fax Demo Programs Physical Connections

The following physical connections are required to run the fax demos:

• The installed system with fax resources connected to the telephone
network

• A fax machine connected to the telephone network via a separate phone
line

8.4. Fax Demo Programs Software

The fax demo program software is contained on the Dialogic® Software Release
software distribution media and is installed during fax software installation. Refer
to the Installation Guide for your Dialogic® Software Release for software
installation procedures.

The files include the fax demo program source code, an executable version of the
demo, and a makefile used to compile the fax demo program.

The source code for the fax demo programs is written in C and is instructional to
those with a C and Linux programming background.

The faxdemo demo program implements the single channel per process model,
which follows the suggested synchronous mode model for building applications
using the Dialogic® Voice Driver.

The faxasync demo program implements a multi-channel per process model for
building applications using the Dialogic® Voice Driver.

The faxsr demo program sends or receives faxes using the Dialogic® Fax API.

A toolkit of fax C routines is also included on the Dialogic® Software Release
software distribution media. This toolkit aids in the development of fax
synchronous mode applications. The toolkit source code is contained in the file
/usr/dialogic/fx_demos/faxconv/faxconv.c.

NOTE: The fax convenience functions (fx_sendascii(), fx_sendraw(), and
fx_sendtiff()) are located in the faxconv.c file.

Dialogic® Fax Software Reference

 118

8.5. Before Running the Fax Demo Programs

After installing the Dialogic® Software Release and before running fax demo
programs, you may recompile the fax demo programs.

While logged in the system with root privileges, at the /usr/dialogic/fx_demos
subdirectory on your system, enter the following command:

 make clean

The make clean command deletes the fax demo programs executable files and
the fax demo program object files from your system.

To recompile the fax demo programs executable files and to create the object
files, enter the following command at the /usr/dialogic/fx_demos subdirectory
prompt on your system while logged in the system with root privileges:

 make

After recompilation, the make command links the object files with the libdxxx.a,
libsrl.a, and libfax.a library files previously installed on your system during
Dialogic® Software Release software installation (refer to the Installation Guide
for your Dialogic® Software Release for information regarding software
installation).

8.5.1. Modify fax.cfg Configuration File

The fax.cfg configuration file is only used when running the faxasync fax
asynchronous demo program. The fax.cfg file must contain the channel devices
and fax phone numbers that are used during the asynchronous demo.

8. Fax Demo Programs for Linux

 119

The syntax for each entry in the fax.cfg file is as follows:

devname faxnumber <filetype>

devname Specifies the fax application's channel device that the faxasync
demo program uses to receive and transmit a fax document
(Example: dxxxB1C1).

 The channel device specified must have fax capability.

faxnumber Specifies the fax machine telephone number (where the fax
demo application sends the fax document it receives).

filetype Specifies the type of file (TIFF/F or raw) in which to store the
fax data received (optional argument).

 If the filetype argument is not included, TIFF/F is assumed,
otherwise specify raw (arguments must be in lower case
letters).

Sample configuration file entries:

devname faxnumber filetype
dxxxB1C1 5551234 tiff
dxxxB1C2 5555678 raw

Modify the fax.cfg configuration file to include all devices, fax phone numbers,
and file types to be used for the asynchronous (faxasync) demo, then save the file.

8.5.2. Fax Demo Program Execution Considerations

During the execution of the demo programs faxdemo and faxasync, a file(s) is
created to store the fax data in the directory from which the demo is executed.
The user must have write permission to that directory.

The user has the following options:

• Execute the demo from the /usr/dialogic/fx_demos/sync_demos/<fax demo>,
the /usr/dialogic/fx_demos/async_demos/faxasync (for faxasync), or the
/usr/dialogic/fx_demos/scc_demos/<fax demo> directory.

NOTE: Running the demos from the directories stated above requires that you
be logged into the Linux system with root privileges.

Dialogic® Fax Software Reference

 120

• Copy the fax demo file (and fax.cfg for asynchronous demo) to the user’s
local directory (after recompilation), then run the demo from the user's local
directory.

8.6. Running the Fax Demo Programs

The following sections explain how to start demo programs.

8.6.1. Starting faxdemo

The command-line syntax to execute the Fax synchronous demo program
faxdemo is as follows:

 faxdemo devname faxnumber <filetype>

devname Specifies the fax application’s channel device that the fax
demo program uses to receive and transmit a fax document
(Example: dxxxB1C1).

 The channel device specified must have fax capability.

faxnumber Specifies the fax machine telephone number where the fax
application sends the fax document it receives.

filetype Specifies the type of file (TIFF/F or raw) in which to store the
fax data received (optional argument).

 If the filetype argument is not included, TIFF/F is assumed,
otherwise specify raw (arguments must be in lower case
letters) (see the command-line examples below).

 If TIFF/F is specified, the fax demo stores the data into a
single TIFF/F file. The document name is devname and
appended with .tif (Example: dxxxB1C1.tif).

 If raw is specified, the fax demo stores the data as a single
page. If more than one page of fax data is sent to the fax demo
application, an error occurs and the demo stops. The
document name is devname and appended with .raw
(Example: dxxxB1C1.raw).

 The one page limitation for raw files only applies to the fax
demo program. This is not a limitation of the fax resource.

8. Fax Demo Programs for Linux

 121

8.6.2. Starting faxasync

After modifying the fax.cfg configuration file (Section 8.5.1. Modify fax.cfg
Configuration File), use the following command-line syntax to execute the
faxasync fax asynchronous demo program:

 faxasync

A screen is displayed on the monitor that shows the device name(s) and status
during the running of the demo.

If an error occurs on any channel during the execution of the faxasync demo
program, a message is displayed on the screen to indicate that a problem has
occurred on a specific channel. The execution of the other active channels
(specified in the fax.cfg file) continues unaffected. The messages include the
following (as applicable):

• Fax demo program error message

• Fax or system error code

• Fax Phase E status message

NOTE: See the Appendixes for information on fax error codes and Phase E
status values.

Refer to the faxasync.c source code file for fax demo error processing
information.

8.6.3. Starting faxsr

The command-line syntax to execute the fax synchronous demo program faxsr is
as follows:

faxsr devname faxnumber <filetype>

For example, to send fonttest.txt from fax channel 1 on board 1, to a fax machine
with the phone number 555-1234, type:

faxsr -d“5551234” -s“fonttest.txt”

Dialogic® Fax Software Reference

 122

In addition, the User Header field, Local ID, and channel can be specified on the
command line.

faxsr parses the command line parameters to determine what to do. If the dial
string and send file list are present, faxsr builds an IOTT chain, dials the number,
and sends the fax. If a receive file is specified, faxsr waits for rings. If rings are
received, faxsr goes offhook and receives the fax.

Defaults:
Channel First channel in system

Local ID “FAXSR CH: nn” where nn is the channel number

User Header “” a null string

Command-Line Examples

In the following command-line example, faxdemo uses the application's channel
device one, on board one, to do the following:

• Receive a fax document and store it in TIFF/F format

• Send the document just received (stored in TIFF/F format) to the fax
machine associated with the telephone line number 555-1234

faxdemo dxxxB1C1 5551234

In the following command-line example, faxdemo uses the application's channel
device one, on board one, to do the following:

• Receive a fax document (single page) and store it as a raw file

• Send the document just received (stored as a raw file) to the fax machine
associated with the telephone line number 555-1234

faxdemo dxxxB1C1 5551234 raw

If an error occurs during the execution of the fax demo program, the demo stops
and messages are displayed on the monitor screen to indicate the problem. They
include the following (as applicable):

• Fax demo program error message

8. Fax Demo Programs for Linux

 123

• Fax or system error code

• Fax Phase E status message

NOTE: See the Appendixes for information on fax error codes and Phase E
status values.

An error message is displayed on the system monitor if a fax demo program
function returns a -1.

Refer to the faxdemo.c source code file for fax demo error processing
information.

8.7. Fax Demo Program Flow

Both the synchronous and asynchronous demo programs follow the same basic
flow of execution as outlined in this section. The use of the fax main library
functions and the fax convenience functions (for synchronous use) are
demonstrated in the demo programs.

Fax demo program flow:

1. The fax application's channel device specified in devname is opened.

2. The local ID of the fax application's channel device is set to the name
specified in devname (Example: dxxxB1C1).

3. The fax application is ready to receive a fax document and waits for a call
(incoming rings) from a remote fax machine.

4. The user prepares to send a document (single or multi-page to send to TIFF/F
file; single page to send to raw file) on a remote fax machine and places a
call from the remote fax machine to the telephone number associated with the
fax application's channel device specified in devname.

5. The fax application detects the incoming rings and takes the fax application's
channel device specified in devname off-hook.

NOTE: The local ID of the fax application's channel device is displayed on the
remote fax machine if the remote fax machine has this display capability.

Dialogic® Fax Software Reference

 124

6. The fax application receives and stores the document in either a TIFF/F file
(default) or raw file (if raw is specified in filetype).

• If TIFF/F file, the fax demo accepts a single or multi-page fax and stores
it in a single TIFF/F document file. The document name is devname and
appended with .tif (Example: dxxxB1C1.tif).

• If raw file, the fax demo accepts only one page. If more than one page is
sent to the fax application, an error occurs. The document name is
devname and appended with .raw (Example: dxxxB1C1.raw).

NOTE: The one page limitation for raw files only applies to the fax demo
program. This is not a limitation of the fax resource.

7. After the document page(s) has been successfully received by the fax
application, information is displayed on the monitor screen to indicate
successful reception.

8. The fax application's channel device is placed on-hook.

9. A ten second pause takes place.

10. The fax application dials the remote fax machine at the telephone number
specified in faxnumber.

11. The fax application sends the stored document to the remote fax machine via
the fax application's channel device specified in devname.

• If the document was stored as a TIFF/F file, the entire TIFF/F document
is transmitted.

• If raw was specified (in filetype), the synchronous demo transmits the
single raw page twice as if it were a two page document. The
asynchronous demo transmits the raw page only once.

12. After the document page(s) has been successfully transferred to the remote
fax machine from the fax application, information is displayed on the fax
application's monitor screen to indicate successful transmission:

• The number of pages transmitted

• The remote ID (ID of the receiving fax machine)

13. The fax application's channel device is placed on-hook and waits for the next
incoming fax call.

8. Fax Demo Programs for Linux

 125

NOTES: 1. Transmitting the raw file twice during the synchronous demo allows
the use of the fx_sendfax() and fx_sendraw() functions for the fax
demo.

2. Exit the fax demo program by issuing an interrupt, quit, terminate,
or hang up to the system (Example: Press the (delete)
keyboard key).

Refer to the faxdemo.c, faxasync.c, and faxsr.c source code files for fax demo
source code details.

Dialogic® Fax Software Reference

 126

127

9. Fax Demo Program for Windows®

This chapter briefly describes the fax demonstration program supported on
Windows® operating systems. This demonstration program is not supported on
Dialogic® DM3 Boards.

The stand-alone fax demo, dspfaxsr.exe, is designed to send or receive faxes
without channel routing. It can send up to four files of the following types: raw,
TIFF/F, or ASCII. Use this demo on boards that support DSP-based Group 3 fax
(Softfax).

The demonstration program is installed by default in the demos subdirectories.
Source code written in C as well as instructions are supplied with each
demonstration program. For further instruction on running the demo, see the
online help distributed with the demo. You can access this help from the Help
menu.

Dialogic® Fax Software Reference

 128

129

10. Fax Data Structures

10.1. Overview

This chapter describes fax data structures used by the Dialogic® Fax API library.

Fax library data structures are defined in faxlib.h, which resides by default in the
…\dialogic\inc directory.

The data structures are shown in Table 11. Fax Data Structures.

Table 11. Fax Data Structures

Structure Name Description

DF_ASCIIDATA ASCII Data Description Structure.

Specifies the formatting of the ASCII data for a fax
transmission. Parameters to be set include margins,
page length, font selection, spacing between ASCII
lines, and number of tab stops on a line. A pointer in
the DF_IOTT structure specifies the location of the
DF_ASCIIDATA structure.

DF_DCS Digital Command Signal Information Structure.

Provides the T.30 Digital Command Signal
information in LSB format for the fx_getDCS()
function call.

DF_DIS Digital Identification Signal Information Structure.

Provides the T.30 Digital Identification Signal
information in LSB format for the fx_getDIS()
function call.

DF_IOTT Fax Transfer Table Structure.

Describes the characteristics of the fax data to be sent.
You can build an array or linked list of DF_IOTT
structures to specify fax transmission from multiple
sources within a single fx_sendfax() call.

Dialogic® Fax Software Reference

 130

Structure Name Description

DF_TXNSF Transmit NSF Message Structure.

Describes the characteristics of the customized T.30
non-standard facilities (NSF) message to be sent. Used
with FC_TXNSF parameter in fx_setparm().

DF_UIO User-definable I/O Structure.

Contains user-defined I/O functions that replace
standard read(), write(), and lseek() functions. The
application installs the user-defined functions using
the fx_setuio() function.

10.2. Declaring Fax Data Structures

You must declare the DF_IOTT, DF_ASCIIDATA, and DF_UIO structures to be
global or static in your application. Do not modify the contents of the structures
until after the completion of the fax session.

In asynchronous mode, the fax library needs to repeatedly access the DF_IOTT,
DF_ASCIIDATA, and DF_UIO table entries during the fax transmission even
though fx_sendfax() returns control to the application after initiating the fax
transmission.

10.3. DF_ASCIIDATA – ASCII Data Description

The DF_ASCIIDATA data structure describes graphical attributes such as
margins, font, and line spacing to use in converting an ASCII file to a fax image
for transmission.

Use of DF_ASCIIDATA is optional. If used, the DF_IOTT data structure must
contain a pointer (io_datap) cast as a void * to the location of the specific
DF_ASCIIDATA structure. If the pointer is NULL, default ASCII values are
used.

On Dialogic® DM3 Boards, the DF_ASCIIDATA structure is not used. See
Section 10.3.3. DF_ASCIIDATA Usage Rules for more information.

10. Fax Data Structures

 131

10.3.1. DF_ASCIIDATA Definition

The DF_ASCIIDATA structure consists of the following fields:

 struct df_asciidata {

 ushort pagelength; /* Page Length */
 ushort pagepad; /* Pad blank scan lines to end of page */
 ushort topmargin; /* Top Margin */
 ushort botmargin; /* Bottom Margin */
 ushort leftmargin; /* Left Margin */
 ushort rightmargin; /* Right Margin */
 ushort linespace; /* Spacing between ASCII lines */
 ushort font; /* Font selection */
 ushort tabstops; /* Number of tabstops on a line */
 uchar units; /* Units for specifying margins/lengths */
 uchar flags; /* Reserved for future use */
 };

10.3.2. DF_ASCIIDATA Field Descriptions

For easier reference, the fields in the DF_ASCIIDATA structure are described in
alphabetical order in Table 12. DF_ASCIIDATA Fields.

For additional usage information, see Section 10.3.3. DF_ASCIIDATA Usage
Rules.

Table 12. DF_ASCIIDATA Fields

Field Description

botmargin Default: 2 (corresponds to 0.2 inches)

Bottom margin for ASCII text in units. See units field
(default for units is 1/10 inch units).

Valid values are:

• between 0 and 52 in 0.1 inch units

• between 0 and 132 in mm units

• between 0 and 512 in pels (coarse scan lines)

flags Reserved for future use.

Dialogic® Fax Software Reference

 132

Field Description

font Default: DF_FONT_0

The font used in rendering the ASCII document. See
Appendix F for ASCII character set supported.

Valid values are:

 • DF_FONT_0 (default) – The default fax font character
spacing may differ on various Windows® operating system
releases depending on the OEM font supplied on the
particular system.
Normal 6 lines/inch; 16 scan lines of MH data; 20
(horizontal) by 16 (vertical) pixel font in sans serif
Helvetica style.

• DF_FONT_3 – compressed 8 lines/inch; prints
approximately 17 characters per inch at an approximate 9
point character; 192 characters maximum per line; 12 scan
lines of MH data; 12 (horizontal) by 12 (vertical) pixel font
in sans serif Helvetica style.

 When using Windows® font handles, the font specified in the
font field overrides FC_FONT0 set in fx_setparm(). For
more information on Windows® font handles, see Section
7.3. Using fx_setparm() and fx_getparm() to Select Fonts.

leftmargin Default: 3 (corresponds to 0.3 inches)

Left margin for ASCII text in units. See units field (default
for units is 1/10 inch units).

Valid values are:

• between 0 and 25 in 0.1 inch units

• between 0 and 64 in mm units

• between 0 and 512 in pels (pixels)
linespace Default: DF_SINGLESPACE

Linespace can be used to set one of the following:

• The line space between ASCII text. The font height
determines the line spacing for each row. OR

• The number of lines per inch.

10. Fax Data Structures

 133

Field Description

 Valid values for the line space between ASCII text:

• DF_SINGLESPACE – single space between lines (default)

• DF_DOUBLESPACE – 2 spaces between lines

• DF_TRIPLESPACE – 3 spaces between lines

• DF_HALFSPACE – add a half space to single or double
space

 Valid values for the number of lines per inch:

• DF_8LPI – 8 lines per inch

• DF_6LPI – 6 lines per inch

• DF_3LPI – 3 lines per inch

• DF_4LPI – 4 lines per inch

• DF_2_4LPI – 2.4 lines per inch

If DF_8LPI is specified for font DF_FONT_0, the font is too
large to fit within the 8 lpi requirement.

pagelength Default: 110 (corresponds to 11 inches)

Page length for ASCII text in units. See units field (default
for units is 1/10 inch units).

To allow embedded formfeed characters in the ASCII data to
control the paging, set the value to exceed the longest page of
ASCII data.

Valid values are:

• ≥52 – in 0.1 inch units

• ≥133 – in mm

• ≥513 – in scan lines

Dialogic® Fax Software Reference

 134

Field Description

pagepad Default: DF_PAD

Pad last page with blank lines (default) or do not pad with
blank lines. All pages received are the same length as
specified in pagelength.

Valid values are:

• DF_PAD – Pad last page with blank lines (default).

• DF_NOPAD – Do not pad with blank lines.
rightmargin Default: 3 (corresponds to 0.3 inches)

Right margin for ASCII text in units. See units field (default
for units is 1/10 inch units).

Valid values are:

• between 0 and 25 in 0.1 inch units

• between 0 and 64 in mm units

• between 0 and 512 in pels (pixels)
tabstops Default: 8

The number of tab stops per line equally spaced based on the
total page width.

Any tab stops set outside right and left margins are not
usable.

Valid values: ≥0

topmargin Default: 2 (corresponds to 0.2 inches)

Top margin for ASCII text in units. See units field (default
for units is 1/10 inch units).

Valid values are:

• between 0 and 52 in 0.1 inch units

• between 0 and 132 in mm units

• between 0 and 512 in pels (coarse scan lines)

10. Fax Data Structures

 135

Field Description

units Default: DF_UNITS_IN10

The decimal values specified in the margin fields (top,
bottom, left, and right) and the pagelength field of the
DF_ASCIIDATA structure are based on the value in this
field.

For further detail, see Dialogic® Springware Boards –
Maximum Values for Margins in Section
10.3.3. DF_ASCIIDATA Usage Rules.

Valid values are:

• DF_UNITS_IN10 – 1/10” units (default) for specifying
margins and page length

• DF_UNITS_MM – Millimeter units for specifying margins
and page length

• DF_PELS – Number of pixels (horizontal) and number of
coarse scan lines (vertical) for specifying margins and page
length

10.3.3. DF_ASCIIDATA Usage Rules

The following rules apply when you use the DF_ASCIIDATA structure.

Dialogic® DM3 Boards
On Dialogic® DM3 Boards, the DF_ASCIIDATA structure is not used. When an
ASCII file is converted to a fax image, the following rules apply.

Regardless of the page length you specify, the converted fax image has no
maximum size (unlimited length). No pagination is performed by the firmware.
Font is fixed at 10 lines per inch (each line is approximately 1/10 inch in height);
prints approximately 12 characters per inch; 16 scan lines of MH data; 16
(horizontal) by 16 (vertical) pixels or 80 characters maximum per line. Top
Margin is set to 3, Left Margin to 14, and Right Margin to 94.

Dialogic® Fax Software Reference

 136

Dialogic® Springware Boards – Applicability

The values specified in the DF_ASCIIDATA structure apply to the DF_IOTT
entry it is associated with, unless the values are overridden by escape sequences
from a Dialogic® ASCII to Fax command set (see Appendix F).

Dialogic® Springware Boards – Using Escape Sequences from ASCII
to Fax Command Set

The ASCII file may contain embedded escape sequences from a Dialogic® ASCII
to Fax Command Set (see Appendix F). These escape sequences specify graphical
attributes within the ASCII file and override the values specified in the
DF_ASCIIDATA structure.

Dialogic® Springware Boards – Maximum Values for Margins

The units field determines the unit of measurement for the top, bottom, left, and
right margin fields in the DF_ASCIIDATA structure.

The maximum decimal value that can be specified for the margin fields is listed in
Table 13. Maximum Values for Margins for each of the supported units:

Table 13. Maximum Values for Margins

Units Top Bottom Left Right

DF_UNITS_IN10 (0.1 inch units) 52 52 25 25

DF_UNITS_MM (mm) 132 132 64 64

DF_PELS (coarse scan lines) 512 512 - -

DF_PELS (pixels) - - 512 512

Dialogic® Springware Boards – Page Size of Converted ASCII
Document

The conversion of the ASCII text to a fax image takes place at the time of
transmission. Line wrapping occurs if the line of ASCII text is longer than the
negotiated width of the fax data.

10. Fax Data Structures

 137

The ASCII data is separated into pages based on the following:

• The maximum number of ASCII lines that can fit on a page determined by
the page length, margins, and font selection.

• The presence of formfeed characters in the ASCII data.

The line wrapping and paging is transparent to the application. The page
padding option automatically fills in blank lines to the end of the last page
(default). See Appendix F for embedded escape sequences that override the
defaults.

For more information on specifying fonts for ASCII to fax, see
Chapter 7. Specifying Fonts in ASCII to Fax Conversion.

10.4. DF_DCS – Digital Command Signal

The DF_DCS data structure provides T.30 Digital Command Signal information
(in LSB format) for the fx_getDCS() function call.

The T.30 Digital Command Signal specifies caller transmit parameters and
provides information on Phase B negotiated settings between the transmitter and
receiver. For a complete description of the information in the DCS signal, see the
ITU-T publication Procedures for Document Facsimile Transmission in the
General Switched Telephone Network, Recommendation T.30.

typedef struct {
 char dcs_data[10]; /* DCS information in LSB format */
} DF_DCS;

Dialogic® Fax Software Reference

 138

10.5. DF_DIS – Digital Identification Signal

The DF_DIS data structure provides T.30 Digital Identification Signal (DIS)
information (in LSB format) for the fx_getDIS() function call.

The T.30 Digital Identification Signal specifies called unit capabilities. The DIS
message provides information on the receiver’s capabilities. For a complete
description of the information in the DIS signal, see the ITU-T publication
Procedures for Document Facsimile Transmission in the General Switched
Telephone Network, Recommendation T.30.

typedef struct {
 char dis_data[10]; /* DIS information in LSB format */
} DF_DIS;

10.6. DF_IOTT – Fax Transmit Data Description

The DF_IOTT structure describes the characteristics of the fax data for one fax
document to be transmitted.

Your application can build an array, linked list, or any combination of linked list
and array of DF_IOTT structures to specify multiple fax documents for
transmission using the send fax function. When the send function is issued, each
DF_IOTT structure is checked for valid parameters. A pointer argument in the
send fax function points to the DF_IOTT table.

The structure can define raw, TIFF/F, or ASCII data.

For usage information, see Section 5.5. Specifying Fax Data for Transmission in
a DF_IOTT Table Entry and the code examples in the fx_sendfax() function
reference.

10. Fax Data Structures

 139

10.6.1. DF_IOTT Definition

The DF_IOTT structure consists of the following fields:

typedef struct df_iott DF_IOTT;
struct df_iott {

 unsigned long io_offset; /* Starting page number or offset */
 unsigned long io_length; /* Number of pages or length of data */
 char *io_bufferp; /* Memory transfer start buffer location */
 DF_IOTT *io_prevp; /* (Optional) Pointer to previous DF_IOTT */
 DF_IOTT *io_nextp; /* Pointer to next DF_IOTT entry (for linked list) */
 void *io_datap; /* Pointer to additional data associated */
 /* with io_datatype */
 int io_fhandle; /* File descriptor */
 unsigned short io_type; /* Entry type (file, memory; linked, contiguous, */
 /* last structure; select user-defined I/O */
 /* functions for transmit) */
 unsigned short io_datatype; /* Type of data to transmit */
 unsigned short io_phdcont; /* Phase D continuation value to send */
 unsigned short io_width; /* Width of image (raw and ASCII) */
 unsigned char io_resln; /* Vertical resolution of image (raw and ASCII) */
 unsigned char io_coding; /* Encoding of stored data (raw) */
 unsigned char rfu[2]; /* Reserved for future use */
};

The following defines are used with the DF_IOTT structure for clarity:

#define io_firstpg io_offset
#define io_pgcount io_length

10.6.2. DF_IOTT Field Descriptions

For reference, the fields in the DF_IOTT structure are described in alphabetical
order in Table 14. DF_IOTT Fields.

Dialogic® Fax Software Reference

 140

Table 14. DF_IOTT Fields

Field Description

io_bufferp Memory transfer start buffer location.

io_coding Used for raw files only. Indicates the encoding scheme of the
stored raw data. Valid values:

• DF_MH – Modified Huffman. One-dimensional encoding.

• DF_MR – Modified Read. Two-dimensional coding.

• DF_MMR – Modified Modified Read. Two-dimensional
encoding.

io_datap Pointer to additional data associated with io_datatype (cast as
void *).

io_datatype The source of the data to be transmitted. Valid values:

• DF_RAW – source of data is raw file

• DF_TIFF – source of data is TIFF/F file

• DF_ASCII – source of data is ASCII file

For more usage information, see Sections 5.5.5. Sending Raw
Files, 5.5.6. Sending TIFF/F Files, and 5.5.7. Sending ASCII
Files. For more information on ASCII file source used on
Dialogic® DM3 Boards, see Section 10.3.3. DF_ASCIIDATA
Usage Rules for DF_ASCIIDATA structure.

io_fhandle File descriptor. For more information, see Section
10.8. DF_UIO – User-Defined I/O.

io_firstpg Used for TIFF/F files only. Indicates the starting page number
(decimal value) or the first page to send. Note that page
numbering begins at zero.

Valid values: ≥0

10. Fax Data Structures

 141

Field Description

io_length For raw files, indicates the number of bytes to transfer.

For ASCII files, indicates the number of bytes of ASCII data to
read.

>0 = number of bytes to transfer or to read

-1 = transfer entire raw file or read entire ASCII file

When specifying that data be transferred until the end of the
file is reached (io_type set to IO_DEV and io_length set to -1
in the DF_IOTT structure), you may encounter compiler
warnings. This occurs because io_length is defined as unsigned
long. The fax software allows for signed values, so you can
ignore any compiler warnings related to this situation.

io_nextp Pointer to next DF_IOTT entry (for linked list).

io_offset For raw files, indicates the starting byte location (offset) to
start data transfer.

For ASCII files, indicates the byte offset in the ASCII file (or
memory) to start reading ASCII data.

A value of 0 means no offset.

Valid values: ≥0

io_pgcount Used for TIFF/F files only. Indicates the number of
consecutive pages to send. Valid values:

>0 = Number of consecutive pages to send

-1 = Send all remaining pages from specified page number

Dialogic® Fax Software Reference

 142

Field Description

io_phdcont The continuation value for Phase D (post-message procedure)
of the T.30 protocol. Valid values:

• DFC_AUTO – Automatic Phase D Messaging. The fax driver
automatically determines the T.30 Phase D continuation value
based on the width, resolution, and position of the DF_IOTT
entries.

• DFC_MPG – Merge-Page. The data specified for the
DF_IOTT entry directly following the current DF_IOTT
entry is concatenated to the same page.

• DFC_EOP – End of Procedure (T.30). Terminate current fax
session, progress to Phase E, and end fax call.

• DFC_MPS – Multi-Page Signal (T.30). End of current fax
document page; next fax document page is in the same format
as the current page; proceed directly to Phase C.

• DFC_EOM – End of Message (T.30). End of current fax
document page; more fax data to follow at different
resolution or width; return to Phase B and negotiate
parameters for next fax document page.

For more usage information, see Section 5.5.9. Setting
Phase D Continuation Values.

io_prevp Pointer to previous DF_IOTT (optional).

io_resln Used for raw and ASCII files only. Indicates the vertical
resolution of the image in lines per inch:

• DF_RESHI – high or fine vertical resolution (196 lpi)

• DF_RESLO – low or coarse vertical resolution (98 lpi)

• DF_RES_300_300 – 300 (horizontal) x 300 (vertical)
resolution (supported on Dialogic® DM3 Boards only)

• DF_RES_200_400 – 200 (horizontal) x 400 (vertical)
resolution (supported on Dialogic® DM3 Boards only)

The horizontal resolution of a fax image is fixed at 203 lines
per inch across the page.

10. Fax Data Structures

 143

Field Description

io_type Default: IO_CONT

This is a bit masked logical OR field that specifies (a) whether
the fax data is in a file or in memory, (b) whether the structure
entry is an array, a linked list, or the last DF_IOTT entry, and
(c) whether the structure entry selects user-defined I/O
functions.

• IO_DEV – Transfers fax from a file

• IO_MEM – Transfers fax from memory (raw or ASCII data
only)

• IO_CONT – Next DF_IOTT entry is contiguous in memory
(default)

• IO_LINK – Next DF_IOTT entry is linked to the current
entry

• IO_EOT – Indicates the last DF_IOTT entry. If the IO_EOT
flag is set in the io_type field, then all the other flags are
ignored.

• IO_UIO – Selects user-defined I/O functions for fax
transmission

For more information on using the io_type field, see Sections
5.5.2. Connecting DF_IOTT Table Entries, 5.5.3. Sending
Data from Device or Memory, 5.11. Creating User-Defined
I/O Functions, and 10.8. DF_UIO – User-Defined I/O.

io_width Used for raw and ASCII files only. Indicates the width of the
image:

• DF_WID1728 – 1728 pixels per line

• DF_WID2048 – 2048 pixels per line

• DF_WID2432 – 2432 pixels per line

• DF_WID2592 – 2592 pixels per line (only for vertical
resolution DF_RES_300_300, supported on Dialogic® DM3
Boards only)

rfu[2] Reserved for future use.

Dialogic® Fax Software Reference

 144

10.7. DF_TXNSF – Transmit NSF Message

The DF_TXNSF data structure describes the characteristics of the T.30 non-
standard facilities (NSF) message sent by the transmitter. Use of this data
structure and the FC_TXNSF define in dx_setparm() enables the transmitter to
send a customized NSF message during Phase B negotiation.

This data structure is only supported on Dialogic® DM3 Boards; it is not
supported on Dialogic® Springware Boards.

10.7.1. DF_TXNSF Definition

The DF_TXNSF structure consists of the following fields:

typedef struct df_txnsf {

 unsigned char length;
 unsigned char nsf[255];

} DF_TXNSF;

10.7.2. DF_TXNSF Field Descriptions

The DF_TXNSF fields are described in Table 15. DF_TXNSF Fields.

Table 15. DF_TXNSF Fields

Field Description

length Specifies the number of bytes of data contained in the nsf
field.

nsf Contains the T.30 non-standard facilities (NSF) customized
message.

NOTE: Although the nsf field specifies 255, the maximum
length valid for this field is 127 bytes.

10. Fax Data Structures

 145

10.8. DF_UIO – User-Defined I/O

The DF_UIO structure contains pointers to user-defined functions that replace the
standard I/O functions read(), write(), and lseek(). This structure is passed to
fx_setuio().

The user-defined I/O functions are passed the same arguments and must specify
the same return type as the standard I/O functions. The fax library stores the
pointers to the user-defined read, write, and seek functions.

10.8.1. DF_UIO Definition

The DF_UIO structure consists of the following fields:

typedef struct df_uio {
 int (*u_read)(); /* User defined replacement for read() */
 int (*u_write)(); /* User defined replacement for write() */
 long (*u_seek)(); /* User defined replacement for lseek() */
};

10.8.2. DF_UIO Field Descriptions

The DF_UIO fields are described in Table 16. DF_UIO Fields.

Table 16. DF_UIO Fields

Field Description

u_read A pointer to the user-defined read() function.

u_write A pointer to the user-defined write() function.

u_seek A pointer to the user-defined lseek() function.

10.8.3. DF_UIO Usage Rules

The following rules apply to the use of the DF_UIO structure:

• specifying user I/O for fx_sendfax()

• specifying user I/O for fx_rcvfax2()

Dialogic® Fax Software Reference

 146

Specifying User I/O for fx_sendfax()

To specify user-defined I/O functions for use in sending a fax, you must OR the
io_type field of the appropriate DF_IOTT structure with IO_UIO.

The fax library then calls the user-defined seek and read functions when
processing the DF_IOTT structure. The file descriptor argument passed to the
user-defined functions is the value specified in the io_fhandle field of the
DF_IOTT structure.

NOTE: In an array of DF_IOTT structures passed to the fx_sendfax() function,
the user-defined I/O functions are only called for those structures whose
IO_UIO bit is set in the io_type field. The standard I/O functions are
used for all other DF_IOTT structures.

Specifying User I/O for fx_rcvfax2()

To specify user-defined I/O functions for use in receiving a fax, you must OR the
rcvflag argument of the fx_rcvfax2() function with the IO_UIO bit.

The fax library then calls the user-defined seek and write functions every time fax
data is to be written to the I/O device. The file descriptor passed to the user-
defined I/O functions is the fd argument to the fx_rcvfax2() function.

147

11. Using the Fax Library

11.1. Overview

This chapter presents an overview of the fax main library functions and
convenience functions.

11.2. Function Categories

The fax main library (libfaxmt.lib) provides functions used to create fax
applications. These functions interface with the voice driver.

Dialogic also supplies fax convenience functions, which are built on fax main
library functions. Convenience functions enable you to easily implement basic
functionality of the fax main library functions. The source code for these
functions is provided in faxconv.c and in the function reference.

See Chapter 12. Fax Library Function Reference for details on all functions. Not
all functions are supported on all platforms (Dialogic® DM3 Boards, Dialogic®

Springware Boards). Platform support is indicated in the “Dialogic® Platform”
line in each function reference.

The fax library functions can be grouped as shown in Table 17. Categories of
Fax Functions:

Dialogic® Fax Software Reference

 148

Table 17. Categories of Fax Functions

Category Description

Send fax Send single or multi-page fax data as defined
by the DF_IOTT structure.

Receive fax Receive fax data and write to a file, or send a
request to receive fax data (polling).

Set initial fax state Set the initial fax state of the application to
caller (transmit) or called (receive).

Initialize DF_IOTT structure Set default values for a DF_IOTT structure.

Configuration Set and retrieve fax parameters such as fax
header attributes.

Extended attribute Return information specific to a fax device.

Resource management Open, close, and stop a fax channel device.

TDM bus routing Connect and disconnect fax channel to a
TDM bus time slot.

Convenience A set of functions built on fax main library
functions; these functions simplify
application development.

Miscellaneous Fax functions that don’t fall into any other
category.

11. Using the Fax Library

 149

11.2.1. Send Fax

The Send Fax function transmits fax data as defined by the DF_IOTT structure.

NOTE: Convenience functions can also be used to send fax data; see Section
11.2.10. Convenience Functions.

Function Description

fx_sendfax() Sends fax data as defined by the DF_IOTT
structure:

• single or multi-page TIFF/F fax file

• single page raw image file

• ASCII data

 Indicates to the caller application that the called
application only has transmit capability.

11.2.2. Receive Fax

The Receive Fax functions receive fax data and write it to a specified file, or send
a request to the caller application to receive fax data (poll request).

Functions Description

fx_rcvfax() Receives fax data and writes it to a file:

• single or multi-page TIFF/F fax file

• single page raw image file

 Requests the caller application to receive a fax
document (poll request).

fx_rcvfax2() Same description as fx_rcvfax(), except that this
function takes a file descriptor argument instead of a
file name. Use this function to enable user-defined
I/O functions.

Dialogic® Fax Software Reference

 150

11.2.3. Set Initial Fax State

The caller and called fax applications issue the Set Initial Fax State fax function
to establish the initial fax state as caller (transmit state) or called (receive state)
before issuing the initial send or receive fax function of the fax call.

NOTE: Once the fax application sets the initial fax state, the correct fax state is
maintained by the fax library throughout the fax session even when
polling occurs.

Function Description

fx_initstat() Sets the initial fax state for a specified fax channel
device:

• caller = transmit state

• called = receive state

11.2.4. Initialize DF_IOTT

This function initializes a DF_IOTT structure, which specifies the fax data to
send.

Function Description

fx_setiott() Initializes a DF_IOTT structure and sets default
values.

11.2.5. Configuration

Configuration functions set and read various fax parameters.

Functions Description

fx_getparm() Reads fax parameter.

fx_setparm() Sets fax parameter such as fax page header
attributes.

11. Using the Fax Library

 151

11.2.6. Extended Attribute

Fax extended attribute functions have the prefix ATFX_. These functions take
one parameter, the device handle for the fax channel, and return status
information about the fax session.

Fax extended attributes are included in the fax library file (libfaxmt.lib).

Fax extended attribute function names are case-sensitive and must be written in
uppercase letters.

Fax Extended Attribute Function Description

ATFX_BADIOTT() Returns a pointer to an invalid DF_IOTT
structure.

ATFX_BADPAGE() Returns a bad TIFF/F page number within
the DF_IOTT structure.

ATFX_BADSCANLINES() Returns the number of bad scan lines in the
last page transmitted or received.

ATFX_BSTAT() Returns the Phase B status bitmap after a
TFX_PHASEB event.

Returns bits indicating that the following
messages are available: Non-Standard
Facilities (NSF) information, Digital
Information Signal (DIS) message, and
Digital Command Signal (DCS) message.

ATFX_ECM() Returns information on use of Error
Correction Mode (ECM) for fax data
transfer.

ATFX_ESTAT() Returns Phase E information describing
errors during the fax session.

ATFX_CHTYPE() Returns the fax channel hardware type.

ATFX_CODING() Returns negotiated line encoding scheme.

ATFX_FXVERSION() Returns fax library version number string.

ATFX_LASTIOTT() Returns a pointer to the last DF_IOTT
structure that was processed.

Dialogic® Fax Software Reference

 152

Fax Extended Attribute Function Description

ATFX_PGXFER() Returns the number of pages transferred.

ATFX_PHDCMD() Returns the Phase D command after a
TFX_PHASED event.

ATFX_PHDRPY() Returns the Phase D reply after a
TFX_PHASED event.

ATFX_RESLN() Returns a decimal value indicating the
vertical resolution of the transferred page
after Phase D is completed.

ATFX_RTNPAGES() Returns the number of received pages that
returned RTN to the transmitter during
reception.

ATFX_SCANLINES() Returns the total number of scan lines in the
last page transmitted or received.

ATFX_SPEED() Returns the final transfer speed (in baud)
after Phase B completed; returns the equate
DF_14400BAUD to indicate 14.4 Kbps
transfer speed.

ATFX_STATE() Returns the current fax device channel state.

ATFX_TERMMSK() Returns a bitmap of termination reasons.

ATFX_TFBADTAG() Returns a bad TIFF/F tag number if
EFX_BADTAG error is returned to
ATDV_LASTERR().

ATFX_TFNOTAG() Returns the tag number of missing TIFF/F
mandatory tag if EFX_BADTIF error is
returned to ATDV_LASTERR().

ATFX_TFPGBASE() Returns a value indicating the base page
numbering scheme for the last transmitted
TIFF/F file.

ATFX_TRCOUNT() Returns the total number of bytes
transferred during the current fax session.

11. Using the Fax Library

 153

Fax Extended Attribute Function Description

ATFX_WIDTH() Returns a decimal value (in pixels per line)
of negotiated width after Phase D
completed.

Returns the width of the fax page as it was
transferred.

11.2.7. Resource Management

Resource Management functions start and stop fax resources, and stop a fax
transfer.

Functions Description

fx_open() Opens a fax channel or board device.

fx_close() Closes a fax channel device.

fx_stopch() Stops a fax channel device I/O.

Before a fax transfer can occur, the fax channel device must be opened. The
fx_open() function specifies a unique Dialogic® device handle. This handle is the
only way a device can be identified once it is open. The fx_close() function
closes a device via its handle.

The fx_open() and fx_close() functions do not cause a device to be busy. The
functions work on a device whether the device is busy or idle.

See Section 5.3. Opening and Closing a Fax Channel for more information on
opening and using devices.

Hints

• Issuing an fx_open() or fx_close() while the fax device is in use by another
process does not affect the current operation of the fax device.

• The device handle that is returned is Dialogic defined. The device handle is
not a standard operating system file descriptor. Any attempts to use operating
system commands such as read(), write(), or ioctl() will produce
unexpected results.

Dialogic® Fax Software Reference

 154

• In an application that creates a child process from a parent process, a device
handle is not inheritable by the child process. Devices must be opened in the
child process.

The fx_stopch() function stops a fax send or receive in progress on a channel
device.

11.2.8. TDM Bus Routing

Use the fax-specific TDM bus routing functions in combination with TDM bus
routing functions of other resources to set up TDM bus routing to send or receive
a fax.

Functions Description

fx_listen() Connects fax listen channel to TDM bus time slot.

fx_unlisten() Disconnects fax listen channel from TDM bus.

fx_getxmitslot() Returns fax device channel’s TDM bus transmit
time slot.

fx_getctinfo() Returns information about a fax device handle

The fax TDM bus routing functions are included as part of the fax library.

11.2.9. Miscellaneous

The following functions don’t fall into any other fax category. They are used to
get T.30 messaging data, load fonts for ASCII data, set up user-defined I/O
functions, and for other miscellaneous purposes.

Functions Description

fx_getDCS() Gets T.30 Digital Command Signal data.

fx_getDIS() Gets T.30 Digital Information Signal data.

fx_getNSF() Gets T.30 Non-Standard Facilities data.

fx_GetDllVersion() (Windows® only) Returns the fax DLL version
number.

fx_libinit() (Windows® only) Initializes the fax library DLL.

11. Using the Fax Library

 155

Functions Description

fx_originate() Allows the DCS on hold feature.

fx_setuio() Installs user-defined I/O functions.

The fx_getDCS() function allows an application to retrieve the most recent T.30
Digital Command Signal message, if available, for a specified channel. The DCS
message contains information about the Phase B negotiated settings between the
transmitter and receiver.

The fx_getDIS() function allows an application to retrieve the most recent T.30
Digital Information Signal message, if available, for a specified channel. The DIS
message contains information about the receiver’s capabilities. The DIS message
is sent by the receiver to the transmitter as part of the Phase B negotiation.

The fx_getNSF() function allows an application to retrieve the T.30 Non-
Standard Facilities message, if available, for a specified channel. The NSF
message is a variable length message that can contain manufacturer-specific
information. Manufacturers can use this message to support proprietary features
for their products. The NSF message is sent as part of the Phase B negotiation.

The fx_GetDllVersion() function returns the fax DLL version number, while the
fx_libinit() function initializes the fax library DLL.

The fx_setuio() function allows an application to install user-defined read(),
write(), and lseek() I/O functions. The DF_UIO data structure provides pointers
to user-defined I/O functions.

Dialogic® Fax Software Reference

 156

11.2.10. Convenience Functions

Fax convenience functions are built on fax main library functions. They allow
you to easily implement some of the basic functionality of the fax main library
functions.

Functions Description

fx_sendascii() Sends a single ASCII file.

fx_sendraw() Sends a single page of raw, unformatted,
compressed fax data.

fx_sendtiff() Sends a single TIFF/F file.

The fax convenience functions are based on the fx_sendfax() function and use
the DF_IOTT data structure. The source code for these functions is provided in
the function reference as well as in the file faxconv.c.

You have the option of building your own convenience functions or using the
functions provided in faxconv.c. If you use the convenience functions in
faxconv.c, you must compile faxconv.c and link it with the object code when
building your application.

These convenience functions are written to operate in synchronous mode
(EV_SYNC). To use the asynchronous mode of operation, you can modify the
source code for the call to fx_sendfax() in the faxconv.c file. See the
fx_sendfax(), fx_sendascii, fx_sendraw(), and fx_sendtiff() function
references and sample code in Chapter 12. Fax Library Function Reference.

11. Using the Fax Library

 157

11.3. Error Handling

This section describes error handling in general and for specific modes of
operation, namely synchronous and asynchronous. For a list of fax error codes,
see Appendix D.

All fax library functions return a value to indicate success or failure of the
function.

• To indicate success, the library returns a value of zero or a non-negative
number.

• To indicate failure, the library returns a value of -1.

Extended attribute functions that do not return a pointer indicate failure by
returning AT_FAILURE. Extended attribute functions that return a pointer
indicate failure with AT_FAILUREP.

If a fax library function fails, call the standard attribute function
ATDV_LASTERR() to return the error code and ATDV_ERRMSGP() to
return a string describing the error. These functions are described in the Dialogic®

Standard Runtime Library API Library Reference.

If ATDV_LASTERR() returns the error EDX_SYSTEM, a system error has
occurred. On Linux, check the global variable errno for more information. On
Windows®, use dx_fileerrno() to obtain the system error value. Refer to the
dx_fileerrno() function in the Dialogic® Voice API Library Reference for a list
of possible system error values.

NOTE: fx_open() and fx_close() are exceptions to the above error handling
rules. If these functions fail, the return code is -1 and an error from the
operating system has occurred.

If a fax send or receive function successfully completes, you can learn the final
Phase D status of the fax transfer using fax extended attributes. If the function
fails, Phase E status (using the fax extended attribute ATFX_ESTAT()) provides
additional error information for the T.30 fax protocol. Values for Phase D and
Phase E status are described in Appendix B and Appendix C, respectively.

Dialogic® Fax Software Reference

 158

On Dialogic® DM3 Boards, if you execute a standard fax function that is not
supported by DM3 Boards, it produces an EFX_NOTIMP (“not implemented”)
error. If you execute a supported fax function with a parameter that is not
supported on DM3 Boards, it produces an EFX_UNSUPPORTED error.

11.3.1. Synchronous Mode

Fax library functions that operate in synchronous mode return a value to indicate
successful completion or failure of the function.

• To indicate successful completion, the function returns a value of zero.

• To indicate failure, the function returns a value of -1.

If a fax library function operating in synchronous mode fails, an error code is
generated. To learn more about this failure, call the standard attribute function
ATDV_LASTERR() to return the error code and ATDV_ERRMSGP() to
return a string describing the error.

11.3.2. Asynchronous Mode

The fx_rcvfax(), fx_rcvfax2(), fx_sendfax(), and fx_originate() functions can
be specified to operate in synchronous or asynchronous mode. All other fax
library functions operate in synchronous mode.

Fax library functions that operate in asynchronous mode return a value to indicate
invocation success or failure, immediately after the function has been initiated:

• Invocation success is indicated by a return value of zero.

• Invocation failure is indicated by a return value of -1.

If the function is successfully invoked in asynchronous mode, it completes
processing or terminates due to a processing error and an event is generated by
the Dialogic® Standard Runtime Library.

11. Using the Fax Library

 159

The Standard Runtime Library may return the following events on completion of
fx_rcvfax(), fx_rcvfax2(), or fx_sendfax() operating in asynchronous mode:

Event Description

TFX_FAXERROR Error in processing

TFX_FAXRECV Successful completion of fx_rcvfax() or fx_rcvfax2()

TFX_FAXSEND Successful completion of fx_sendfax()

If a function fails, a TFX_FAXERROR event is generated. Call the standard
attribute function ATDV_LASTERR() to return the error code and
ATDV_ERRMSGP() to return a string describing the error.

11.4. Include (Header) Files

Applications that use the fax library functions must contain the following
statements for header files in this order before other statements:

#include <srllib.h> /* For Voice and Fax development purposes. */
#include <dxxxlib.h> /* For Voice development purposes. */
#include <faxlib.h> /* For Fax development purposes. */

NOTE: List srllib.h in the code before dxxxlib.h and faxlib.h.

For default directory path information, see the software installation information
included with the Dialogic® Software Release.

11.5. Compiling Applications

In Linux, you must link the following libraries in this order when compiling
your single or multi-threaded application:

libdxxx.so
libsrl.so
libfax.so

Dialogic® Fax Software Reference

 160

In Windows®, you must link the following libraries in this order when compiling
your single or multi-threaded application:

libdxxmt.lib
libsrlmt.lib
libfaxmt.lib

For default path information, see the software installation information included
with the Dialogic® Software Release.

The fax header and library files are part of the Dialogic® Fax software. The
function prototypes and equates are defined in the header file. The Dialogic®

Voice and Standard Runtime Library header files and library files are part of the
Dialogic® Voice software. These files are installed on your hard disk during the
software installation.

NOTE: If you use the fax convenience functions contained in the faxconv.c file,
you must also compile and link the faxconv.c file when compiling your
application. The faxconv.c file is included with the Dialogic® Fax
software.

161

12. Fax Library Function Reference

Fax Library Overview

This chapter provides an alphabetical reference to the functions in the fax main
library (libfaxmt.lib) as well as the fax convenience functions (faxconv.c).

The following information is included to describe the fax function:

• Reference header information

• Description

• Cautions

• Example

• Source Code (when applicable)

• Errors

• See Also (list of related functions, when applicable)

Dialogic® Fax Software Reference

 162

 Reference Header Information

The function reference header contains the following information at the
beginning of each fax function description:

Name: The function name (with parameters)
Inputs: The function parameter input types with a brief description of

each parameter
Returns: The returns for the function
Includes: The include files required as displayed in the function example
Category: The group in which the function belongs

Mode: The mode of operation for the function (synchronous or
asynchronous), if applicable

Dialogic®

Platform:
The Dialogic® board type (DM3, Springware)

 Description

The function reference description provides the following information:

• A brief description of the purpose and operation of the function

• The function parameters and values

• A detailed description of the function to include, where applicable, how
associated fax features apply to the function

 Cautions

The function reference cautions provide important information regarding
restrictions on the use of the fax function.

12. Fax Library Function Reference

 163

 Example

An example is provided to show how the function is used in a fax application.
The specific fax function and parameters are printed in bold type. When
applicable, the examples are commented to explain how each function is used in
the example.

 Source Code

Where applicable, the source code for the function is provided as part of the
function reference.

 Errors

The errors that could be returned by the function are described.

 See Also

Where applicable, a list of related functions is provided at the end of each
function reference.

ATFX_BADIOTT() returns a pointer to an invalid DF_IOTT

 164

Name: DF_IOTT * ATFX_BADIOTT(dev)
Inputs: int dev • fax channel device handle

Returns: pointer to invalid DF_IOTT if successful
 AT_FAILUREP if error

Includes: srllib.h
 dxxxlib.h
 faxlib.h

Category: extended attribute
Mode: synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The ATFX_BADIOTT() function returns a pointer to an invalid DF_IOTT
structure if one is detected after transmission begins. If a bad DF_IOTT structure
is detected, a TFX_FAXERROR event occurs and ATDV_LASTERR() returns
the error EFX_BADIOTT.

See the Dialogic® Voice API Library Reference for information on
ATDV_LASTERR().

Parameter Description

dev Specifies the channel device handle for the fax channel
obtained when the channel was opened.

The value returned by ATFX_BADIOTT() at the end of a fax session remains
available to the application until a new send is initiated on that channel.

 Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

DF_IOTT iott[10];
DF_IOTT * badiotp;
int dev;

returns a pointer to an invalid DF_IOTT ATFX_BADIOTT()

 165

/*
 * Open the channel using fx_open() and obtain the
 * FAX device handle in dev.
 */
.
.
/* Call fx_sendfax() after setting up the DF_IOTT array. */
if (fx_sendfax(dev, iott, EV_SYNC) == -1) {

 /* Check if error was due to an invalid DF_IOTT. */
 if (ATDV_LASTERR(dev) == EFX_BADIOTT) {
 /* Get pointer to bad DF_IOTT element. */
 badiotp = ATFX_BADIOTT(dev);
 }
 .
 .
}

 Errors

If one of the following conditions is present, this function fails and returns
AT_FAILUREP:

• An invalid fax channel device handle is specified in dev.
• An EFX_BADIOTT error did not occur during the last call to fx_sendfax()

on the specified channel.

ATFX_BADPAGE() returns the fax page number

 166

Name: long ATFX_BADPAGE(dev)
Inputs: int dev • fax channel device handle

Returns: bad page number within DF_IOTT structure if successful
 AT_FAILURE if error

Includes: srllib.h
 dxxxlib.h
 faxlib.h

Category: extended attribute
Mode: synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The ATFX_BADPAGE() function returns the fax page number (if error during
processing) within the DF_IOTT structure that is being processed when an error
occurs.

To determine the last DF_IOTT processed, call the fax extended attribute
ATFX_LASTIOTT().

Parameter Description

dev Specifies the channel device handle for the fax channel
obtained when the channel was opened.

The value returned by ATFX_BADPAGE() at the end of a fax session remains
available to the application until a new send is initiated on that channel.

 Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

DF_IOTT iott[10];
DF_IOTT * lastiotp;
long pagenum;
int dev;

returns the fax page number ATFX_BADPAGE()

 167

/*
 * Open the channel using fx_open() and obtain the
 * FAX device handle in dev.
 */
.
.
/* Call fx_sendfax() after setting up the DF_IOTT array. */
if (fx_sendfax(dev, iott, EV_SYNC) == -1) {

 /*
 * Get pointer to DF_IOTT being processed when error
 * occurred.
 */
 lastiotp = ATFX_LASTIOTT(dev);
 /*
 * Page being processed within this DF_IOTT when error
 * occurred.
 */
 pagenum = ATFX_BADPAGE(dev);
 .
 .
}

 Errors

If one of the following conditions is present, this function fails and returns
AT_FAILURE:

• An invalid fax channel device handle is specified in dev.
• An EFX_BADPAGE error has not occurred during the last call to

fx_sendfax() on the specified channel.

ATFX_BADSCANLINES() returns the number of bad scan lines

 168

Name: long ATFX_BADSCANLINES(dev)
Inputs: int dev • fax channel device handle

Returns: number of bad scan lines in last page transferred if
successful

 AT_FAILURE if error
Includes: srllib.h

 dxxxlib.h
 faxlib.h

Category: extended attribute
Mode: synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The ATFX_BADSCANLINES() function returns the number of bad scan lines
detected and replaced in the last page transmitted or received. This information is
available at the end of Phase D for every page sent or received.

Parameter Description
dev Specifies the channel device handle for the fax channel

obtained when the channel was opened.

The data provided by this function is updated each time the fax transfer completes
Phase D of the T.30 protocol. For an application to monitor the number of bad
scan lines, you must enable Phase D events and issue
ATFX_BADSCANLINES() when the TFX_PHASED event occurs. Note that
since Phase D also occurs at the end of a send or receive when a Phase D event is
not generated, you can also call this function after a TFX_FAXSEND or
TFX_FAXRECV event.

The final bad scan line value returned by ATFX_BADSCANLINES() at the end
of a fax session remains available to the application until a new send or receive is
initiated on that channel.

NOTE: Between multiple Phase D completions during the same fax session,
ATFX_BADSCANLINES() returns the bad scan line information from
the previously completed page.

returns the number of bad scan lines ATFX_BADSCANLINES()

 169

 Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

int dev;

/* Handler for Phase D events. */
int phd_hdlr();

main()
{
 /*
 * Open the channel using fx_open() and obtain the
 * FAX device handle in dev.
 */
 .
 .
 /*
 * Install handler to service TFX_PHASED events.
 */
 if (sr_enbhdlr(dev, TFX_PHASED, phd_hdlr) == -1) {
 printf(“Failed to install Phase D handler \n”);
 return;
 }

 /*
 * Call fx_rcvfax() in asynchronous mode to receive
 * TIFF/F file. Set DF_PHASED bit in mode field
 * to enable generation of Phase D events.
 */
 if (fx_rcvfax(dev,"fax.tif", EV_ASYNC|DF_PHASED) == -1) {
 printf("Error - %s (error code %d)\n",
 ATDV_ERRMSGP(dev),ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev)==EDX_SYSTEM) {
 /* Perform system error processing */
 }
 }
 .
 .
}

/*
 * Handler registered with SRL to handle TFX_PHASED events.
 */

int phd_hdlr()
{

 int dev = sr_getevtdev();

 /*
 * Number of bad scan lines of the page just
 * received is available at this point.
 */
 printf("Bad scan lines in page received: %ld\n",
 ATFX_BADSCANLINES(dev));

ATFX_BADSCANLINES() returns the number of bad scan lines

 170

 .
 .
 return(0);
}

 Errors

If one of the following conditions is present, this function fails and returns
AT_FAILURE:

• An invalid fax channel device handle is specified in dev.
• The function is called prior to the completion of the first page transfer of the

fax session.

returns a bitmap to indicate Phase B status ATFX_BSTAT()

 171

Name: long ATFX_BSTAT(dev)
Inputs: int dev • fax channel device handle

Returns: Phase B status bitmap after TFX_PHASEB event if
successful

 AT_FAILURE if error
Includes: srllib.h

 dxxxlib.h
 faxlib.h

Category: extended attribute
Mode: synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The ATFX_BSTAT() function returns a bitmap to indicate Phase B status. Valid
values are:

Phase B Status Description

DFS_REMOTEID Remote station ID available

DFS_NSF Remote station Non-Standard Facilities (NSF)
message available

DFS_DIS Digital Information Signal (DIS) message
available, sent from receiver to transmitter

DFS_DCS Digital Command Signal (DCS) message
available, sent from transmitter to receiver

DFS_REMOTESUBADDR Subaddress routing message available, sent
from transmitter to receiver (not supported on
Dialogic® DM3 Boards)

To obtain the remote station ID, use the FC_REMOTEID parameter value in the
fx_getparm() function.

For details on receiving the DCS, DIS, and NSF messages, see the fx_getDCS(),
fx_getDIS(), and fx_getNSF() function references.

ATFX_BSTAT() returns a bitmap to indicate Phase B status

 172

Parameter Description
dev Specifies the channel device handle for the fax channel

obtained when the channel was opened.

The data provided by this function is updated each time the fax transfer completes
Phase B of the T.30 protocol. After a fax session terminates, the value from the
last fax transfer is available until the start of a new fax session.

To be notified when Phase B information is available, you must enable Phase B
events (DF_PHASEB in the fx_rcvfax(), fx_rcvfax2(), or fx_sendfax()
function) and issue ATFX_BSTAT() when the Phase B event (TFX_PHASEB)
occurs.

NOTES: 1. Between multiple Phase B negotiations during the same fax session,
ATFX_BSTAT() returns the Phase B availability information from
the previously completed Phase B negotiation.

2. If fx_sendfax(), fx_rcvfax(), and fx_rcvfax2() are issued in
synchronous mode (EV_SYNC), you must install an event handler
to handle Phase B events by using the sr_enbhdlr() function of the
Dialogic® Standard Runtime Library.

 Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

DF_IOTT iott[10];
int dev;

/* Handler for Phase B events. */
int phb_hdlr();

main()
{
 /*
 * Open the channel using fx_open() and obtain the
 * FAX device handle in dev.
 */
 .
 .
 /*
 * Install handler to service TFX_PHASEB events.
 */
 if (sr_enbhdlr(dev, TFX_PHASEB, phb_hdlr) == -1) {

returns a bitmap to indicate Phase B status ATFX_BSTAT()

 173

 printf(“Failed to install Phase B handler \n”);
 return;
}

 /*
 * Call fx_sendfax() in asynchronous mode after setting
 * up the DF_IOTT array. Set DF_PHASEB bit in mode field
 * to enable generation of Phase B events.
 */
 if (fx_sendfax(dev, iott, EV_ASYNC|DF_PHASEB) == -1) {
 printf("Error - %s (error code %d)\n",
 ATDV_ERRMSGP(dev),ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev)==EDX_SYSTEM) {
 /* Perform system error processing */
 }
 }
 .
 .
}

/*
 * Handler registered with SRL to handle TFX_PHASEB events.
 */

int phb_hdlr()
{

 int dev = sr_getevtdev();

 if (ATFX_BSTAT(dev) & DFS_REMOTEID) {
 /*
 * Remote ID available - get remote id using
 * fx_getparm().
 */
 .
 .
 }
 /* Remote data rate capability. */
 printf("Data rate for fax transmission: %ld\n",
 ATFX_SPEED(dev));
 .
 .
 return(0);
}

 Errors

If one of the following conditions is present, this function fails and returns
AT_FAILURE:

• An invalid fax channel device handle is specified in dev.
• The function is called prior to the completion of the first Phase B event.

ATFX_BSTAT() returns a bitmap to indicate Phase B status

 174

 See Also

• fx_getDCS()
• fx_getDIS()
• fx_getNSF()
• fx_getparm()

returns the fax channel’s base hardware type ATFX_CHTYPE()

 175

Name: long ATFX_CHTYPE(dev)
Inputs: int dev • fax channel device handle

Returns: fax channel base hardware type if successful
 AT_FAILURE if error

Includes: srllib.h
 dxxxlib.h
 faxlib.h

Category: extended attribute
Mode: synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The ATFX_CHTYPE() function returns the fax channel’s base hardware type.
Valid values are:

Hardware Type Value Description

DFS_FAX40 Dialogic® VFX/40SC Board (no longer
supported)

DFS_FAX40E Dialogic® VFX/40ESC Board (no longer
supported)

DFS_FAX40EPLUS Dialogic® VFX/40ESCplus Board (no longer
supported)

DFS_FAX40EPLUSREX Board that supports DSP Fax

DFS_FAXDM3 Dialogic® DM3 Board that supports fax

Parameter Description
dev Specifies the channel device handle for the fax

channel obtained when the channel was opened.

The base hardware type can be used to determine the capabilities of the fax
channel. For more information, see Section 2.3. Product Features. On Dialogic®

DM3 Boards, you cannot use ATFX_CHTYPE() to determine if a channel

ATFX_CHTYPE() returns the fax channel’s base hardware type

 176

device has fax capabilities, because its dev parameter requires a fax device handle
previously obtained from fx_open(). If fx_open() succeeds, this means that the
channel device is already fax-capable. The ATFX_CHTYPE() function only
identifies the hardware on which the fax-capable channel device sits. If the
hardware is Dialogic® DM3, then this function returns DFS_FAXDM3.

 Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

int dev;

main()
{
 /*
 * Open the channel using fx_open() and obtain the
 * FAX device handle in dev.
 */
 .
 .
 /* Determine channel hardware type. */
 switch(ATFX_CHTYPE(dev)) {
 case DFS_FAX40E:
 /*
 * Enable VFX/40ESC (return type DFS_FAX40E) supported features:
 * For example, set FC_RXCODING parameter to DF_MMR to receive
 * all files in MMR encoding scheme.
 */
 .
 .
 break;
 case DFS_FAX40:
 /* VFX/40SC (return type DFS_FAX40) device */
 .
 .
 break;
 }
 .
}

 Errors

If one of the following conditions is present, this function fails and returns
AT_FAILURE:

• An invalid fax channel device handle is specified in dev.
• The channel device handle specified does not have fax support.

returns the fax channel’s base hardware type ATFX_CHTYPE()

 177

 See Also

• fx_sendfax()

ATFX_CODING() returns most recently negotiated fax encoding scheme

 178

Name: long ATFX_CODING(dev)
Inputs: int dev • fax channel device handle

Returns: negotiated line encoding scheme if successful
 AT_FAILURE if error (or if initial Phase B not completed)

Includes: srllib.h
 dxxxlib.h
 faxlib.h

Category: extended attribute
Mode: Synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The ATFX_CODING() function returns most recently negotiated fax encoding
scheme between the transmitter and receiver for the specified fax channel.

Valid values are:

DFS_MH Modified Huffman line encoding scheme

DFS_MR Modified Read line encoding scheme

DFS_MMR Modified Modified Read line encoding scheme

Parameter Description
dev Specifies the channel device handle for the fax channel

obtained when the channel was opened.

The data provided by this function is updated each time the fax transfer completes
Phase B of the T.30 protocol. After a fax session terminates, the value from the
last fax transfer is available until the start of a new fax session.

To be notified when Phase B has completed, you must enable Phase B events
(DF_PHASEB in the fx_rcvfax(), fx_rcvfax2(), or fx_sendfax() function) and
issue ATFX_CODING() when the Phase B event (TFX_PHASEB) occurs.

returns most recently negotiated fax encoding scheme ATFX_CODING()

 179

NOTES: 1. Between multiple Phase B completions during the same fax session,
ATFX_CODING() returns the Phase B encoding information from
the previously completed Phase B negotiation.

2. For a receiver application, the line encoding scheme negotiated
between the transmitter and receiver for the fax transfer may be
different than the encoding scheme of the stored fax data.

3. For a transmitter application, the line encoding scheme negotiated
between the transmitter and receiver for the fax transfer may be
different than the encoding scheme of the stored fax data or the
encoding scheme specified in the FC_TXCODING parameter. The
final negotiated data transmission line encoding scheme is based on
the receiver’s capabilities.

 Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

DF_IOTT iott[10];
int dev;

/* Handler for Phase B events. */
int phb_hdlr();

main()
{
 /*
 * Open the channel using fx_open() and obtain the
 * FAX device handle in dev.
 */
 .
 .
 /*
 * Install handler to service TFX_PHASEB events.
 */
 if (sr_enbhdlr(dev, TFX_PHASEB, phb_hdlr) == -1) {
 printf(“Failed to install Phase B handler \n”);
 return;
}

 /*
 * Call fx_sendfax() in asynchronous mode after setting
 * up the DF_IOTT array. Set DF_PHASEB bit in mode field
 * to enable generation of Phase B events.
 */
 if (fx_sendfax(dev, iott, EV_ASYNC|DF_PHASEB) == -1) {
 printf("Error - %s (error code %d)\n",
 ATDV_ERRMSGP(dev),ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev)==EDX_SYSTEM) {

ATFX_CODING() returns most recently negotiated fax encoding scheme

 180

 /* Perform system error processing */
 }
 }
 .
 .
}

/*
 * Handler registered with SRL to handle TFX_PHASEB events.
 */

int phb_hdlr()
{

 int dev = sr_getevtdev();

 /* Negotiated line encoding scheme. */
 printf("Negotiated data encoding scheme: %ld\n",
 ATFX_CODING(dev));
 .
 .
 return(0);
}

 Errors

If one of the following conditions is present, this function fails and returns
AT_FAILURE:

• An invalid fax channel device handle is specified in dev.
• The function is called prior to the completion of the first Phase B event.

 See Also

• fx_rcvfax()
• fx_sendfax()
• fx_setparm()

returns information on use of ECM for fax data transfer ATFX_ECM()

 181

Name: int ATFX_ECM (dev)
Inputs: int dev • fax channel device handle

Returns: whether fax data was transferred using ECM if successful
 -1 if function called before completion of Phase B

Includes: srllib.h
 dxxxlib.h
 faxlib.h

Category: extended attribute
Mode: synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The ATFX_ECM() function returns information on use of ECM for fax data
transfer. Valid values are:

DFS_NOECM Error Correction Mode (ECM) not used to transfer fax data

DFS_ECM Error Correction Mode (ECM) used to transfer fax data

This function has the following parameter:

Parameter Description

dev Specifies the channel device handle for the fax channel
obtained when the channel was opened.

After completion of Phase B negotiation, you can call ATFX_ECM() to
determine whether ECM was used in the fax data transfer. The value in
ATFX_ECM() remains valid until a new fax session is initiated.

 Example

#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

DF_IOTT iott[10];

ATFX_ECM() returns information on use of ECM for fax data transfer

 182

int dev;

/* Handler for Phase B events. */
int phb_hdlr();

main()

{
 /*
 * Open the channel and obtain the device handle
 * in dev.
 */
 .
 .
 /*
 * Install handler using sr_enbhdlr() to service
 * TFX_PHASEB events.
 */
 if (sr_enbhdlr(dev, TFX_PHASEB, phb_hdlr) == -1) {
 printf(“Failed to install Phase B handler \n”);
 return;
 }

 /*
 * Call fx_sendfax() in asynchronous mode after setting
 * up the DF_IOTT array. Set DF_PHASEB bit in mode field
 * to enable generation of Phase B events.
 */
 if (fx_sendfax(dev, iott, EV_ASYNC|DF_PHASEB) == -1) {
 printf("Error - %s (error code %d)\n",
 ATDV_ERRMSGP(dev),ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev)==EDX_SYSTEM) {
 /* Perform system error processing */
 }
 }
 .
 .
}

/*
 * Handler registered with SRL to handle TFX_PHASEB events.
 */

int phb_hdlr()
{

 int dev = sr_getevtdev();

 if (ATFX_ECM(dev) == DFS_ECM) {
 printf(“ECM was used during transfer\n”);
 .
 .
 }
 return(0);
}

returns information on use of ECM for fax data transfer ATFX_ECM()

 183

 Errors

If an invalid fax channel device handle is specified in dev, this function fails and
returns AT_FAILURE.

 See Also

• fx_setparm() (FC_TXCODING parameter)

ATFX_ESTAT() returns Phase E information

 184

Name: long ATFX_ESTAT(dev)
Inputs: int dev • fax channel device handle

Returns: Phase E information if successful
 AT_FAILURE if error

Includes: srllib.h
 dxxxlib.h
 faxlib.h

Category: extended attribute
Mode: synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The ATFX_ESTAT() function returns Phase E information describing errors
that occurred during the T.30 fax protocol.

When the fx_rcvfax(), fx_rcvfax2(), or fx_sendfax() function returns a -1, or
ATDV_LASTERR() returns a EFX_DISCONNECT error, use this function to
determine the reason for disconnection. See Appendix C for Phase E values
returned.

If a T.30 protocol error does not occur, ATFX_ESTAT() returns a zero.

Parameter Description
dev Specifies the channel device handle for the fax channel

obtained when the channel was opened.

 Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

DF_IOTT iott[10];
int dev;

/*
 * Open the channel using fx_open() and obtain the

returns Phase E information ATFX_ESTAT()

 185

 * FAX device handle in dev.
 */
.
.
/* Call fx_sendfax() after setting up the DF_IOTT array. */
if (fx_sendfax(dev, iott, EV_SYNC) == -1) {
 printf("Error - %s (error code %d)\n",
 ATDV_ERRMSGP(dev),ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev)==EDX_SYSTEM) {
 /* Perform system error processing */
 } else if (ATDV_LASTERR(dev) == EFX_DISCONNECT) {
 /*
 * Additional error processing - check Phase E status to
 * determine cause of error during fax protocol.
 */
 printf("Phase E status: %ld\n", ATFX_ESTAT(dev));
 }
}
.
.

 Errors

This function fails and returns AT_FAILURE if an invalid fax channel device
handle is specified in dev.

ATFX_FXVERSION() returns the fax library version number string

 186

Name: char * ATFX_FXVERSION(dev)
Inputs: int dev • fax channel device handle

Returns: fax library version number string if successful
 AT_FAILUREP if error

Includes: srllib.h
 dxxxlib.h
 faxlib.h

Category: extended attribute
Mode: synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The ATFX_FXVERSION() function returns the fax library version number
string (format: x.xx).

Parameter Description
dev Specifies the channel device handle for the fax channel

obtained when the channel was opened.

 Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

int dev;

/*
 * Open the channel using fx_open() and obtain the
 * FAX device handle in dev.
 */
.
.
/*
 * Optional display of version number of Fax
 * library.
 */
printf("%s\n", ATFX_FXVERSION(dev));

returns the fax library version number string ATFX_FXVERSION()

 187

 Errors

This function fails and returns AT_FAILUREP if an invalid fax channel device
handle is specified in dev.

ATFX_LASTIOTT() returns a pointer to the last processed DF_IOTT

 188

Name: DF_IOTT * ATFX_LASTIOTT(dev)
Inputs: int dev • fax channel device handle

Returns: pointer to last DF_IOTT if successful
 AT_FAILUREP if error

Includes: srllib.h
 dxxxlib.h
 faxlib.h

Category: extended attribute
Mode: synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The ATFX_LASTIOTT() function returns a pointer to the last processed
DF_IOTT structure.

Use this function to determine which DF_IOTT was processed when an error
occurred.

Parameter Description
dev Specifies the channel device handle for the fax channel

obtained when the channel was opened.

 Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

DF_IOTT iott[10];
DF_IOTT * lastiotp;
long pagenum;
int dev;

/*
 * Open the channel using fx_open() and obtain the
 * FAX device handle in dev.
 */
.
.
/* Call fx_sendfax() after setting up the DF_IOTT array. */

returns a pointer to the last processed DF_IOTT ATFX_LASTIOTT()

 189

if (fx_sendfax(dev, iott, EV_SYNC) == -1) {

 /*
 * Get pointer to DF_IOTT being processed when error
 * occurred.
 */
 lastiotp = ATFX_LASTIOTT(dev);
 /*
 * Page being processed within this DF_IOTT when error
 * occurred.
 */
 pagenum = ATFX_BADPAGE(dev);
}
.
.

 Errors

This function fails and returns AT_FAILUREP if an invalid fax channel device
handle is specified in dev.

ATFX_PGXFER() returns the number of transferred fax pages

 190

Name: long ATFX_PGXFER(dev)
Inputs: int dev • fax channel device handle

Returns: number of pages transferred if successful
 AT_FAILURE if error

Includes: srllib.h
 dxxxlib.h
 faxlib.h

Category: extended attribute
Mode: synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The ATFX_PGXFER() function returns the number of transferred fax pages
during the current fax call.

This function typically indicates the number of pages transferred by the
fx_rcvfax(), fx_rcvfax2(), or fx_sendfax() function. You can issue
ATFX_PGXFER() any time during a fax transfer to return the cumulative page
count for the fax session.

The final page count value returned by ATFX_PGXFER() at the end of a fax
session remains available to the application until a new send or receive is initiated
on that channel.

NOTE: In turnaround polling, this function provides a cumulative page count to
include both sending and receiving on the specified channel.

Parameter Description
dev Specifies the channel device handle for the fax channel

obtained when the channel was opened.

returns the number of transferred fax pages ATFX_PGXFER()

 191

 Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

int dev;

/*
 * Open the channel using fx_open() and obtain the
 * FAX device handle in dev.
 */
.
.
/*
 * Call fx_rcvfax() to receive a fax into the file
 * "myfax.tif".
 */
if (fx_rcvfax(dev, "myfax.tif", DF_TIFF|DF_NOPOLL|EV_SYNC)
 == -1) {
 printf("Error - %s (error code %d)\n",
 ATDV_ERRMSGP(dev),ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev)==EDX_SYSTEM) {
 /* Perform system error processing */
 }
 /*
 * Additional error processing - check Phase E status to
 * determine cause of error during fax protocol.
 */
 printf("Phase E status: %ld\n", ATFX_ESTAT(dev));
 .
 .
}
printf("Number of pages received: %ld\n", ATFX_PGXFER(dev));

 Errors

This function fails and returns AT_FAILURE if an invalid fax channel device
handle is specified in dev.

ATFX_PHDCMD() returns the Phase D command

 192

Name: long ATFX_PHDCMD(dev)
Inputs: int dev • fax channel device handle

Returns: Phase D command after TFX_PHASED event if successful
 AT_FAILURE if error

Includes: srllib.h
 dxxxlib.h
 faxlib.h

Category: extended attribute
Mode: synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The ATFX_PHDCMD() function returns the Phase D command. The following
are valid Phase D command values:

DFS_EOP End of Procedure – Terminate fax session. Progress to

Phase E and disconnect fax call.

DFS_MPS Multi-Page Signal – End of current fax document page,
more fax data to follow. Next fax document page is in
the same format as the current page, so proceed directly
to Phase C.

DFS_EOM End of Message – End of current fax document page,
more fax data to follow. Return to Phase B and negotiate
parameters for next fax document page.

DFS_POLL A poll request was sent.

DFS_PRI_EOP Request for operator intervention sent (PRI_EOP) (not
supported on Dialogic® DM3 Boards).

DFS_PRI_MPS Request for operator intervention sent (PRI_MPS) (not
supported on Dialogic® DM3 Boards).

DFS_PRI_EOM Request for operator intervention sent (PRI_EOM) (not
supported on Dialogic® DM3 Boards).

See Appendix B for Phase D command details.

returns the Phase D command ATFX_PHDCMD()

 193

Parameter Description
dev Specifies the channel device handle for the fax channel

obtained when the channel was opened.

The data provided by this function is updated each time the fax transfer completes
Phase D of the T.30 protocol.

To monitor the Phase D commands, you must enable Phase D events and issue
ATFX_PHDCMD() when the TFX_PHASED event occurs. Note that since
Phase D also occurs at the end of a send or receive when a Phase D event is not
generated, you can also issue this function after a TFX_FAXSEND or
TFX_FAXRECV event.

The final Phase D command value returned by ATFX_PHDCMD() at the end of
a fax session remains available to the application until a new send or receive is
initiated on that channel.

NOTE: Between multiple Phase D completions during the same fax session,
ATFX_PHDCMD() returns the previously completed Phase D
command information.

 Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

int dev;

/* Handler for Phase D events. */
int phd_hdlr();

main()
{
 /*
 * Open the channel using fx_open() and obtain the
 * FAX device handle in dev.
 */
 .
 .
 /*
 * Install handler (phd_hdlr()) using sr_enbhdlr() to service
 * TFX_PHASED events.
 */
 if (sr_enbhdlr(dev, TFX_PHASED, phd_hdlr) == -1) {

ATFX_PHDCMD() returns the Phase D command

 194

 printf(“Failed to install Phase D handler \n”);
 return;
 }

 /*
 * Call fx_rcvfax() in synchronous mode to receive
 * TIFF/F file. Set DF_PHASED bit in mode field
 * to enable generation of Phase D events.
 */
 if (fx_rcvfax(dev,"fax.tif", EV_SYNC|DF_PHASED) == -1) {
 printf("Error - %s (error code %d)\n",
 ATDV_ERRMSGP(dev),ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev)==EDX_SYSTEM) {
 /* Perform system error processing */
 }
 }
 /*
 * Examine Phase D command for last page.
 */
 printf("Phase D command: %ld\n", ATFX_PHDCMD(dev));
 .
 .
}

/*
 * Handler registered with SRL to handle TFX_PHASED events.
 */

int phd_hdlr()
{

 int dev = sr_getevtdev();

 /*
 * Examine Phase D command - e.g., DFS_MPS, DFS_EOM,
 * DFS_EOP.
 */
 phdcmd = ATFX_PHDCMD(dev);
 printf("Phase D command: %ld\n", phdcmd);
 .
 .
 return(0);
}

 Errors

If one of the following conditions is present, this function fails and returns
AT_FAILURE:

• An invalid fax channel device handle is specified in dev.
• The function is called prior to the completion of the first Phase D event.

returns the Phase D reply ATFX_PHDRPY()

 195

Name: long ATFX_PHDRPY(dev)
Inputs: int dev • fax channel device handle

Returns: Phase D reply after TFX_PHASED event if successful
 AT_FAILURE if error

Includes: srllib.h
 dxxxlib.h
 faxlib.h

Category: extended attribute
Mode: synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The ATFX_PHDRPY() function returns the Phase D reply. The following are
valid Phase D reply values:

DFS_MCF Message confirmation - valid fax image received, ready for

more pages.

DFS_RTN Retrain negative - bad fax image received, retrain and
resend image.

DFS_RTP Retrain positive - valid fax image received but retraining
required.

DFS_PIP Procedure interrupt positive - operator intervention request.

DFS_PIN Procedure interrupt negative - operator intervention request.

See Appendix B for Phase D reply details.

Parameter Description
dev Specifies the channel device handle for the fax channel

obtained when the channel was opened.

The data provided by this function is updated each time the fax transfer completes
Phase D of the T.30 protocol.

ATFX_PHDRPY() returns the Phase D reply

 196

To monitor Phase D replies, you must enable Phase D events and issue
ATFX_PHDRPY() when the TFX_PHASED event occurs. Note that since
Phase D also occurs at the end of a send or receive when a Phase D event is not
generated, you can also issue this function after a TFX_FAXSEND or
TFX_FAXRECV event.

The final Phase D reply value returned by ATFX_PHDRPY() at the end of a fax
session remains available to the application until a new send or receive is initiated
on that channel.

NOTE: Between multiple Phase D completions during the same fax session,
ATFX_PHDRPY() returns the previously completed Phase D reply
information.

 Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

DF_IOTT iott[10];
int dev;

/* Handler for Phase D events. */
int phd_hdlr();

main()
{
 /*
 * Open the channel using fx_open() and obtain the
 * FAX device handle in dev.
 */
 .
 .
 /*
 * Install handler (phd_hdlr()) using sr_enbhdlr() to service
 * TFX_PHASED events.
 */
 if (sr_enbhdlr(dev, TFX_PHASED, phd_hdlr) == -1) {
 printf(“Failed to install Phase D handler \n”);
 return;
 }

 /*
 * Call fx_sendfax() in synchronous mode after setting
 * up the DF_IOTT array. Set DF_PHASED bit in mode field
 * to enable generation of Phase D events.
 */
 if (fx_sendfax(dev, iott, EV_SYNC|DF_PHASED) == -1) {
 printf("Error - %s (error code %d)\n",
 ATDV_ERRMSGP(dev),ATDV_LASTERR(dev));

returns the Phase D reply ATFX_PHDRPY()

 197

 if (ATDV_LASTERR(dev)==EDX_SYSTEM) {
 /* Perform system error processing */
 }
 }
 /*
 * Examine Phase D reply for last page.
 */
 printf("Phase D reply: %ld\n", ATFX_PHDRPY(dev));
 .
 .
}

/*
 * Handler registered with SRL to handle TFX_PHASED events.
 */

int phd_hdlr()
{

 long phdrpy;
 int dev = sr_getevtdev();

 /*
 * Examine Phase D reply - e.g., DFS_MCF, DFS_RTN,
 * DFS_RTP.
 */
 phdrpy = ATFX_PHDRPY(dev);
 printf("Phase D reply: %ld\n", phdrpy);
 .
 .
 return(0);
}

 Errors

If one of the following conditions is present, this function fails and returns
AT_FAILURE:

• An invalid fax channel device handle is specified in dev.
• The function is called prior to the completion of the first Phase D event.

ATFX_RESLN() returns the vertical resolution of the page

 198

Name: long ATFX_RESLN(dev)
Inputs: int dev • fax channel device handle

Returns: vertical resolution of the transferred page if successful
 AT_FAILURE if error

Includes: srllib.h
 dxxxlib.h
 faxlib.h

Category: extended attribute
Mode: synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The ATFX_RESLN() function returns the vertical resolution of the page that is
sent or received. Valid values are:

DF_RESHI High vertical resolution (fine) - 196 lines or pels per inch

DF_RESLO Low vertical resolution (coarse) - 98 lines or pels per inch

DF_RES_300_300 300 (horizontal) x 300 (vertical) resolution (supported on
Dialogic® DM3 Boards only)

DF_RES_200_400 200 (horizontal) x 400 (vertical) resolution (supported on
Dialogic® DM3 Boards only)

0 Resolution is not supported

Parameter Description
dev Specifies the channel device handle for the fax channel

obtained when the channel was opened.

On Dialogic® DM3 Boards, the data provided by the ATFX_RESLN() function
is updated each time the fax transfer completes Phase B (rather than Phase D) of
the T.30 protocol. By enabling the Phase B event, you can issue
ATFX_RESLN() when the TFX_PHASEB event occurs.

returns the vertical resolution of the page ATFX_RESLN()

 199

On Dialogic® Springware Boards, the data provided by this function is updated
each time the fax transfer completes Phase D of the T.30 protocol.

To monitor the vertical resolution, you must enable Phase D events and issue
ATFX_RESLN() when the TFX_PHASED event occurs. Note that since
Phase D also occurs at the end of a send or receive when a Phase D event is not
generated, you can also issue this function after a TFX_FAXSEND or
TFX_FAXRECV event.

The final, vertical resolution value returned by ATFX_RESLN() at the end of a
fax session remains available to the application until a new send or receive is
initiated on that channel.

NOTE: Between multiple Phase D completions during the same fax session,
ATFX_RESLN() returns the vertical resolution information from the
previously completed page.

 Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

DF_IOTT iott[10];
int dev;

/* Handler for Phase D events. */
int phd_hdlr();

main()
{
 /*
 * Open the channel using fx_open() and obtain the
 * FAX device handle in dev.
 */
 .
 .
 /*
 * Install handler (phd_hdlr()) using sr_enbhdlr() to service
 * TFX_PHASED events.
 */
 if (sr_enbhdlr(dev, TFX_PHASED, phd_hdlr) == -1) {
 printf(“Failed to install Phase D handler \n”);
 return;
 }
 /*
 * Call fx_sendfax() in synchronous mode after setting
 * up the DF_IOTT array. Set DF_PHASED bit in mode field
 * to enable generation of Phase D events.
 */

ATFX_RESLN() returns the vertical resolution of the page

 200

 if (fx_sendfax(dev, iott, EV_SYNC|DF_PHASED) == -1) {
 printf("Error - %s (error code %d)\n",
 ATDV_ERRMSGP(dev),ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev)==EDX_SYSTEM) {
 /* Perform system error processing */
 }
 }
 /*
 * Vertical resolution of the page just transferred is
 * available at this point.
 */
 printf("Page was transferred at vertical resolution: %ld\n",
 ATFX_RESLN(dev));
 .
 .
}

/*
 * Handler registered with SRL to handle TFX_PHASED events.
 */

int phd_hdlr()
{

 long phdrpy;
 int dev = sr_getevtdev();

 /*
 * Vertical resolution of the page just transferred is
 * available at this point.
 */
 printf("Page was transferred at vertical resolution: %ld\n",
 ATFX_RESLN(dev));
 .
 .
 return(0);
}

 Errors

If one of the following conditions is present, this function fails and returns
AT_FAILURE:

• An invalid fax channel device handle is specified in dev.
• The function is called prior to the completion of the first Phase D event.

returns the number of RTN pages ATFX_RTNPAGES()

 201

Name: long ATFX_RTNPAGES(dev)
Inputs: int dev • fax channel device handle

Returns: number of pages RTN was returned to the remote station
 AT_FAILURE if error

Includes: srllib.h
 dxxxlib.h
 faxlib.h

Category: extended attribute
Mode: synchronous

Dialogic®

Platform:
Springware

 Description

The ATFX_RTNPAGES() function returns the number of RTN pages, that is,
the number of received pages for which the receiver returned an RTN (Retrain
Negative) message to the remote transmitter.

If an unacceptable percentage of bad scan lines is received for a fax page
(controlled by the FC_RTN parameter in fx_setparm()), an RTN is returned to
the remote station. The received page is still written to the specified receive file.
After receiving the RTN, the transmitter may or may not retransmit the same
page.

Parameter Description
dev Specifies the channel device handle for the fax channel

obtained when the channel was opened.

At the completion of the fx_rcvfax() or fx_rcvfax2() function, the receiver
application may call ATFX_RTNPAGES() to determine the total number of
RTN pages received.

NOTE: To monitor the RTN status for each page of a multi-page fax, you must
enable Phase D events (DF_PHASED) in each fx_rcvfax() or
fx_rcvfax2() function called and issue ATFX_PHDRPY() to monitor
for an RTN message.

ATFX_RTNPAGES() returns the number of RTN pages

 202

The data provided by this function is updated each time the fax transfer completes
Phase D of the T.30 protocol.

To monitor the number of RTN pages, you must enable Phase D events and issue
ATFX_RTNPAGES() when the TFX_PHASED event occurs. Note that since
Phase D also occurs at the end of a send or receive when a Phase D event is not
generated, you can issue this function after a TFX_FAXSEND or
TFX_FAXRECV event.

The final RTN page count value returned by ATFX_RTNPAGES() at the end of
a fax session remains available to the application until a new send or receive is
initiated on that channel.

If the receive file is a TIFF/F file, you can examine the tag ‘BadFaxLines’ for
each page to determine the page’s image quality (see TIFF/F tags in Appendix A).

 Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

int dev;
long badpages;

/*
 * Open the channel using fx_open() and obtain the
 * FAX device handle in dev.
 */
.
.
/*
 * Call fx_rcvfax() to receive a fax into the file
 * "myfax.tif".
 */
if (fx_rcvfax(dev, "myfax.tif", DF_TIFF|EV_SYNC) == -1) {
 printf("Error - %s (error code %ld)\n",
 ATDV_ERRMSGP(dev),ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev)==EDX_SYSTEM) {
 /* Perform system error processing */
 }
 /*
 * Additional error processing - check Phase E status to
 * determine cause of error during fax protocol.
 */
 printf("Phase E status: %ld\n", ATFX_ESTAT(dev));
 .
 .
}

returns the number of RTN pages ATFX_RTNPAGES()

 203

/*
 * Check if the received file has any pages for
 * which a RTN was returned.
 */
badpages = ATFX_RTNPAGES(dev);

 Errors

This function fails and returns AT_FAILURE if an invalid fax channel device
handle is specified in dev.

ATFX_SCANLINES() returns the number of scan lines in the last page

 204

Name: long ATFX_SCANLINES(dev)
Inputs: int dev • fax channel device handle

Returns: total number of scan lines in last page transferred if
successful

 AT_FAILURE if error
Includes: srllib.h

 dxxxlib.h
 faxlib.h

Category: extended attribute
Mode: synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The ATFX_SCANLINES() function returns the number of scan lines in the last
page transmitted or received. This information is available at the end of Phase D
for every page sent or received.

Parameter Description
dev Specifies the channel device handle for the fax channel

obtained when the channel was opened.

The data provided by this function is updated each time the fax transfer completes
Phase D of the T.30 protocol.

To monitor the number of scan lines, you must enable Phase D events and issue
ATFX_SCANLINES() when the TFX_PHASED event occurs. Note that since
Phase D also occurs at the end of a send or receive when a Phase D event is not
generated, you can issue this function after a TFX_FAXSEND or
TFX_FAXRECV event.

The final scan line value returned by ATFX_SCANLINES() at the end of a fax
session remains available to the application until a new send or receive is initiated
on that channel.

returns the number of scan lines in the last page ATFX_SCANLINES()

 205

NOTE: Between multiple Phase D completions during the same fax session,
ATFX_SCANLINES() returns the total number of scan lines from the
previously completed page.

 Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

int dev;

/* Handler for Phase D events. */
int phd_hdlr();

main()
{
 /*
 * Open the channel using fx_open() and obtain the
 * FAX device handle in dev.
 */
 .
 .
 /*
 * Install handler to service TFX_PHASED events.
 */
 if (sr_enbhdlr(dev, TFX_PHASED, phd_hdlr) == -1) {
 printf(“Failed to install Phase D handler \n”);
 return;
}

 /*
 * Call fx_rcvfax() in asynchronous mode to receive
 * TIFF/F file. Set DF_PHASED bit in mode field
 * to enable generation of Phase D events.
 */
 if (fx_rcvfax(dev,"fax.tif", EV_ASYNC|DF_PHASED) == -1) {
 printf("Error - %s (error code %d)\n",
 ATDV_ERRMSGP(dev),ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev)==EDX_SYSTEM) {
 /* Perform system error processing */
 }
 }
 .
 .
/*
 * Handler registered with SRL to handle TFX_PHASED events.
 */

int phd_hdlr()
{

 int dev = sr_getevtdev();

 /*
 * Total number of scan lines on the page just

ATFX_SCANLINES() returns the number of scan lines in the last page

 206

 * received is available at this point.
 */
 printf("Total number of scan lines in page received: %ld\n",
 ATFX_SCANLINES(dev));
 .
 .
 return(0);
}

 Errors

If one of the following conditions is present, this function fails and returns
AT_FAILURE:

• An invalid fax channel device handle is specified in dev.
• The function is called prior to the completion of the first Phase D event.

returns the fax transfer speed ATFX_SPEED()

 207

Name: long ATFX_SPEED(dev)
Inputs: int dev • fax channel device handle

Returns: final transfer speed if successful
 AT_FAILURE if error

Includes: srllib.h
 dxxxlib.h
 faxlib.h

Category: extended attribute
Mode: synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The ATFX_SPEED() function returns the fax transfer speed (in baud) of the last
transmitted page. This information is available after Phase B is completed. For
transfers that do not renegotiate Phase B, issuing ATFX_SPEED() at the
completion of a fax session returns the transfer baud rate for the entire session.

Parameter Description
dev Specifies the channel device handle for the fax channel

obtained when the channel was opened.

The data provided by this function is updated each time the fax transfer completes
Phase B of the T.30 protocol. After a fax session terminates, the value from the
last fax transfer is available until the start of a new fax session.

For example, ATFX_SPEED() returns the equate DF_14400BAUD to indicate
14.4 Kbps transfer speed.

NOTE: Between multiple Phase B negotiations during the same fax session,
ATFX_SPEED() returns the Phase B transfer rate information from the
previously completed Phase B negotiation.

To monitor the transfer speed for each completed Phase B negotiation, you must
enable Phase B events (DF_PHASEB in the fx_rcvfax(), fx_rcvfax2(), or
fx_sendfax() function) and issue ATFX_SPEED() when the Phase B event
(TFX_PHASEB) occurs.

ATFX_SPEED() returns the fax transfer speed

 208

If the application has enabled the generation of Phase B events, you can
determine the baud rate set for the transmission by calling the ATFX_SPEED()
function in the handler routine for the Phase B event.

 Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

DF_IOTT iott[10];
int dev;

/* Handler for Phase B events. */
int phb_hdlr();

main()
{
 /*
 * Open the channel using fx_open() and obtain the
 * FAX device handle in dev.
 */
 .
 .
 /*
 * Install handler to service TFX_PHASEB events.
 */
 if (sr_enbhdlr(dev, TFX_PHASEB, phb_hdlr) == -1) {
 printf(“Failed to install Phase B handler \n”);
 return;
}

 /*
 * Call fx_sendfax() in asynchronous mode after setting
 * up the DF_IOTT array. Set DF_PHASEB bit in mode field
 * to enable generation of Phase B events.
 */
 if (fx_sendfax(dev, iott, EV_ASYNC|DF_PHASEB) == -1) {
 printf("Error - %s (error code %d)\n",
 ATDV_ERRMSGP(dev),ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev)==EDX_SYSTEM) {
 /* Perform system error processing */
 }
 }
 .
 .
}

/*
 * Handler registered with SRL to handle TFX_PHASEB events.
 */

int phb_hdlr()
{

 int dev = sr_getevtdev();

returns the fax transfer speed ATFX_SPEED()

 209

 /* Remote data rate capability. */
 printf("Data rate for fax transmission: %ld\n",
 ATFX_SPEED(dev));
 .
 .
 return(0);
}

 Errors

If one of the following conditions is present, this function fails and returns
AT_FAILURE:

• An invalid fax channel device handle is specified in dev.
• The function is called prior to the completion of the first Phase B event.

ATFX_STATE() returns the current state of the fax channel

 210

Name: long ATFX_STATE(dev)
Inputs: int dev • fax channel device handle

Returns: current state of fax channel device if successful
 AT_FAILURE if invalid fax channel device handle specified

Includes: srllib.h
 dxxxlib.h
 faxlib.h

Category: extended attribute
Mode: synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The ATFX_STATE() function returns the current state of the fax channel device
specified in dev.

The function parameter is defined as follows:

Parameter Description
dev Specifies the valid fax channel device handle obtained

when the fax channel was opened.

This function returns one of the following values indicating the current state of
the channel:

CS_IDLE fax channel is idle

CS_SENDFAX fax channel is transmitting (fx_sendfax() active)

CS_RECVFAX fax channel is receiving (fx_rcvfax() or fx_rcvfax2() active)

CS_FAXIO fax channel is between pages OR when send or receive functions
have returned but the fax session is still active

NOTE: A fax device channel is idle when no I/O is active on the channel.

returns the current state of the fax channel ATFX_STATE()

 211

 Example

#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

DF_IOTT iott[10];
int dev;

main()
{
 /*
 * Open the channel using fx_open() and obtain the
 * FAX device handle in dev.
 */
 .
 .
 .
 .
 /*
 * Check state of the FAX channel.
 * If idle, call fx_sendfax() in asynchronous mode after setting
 * up the DF_IOTT array.
 */
 if (ATFX_STATE(dev) == CS_IDLE) {
 if (fx_sendfax(dev, iott, EV_ASYNC) == -1) {
 printf("Error - %s (error code %d)\n",
 ATDV_ERRMSGP(dev),ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev)==EDX_SYSTEM) {
 /* Perform system error processing */
 }
 }
 }
 .
 .
}

 Errors

This function fails and returns AT_FAILURE if an invalid fax channel device
handle is specified in dev.

ATFX_TERMMSK() returns a bitmap of termination reasons

 212

Name: long ATFX_TERMMSK(dev)
Inputs: int dev • fax channel device handle

Returns: bitmap of termination reasons if successful
 AT_FAILURE if error

Includes: srllib.h
 dxxxlib.h
 faxlib.h

Category: extended attribute
Mode: Synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The ATFX_TERMMSK() function returns a bitmap of termination reasons.

Call this function after the successful completion of fx_rcvfax(), fx_rcvfax2(),
or fx_sendfax() to determine the termination reason. Valid values are:

TM_FXTERM Normal completion of fax send/receive

TM_POLLED Poll request received from transmitter

TM_VOICEREQ Voice request (operator intervention) issued/received
(not supported on Dialogic® DM3 Boards)

The termination reason is available until the next send or receive is issued on the
channel.

Parameter Description
dev Specifies the channel device handle for the fax channel

obtained when the channel was opened.

 Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

returns a bitmap of termination reasons ATFX_TERMMSK()

 213

int dev;
long lTermMask;

/*
 * Open the channel using fx_open() and obtain the
 * FAX device handle in dev.
 */
.
.
/*
 * Call fx_rcvfax() to receive a fax into the file
 * "myfax.tif".
 */
if (fx_rcvfax(dev, "myfax.tif", DF_TIFF|EV_SYNC) == -1) {
 printf("Error - %s (error code %ld)\n",
 ATDV_ERRMSGP(dev),ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev)==EDX_SYSTEM) {
 /* Perform system error processing */
 }
 /*
 * Additional error processing - check Phase E status to
 * determine cause of error during fax protocol.
 */
 printf("Phase E status: %ld\n", ATFX_ESTAT(dev));
 .
 .
}
/* Check termination reasons. */
lTermMask = ATFX_TERMMSK (dev);
/* Evaluate success/failure separately because all bits are turned on for -1 */
if (lTermMask == -1) {
 printf(“Failed to retrieve the termination mask!\n”);
 /* Process error */

}
if (lTermMask & TM_POLLED) {
 printf("Poll received\n");
 /* Respond to poll by issuing a fx_sendfax(). */
 .
 .
}
if (lTermMask & TM_VOICEREQ) {
 printf("Voice request received\n");
 /* Respond to voice request (PRI_EOP). */
 .
 .
}

 Errors

This function fails and returns AT_FAILURE if an invalid fax channel device
handle is specified in dev.

ATFX_TFBADTAG() returns the invalid TIFF/F tag number

 214

Name: long ATFX_TFBADTAG(dev)
Inputs: int dev • fax channel device handle

Returns: bad TIFF/F tag number if successful
 AT_FAILURE if error

Includes: srllib.h
 dxxxlib.h
 faxlib.h

Category: extended attribute
Mode: synchronous

Dialogic®

Platform:
Springware

 Description

The ATFX_TFBADTAG() function returns the invalid TIFF/F tag number
when ATDV_LASTERR() returns an EFX_BADTAG error. This error is
returned during the transmission of a TIFF/F file if an invalid TIFF/F tag value is
found.

Parameter Description
dev Specifies the channel device handle for the fax channel

obtained when the channel was opened.

The invalid TIFF/F tag value returned by ATFX_TFBADTAG() at the end of a
fax session remains available to the application until a new send is initiated on
that channel.

 Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

DF_IOTT iott;
int dev;

/*
 * Open the channel using fx_open() and obtain the
 * FAX device handle in dev.
 */

returns the invalid TIFF/F tag number ATFX_TFBADTAG()

 215

.

.
/* Call fx_sendfax() after setting up the DF_IOTT. */
if (fx_sendfax(dev, &iott, EV_SYNC) == -1) {
 if (ATDV_LASTERR(dev) == EFX_BADTAG) {
 printf("Bad Tag in TIFF/F file. Tag number %ld\n",
 ATFX_TFBADTAG(dev));
 .
 .
 }
}
.
.

 Errors

This function fails and returns AT_FAILURE if an invalid fax channel device
handle is specified in dev.

ATFX_TFNOTAG() returns missing TIFF/F mandatory tag number

 216

Name: long ATFX_TFNOTAG(dev)
Inputs: int dev • fax channel device handle

Returns: missing TIFF/F mandatory tag number if successful
 AT_FAILURE if error

Includes: srllib.h
 dxxxlib.h
 faxlib.h

Category: extended attribute
Mode: synchronous

Dialogic®

Platform:
Springware

 Description

The ATFX_TFNOTAG() function returns missing TIFF/F mandatory tag
number if ATDV_LASTERR() returns an EFX_BADTIF error.

Parameter Description
dev Specifies the channel device handle for the fax channel

obtained when the channel was opened.

The missing TIFF/F tag value returned by ATFX_TFNOTAG() at the end of a
fax session remains available to the application until a new send is initiated on
that channel.

 Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

DF_IOTT iott;
int dev;

/*
 * Open the channel using fx_open() and obtain the
 * FAX device handle in dev.
 */
.
.
/* Call fx_sendfax() after setting up the DF_IOTT. */

returns missing TIFF/F mandatory tag number ATFX_TFNOTAG()

 217

if (fx_sendfax(dev, &iott, EV_SYNC) == -1) {
 if (ATDV_LASTERR(dev) == EFX_BADTIF) {
 printf("Missing Tag in TIFF/F file. Tag number %ld\n",
 ATFX_TFNOTAG(dev));
 .
 .
 }
}
.
.

 Errors

This function fails and returns AT_FAILURE if an invalid fax channel device
handle is specified in dev.

ATFX_TFPGBASE() returns the base page numbering scheme

 218

Name: long ATFX_TFPGBASE(dev)
Inputs: int dev • fax channel device handle

Returns: base page number scheme for TIFF/F file if successful
 AT_FAILURE if error

Includes: srllib.h
 dxxxlib.h
 faxlib.h

Category: extended attribute
Mode: synchronous

Dialogic®

Platform:
Springware

 Description

The ATFX_TFPGBASE() function returns the base page numbering scheme for
the most recently transmitted TIFF/F file. Valid values are:

TF_BASE0 First page number is zero (TIFF/F standard)

TF_BASE1 First page number is one

NOTE: According to TIFF/F requirements, the pages of a multi-page TIFF/F file
are numbered internally starting at zero, but some utilities may not
adhere strictly to these requirements. See the FC_TFPGBASE parameter
in the fx_setparm() function reference for more information.

Parameter Description
dev Specifies the channel device handle for the fax channel

obtained when the channel was opened.

 Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

DF_IOTT iott;
int dev;
long tfpgbase;

returns the base page numbering scheme ATFX_TFPGBASE()

 219

/*
 * Open the channel using fx_open() and obtain the
 * FAX device handle in dev.
 */
.
.
/*
 * If you are unsure of the page numbering scheme used in
 * the TIFF/F file to be transmitted, call fx_setparm() to
 * set the FC_TFPGBASE to TF_AUTOPG to enable the auto-
 * paging mode (determines the page numbering scheme
 * automatically) (Note: A multi-page TIFF/F file should
 * have its pages internally numbered starting at zero, but
 * some utilities may not adhere strictly to TIFF/F
 * requirements).
 */
.
.
/*
 * Call fx_sendfax() after setting up the DF_IOTT to
 * send the TIFF/F file.
 */
if (fx_sendfax(dev, &iott, EV_SYNC) == -1) {
 printf("Error - %s (error code %d)\n", ATDV_ERRMSGP(dev),
 ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev)==EDX_SYSTEM) {
 /* Perform system error processing */
 }
 .
 .
}

/* Determine page numbering scheme. */
tfpgbase = ATFX_TFPGBASE(dev);

/*
 * Once the page numbering scheme of the TIFF/F file has
 * been determined, the FC_TFPGBASE parameter may be set
 * correctly for future transmission of this file (or files)
 * created by the TIFF utility that was used.
 */

 Errors

This function fails and returns AT_FAILURE if an invalid fax channel device
handle is specified in dev.

ATFX_TRCOUNT() returns the number of bytes transferred

 220

Name: long ATFX_TRCOUNT(dev)
Inputs: int dev • fax channel device handle

Returns: number of bytes transferred for fax transfer if successful
 AT_FAILURE if invalid fax device handle specified

Includes: srllib.h
 dxxxlib.h
 faxlib.h

Category: extended attribute
Mode: synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The ATFX_TRCOUNT() function returns the number of bytes transferred so
far during the current send or receive on the fax channel device specified in dev.

Parameter Description
dev Specifies the valid fax channel device handle obtained

when the fax channel was opened.

The transfer byte count value returned by ATFX_TRCOUNT() at the end of a
fax session remains available to the application until a new fax session is initiated
on that fax device channel.

On Dialogic® DM3 Boards, when an error occurs during a send, this value is reset
to zero (0).

 Example

#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

DF_IOTT iott[10];
int dev;

main()
{
 /*

returns the number of bytes transferred ATFX_TRCOUNT()

 221

 * Open the channel using fx_open() and obtain the
 * FAX device handle in dev.
 */
 .
 .
 /*
 * Call fx_sendfax() in synchronous mode after setting
 * up the DF_IOTT array.
 */
 if (fx_sendfax(dev, iott, EV_SYNC) == -1) {
 printf("Error - %s (error code %d)\n",
 ATDV_ERRMSGP(dev),ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev)==EDX_SYSTEM) {

 }
 }
 .
 .
 /* Check the transfer count */
 printf("Transfer count is %d\n", ATFX_TRCOUNT(dev));
 .
 .
}

 Errors

This function fails and returns AT_FAILURE if an invalid fax channel device
handle is specified in dev.

ATFX_WIDTH() returns the decimal value of the negotiated width

 222

Name: long ATFX_WIDTH(dev)
Inputs: int dev • fax channel device handle

Returns: width of transferred page if successful
 AT_FAILURE if error

Includes: srllib.h
 dxxxlib.h
 faxlib.h

Category: extended attribute
Mode: synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The ATFX_WIDTH() function returns the decimal value of the negotiated
width (in pixels per line) of the fax page transmitted. Valid values are:

1728 (pixels per line)

2048 (pixels per line)

2432 (pixels per line)

2592 (pixels per line) Only for vertical resolution DF_RES_300_300

Parameter Description
dev Specifies the channel device handle for the fax channel

obtained when the channel was opened.

On Dialogic® DM3 Boards, the data provided by the ATFX_WIDTH() function
is updated each time the fax transfer completes Phase B (rather than Phase D) of
the T.30 protocol. By enabling the Phase B event, you can issue
ATFX_WIDTH() when the TFX_PHASEB event occurs.

On Dialogic® Springware Boards, the data provided by this function is updated
each time the fax transfer completes Phase D of the T.30 protocol.

returns the decimal value of the negotiated width ATFX_WIDTH()

 223

To monitor width, you must enable Phase D events and issue ATFX_WIDTH()
when the TFX_PHASED event occurs. Note that since Phase D also occurs at the
end of a send or receive when a Phase D event is not generated, you can also
issue this function after a TFX_FAXSEND or TFX_FAXRECV event.

The width value returned by ATFX_WIDTH() at the end of a fax session
remains available to the application until a new send or receive is initiated on that
channel.

NOTE: Between multiple Phase D completions during the same fax session,
ATFX_WIDTH() returns the width information from the previously
completed page.

If you have enabled generation of Phase D events, you can call
ATFX_WIDTH() in the handler routine for the Phase D event to determine the
width of the transferred page (see programming example).

 Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

DF_IOTT iott[10];
int dev;

/* Handler for Phase D events. */
int phd_hdlr();

main()
{
 /*
 * Open the channel using fx_open() and obtain the
 * FAX device handle in dev.
 */
 .
 .
 /*
 * Install handler to service TFX_PHASED events.
 */
 if (sr_enbhdlr(dev, TFX_PHASED, phd_hdlr) == -1) {
 printf(“Failed to install Phase D handler \n”);
 return;
}

 /*
 * Call fx_sendfax() in synchronous mode after setting
 * up the DF_IOTT array. Set DF_PHASED bit in mode field
 * to enable generation of Phase D events.
 */

ATFX_WIDTH() returns the decimal value of the negotiated width

 224

 if (fx_sendfax(dev, iott, EV_SYNC|DF_PHASED) == -1) {
 printf("Error - %s (error code %d)\n",
 ATDV_ERRMSGP(dev), ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev)==EDX_SYSTEM) {
 /* Perform system error processing */
 }
 }
 /*
 * Width of the page just transferred is available at
 * this point.
 */
 printf("Page width: %ld\n", ATFX_WIDTH(dev));
 .
 .
}

/*
 * Handler registered with SRL to handle TFX_PHASED events.
 */

int phd_hdlr()
{

 int dev = sr_getevtdev();

 /*
 * Width of the page just transferred is available at
 * this point.
 */
 printf("Page width: %ld\n", ATFX_WIDTH(dev));
 .
 .
 return(0);
}

 Errors

If one of the following conditions is present, this function fails and returns
AT_FAILURE:

• An invalid fax channel device handle is specified in dev.
• The function is called prior to the completion of the first Phase D event.

closes a fax channel device fx_close()

 225

Name: int fx_close(dev)
Inputs: int dev • fax channel device handle

Returns: 0 if successful
 -1 if error

Includes: srllib.h
 dxxxlib.h
 faxlib.h

Category: resource management
Mode: synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The fx_close() function closes a fax channel device opened previously using
fx_open(). It releases the handle and breaks any link the calling process has with
the fax device channel through this handle, regardless of whether the device is
busy or idle.

NOTE: fx_close() disables the generation of all fax events; it does not affect the
hookstate or parameter settings for the voice channel device.

Parameter Description
dev Specifies the valid fax device handle obtained when the

channel device was opened.

 Cautions

• Once a fax channel device is closed, a process can no longer perform an
action on this fax channel device using this device handle. Other handles for
this channel device that exist in the same process or in other processes are
still valid. The only process affected by fx_close() is the process that called
the function.

• fx_close() does not affect any action occurring on a fax channel device; it
only breaks the link between the calling process and the fax channel device
by freeing the specified fax channel device handle. Other links through
different device handles are still valid.

fx_close() closes a fax channel device

 226

• Do not use the Windows® close() function to close a fax channel device.
Unpredictable results will occur.

• fx_close() discards any outstanding fax events on the fax handle.

• On Dialogic® DM3 Boards, if fx_close() is sent in the middle of a fax
transmission, the fax is aborted (which is equivalent to issuing fx_stopch()
and fx_close()). Do not issue fx_close() during a fax send.

 Example

#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

main()
{
 int dev; /* Fax channel device handle. */

/* Open the Voice channel device using dx_open(). */
.
.
/* Open the FAX channel device. */
 if ((dev = fx_open("dxxxB1C1", NULL)) == -1) {
 /* Error opening device */
 /* Perform system error processing */
 exit(1);
 }
 /* FAX transfers (send/receive) calling FAX API functions using dev. */
 .
 .
/* Close the FAX channel device. */
 if (fx_close(dev) == -1) {
 /* Error closing device. */
 printf("Error closing channel\n");
 printf("Error - %s (error code %d)\n",
 ATDV_ERRMSGP(dev), ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev) == EDX_SYSTEM) {
 /* Perform system error processing */
 }
 exit(1);
 }
 .
 .
}

 Errors

If this function returns -1 to indicate failure, a system error has occurred. On
Linux, check the global variable errno for more information. On Windows®, use
dx_fileerrno() to obtain the system error value. Refer to the dx_fileerrno()

closes a fax channel device fx_close()

 227

function in the Dialogic® Voice API Library Reference for a list of the possible
system error values.

 See Also

• fx_open()

fx_getctinfo() returns information about a fax channel device handle

 228

Name: int fx_getctinfo(chdev, ct_devinfop)
Inputs: int chdev • fax channel device handle

 CT_DEVINFO
*ct_devinfop

• pointer to device information
structure

Returns: 0 on success
 -1 on failure

Includes: srllib.h
 dxxxlib.h
 faxlib.h

Category: TDM bus routing
Mode: synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The fx_getctinfo() function returns information about a fax channel device
handle. Use this function to identify whether a device belongs to Dialogic® DM3
hardware or Dialogic® Springware hardware.

Parameter Description

chdev Specifies the valid fax channel device handle
obtained when the channel was opened using
fx_open().

ct_devinfop Specifies a pointer to the data structure
CT_DEVINFO.

On return from the function, the CT_DEVINFO structure contains the relevant
information. The valid values for each member of the CT_DEVINFO structure
are defined in ctinfo.h, which is referenced by dxxxlib.h. For details on this data
structure, see the Dialogic® Voice API Library Reference.

 Cautions

This function will fail if an invalid fax channel device handle is specified.

returns information about a fax channel device handle fx_getctinfo()

 229

 Example

#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

main()
{
 int chdev; /* Channel device handle */
 CT_DEVINFO ct_devinfo; /* Device information structure */

 /* Open board 1 channel 1 devices */
 if ((chdev = fx_open("dxxxB1C1", 0)) == -1) {
 printf("Cannot open channel\n");
 /* Perform system error processing */
 exit(1);
 }

 /* Get Device Information */
 if (fx_getctinfo(chdev, &ct_devinfo) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(chdev));
 exit(1);
 }

 printf("%s Product Id = 0x%x, Family = %d, Mode = %d, Network = %d, "
 " Bus mode = %d, Encoding = %d", ATDV_NAMEP(chdev), ct_devinfo.ct_prodid,
 ct_devinfo.ct_devfamily, ct_devinfo.ct_devmode, ct_devinfo.ct_nettype,
 ct_devinfo.ct_busmode, ct_devinfo.ct_busencoding);
}

 Errors

If the function returns -1, use the SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to
obtain a descriptive error message. One of the following error codes may be
returned:

Equate Returned When

EFX_BADPARM Invalid value for fax parameter (on Dialogic® DM3
Boards only)

EDX_BADPARM Invalid value for parameter (on Dialogic®
Springware Boards only)

EDX_SH_BADEXTTS TDM bus time slot is not supported at current
clock rate

EDX_SH_BADINDX Invalid Switch Handler library index number

EDX_SH_BADTYPE Invalid channel type (voice, analog, etc.)

fx_getctinfo() returns information about a fax channel device handle

 230

Equate Returned When

EDX_SH_CMDBLOCK Blocking command is in progress

EDX_SH_LIBBSY Switch Handler library is busy

EDX_SH_LIBNOTINIT Switch Handler library is uninitialized

EDX_SH_MISSING Switch Handler is not present

EDX_SH_NOCLK Switch Handler clock fallback failed

EDX_SYSTEM Operating system error

 See Also

• dt_getctinfo()
• dx_getctinfo()

returns the most recent DCS message fx_getDCS()

 231

Name: int fx_getDCS(dev,dcs_buf)
Inputs: int dev • fax channel device handle

 DF_DCS * dcs_buf • pointer to DF_DCS structure
Returns: 0 if success

 -1 if failure
Includes: srllib.h

 dxxxlib.h
 faxlib.h

Category: miscellaneous
Mode: synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The fx_getDCS() function returns the most recent DCS message (T.30 Digital
Command Signal), if available, for the specified channel.

Parameter Description
dev Specifies the channel device handle for the fax channel

obtained when the channel was opened.
dcs_buf A pointer to the DF_DCS structure where the DCS message

information is stored.

The DCS message contains information about negotiated settings between the
transmitter and receiver. The DCS message is sent by the transmitter to the
receiver as part of Phase B negotiation of a fax transfer.

NOTE: Use this function only when your application requires the specific
Phase B negotiation information provided in the DCS message. For most
applications, using fx_getDCS() to retrieve the DCS message
information is not required because the fax extended attribute functions
provide access to most of the information contained in the DCS
message; see ATFX_RESLN(), ATFX_SPEED(), and
ATFX_WIDTH().

The most recent DCS message sent from the transmitter is available to the
application after the completion of the first Phase B negotiation. If available, the

fx_getDCS() returns the most recent DCS message

 232

DCS message can be retrieved after each Phase B negotiation during the
fx_sendfax(), fx_rcvfax(), or fx_rcvfax2() function call. The DCS message
information remains valid until the next Phase B negotiation is completed for the
current function call or until a new send or receive is initiated.

To determine when the DCS message is available, call ATFX_BSTAT(). This
function returns a bitmap with the DFS_DCS bit set indicating that the
transmitter’s DCS message is available.

NOTE: Phase B negotiation takes place at the beginning of a fax send or receive
function call and after a T.30 End of Message (EOM) is sent by the
transmitter station during a fax send or receive function call.

For DCS message details, see the ITU-T publication Procedures for Document
Facsimile Transmission in the General Switched Telephone Network,
Recommendation T.30.

 Example

#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

DF_IOTT iott[10];

/* Handler for Phase B events. */
int phb_hdlr();

main()
{
 int voxdev; /* Voice channel device handle. */
 int dev; /* Fax channel device handle. */

 /*
 * Open the channel using dx_open() to obtain the
 * VOICE device handle in voxdev.
 * Open the channel using fx_open() to obtain the FAX channel
 * device handle in dev.
 */
 .
 .
 /*
 * Install handler using sr_enbhdlr() to service
 * TFX_PHASEB events.
 */
 if (sr_enbhdlr(dev, TFX_PHASEB, phb_hdlr) == -1) {
 printf(“Failed to install Phase B handler \n”);
 return;
 }

 /*

returns the most recent DCS message fx_getDCS()

 233

 * Call fx_sendfax() in asynchronous mode after setting
 * up the DF_IOTT array. Set DF_PHASEB bit in mode field
 * to enable generation of Phase B events.
 */
 if (fx_sendfax(dev, iott, EV_ASYNC|DF_PHASEB) == -1) {
 printf("Error - %s (error code %d)\n",
 ATDV_ERRMSGP(dev),ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev)==EDX_SYSTEM) {
 /* Perform system error processing */
 }
 }
 .
 .
}

/*
 * Handler registered with SRL to handle TFX_PHASEB events.
 */

int phb_hdlr()
{
 int dev = sr_getevtdev();
 DF_DCS dcs_buf;

 if (ATFX_BSTAT(dev) & DFS_DCS) {
 /* T.30 DCS available. */
 if (fx_getDCS(dev, &dcs_buf) == -1) {
 /* Error processing */
 .
 .
 } else {
 /* Application specific analysis of the DCS */
 .
 .
 }
 }
 .
 .
 return(0);
}

 Errors

ATDV_LASTERR() returns these fax error codes for the following reasons:

EFX_NODATA The function is called before completion of the initial
Phase B negotiation.

EFX_UNSUPPORTED The function is called for an unsupported board.

See Appendix D for a list of error codes that may be returned for this function.

fx_getDIS() returns the most recent DIS message

 234

Name: int fx_getDIS(dev,dis_buf)
Inputs: int dev • fax channel device handle

 DF_DIS * dis_buf • pointer to DF_DIS structure
Returns: 0 if success

 -1 if failure
Includes: srllib.h

 dxxxlib.h
 faxlib.h

Category: miscellaneous
Mode: synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The fx_getDIS() function returns the most recent DIS message (T.30 Digital
Information Signal), if available, for the specified channel.

The DIS message contains information about the receiver’s capabilities. The DIS
message is sent by the receiver to the transmitter as part of Phase B negotiation of
a fax transfer.

NOTE: Use this function only when your application requires specific receiver
capability information provided in the DIS message. For most
applications, retrieving the DIS message information is not required.

Parameter Description
dev Specifies the channel device handle for the fax channel

obtained when the channel was opened.
dis_buf A pointer to the DF_DIS structure where the DIS information

is stored.

The most recent DIS message from the receiver is available to the application
after the completion of the first Phase B negotiation. If available, the DIS
message can be retrieved after each Phase B negotiation during the fx_sendfax(),
fx_rcvfax(), or fx_rcvfax2() function call. The DIS message information
remains valid until the next Phase B negotiation is completed for the current
function call or until a new send or receive is initiated.

returns the most recent DIS message fx_getDIS()

 235

NOTE: Phase B negotiations take place at the beginning of a fax send or receive
function call and after a T.30 End of Message (EOM) message is sent by
the transmitter during a fax send or receive function call.

To determine when the DIS message is available, call the ATFX_BSTAT()
function. This function returns a bitmap with the DFS_DIS bit set indicating that
the receiver’s DIS message is available.

For DIS message details, see the ITU-T publication Procedures for Document
Facsimile Transmission in the General Switched Telephone Network,
Recommendation T.30.

 Example

#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

DF_IOTT iott[10];

/* Handler for Phase B events. */
int phb_hdlr();

main()
{
 int voxdev; /* Voice channel device handle. */
 int dev; /* Fax channel device handle. */

 /*
 * Open the channel using dx_open() to obtain the
 * VOICE device handle in voxdev.
 * Open the channel using fx_open() to obtain the FAX channel
 * device handle in dev.
 */
 .
 .
 /*
 * Install handler using sr_enbhdlr() to service
 * TFX_PHASEB events.
 */
 if (sr_enbhdlr(dev, TFX_PHASEB, phb_hdlr) == -1) {
 printf(“Failed to install Phase B handler \n”);
 return;
 }

 /*
 * Call fx_sendfax() in asynchronous mode after setting
 * up the DF_IOTT array. Set DF_PHASEB bit in mode field
 * to enable generation of Phase B events.
 */
 if (fx_sendfax(dev, iott, EV_ASYNC|DF_PHASEB) == -1) {
 printf("Error - %s (error code %d)\n",
 ATDV_ERRMSGP(dev),ATDV_LASTERR(dev));

fx_getDIS() returns the most recent DIS message

 236

 if (ATDV_LASTERR(dev)==EDX_SYSTEM) {
 /* Perform system error processing */
 }
 }
 .
 .
}

/*
 * Handler registered with SRL to handle TFX_PHASEB events.
 */

int phb_hdlr()
{
 int dev = sr_getevtdev();
 DF_DIS dis_buf;

 if (ATFX_BSTAT(dev) & DFS_DIS) {
 /* T.30 DIS available. */
 if (fx_getDIS(dev, &dis_buf) == -1) {
 /* Error processing. */
 .
 .
 } else {
 /* Application specific analysis of the DIS. */
 .
 .
 }
 }
 .
 .
 return(0);
}

 Errors

ATDV_LASTERR() returns the following fax error codes for the following
reasons:

EFX_NODATA The function is called before completion of the initial
Phase B negotiation.

EFX_UNSUPPORTED The function is called for an unsupported board.

See Appendix D for a list of error codes that may be returned for this function.

returns the fax DLL version number fx_GetDllVersion()

 237

Name: fx_GetDllVersion (dwfileverp, dwprodverp)
Inputs: LPDWORD dwfileverp • fax DLL version number

 LPDWORD dwprodverp • product version of this release
Returns: 0 if success

 -1 if failure
Includes: srllib.h

 dxxxlib.h
 faxlib.h

Category: miscellaneous
Mode: synchronous

Dialogic®

Platform:
DM3, Springware (Windows® only)

 Description

Windows® only. The fx_GetDllVersion() function returns the fax DLL version
number for the file and product.

Parameter Description

dwfileverp pointer to where to return file version information

dwprodverp pointer to where to return product version information

 Example

/*$ fx_GetDllVersion() example $*/

#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

int InitDevices()
{
 DWORD dwfilever, dwprodver;

 /**
 * Initialize all the DLLs required. This will cause the DLLs to be
 * loaded and entry points to be resolved. Entry points not resolved
 * are set up to point to a default not implemented function in the
 * ‘C’ library. If the DLL is not found all functions are resolved
 * to not implemented.
 **/

fx_GetDllVersion() returns the fax DLL version number

 238

 if (sr_libinit(DLGC_MT) == -1) {
 /* Must be already loaded, only reason if sr_libinit() was already called */
 }

 /* Call technology specific dx_libinit() functions to load Voice DLL */
 if (dx_libinit(DLGC_MT) == -1) {
 /* Must be already loaded, only reason if dx_libinit() was already called */
 }
 /* Call technology specific fx_libinit() functions to load VFX Fax DLL */
 if (fx_libinit(DLGC_MT) == -1) {
 /* Must be already loaded, only reason if dx_libinit() was already called */
 }
 /***
 * Fax library initialized so all other VFX functions may be called as normal.
 * Display the version number of the DLL
 **/
 fx_GetDllVersion(&dwfilever, &dwprodver);
 printf(“File Version for FAX DLL is %d.%02d\n”,
 HIWORD(dwfilever), LOWORD(dwfilever));
 printf(“Product Version for FAX DLL is %d.%02d\n”,
 HIWORD(dwprodver), LOWORD(dwprodver));

 /* Now open all the Voice devices */
}

 See Also

• dx_GetDllVersion()
• sr_GetDllVersion()
• dt_GetDllVersion()

returns the remote station's NSF message fx_getNSF()

 239

Name: int fx_getNSF(dev,nsf_length,nsf_data)
Inputs: int dev • fax channel device handle

 unsigned short nsf_length • number of bytes from NSF
message to return

 char * nsf_data • pointer to buffer for NSF data
Returns: 0 if success

 -1 if failure
Includes: srllib.h

 dxxxlib.h
 faxlib.h

Category: miscellaneous
Mode: synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The fx_getNSF() function returns the remote station's NSF message (T.30 Non-
Standard Facilities), if available, for the specified channel containing the
specified number of bytes.

Parameter Description

dev Specifies the channel device handle for the fax channel
obtained when the channel was opened.

nsf_length Total number of bytes in the NSF message to be stored in
the buffer and number of bytes of the NSF message to
retrieve.

nsf_data A pointer to the buffer location where the NSF message
specified in nsf_length is stored.

The first word of nsf_data contains the actual length of the
entire NSF message. The remaining bytes of nsf_data
contain the bytes of the NSF message information.

fx_getNSF() returns the remote station's NSF message

 240

To understand how the parameters are used, consider this example. If nsf_length
is 10 bytes, then the nsf_data format is as follows:

• the first 2 bytes contain the number of bytes for the entire NSF message

• the remaining 8 bytes contain the first eight bytes of NSF message

NOTE: If the actual NSF message requires fewer bytes than was specified in
nsf_length, the number of bytes remaining is blank. If the actual NSF
message contains more bytes than was specified in nsf_length, the NSF
message is truncated.

The NSF message information is an optional, variable-length message that can
contain fax hardware manufacturer-specific information. Manufacturers can use
this information to support proprietary features for their products. The NSF
message is sent by the remote station’s fax machine and is available to the
application after the completion of the first Phase B negotiation for a
fx_sendfax(), fx_rcvfax(), or fx_rcvfax2() function call.

The NSF message information remains valid until the next Phase B negotiation is
completed for the current function or until a new send or receive is initiated.

NOTE: Phase B negotiations take place at the beginning of a fax send or receive
function call and after a T.30 EOM (End of Message) message is sent by
the transmitter.

To determine if the remote station sent an NSF message, call the
ATFX_BSTAT() function. If the NSF message is available, this function returns
a bitmap with the DFS_NSF bit set.

 Example

#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

#define NSFMAX 128

DF_IOTT iott[10];

/* Handler for Phase B events. */
int phb_hdlr();

main()

returns the remote station's NSF message fx_getNSF()

 241

{
 int voxdev; /* Voice channel device handle. */
 int dev; /* Fax channel device handle. */

 /*
 * Open the channel using dx_open() to obtain the
 * VOICE device handle in voxdev.
 * Open the channel using fx_open() to obtain the FAX channel
 * device handle in dev.
 */
 .
 .
 /*
 * Install handler using sr_enbhdlr() to service
 * TFX_PHASEB events.
 */
 if (sr_enbhdlr(dev, TFX_PHASEB, phb_hdlr) == -1) {
 printf(“Failed to install Phase B handler \n”);
 return;
 }
 /*
 * Call fx_sendfax() in asynchronous mode after setting
 * up the DF_IOTT array. Set DF_PHASEB bit in mode field
 * to enable generation of Phase B events.
 */
 if (fx_sendfax(dev, iott, EV_ASYNC|DF_PHASEB) == -1) {
 printf("Error - %s (error code %d)\n",
 ATDV_ERRMSGP(dev),ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev)==EDX_SYSTEM) {
 /* Perform system error processing */
 }
 }
 .
 .
}

/*
 * Handler registered with SRL to handle TFX_PHASEB events.
 */

int phb_hdlr()
{
 char nsf_data[NSFMAX];
 char * nsfp:
 unsigned short nsflen;
 int dev = sr_getevtdev();

 if (ATFX_BSTAT(dev) & DFS_NSF) {
 /* Remote NSF available. */
 if (fx_getNSF(dev, NSFMAX, nsf_data) == -1) {
 /* Error processing */
 .
 .
 } else {
 /* Obtain number of bytes of NSF returned */
 nsflen = * ((unsigned short *)&nsf_data[0]);
 if (nsflen > NSFMAX) {
 /*
 * More NSF data available -- call fx_getNSF()
 * with larger data buffer if needed.
 */
 .

fx_getNSF() returns the remote station's NSF message

 242

 .
 }
 /* Set pointer to NSF data. */
 nsfp = &nsf_data[2];
 /* Display NSF (application specific handling). */
 .
 .
 }
 }
 .
 .
 return(0);
}

 Errors

ATDV_LASTERR() returns the following fax error codes for the following
reasons:

EFX_NODATA The function is called before completion of the initial

Phase B, or the NSF message was not sent by the remote
station.

EFX_NSFBUFF nsf_length value is less than 2 (bytes).

EFX_UNSUPPORTED The function is called for an unsupported board.

See Appendix D for a list of error codes that may be returned for this function.

 See Also

• FC_TXNSF define in dx_setparm()
• DF_TXNSF data structure

returns the current parameter setting fx_getparm()

 243

Name: int fx_getparm(dev,parm,valuep)
Inputs: int dev • fax channel device handle

 unsigned long parm • parameter
 void *valuep • pointer location to store parameter

value
Returns: 0 if success

 -1 if failure
Includes: srllib.h

 dxxxlib.h
 faxlib.h

Category: configuration
Mode: synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The fx_getparm() function returns the current parameter setting for an open fax
channel device.

Parameter Description

dev Specifies the device handle returned for the fax channel
when the channel was opened.

parm Specifies the define for the parameter ID whose value is
returned in the location pointed to by valuep.

valuep Points to the location where the parm value is stored.

Many of the same parameter IDs are available for fx_setparm() and
fx_getparm(); any differences are noted. The fx_getparm() function allows you
to retrieve parameters set for an open fax channel device, and the fx_setparm()
function allows you to configure a channel device. For details on parameter IDs,
see the fx_setparm() function reference.

fx_getparm() returns the current parameter setting

 244

 Cautions

The address of the variable passed to receive the value of the requested parameter
must be cast as (void *) as shown in the example. You should clear this variable
prior to calling fx_getparm().

Allocate sufficient memory to receive the value of the parameter specified. Note
that some parameters require only 2 bytes while other parameters may be ASCII
strings.

NOTE: Do not use the voice driver library function dx_getparm() to retrieve
fax parameter values.

 Example

Example 1: fx_getparm() and FC_RETRYCNT

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

int dev;
unsigned short value;

/* Clear value. */
value = 0;

/*
 * Open device using fx_open(). Obtain FAX device
 * handle in dev.
 */
.
.
/*
 * FC_RETRYCNT parameter uses 2 bytes. Pass the address of
 * the variable value (unsigned short) to fx_getparm().
 */
if (fx_getparm(dev,FC_RETRYCNT,(void *)&value) == -1) {
 /* Error processing. */
 printf("Error - %s (error code %d)\n", ATDV_ERRMSGP(dev),
 ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev) == EDX_SYSTEM) {
 /* Perform system error processing */
 }
}
printf("Number of retries was %ld\n",value);

returns the current parameter setting fx_getparm()

 245

Example 2: fx_getparm() and FC_FONT0 (Windows® only)

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

int dev;
HFONT hMyFont;
/*
 * Open device using fx_open(). Obtain fax device handle in dev.
 */
.
.
.

/* pass the handle to the fax library as one of the 2 internal fonts.*/
if (fx_getparm(dev,FC_FONT0,(void *)&hMyFont) == -1) {
 printf("Error - %s (error code %d)\n", ATDV_ERRMSGP(dev),
 ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev) == EDX_SYSTEM) {
 /* Perform system error processing */
 }
}

 Errors

See Appendix D for a list of error codes that may be returned for this function.

If you issue this function for a parameter that is not supported by your fax
hardware channel, ATDV_LASTERR() returns an EFX_UNSUPPORTED error
code.

fx_getxmitslot() provides TDM bus time slot number

 246

Name: int fx_getxmitslot(dev,sc_tsinfop)
Inputs: int dev

• fax channel device handle

 SC_TSINFO *sc_tsinfop • pointer to TDM bus time
slot information structure

Returns: 0 on success
 -1 on failure

Includes: srllib.h
 dxxxlib.h
 faxlib.h

Category: TDM bus routing
Mode: synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The fx_getxmitslot() function provides TDM bus time slot number of the fax
transmit channel. It returns the TDM bus time slot information contained in a
SC_TSINFO structure that includes the number of the TDM bus time slot
connected to the fax transmit channel.

NOTE: TDM bus convenience function nr_scroute() includes
fx_getxmitslot() functionality. See the Dialogic® Voice API Library
Reference for more information on nr_ convenience functions.

Parameter Description
dev Specifies the channel device handle obtained

when the fax device was opened using
fx_open().

sc_tsinfop Specifies a pointer to the data structure
SC_TSINFO.

The SC_TSINFO structure is declared as follows:

typedef struct {
 unsigned long sc_numts;
 long *sc_tsarrayp;
} SC_TSINFO;

provides TDM bus time slot number fx_getxmitslot()

 247

The sc_numts member of the SC_TSINFO structure must be initialized with the
number of TDM bus time slots requested (1 for a fax channel). The sc_tsarrayp
member of the SC_TSINFO structure must be initialized with a pointer to a valid
array. Upon return from the function, the first element of the array will contain
the number (between 0 and 1023) of the TDM bus time slot on which the fax
channel transmits.

 Cautions

This function will fail when an invalid fax channel device handle is specified.

 Example

#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

main()
{
 int dev; /* Fax channel device handle. */
 SC_TSINFO sc_tsinfo; /* Timeslot information structure. */
 long scts; /* TDM bus time slots. */
 .
 .
 /* Open the FAX channel resource device. */
 if ((dev = fx_open("dxxxB7C1", NULL)) == -1) {
 /* Error opening device. Process error. */
 exit(1);
 }
 /* Fill in the SC_TSINFO structure time slot information. */
 sc_tsinfo.sc_numts = 1;
 sc_tsinfo.sc_tsarray = &scts;
 /* Get FAX device channel TDM bus transmit time slot. */
 if (fx_getxmitslot(dev, &sc_tsinfo) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(dev));
 exit(1);
 }

 printf("Fax channel is transmitting on TDM bus time slot %d\n", scts);
 .
 .

fx_getxmitslot() provides TDM bus time slot number

 248

 Errors

If this function returns -1, use ATDV_LASTERR() and ATDV_ERRMSGP()
to retrieve one of the following error reasons:

Equate Returned When
EDX_BADPARM Parameter error

EDX_SH_BADCMD Command is not supported in current bus
configuration

EDX_SH_BADINDX Invalid Switch Handler index number

EDX_SH_BADLCLTS Invalid channel number

EDX_SH_BADMODE Function not supported in current bus
configuration

EDX_SH_BADTYPE Invalid channel type (voice, analog, etc.)

EDX_SH_CMDBLOCK Blocking command is in progress

EDX_SH_LCLDSCNCT Channel is already disconnected from TDM bus

EDX_SH_LIBBSY Switch Handler library busy

EDX_SH_LIBNOTINIT Switch Handler library uninitialized

EDX_SH_MISSING Switch Handler is not present

EDX_SH_NOCLK Switch Handler clock fallback failed

EDX_SYSTEM System error

 See also

• ag_listen()
• dt_listen()
• dx_listen()
• fx_listen()

sets the initial fax state fx_initstat()

 249

Name: int fx_initstat(dev,state)
Inputs: int dev • fax channel device handle

 int state • initial fax state
Returns: 0 if success

 -1 if failure
Includes: srllib.h

 dxxxlib.h
 faxlib.h

Category: set initial fax state
Mode: synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The fx_initstat() function sets the initial fax state. You must issue this function
in your application to establish the initial fax state of the specified fax channel.

Following T.30 protocol, you must always initially set a caller party to be the
transmitter of a fax and a called party to be the receiver of a fax.

NOTE: Only use the fx_initstat() function prior to issuing the first send or
receive function of a fax session. Once you issue the fx_initstat()
function for a fax session, the correct fax state of the application is
maintained automatically by the fax library throughout the fax session,
even if turnaround polling is specified.

Parameter Description

dev Specifies the channel device handle for the fax channel obtained
when the channel was opened.

state Specifies the initial fax state. Valid values:

 DF_RX called application (receive state)

 DF_TX caller application (transmit state)

fx_initstat() sets the initial fax state

 250

 Cautions

You must issue the fx_initstat() function before issuing the first send or receive
function for a fax call to select the appropriate protocol for the fax session.

NOTE: Existing applications that use the voice library functions dx_dial() and
dx_wtring() to set the initial state will run unmodified. When
developing new applications, you must use fx_initstat().

 Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

int voxdev; /* Voice channel device handle. */
int dev; /* Fax channel device handle. */

/*
 * Open the channel using dx_open() and obtain the
 * VOICE channel device handle in voxdev. Use voxdev for all
 * Voice API calls.
 */
.
.

/*
 * Open the channel using fx_open() and obtain the
 * FAX channel device handle in dev. Use dev for all
 * Fax API calls.
 */
.
.
/*
 * Set channel on-hook using dx_sethook() in synchronous
 * mode.
 */
.
.

/*
 * Wait for 1 ring and go off-hook. */
.
.

/*
 * Set the initial FAX state to be RECEIVER. */
if (fx_initstat(dev,DF_RX) == -1) {
 printf("Error - %s (error code %d)\n", ATDV_ERRMSGP(dev),
 ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev) == EDX_SYSTEM) {
 /* Perform system error processing */
 }
}

sets the initial fax state fx_initstat()

 251

/* Issue a fx_rcvfax(). */
.
.

 Errors

See Appendix D for a list of error codes that may be returned for this function.

fx_libinit() initializes the fax library DLL

 252

Name: fx_libinit (flags)
Inputs: unsigned short flags • programming model

Returns: 0 if success
 -1 if failure

Includes: srllib.h
 dxxxlib.h
 faxlib.h

Category: miscellaneous
Mode synchronous

Dialogic®

Platform:
DM3, Springware (Windows® only)

 Description

Windows® only. The fx_libinit() function initializes the fax library DLL by
loading and resolving all entry points in libfaxmt.dll.

Parameter Description

flags Specifies the programming model. Valid values:

 DLGC_MT Specifies a multi-threaded or window
callback model.

 DLGC_ST Specifies a single-threaded model.

 Cautions

You must call sr_libinit() prior to using fx_libinit().

 Example

/*$ fx_libinit() example $*/

#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>
int InitDevices()
{
 DWORD dwfilever, dwprodver;

initializes the fax library DLL fx_libinit()

 253

/**
 * Initialize all the DLLs required. This will cause the DLLs to be
 * loaded and entry points to be resolved. Entry points not resolved
 * are set up to point to a default not implemented function in the
 * ‘C’ library. If the DLL is not found all functions are resolved
 * to not implemented.
 **/
 if (sr_libinit(DLGC_MT) == -1) {
 /* Must be already loaded, only reason if sr_libinit() was already called */
 }
 /* Call technology specific dx_libinit() functions to load Voice DLL */
 if (dx_libinit(DLGC_MT) == -1) {
 /* Must be already loaded, only reason if dx_libinit() was already called */
 }
 /* Call technology specific fx_libinit() functions to load VFX Fax DLL */
 if (fx_libinit(DLGC_MT) == -1) {
 /* Must be already loaded, only reason if dx_libinit() was already called */
 }
 /***
 * Fax library initialized so all other VFX functions may be called as normal.
 * Display the version number of the DLL
 **/
 fx_GetDllVersion(&dwfilever, &dwprodver);
 printf(“File Version for FAX DLL is %d.%02d\n”,
 HIWORD(dwfilever), LOWORD(dwfilever));
 printf(“Product Version for FAX DLL is %d.%02d\n”,
 HIWORD(dwprodver), LOWORD(dwprodver));

/* Now open all the Voice devices */
}

 Errors

The fx_libinit() function fails if the library has already been initialized, for
example, if you try to make a second call to sr_libinit().

 See Also

• dx_libinit() (in the Dialogic® Voice API Library Reference)
• sr_libinit() (in the Dialogic® Standard Runtime Library API Library

Reference)

fx_listen() connects fax listen channel to TDM bus time slot

 254

Name: int fx_listen(dev,sc_tsinfop)
Inputs: int dev • fax channel device handle

 SC_TSINFO *sc_tsinfop • pointer to TDM bus time slot
information structure

Returns: 0 on success
 -1 on failure

Includes: srllib.h
 dxxxlib.h
 faxlib.h

Category: TDM bus routing
Mode: synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The fx_listen() function connects fax listen channel to TDM bus time slot. This
function uses the information stored in the SC_TSINFO structure to connect the
fax receive (listen) channel to a TDM bus time slot. This function sets up a half-
duplex connection. For a full-duplex connection, the receive (listen) channel of
the other device must be connected to the fax transmit channel.

NOTE: TDM bus convenience function nr_scroute() includes fx_listen()
functionality. See the Dialogic® Voice API Library Reference for more
information on nr_ convenience functions.

Parameter Description
dev Specifies the valid fax channel device handle obtained

when the channel was opened using fx_open().

sc_tsinfop Specifies a pointer to the data structure SC_TSINFO.

The SC_TSINFO structure is declared as follows:

typedef struct {
 unsigned long sc_numts;
 long *sc_tsarrayp;
} SC_TSINFO;

connects fax listen channel to TDM bus time slot fx_listen()

 255

The sc_numts member of the SC_TSINFO structure must be set to 1. The
sc_tsarrayp field of the SC_TSINFO structure must be initialized with a pointer to
a valid array. The first element of this array must contain a valid TDM bus time
slot number (between 0 and 1023) that was obtained by issuing a
xx_getxmitslot() function (xx = ag, dl, dt, or fx). Upon return from the
fx_listen() function, the fax receive channel will be connected to this time slot.

Although multiple TDM bus device channels may listen (be connected) to the
same TDM bus time slot, the fax receive (listen) channel can connect to only one
TDM bus time slot.

 Cautions

This function will fail when:

• An invalid fax channel device handle is specified.

• An invalid TDM bus time slot is specified.

 Example

#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

main()
{
 int voxdev; /* Voice channel device handle. */
 int dev; /* Fax channel device handle. */
 SC_TSINFO sc_tsinfo; /* TDM bus time slot information structure. */
 long scts; /* TDM bus time slot. */
 .
 .
 /* Open the FAX channel device. */
 if ((dev = fx_open("dxxxB7C1", NULL)) == -1) {
 /* Error opening device. Process error. */
 exit(1);
 }
 /* Open the VOICE channel device on the D/160SC-LS. */
 if ((voxdev = dx_open("dxxxB1C1", NULL)) == -1) {
 /* Error opening device. Process error. */
 exit(1);
 }
 .
 .
 /*
 * Break the full-duplex connection between the Voice
 * channel device and the Network analog device.
 * Use the TDM bus routing cconvenience function nr_scunroute().

fx_listen() connects fax listen channel to TDM bus time slot

 256

 */
 if (nr_scunroute(voxdev, SC_VOX, voxdev, SC_LSI, SC_FULLDUP)== -1) {
 /* Error during TDM bus unroute. */
 printf("Error unrouting channel\n");
 printf("Error - %s (error code %d)\n",
 ATDV_ERRMSGP(voxdev), ATDV_LASTERR(voxdev));
 if (ATDV_LASTERR(voxdev) == EDX_SYSTEM) {
 /* Perform system error processing */
 }
 }
 /*
 * Set full-duplex connection between the FAX
 * channel device and the Network analog device.
 */

 /* Fill in the SC_TSINFO structure time slot information. */
 sc_tsinfo.sc_numts = 1;
 sc_tsinfo.sc_tsarray = &scts;

 /* Get Network analog device's TDM bus transmit time slot. */
 if (ag_getxmitslot(voxdev, &sc_tsinfo) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(voxdev));
 exit(1);
 }
 /*
 * Connect the FAX channel to "listen" to the Network
 * channel's TDM bus transmit time slot. Pass the time slot
 * information in the SC_TSINFO structure to fx_listen().
 */
 if (fx_listen(dev, &sc_tsinfo) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(dev));
 exit(1);
 }
 .
 .
 /* Complete full-duplex connection between the FAX channel device
 * and the Network channel device using fx_getxmitslot()
 * and ag_listen().
 */
 .
 .
 /* Call FAX API functions for FAX transfers. */
 .
 .

connects fax listen channel to TDM bus time slot fx_listen()

 257

 Errors

If this function returns -1, use ATDV_LASTERR() and ATDV_ERRMSGP()
to retrieve one of the following error reasons:

Equate Returned When
EDX_BADPARM Parameter error
EDX_SH_BADCMD Command is not supported in current bus

configuration
EDX_SH_BADEXTTS TDM bus time slot is not supported at current

clock rate
EDX_SH_BADINDX Invalid Switch Handler index number
EDX_SH_BADLCLTS Invalid channel number
EDX_SH_BADMODE Function not supported in current bus

configuration
EDX_SH_CMDBLOCK Blocking command is in progress
EDX_SH_LCLTSCNCT Channel is already connected to TDM bus
EDX_SH_LIBBSY Switch Handler library busy
EDX_SH_LIBNOTINIT Switch Handler library uninitialized
EDX_SH_MISSING Switch Handler is not present
EDX_SH_NOCLK Switch Handler clock fallback failed
EDX_SYSTEM System error

 See also

• ag_getxmitslot()
• dt_getxmitslot()
• dx_getxmitslot()
• fx_unlisten()

fx_open() opens a fax channel or board device

 258

Name: int fx_open(namep,mode)
Inputs: char *namep • pointer to device name to open

 int mode • reserved for future use
Returns: >0 to indicate valid device handle if successful

 -1 if failure
Includes: srllib.h

 dxxxlib.h
 faxlib.h

Category: resource management
Mode: synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The fx_open() function opens a fax channel or board device and returns a unique
device handle to identify the fax channel or board device.

All subsequent fax API calls to the opened fax channel/board device must be
made using the fax channel/board device handle until the fax channel/board
device is closed.

A fax device can be opened more than once by any number of processes.

Issuing an fx_open() while the fax device is in use by another process does not
affect the current operation of the fax device.

opens a fax channel or board device fx_open()

 259

Parameter Description

namep Pointer to a NULL-terminated ASCII string (ASCIIZ string) that
contains the name of the valid fax channel or board device. The
valid device names are automatically generated during
installation according to the following naming conventions.

 The value in the name field takes one of the following forms (by
default):

 Board device: dxxxBn
 Channel device: dxxxBnCm

 where:

 n is the decimal number of the board in the system

 m is the decimal number of the channel on the board

 Boards and channels are numbered starting from one.

mode Reserved for future use. This parameter should be set to NULL.

 Cautions

• Use fx_open() to open a fax device or DSP fax resource only. For Dialogic®
DM3 Boards, see Section 3.2. Device Discovery for more information on
opening DM3 devices.

• The fax device handle returned by this function is defined by Dialogic. It is
not a standard Windows® file descriptor. Any attempts to use Windows®
operating system commands will produce unexpected results.

• In applications that create child processes from a parent process, the fax
device handle is not inheritable by the child process. Make sure fax
channel/board devices are opened by the child process.

• By default, the maximum number of times you can simultaneously open the
same channel in your application is set to 30 in the Windows® Registry.

fx_open() opens a fax channel or board device

 260

 Example

#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

main()
{
 int dev; /* Fax channel device handle. */

/* Open the Voice channel resource (device) using dx_open(). */
.
.
/* Open the FAX channel resource (device). */
 if ((dev = fx_open("dxxxB1C1", NULL)) == -1) {
 /* Error opening device. */
 /* Perform system error processing */
 exit(1);
 }
 .
 .
 /* FAX transfers (send/receive) calling FAX API functions using dev. */
 .
 .
}

 Errors

If this function returns -1 to indicate failure, a system error has occurred. On
Linux, check the global variable errno for more information. On Windows®, use
dx_fileerrno() to obtain the system error value. Refer to the dx_fileerrno()
function in the Dialogic® Voice API Library Reference for a list of the possible
system error values.

 See Also

• fx_close()

allows the DCS on hold feature fx_originate()

 261

Name: int fx_originate(dev, mode)
Inputs: int dev • fax channel device handle

 int mode • asynchronous/synchronous
Returns: 0 on success

 -1 on failure
Includes: srllib.h

 dxxxlib.h
 faxlib.h

Category: miscellaneous
Mode: asynchronous/synchronous

Dialogic®

Platform:
DM3

 Description

The fx_originate() function allows the DCS on hold feature to be used. The
function results in a TFX_ORIGINATE or TFX_FAXERROR event, and the
command can be stopped by fx_stopch().

Upon receipt of a TFX_ORIGINATE event, an fx_sendfax() should follow, and
the application can call ATFX_BSTAT() and access FC_REMOTEID,
fx_getDIS(), fx_getNSF(), ATFX_SPEED(), ATFX_CODING(),
ATFX_ECM(). All functions are filled with DF_DIS (Digital Identification
Signal) values to avoid having to decode the DIS frame. Values are updated later,
during the fx_sendfax(), with DF_DCS (Digital Command Signal) values. When
the fx_sendfax() is issued, the file/image format can be specified, including
JPEG. See Section 3.4. Color Fax for additional information on sending JPEGs.

fx_originate() allows the DCS on hold feature

 262

Parameter Description

dev Specifies the device handle returned for the fax channel when
the channel was opened.

mode Specifies whether the function should run asynchronously or
synchronously:

EV_ASYNC • Run asynchronously. Returns -1 to

indicate failure to initiate. Returns 0 to
indicate successful initiation and generates
a TFX_ORIGINATE message once the
DIS is detected, or TFX_FAXERROR if it
is not detected.

EV_SYNC • Run synchronously. Returns 0 on success

and -1 on failure.

 Cautions

• This function is supported on Dialogic® DM3 Boards only.

• You must call the fx_initstat(DF_TX) function at least once prior to calling
fx_originate().

• In Fax Resource Only Cluster (FROC) configurations (flexible routing), you
must issue fx_listen() prior to calling fx_sendfax(), fx_rcvfax(), or
fx_originate(). Otherwise, these functions will return an error.

• If the fx_sendfax() is not received within the 20s (limited by the T1 timer +
security margin), the fax session will be aborted and result in
TFX_FAXERROR.

 Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>
#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <conio.h>

allows the DCS on hold feature fx_originate()

 263

int dev; /* Fax channel device handle. */
DF_IOTT iott;

int catchall();

int main(int argc, char* argv[])
{
 int CanRun = 1;
 int mode = SR_STASYNC;

 /* Set SRL to turn off creation of internal thread */
 if(sr_setparm(SRL_DEVICE, SR_MODELTYPE, &mode) == -1){
 printf("Error: cannot set srl mode\n");
 exit(1);
 }
 /*
 * Open the channel using fx_open() to obtain the FAX
 * channel device handle in dev.
 */
 if ((dev = fx_open("dxxxB1C1", NULL)) == -1) {
 /* Error opening device. */
 /* Perform system error processing */
 exit(1);
 }

 /*
 * If this is not a Dm3 Fax channel (return type DFS_FAXDM3)
 * warn the user.
 */
 if (ATFX_CHTYPE(dev) != DFS_FAXDM3) {
 printf("Function fx_originate is not supported\n");
 } else {

 /* Open the file as read-only. */
 iott.io_fhandle = dx_fileopen("sample.tif" ,O_RDONLY|O_BINARY,0);
 /*
 * Set up the DF_IOTT structure as the default and then
 * change the necessary fields.
 */
 fx_setiott(&iott, iott.io_fhandle, DF_TIFF, DFC_AUTO);
 iott.io_type |= IO_EOT;
 printf("Press SPACE to show fx_originate usage, or ESC to exit\n");
 while (CanRun) {
 if (sr_waitevt(100) != -1) {
 catchall();
 }
 if (kbhit()) {
 switch(getch()) {
 case 27: /* Esc */
 CanRun = 0;
 break;
 case ' ': /* Space */
 /* Set initial state of FAX channel to TRANSMITTER. */
 if (fx_initstat(dev, DF_TX) == -1) {
 printf("Error - %s (error code %d)\n", ATDV_ERRMSGP(dev),
 ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev) == EDX_SYSTEM) {
 /* Perform system error processing */
 }
 } else {
 if (iott.io_fhandle != -1) {

fx_originate() allows the DCS on hold feature

 264

 printf("Issue our fx_originate\n");
 fx_originate(dev, EV_ASYNC);
 }
 }
 break;
 }
 }
 }
 dx_fileclose(iott.io_fhandle);
 }
 /*
 * close the channel using fx_close()
 */
 fx_close(dev);
 return 0;
}

/* Event handler. */
/*
* This routine gets called when sr_waitevt() receives any event.
* Maintain a state machine for every channel and issue the
* appropriate function depending on the next action to be
* performed on the channel.
*/
int catchall()
{
 int dev;
 dev = sr_getevtdev();

 /* Determine the event. */
 switch(sr_getevttype()) {
 case TFX_ORIGINATE:
 {
 long BStat = ATFX_BSTAT(dev);
 char DisBuf[100]={"N/A"};
 char RemoteId[100]={"N/A"};
 if (BStat & DFS_REMOTEID) {
 if (fx_getparm(dev, FC_REMOTEID, RemoteId)!=0) {
 }
 }
 if (BStat & DFS_DIS) {
 DF_DIS DfDis;
 if (fx_getDIS(dev, &DfDis)==-1) {
 }
 else {
 /* should translate DIS to a string */
 strcpy(DisBuf, "Present");
 }
 }
 if (BStat & DFS_NSF) {
 /*... */
 }
 printf("Receiver is capable of: speed %ld, resln %ld,"
 "width %ld, Ecm %ld\n", ATFX_SPEED(dev),
 ATFX_RESLN(dev), ATFX_WIDTH(dev),
 ATFX_ECM(dev));
 printf("Information: Csid='%s' and Dis is %s\n",
 RemoteId, DisBuf);
 printf("Issue our fx_sendfax\n");
 /*
 * Depending the capabilities, Parameter can be adjusted
 * and the user is capable of pointing to the appropriate

allows the DCS on hold feature fx_originate()

 265

 * iott structure (e.g., Raw Color Fax or simple tiff image)
 */
 fx_sendfax(dev, &iott,EV_ASYNC|DF_PHASEB|DF_PHASED);
 }
 break;
 case TFX_FAXSEND:
 /* The document has been successfully sent. */
 printf("Sent %ld pages at speed %ld, resln %ld,"
 "width %ld\n", ATFX_PGXFER(dev), ATFX_SPEED(dev),
 ATFX_RESLN(dev), ATFX_WIDTH(dev));
 /* Fax session completed. */
 printf("Press ESC to exit\n");
 break;
 case TFX_PHASEB:
 printf("Phase B event\n");
 /* extract usual information from here */
 break;
 case TFX_PHASED:
 printf("Phase D event\n");
 /* extract usual information from here */
 break;
 case TFX_FAXERROR:
 /* Error during the fax session. */
/* print_err(dev); */
 printf("Phase E status %ld\n", ATFX_ESTAT(dev));
 /* Application specific error handling. */
 break;
 default:
 break;
 } /* End of switch. */
 return(0);
}

 Errors

TFX_ORIGINATE Successful fax origination

TFX_FAXERROR Error in processing

EFX_UNSUPPORTED Unsupported function. This error returned if this
function is attempted on a non- Dialogic® DM3
Board.

Error defines can be found in faxlib.h.

 See Also
• fx_getDIS()
• fx_getNSF()
• fx_stopch()

fx_originate() allows the DCS on hold feature

 266

• ATFX_SPEED()
• ATFX_CODING()
• ATFX_ECM()

receives fax data fx_rcvfax()

 267

Name: int fx_rcvfax(dev, faxname, rcvflag)
Inputs: int dev • fax channel device handle (to

receive fax data)
 char * faxname • name to assign received

document
 unsigned long rcvflag • mode flag

Returns: 0 if success (on invocation in asynchronous mode)
 -1 if failure (on invocation in asynchronous mode)

Includes: srllib.h
 dxxxlib.h
 faxlib.h

Category: receive fax
Mode: synchronous/asynchronous

Dialogic®

Platform:
DM3, Springware

 Description

The fx_rcvfax() function receives fax data from an open channel device and
stores it as a TIFF/F file or a raw file.

NOTE: A raw file stores fax data as a single page of unstructured, unformatted
data.

The fx_rcvfax() function can be issued by the fax receiver or the fax transmitter.
To stop a fax reception in progress, use fx_stopch().

The encoding scheme in which the incoming fax data may be stored (MH or
MMR) is based on the capability of the Dialogic® fax product. For product
capabilities, see Section 2.3. Product Features.

For more information on setting up the channel device to receive fax data, see
Chapter 6. Implementing Receive Fax Capability.

Parameter Description

dev Specifies the channel device handle for the fax channel obtained
when the channel was opened.

fx_rcvfax() receives fax data

 268

faxname Specifies the file name to assign to the incoming fax data.

The TIFF/F or raw file, named in faxname, is created or
overwritten as needed. When storing multi-page fax data in raw
files, you must specify a different file for each incoming fax
page.

rcvflag A logical OR bit mask that indicates the following:

 • The file format in which to save the incoming fax data

 • Polling request from the transmitter is valid or not

 • The mode of operation, synchronous or asynchronous

 • Enable generation of Phase B events (T.30 pre-message
procedure)

 • Enable generation of Phase D events (T.30 post-message
procedure)

 • Enable accepting and issuing operator intervention (voice
request) from remote station

 • Set maximum receive width

 • Set preferred receive length

 • Store all incoming fax data at low (coarse) or high (fine)
vertical resolution

 • Enable user-defined I/O functions (fx_rcvfax2() only)

 The rcvflag bit mask can have the following values:

 File format bit:

 Value Description

 DF_TIFF TIFF/F structured formatted fax data

 DF_RAW Raw, unformatted fax data

 Poll bit:
 Value Description

 DF_NOPOLL Polling invalid (default)

 DF_POLL Polling valid

receives fax data fx_rcvfax()

 269

 Mode bit (for more information, see Section 6.3.2. Mode of
Operation):

 Value Description

 EV_SYNC Synchronous mode operation

 EV_ASYNC Asynchronous mode operation

 Phase B, Phase D, and Voice Request enable bits. Set one or
more of the following (the default is disabled):

 Value Description

 DF_PHASEB Enable Phase B event generation. When
set, a TFX_PHASEB event is returned
each time Phase B is completed during
the receive fax operation. For more
information, see Section 6.3.3. Enable
Phase B Event Generation.

 DF_PHASED Enable Phase D event generation. When
set, a TFX_PHASED event is returned
each time Phase D is completed during
the receive fax operation, except for the
last page. After the last page,
fx_rcvfax() completes (synchronous
mode) or a TFX_FAXRECV event
occurs (asynchronous mode). For more
information, see Section 6.3.4. Enable
Phase D Event Generation.

 DF_ACCEPT_VRQ Enable accepting operator intervention
(voice request) from remote station.
This value is not supported on
Dialogic® DM3 Boards.

 DF_ISSUE_VRQ Enable issuing operator intervention
(voice request) to remote station. This
value is not supported on Dialogic®
DM3 Boards.

fx_rcvfax() receives fax data

 270

 Maximum receive width bits:

 Value Description

 DF_1728MAX Maximum receive width: 1728 pixels

 DF_2048MAX Maximum receive width: 2048 pixels

 DF_2432MAX Maximum receive width: 2432 pixels
(default)

 Preferred receive length bits:

 Value Description

 DF_A4MAXLEN Maximum receive length: A4 size
(approximately 11 inches)

 DF_B4MAXLEN Maximum receive length: B4 size
(approximately 14 inches)

 DF_NOMAXLEN Maximum receive length: unlimited
(default)

 Vertical resolution of fax data storage. The default is the
incoming fax data's specified resolution.

 Value Description

 DF_RXRESLO Store all incoming fax data at low
vertical resolution.

 DF_RXRESHI Store all incoming fax data at high
vertical resolution.

 DF_RXRES_300_300 Store all incoming fax data at 300
(horizontal) x 300 (vertical) resolution
(Dialogic® DM3 Boards only)

 DF_RXRES_200_400 Store all incoming fax data at 200
(horizontal) x 400 (vertical) resolution
(Dialogic® DM3 Boards only)

 Enable user-defined I/O bit, available for fx_rcvfax2() only:

 Value Description

 IO_UIO User-defined I/O functions for
fx_rcvfax2()

receives fax data fx_rcvfax()

 271

 Examples

Examples 1 and 2 use fx_rcvfax() for receiving fax data into TIFF/F and raw
format files in synchronous mode. The synchronous programming code fragments
shown can be used in a multi-threaded application where the program creates a
separate thread for every channel. Each thread would control a single channel
using a synchronous mode of operation.

Example 3 uses fx_rcvfax() in asynchronous mode. The asynchronous
programming code fragments shown can be used in a multi-threaded application
where the program creates multiple threads. Each thread could control a single
channel or multiple channels using an asynchronous mode of operation. See the
Dialogic® Standard Runtime Library (SRL) documentation for information on
programming modes and the SRL functions.

Example 1: Receive Fax Data into TIFF/F File Format - Synchronous

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

int voxdev; /* Voice channel device handle. */
int dev; /* Fax channel device handle. */

unsigned long rcvflag = DF_NOPOLL|DF_TIFF|EV_SYNC;
unsigned short value;

/*
 * Open the channel using dx_open() to obtain the
 * VOICE channel device handle in voxdev. Use voxdev for
 * all Voice API calls.
 */
if ((voxdev = dx_open("dxxxB1C1", NULL)) == -1) {
 /* Error opening device. */
 /* Perform system error processing */
 exit(1);
}

/*
 * Open the channel using fx_open() to obtain the FAX
 * channel device handle in dev. Use dev for all Fax API
 * calls.
 */
if ((dev = fx_open("dxxxB1C1", NULL)) == -1) {
 /* Error opening device. */
 /* Perform system error processing */
 exit(1);
}
.
.
/*

fx_rcvfax() receives fax data

 272

 * Set channel on-hook using dx_sethook() in synchronous
 * mode.
 */
.
.
/*
 * Wait for 1 ring and go off-hook using dx_wtring().
 */
.
.
/* If this is a channel on a VFX/40SC (return type DFS_FAX40)
 * or VFX/40ESC (return type DFS_FAX40E),
 * a vertical resolution for the receive file can
 * be specified in rcvflag. For the VFX/40ESC, the
 * received data can be stored as MMR encoded data.
 */
switch (ATFX_CHTYPE(dev)) {

case DFS_FAX40:
 /* Store the received file in low vertical resolution. */
 rcvflag |= DF_RXRESLO;
 break;

case DFS_FAX40E:
 /*
 * Store the received file in low vertical resolution
 * and MMR encoding.
 */
 rcvflag |= DF_RXRESLO;
 value = DF_MMR;

 if (fx_setparm(dev,FC_RXCODING,(void *)&value) == -1) {
 printf("Error - %s (error code %d)\n", ATDV_ERRMSGP(dev),
 ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev) == EDX_SYSTEM) {
 /* Perform system error processing */
 }
 }
 break;

default:
 break;
}

/* Set initial state of FAX channel to RECEIVER. */
if (fx_initstat(dev,DF_RX) == -1) {
 printf("Error - %s (error code %d)\n", ATDV_ERRMSGP(dev),
 ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev) == EDX_SYSTEM) {
 /* Perform system error processing */
 }
}

/*
 * Receive the fax data into "myfax.tif" file - synchronous
 * mode.
 */
if((fx_rcvfax(dev,"myfax.tif",rcvflag))
 == -1) {
 printf("Error - %s (error code %d)\n", ATDV_ERRMSGP(dev),
 ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev) == EDX_SYSTEM) {

receives fax data fx_rcvfax()

 273

 /* Perform system error processing */
 }
 printf("Phase E status: %ld\n", ATFX_ESTAT(dev));

 /* Application specific error handling. */
 .
 .
}

Example 2: Receive Fax Data into Raw File - Synchronous

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

int count = 0;
char faxname[30];

int voxdev; /* Voice channel device handle. */
int dev; /* Fax channel device handle. */

unsigned long rcvflag = DF_NOPOLL|DF_RAW|EV_SYNC;
unsigned short value;

/*
 * Open the channel using dx_open() to obtain the
 * VOICE channel device handle in voxdev. Use voxdev for
 * all Voice API calls.
 */
if ((voxdev = dx_open("dxxxB1C1", NULL)) == -1) {
 /* Error opening device. */
 /* Perform system error processing */
 exit(1);
}
/*
 * Open the channel using fx_open() to obtain the FAX
 * channel device handle in dev. Use dev for all Fax API
 * calls.
 */
if ((dev = fx_open("dxxxB1C1", NULL)) == -1) {
 /* Error opening device. */
 /* Perform system error processing */
 exit(1);
}
.
.
/*
 * Set channel on-hook using dx_sethook() in synchronous
 * mode.
 */
.
.
/*
 * Wait for 1 ring and go off-hook using dx_wtring().
 */
.
.

/* If this is a channel on a VFX/40SC (return type DFS_FAX40)

fx_rcvfax() receives fax data

 274

 * or VFX/40ESC (return type DFS_FAX40E),
 * a vertical resolution for the receive file can
 * be specified in rcvflag. For the VFX/40ESC, the
 * received data can be stored as MMR encoded data.
 */
switch (ATFX_CHTYPE(dev)) {

case DFS_FAX40:
 /* Store the received file in low vertical resolution. */
 rcvflag |= DF_RXRESLO;
 break;

case DFS_FAX40E:
 /*
 * Store the received file in low vertical resolution
 * and MMR encoding.
 */
 rcvflag |= DF_RXRESLO;
 value = DF_MMR;

 if (fx_setparm(dev,FC_RXCODING,(void *)&value) == -1) {
 printf("Error - %s (error code %d)\n", ATDV_ERRMSGP(dev),
 ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev) == EDX_SYSTEM) {
 /* Perform system error processing */
 }
 }
 break;

default:
 break;
}

/* Set initial state of the FAX channel to RECEIVER. */
if (fx_initstat(dev,DF_RX) == -1) {
 printf("Error - %s (error code %d)\n", ATDV_ERRMSGP(dev),
 ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev) == EDX_SYSTEM) {
 /* Perform system error processing */
 }
}

do {
/* Receive each page into a separate file until the application
 * receives a DFS_EOP Phase D status value. fx_rcvfax() is
 * being used in synchronous mode.
 */
.
.
/*
 * Generate a file name in faxname, for example, rcv_pg0.raw,
 * rcv_pg1.raw, etc.
 */
.
.
 if(fx_rcvfax(dev,faxname,rcvflag) == -1)
 printf("Error - %s (error code %d)\n",
 ATDV_ERRMSGP(dev), ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev) == EDX_SYSTEM) {
 /* Perform system error processing */
 }
 printf("Phase E status: %ld\n", ATFX_ESTAT(dev));

receives fax data fx_rcvfax()

 275

 /* Application specific error handling. */
 .
 .
 }
} while(ATFX_PHDCMD(dev) != DFS_EOP);

/* Show results. */
printf("Fax received: %ld pages\n",ATFX_PGXFER(dev));

/*
 * Note: The encoding scheme of the received RAW data is specified
 * in the variable 'value' used for setting the FC_RXCODING
 * parameter. If these RAW files have to be transmitted, the same
 * encoding scheme value will have to be specified in the DF_IOTT
 * entry.
 */
.
.

Example 3: Receive Fax Data Using Asynchronous Programming
Mode

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

#define MAXCHANS 24

int catchall();
int recv_fax();

/* Error routine - print error information. */

void print_err(dev)
 int dev;
{
 printf("Error - %s (error code %ld)\n",
 ATDV_ERRMSGP(dev),ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev)==EDX_SYSTEM) {
 /* Perform system error processing */
 }
 return;
}

/*
 * main(): Opens all channels and enables handler for
 * asynchronous operation. Channels go on-hook and wait for
 * rings. On receiving rings, the channel goes off-hook and
 * receives a fax.
 */

main()
{
 int chan;
 char * chnamep;
 int mode = SR_STASYNC;

 int voxdev; /* Voice channel device handle. */

fx_rcvfax() receives fax data

 276

 int faxdev; /* Fax channel device handle. */

 /* Set SRL to turn off creation of internal thread */
 if(sr_setparm(SRL_DEVICE, SR_MODELTYPE, &mode) == -1){
 printf("Error: cannot set srl mode\n");
 exit(1);
 }

 for (chan=0; chan < MAXCHANS; chan++) {

 /*
 * Set chnamep to the channel device name, e.g.,
 * dxxxB1C1, dxxxB1C2, etc.
 * Open the channel using dx_open() so that voxdev
 * has the VOICE channel device handle.
 * Open the channel using fx_open() so that faxdev
 * has the FAX channel device handle.
 */

 if((voxdev = dx_open(chnamep, NULL)) == -1){
 printf("Error: cannot open vox device\n");
 exit(1);
 }

 if((faxdev = fx_open(chnamep, NULL)) == -1){
 printf("Error: cannot open fax device\n");
 exit(1);
 }
 .
 .
 .
 /* enable a handler for all events on any devices */
 if(sr_enbhdlr(EV_ANYDEV, EV_ANYEVT, dx_handler) == -1){
 printf("Error: could not enable handler\n");
 exit(1);
 }
 .
 .
 .

 /*
 * Place channel on-hook by calling dx_sethook() with
 * its mode field set to EV_ASYNC (asynchronous).
 */
 if(dx_sethook(voxdev, DX_ONHOOK, EV_ASYNC) == -1){
 printf("dx_sethook failed: error = %s\n", ATDV_ERRMSGP(voxdev));
 exit(1);
 }

 .
 .
 }

 /*
 * All channels have been opened and a sethook function
 * issued to place the channels on-hook. Use sr_waitevt()
 * to wait for completion events.
 * On receiving any completion event, control is transferred
 * to the catchall() handler function.
 */
 while(sr_waitevt(-1))
 .

receives fax data fx_rcvfax()

 277

 .

/* Event handler. */

/*
 * This routine is called when sr_waitevt() receives an event.
 * Maintain a state machine for every channel and issue the
 * appropriate function depending on the next action to be
 * performed on the channel, e.g., the application may wish
 * to wait for rings after an on-hook completion event and
 * start receiving a fax as soon as rings are received.
 */

int catchall()

{

 int dev = sr_getevtdev();
 char * fnamep;

 /* Determine the event. */
 switch(sr_getevttype()) {

 case TDX_SETHOOK:
 /*
 * If channel has gone off-hook, start receiving the
 * fax.
 */
 if (ATDX_HOOKST(dev) == DX_OFFHOOK) {
 /*
 * Set the fax state of the channel to DF_RX using
 * fx_initstat().
 */
 .
 .
 /*
 * Set up fnamep to point to TIFF/F file name.
 * Start receiving the fax.
 */
 if (fx_rcvfax(dev, fnamep, DF_TIFF|DF_NOPOLL|EV_ASYNC) == -1) {
 print_err(dev);
 printf("Phase E status: %ld\n",
 ATFX_ESTAT(dev));
 /* Application specific error handling here. */
 .
 .
 }
 } else {
 /*
 * Channel is on-hook. State machine dependent
 * action.
 */
 .
 .
 }
 break;

 case TDX_CST:
 /* Handle rings received event. */
 .
 .
 break;

fx_rcvfax() receives fax data

 278

 case TFX_FAXRECV:
 /* The document has been successfully received. */
 printf("Received %ld pages at speed %ld, resln %ld,
 width %ld\n", ATFX_PGXFER(dev), ATFX_SPEED(dev),
 ATFX_RESLN(dev), ATFX_WIDTH(dev));
 .
 .
 break;

 case TFX_FAXERROR:
 /* Error during the fax session. */
 print_err(dev);
 printf("Phase E status %d\n", ATFX_ESTAT(dev));
 /* Application specific error handling. */
 .
 .
 break;

 default:
 .
 .
 break;

 } /* End of switch. */

 return(0);
}

Example 4: Receive Fax Data Using Callback Handler and Setting
SRL to Operate in Polled Mode - Asynchronous (Linux only)

#include <stdio.h>
#include <errno.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

#define MAXCHANS 24

extern int errno;

int catchall();
int recv_fax();

/* Error routine - print error information. */

void print_err(dev)
 int dev;
{
 printf("Error - %s (error code %ld)\n",
 ATDV_ERRMSGP(dev),ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev)==EDX_SYSTEM) {
 printf("errno = %d\n", errno);
 }
 return;
}

/*

receives fax data fx_rcvfax()

 279

 * main(): Opens all channels and enables handler for
 * asynchronous operation. Channels go on-hook and wait for
 * rings. On receiving rings, the channel goes off-hook and
 * receives a fax.
 */

main()
{
 int chan;
 char * chnamep;
 int mode = SR_POLLMODE;

 int voxdev; /* Voice channel device handle. */
 int faxdev; /* Fax channel device handle. */

 /* Set SRL to operate in POLLED Mode. */
 if (sr_setparm(SRL_DEVICE, SR_MODEID, &mode) == -1) {
 printf("Cannot set SRL in polled mode\n");
 .
 .
 }

 for (chan=0; chan < MAXCHANS; chan++) {

 /*
 * Set chnamep to the channel device name, e.g.,
 * dxxxB1C1, dxxxB1C2, etc.
 * Open the channel using dx_open() so that voxdev
 * has the VOICE channel device handle.
 * Open the channel using fx_open() so that faxdev
 * has the fax channel device handle.
 */
 .
 .
 /*
 * Using sr_enbhdlr(), set up handler to service all
 * events.
 */
 if(sr_enbhdlr(voxdev, EV_ANYEVT, catchall) == -1) {
 printf("sr_enbhdlr() failed\n");
 print_err(dev);
 .
 .
 }
 if(sr_enbhdlr(faxdev, EV_ANYEVT, catchall) == -1) {
 printf("sr_enbhdlr() failed\n");
 print_err(dev);
 .
 .
 }
 /*
 * Place channel on-hook by calling dx_sethook() with
 * its mode field set to EV_ASYNC (asynchronous).
 */
 .
 .
 }
 /* This will cause catchall() to be called when an event is available */

 for(;;)
 {
 sr_waitevt(-1);

fx_rcvfax() receives fax data

 280

 }

}
/* Event handler. */

/*
 * This routine gets called by SRL on receiving any event.
 * Maintain a state machine for every channel and issue the
 * appropriate function depending on the next action to be
 * performed on the channel, e.g., the application may wish
 * to wait for rings after a on-hook completion event and
 * start receiving a fax as soon as rings are received.
 */

int catchall()
{
 int dev = sr_getevtdev();
 /* Determine the event. */
 switch(sr_getevttype()) {
 case TDX_SETHOOK:
 /*
 * If channel has gone off-hook, start receiving the
 * fax.
 */
 if (ATDX_HOOKST(dev) == DX_OFFHOOK) {
 /*
 * Set the fax state of the channel to DF_RX using
 * fx_initstat().
 */
 .
 .
 /* Start receiving the fax. */
 if (fx_rcvfax(dev, fnamep,
 DF_TIFF|DF_NOPOLL|EV_ASYNC) == -1) {
 print_err(dev);
 printf("Phase E status: %ld\n",
 ATFX_ESTAT(dev));
 /* Application specific error handling here. */
 .
 .
 }
 } else {
 /*
 * Channel is on-hook. State machine dependent
 * action.
 */
 .
 .
 }
 break;
 case TDX_CST:
 /* Handle rings received event. */
 .
 .
 break;
 case TFX_FAXRECV:
 /* The document has been successfully received. */
 printf("Received %ld pages at speed %ld, resln %ld,
 width %ld\n", ATFX_PGXFER(dev), ATFX_SPEED(dev),
 ATFX_RESLN(dev), ATFX_WIDTH(dev));
 .
 .

receives fax data fx_rcvfax()

 281

 break;
 case TFX_FAXERROR:
 /* Error during the fax session. */
 print_err(dev);
 printf("Phase E status %d\n", ATFX_ESTAT(dev));
 /* Application specific error handling. */
 .
 .
 break;
 default:
 .
 .
 break;
 } /* End of switch. */
 return(0);
}

 Errors

In synchronous mode, this function returns a zero to indicate successful
completion or a -1 to indicate an error.

In asynchronous mode, this function returns a zero to indicate successful
invocation or a -1 to indicate an invocation error.

Errors that occur during reception generate a Dialogic® Standard Runtime Library
event (TFX_FAXERROR). To access the error code, call the standard attribute
functions ATDV_LASTERR() and ATDV_ERRMSGP(). The latter returns a
string describing the error. See Appendix D for a list of fax error codes.

If the fx_rcvfax() function successfully completes, a TFX_FAXRECV Standard
Runtime Library event is generated.

The fax extended attribute ATFX_ESTAT() provides additional error
information for T.30 Phase E fax protocol.

System errors return an EDX_SYSTEM error On Linux, check the global
variable errno for more information. On Windows®, use dx_fileerrno() to obtain
the error value. Refer to the dx_fileerrno() function in the Dialogic® Voice API
Library Reference for a list of the possible system error values.

fx_rcvfax() receives fax data

 282

 See Also

• ATFX_name functions
• fx_rcvfax2()
• fx_getDCS()
• fx_getDIS()
• fx_getNSF()

receives fax data (file descriptor argument) fx_rcvfax2()

 283

Name: int fx_rcvfax2(dev, fd, rcvflag)
Inputs: int dev • fax channel device handle (to

receive fax data)
 int fd • receive file descriptor
 unsigned long rcvflag • mode flag

Returns: 0 if success (on invocation in asynchronous mode)
 -1 if failure (on invocation in asynchronous mode)

Includes: srllib.h
 dxxxlib.h
 faxlib.h

Category: receive fax
Mode: synchronous/asynchronous

Dialogic®

Platform:
DM3, Springware

 Description

The fx_rcvfax2() function receives fax data (file descriptor argument) from an
open channel device and stores it as a TIFF/F file or a raw file.

NOTE: A raw file stores fax data as a single page of unstructured, unformatted
data.

The fx_rcvfax2() function can be issued by the fax receiver or the fax
transmitter. To stop a fax reception in progress, use fx_stopch().

The encoding scheme in which the incoming fax data may be stored (MH and/or
MMR) is based on the capability of the fax product. For product capabilities, see
Section 2.3. Product Features.

NOTES: 1. The fx_rcvfax2() function uses a file descriptor argument (fd) to
specify the receive file instead of a file name as in the fx_rcvfax()
function.

2. To receive a fax using user-definable I/O functions, you must issue
fx_rcvfax2() and logically OR the IO_UIO bit in the rcvflag
argument.

fx_rcvfax2() receives fax data (file descriptor argument)

 284

For more information on setting up the channel device to receive fax data, see
Chapter 6. Implementing Receive Fax Capability.

Parameter Description

dev Specifies the channel device handle for the fax channel
obtained when the channel was opened.

fd Specifies the file descriptor.

rcvflag The rcvflag field is a logical OR bit mask. See the
fx_rcvfax() function for rcvflag field values.

 Cautions

• The application must open the receive file and pass the file descriptor to
fx_rcvfax2().

• The fax library does not close the receive file after the fax has been received
or an error has occurred. The application must close the receive file.

 Example

/*
 * The principal difference between fx_rcvfax() and
 * fx_rcvfax2() is that the application must open the
 * receive file and pass the file descriptor to the
 * fx_rcvfax2() function instead of the receive file name.
 * Example 1 from the function reference for fx_rcvfax() has
 * been modified for use with fx_rcvfax2() and included
 * below. The other examples in fx_rcvfax() can be modified
 * similarly.
 */

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

int voxdev; /* Voice channel device handle. */
int dev; /* Fax channel device handle. */

int rcvfd;
unsigned long rcvflag;

/*
 * Open the channel using dx_open() and obtain the
 * VOICE channel device handle in voxdev.
 */
.
.

receives fax data (file descriptor argument) fx_rcvfax2()

 285

/*
 * Open the channel using fx_open() and obtain the
 * FAX channel device handle in dev.
 */
.
.
/*
 * Set channel on-hook using dx_sethook() in synchronous
 * mode.
 */
.
.
/*
 * Wait for 1 ring and go off-hook using dx_wtring().
 */
.
.
/* If this is a channel on a VFX/40SC (return type DFS_FAX40)
 * or VFX/40ESC (return type DFS_FAX40E),
 * a vertical resolution for the receive file can
 * be specified in rcvflag. For the VFX/40ESC, the
 * received data can be stored as MMR encoded data.
 */
switch (ATFX_CHTYPE(dev)) {

case DFS_FAX40:
 /* Store the received file in low vertical resolution. */
 rcvflag |= DF_RXRESLO;
 break;

case DFS_FAX40E:
 /*
 * Store the received file in low vertical resolution
 * and MMR encoding.
 */
 rcvflag |= DF_RXRESLO;
 value = DF_MMR;

 if (fx_setparm(dev,FC_RXCODING,(void *)&value) == -1) {
 printf("Error - %s (error code %d)\n", ATDV_ERRMSGP(dev),
 ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev) == EDX_SYSTEM) {
 /* Perform system error processing */
 }
 }
 break;

default:
 break;
}

/*
 * Set the fax state of the channel to DF_RX using
 * fx_initstat().
 */
.
.

/*
 * Open the file "myfax.tif" in preparation for receiving a
 * fax. Use dx_fileopen() to open the file.
 */

fx_rcvfax2() receives fax data (file descriptor argument)

 286

if ((rcvfd = dx_fileopen("myfax.tif", O_BINARY|O_WRONLY|O_CREAT|O_TRUNC,
 0666)) == -1) {
 /* Error opening file. */
 /* Perform system error processing */
 .
 .
}

/*
 * Receive the fax data into "myfax.tif" file - synchronous
 * mode.
 */
if((fx_rcvfax2(dev,rcvfd,rcvflag))
 == -1) {
 printf("Error - %s (error code %d)\n", ATDV_ERRMSGP(dev),
 ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev) == EDX_SYSTEM) {
 /* Perform system error processing */
 }
 printf("Phase E status: %ld\n", ATFX_ESTAT(dev));

 /* Application specific error handling. */
 .
 .
}

/* Close the received file. */

if (dx_fileclose(rcvfd) == -1) {
 /* Error closing file. */
 /* Perform system error processing */
 .
 .
}

 Errors

In synchronous mode, this function returns a zero to indicate successful
completion or a -1 to indicate an error.

In asynchronous mode, this function returns a zero to indicate successful
invocation or a -1 to indicate an invocation error.

Errors that occur during reception generate a Dialogic® Standard Runtime Library
event (TFX_FAXERROR). To access the error code, call the standard attribute
functions ATDV_LASTERR() and ATDV_ERRMSGP(). The latter returns a
string describing the error. See Appendix D for a list of fax error codes.

If the fx_rcvfax2() function successfully completes, a TFX_FAXRECV
Standard Runtime Library event is generated.

receives fax data (file descriptor argument) fx_rcvfax2()

 287

The fax extended attribute ATFX_ESTAT() provides additional error
information for T.30 Phase E fax protocol.

System errors return an EDX_SYSTEM error. On Linux, check the global
variable errno for more information. On Windows®, use dx_fileerrno() to obtain
the error value. Refer to the dx_fileerrno() function in the Dialogic® Voice API
Library Reference for a list of the possible system error values.

 See Also

• fx_rcvfax()

fx_rtvContinue() used for remote terminal verification

 288

Name: int fx_rtvContinue(dev, continue)
Inputs: int dev

int continue
• fax channel device handle
• TRUE or FALSE

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h
faxlib.h

Category: miscellaneous
Mode: synchronous

Dialogic®

Platform:
Springware (Windows® only)

 Description
Windows® only. The fx_rtvContinue() function is used for remote terminal
verification. If you enable remote terminal verification (RTV), you must call this
function after a PRE_PHASEB event is received by your application in order to
proceed with the fax transfer. Otherwise, a firmware time-out occurs and the fax
transfer is terminated.

To enable RTV, specify DF_ENABLE_RTV and DF_PHASEB in fx_sendfax().
The RTV feature allows you to verify the recipient’s identity and abort
transmission if necessary before the firmware responds with a DCS message
(digital command signal).

Parameter Description

dev Specifies the channel device handle for the fax
channel obtained when the channel was opened.

continue Specifies whether the application wishes to
proceed with the fax protocol or not. Values are
TRUE or FALSE.

 Cautions

None

used for remote terminal verification fx_rtvContinue()

 289

 Example

#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

DF_IOTT iott[10];

/* Handler for Phase B events. */
int phb_hdlr();

main()
{
 int voxdev; /* Voice channel device handle. */
 int dev; /* Fax channel device handle. */

 /*
 * Open the channel using dx_open() to obtain the
 * VOICE device handle in voxdev.
 * Open the channel using fx_open() to obtain the FAX channel
 * device handle in dev.
 */
 .
 .
 /*
 * Install handler using sr_enbhdlr() to service
 * TFX_PHASEB events.
 */
 if (sr_enbhdlr(dev, TFX_PHASEB, phb_hdlr) == -1) {
 printf(“Failed to install Phase B handler \n”);
 return;
 }

 /*
 * Call fx_sendfax() in asynchronous mode after setting
 * up the DF_IOTT array. Set DF_ENABLE_RTV and DF_PHASEB bits
 * in mode field to enable generation of
 * remote terminal verification and Phase B events.
 */
 if (fx_sendfax(dev, iott, EV_ASYNC|DF_ENABLE_RTV|DF_PHASEB) == -1)
 {
 printf(“Error: %s (error code %d)\n”,
 ATFX_ERRMSGP(dev), ATFX_LASTERR(dev));
 }
.
.
.

 /*
 * Handler registered with SRL to handle TFX_PHASEB events.
 */
 int phb_hdlr()
 {
 int dev = sr_getevtdev();
 char szId[22], szValid[22];

 strcpy(szValid, “OK TERMINAL”);
 if (sr_getevttype() == TFX_PHASEB)
 {
 if (fx_getparm(dev, FC_REMOTEID, szId) == -1)

fx_rtvContinue() used for remote terminal verification

 290

 {
 printf(“fx_getparm err: %s\n”,
 ATDX_ERRMSGP(dev));
 // Getting remote ID failed. Abort.
 fx_rtvContinue(dev, FALSE);
 }
 else
 {
 // Check the database here.
 If (!strcmp(szId, szValid))
 fx_rtvContinue(dev, TRUE);
 else
 fx_rtvContinue(dev, FALSE);
 }
 }
return 0;
}

 Errors

None

 See Also

• fx_sendfax()

send a single ASCII file fx_sendascii()

 291

Name: int fx_sendascii(faxname, phdcont)
Inputs: char * faxname • ASCII file name

 unsigned short phdcont • Phase D continuation value
Returns: 0 if success

 -1 if failure
Includes: srllib.h

 dxxxlib.h
 faxlib.h

Category: convenience
Mode: synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The fx_sendascii() function allows an application to send a single ASCII file at
the default width, length, resolution, fonts, and margins for ASCII data. For
default ASCII information, see Section 10.3. DF_ASCIIDATA – ASCII Data
Description.

This function is a convenience function and resides in faxconv.c. The
fx_sendascii() function calls fx_sendfax() (see source code for fx_sendascii()).
The fx_sendfax() function reference contains information on Phase D
continuation values, status information, and file error handling that applies to
fx_sendascii().

The encoding scheme used in transmitting fax data varies by product; for more
information see Section 2.3. Product Features. The preferred encoding scheme
for transmission is determined by the value set in the FC_TXCODING parameter
in fx_setparm().

fx_sendascii() send a single ASCII file

 292

Parameter Description

faxname Specifies the name of the ASCII file to send.

phdcont Specifies the Phase D continuation value. This value defines
the action to take at the end of the current DF_IOTT
structure after the transfer of fax data. Valid values:

 DFC_EOP End of Procedure (T.30).
Terminate current fax session;
progress to Phase E; and disconnect
fax call.

 DFC_MPS Multi-Page Signal (T.30).
End of current fax document page;
next page is in same format as the
current page; proceed directly to
Phase C.

 DFC_EOM End of Message (T.30).
End of current fax document page;
more fax data to follow at different
resolution or width; return to Phase B
and negotiate parameters for next fax
document page.

 Cautions

• Before calling fx_sendascii(), you must open the channel using fx_open()
to obtain the fax channel device handle.

• If TDM bus routing is required, you must complete the routing before calling
the convenience function.

 Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

int voxhandle; /* Voice channel device handle. */
int devhandle; /* Fax channel device handle. */

send a single ASCII file fx_sendascii()

 293

/*
 * Open the channel using dx_open() to obtain the
 * VOICE device handle in voxhandle.
 * Open the channel using fx_open() to obtain the FAX channel
 * device handle in devhandle.
 */

/*
 * Take channel offhook using dx_sethook() and perform outbound
 * dial using dx_dial().
 */
.
.

/*
 * Send the ASCII file. No more files to send (DFC_EOP).
 */
if (fx_sendascii("textdata.txt",DFC_EOP) == -1) {
 printf("Error - %s (error code %d)\n",
 ATDV_ERRMSGP(devhandle), ATDV_LASTERR(devhandle));
 if (ATDV_LASTERR(devhandle) == EDX_SYSTEM) {
 /* Perform system error processing */
 }
 printf("Phase E status: %ld\n", ATFX_ESTAT(devhandle));

 /* Application specific error handling. */
 .
 .

}

 Source Code for fx_sendascii()

/*
 * NOTE: devhandle is a global variable of type int. Prior
 * to calling fx_sendascii(), the channel is opened
 * using fx_open() to obtain the FAX channel device
 * handle in devhandle.
 */

DF_IOTT iott;

int fx_sendascii(faxname,phdcont)
 char * faxname;
 unsigned short phdcont
{
 int erc;

 /* Open the file as read-only. */
 if ((iott.io_fhandle = dx_fileopen(faxname,O_RDONLY|O_BINARY,0)) == -1) {
 return(-1);
 }
 /*
 * Set up the DF_IOTT structure as the default and then
 * change the necessary fields.
 */
 fx_setiott(&iott,iott.io_fhandle,DF_ASCII,phdcont);
 iott.io_type |= IO_EOT;

fx_sendascii() send a single ASCII file

 294

 erc = fx_sendfax(devhandle,&iott, EV_SYNC)

 dx_fileclose(iott.io_fhandle);

 return(erc);
}

 Errors

See Appendix D for a list of common error codes that may be returned for this
function.

 See Also

• ATFX_TERMMSK()
• fx_sendfax()
• fx_setiott()

transmits fax data fx_sendfax()

 295

Name: int fx_sendfax(dev, iotp, sndflag)
Inputs: int dev • fax channel device channel

 DF_IOTT *iotp • pointer to fax transfer table
 unsigned long sndflag • mode flag

Returns: 0 if success (on invocation in asynchronous mode)
 -1 if failure (on invocation in asynchronous mode)

Includes: srllib.h
 dxxxlib.h
 faxlib.h

Category: send fax
Mode: synchronous/asynchronous

Dialogic®

Platform:
DM3, Springware

 Description

The fx_sendfax() function transmits fax data as specified by a table of DF_IOTT
data structures.

The fx_sendfax() function can be issued by the fax transmitter or the fax
receiver. You can stop a fax transfer in progress at any time by issuing
fx_stopch().

You can also send faxes using fax convenience functions. See fx_sendascii(),
fx_sendraw(), and fx_sendtiff().

For more information on setting up the channel device to send fax data, see
Chapter 5. Implementing Send Fax Capability.

Parameter Description

dev Specifies the channel device handle for the fax channel
obtained when the channel was opened.

iotp A pointer to the DF_IOTT table entries that describe the fax
data.

fx_sendfax() transmits fax data

 296

Parameter Description

sndflag The sndflag field is a logical OR bit mask that indicates one
or more conditions:

• mode of operation for the function, synchronous or
asynchronous

• enable generation of Phase B events (T.30 pre-message
procedure)

• enable generation of Phase D events (T.30 post-message
procedure)

• enable accepting and issuing operator intervention (voice
request) from remote station

• enable transmitting all DF_IOTT entries at low or high
resolution

• enable transmitting of subaddress values

 The sndflag bit mask can have the following values:

 Mode bit (for more information, see Section
5.7.1. Mode of Operation):

 Value Description

 DF_ENABLE_RTV Enable remote terminal verification
(RTV). You must set both
DF_PHASEB and
DF_ENABLE_RTV bits to enable
RTV. This value is not supported on
Dialogic® DM3 Boards.

If both bits are set, the Phase B
event is sent to the application upon
receipt of the DIS (digital
identification signal) and the remote
station ID. This allows the
application to verify the recipient’s
identity and abort transmission if
necessary before the firmware
responds with a DCS message

transmits fax data fx_sendfax()

 297

Parameter Description

(digital command signal).

The application must then call
fx_rtvContinue() to indicate
continuation or cancellation of the
fax transfer.

If both bits are not set, the Phase B
event is received by the application
after the firmware has already sent
the DCS message to the recipient.

 EV_SYNC Synchronous mode operation

 EV_ASYNC Asynchronous mode operation

 Phase B, Phase D, and Operator Intervention (Voice Request)
enable bits. Set one or more of the following, where the
default is disabled:

 Value Description

 DF_PHASEB Enable Phase B event generation.
When this bit is set, a
TFX_PHASEB event is generated
each time Phase B of the T.30
protocol is completed while
fx_sendfax() is transmitting fax
data. For more information, see
Section 5.7.2. Enable Phase B
Event Generation.

 DF_PHASED Enable Phase D event generation.
When this bit is set, a
TFX_PHASED event is generated
each time Phase D of the T.30
protocol is completed during the
send fax operation. A Phase D event
is generated for every page except
for the last page. After the last page,
if your application is running in
synchronous mode fx_sendfax()

fx_sendfax() transmits fax data

 298

Parameter Description

completes, or in asynchronous
mode a TFX_FAXSEND event
occurs. For more information, see
Section 5.7.3. Enable Phase D
Event Generation.

 DF_ACCEPT_VRQ Enable accepting voice request from
remote station. This value is not
supported on Dialogic® DM3
Boards.

 DF_ISSUE_VRQ Enable issuing voice request to
remote station. This value is not
supported on Dialogic® DM3
Boards.

 Vertical resolution of the fax transmission. The default is to
transmit at the resolution specified in the file (TIFF/F) or
DF_IOTT (raw and ASCII):

 Value Description

 DF_TXRESLO Transmit all DF_IOTT entries at
low (coarse) vertical resolution.

 DF_TXRESHI Transmit all DF_IOTT entries at
high (fine) vertical resolution.

 DF_TXRES_300_300 Transmit all DF_IOTT entries at
300 (horizontal) x 300 (vertical)
resolution (Dialogic® DM3 Boards
only).

 DF_TXRES_200_400 Transmit all DF_IOTT entries at
200 (horizontal) x 400 (vertical)
resolution (Dialogic® DM3 Boards
only).

transmits fax data fx_sendfax()

 299

Parameter Description

 Transmit subaddress enable bit:

 Value Description

 DF_TXSUBADDR Enable subaddress transmission.
This value is not supported on
Dialogic® DM3 Boards.

 Cautions

• You must declare the DF_IOTT structures passed as an argument to
fx_sendfax() as global or static.

• Do not modify the DF_IOTT structures until after the fx_sendfax() function
has completed. The DF_IOTT structures must exist for the duration of the
fax transmission.

NOTE: In asynchronous mode, the fax library needs to repeatedly access the
DF_IOTT structure entries during the fax transmission, even though
fx_sendfax() has returned control to the application. Each channel
controlled by the single process must have its own separate
DF_IOTT structures.

• The io_type field of the last DF_IOTT structure entry must contain an
IO_EOT to identify it as the last structure entry.

• On Dialogic® DM3 Boards, all DF_IOTT structures are checked before any
fax is sent, and a fax is not sent if a bad DF_IOTT structure is included
anywhere in the fx_sendfax() function. In such a case, a phase B event is
not generated even for any initial good DF_IOTT structures.

 Examples

Example 1 illustrates the use of fx_sendfax() in synchronous mode with
DF_IOTT structures as an array.

Example 2 shows fx_sendfax() with DF_IOTT structures set for raw image
merged with ASCII data followed by a multi-page TIFF/F file. The synchronous
programming code fragments shown can be used in a multi-threaded application

fx_sendfax() transmits fax data

 300

where the program creates a separate thread for every channel. Each thread can
control a single channel using a synchronous mode of operation.

Example 3 illustrates the use of fx_sendfax() in asynchronous mode. The
asynchronous programming code fragments shown can be used in a multi-
threaded application where the program creates multiple threads. Each thread can
control a single channel or multiple channels using an asynchronous mode of
operation. See the Dialogic® Standard Runtime Library (SRL) documentation for
information on programming modes and the SRL functions.

Example 4 shows how to use fx_sendfax() to send two TIFF/F files with each
file being routed to a different subaddress.

Example 1: Send Fax with Array-Based DF_IOTT - Synchronous

Notes for this example:

• By not defining io_type in the first DF_IOTT entry, the next DF_IOTT entry
is a DF_IOTT array entry by default. Array entries must be contiguous (0, 1,
2, etc.). To explicitly state that the next DF_IOTT is contiguous, specify the
IO_CONT value in the io_type field.

• To indicate that data is stored on a disk device, IO_DEV is specified in the
io_type field of the fx_setiott() function (see the fx_setiott() function
reference source code).

• In the last DF_IOTT entry of Example 1, the IO_EOT value in the io_type
field indicates the last DF_IOTT entry in the table.

• The fx_setiott() calls could specify DFC_AUTO for automatic Phase D
continuation determination.

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>
#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>

#define NUMDOC 3

/* Need a DF_IOTT entry for each document to send. */
DF_IOTT iott[NUMDOC];
int rawfd,tifd1,tifd2;

transmits fax data fx_sendfax()

 301

int voxdev; /* Voice channel device handle. */
int dev; /* Fax channel device handle. */
unsigned short value;
.
.
/*
 * Open the channel using dx_open() to obtain the
 * VOICE channel device handle in voxdev.
 */
if ((voxdev = dx_open("dxxxB1C1", NULL)) == -1) {
 /* Error opening device. */
 /* Perform system error processing */
 exit(1);
}

/*
 * Open the channel using fx_open() to obtain the FAX
 * channel device handle in dev.
 */
if ((dev = fx_open("dxxxB1C1", NULL)) == -1) {
 /* Error opening device. */
 /* Perform system error processing */
 exit(1);
}
.
.
/*
 * Take channel offhook using dx_sethook() and perform
 * outbound dial using dx_dial(). Use voxdev as
 * channel device handle for Voice API functions.
 */
.
.
/* Required -- Set initial state of FAX channel to TRANSMITTER. */
if (fx_initstat(dev,DF_TX) == -1) {
 printf("Error - %s (error code %d)\n", ATDV_ERRMSGP(dev),
 ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev) == EDX_SYSTEM) {
 /* Perform system error processing */
 }
}
.
.
/*
 * Enable automatic Phase D messaging for TIFF/F file inter-page Phase D
 * value. (NOTE: Specific Phase D messaging could have been used for each
 * DF_IOTT structure if required for the application.
 */
value = DFC_AUTO;

if (fx_setparm(dev,FC_SENDCONT,(void *)&value) == -1) {
 printf("Error - %s (error code %d)\n", ATDV_ERRMSGP(dev),
 ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev) == EDX_SYSTEM) {
 /* Perform system error processing */
 }
}

/* Open raw and TIFF/F files to transmit. */
rawfd = dx_fileopen("coversht.raw",O_RDONLY|O_BINARY, NULL);
tifd1 = dx_fileopen("document1.tif",O_RDONLY|O_BINARY, NULL);

fx_sendfax() transmits fax data

 302

tifd2 = dx_fileopen("document2.tif",O_RDONLY|O_BINARY, NULL);

/*
 * Set DF_IOTT structure (using fx_setiott()).Send Phase D
 * continuation value MPS after the raw format file
 * coversheet.
 */
fx_setiott(&iott[0],rawfd,DF_RAW,DFC_MPS);

/*
 * Set next DF_IOTT structure in the array. Send Phase D
 * continuation value EOM after the first TIFF/F document:
 * more pages to follow; renegotiate Phase B.
 */
fx_setiott(&iott[1],tifd1,DF_TIFF,DFC_EOM);

/*
 * Set the next DF_IOTT structure in the array. Send Phase D
 * continuation value EOP after the final TIFF/F document.
 * Send 2 pages, start at document page 3 (Note: TIFF/F
 * documents begin with document page zero).
 */
fx_setiott(&iott[2],tifd2,DF_TIFF,DFC_EOP);
iott[2].io_type |= IO_EOT;
iott[2].io_firstpg = 2L;
iott[2].io_pgcount = 2L;

/*
 * Set the fax state of the channel to DF_TX using
 * fx_initstat().
 */

/* Send all fax data now - synchronous mode. */
if (fx_sendfax(dev,iott,EV_SYNC) == -1) {
 printf("Error code: %ld Error message: %s\n",
 ATDV_LASTERR(dev), ATDV_ERRMSGP(dev));
 if (ATDV_LASTERR(dev) == EDX_SYSTEM) {
 /* Perform system error processing */
 }
 printf("Phase E status: %ld\n", ATFX_ESTAT(dev));
 /* Further error processing - application specific. */
 .
}

Example 2: Send Fax of Raw Image Merged with ASCII Data Followed
by a Multi-Page TIFF/F File - Synchronous

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>
#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>

#define NUMDOC 4

/* Need a DF_IOTT entry for each document to send. */

transmits fax data fx_sendfax()

 303

DF_IOTT iott[NUMDOC];
DF_ASCIIDATA asciidata[2];
int rawfd,tiffd,txtfd1,txtfd2;
unsigned long sndflag = EV_SYNC;
unsigned short value;

int voxdev; /* Voice channel device handle. */
int dev; /* Fax channel device handle. */
.
.
/*
 * Open the channel using dx_open() to obtain the
 * VOICE channel device handle in voxdev.
 */
if ((voxdev = dx_open("dxxxB1C1", NULL)) == -1) {
 /* Error opening device. */
 /* Perform system error processing */
 exit(1);
}
/*
 * Open the channel using fx_open() to obtain the FAX
 * channel device handle in dev.
 */
if ((dev = fx_open("dxxxB1C1", NULL)) == -1) {
 /* Error opening device. */
 /* Perform system error processing */
 exit(1);
}
.
.
/*
 * Take the channel offhook using dx_sethook() and
 * perform outbound dial using dx_dial(). Use voxdev
 * as channel device handle for Voice API functions.
 */
.
.
/* Set initial state of FAX channel to TRANSMITTER. */
if (fx_initstat(dev,DF_TX) == -1) {
 printf("Error - %s (error code %d)\n", ATDV_ERRMSGP(dev),
 ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev) == EDX_SYSTEM) {
 /* Perform system error processing */
 }
}
.
.
/*
 * If this is a channel for a VFX/40SC (return type DFS_FAX40)
 * or VFX/40ESC (return type DFS_FAX40E),
 * a resolution for sending the entire DF_IOTT can
 * be specified in sndflag.
 */
if ((ATFX_CHTYPE(dev) == DFS_FAX40) ||
 (ATFX_CHTYPE(dev) == DFS_FAX40E)) {
 /* Set the transmit resolution to coarse (low). */
 sndflag |= DF_TXRESLO;
}

/*
 * Enable automatic Phase D messaging for TIFF/F file inter-page Phase D
 * value. (NOTE: Specific Phase D messaging could have been used for each

fx_sendfax() transmits fax data

 304

 * DF_IOTT structure if required for the application.
 */

value = DFC_AUTO;

if (fx_setparm(dev,FC_SENDCONT,(void *)&value) == -1) {
 printf("Error - %s (error code %d)\n", ATDV_ERRMSGP(dev),
 ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev) == EDX_SYSTEM) {
 /* Perform system error processing */
 }
}
/* Open raw and TIFF/F files to transmit. */
rawfd = dx_fileopen("logo.raw",O_RDONLY|O_BINARY, NULL);
tiffd = dx_fileopen("document.tif",O_RDONLY|O_BINARY, NULL);
txtfd1 = dx_fileopen("ascii1.txt",O_RDONLY|O_BINARY, NULL);
txtfd2 = dx_fileopen("ascii2.txt",O_RDONLY|O_BINARY, NULL);

/*
 * Set DF_IOTT structure. The first fax page is to be created
 * by merging a raw image file with 2 ASCII text files on to
 * a single page. Set io_phdcont to DFC_MPG to cause the next
 * DF_IOTT entry's image to be appended to the same page.
 */
fx_setiott(&iott[0],rawfd,DF_RAW,DFC_MPG);

/* The raw file is at low resolution */
iott[0].io_resln = DF_RESLO;

/*
 * Set next DF_IOTT structure. Set io_phdcont to DFC_MPG to
 * cause the next DF_IOTT entry's image to be appended to the
 * same page. This is the first ASCII file to be appended to the
 * raw image on a single page.
 *
 */
fx_setiott(&iott[1],txtfd1,DF_ASCII,DFC_MPG);

/* Set the Margins and other ASCII graphical attributes
 * in the DF_ASCIIDATA structure for the ASCII sub-page.
 */
asciidata[0].unit = DF_UNITS_IN10; /* 1/10th inch units */
asciidata[0].leftmargin = 10; /* 1" margins */
asciidata[0].rightmargin = 10;
asciidata[0].font = DF_FONT_0; /* use normal font */
asciidata[0].linespace = DF_SINGLESPACE;
asciidata[0].tabstops = 0;

/* These fields will apply to all subsequent ASCII sub-pages */
asciidata[0].topmargin = 10; /* 1" margins */
asciidata[0].botmargin = 10;
asciidata[0].pagelength = 110; /* length of page */
asciidata[0].pagepad = DF_PAD; /* pad to end of page */

/* Link the DF_ASCIIDATA to the DF_IOTT */
iott[1].io_datap = (void *)&asciidata[0];

/*
 * Set next DF_IOTT structure. Send a Phase D continuation
 * of MPS after this ASCII sub-page. This DF_IOTT entry completes
 * the MPG chain with the last ASCII sub-page merged with the images
 * defined by the previous DF_IOTT.

transmits fax data fx_sendfax()

 305

 */
fx_setiott(&iott[2],txtfd2,DF_ASCII,DFC_MPS);

/* Set the Margins and other ASCII graphical attributes
 * in the DF_ASCIIDATA structure for the ASCII sub-page.
 * Note that the Top/Bottom margins and Page Length/Page pad
 * will take effect from the first ASCII sub-page.
 */
asciidata[1].unit = DF_UNITS_IN10; /* 1/10th inch units */
asciidata[1].leftmargin = 15; /* 1.5" margins */
asciidata[1].rightmargin = 15;
asciidata[1].font = DF_FONT_0; /* use normal font */
asciidata[1].linespace = DF_SINGLESPACE;
asciidata[1].tabstops = 0;

/* Link the DF_ASCIIDATA to the DF_IOTT */
iott[2].io_datap = (void *)&asciidata[1];

/*
 * Set last DF_IOTT structure in the chain. Send Phase D
 * continuation value EOP for the final document (TIFF/F
 * format); send 2 pages, starting at document page 3 (Note:
 * TIFF/F documents begin with document page zero).
 */
fx_setiott(&iott[3],tiffd,DF_TIFF,DFC_EOP);
iott[3].io_type |= IO_EOT;
iott[3].io_firstpg = 2L;
iott[3].io_pgcount = 2L;

/* Send all fax data now - synchronous mode. */
if (fx_sendfax(dev,&iott[0],sndflag) == -1) {
 printf("Error code: %ld Error message: %s\n",
 ATDV_LASTERR(dev), ATDV_ERRMSGP(dev));
 if (ATDV_LASTERR(dev) == EDX_SYSTEM) {
 /* Perform system error processing */
 }
 /* Further error processing - application specific. */
 .
 .
}

Example 3: Send Fax - Asynchronous Programming Mode

#include <stdio.h>
#include <string.h>

#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>
#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>

#define MAXCHANS 12

/* Global variables. */

int catchall();
int fax_send();

fx_sendfax() transmits fax data

 306

/* Error routine - print error information. */

void print_err(dev)
 int dev;
{
 printf("Error - %s (error code %d)\n",
 ATDV_ERRMSGP(dev),ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev)==EDX_SYSTEM) {
 /* Perform system error processing */
 }
 return;
}

/*
 * main(): Opens all channels and enables handler for
 * asynchronous operation. Channels go off-hook, dial the
 * appropriate number and send the fax document.
 */

main()
{
 int chan;
 char * chnamep;
 int mode = SR_STASYNC;

 int voxdev; /* Voice channel device handle. */
 int faxdev; /* Fax channel device handle. */

 /* Set SRL to turn off creation of internal thread */
 if(sr_setparm(SRL_DEVICE, SR_MODELTYPE, &mode) == -1){
 printf("Error: cannot set srl mode\n");
 exit(1);
 }

 for (chan=0; chan < MAXCHANS; chan++) {

 /*
 * Set chnamep to the channel device name, e.g.,
 * dxxxB1C1, dxxxB1C2, etc.
 * Open the channel using dx_open() such that voxdev
 * has the VOICE channel device handle.
 * Open the channel using fx_open() such that faxdev
 * has the FAX channel device handle.
 */

 if((voxdev = dx_open(chnamep, NULL)) == -1){
 printf("Error: cannot open vox device\n");
 exit(1);
 }

 if((faxdev = fx_open(chnamep, NULL)) == -1){
 printf("Error: cannot open fax device\n");
 exit(1);
 }
 .
 .
 .
 /* enable a handler for all events on any devices */
 if(sr_enbhdlr(EV_ANYDEV, EV_ANYEVT, dx_handler) == -1){
 printf("Error: could not enable handler\n");
 exit(1);

transmits fax data fx_sendfax()

 307

 }
 .
 .
 .
 /*
 * Place channel on-hook by calling dx_sethook() with
 * its mode field set to EV_ASYNC (asynchronous).
 */
 if(dx_sethook(voxdev, DX_ONHOOK, EV_ASYNC) == -1){
 printf("dx_sethook failed: error = %s\n", ATDV_ERRMSGP(voxdev));
 exit(1);
 }

 .
 .
 /*
 * Enable automatic Phase D messaging for TIFF/F file inter-page
 * Phase D value by setting FC_SENDCONT to DFC_AUTO.
 */
 .
 .
 }

 /*
 * All channels have been opened and a sethook function
 * issued to place the channels on-hook. Use sr_waitevt()
 * to wait for completion events. On receiving any
 * completion event, control is transferred to the
 * catchall() handler function.
 */
 while(sr_waitevt(-1))
 .
 .

/* Event handler. */

/*
 * This routine gets called when sr_waitevt() receives any event.
 * Maintain a state machine for every channel and issue the
 * appropriate function depending on the next action to be
 * performed on the channel, e.g., the application may wish
 * to perform an outbound dial after receiving an offhook
 * completion event.
 */

int catchall()

{

 int dev;
 char * fnamep;
 long phdcmd, phdrpy;

 dev = sr_getevtdev();

 /* Determine the event. */
 switch(sr_getevttype()) {

 case TDX_SETHOOK:
 .
 .

fx_sendfax() transmits fax data

 308

 break;

 case TDX_DIAL:
 /* Dial complete. */
 .
 .
 /*
 * Connection has been established with remote
 * receiver. Prepare to send fax. Call fax_send() -
 * fnamep is the name of the file (TIFF/F) containing
 * the document to be sent.
 */
 if (fax_send(dev, fnamep,DF_TIFF) == -1) {
 /*
 * Application specific error handling here;
 * fax_send() prints out error information.
 */
 .
 .
 }

 break;

 case TFX_FAXSEND:
 /* The document has been successfully sent. */
 printf("Sent %ld pages at speed %ld, resln %ld,
 width %ld\n", ATFX_PGXFER(dev), ATFX_SPEED(dev),
 ATFX_RESLN(dev), ATFX_WIDTH(dev));

 /* Set channel on-hook; fax session completed. */
 .
 .
 break;

 case TFX_FAXERROR:
 /* Error during the fax session. */
 print_err(dev);
 printf("Phase E status %ld\n", ATFX_ESTAT(dev));
 /* Application specific error handling. */
 .
 .
 break;

 default:
 .
 .
 break;
 } /* End of switch. */

 return(0);
}

/*
 * This routine is called from the catchall() event handler
 * after an outbound dial has successfully completed and a
 * fax document has to be sent. The fax_send() routine will
 * perform the necessary initialization of the DF_IOTT
 * structure and call fx_sendfax() to send the document.
 */

int fax_send(dev, filenamep, datatype)
 int dev;

transmits fax data fx_sendfax()

 309

 char * filenamep;
 int datatype;
{
 int fhandle;

 /*
 * Set the Local ID using fx_setparm() and set the
 * initial state of the channel to be a transmitter
 * (DF_TX) using fx_initstat().
 */
 .

 /*
 * Set up the DF_IOTT structure to send the required
 * document.
 */
 if((fhandle = dx_fileopen(filenamep, O_RDONLY|O_BINARY, NULL))==-1) {
 printf("Unable to open send file %s\n",filenamep);
 return(-1);
 }

 fx_setiott(&iott, fhandle, datatype, DFC_EOP);
 iott.io_type |= IO_EOT;

/*
 * Set the fax state of the channel to DF_TX using
 * fx_initstat().
 */
.

 if (fx_sendfax(dev, &iott, EV_ASYNC) == -1) {
 printf("Error issuing sendfax\n");
 print_err(dev);
 .
 .
 return(-1);
 }
 return(0);

}

Example 4: Send Fax with Two TIFF/F Files, Each File to a Different
Subaddress

#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

#define NUMDOC 2

/* Need a DF_IOTT entry for each document to send. */
DF_IOTT iott[NUMDOC];
int tifd1,tifd2;

int dev; /* Fax channel device handle */
int voxdev; /* Voice channel device handle */
unsigned short phdcmd;
char *subaddr1 “3865”;
char *subaddr2 “3923”;

fx_sendfax() transmits fax data

 310

.
.
/*
 * Open the channel using dx_open() to obtain the
 * voice channel device handle in voxdev.
 */

if ((voxdev = dx_open("dxxxB1C1", NULL)) == -1) {
 /* Error opening device */
 /* Perform system error processing */
 exit(1);
}
/*
 * Open the channel using fx_open() to obtain the fax
 * channel device handle in dev.
 */
if ((dev = fx_open("dxxxB1C1", NULL)) == -1) {
 /* Error opening device */
 /* Perform system error processing */
 exit(1);
}
.
.
/*
 * Take channel offhook using dx_sethook() and perform
 * outbound dial using dx_dial(). Use voxdev as
 * channel device handle for Voice API functions.
 */
.
.
/* Required -- set initial state of channel to Transmitter */
if (fx_initstat(dev,DF_TX) == -1) {
 printf("Error - %s (error code %d)\n", ATDV_ERRMSGP(dev),
 ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev) == EDX_SYSTEM) {
 /* Perform system error processing */
 }
}
/*
 * Change the default FC_SENDCONT parameter value (DFC_EOM) to DFC_AUTO.
 * Note: The FC_SENDCONT parameter controls the Phase D command sent between
 * pages of a multi-page TIFF/F file. When subaddress fax routing is specified in
 * fx_sendfax(), DFC_AUTO sets the FC_SENDCONT parameter value to DFC_MPS for the
 * fax transmission. If the FC_SENDCONT value is left at the default (DFC_EOM) when
 * subaddress fax routing is specified, the DFC_EOM value would indicate that each
 * page of the multi-page TIFF/F file should be sent to a different subaddress.
 * With DFC_EOM, renegotiation of Phase B would take place after each TIFF/F page.
 */

phdcmd = DFC_AUTO;

if (fx_setparm(dev,FC_SENDCONT,(void *)&phdcmd) == -1) {
 printf("Error - %s (error code %d)\n", ATDV_ERRMSGP(dev),
 ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev) == EDX_SYSTEM) {
 /* Perform system error processing */
 }
}

/* Open TIFF/F files to transmit. */
tifd1 = dx_fileopen("file3865.tif",O_RDONLY | O_BINARY);

transmits fax data fx_sendfax()

 311

tifd2 = dx_fileopen("file3923.tif",O_RDONLY | O_BINARY);

/*
 * To allow the application to route the second TIFF/F file to a different
 * subaddress, set the first TIFF/F file’s DF_IOTT data structure’s io_phdcont
 * field value to DFC_EOM. DFC_EOM will force a Phase B negotiation after all
 * specified pages of the first TIFF/F file are sent (the io_type field value
 * should be set to IO_EOT). The second subaddress is sent to the receiver
 * during the second Phase B negotiation. Note: This only needs to be done when
 * sending fax data to more than one subaddress. If all fax data is to be sent to
 * one subaddress, set the parameter once and send the entire fax.
 */
fx_setiott(&iott[0],tifd1,DF_TIFF,DFC_EOM);
iott[0].io_type |= IO_EOT;

/*
 * Set the next DF_IOTT structure in the array. Send Phase D
 * continuation value DFC_EOP after the final TIFF/F document.
 */
fx_setiott(&iott[1],tifd2,DF_TIFF,DFC_EOP);
iott[1].io_type |= IO_EOT;

/* Set the subaddress parameter for the first TIFF/F file. */
if ((rc = fx_setparm(dev, FC_TXSUBADDR, subaddr1)) == -1) {
 printf("\nTXSUBADDR setparm Error : %s", ATDV_ERRMSGP(dev)
 .
 .
}
/* Send the first file. */
if (fx_sendfax(dev, &iott[0] , DF_TXSUBADDR|EV_SYNC) == -1) {
 printf("Error code: %ld Error message: %s\n",
 ATDV_LASTERR(dev), ATDV_ERRMSGP(dev));
 if (ATDV_LASTERR(dev) == EDX_SYSTEM) {
 /* Perform system error processing */
 }
 printf("Phase E status: %ld\n", ATFX_ESTAT(dev));
 /* Further error processing - application specific. */
 .
 .
}
/* Update the subaddress parameter for the second TIFF/F file. */
if ((rc = fx_setparm(dev, FC_TXSUBADDR, subaddr2)) == -1) {
 printf("\nTXSUBADDR setparm Error : %s", ATDV_ERRMSGP(dev)));
 .
}
.
.
/* Send the second file. */
if (fx_sendfax(dev, &iott[1] , DF_TXSUBADDR|EV_SYNC) == -1) {
 printf("Error code: %ld Error message: %s\n",
 ATDV_LASTERR(dev), ATDV_ERRMSGP(dev));
 if (ATDV_LASTERR(dev) == EDX_SYSTEM) {
 /* Perform system error processing */
 }
 printf("Phase E status: %ld\n", ATFX_ESTAT(dev));
 /* Further error processing - application specific. */
 .
 .
}
.
.

fx_sendfax() transmits fax data

 312

 Example 5: Send Fax Using Callback Handler and Setting SRL to
Operate in Polled Mode - Asynchronous (Linux only)

#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

#define MAXCHANS 12

/* Global variables. */
extern int errno;
DF_IOTT iott;

int catchall();
int fax_send();

/* Error routine - print error information. */

void print_err(dev)
 int dev;
{
 printf("Error - %s (error code %d)\n",
 ATDV_ERRMSGP(dev),ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev)==EDX_SYSTEM) {
 printf("errno = %d\n", errno);
 }
 return;
}

/*
 * main(): Opens all channels and enables handler for
 * asynchronous operation. Channels go off-hook, dial the
 * appropriate number and send the fax document.
 */

main()

{
 int chan;
 int voxdev; /* Voice channel device handle. */
 int faxdev; /* Fax channel device handle. */
 char * chnamep;
 int mode = SR_POLLMODE;

 /* Set SRL to operate in POLLED Mode. */
 if(sr_setparm(SRL_DEVICE, SR_MODEID, &mode) == -1) {
 printf("Cannot set SRL in polled mode\n");
 .
 .
 }

 for (chan=0; chan < MAXCHANS; chan++) {

 /*
 * Set chnamep to the channel device name, e.g.,
 * dxxxB1C1, dxxxB1C2, etc.
 * Open the channel using dx_open() such that voxdev

transmits fax data fx_sendfax()

 313

 * has the VOICE channel device handle.
 * Open the channel using fx_open() such that faxdev
 * has the fax channel device handle.
 */
 .
 .
 /*
 * Using sr_enbhdlr(), set up handler to service all
 * events.
 */
 if(sr_enbhdlr(voxdev, EV_ANYEVT, catchall) == -1) {
 printf("sr_enbhdlr() failed\n");
 print_err(dev);
 .
 .
 }
 if(sr_enbhdlr(faxdev, EV_ANYEVT, catchall) == -1) {
 printf("sr_enbhdlr() failed\n");
 print_err(dev);
 .
 .
 }
 /*
 * Place channel on-hook by calling dx_sethook() with
 * its mode field set to EV_ASYNC (asynchronous).
 */
 .
 .
 /*
 * Enable automatic Phase D messaging for TIFF/F file inter-page
 * Phase D value by setting FC_SENDCONT to DFC_AUTO.
 */
 .
 .
 }

 /* This will cause catchall() to be called when an event is available */

 for(;;)
 {
 sr_waitevt(-1);
 }

}

/* Event handler. */

/*
 * This routine gets called by SRL on receiving any event.
 * Maintain a state machine for every channel and issue the
 * appropriate function depending on the next action to be
 * performed on the channel, e.g., the application may wish
 * to perform an outbound dial after receiving an offhook
 * completion event.
 */

int catchall()
{
 int dev;
 char * fnamep;
 long phdcmd, phdrpy;
 dev = sr_getevtdev();

fx_sendfax() transmits fax data

 314

 /* Determine the event. */
 switch(sr_getevttype()) {
 case TDX_SETHOOK:
 .
 .
 break;
 case TDX_DIAL:
 /* Dial complete. */
 .
 .
 /*
 * Connection has been established with remote
 * receiver. Prepare to send fax. Call fax_send() -
 * fnamep is the name of the file (TIFF/F) containing
 * the document to be sent.
 */
 if (fax_send(dev, fnamep,DF_TIFF) == -1) {
 /*
 * Application specific error handling here;
 * fax_send() prints out error information.
 */
 .
 .
 }
 break;
 case TFX_FAXSEND:
 /* The document has been successfully sent. */
 printf("Sent %ld pages at speed %ld, resln %ld,
 width %ld\n", ATFX_PGXFER(dev), ATFX_SPEED(dev),
 ATFX_RESLN(dev), ATFX_WIDTH(dev));
 /* Set channel on-hook; fax session completed. */
 .
 .
 break;
 case TFX_FAXERROR:
 /* Error during the fax session. */
 print_err(dev);
 printf("Phase E status %ld\n", ATFX_ESTAT(dev));
 /* Application specific error handling. */
 .
 .
 break;
 default:
 .
 .
 break;
 } /* End of switch. */
 return(0);
}

/*
 * This routine is called from the catchall() event handler
 * after an outbound dial has successfully completed and a
 * fax document has to be sent. The fax_send() routine will
 * perform the necessary initialization of the DF_IOTT
 * structure and call fx_sendfax() to send the document.
 */

int fax_send(dev, filenamep, datatype)
 int dev;
 char * filenamep;
 int datatype;

transmits fax data fx_sendfax()

 315

{
 int fhandle;
 /*
 * Set the Local ID using fx_setparm() and set the
 * initial state of the channel to be a transmitter
 * (DF_TX) using fx_initstat().
 */
 .
 /*
 * Set up the DF_IOTT structure to send the required
 * document.
 */
 if((fhandle = open(filenamep, O_RDONLY))==-1) {
 printf("Unable to open send file %s\n",filenamep);
 return(-1);
 }
 fx_setiott(&iott, fhandle, datatype, DFC_EOP);
 iott.io_type |= IO_EOT;
/*
 * Set the fax state of the channel to DF_TX using
 * fx_initstat().
 */
.
 if (fx_sendfax(dev, &iott, EV_ASYNC) == -1) {
 printf("Error issuing sendfax\n");
 print_err(dev);
 .
 .
 return(-1);
 }
 return(0);
}

 Errors

See Appendix D for a list of error codes that may be returned for this function.
See Section 11.3. Error Handling for more information on Dialogic® Standard
Runtime Library events generated.

• If errors occur during transmission, a Standard Runtime Library event
(TFX_FAXERROR) is generated. The error code is accessible by issuing the
standard attribute function ATDV_LASTERR(). The standard attribute
function ATDV_ERRMSGP() returns a string describing the error.

• If fx_sendfax() returns an error, you can locate the DF_IOTT structure
processed when the error occurred by using the fax extended attribute
ATFX_LASTIOTT().

• If fx_sendfax() successfully completes, a Standard Runtime Library event
(TFX_FAXSEND) is generated.

• System errors generate an EDX_SYSTEM error code. On Linux, check the
global variable errno for more information. On Windows®, use

fx_sendfax() transmits fax data

 316

dx_fileerrno() to obtain the error value. Refer to the dx_fileerrno()
function in the Dialogic® Voice API Library Reference for a list of possible
system error values.

 See Also
• ATFX_name functions
• fx_getDCS()
• fx_getDIS()
• fx_getNSF()
• fx_sendascii()
• fx_sendraw()
• fx_sendtiff()
• fx_setiott()
• fx_setuio()

send a single page of raw fax data fx_sendraw()

 317

Name: int fx_sendraw(faxname, width, resln, phdcont)
Inputs: char * faxname • name of raw file to send

 unsigned short width • carriage width to send the data
 unsigned char resln • vertical resolution to send data
 unsigned char phdcont • Phase D continuation value

Returns: 0 if success
 -1 if failure

Includes: srllib.h
 dxxxlib.h
 faxlib.h

Category: convenience
Mode: synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The fx_sendraw() function allows an application to send a single page of raw
fax data, unformatted MH Group 3 data at the width and resolution specified by
the function parameters.

This function is a convenience function and is resident in faxconv.c. The
fx_sendraw() function calls fx_sendfax() as illustrated in the source code for
fx_sendraw(). For detailed information on Phase D continuation values, status
information, and file error handling that apply to fx_sendraw(), see the
fx_sendfax() function reference.

The encoding scheme used in transmitting fax data varies by product; for more
information, see Section 2.3. Product Features. The preferred encoding scheme
for transmission is determined by the value set in the FC_TXCODING parameter
in fx_setparm().

fx_sendraw() send a single page of raw fax data

 318

Parameter Description

faxname Specifies the name of the raw file to send.

width Specifies the carriage width. Valid values:

 DF_WID1728 1728 pixels per line

 DF_WID2048 2048 pixels per line

 DF_WID2432 2432 pixels per line

resln Specifies the vertical data resolution. Valid values:

 DF_RESHI High (fine) resolution (196 lpi)

 DF_RESLO Low (coarse) resolution (98 lpi)

phdcont Specifies the Phase D continuation value. Valid values:

 DFC_EOP End of Procedure (T.30).
Terminate current fax session; progress
to Phase E; and disconnect fax call.

 DFC_MPS Multi-Page Signal (T.30).
End of current fax document page; next
page is in same format as the current
page; proceed directly to Phase C.

 DFC_EOM End of Message (T.30).
End of current fax document page;
more fax data to follow at different
resolution or width; return to Phase B
and negotiate parameters for next fax
document page.

 Cautions

• Before calling fx_sendraw(), you must open the channel using fx_open() to
obtain the fax channel device handle.

• If TDM bus routing is required, the routing must be completed before calling
the convenience function.

send a single page of raw fax data fx_sendraw()

 319

 Example

#include <stdio.h>

#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

int voxhandle; /* Voice channel device handle. */
int devhandle; /* Fax channel device handle. */

/*
 * Open the channel using dx_open() to obtain the
 * VOICE device handle in voxhandle.
 * Open the channel using fx_open() to obtain the FAX channel
 * device handle in devhandle.
 */

/*
 * Take channel offhook using dx_sethook() and perform outbound
 * dial using dx_dial().
 */
.
.

/*
 * Set the fax state of the channel to DF_TX using
 * fx_initstat().
 */
.
.

/*
 * Transmit raw document at page width 1728 pixels per line
 * at low (coarse) vertical resolution and disconnect when
 * finished.
 */
if (fx_sendraw("document.raw",DF_WID1728,DF_RESLO,DFC_EOP) == -1 {
 printf("Error code: %ld Error message: %s\n",
 ATDV_LASTERR(devhandle), ATDV_ERRMSGP(devhandle));
 if (ATDV_LASTERR(devhandle) == EDX_SYSTEM) {
 /* Perform system error processing */
 }
 printf("Phase E status: %ld\n", ATFX_ESTAT(devhandle));
}

 Source Code for fx_sendraw()

/*
 * NOTE: devhandle is a global variable of type int. Prior to
 * calling fx_sendraw(), the channel is opened using
 * fx_open() to obtain the FAX channel device handle in
 * devhandle.
 */
 DF_IOTT iott;

int fx_sendraw(faxname,width,resln,phdcont)
 char * faxname;

fx_sendraw() send a single page of raw fax data

 320

 unsigned short width;
 unsigned char resln;
 unsigned char phdcont
{
 int erc;

 /* Open the file as read-only. */
 if ((iott.io_fhandle = dx_fileopen(faxname,O_RDONLY|O_BINARY,0)) == -1) {
 return(-1);
 }

 /*
 * Set up the DF_IOTT structure as the default and then
 * change the necessary fields.
 */
 fx_setiott(&iott,iott.io_fhandle,DF_RAW,phdcont);
 iott.io_type |= IO_EOT;
 iott.io_width = width;
 iott.io_resln = resln;

 erc = fx_sendfax(devhandle,&iott, EV_SYNC)

 dx_fileclose(iott.fhandle);

 return(erc);

}

 Errors

See Appendix D for a list of error codes that may be returned for this function.

 See Also

• ATFX_TERMMSK()
• fx_sendfax()
• fx_setiott()

send pages of a single TIFF/F file fx_sendtiff()

 321

Name: int fx_sendtiff(faxname, firstpg, pgcount, phdcont)
Inputs: char * faxname • pointer to name of TIFF/F file

to send
 unsigned long firstpg • first page to send (0 = first

page in file)
 unsigned long pgcount • number of consecutive pages to

send (-1 = send all remaining
pages in file)

 unsigned short phdcont • Phase D continuation value
Returns: 0 if success

 -1 if failure
Includes: srllib.h

 dxxxlib.h
 faxlib.h

Category: convenience
Mode: synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The fx_sendtiff() function allows an application to send pages of a single TIFF/F
file at the width and resolution set in the TIFF/F.

This function is a convenience function and is resident in faxconv.c. The
fx_sendtiff() function calls fx_sendfax() as illustrated in the source code for
fx_sendtiff(). For detailed information on Phase D continuation values, status
information, and file error handling that apply to fx_sendtiff(), see the
fx_sendfax() function reference.

See Appendix A for a list of TIFF/F tags and values.

The encoding scheme used in transmitting fax data varies by product; for more
information, see Section 2.3. Product Features. The preferred encoding scheme
for transmission is determined by the value set in the FC_TXCODING parameter
in fx_setparm().

fx_sendtiff() send pages of a single TIFF/F file

 322

Parameter Description

faxname Pointer to the name of the TIFF/F file to send.

firstpg Specifies the document page number of the first
page to send.
0 = first document page in file

pgcount Specifies the number of consecutive pages to send.
-1 = send all remaining pages in the file

phdcont Specifies the Phase D continuation value.
Valid values:

 DFC_EOP End of Procedure (T.30).
Terminate current fax session;
progress to Phase E; and
disconnect fax call.

 DFC_MPS Multi-Page Signal (T.30).
End of current fax document
page; next page is in same
format as the current page;
proceed directly to Phase C.

 DFC_EOM End of Message (T.30).
End of current fax document
page; more fax data to follow at
different resolution or width;
return to Phase B and negotiate
parameters for next fax
document page.

 Cautions

• Before calling fx_sendtiff(), you must open the channel using fx_open() to
obtain the fax channel device handle.

• If TDM bus routing is required, the routing must be completed before calling
the convenience function.

send pages of a single TIFF/F file fx_sendtiff()

 323

 Example

#include <stdio.h>

#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

int voxhandle; /* Voice channel device handle. */
int devhandle; /* Fax channel device handle. */

/*
 * Open the channel using dx_open() to obtain the
 * VOICE device handle in voxhandle.
 * Open the channel using fx_open() to obtain the FAX channel
 * device handle in devhandle.
 */

/*
 * Take channel offhook using dx_sethook() and perform outbound
 * dial using dx_dial().
 */
.
.
/*
 * Set the fax state of the channel to DF_TX using
 * fx_initstat().
 */
.
.
/*
 * Send 2 pages starting at page number 4, disconnect when
 * finished.
 */
if (fx_sendtiff("document.tif",4L,2L,DFC_EOP) == -1) {
 /* Process error. */
 printf("Error - %s (error code %d)\n",
 ATDV_ERRMSGP(devhandle), ATDV_LASTERR(devhandle));
 if (ATDV_LASTERR(devhandle) == EDX_SYSTEM) {
 /* Perform system error processing */
 }
 printf("Phase E status: %ld\n", ATFX_ESTAT(devhandle));

 /* Application specific error handling. */
 .
 .

}

 Source Code for fx_sendtiff()

/*
 * NOTE: devhandle is a global variable of type int. Prior to
 * calling fx_sendtiff(), the channel is opened using
 * fx_open() to obtain the FAX channel device handle in
 * devhandle.
 */
 DF_IOTT iott;

fx_sendtiff() send pages of a single TIFF/F file

 324

int fx_sendtiff(faxname,firstpg,pgcount,phdcont)
 char * faxname;
 unsigned long firstpg;
 unsigned long pgcount;
 unsigned short phdcont
{
 int erc;

 /* Open the file as read-only. */
 if ((iott.io_fhandle = dx_fileopen(faxname,O_RDONLY|O_BINARY,0)) == -1) {
 return(-1);
 }

 /*
 * Set up the DF_IOTT structure as the default and then
 * change the necessary fields.
 */
 fx_setiott(&iott,iott.io_fhandle,DF_TIFF,phdcont);
 iott.io_type |= IO_EOT;
 iott.io_firstpg = firstpg;
 iott.io_pgcount = pgcount;

 erc = fx_sendfax(devhandle,&iott, EV_SYNC)

 dx_fileclose(iott.io_fhandle);

 return(erc);

}

 Errors

See Appendix D for a list of error codes that may be returned for this function.

 See Also

• ATFX_TERMMSK()
• fx_sendfax()
• fx_setiott()

sets up a DF_IOTT structure with default values fx_setiott()

 325

Name: void fx_setiott(iotp,fhandle,dtype,cont)
Inputs: DF_IOTT *iotp • pointer to DF_IOTT

 int fhandle • file descriptor
 unsigned short dtype • type of fax data
 unsigned short cont • Phase D continuation value

Returns: None
Includes: srllib.h

 dxxxlib.h
 faxlib.h

Category: initialize DF_IOTT
Mode: synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The fx_setiott() function sets up a DF_IOTT structure with default values for the
specified type of fax data.

Use this function to initialize the DF_IOTT structure before setting specific
DF_IOTT field values.

The DF_IOTT structure consists of fields describing the fax data for one fax
document to be transmitted. A linked list or array of DF_IOTT structures can be
created to specify multiple fax documents for transmission. The structure defines
raw, TIFF/F, and ASCII data.

The default setting for the fx_setiott() function is to send fax data from a file
with the next DF_IOTT entry contiguous in memory. See the fx_setiott() Source
Code section and the examples in the fx_sendfax() function reference.

Parameter Description

iotp Pointer to DF_IOTT structure. For more information on this
structure, see Section 10.6. DF_IOTT – Fax Transmit Data
Description.

fhandle Specifies the file descriptor.

fx_setiott() sets up a DF_IOTT structure with default values

 326

Parameter Description

dtype Specifies the type of fax data to be transmitted. Valid values:

 DF_TIFF TIFF/F structured formatted fax data
 DF_RAW Raw, unformatted fax data
 DF_ASCII ASCII text file data

cont Specifies the Phase D continuation value. Valid values:

 DFC_AUTO Automatic Phase D Messaging. The fax
library automatically determines the T.30
Phase D continuation value based on the
width, resolution, and position of the
current fax page, next fax page, and the
remote receiver’s capability. Possible
values automatically assigned are
DFC_EOM, DFC_EOP, and DFC_MPS.

 DFC_MPG Merge-page. The data specified for the
DF_IOTT entry directly following the
current DF_IOTT entry is concatenated to
the same page.

 DFC_EOP End of Procedure (T.30). Terminate current
fax session, progress to Phase E, and
disconnect fax call.

 DFC_MPS Multi-Page Signal (T.30). End of current
fax document page; next fax document
page is in the same format as the current
page; proceed directly to Phase C.

 DFC_EOM End of Message (T.30). End of current fax
document page; more fax data to follow at
different resolution or width; return to
Phase B and negotiate parameters for next
fax document page.

NOTE: DFC_MPG and DFC_AUTO are Dialogic® Fax library terms, not T.30
protocol terminology.

sets up a DF_IOTT structure with default values fx_setiott()

 327

 Details

For usage information on DF_IOTT, see Section 5.5. Specifying Fax Data for
Transmission in a DF_IOTT Table Entry. For reference information on
DF_IOTT, see Section 10.6. DF_IOTT – Fax Transmit Data Description.

Connecting DF_IOTT Entries

When the next DF_IOTT entry is contiguous in memory, the io_type logical OR
field specifies IO_CONT, and io_nextp and io_prevp specify NULL.

When the next DF_IOTT entry is linked to the current entry, after the current
entry’s call to fx_setiott(), the io_type logical OR field specifies IO_LINK and
io_nextp specifies a pointer to the next entry. For sample code, see the examples
in the fx_sendfax() function reference.

TIFF/F File Entry Defaults

If fx_setiott() dtype parameter specifies DF_TIFF, the descriptor defines TIFF/F
formatted data. The DF_IOTT default values for TIFF/F specify that all pages in
the TIFF/F are transmitted:

io_firstpg = 0L;
io_pgcount = -1L;

If io_phdcont specifies DFC_MPG, the io_pgcount field is set to 1. Specify the
starting page of the TIFF/F file to send in io_firstpg. For sample code, see the
examples in the fx_sendfax() function reference.

Raw File Entry Defaults

If fx_setiott() dtype parameter specifies DF_RAW, the descriptor defines raw
fax data that includes no other formatting. The DF_IOTT default values for raw
data specify that the following is sent: a disk file of raw, Group 3 MH-encoded
data with no offset at the standard carriage width (8.5") and at fine (high)
resolution:

io_offset = 0L;
io_length = -1L;
io_width = DF_WID1728;

fx_setiott() sets up a DF_IOTT structure with default values

 328

io_resln = DF_RESHI;
io_coding = DF_MH;

For sample code, see the fx_setiott() Source Code section.

ASCII File Entry Defaults

If fx_setiott() dtype parameter specifies DF_ASCII, the descriptor defines an
ASCII text file. The DF_IOTT default values for ASCII text file specify that the
following is sent: ASCII data at standard carriage width (8.5") and coarse (low)
resolution. The NULL pointer passed to io_datap in place of the
DF_ASCIIDATA structure results in default values being used for margins and
other graphical attributes.

io_offset = 0L;
io_length = -1L;
io_width = DF_WID1728;
io_resln = DF_RESLO;
io_datap = (void *) NULL;

For sample code, see the fx_setiott() Source Code section.

 Example

See the examples in the fx_sendfax() function reference.

 Source Code for fx_setiott()

void fx_setiott(iotp,fhandle,dtype,cont)
 DF_IOTT *iotp;
 int fhandle;
 unsigned short dtype;
 unsigned short cont;
 {

 /* Data in file, next entry contiguous. */
 iotp->io_type = IO_DEV;
 iotp->io_fhandle = fhandle;
 iotp->io_nextp = (DF_IOTT *)NULL;
 iotp->io_prevp = (DF_IOTT *)NULL;

 iotp->io_datatype = dtype;
 iotp->io_phdcont = cont;

sets up a DF_IOTT structure with default values fx_setiott()

 329

 switch (dtype) {
 /* For TIFF/F, set up firstpg and pgcount to send all pages. */
 case DF_TIFF:
 iotp->io_firstpg = 0L;
 iotp->io_pgcount = (cont == DFC_MPG) ?1 : -1L;
 break;
 /*
 * For raw file, set up to send complete file at default width and
 * resolution.
 */
 case DF_RAW:
 iotp->io_offset = 0L;
 iotp->io_length = -1L;
 iotp->io_width = DF_WID1728;
 iotp->io_resln = DF_RESHI;
 iotp->io_coding = DF_MH;
 break;
 /*
 * For ASCII file, set up to send complete file at default width and
 * resolution.
 */
 case DF_ASCII:
 iotp->io_offset = 0L;
 iotp->io_length = -1L;
 iotp->io_width = DF_WID1728;
 iotp->io_resln = DF_RESLO;
 iotp->io_datap = (void *)NULL;
 break;
 default:
 break;
 }
 return;
 }

 Errors

None

 See Also

• ATFX_BADIOTT()
• ATFX_BADPAGE()
• ATFX_LASTIOTT()
• ATFX_TFBADTAG()
• ATFX_TFNOTAG()
• ATFX_TFPGBASE()
• fx_sendfax()
• fx_sendascii()
• fx_sendraw()
• fx_sendtiff()

fx_setparm() sets the fax parameter

 330

Name: int fx_setparm(dev, parm, valuep)
Inputs: int dev • fax channel device handle

 unsigned long parm • parameter to set
 void *valuep • pointer to parameter value

Returns: 0 if success
 -1 if failure

Includes: srllib.h
 dxxxlib.h
 faxlib.h

Category: configuration
Mode: synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The fx_setparm() function sets the fax parameter of an open fax channel device.

Parameter Description

dev Specifies the device handle for the fax channel obtained
when the channel was opened.

parm Specifies the define for the parameter ID to be set (see the
alphabetical list of fax parameters and values on the pages
that follow).

valuep Points to the location where the parm value is to be stored.

Many of the same parameter IDs are available for fx_setparm() and
fx_getparm(); any differences are noted. These functions allow you to configure
an open fax channel device and retrieve the parameters set for that fax channel
device.

sets the fax parameter fx_setparm()

 331

The parameters are used to set (or read) the following categories of information:

• TIFF/F file:

 delimiters to store fax in multiple TIFF/F files

 Phase D continuation value for multi-page TIFF/F files

 base page numbering scheme for TIFF/F file

 level of TIFF/F tag checking

• fax page header:

 graphical attributes, such as bold, underline, and format

 date and time format

 starting page number

 user-defined text

• encoding scheme for data transmission and reception

• baud rate for data transmission and reception

• local and remote ID, phone number used for fax transmission and reception

• number of retry attempts for unsuccessful fax transmission

• percentage of acceptable bad scan lines

• subaddress routing information, phone number/extension used in routing a
fax

The following summarizes the types of parameter IDs and their purpose. The
defines for parameter IDs are described in more detail following this table, in
alphabetical order.

TIFF/F file settings:

 FC_ENDDOC
FC_SENDCONT
FC_TFPGBASE
FC_TFTAGCHECK

* delimiters for multiple TIFF/F files
* Phase D value for multi-page TIFF/F
* base page numbering scheme
* level of TIFF/F tag checking

fx_setparm() sets the fax parameter

 332

Fax page header settings:

 FC_HDRATTRIB
FC_HDRDATEFMT
FC_HDRTIMEFMT
FC_HDRDATETIME
FC_HDRSTARTPAGE
FC_HDRUSER
FC_HDRUSER2

* graphical attributes and format
* date format
* time format
* user-defined date and time format
* starting page number
* user-defined text
* user-defined text

Encoding scheme settings:

 FC_TXCODING
FC_RXCODING

* encoding scheme for transmission
* encoding scheme for reception

Baud rate settings:

 FC_TXBAUDRATE
FC_RXBAUDRATE

* baud rate for transmission
* baud rate for reception

Local and remote ID settings:

 FC_LOCALID
FC_REMOTEID

* phone number used for transmission
* phone number used for reception

Number of retry attempts setting:

 FC_RETRYCNT * number of retries for unsuccessful transmit

Percentage of acceptable bad scan lines:

 FC_RTN
FC_RTP

* percent before RTN is returned
* percent before RTP is returned

Subaddress routing setting:

 FC_TXSUBADDR
FC_REMOTESUBADDR

* phone number/ext. for fax routing
* contents of T.30 SUB message

Font handles for ASCII to fax conversion:

 FC_FONT0
FC_FONT3

* font applied to ASCII text file
* font applied to header

Other:

 FC_TXNSF
FC_MDM_RX_LVL

* pointer to customized NSF message
* fax modem receive level

sets the fax parameter fx_setparm()

 333

Define Description

FC_ENDDOC Bytes: 2

 Default: DFS_EOP

 Value set for fx_rcvfax() and fx_rcvfax2() to
return when DFS_EOP, DFS_EOM, or DFS_MPS
is received in Phase D.

Used to set delimiters to store pages of incoming
fax data into more than one TIFF/F file. The
default (DFS_EOP) stores incoming fax data in a
single TIFF/F file.

For more information, see Section 6.2.2. Storing
Incoming Fax Data - Storing in Multiple TIFF/F
Files.

Valid values for FC_ENDDOC:

 DFS_ALL

 Receive function returns all FC_ENDDOC
values; that is, selects all valid FC_ENDDOC
values as delimiters when receiving fax data in a
TIFF/F file.

 DFS_EOM

 End of Message.

Stores individual pages of a multi-page fax into
separate TIFF/F files. Execute fx_rcvfax() or
fx_rcvfax2() in a loop, using a different file to
store each page every time the receive fax
function is called.

 DFS_EOP

 End of Procedure (default).

Stores all incoming pages in a single multi-page
TIFF/F file.

fx_setparm() sets the fax parameter

 334

Define Description

 DFS_MPS

 Multi-page Signal.

Stores individual pages of a multi-page fax in
separate TIFF/F files.

 DFS_REMOTESUBADDR

 Remote subaddress fax routing.

Stores fax data for each subaddress in separate
files. This value is not supported on Dialogic®
DM3 Boards.

FC_FONT0 Bytes: 4
Type: HFONT
Default: similar to OEM_FIXED_FONT (12
point)

 (Windows® only)

Specifies the font handle to be used by
fx_sendfax() or fx_sendascii() to render ASCII
documents in the default font. This define is not
supported on Dialogic® DM3 Boards.

This font handle is used to render ASCII
documents in the font specified by DF_FONT_0 in
the DF_ASCIIDATA structure or as specified by
the control character F0 in the ASCII document
itself.

This font handle specifies one of two fonts that can
be active at one time on a fax channel device.

For further information on font handles, see Section
7.4. Overriding Fonts Set with fx_setparm().

For details on how to obtain other font handles or
character sets, see your Software Development Kit
documentation.

 Note the following:

• The font handle must remain valid during the fax
transmission; that is, the font handle must not be

sets the fax parameter fx_setparm()

 335

Define Description
deleted until the fax transmission has completed.
You must delete the handle when it is no longer
needed.

• During multiple fax transmissions, if one
transmission uses a different set of fonts and you
want to restore the fonts to their original or
default values, you must use fx_getparm() to
obtain the default font handles for FC_FONT0
and FC_FONT3 before using fx_setparm() to
redefine handles.

 Valid values are any Windows® font handle
including font handles created from font files
supplied by Dialogic:

 Font Files Description

 DEFAULT0.FON English language character
set, 12 point

 DEFAULT3.FON English language character
set, 9 point

 KATAKNA0.FON Japanese Katakana language
character set, approximately
12 point

 KATAKNA3.FON Japanese Katakana language
character set, approximately
9 point

FC_FONT3 Bytes: 4
Type: HFONT
Default: similar to OEM_FIXED_FONT (9 point)

 (Windows® only)

Specifies the font handle to be used by
fx_sendfax() or fx_sendascii() to render
transmitted ASCII documents in the font specified
by DF_FONT_3 in the DF_ASCIIDATA structure
or as specified by the control character F3 in the
ASCII document itself. This define is not supported

fx_setparm() sets the fax parameter

 336

Define Description
on Dialogic® DM3 Boards.

 This font handle specifies one of two font handles
that can be active at one time on a fax channel
device.

FC_FONT3 also specifies the font for the header.

 For further information on font handles, see Section
7.4. Overriding Fonts Set with fx_setparm().

For details on how to obtain other font handles or
character sets, see your Software Development Kit
documentation.

Valid values are the same as for FC_FONT0.

See the description of FC_FONT0 for additional
information.

FC_HDRATTRIB Bytes: 2

 Default: DF_HDRINSERT and DF_HDRFMT1

 Bitmap parameter that indicates specific graphical
attributes applied to the fax header and the
selection of a page header format.

Valid values for FC_HDRATTRIB:

 DF_HDRBOLD

 Header text is bold. This value is not supported
on Dialogic® DM3 Boards.

 DF_HDRDISABLE

 Fax header is not included on the image page.

 DF_HDRFMT1

 Enable header format 1 (default format).

 DF_HDRFMT2

 Enable header format 2.

sets the fax parameter fx_setparm()

 337

Define Description

 DF_HDRINSERT

 Header text is inserted before the image. This
increases the page length by the number of scan
lines in the header (default).

 DF_HDRUNDERLINE

 Header text is underlined. This value is not
supported on Dialogic® DM3 Boards.

 If the DF_HDRFMT1 bit is set (default), the
following information is included in the fax page
header:

 <date> <time> <user field> From: <local ID> To:
<remote ID> Page: <page #>

 <date> <time>: specified in FC_HDRDATEFMT
and FC_HDRTIMEFMT. You can override this
date and time string using FC_HDRDATETIME.

<user field>: specified in FC_HDRUSER.
Optional.

<local ID>: specified in FC_LOCALID. The local
station ID is implemented as a fax parameter that
can be set at the user level.

<remote ID>: specified in FC_REMOTEID. The
remote station ID is automatically inserted, when
available. This is a read-only parameter.

<page #>: specified in FC_HDRSTARTPAGE.
The page number is automatically inserted.

There are 4 spaces between each field in the fax
page header text.

When the DF_HDRFMT2 bit is set, the user
header information specified for the
FC_HDRUSER2 parameter is placed in the fax
page header. See the FC_HDRUSER2 parameter
for details.

fx_setparm() sets the fax parameter

 338

Define Description

FC_HDRDATEFMT Bytes: 2

 Default: DF_HDRDATEFMT_2

 Fax header date format. The date appears before
the time specified in FC_HDRTIMEFMT. Both
date and time are generated internally in the
specified format.

 NOTE: You can override this format using
FC_HDRDATETIME. When overriding
this format, you must set either
FC_HDRDATEFMT to
DF_HDRDATEFMT_0 or
FC_HDRTIMEFMT to
DF_HDRTIMEFMT_0.

 Valid values for FC_HDRDATEFMT:

 DF_HDRDATEFMT_0

 Disable internal date generation; use user text
string set in FC_HDRDATETIME

 DF_HDRDATEFMT_1

 Date appears as: MM-DD-YYYY

 DF_HDRDATEFMT_2

 Date appears as: MM/DD/YYYY

 DF_HDRDATEFMT_3

 Date appears as: DD-MM-YYYY

 DF_HDRDATEFMT_4

 Date appears as: DD/MM/YYYY

 DF_HDRDATEFMT_5

 Date appears as: YYYY-DD-MM

 DF_HDRDATEFMT_6

 Date appears as: YYYY/DD/MM

sets the fax parameter fx_setparm()

 339

Define Description

 DF_HDRDATEFMT_15

 Date appears as: day month dd YYYY
(Example: Fri Sep 13 1999)

FC_HDRDATETIME Default: NULL

 User-defined text for fax header date/time string -
27 character maximum null-terminated ASCII
string (26 characters + NULL; left-justified).

Overrides the default date/time format specified in
FC_HDRDATEFMT and FC_HDRTIMEFMT.

To enable this, you must set either
FC_HDRDATEFMT to DF_HDRDATEFMT_0 or
FC_HDRTIMEFMT to DF_HDRTIMEFMT_0.
See these parameter descriptions for more
information.

FC_HDRSTARTPAGE Bytes: 2

 Default: 1

 Starting page number that appears in the fax page
header for the first transmitted fax page. Valid
values for FC_HDRSTARTPAGE:

 ≥ 1 Starting page number to display in
the fax page header.

 When the fax page header DF_HDRFMT1 or
DF_HDRFMT2 bit is set in the FC_HDRATTRIB
parameter, at the beginning of a fax transmission
the FC_HDRSTARTPAGE parameter is used to
determine the page number to be displayed in the
fax page header for the first transmitted fax page.
On each subsequent page of the fax transmission,
the page number is automatically increased by one.

 NOTE: If the page number is greater than 99, only
the last 2 digits of the page number are
placed in the header.

fx_setparm() sets the fax parameter

 340

Define Description

 To set a starting page number other than the default
(1), set FC_HDRSTARTPAGE before issuing the
first fx_sendfax() of the fax transmission. It is up
to the application to reset FC_HDRSTARTPAGE
to the default (1) after the fax transmission is
complete.

For example, if a 5-page fax transmission is
interrupted after sending only 3 pages, redial, set
FC_HDRSTARTPAGE to 4, then issue
fx_sendfax() to send the last 2 pages of the fax.
The receiver would receive a 2-page fax with the
pages numbered 4 and 5.

FC_HDRTIMEFMT Bytes: 2

 Default: DF_HDRTIMEFMT_1

 Fax header time format. The time appears after the
date specified in FC_HDRDATEFMT. Both date
and time are generated internally in the specified
format.

You can override this format using
FC_HDRDATETIME. When overriding this
format, you must set either FC_HDRTIMEFMT to
DF_HDRTIMEFMT_0 or FC_HDRDATEFMT to
DF_HDRDATEFMT_0.

 Valid values for FC_HDRTIMEFMT:

 DF_HDRTIMEFMT_0

 Disable internal time generation; use user text
string set in FC_HDRDATETIME

 DF_HDRTIMEFMT_1

 Time appears as: HH:MM am/pm (12-hour
clock)

 DF_HDRTIMEFMT_2

 Time appears as: HH:MM (24-hour clock)

sets the fax parameter fx_setparm()

 341

Define Description

FC_HDRUSER Default: NULL

 User-defined text that appears in the fax header of
every transmitted fax page - 32 character maximum
null-terminated ASCII string (31 characters +
NULL; centered).

If the string is greater than 31 characters, it is
truncated. If it is less than 31 characters, it is
centered.

On Dialogic® DM3 Boards, the user information is
not displayed because of a character number
limitation.

FC_HDRUSER2 Default: NULL

 User-defined text for fax header - 133 character
maximum null-terminated ASCII string (132
characters + NULL; centered).

 Allows your application to control the entire
contents of the fax page header. To enable this
feature, set the DF_HDRFMT2 bit in the
FC_HDRATTRIB parameter. When enabled, the
contents of FC_HDRUSER2 are placed in the fax
page header instead of the contents of the default
header format (DF_HDRFMT1).

Two special escape sequences can be used in the
FC_HDRUSER2 field:

 • %R This sequence is replaced with the 20
character remote ID, if available.

If the remote ID is not available and %R is
specified, the %R is replaced with 20 spaces. If
the %R is within the last 20 bytes of the
FC_HDRUSER2 field, the remote ID is truncated
to fit into the field.

If you include the %R sequence, the maximum

fx_setparm() sets the fax parameter

 342

Define Description
number of characters in the FC_HDRUSER2
field is 115 (114 characters + NULL).

• %P This sequence is replaced with the current
fax page number.

Only the last 2 digits are placed in the header.
The current page number is automatically
inserted for each page of the fax transmission
(see FC_HDRSTARTPAGE).

%% is interpreted as % and placed in the header.

 When using fx_getparm() to read
FC_HDRUSER2, you must provide a 133 byte
buffer (132 characters + NULL).

FC_LOCALID Default: NULL

 Local identification - 21 character null-terminated
ASCII string (20 characters + NULL, left-
justified).

This is the phone number your fax application uses
for transmission. It is included in the data portion
of the T.30 Call Subscriber Identification (CSI),
Transmitting Subscriber Identification (TSI), and
Calling Subscriber Identification (CIG) messages
(the CIG message is used when polling is
specified). The FC_LOCALID parameter value is
specified by your application.

If the length of the string exceeds the maximum
value, it is truncated.

If the length of the string is less than the maximum
value, the string is left-justified and padded with
blanks to equal 20 characters.

sets the fax parameter fx_setparm()

 343

Define Description

FC_MDM_RX_LVL Default: -46 dBm

 Specifies the fax modem receiver sensitivity from
-43 dBm to -47 dBm. This define is not supported
on Dialogic® DM3 Boards.
Valid values:
0 = -43 dBm
1 = -44 dBm
2 = -45 dBm
3 = -46 dBm (default)
4 = -47 dBm

FC_REMOTEID Default: NULL

 (Windows® only)

Remote identification - 21 character null-
terminated ASCII string (20 characters + NULL).

When the length of the string is less than the
maximum value, the string is left-justified and
padded with blanks to equal 20 characters.

 This is a read-only parameter, used by
fx_getparm() only.

It specifies the phone number used by the remote
fax machine to transmit a fax to your fax
application. It is included in the data portion of the
T.30 Call Subscriber Identification (CSI),
Transmitting Subscriber Identification (TSI), and
Calling Subscriber Identification (CIG) messages
(the CIG message is used in a polling fax
transmission).

FC_REMOTESUBADDR Bytes: 2

 Default: NULL

 (Windows® only)

Subaddress information sent by the remote
transmitter – 21 character NULL-terminated ASCII
string (20 characters + NULL, left-justified).

fx_setparm() sets the fax parameter

 344

Define Description

This is a read-only parameter, used by
fx_getparm() only.

This define is not supported on Dialogic® DM3
Boards.

It specifies the contents of the T.30 SUB message
if the T.30 SUB message is included as part of the
fax transmission. The SUB message is sent by the
transmitter during Phase B negotiations.

The FC_REMOTESUBADDR parameter is
updated after each Phase B negotiation. The
contents of the parameter are valid from the
completion of a Phase B negotiation that contains a
T.30 SUB message until the next Phase B
negotiation. The application can use the subaddress
information to route fax data to specified
subaddresses.

If the subaddress is less than 20 characters, the
field is padded with spaces.

FC_RETRYCNT Bytes: 2

 Default: DF_NORETRY

 The number of retry attempts for an unsuccessfully
transmitted fax page. This define is ignored on
Dialogic® DM3 Boards.

Valid values:

 DF_NORETRY No retries

 DF_RETRY1 One retry

 DF_RETRY2 Two retries

 DF_RETRY3 Three retries

 DF_RETRYDCN After specified number of
retries, disconnect (OR this
value with DF_RETRYn).

 To disconnect after the specified number of retry
attempts, logically OR the retry count number

sets the fax parameter fx_setparm()

 345

Define Description
value with the DF_RETRYDCN value (see the
example in the fx_setparm() function reference).
After the specified number of retry attempts, the
send function fails with a -1 and the transmitter
disconnects the fax call.

FC_RTN Bytes: 2

 Default: 15

 Percent of bad scan lines acceptable for a fax page
before an RTN (Retrain Negative) message is
returned to the transmitter at the completion of the
fax page (in Phase D). Valid values are integers
between 1 and 100.

This define is not supported on Dialogic® DM3
Boards.

FC_RTP Bytes: 2

 Default: 5

 Percent of bad scan lines acceptable for a fax page
before an RTP (Retrain Positive) message is
returned to the transmitter at the completion of the
fax page (Phase D). Valid values are integers
between 1 and 100.

This define is not supported on Dialogic® DM3
Boards.

The following activities occur when FC_RTP and
FC_RTN are set to their default values, where
FC_RTP = 5 and FC_RTN = 15, and the level of
bad scan lines received per page is as noted:

 • Between 0 and 5 percent, the MCF (Message
Confirmation) message is sent to the remote
station.

• Between 5 percent and 15 percent, the RTP
(Retrain Positive) message is sent to the remote
station. The next page is received after a training
sequence.

fx_setparm() sets the fax parameter

 346

Define Description

• Between 15 percent and 100 percent, the RTN
(Retrain Negative) message is sent to the remote
station, requesting retransmission of the current
page.

 To determine the total number of RTN pages
received (that is, the number of pages that required
retransmission), call ATFX_RTNPAGES().

FC_RXBAUDRATE Bytes: 2

 Default: DF_MAXBAUD

 Maximum preferred baud rate for incoming fax
data. Capability varies by product; see Section
2.3. Product Features for more information. Valid
values:

 DF_MAXBAUD

 Maximum baud rate value for reception.

 DF_14400BAUD

 14400 baud reception

 DF_9600BAUD

 9600 baud reception

 DF_7200BAUD

 7200 baud reception

 DF_4800BAUD

 4800 baud reception

 Set this parameter to one of the supported baud
rates to receive fax transmissions at a lower baud
rate than the default. This parameter is useful when
receiving fax over known noisy lines and you wish
to explicitly set a lower initial baud rate; this saves
time that would be taken in negotiating a lower
baud rate.

sets the fax parameter fx_setparm()

 347

Define Description

 NOTE: If an invalid value is specified, the
maximum receive baud rate for the
channel is used.

FC_RXCODING Bytes: 2

 Default: DF_MH

 If supported, the encoding scheme in which the
incoming fax data is stored in TIFF/F or raw file(s).
Reset to MH when the channel is first opened.
Valid values:

 DF_MH Modified Huffman (default)

 DF_MR Modified Read

 DF_MMR Modified Modified Read

 Calls to fx_rcvfax() or fx_rcvfax2() result in the
storage of the incoming fax image data in the
encoding scheme specified in FC_RXCODING.
This value is in effect until it is reset.

 NOTE: If you set the FC_RXCODING parameter
value to DF_MMR, you should reset it to
DF_MH (default) before exiting the
program. This helps to ensure encoding
scheme compatibility with other fax
application programs that expect all
incoming fax data to be stored in the MH
encoding scheme.

 If this parameter is set on an unsupported product,
ATDV_LASTERR() returns an error,
EFX_UNSUPPORTED.

fx_setparm() sets the fax parameter

 348

Define Description

FC_SENDCONT Bytes: 2

 Default: DFC_AUTO (Dialogic® DM3 Boards)
Default: DFC_EOM (Dialogic® Springware
Boards)

 Phase D value to be used by the transmitter
between pages of a multi-page TIFF/F file. Valid
values:

 DFC_AUTO Automatic Phase D Messaging.
The fax library automatically
determines the T.30 Phase D
continuation value to be sent
between pages of a multi-page
TIFF/F file. This setting forces
negotiation of Phase B when a
page of a different width and/or
resolution is found. If the
following page has the same
format as the current page, this
setting bypasses Phase B
negotiation for each page and
saves transmit time.

 DFC_EOM End of Message (T.30).
End of current fax document page;
more fax data to follow at a
different resolution or width;
return to Phase B and negotiate
parameters for next fax document
page. To maintain backward
compatibility, this is the default
setting. This setting forces the
negotiation of Phase B after each
page.

sets the fax parameter fx_setparm()

 349

Define Description

 DFC_MPS Multi-Page Signal (T.30).
End of current fax document page;
next page is in the same format as
the current page; proceed directly
to Phase C. This setting bypasses
Phase B negotiation for each page
and saves transmit time.

FC_TFPGBASE Bytes: 2

 Default: TF_BASE0

 Base page numbering scheme set for the TIFF/F
file to send. This define is ignored on Dialogic®

DM3 Boards.

This parameter accommodates TIFF/F file utilities
that may not adhere to TIFF/F specifications which
require the first page to be page zero. For most
cases, this parameter may remain at the default
setting.

To determine the base page numbering scheme of
the transmitted TIFF/F file, call the fax extended
attribute ATFX_TFPGBASE() after the file
transmission is completed.

Valid values for FC_TFPGBASE:

 TF_AUTOPG Automatic fax library
adjustment for each zero or one
base numbered TIFF/F file to
be transmitted. Use this setting
when you are unsure of the base
page number scheme of the
TIFF/F file. This setting may
introduce additional disk I/O
access time.

 TF_BASE0 Zero base page numbered
TIFF/F file.

fx_setparm() sets the fax parameter

 350

Define Description

 TF_BASE1 One base page numbered
TIFF/F file. Use this setting
when you know the page
number scheme of the TIFF/F
to be transmitted is base 1.

 NOTE: Always use zero base page numbering
when describing TIFF/F file pages to send
in a DF_IOTT structure array. The fax
library internally adjusts the page number
depending on the TIFF/F file's page
numbering scheme when FC_TFPGBASE
is set to TF_BASE1 or TF_AUTOPG.

 To send TIFF/F files of both zero and one base
page numbering scheme during the same fax
session, do one of the following:

 • Set FC_TFPGBASE to TF_AUTOPG before
issuing fx_sendfax(). The fax library
automatically determines the base page
numbering scheme for each TIFF/F file described
in the DF_IOTT structures.

• Return control to the application to set the
FC_TFPGBASE parameter value each time the
TIFF/F file page numbering scheme changes. To
do so, set the DF_IOTT structure io_type field to
IO_EOT and the io_phdcont field to DFC_EOM
for the last DF_IOTT TIFF/F file entry of a page
numbering scheme type. Change the
FC_TFPGBASE parameter to the appropriate
value for the TIFF/F file described in the next
DF_IOTT structure, then issue another
fx_sendfax() function for the file(s) with the
new page numbering scheme while the fax
session is still active. For more information on
DF_IOTT, see Section 10.6. DF_IOTT – Fax
Transmit Data Description.

sets the fax parameter fx_setparm()

 351

Define Description

FC_TFTAGCHECK Bytes: 2

 Default: TF_MAXTAGS

 Level of TIFF/F tag checking. This define is
ignored on Dialogic® DM3 Boards. Valid values:

 TF_MAXTAGS Check all mandatory tags; see
Appendix A for TIFF/F tags.

 TF_MINTAGS Check essential subset of
mandatory tags. This
accommodates TIFF/F files
created by utilities that may not
strictly adhere to TIFF/F
requirements.

FC_TXBAUDRATE Bytes: 2

 Default: DF_MAXBAUD

 Preferred maximum baud rate for fax transmission.
Capability varies by product; see Section
2.3. Product Features for more information. Valid
values:

 DF_MAXBAUD

 Maximum baud rate value for transmission

 DF_14400BAUD

 14400 baud transmission

 DF_9600BAUD

 9600 baud transmission

 DF_4800BAUD

 4800 baud transmission

 DF_2400BAUD

 2400 baud transmission

 Set this parameter to one of the supported baud
rates if you wish to transmit at a lower baud rate
than the default (DF_MAXBAUD).

fx_setparm() sets the fax parameter

 352

Define Description

Although the fax channel automatically steps down
to a lower baud rate if the remote station is
incapable of receiving at the default baud rate,
specifying a lower transmit baud rate saves time
that would be taken in negotiating a lower baud
rate. Setting a lower baud rate is also useful when
transmitting over noisy lines. Once the value is set,
the selected preferred baud rate remains in effect
until it is set again.

 NOTE: When DF_MAXBAUD is set, the value
returned in fx_getparm() reflects the
maximum transmission baud rate value
based on the capability of the fax product.

FC_TXCODING Bytes: 2

 Default: DF_MMR

 If supported, the preferred encoding scheme for
data transmission over the phone line. For more
information on FC_TXCODING and ECM, see
Section 5.6.2. Specifying a Preferred Encoding
Scheme for Transmission.

Valid values for FC_TXCODING:

 DF_MH Modified Huffman

 DF_MR Modified Read

 DF_MMR Modified Modified Read

 DF_ECM Use ECM switch; ECM
can be explicitly specified
for Phase B negotiation in
fax transmission. Use of
ECM is determined by the
receiver’s capability.

On Dialogic® DM3 Boards,
DF_ECM is automatically
implied with DF_MMR,
DF_JPEG_COLOR, and

sets the fax parameter fx_setparm()

 353

Define Description
DF_JPEG_GREY.

 DF_JPEG_COLOR color fax image (JPEG)

 DF_JPEG_GREY greyscale fax image (JBIG)

 The FC_TXCODING value is used during Phase B
negotiations with the remote receiver. The
capabilities of the remote receiver determine the
data transmission encoding scheme used over the
phone line. The fax image data specified in the
DF_IOTT structures is automatically converted to
the negotiated encoding scheme at the time of
transmission. Once the FC_TXCODING value is
set, it remains in effect until it is set again.

 If FC_TXCODING is set on an unsupported
product, ATDV_LASTERR() returns an
EFX_UNSUPPORTED error.

 If an invalid fx_setparm() parameter value is
specified, ATDV_LASTERR() returns an
EFX_BADPARM error.

 You can specify the explicit use of ECM for fax
data transmission when the remote station receiver
has ECM capabilities. To do so, OR the DF_ECM
bit flag with DF_MH, DF_MR, or DF_MMR when
setting the FC_TXCODING parameter.

FC_TXNSF Default: NULL

 Pointer to customized non-standard facilities (NSF)
message sent by the transmitter in Phase B.

This define is only supported on Dialogic® DM3
Boards; it is not supported on Dialogic®

Springware Boards.

See DF_TXNSF data structure description for more
information on setting and getting a customized
NSF message.

fx_setparm() sets the fax parameter

 354

Define Description

FC_TXSUBADDR Default: NULL

 Subaddress information sent by the transmitter - 21
character NULL-terminated ASCII string (20
characters + NULL, right-justified).

This define is not supported on Dialogic® DM3
Boards.

This parameter sets the telephone or extension
numbers to be used as fax routing subaddresses. If
the parameter value is less than 20 characters, the
parameter value is padded with spaces to equal 20
characters. Valid characters are digits zero (0)
through nine (9), and the asterisk (*).

Extensions are separated by a single pound sign
(#). Phone numbers are separated by two pound
signs (##).

If the first parameter in the subaddress field is a
phone number, it should be preceded by a single
pound sign (#).

Examples of FC_TXSUBADDR values:

 Value Description

 3765 single extension

 3765#3978#3767 multiple extensions

 #5551212#2767 phone number
followed by an
extension

 #5551234##5554321 phone number
followed by another
phone number

 #5551234#2767#2018 phone number
followed by multiple
extensions

sets the fax parameter fx_setparm()

 355

 Cautions

• You must pass the value of the parameter to be set in a variable cast as
(void *) as shown in the function example.

• Do not use the voice driver library function dx_setparm() to set fax
parameter values.

 Example

Example 1: fx_setparm() and FC_RETRYCNT, FC_HDRDATEFMT,
FC_HDRTIMEFMT, and FC_HDRUSER

#include <stdio.h>

#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

int dev;
unsigned short value;
char *coname = "ABCDE Company";
/*
 * Open device using fx_open(). Obtain fax device
 * handle in dev.
 */
.
.
/*
 * Set retry count parameter to 2, disconnect after specified
 * number of retries. FC_RETRYCNT uses 2 bytes (the variable value
 * is of type unsigned short).
 */
value = DF_RETRYDCN|DF_RETRY2;

if (fx_setparm(dev,FC_RETRYCNT,(void *)&value) == -1) {
 printf("Error - %s (error code %d)\n", ATDV_ERRMSGP(dev),
 ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev) == EDX_SYSTEM) {
 /* Perform system error processing */
 }
}

/*
 * Set the following fax page header parameters:
 * Date format: MM-DD-YYYY
 * Time format: HH:MM (24 hour)
 * User text: ABCDE Company
 */
value = DF_HDRDATEFMT_1;

if (fx_setparm(dev,FC_HDRDATEFMT,(void *)&value) == -1) {
 printf("Error - %s (error code %d)\n", ATDV_ERRMSGP(dev),
 ATDV_LASTERR(dev));

fx_setparm() sets the fax parameter

 356

 if (ATDV_LASTERR(dev) == EDX_SYSTEM) {
 /* Perform system error processing */
 }
}
value = DF_HDRTIMEFMT_2;

if (fx_setparm(dev,FC_HDRTIMEFMT,(void *)&value) == -1) {
 printf("Error - %s (error code %d)\n", ATDV_ERRMSGP(dev),
 ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev) == EDX_SYSTEM) {
 /* Perform system error processing */
 }
}

if (fx_setparm(dev,FC_HDRUSER,(void *)coname) == -1) {
 printf("Error - %s (error code %d)\n", ATDV_ERRMSGP(dev),
 ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev) == EDX_SYSTEM) {
 /* Perform system error processing */
 }
}

Example 2: fx_setparm() and FC_FONT0 (Windows® only)

#include <stdio.h>

#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

int dev;
unsigned short value;

HFONT hMyFont;
LOGFONT lFont;

/*
 * Open device using fx_open(). Obtain fax device
 * handle in dev.
 */
.
.
/*
 * Use Windows API to get a font handle. See the Microsoft
 * Win32 API Programmer’s Reference for other ways of getting
 * font handles from resources.
 */

ret= AddFontResource("Roman.fon");
memset(&lFont,0,sizeof(lFont));
lFont.lfCharSet = DEFAULT_CHARSET;
lFont.lfHeight = 24;
lFont.lfWidth = 20;
lFont.lfEscapement = 0;
lFont.lfOrientation =0;
lFont.lfWeight = FW_NORMAL;
lFont.lfItalic = FALSE;
lFont.lfUnderline = FALSE;
lFont.lfStrikeOut = FALSE;
lFont.lfOutPrecision = OUT_DEFAULT_PRECIS;

sets the fax parameter fx_setparm()

 357

lFont.lfClipPrecision = CLIP_DEFAULT_PRECIS;
lFont.lfQuality = DEFAULT_QUALITY;
lFont.lfPitchAndFamily = DEFAULT_PITCH|FF_DONTCARE;
strcpy(lFont.lfFaceName,"Roman");
hMyFont = CreateFontIndirect(&lFont);

/* pass the handle to the fax library as one of the 2 internal fonts. */

if (fx_setparm(dev,FC_FONT0,(void *)&hMyFont) == -1) {
 printf("Error - %s (error code %d)\n", ATDV_ERRMSGP(dev),
 ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev) == EDX_SYSTEM) {
 /* Perform system error processing */
 }
}

/*
 * when you use fx_sendfax() or fx_sendascii() to
 * send an ASCII document, the control character <ESC>F0
 * will use the font handle hMyFont to render the ASCII text.
 */

.
.
.

fx_sendfax() ; /* after specifying the font, send the fax */

.
.
.

deleteObject(hMyFont) ; /* delete the font handle */

 Errors

See Appendix D for a list of error codes that may be returned for this function.

If you issue the function for a parameter that is not supported by your fax
hardware channel, ATDV_LASTERR() returns an EFX_UNSUPPORTED error
code. On Dialogic® DM3 Boards, specifying an unsupported parameter results in
the EFX_INVALARG error.

 See Also

• fx_getparm()

fx_setuio() registers user-defined I/O functions

 358

Name: void fx_setuio(df_uio)
Inputs: DF_UIO df_uio • DF_UIO structure

Returns: none
Includes: srllib.h

 dxxxlib.h
 faxlib.h

Category: miscellaneous
Mode: synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The fx_setuio() function registers user-defined I/O functions, replacements for
the standard I/O functions read(), write(), and lseek() with the fax library. This
function is useful for applications requiring access and/or storage of data from,
for example, a network device that requires the use of specific I/O functions.

Parameter Description

df_uio Specifies the DF_UIO structure.

Your application provides the addresses of user-defined read(), write(), and
lseek() functions (with pointers to the user-defined read(), write(), and lseek()
functions) by initializing the DF_UIO structure. The application then installs the
user-defined functions by issuing the fx_setuio() function.

If you specify the user-defined I/O mode during a fax send or receive, the fax
library uses the I/O functions registered by fx_setuio() instead of the standard
I/O functions provided by the operating system. The user-defined I/O functions
are passed the same arguments as the standard read(), write(), and lseek() I/O
functions.

When issuing the fx_setuio() function to receive a fax, you must provide a user-
defined write() function. When issuing this function to send a fax, you must
provide a user-defined read() function.

registers user-defined I/O functions fx_setuio()

 359

NOTE: The application can override the standard I/O functions on a file-by-file
basis; see Section 10.8. DF_UIO – User-Defined I/O and the
fx_rcvfax() and fx_sendfax() function references.

 Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

DF_UIO userio;

/* User read function (note: same arguments as read()) */
int user_read(filedes, buf, size)
 int filedes;
 char * buf;
 unsigned size;

{
 /* Application specific read() function. */

 .
 .
}

/* User write function (Note: Same arguments as write()). */
int user_write(filedes, buf, size)
 int filedes;
 char * buf;
 unsigned nbyte;
{
 /* Application specific read() function. */
 .
 .
}

/* User lseek function (Note: Same arguments as lseek()). */
long user_lseek(filedes, offset, whence)
 int filedes;
 long offset;
 int whence;
{
 /* Application specific lseek() function. */
 .
 .
}

main()
{
 .
 .
 userio.u_read = user_read;
 userio.u_write = user_write;
 userio.u_seek = user_lseek;

fx_setuio() registers user-defined I/O functions

 360

 /* Register these functions with the FAX library. */
 fx_setuio(userio);
 .
 .
}

forces termination of a fax send or receive fx_stopch()

 361

Name: int fx_stopch(dev, mode)
Inputs: int dev • valid fax channel device handle

 unsigned short mode • synchronous/asynchronous
mode bitmap

Returns: 0 if success
 -1 if failure

Includes: srllib.h
 dxxxlib.h
 faxlib.h

Category: resource management
Mode: synchronous/asynchronous

Dialogic®

Platform:
DM3, Springware

 Description

The fx_stopch() function forces termination of a fax send or receive on a fax
channel device. It forces a fax channel in the busy state to become idle.

If the fax channel specified in dev is already idle, fx_stopch() has no effect and
returns a success.

A fx_stopch() function issued on a channel executing the T.30 fax protocol for
either send or receive will disconnect the fax transfer and enter Phase E of the
T.30 fax protocol to terminate the fax transfer. The active send or receive
function returns a -1. ATDV_LASTERR() returns EFX_DISCONNECT and
ATFX_ESTAT() returns EFX_ABORTCMD.

NOTE: It may take a few seconds after fx_stopch() returns before termination
takes effect. The timing depends on the phase of the fax transfer at the
time fx_stopch() is issued.

fx_stopch() forces termination of a fax send or receive

 362

Parameter Description

dev Specifies the valid fax channel device handle obtained when
the channel was opened.

mode Specifies the mode of operation:

 EV_SYNC Synchronous mode (default).

The function does not return to the
application until the fax channel device is
idle.

 EV_ASYNC Asynchronous mode.

The function immediately returns after
initiating a stop on the fax channel device.

If you issue the fx_stopch() function from
an event handler, you must call fx_stopch()
in asynchronous mode (EV_ASYNC).

See the Dialogic® Standard Runtime Library
documentation for information on event
handlers.

 Cautions

• You should use fx_stopch() to stop fax I/O only after a fax send or receive
function has been issued.

• On Linux operating system only: For proper termination of fax T.30
protocols executing on the channels, processes running fax applications
should have appropriate signal handlers installed to handle process kill or
exit. The signal handler must issue fx_stopch() set to operate in
asynchronous mode (EV_ASYNC) to the channels executing fax calls.

 Example

#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

main()
{

forces termination of a fax send or receive fx_stopch()

 363

 int dev; /* Fax channel device handle.*/

 /* Open the FAX channel device. */
 if ((dev = fx_open("dxxxB1C1", NULL)) == -1) {
 /* Error opening device. */
 /* Perform system error processing */
 exit(1);
 }
 /* Use the FAX channel device to send or receive faxes. */
 .
 .
 /*
 * Issue a stop to force the termination of the fax session
 * if necessary.
 */
 if (fx_stopch(dev, EV_ASYNC) == -1) {
 /* Error stopping device. */
 printf("Error stopping channel\n");
 printf("Error - %s (error code %d)\n",
 ATDV_ERRMSGP(dev), ATDV_LASTERR(dev));
 if (ATDV_LASTERR(dev) == EDX_SYSTEM) {
 /* Perform system error processing */
 }
 exit(1);
 }
 .
 .
}

 Errors

If this function returns -1 to indicate failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following error reasons:

EDX_BADPARM Invalid fax parameter

EDX_SYSTEM Operating system error. On Linux, check the global
variable errno for more information. On Windows®,
use dx_fileerrno() to obtain the error value.

 See Also

• ATFX_TERMMSK()
• fx_rcvfax()
• fx_rcvfax2()
• fx_sendfax()

fx_unlisten() disconnects fax receive channel from TDM bus

 364

Name: int fx_unlisten(dev)
Inputs: int dev • fax channel device handle

Returns: 0 if successful
 -1 if error

Includes: srllib.h
 dxxxlib.h
 faxlib.h

Category: TDM bus routing
Mode: synchronous

Dialogic®

Platform:
DM3, Springware

 Description

The fx_unlisten() function disconnects fax receive channel from TDM bus.

Calling the fx_listen() function to connect to a different TDM bus time slot will
automatically break an existing connection. Thus, when changing connections,
you need not call the fx_unlisten() function.

NOTE: The TDM bus convenience function nr_scunroute() includes
fx_unlisten() functionality. See the Dialogic® Voice API Library
Reference for more information on nr_ convenience functions.

Parameter Description

dev Specifies the fax channel device handle obtained when
the channel was opened using fx_open().

 Cautions

This function will fail when an invalid fax channel device handle is specified.

 Example

#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>

disconnects fax receive channel from TDM bus fx_unlisten()

 365

main()
{
 int dev; /* Fax channel device handle. */
 .
 .
 /* Open the FAX channel resource. */
 if ((dev = fx_open("dxxxB7C1", NULL)) == -1) {
 /* Error opening device. */
 /* Perform system error processing */
 exit(1);
 }
 .
 .
 /*
 * Disconnect the FAX channel device from "listening" to an
 * TDM bus transmit time slot.
 */
 if (fx_unlisten(dev) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(dev));
 exit(1);
 }
 .
 .

 Errors

If this function returns -1, use ATDV_LASTERR() and ATDV_ERRMSGP()
to retrieve one of the following error reasons:

Equate Returned When

EDX_BADPARM Parameter error

EDX_SH_BADCMD Command is not supported in current bus
configuration

EDX_SH_BADEXTTS TDM bus time slot is not supported at current
clock rate

EDX_SH_BADINDX Invalid Switch Handler index number

EDX_SH_BADLCLTS Invalid channel number

EDX_SH_BADMODE Function not supported in current bus
configuration

EDX_SH_BADTYPE Invalid channel type (voice, analog, etc.)

fx_unlisten() disconnects fax receive channel from TDM bus

 366

Equate Returned When

EDX_SH_CMDBLOCK Blocking command is in progress

EDX_SH_LCLDSCNCT Channel already disconnected from TDM bus

EDX_SH_LIBBSY Switch Handler library busy

EDX_SH_LIBNOTINIT Switch Handler library uninitialized

EDX_SH_MISSING Switch Handler is not present

EDX_SH_NOCLK Switch Handler clock failback failed

EDX_SYSTEM System error

 See also

• fx_listen()

367

Appendix A
TIFF/F Tags and Values

Overview

This appendix presents the TIFF/F tags and values required in TIFF/F files for a
successful fax transfer. The first section describes the required tags and values for
TIFF/F files received by the fax library. The second section describes the tags and
values for TIFF/F files written by the fax library.

Input to the Library from Disk Storage

The fax library accepts TIFF/F files that have valid tag values as shown in the
following table, where x equals a number.

NOTE: An asterisk (*) after a TIFF/F tag field name indicates a subset of the
TIFF/F tags; see the fx_setparm() FC_TFTAGCHECK parameter.

Except for PageNumber, all tags listed are mandatory. All tags listed are checked
by default. If the PageNumber tag is absent, the fax library assumes there is only
one page in a single page file. Page numbers can be zero base or one base. Note
that zero-based page numbering adheres to the TIFF/F standard.

Dialogic® Fax Software Reference

 368

Table 18. TIFF/F Tags Input to Library

Field

Valid
Values

Description

BitsPerSample 1 one bit per sample

Compression* 3 Group 3 - MH or MR encoding

 4 Group 4 - MMR encoding

FillOrder* 1 most significant bit first

 2 least significant bit first

ImageWidth* 1728 number of pixels per line

 2048 number of pixels per line

 2432 number of pixels per line

PageNumber x/x page number/number of pages

SamplesPerPixel 1 one sample per pixel

StripByteCounts* x byte count in image (as appropriate)

StripOffsets* x byte offset of image (as appropriate)

T4Options x/x Group 3 - MH encoding, EOL not
padded/padded

T6Options x Group 4 - MMR encoding

Yresolution* ≤ 150 coarse (normal)

 >150 fine

If T4Options or T6Options tag is absent, the following values are assumed:

Field

Valid
Values

Description

T4Options 0 Group 3 - MH encoding, EOL not
padded

 4 Group 3 - MH encoding, EOL padded

T6Options 0 Group 4 - MMR encoding

Appendix A - TIFF/F Tags and Values

 369

Output from the Library to Disk Storage

The TIFF/F files written by the fax library have the following tags with valid
values, where x equals a number:

Table 19. TIFF/F Tags Output from Library

Field

Valid
values

Description

BadFaxLines x number of bad scan lines received;
this is a measure of quality of the
image received from the remote

BitsPerSample 1 one bit per sample

CleanFaxData 0 data in file does not contain bad
scan lines

 Bad Scan Line Replacement (BLR)
restores MH encoded scan line to
the correct pixel count, as
indicated by CleanFaxData set to
zero; however, the integrity of the
repaired scan line image may be
impaired. To determine the error
content of the stored data, use
BadFaxLines.

Compression 3 Group 3 - MH encoding

 4 Group 4 - MMR encoding

DateTime YYYY:MM:DD HH:MM:SS

FillOrder 2 least significant bit first

ImageWidth 1728 number of pixels per line

 2048 number of pixels per line

 2432 number of pixels per line

ImageLength x number of scan lines in image

NewSubFileType 2 single page in multi-page image

Dialogic® Fax Software Reference

 370

Field

Valid
values

Description

Orientation 1 first row = top left

 first column = top left

PageNumber x/x page number/number of pages

PhotometricInterpretation 0 gray scale/bilevel: zero = white

ResolutionUnit 2 inch

RowsPerStrip x number of scan lines in image; if
present, RowsPerStrip must equal
ImageLength.

SamplesPerPixel 1 one sample per pixel

Software Dialogic® TIFF/F Library version
x.xx

StripByteCounts x byte count in image (as
appropriate); only one value for
StripOffsets and StripByteCounts
must be present (the image is
considered to be one large strip).
Multiple strips per image is not
currently supported.

StripOffsets x byte offset of image (as
appropriate)

T4Options 0 Group 3 - MH encoding, EOL not
padded

T6Options 0 Note: Replaces T4Options if MMR

Xresolution 204 number of pixels per resolution
unit X

Yresolution 98 coarse (normal) (number of pixels
per resolution unit Y)

 196 fine

371

Appendix B
Fax Phase D Status Values

T.30 Phase D (post-message procedure) status values indicate the status of a fax
transmission and reception. This appendix lists the Phase D command values
returned from the transmitter to the receiver, and the reply values returned from
the receiver to the transmitter.

NOTE: DFS_ALL and DFS_REMOTESUBADDR are Dialogic® Fax library
terms, not T.30 protocol terminology.

To obtain Phase D status values, use the following fax extended attribute
functions after a TFX_PHASED event or after the completion of the last page of
a fax send or receive function:

• ATFX_PHDCMD() – returns the Phase D command, which specifies the
next phase of the fax session to the receiver.

• ATFX_PHDRPY() – returns the Phase D reply from the receiver, which
indicates the quality of the received transmission.

Dialogic® Fax Software Reference

 372

Table 20. Phase D Command Values - Transmitter to Receiver

Value Description

DFS_EOP End of Procedure – Terminate fax session. Progress to
Phase E and disconnect fax call.

DFS_MPS Multi-page Signal – End of current fax document page,
more fax data to follow. Next fax document page is in
the same format as the current page, so proceed directly
to Phase C.

DFS_EOM End of Message – End of current fax document page,
more fax data to follow. Return to Phase B and
negotiate parameters for next fax document page.

DFS_POLL A poll request was sent.

DFS_PRI_EOP Request for operator intervention sent (PRI_EOP).

DFS_PRI_MPS Request for operator intervention sent (PRI_MPS).

DFS_PRI_EOM Request for operator intervention sent (PRI_EOM).

Most fax machines wait for the completed transmission of the final page of a fax
session before sending an operator intervention request (PRI_EOP). The fax
library responds to operator intervention requests from the remote station after
receiving one of the following messages: PRI_EOP, PRI_MPS, or PRI_EOM.

Appendix B - Fax Phase D Status Values

 373

Table 21. Phase D Reply Values - Receiver to Transmitter

Value Description

DFS_MCF Message confirmation – valid fax image received, ready
for more pages.

DFS_RTN Retrain negative – bad fax image received, retrain and
resend image.

DFS_RTP Retrain positive – valid fax image received but retraining
required (transmitter determines whether lower baud rate
is needed for continued successful reception).

DFS_PIP Procedure interrupt positive – operator intervention
request.

DFS_PIN Procedure interrupt negative – operator intervention
request.

Dialogic® Fax Software Reference

 374

375

Appendix C
Fax Phase E Status Values

The Phase E (fax call release) status values indicate errors during the course of a
fax transmission/reception. To obtain Phase E status values, use the fax extended
attribute function ATFX_ESTAT().

Table 22. General Phase E Status Values

Value Description

EFX_ABORTCMD Command stopped by stop_fax firmware command

EFX_BUSYCHN Request to start fax while channel is currently busy

EFX_CEDTONE Remote CED (Called Station Identification) tone
exceeds 5 seconds

EFX_CHIPNORESP Fax modem is not responding

EFX_HDLCCARR Excessive HDLC carrier

EFX_OPINTFAIL Operator intervention failed

Dialogic® Fax Software Reference

 376

Table 23. Phase E Status Values Returned to the Transmitter

Value Description

EFX_BADDCSTX Received bad response to DCS (Digital Command
Signal) or training

EFX_BADPGTX Received a DCN (Disconnect) from remote after
sending a page

EFX_COMMERRTX Transmit communication error

EFX_ECMPHDTX Invalid ECM response received from receiver

EFX_ECMRNRTX Timer T5 expired, receiver not ready

EFX_GOTDCNTX Received a DCN (Disconnect) while waiting for a
DIS (Digital Identification Signal)

EFX_INVALMMRTX Invalid input MMR data

EFX_INVALRSPTX Invalid response after sending a page

EFX_NODISTX Received other than DIS (Digital Identification
Signal) while waiting for DIS

EFX_NOFINERECTX Remote cannot receive fine resolution

EFX_NOISETX Too much noise at 2400 bps

EFX_NOWIDTHTX Remote cannot receive at this width

EFX_NXTCMDTX Timed out waiting for next send_page command
from driver

EFX_PHBDEADTX Received no response to DCS (Digital Command
Signal), training, or TCF (Training Check)

EFX_PHDDEADTX No response after sending a page

EFX_RXCOMP Remote site is not receive compatible

EFX_T1EXPTX Timed out while waiting for a message

Appendix C - Fax Phase E Status Values

 377

Table 24. Phase E Status Values Returned to the Receiver

Value Description

EFX_COMMERRRX Receiver communication error

EFX_DCNDATARX Unexpected DCN (Disconnect) while waiting for
fax data

EFX_DCNFAXRX Unexpected DCN (Disconnect) while waiting for
EOM (End Of Message), EOP (End Of
Procedure), or MPS (Multi-page Signal)

EFX_DCNNORTNRX DCN (Disconnect) after requested retransmission

EFX_DCNPHDRX Unexpected DCN (Disconnect) after EOM (End
Of Message) or MPS (Multi-page Signal)
sequence

EFX_DCNRRDRX Unexpected DCN (Disconnect) after RR/RNR
sequence

EFX_ECMPHDRX Invalid ECM response received from transmitter

EFX_GOTDCSRX DCS (Digital Command Signal) received while
waiting for DTC

EFX_INVALCMDRX Unexpected command after page received

EFX_NOCARRIERRX Lost carrier during fax receive

EFX_NOEOLRX Timed out while waiting for EOL (End Of Line)

EFX_NOFAXRX Timed out while waiting for first line

EFX_NXTCMDRX Timed out waiting for next receive page
command

EFX_PNSUCRX High speed training success not returned by
modem during receive

EFX_T1EXPRX Timed out while waiting for a message

EFX_T2EXPDCNRX Timed out while waiting for DCN (Disconnect)

EFX_T2EXPDRX Timed out while waiting for Phase D

EFX_T2EXPFAXRX Timed out while waiting for fax page

EFX_T2EXPMPSRX Timed out while waiting for next fax page

Dialogic® Fax Software Reference

 378

Value Description

EFX_T2EXPRRRX Timer T2 expired waiting for RR command

EFX_T2EXPRX Timed out waiting for NSS (Non-standard set-
up), DCS (Digital Command Signal), or MCF
(Message Confirmation)

EFX_TXCOMP Remote site is not transmit compatible

EFX_WHYDCNRX Received unexpected DCN (Disconnect) while
waiting for DCS (Digital Command Signal) / DIS
(Digital Identification Signal)

379

Appendix D
Fax Error Codes

The following table lists errors for fax.

• To access the error code values, use the ATDV_LASTERR() function of
the Dialogic® Standard Runtime Library.

• To return a string describing the error, use the ATDV_ERRMSGP()
function of the Dialogic® Standard Runtime Library.

For more information on these functions, see the Dialogic® Standard Runtime
Library API Library Reference. For a list of TIFF/F tags and values required for
successful fax transfer, see Appendix A.

Table 25. Fax Error Codes

Value Description and Suggested Action

EFX_BADIOTT Invalid data in DF_IOTT entry. No data sent. Use
ATFX_BADIOTT() to return a pointer to the
DF_IOTT entry with invalid data. Verify that the
appropriate Phase D continuation value is used.
For example, an error occurs if the DF_IOTT
entry specifies DFC_EOP but it is not the last
entry in the table.

EFX_BADPAGE Invalid or missing TIFF/F PageNumber tag. No
data sent. Use ATFX_BADPAGE() to find the
page offset from the first page described by the
DF_IOTT entry.

EFX_BADPARM Invalid value for fax parameter.

EFX_BADPHASE Unexpected Phase transition (internal).

EFX_BADSTATE Invalid initial state value specified. Following
T.30 protocol, the initial state of the caller station
must be transmitter (DF_TX) and the initial state
of the called station must be receiver (DF_RX).
See fx_initstat().

Dialogic® Fax Software Reference

 380

Value Description and Suggested Action

EFX_BADTAG Incorrect values for TIFF/F tags. No data sent.
Use ATFX_TFBADTAG() to return the tag
number associated with the invalid tag value.

EFX_BADTIF Incorrect TIFF/F format. No data sent. Verify that
the TIFF/F file contains all mandatory TIFF/F tags
(or subset). Use ATFX_TFNOTAG() to return
the number of the missing tag. You can select the
level of TIFF/F tag checking by setting
FC_TFTAGCHECK in fx_setparm().

EFX_BADTFHDR Bad TIFF/F header - incorrect values in fields. No
data sent. Verify TIFF/F header values.

EFX_CMDDATA Last command contained invalid data.

EFX_COMPAT DF_IOTT entry problem. I/O file type, image
width, and resolution defined are not compatible
with the receiver's hardware. No data sent. Use
ATFX_BADIOTT() to return a pointer to the
DF_IOTT entry that caused the error.

EFX_DSPERROR DSP fax resource error.

EFX_DISCONNECT Fax call disconnected by other station. Use
ATFX_ESTAT() to find out why disconnection
occurred during a fax session. For example, some
reasons may be receiver incompatibility or an
invalid poll request by the transmitter.

EFX_DRVERROR Error occurred in driver (internal).

EFX_FWERROR Firmware error.

EFX_INUSE Channel is in use (failed fx_open() or fx_close()
using a DSP fax resource).

EFX_INVALARG Illegal argument to function.

EFX_INVALFUNC Illegal call to function.

EFX_LIBERROR Error in library state machine (internal).

EFX_MAXCHAN Maximum channel capacity reached. Capacity
varies by product. See Table 1. Fax Features and
Specifications.

Appendix D - Fax Error Codes

 381

Value Description and Suggested Action

EFX_NODATA Data requested is not available (NSF, DIS, DCS).
A function is called before completion of the
initial Phase B, or the message was not sent by the
remote station.

EFX_NOFAX No fax capability on this device.

EFX_NOMEM Cannot allocate memory for more pages.

EFX_NOPAGE Requested TIFF/F page not found. Check the base
page numbering scheme used.

EFX_NOPOLL Poll not accepted. For example, if the transmitter
issues a poll request and the receiver’s poll bit is
set to DF_NOPOLL, this error code is generated.

EFX_NORESOURCE A DSP fax resource is not available for
assignment/sharing through fx_open().

EFX_NOSTATE Initial state value not set.

EFX_NOTIDLE Channel is not idle. Some functions require that
the channel be in idle state before invocation. Use
ATFX_STATE() to determine the state of the
channel.

EFX_NOTIMESLOT No time slot assigned.

EFX_NSFBUFF Buffer length supplied to fx_getNSF() is less
than 2 bytes.

EFX_NXTCMDRX Time out while waiting for next receive fax
operation.

EFX_RDFWER Error reading firmware version.

EFX_RETRYDCN Disconnected after specified retries.

EFX_UNSUPPORTED Unsupported feature.

383

Appendix E
Fax Event Codes

The following table lists the fax event code values.

In synchronous mode operation, an event handler must be enabled to detect
Phase B and Phase D events. For event handler details, see the sr_enbhdlr()
function in the Dialogic® Standard Runtime Library API Library Reference.

Table 26. Fax Event Codes

Value Description

TFX_FAXERROR Error in fax transmission or fax reception

TFX_FAXRECV Fax reception successfully completed

TFX_FAXSEND Fax send successfully completed

TFX_PHASEB Phase B event

TFX_PHASED Phase D event

Dialogic® Fax Software Reference

 384

385

Appendix F
ASCII to Fax Tables

Overview

This appendix contains the following ASCII to Fax information:

• ASCII to Fax command set table

• Proprietary Extended ASCII Character Set
(Modified ASCII 437 character set)

• Katakana Character Set (Japanese Characters)
(Modified ASCII 437 character set)

The information in this appendix does not apply to Dialogic® DM3 Boards.

ASCII to Fax Command Set

An ASCII data file may contain embedded escape sequences as shown in
Table 27. ASCII to Fax Command Set. These embedded sequences control
certain graphical attributes such as font and line spacing from within the file and
override the values specified at the application level in the DF_ASCIIDATA
structures.

Insert ASCII escape sequences before the ASCII text you wish to change. The
format you specify using an escape sequence is in effect until a new escape
sequence is inserted.

Dialogic® Fax Software Reference

 386

Table 27. ASCII to Fax Command Set

Format Selection Hex ASCII

Font 10 pitch (default) 1B 46 30 <Esc>F0

 17 pitch 1B 46 33 <Esc>F3

Line
Spacing

2.4 lines/inch 1B 4C 33 <Esc>L3

 3 lines/inch 1B 4C 32 <Esc>L2

 4 lines/inch 1B 4C 31 <Esc>L1

 6 lines/inch (default) 1B 4C 30 <Esc>L0

 8 lines/inch 1B 4C 34 <Esc>L4

 Single spacing (font height) 1B 44 32 <Esc>D2

 Double spacing (font height) 1B 44 34 <Esc>D4

 Triple spacing (font height) 1B 44 36 <Esc>D6

Attributes * Underline off (default) 1B 55 30 <Esc>U0

 Underline on 1B 55 31 <Esc>U1

 Boldface off (default) 1B 42 30 <Esc>B0

 Boldface on 1B 42 31 <Esc>B1

Line Wrap Line Wrap off 1B 54 30 <Esc>T0

 Line Wrap on (default) 1B 54 31 <Esc>T1

Tabs ** Tab stop setting (default: n=8) 1B 09 n <Esc><Tab>n

Control
Characters

New line 0D <CR>

 0D 0A <CR><LF>

 New Page 0C <FF>

 0D 0C <CR><FF>

 Tabs 09 <Tab>

 End of File 1A <EOF>

Appendix F - ASCII to Fax Tables

 387

* Attributes format not recommended for Katakana.
** Tabs format available for DSP fax only. n = number of tab stops. Default at
position 1, 9, 17, 25, and so on.

On some Dialogic® fax products, you can:

• Use the tilde (~) instead of the <ESC> sequence character to format ASCII
documents. For example, both <ESC>F0 and ~F0 are valid control characters
in an ASCII document.

To print a tilde itself in an ASCII document, use two consecutive tildes (~~).

• Specify italicized text using <ESC>I1 or ~I1. To disable it, use <ESC>I0 or
~I0.

For product support, see Table 1. Fax Features and Specifications.

Example

Following is a sample sequence to specify bold ASCII characters:

 <Esc>B1Dialogic<Esc>B0

Follow your ASCII editor instructions to insert ASCII code 27 <Escape>.

Use uppercase letters with no spaces in the escape sequence.

Dialogic® Fax Software Reference

 388

Figure 1. Proprietary Extended ASCII Character Set
(Modified ASCII 437 Character Set)

For ASCII codes ranging from 00H to 1FH, only the control characters outlined
in the above figure are supported.

Appendix F - ASCII to Fax Tables

 389

Figure 2. Katakana Japanese Character Set
(Modified ASCII 437 Character Set)

For ASCII codes ranging from 00H to 1FH, only the control characters outlined
in the above figure are supported.

Dialogic® Fax Software Reference

 390

391

Appendix G
Acronyms List

Table 28. Acronyms Translated lists acronyms used in this document.

Table 28. Acronyms Translated

Acronym Meaning

API Application Programming Interface

ASCII American Standard Code for Information Interchange

DCN Disconnect message

DCS Digital Command Signal

DIS Digital Identification Signal

ECM Error Correction Mode

EOL End of Line

EOM End of Message

EOP End of Procedure

ITU-T International Telecommunication Union -
Telecommunications

LSB Least Significant Bit

MCF Message Confirmation

MH Modified Huffman

MMR Modified Modified Read (Modified Modified Relative
Element Address Differentiation Code)

MPS Multi-page Signal

Dialogic® Fax Software Reference

 392

Acronym Meaning

MR Modified Read (Modified Relative Element Address
Differentiation Code)

RTN Retrain Negative

RTP Retrain Positive

SRL Standard Runtime Library

TIFF/F Tagged Image File Format - Class F

393

Glossary

asynchronous function A function that allows program execution to continue
without waiting for a task to complete. To implement an asynchronous
function, an application-defined event handler must be enabled to trap and
process the completed event. See synchronous function.

CCITT International Telegraph and Telephone Consultative Committee.
See ITU-T.

configuration file An unformatted ASCII file that stores initialization
information for an application.

data structure Programming term for a data element consisting of fields, where
each field may have a different type definition and length. A group of data
structure elements usually share a common purpose or functionality.

delimiting The ability to return control to the application at the end of each fax
page or group of fax pages, allowing the application to store these groups into
separate files.

ECM Error Correction Mode. An ITU-T T.30 recommendation for Group 4 fax,
now also used for Group 3 fax. ECM provides more efficient error handling
for noisy or distorted fax transmissions. Encapsulated data within HDLC
frames gives the receiver an opportunity to check for and request
retransmission of garbled data.

extended attribute functions Class of functions that take one input parameter (a
valid device handle) and return device-specific information. For instance, a
voice device's extended attribute function returns information specific to the
voice devices. Extended attribute function names are case-sensitive and must
be in capital letters. The fax extended attribute functions return information
specific to fax resources. See also Standard Runtime Library.

facsimile Fax. Transmitting and recording a scanned document to produce a
copy of the original via phone lines.

fax See facsimile.

fax extended attribute functions See extended attribute functions.

fax session A fax session refers to the five phases of a fax call as defined by the
ITU-T T.30 recommendation. The phases are Phase A (set up fax call),

Dialogic® Fax Software Reference

 394

Phase B (pre-message procedure), Phase C (transmit message), Phase D (post-
message procedure), and Phase E (release fax call).

Group 3 T.4 standards recommendations for digital facsimile devices developed
by CCITT, adopted in 1980, and modified in 1984 and 1988. A Group 3
digital fax transmission of an 8.5 by 11 inch page (or A4) at 9,600 bps is
completed in 15 to 30 seconds using PSTN phone lines.

Group 4 T.6 standards recommendations for digital facsimile devices developed
by CCITT and adopted in 1984. Using Public Data Networks or modified
PSTN, the data is transmitted using ECM (Error Correction Mode) which
essentially ensures error-free reception.

ID Refers to the telephone number of the fax. As per the ITU-T T.30
recommendations, the information to be included in the local ID 20-character
data fields is the international telephone number with + in position 1, followed
by the telephone country code, area code, and the subscriber number.

ITU-T (formerly CCITT) International Telecommunication Union-
Telecommunications. A United Nations agency based in Geneva whose three
main aims are developing and recommending international
telecommunications standards, regulating the use of radio frequency
spectrum, and advancing telecommunications development around the world.

Modified Huffman (MH) code One-dimensional run length digital encoding
scheme used to compress fax data for transmission in Group 3 fax devices.
For example, a white line with no text, called a run, extending across an 8.5"
page equals 1728 bits. MH code compresses the 1728 bits into a 17-bit code
word. The lengths for all possible white runs are grouped together into 92
binary codes that will handle any white run length from 0 to 1728.

Modified Modified Read (MMR) code An optional, Group 4 facsimile two-
dimensional digital encoding scheme with improved transfer speed over
Modified Read encoding. This encoding scheme is now available on Group 3
fax devices. MMR makes use of the high degree of vertical correlation
between each scan line in the fax image to achieve a higher compression than
MH.

Modified Read (MR) code An optional, Group 3 facsimile two-dimensional
digital encoding scheme with improved transfer speed over Modified
Huffman encoding. MR makes use of the high degree of vertical correlation
between each scan line in the fax image to achieve a higher compression than
MH.

Glossary

 395

normal fax transmission A fax document transmitted from the called to caller
application, as in the transmission of a fax document between two fax
machines.

pel Picture element containing black and white information. A single point in a
facsimile transmission.

Phase A One of five phases in a fax call, as defined by the T.30 protocol
recommendation. This is the fax call setup phase. Communication is
established between two stations: caller and called.

Phase B One of five phases in a fax call, as defined by the T.30 protocol
recommendation. This is the pre-message procedure phase of a fax call. The
two stations (caller and called) negotiate parameters for a fax transfer, such as
receiver and transmitter state, transmission speed, resolution, and so on.

Phase C One of five phases in a fax call, as defined by the T.30 protocol
recommendation. This is the message transmission phase of a fax call.
Transmits based on the parameters negotiated in Phase B.

Phase D One of five phases in a fax call, as defined by the T.30 protocol
recommendation. This is the post-message procedure of a fax call where the
Phase D continuation value indicates how the data just transmitted is
connected to the next data transmitted.

Phase E One of five phases in a fax call, as defined by the T.30 protocol
recommendation. This is the fax call release phase: disconnect call.

pixel Picture element containing levels of gray information. A single point in a
facsimile transmission.

polling fax transmission Also known as fax on demand. A caller application
requests that a fax be transmitted from the called to caller application. If
polling is valid, the caller and called applications switch transmitter and
receiver roles. The fax is then transmitted from called to caller application.

PSTN Public Switched Telephone Network.

raw fax data Unstructured fax data that does not conform to TIFF/F or other
formats. A raw file stores fax data as a single page of unstructured,
unformatted data. The raw file uses MH coding for transmission.

SCbus Signal Computing Bus. Third generation TDM (Time Division
Multiplexed) resource sharing bus that allows information to be transmitted
and received among resources over multiple data lines.

Dialogic® Fax Software Reference

 396

SRL See Standard Runtime Library.

stand-alone configuration A hardware configuration where a single board
contains all the hardware components (i.e., processing, data
reception/transmission) necessary to implement an application. In a stand-
alone configuration, the board's channels are not routed through SCbus time
slots. NOTE: Some Dialogic® hardware products can be used in a stand-alone
configuration, or as a component in an SCbus bus configuration.

standard attribute functions Class of functions that take one input parameter (a
valid device handle) and return generic information about the device. For
instance, standard attribute functions return IRQ and error information for all
device types. Standard attribute function names are case-sensitive and must be
written in uppercase letters. Standard attribute functions for all devices are
contained in the Standard Runtime Library (SRL). See Standard Runtime
Library.

Standard Runtime Library A software resource containing event management
and standard attribute functions, and data structures used by all Dialogic®
devices, but which return data unique to the device.

subaddress A T.30 message protocol that allows a fax to be routed to one or
more telephone numbers (or extensions) once it is received by the fax station.

sub-page addressing A method in which a single page of fax data is formed
from images stored in different sources. Each stored image is considered a
sub-page.

synchronous function A function that blocks program execution until a value is
returned by the device. Also called a blocking function. See asynchronous
function.

T.30 An ITU-T recommendation that specifies a fax communications protocol
for Group 3 fax. This recommendation describes how to establish and
terminate communications between Group 3 fax machines. The five phases of
a fax session are Phase A, Phase B, Phase C, Phase D, and Phase E.

TIFF/F Tagged Image File Format Class F. TIFF is a tag-based general purpose
raster format used to exchange image data between application programs.
Class F indicates specific format information for fax applications.

time out In telephone networks, an event that occurs at the end of a
predetermined interval of time.

Glossary

 397

turnaround polling fax transmission At different times during a single fax call,
the caller and called applications switch transmitter and receiver roles to
enable both applications to send and receive a fax document during the fax
call.

Dialogic® Fax Software Reference

 398

399

Index

%
%P

escape sequence in
FC_HDRUSER2, 341

%R
escape sequence in FC_HDUSER2,

341

~
~ tilde character

used in ASCII to fax, 112, 387

A
aborting

fax transfer, 91

about this guide, 17

acronyms, 391

alignment
EOL sequences, 67

API
fax, 147
overview, 29

ASCII
Katakana character set, 389
modified character set, 388

ASCII files
concatenating, 78
data escape sequences, 385
DF_ASCIIDATA structure, 130
DF_IOTT entry, 328
graphical attributes, 79, 136
margins, maximum values, 136
page sizes, 136
sending, 57, 70

sending single file, 291
specifying fonts, 334
sub-page addressing, 78

ASCII to fax conversion
support for, 25

asynchronous mode, 30, 31
error handling, 158
fx_rcvfax(), 102, 269
fx_sendfax(), 83, 296

AT_FAILURE, 157

AT_FAILUREP, 157

ATDV_ERRMSGP(), 157, 158, 159,
379

ATDV_LASTERR(), 157, 158, 159,
379

ATDV_SUBDEVS(), 39

ATFX_BADIOTT()
description, 164
example, 164

ATFX_BADPAGE()
description, 166
example, 166

ATFX_BADSCANLINES(), 92, 99,
104

description, 168
example, 169

ATFX_BSTAT(), 100, 103
description, 171
example, 172

ATFX_CHTYPE()
description, 175
example, 176

ATFX_CODING(), 94, 103

Dialogic® Fax Software Reference

 400

description, 178
example, 179

ATFX_ECM(), 181

ATFX_ESTAT(), 375
description, 184
example, 184

ATFX_FXVERSION()
description, 186
example, 186

ATFX_LASTIOTT()
description, 188
example, 188

ATFX_PGXFER()
description, 190
example, 191

ATFX_PHDCMD(), 100, 104, 371
description, 192
example, 193

ATFX_PHDRPY(), 104, 371
description, 195
example, 196

ATFX_RESLN(), 104
description, 198
example, 199

ATFX_RTNPAGES(), 98, 345
description, 201
example, 202

ATFX_SCANLINES(), 104
description, 204
example, 205

ATFX_SPEED(), 103, 104
description, 207
example, 208

ATFX_STATE(), 103, 104
description, 210

ATFX_TERMMSK(), 86, 105

description, 212
example, 212

ATFX_TFBADTAG()
description, 214
example, 214

ATFX_TFNOTAG()
description, 216
example, 216

ATFX_TFPGBASE()
description, 218
example, 218

ATFX_TRCOUNT(), 104
description, 220

ATFX_WIDTH(), 104
description, 222
example, 223

attributes
fax extended, 151
fax page header, 336
fax page header format 1, 337
fax page header format 2, 337, 341

audience, 17

automatic Phase D
messaging, 73, 75, 142, 326

B
bad scan line detection

support for, 26

bad scan lines, 345
replacing, 92, 99
setting acceptable percent, 98

BadFaxLines, 99

base page numbering scheme
TIFF/F file, 349

baud rate
maximum receive, 98

Index

401

selectable, 79
setting for incoming data, 346
setting maximum for transmission,

351

bit mask
setting for receive fax, 101

blocking incoming fax data, 53

botmargin
DF_ASCIIDATA, 131

byte alignment
raw file, 56

byte count
send/receive, 220

C
called

initial fax state, set, 249
normal fax transmission, 49
polling fax transmission, 50
polling invalid, 51
polling valid, 51
transmit only, 53
turnaround polling transmission, 54

called application
defined, 45

caller
initial fax state, set, 249
normal fax transmission, 49
polling fax transmission, 50
transmit fax function, 295
turnaround polling fax transmission,

54

caller application
defined, 45

calling application
defined, 45

capabilities

fax products, 23

CED tone, 48

channel
initial state, 64
opening and closing, 63
restriction, 30
type, 175

channel device
close fax, 225
open fax, 258
state, fax, 210
stop fax I/O, 361

channel state
CS_FAXIO, 210
CS_IDLE, 210
CS_RECVFAX, 210
CS_SENDFAX, 210

chapter content, overview, 18

character set
Katakana, 385, 389
modified ASCII, 388
proprietary extended ASCII, 385

CleanFaxData, 99

closing
fax channel device, 63, 225

cluster configuration
DM3 fax, 38
fax only, 262

CNG tone, 48

codes
event, 383
fax error, 379

color fax, 28, 40

Command line
faxasync demo, 121
faxdemo arguments, 120

Dialogic® Fax Software Reference

 402

faxdemo examples, 122
faxsr arguments, 121

compatibility
voice and fax API, 63

compatibility library functions
fx_libinit(), 252

compiling applications, 159

compression
data encoding scheme, 58, 81

computer-based fax, 28
German, 28

concatenating
fax images, 73, 75, 77

configuration library functions
overview, 150

configuration models, 32

Connections, physical
for demo programs, 117

consumer protection
act, 35

contiguous transmit data
DF_IOTT entries, 325
io_nextp, 327
io_prevp, 327

continuation values
between pages, 77
for fx_sendascii(), 292
for fx_sendraw(), 318
for fx_sendtiff(), 322
for fx_setiott(), 326
Phase D messaging

automatic, 75
Phase D, overview, 48

control characters
used in ASCII to fax, 112

convenience functions, 156, 161

conventions
documentation, 18

correcting
transmission errors, 92

CS_FAXIO, fax channel state, 210

CS_IDLE, fax channel state, 210

CS_RECVFAX, fax channel state, 210

CS_SENDFAX, fax channel state, 210

CT Bus configuration, 32, 34

CT_DEVINFO data structure, 38

D
data

compression, 58
encoding scheme, setting, 347, 352
encoding schemes, 58
link using DFC_AUTO, 73, 326
link using DFC_EOM, 73, 76, 326
link using DFC_EOP, 73, 76, 326
link using DFC_MPG, 73, 75, 326
link using DFC_MPS, 73, 77, 326
reception encoding scheme, setting,

94
storage format, 67
storage resolution, 270
transmission encoding scheme,

setting, 72, 79

data rate
product support, 24
variable speed selection, 24

data reception encoding scheme
setting, 94, 347
support for, 25

data structures, 130
declaring, 130
DF_ASCIIDATA, 129

Index

403

DF_DCS, 129
DF_DIS, 129
DF_IOTT, 129
DF_UIO, 129
overview, 29

data transmission encoding scheme
setting, 72, 80, 352
support for, 25

date
fax page header, 339

DCS
read, 231
T.30 Digital Command Signal, 231

declaring fax data structures, 130

delimit received files (TIFF/F)
set, 95

delimiters
TIFF/F files, 95, 333

demo programs
faxasync, 115
faxdemo, 115
faxsr, 115

Demo programs
before running, 118
execution considerations, 119
faxasync command, 121
faxdemo command-line arguments,

120
faxdemo command-line examples,

122
faxsr command-line arguments, 121
flow, 123
physical connections, 117
running faxasync, 121
running faxdemo, 120
running faxsr, 121
software, 117

detecting
digital handshake, 48

fax tone, 47

device
opening and closing, 63

device enumeration, 38

device handles
DM3, 38

device mapper functions, 37

DF_14400BAUD, 346, 351

DF_2400BAUD, 351

DF_4800BAUD, 346, 351

DF_7200BAUD, 346

DF_9600BAUD, 346, 351

DF_ACCEPT_VRQ, 105

DF_ASCII, 326

DF_ASCIIDATA structure, 111, 131
escape sequences, 136
field descriptions, 131
font field, 111
graphical attributes, 136
margin values, 136
overview, 129, 130
pointer to, 71

DF_DCS
Digital Command Signal, 261

DF_DCS structure
overview, 129
reference, 137

DF_DIS structure
overview, 129
reference, 138

DF_ECM, 81, 352

DF_FONT_0
DF_ASCIIDATA structure, 111

Dialogic® Fax Software Reference

 404

DF_FONT_3
DF_ASCIIDATA structure, 111

DF_HDRBOLD, 336

DF_HDRDISABLE, 336

DF_HDRFMT1, 336
fax page header format 1, 337

DF_HDRFMT2, 336

DF_HDRINSERT, 337

DF_HDRUNDERLINE, 337

DF_IOTT structure
ASCII file entry, 70
cautions, 65
connecting entries, 66
contiguous entries, 66, 325
declaring, 65, 299
defines, 139
field descriptions, 139
fields list, 139
fields used for ASCII, 70, 328
fields used for raw file, 67, 327
fields used for TIFF/F, 69, 327
implementing, 64
initializing, 150
last table entry, 65, 299
linked entries, 66, 327
overview, 129, 130
Phase D continuation, 48, 73
Phase D values, 73
pointer to, 295
pointer to bad, 164
reference, 138
same format for transmit data, 77
setting default values, 325
using fx_setiott(), 325
width and resolution, 76

DF_ISSUE_VRQ, 105

DF_MAXBAUD, 346, 351

DF_MH, 81, 347, 352

DF_MMR, 81, 347, 352

DF_MR, 81, 352

DF_NORETRY, 344

DF_RAW, 326

DF_RETRY1, 344

DF_RETRY2, 344

DF_RETRY3, 344

DF_RETRYDCN, 344

DF_TIFF, 326

DF_TXNSF structure, 144

DF_TXSUBADDR, 87

DF_UIO structure
fields, 145
overview, 130, 145
values, 145

DFC_AUTO, 70, 73, 75, 142, 326, 348

DFC_EOM, 70, 74, 76, 90, 142, 292,
318, 322, 326, 348

TIFF/F file, 70

DFC_EOP, 73, 76, 142, 292, 318, 322,
326

DFC_MPG, 73, 75, 142, 326
restrictions and rules, 77

DFC_MPS, 74, 77, 142, 292, 318, 322,
326, 349

DFS_ALL, 333

DFS_DCS, 171

DFS_DIS, 171

DFS_EOM, 96, 97, 333

DFS_EOP, 96, 97, 333

Index

405

DFS_MH, 178

DFS_MMR, 178

DFS_MPS, 95, 96, 97, 334

DFS_MR, 178

DFS_NSF, 171

DFS_REMOTEID, 171

DFS_REMOTESUBADDR, 100, 171,
334

dialing, Phase A, 47

Dialogic fonts
using as default fonts, 112

Digital Command Signal
DF_DCS structure, 137
getting, 155
T.30 DCS, 231

digital handshake detection, 48

Digital Identification Signal
DF_DIS structure, 138, 261

Digital Information Signal
getting, 155
T.30 DIS, 234

DIS
Digital Signal Identification, 261
read, 234
T.30 Digital Information Signal,

234

disconnect after retry, 82

DM3
fax API for, 37

documentation conventions, 18

DSP Fax, 22

DSP Fax shared resource, 22

DSP-Based Group 3 Fax, 22

dx_close(), 38, 63

dx_getfeaturelist(), 38

dx_open(), 37, 63

dxxxlib.h, 159

dynamic link library, 252
libfaxmt.dll, 252

E
ECM, 59, 92

defined, 59
error correction mode, 99
setting, 80
specifying for fax transmit in

fx_setparm(), 352
status, 181
support for, 26
switch, 59, 80, 353

EFX_ABORTCMD, 361, 375

EFX_BADIOTT, 74, 79, 164, 165

EFX_BADPAGE, 167

EFX_BADPARM, 353

EFX_BADTAG, 214

EFX_BADTIF, 216

EFX_BUSYCHN, 375

EFX_CEDTONE, 375

EFX_CHIPNORESP, 375

EFX_DISCONNECT, 90, 107, 184, 361

EFX_HDLCCARR, 375

EFX_NODATA, 233, 236, 242

EFX_NOPOLL, 108

EFX_NOTIMP error, 158

EFX_NSFBUFF, 242

Dialogic® Fax Software Reference

 406

EFX_NXTCMDRX, 100

EFX_OPINTFAIL, 375

EFX_UNSUPPORTED, 233, 236, 242,
245

EFX_UNSUPPORTED error, 158

encoding scheme, 58
data reception, setting, 94, 347
data reception, support for, 25
data transmission, 72
data transmission, setting, 79, 80,

352
data transmission, support for, 25

end of line sequences
raw data, 56

end of message, 74, 76, 142

End of message, 90, 97

End of Message, 96, 292, 318, 322, 326,
348

end of procedure, 73, 76, 142

End of procedure, 97

End of Procedure, 96, 292, 318, 322,
326

end of transmission, 65, 299

EOL sequences
alignment, 67, 70

EOM (End of Message), 95

EOP (End of Procedure), 95

error codes, 379
EFX_ABORTCMD, 361
EFX_BADIOTT, 74, 79, 164, 165
EFX_BADPAGE, 167
EFX_BADPARM, 353
EFX_BADTAG, 214
EFX_BADTIF, 216

EFX_DISCONNECT, 90, 107, 184,
361

EFX_NODATA, 233, 236, 242
EFX_NOPOLL, 108
EFX_NSFBUFF, 242
EFX_NXTCMDRX, 100
EFX_UNSUPPORTED, 233, 236,

242, 245
Phase E, 375, 376, 377
table of, 379

Error Correction Mode, 59, See ECM

error handling, 157
asynchronous mode, 158
synchronous mode, 158

errors in transmission
bad scan lines, 92

escape sequences, 136
in ASCII data, 385
in FC_HDRUSER2, 341
used in ASCII to fax, 112

EV_ASYNC
fx_stopch(), 362

EV_SYNC
fx_stopch(), 362

event codes
table of, 383

event generation, Phase B
fx_rcvfax(), 103
fx_sendfax(), 84

event generation, Phase D
fx_rcvfax(), 103
fx_sendfax(), 85

event handler, 383
for Phase B events, 84, 103
for Phase D events, 85, 104

event termination
fax send and receive, 159

Index

407

events, 159
table of, 383
TFX_FAXERROR, 84, 102
TFX_FAXRECV, 96, 102, 104
TFX_FAXSEND, 84
TFX_PHASEB, 103
TFX_PHASED, 104

extended attribute functions
error handling, 157
table of, 151

F
fax

demos
programs, 115

DM3, 37
features, 23
features table, 24
introduction, 21
terminology, 45

Fax
before running demos, 118
demos

before running, 118
program flow, 123
software, 117

fax API
compatibility with voice, 63

fax call
structure, 47

fax DLL Version Number functions
fx_GetDllVersion(), 237

fax error codes, 379

fax extended attributes
overview, 151
table of, 151
used with Phase B event, 84, 103
used with Phase D event, 85, 104

fax features
ECM switch, 59
ECM switch, setting, 353
subaddress fax routing, 60
table of, 24

fax header, 28

fax library
function categories, 148
function reference, 161
libfaxmt.dll, 252
libfaxmt.lib, 147
overview, 147

fax page header
attributes, 336
header format 1, 337
header format 2, 341
starting page number, 339
time format, 340
user text string, 341
user-defined date/time, 339

fax parameters
negotiating, 48

fax resource only cluster, 262

fax resource only cluster configuration
DM3, 38

fax session, 64
defined, 45
phases, 47

faxasync
demo program, 115
flow, 123

faxconv.c, 147, 156, 160

faxdemo
demo program, 115

Faxdemo
flow, 123

Dialogic® Fax Software Reference

 408

faxlib.h, 129, 159

faxsr
demo program, 115

FC_ENDDOC, 87, 333

FC_FONT0, 110, 334
fx_setparm(), 110

FC_FONT3, 110, 335
fx_setparm(), 110

FC_HDRATTRIB, 336

FC_HDRDATEFMT, 338

FC_HDRDATETIME, 339

FC_HDRSTARTPAGE, 339

FC_HDRTIMEFMT, 340

FC_HDRUSER, 341

FC_HDRUSER2, 341

FC_LOCALID, 342

FC_REMOTEID, 343

FC_REMOTESUBADDR, 343

FC_RETRYCNT, 344

FC_RTN, 98
defined, 345

FC_RTP, 98
defined, 345

FC_RXBAUDRATE, 98, 346

FC_RXCODING, 94
defined, 347

FC_SENDCONT, 77, 87
defined, 348
TIFF/F file, 70

FC_TFPGBASE, 349

FC_TFTAGCHECK, 351

FC_TXBAUDRATE, 351

FC_TXCODING, 79, 81
chart of receiver capabilities, 81
defined, 352

FC_TXNSF, 353

FC_TXSUBADDR, 354

FEATURE_TABLE data structure, 38

features
fax, 23
table of, 24

file descriptor
fx_rcvfax2(), 283
fx_rcvfax2() rcvflag parameter, 284

file storage formats, 24, 56, 101

fill bit processing
support for, 27

fill order
ASCII file, 70
Least Significant Bit (LSB), 97
raw file, 56, 67

flags
DF_ASCIIDATA, 131
setting for fx_sendfax(), 83

Flow, demo program, 123

font field
DF_ASCIIDATA, 132

fonts, 110
default, 110
Dialogic proprietary, 112
enabling, 113
enabling, sample code, 113
location of Dialogic fonts, 113
overriding default, 111
specifying for ASCII files, 334

Index

409

specifying in DF_ASCIIDATA, 111
using control characters in ASCII

file, 112

format
fax page header, 336
file storage, 24

full-duplex, 254

functions
categories, 148
convenience, 161
fax, 147
information overview, 161
mode of operation, 30, 31
reference, library, 161

fx_close(), 63
cautions, 225
description, 225

fx_getctinfo(), 38, 228

fx_getDCS()
description, 231

fx_getDIS()
description, 234

fx_GetDllVersion(), 237

fx_getNSF()
description, 239

fx_getparm()
cautions, 244
description, 243
example, 244
retry counter, 83

fx_initstat(), 64
description, 249
example, 250

fx_libinit(), 252

fx_open(), 38, 63
description, 258

fx_originate(), 261

fx_rcvfax(), 63
asynchronous mode, 102
bit mask, 101
description, 267
events, 102
example, 271

callback handler, 278
example, asynchronous, 275
example, raw file, 273
example, TIFF/F, 271
file formats, 268
issued by receiver, 107
issued by transmitter, 108
issuing, 107
maximum receive width, 270
mode of operation, 269
operator intervention enable, 105,

269
page length, selecting, 106
page width, selecting, 105
Phase B event enable, 103, 269
Phase D event enable, 103, 269
polling bit, 107, 268
preferred receive page length, 270
receive flag, 101, 268
resolution, 270
status of reception, 108
storing fax in TIFF/F file, 95
subaddress fax routing, 99
synchronous mode, 102
termination events, 159
user-defined I/O functions, 270
using, 107
voice request enable, 105, 269

fx_rcvfax2(), 63
bit mask, 101
cautions, 284
description, 283
example, 284
receive flag, 101
storing fax in TIFF/F file, 95

Dialogic® Fax Software Reference

 410

subaddress fax routing, 99
termination events, 159

fx_rtvContinue(), 288

fx_sendascii(), 156
cautions, 292
continuation values, 292
description, 291
example, 292
source code, 293

fx_sendfax(), 63, 295
asynchronous mode, 83, 296
bit mask, 296
cautions, 65, 299
contiguous DF_IOTT entries, 325
description, 295
example, 300, 302, 305

callback handler, 312
issuing guidelines, 90
mode of operation, 296
operator intervention enable, 86,

298
Phase B event enable, 84, 297
Phase D event enable, 85, 297
resolution, 86, 298
send flag, 296
sndflag parameter, 83
status of transmission, 91
subaddress fax routing, 299
synchronous mode, 83, 296
termination events, 159
turnaround polling fax transmission,

90
voice request enable, 86, 298

fx_sendraw(), 156
cautions, 318
continuation values, 318
description, 317
example, 319
resolution, 318
source code, 319

fx_sendtiff(), 156

cautions, 322
continuation values, 322
description, 321
example, 323
source code, 323

fx_setiott(), 62, 66
ASCII, 326
description, 325
raw, 326
source code, 328
TIFF/F, 326

fx_setparm(), 79, 330
% bad scan lines, 98, 99

before RTN, 345
before RTP, 345

cautions, 355
data reception encoding scheme, 94
data storage encoding scheme, 347
description, 330
example, FC_FONT0, 356
example, FCRETRYCNT, 355
fax header, 82

starting page number displayed,
339

time format, 340
fax header attributes, 336
fax header date format, 338
fax header user field, 339
fax header user text string, 341
FC_BAUDRATE, 346
FC_ENDDOC, 333
FC_FONT0, 334
FC_FONT3, 335
FC_HDRATTRIB, 336
FC_HDRDATEFMT, 338
FC_HDRDATETIME, 339
FC_HDRSTARTPAGE, 339
FC_HDRTIMEFMT, 340
FC_HDRUSER, 341
FC_HDRUSER2, 341
FC_LOCALID, 342

Index

411

FC_REMOTEID, 343
FC_REMOTESUBADDR, 343
FC_RETRYCNT, 344
FC_RTN, 98, 345
FC_RTP, 98, 345
FC_RXBAUDRATE, 98
FC_RXCODING, 94, 347
FC_SENDCONT, 348
FC_TFPGBASE, 349
FC_TFTAGCHECK, 351
FC_TXBAUDRATE, 351
FC_TXCODING, 352
FC_TXSUBADDR, 354
function reference, 330
intermediate page continuation

value, 348
local ID, 342
maximum receive baud rate, 98, 346
raw file storage, 97
receive delimit value, 333
receive fax parameters, 94
remote ID, 343
remote subaddress routing, 343
retransmit, 82
retry counter, 83, 344
subaddress fax routing, 99, 354
TIFF/F file page base, 349
TIFF/F file storage, 95
TIFF/F file tag checking, 351
TIFF/F mandatory tag level, 351
transmit baud rate, 79, 351
transmit encoding scheme, 79, 352

fx_setuio()
description, 358
example, 359

fx_stopch()
cautions, 362
description, 361

fx_unlisten(), 364

G
Germany

computer-based fax, 28

get fax parameter, 243

graphical attributes
ASCII files, 136

Group 3
fax, 47
files, 58

guidelines
implementing fax capability, 62

H
half-duplex, 254

handshake detection, digital, 48

header
fax, 82

header attributes, 336

header files, 159

header format 1, 337

header format 2, 337

I
I/O, user-defined functions, 155

receiving a fax, 108
set, 358
transmitting a fax, 92

image resolution, 60, See resolution

image scaling, 59
support for, 26

image widths
support for, 26

images

Dialogic® Fax Software Reference

 412

merging from different sources, 27,
77

sub-page addressing, 77

implementing
guidelines, 62
receive fax capability, 93
send fax capability, 61

include files, 159
dxxxlib.h, 159
faxlib.h, 159
srllib.h, 159

incoming fax. See also receive fax
baud rate, 346
blocking, 53
encoding scheme, 94
fx_rcvfax(), 267
fx_rcvfax2(), 283
implementing capability, 93
storage encoding, read, 347

initial fax application status, 48

initializing
DF_IOTT, 150
fax library DLL, 252

input/output
user-defined functions, 145

integration
restriction, 30
voice and fax, 29, 30

international fax
support for, 28

introduction, 21

io_bufferp, 140

io_coding, 68, 140

IO_CONT, 143

io_datap, 140

io_datatype, 67, 140

IO_DEV, 143

IO_EOT, 65, 143, 299

io_fhandle, 140

io_firstpg, 140
using, 69

io_length, 68, 71, 141

IO_LINK, 143

IO_MEM, 143

io_nextp, 66, 327

io_offset, 68, 71, 141

io_pgcount, 141
using, 69

io_phdcont, 142

io_prevp, 327

io_resln, 68, 71, 142

io_type, 65, 66, 68, 71, 299

IO_UIO, 143

io_width, 68, 71, 143

issuing
fx_rcvfax(), 107

italics, 387
applying in ASCII to fax, 387

ITU-T
Group 3, 23
T.30 definition, 47

J
JBIG, 40

JPEG, 40

Index

413

K
Katakana character set, 28, 389

killing
fax transfer, 361

L
Least Significant Bit (LSB), 56

raw files, 67, 97

length
preferred receive page, 106
preferred receive page length, 270

libfaxmt.dll, 252

libfaxmt.lib, 147, 151

library, 147, See fax library
files, 29
function reference, 161
link when compiling, 159
overview, 29

library files, 159
libdxxmt.lib, 159
libfaxmt.lib, 159
libsrlmt.lib, 159

library header file, 159

line encoding scheme
transmission, setting, 79, 80, 352

link
DF_IOTT entries, 327
transmit fax data, 48

linking libraries, 159

local identification, 342

LSB (Least Significant Bit), 56

M
main library

function reference, 161

overview, 147

margin
bottom, ASCII file, 131
left, ASCII file, 132
right, ASCII file, 134
top, ASCII file, 134

margins
maximum values for ASCII files,

136
specified for ASCII sub-pages, 78

MCF (Message Confirmation), 345

memory
transmit from, 66

merge-page, 75, 77, 142

Merge-page, 326

merging fax images, 73

message, end of, 76

MH, 58, See Modified Huffman

MMR, 58, See Modified Modified Read

mode of operation
asynchronous, 30, 31
fx_rcvfax(), 269
fx_sendfax(), 296
receive fax, 102
synchronous, 30, 31

Modified Huffman, 56, 58
data transmission encoding, 72
io_coding, 140
sending ASCII files, 70
sending raw files, 67
specifying for fax transmit in

fx_setparm(), 352
specifying for incoming fax in

fx_setparm(), 347
storing incoming data, 94
storing raw files, 97

Dialogic® Fax Software Reference

 414

support for, 24

Modified Modified Read, 56, 58
data transmission encoding, 72
io_coding, 140
specifying for fax transmit in

fx_setparm(), 352
specifying for incoming fax in

fx_setparm(), 347
storing incoming data, 94
storing raw files, 97
support for, 24
using Error Correction Mode, 92

Modified Read, 56, 58
data transmission encoding, 72
sending raw files, 67
specifying for fax transmit in

fx_setparm(), 352
support for, 24, 25

MPS (Multi-Page Signal), 95

MR, 58, See Modified Read, See
Modified Read

multi-page fax, 95
setting DFC_EOM, 76
setting DFC_MPS, 77
storing in multiple TIFF/F files, 95
storing in single TIFF/F file, 95

multi-page signal, 74, 77, 142

Multi-page signal, 97

Multi-page Signal, 349

Multi-Page Signal, 95, 96, 292, 318,
322, 326

multi-page TIFF/F file
specifying Phase D value, 70, 77,

348

N
negotiate fax parameters, 48

Non-Standard Facilities
getting message, 155
T.30 NSF, 144, 239

normal fax transmission, 49
defined, 46
sequence of activities, 49

NSF
read, 239
T.30 Non-Standard Facilities, 239

O
opening

fax channel device, 63, 258

operator intervention
enabling, 86, 105, 269

order
fill, ASCII file, 70
fill, raw file, 67

organization
documentation, 18

outgoing fax
implementing send fax capability,

61

overview
chapter contents, 18

P
page

merge (concatenate image), 75

Page
number scheme, TIFF/F, 218
transferred, number of, 190

page count
TIFF/F file, 69

page header
fax, 82
header format 1, 337

Index

415

header format 2, 337
time format, 340

page length
ASCII file, 133
ASCII sub-pages, 78
selecting for receive fax, 106

page number
starting, fax page header, 339

page numbering scheme
TIFF/F file, 349

page sizes
ASCII files, 136

page width
selectable, 105
T.30 recommendations, 106

parameters
return fax, 243
set fax, 330
setting for receive fax, 94

Phase A
defined, 47
initial fax application status, 48

Phase B, 94, See also status
defined, 48
event generation, fx_rcvfax(), 103,

269
event generation, fx_sendfax(), 84,

297
fax extended attributes for, 103
negotiate fax parameters, 48

Phase C
defined, 48

Phase D
automatic messaging, 75
command status value, return, 192
command values, 96, 371
continuation values, 48, 73, 142,

326

for fx_sendascii(), 292
for fx_sendraw(), 318
for fx_sendtiff(), 322
setting, 73

defined, 48
DFC_AUTO, 73, 75
DFC_EOM, 74, 76
DFC_EOP, 73, 76
DFC_MPG, 73, 75
DFC_MPS, 74, 77
event generation, fx_rcvfax(), 103,

269
event generation, fx_sendfax(), 85,

297
fax extended attributes for, 104
reply status values, 195, 371
status values, 91, 371

Phase E
defined, 49
release fax call, 49
status value return, 184
status values, 375

phases
fax session, 47

phone number
used by remote station, 343
used for fax transmission, 342

pixel, 105

poll bit, 54

polled fax transmission
defined, 46

polling
fax transmission, 50
invalid, polling fax transmission, 51
invalid, turnaround polling fax

transmission, 54
specifying in receive fax, 107
turnaround fax transmission, 54
valid, polling fax transmission, 51

Dialogic® Fax Software Reference

 416

valid, turnaround polling fax
transmission, 54

polling bit
fx_rcvfax(), 268

polling fax transmission, 50
defined, 46
sequence, 52
sequence for transmit only, 53

polling modes
support for, 27

pre-Phase B
event generation, fx_sendfax(), 296

procedure, end of, 76

product
features, 23
support, 21
terminology, 21

program flow, 33
TDM bus configuration, 34

publications
related, 17

purpose, 17

R
raw file

retransmit, 82

raw files
DF_IOTT entry, 327
end of line sequences, 56
format, 56
fx_sendraw(), 318
Least Significant Bit, 56, 97
receiving, 267
resolution, 318
send single file, 317
sending, 56, 67
start location, 68

storing, 56, 97

rcvflag bit mask
fx_rcvfax(), 101, 268
fx_rcvfax2(), 101, 284

read
DCS, 231
DIS, 234
fax parameter, 243
incoming data baud rate, 346
NSF, 239

receive fax
baud rate, maximum, 98
delimiters for received files, 95
encoding scheme, 94
file format, 101, 268
functions, 149
fx_rcvfax(), 267, 268
fx_rcvfax2(), 283
mode of operation, 102, 269
operator intervention enable, 105,

269
page length, preferred, 106, 270
page width, maximum, 270
page width, selectable, 105
Phase B event enable, 103, 269
Phase D event enable, 103, 269
polling valid or invalid, 107, 108,

268
replacing bad scan lines, 99
resolution, 106, 270
setting parameters, 94
status, 108
subaddress fax routing, 99
voice request enable, 105, 269

receive fax capability
implementing, 93

receive fax function, 267, 283

receiver
defined, 45
encoding schemes accepted, 81

Index

417

fax document, 46
Phase D status, 371
polling, 51

reference
function header, 162
main library, 161

related publications, 17

release fax call, 49

release notes, 17

remote identification, 343

remote station, 46

remote terminal verification (RTV)
enable, 296
fx_rtvContinue() function, 288

replacing
bad scan lines, 92, 99

reply status values
Phase D, 371

resolution, 60
DF_IOTT entry, 76
fax reception, 106, 270
fax transmission, 86, 298
image, 142
raw (fx_sendraw ()), 318
specifying

ASCII files, 71
raw files, 68

Resolution
negotiated value returned, 198

resource management, 153

resource sharing, 22

restriction
voice and fax channel, 30

retransmitting fax, 82, 344

retry counter
setting, 82, 344

routing
SCbus time slot, 154

routing to subaddresses, 87

RTN (Retrain Negative), 98
setting, 345

RTP (Retrain Positive), 98
setting, 345

Running
faxasync demo program, 121
faxdemo program, 120
faxsr program, 121

S
SC_TSINFO, 246, 254

scaling
image, 59
image, support for, 26

scan lines
bad, 98, 345
replacing bad, 92, 99

SCbus configuration, 32, 34

SCbus routing
library functions, overview, 154

selectable
baud rate, 79
encoding scheme, incoming fax, 94
receive page length, 106
receive width, 105

send fax. See also transmit
functions, 149, 295

send fax capability
implementing, 61

send fax document
fx_sendascii(), 291

Dialogic® Fax Software Reference

 418

fx_sendfax(), 295
fx_sendraw(), 317
fx_sendtiff(), 321
subaddress fax routing, 87

service request, Phase A, 47

set
DF_IOTT entry, 64, 325
ECM options, 80
fax parameters, 330
initial fax state, 150, 249
retry attempts, 82
transmit line encoding, 80

Set
user I/O, 358

shared fax resource, 22

signal, multi-page, 77

sndflag parameter
fx_sendfax(), 83, 296

Softfax, 22

Software
demo programs, 117

source code
fx_sendascii(), 293
fx_sendraw(), 319
fx_sendtiff(), 323
fx_setiott(), 328

specifications
fax, 23

speed, final transfer, 207

sr_libinit(), 253

srllib.h, 159

stand-alone configuration, 32, 33
program flow, 33

standard attribute functions
error handling, 157

Standard Runtime Library, 29
error code values, 379

Standard Runtime Library device
mapper functions, 37

state
fax channel device, 210
initial fax, 150, 249

status
bad scan lines, 168
encoding scheme, 178
fax application, 48
fax channel type, 175
fax extended attributes, 151
fax library version number, 186
fax reception, 108
fax session, 151
fax transmission, 91
final transfer speed, 207
missing TIFF/F tag number, 216
Phase B, 171
Phase D, 371
Phase D reply, 195
Phase E, 184, 375

Status
bad page offset, 166
bad TIFF/F tag number, 214
base page number scheme, TIFF/F,

218
negotiated width, 222
number of pages transferred, 190
number of RTN pages returned, 201
Phase D command, 192
pointer to last DF_IOTT, 188
reasons for termination (bit mask),

212
resolution, 198
scan lines transferred, 204

stopping
fax transfer, 91, 361

storage

Index

419

file formats, 24, 56
TIFF/F tag values from, 367
TIFF/F tag values to, 369

storing
in multiple TIFF/F files, 95
in single TIFF/F file, 95
incoming fax, 101
raw files, 97

structures
data, 129
declaring, 130

subaddress fax routing, 60, 87, 343
receiving, 99
setting, 354
support for, 27
to multiple subaddresses, 89
to single subaddress, 88

subaddress messaging
support for, 27

sub-page addressing, 73
support for, 27
using DFC_MPG, 77
using DFC_MPG, 75
using DFC_MPG, 142
using DFC_MPG, 326
using DFC_MPG, 327

synchronous mode, 30, 31
error handling, 158
fx_rcvfax(), 102, 269
fx_sendfax(), 83, 296

system configuration models, 32

system error, 157

T
T.30

defined, 47
SUB message, 99

T4Options, 368

T6Options, 368

tag
missing TIFF/F tag number, 216
TIFF/F, 57
TIFF/F, from storage, 367
TIFF/F, guidelines, 70
TIFF/F, to storage, 369

TDM bus configuration, 32, 34
program flow, 34

Telephone Consumer Protection Act
compliance with, 35

terminating
fax transfer, 91, 361

termination events, 86, 105, 159, 212

terminology
fax, 45

TF_AUTOPG, 349

TF_BASE0, 349

TF_BASE1, 349

TFX_FAXERROR, 84, 102

TFX_FAXRECV, 96, 97, 102, 104

TFX_FAXSEND, 84

TFX_PHASEB, 84, 103

TFX_PHASED, 85, 104

TIFF/F file
base page numbering scheme, 349
DF_IOTT, 69
missing mandatory tag number, 216
page count, 69
page numbering scheme, 350
retransmit, 82
sending multi-page, 70, 77, 348
sending single file, 321
storing, 57
storing in multiple, 95, 333

Dialogic® Fax Software Reference

 420

storing in single, 95, 333
tag checking, 351
tags, 57
tags from storage, 367
tags to storage, 369
troubleshooting, 70

TIFF/F files
DF_IOTT entry, 327
receiving, 267

time format
fax page header, 339, 340

time slot routing
SCbus, overview, 154

TM_FXTERM, 212

TM_POLLED, 212

TM_VOICEREQ, 212

tone detection, 47

transfer
byte count, 220
raw file

start location, 68

Transfer
pages, number of, 190
speed, final, 207

transfer table, 138

transmission
encoding scheme, 72

transmission errors
bad scan lines, 92

transmission types, 46

transmit
ASCII files, 70
baud rate, preferred, 79
called application, 91
caller application, 91, 295
continuation values, Phase D, 48

convenience function overview, 156
DF_IOTT cautions, 65, 299
DF_IOTT entries

array, 66
connecting, 66
linked list, 66

fax document, 48
fax page header, 82
from device, 66
from memory, 66
image scaling, 59
mode of operation, 296
normal fax, 49
operator intervention enable, 298
Phase B event enable, 297
Phase D event enable, 297
Phase D status, 371
polling, 50, 51
pre-Phase B event enable, 296
raw files, 67
RECEIVER application, 295
resolution, 298
resolution for all fax data, 86
stopping, 91
subaddress fax routing, 60
TIFF/F files, 69
transmitter application, 90, 295
turnaround polling, 54
voice request enable, 298

transmit characteristics, 138

transmit fax functions, 149

transmitter
application, receive fax, 108
application, send fax, 90
defined, 45
encoding schemes accepted, 81
fax procedures, 46
FC_TXCODING, 81
polling, 51

troubleshooting, 157
fax error codes, 379

Index

421

TIFF/F files, 70

turnaround polling fax transmission, 54,
90

cumulative page count, 190
defined, 46
DF_IOTT entry, 76
fax state, 249
sequence, 55
setting DFC_EOM, 76

U
unformatted files

storing, 56

unstructured files
DF_IOTT entry, 327
storing, 56

unsuccessful transmission
setting retry counter, 344

user-defined functions, 145
registering, 358

user-defined I/O functions
receiving a fax, 108, 270
specifying, 155, 283
transmitting a fax, 92

V
values to storage

TIFF/F tag, 369

VFX/41JCT-LS, 21

VFX/xxx, 21

voice API
compatibility with fax, 63

voice library, 29
integration with fax, 29, 30

voice request
enabling, 86, 105, 269
fx_sendfax(), 298

W
width

DF_IOTT entry, 76
image, 143
image scaling, 59
image, support for, 26
maximum receive width, 270
selectable receive, 105
specifying ASCII files, 71
specifying raw files, 68
T.30 recommendations, 106

Width
negotiated value returned, 222

Dialogic® Fax Software Reference

 422

	Contents
	Tables
	Figures
	1. Introduction
	1.1. Purpose and Audience
	1.2. Using This Guide
	1.3. Related Publications
	1.4. Documentation Conventions
	1.5. What’s in This Guide

	2. Basics of Fax Software
	2.1. Introduction to Fax Software
	2.2. Product Terminology
	2.3. Product Features
	2.4. Fax API/Library Overview
	2.5. Voice and Fax Integration
	2.6. Modes of Operation
	2.6.1. Synchronous Mode
	2.6.2. Asynchronous Mode

	2.7. System Configuration Models
	2.7.1. Stand-Alone Model
	 2.7.2. TDM Bus Model

	2.8. Complying with the Telephone Consumer Protection Act

	3. Fax API for Dialogic® DM3 Boards
	3.1. Overview of Fax API for Dialogic® DM3 Boards
	3.2. Device Discovery
	3.3. Programming Considerations
	3.4. Color Fax
	3.4.1. Color Fax Features
	3.4.2. Using the Dialogic® Fax API Library for Color Fax

	4. Background on Fax Communications
	4.1. Overview
	4.2. Fax Terminology
	4.3. Structure of a Fax Call
	4.3.1. Phase A - Set Up Fax Call
	4.3.2. Phase B - Pre-Message Procedure
	4.3.3. Phase C - Transmit Message
	4.3.4. Phase D - Post-Message Procedure
	4.3.5. Phase E - Release Fax Call

	4.4. Types of Fax Transmission
	4.4.1. Normal Fax Transmission
	4.4.2. Polling Fax Transmission (Fax on Demand)
	4.4.3. Turnaround Polling Fax Transmission

	4.5. File Storage Formats
	4.5.1. Raw Files
	4.5.2. TIFF/F Files
	4.5.3. ASCII Files

	4.6. Data Encoding Schemes
	4.7. Error Correction Mode (ECM)
	4.8. Image Scaling
	4.9. Image Resolution
	4.10. Subaddress Fax Routing

	5. Implementing Send Fax Capability
	5.1. Overview
	5.2. Guidelines for Implementing Fax
	5.3. Opening and Closing a Fax Channel Device
	5.4. Setting the Initial State of a Fax Channel
	5.5. Specifying Fax Data for Transmission in a DF_IOTT Table Entry
	5.5.1. Declaring a Table of DF_IOTT Entries
	5.5.2. Connecting DF_IOTT Table Entries
	5.5.3. Sending Data from Device or Memory
	5.5.4. Specifying File Storage Format
	5.5.5. Sending Raw Files
	5.5.6. Sending TIFF/F Files
	5.5.7. Sending ASCII Files
	5.5.8. Specifying Encoding Scheme for Data Transmission
	5.5.9. Setting Phase D Continuation Values
	5.5.10. Merging Images from Different Sources or Sub-Page Addressing

	5.6. Setting Parameters for Send Fax
	5.6.1. Selecting a Transmission Baud Rate
	5.6.2. Specifying a Preferred Encoding Scheme for Transmission
	5.6.3. Defining a Fax Page Header
	5.6.4. Retransmitting a Fax

	5.7. Setting the Bit Mask for a Send Fax Function
	5.7.1. Mode of Operation
	5.7.2. Enable Phase B Event Generation
	5.7.3. Enable Phase D Event Generation
	5.7.4. Enable Operator Intervention (Voice Request)
	5.7.5. Select Resolution for Fax Transmission
	5.7.6. Enable Subaddress Fax Routing

	5.8. Issuing a Send Fax Function
	5.8.1. Send Fax Issued by the Transmitter
	5.8.2. Send Fax Issued by the Called Application
	5.8.3. Status of Fax Transmission

	5.9. Stopping a Fax Transmission or Reception
	5.10. Replacing Bad Scan Lines
	5.11. Creating User-Defined I/O Functions

	6. Implementing Receive Fax Capability
	6.1. Overview
	6.2. Setting Parameters for Receive Fax
	6.2.1. Specifying Encoding Scheme to Store Incoming Fax Data
	6.2.2. Storing Incoming Fax Data
	6.2.3. Setting Acceptable Percentage of Bad Scan Lines
	6.2.4. Selecting Preferred Maximum Receive Baud Rate
	6.2.5. Replacing Bad Scan Lines
	6.2.6. Routing Fax Data to Multiple Subaddresses
	6.2.7. Setting Fax Modem Receive Level

	6.3. Setting the Bit Mask for a Receive Fax Function
	6.3.1. File Format for Incoming Fax Data
	6.3.2. Mode of Operation
	6.3.3. Enable Phase B Event Generation
	6.3.4. Enable Phase D Event Generation
	6.3.5. Enable Operator Intervention (Voice Request)
	6.3.6. Selectable Receive Width
	6.3.7. Selectable Receive Length
	6.3.8. Resolution for Storing Incoming Fax Data

	6.4. Issuing a Receive Fax Function
	6.4.1. Receive Fax Issued by the Receiver
	6.4.2. Receive Fax Issued by the Transmitter
	6.4.3. Status of Fax Reception

	6.5. Creating User-Defined I/O Functions

	7. Specifying Fonts in ASCII to Fax Conversion
	7.1. Overview
	7.2. Fonts Supported in ASCII to Fax Conversion
	7.3. Using fx_setparm() and fx_getparm() to Select Fonts
	7.4. Overriding Fonts Set with fx_setparm()
	7.4.1. Specify a Font in DF_ASCIIDATA
	7.4.2. Use Control Characters in ASCII Document Prior to Sending

	7.5. Preserving Proprietary Fonts as Default Fonts
	7.5.1. Location of Proprietary Fonts
	7.5.2. Steps to Enable Proprietary Fonts

	8. Fax Demo Programs for Linux
	8.1. Overview
	8.2. Fax Demo Programs Overview
	8.3. Fax Demo Programs Physical Connections
	8.4. Fax Demo Programs Software
	8.5. Before Running the Fax Demo Programs
	8.5.1. Modify fax.cfg Configuration File
	8.5.2. Fax Demo Program Execution Considerations

	8.6. Running the Fax Demo Programs
	8.6.1. Starting faxdemo
	8.6.2. Starting faxasync
	8.6.3. Starting faxsr

	8.7. Fax Demo Program Flow

	9. Fax Demo Program for Windows®
	10. Fax Data Structures
	10.1. Overview
	10.2. Declaring Fax Data Structures
	10.3. DF_ASCIIDATA – ASCII Data Description
	10.3.1. DF_ASCIIDATA Definition
	10.3.2. DF_ASCIIDATA Field Descriptions
	10.3.3. DF_ASCIIDATA Usage Rules

	10.4. DF_DCS – Digital Command Signal
	10.5. DF_DIS – Digital Identification Signal
	10.6. DF_IOTT – Fax Transmit Data Description
	10.6.1. DF_IOTT Definition
	10.6.2. DF_IOTT Field Descriptions

	10.7. DF_TXNSF – Transmit NSF Message
	10.7.1. DF_TXNSF Definition
	10.7.2. DF_TXNSF Field Descriptions

	10.8. DF_UIO – User-Defined I/O
	10.8.1. DF_UIO Definition
	10.8.2. DF_UIO Field Descriptions
	10.8.3. DF_UIO Usage Rules

	11. Using the Fax Library
	11.1. Overview
	11.2. Function Categories
	11.2.1. Send Fax
	11.2.2. Receive Fax
	11.2.3. Set Initial Fax State
	11.2.4. Initialize DF_IOTT
	11.2.5. Configuration
	11.2.6. Extended Attribute
	11.2.7. Resource Management
	11.2.8. TDM Bus Routing
	11.2.9. Miscellaneous
	11.2.10. Convenience Functions

	11.3. Error Handling
	11.3.1. Synchronous Mode
	11.3.2. Asynchronous Mode

	11.4. Include (Header) Files
	11.5. Compiling Applications

	12. Fax Library Function Reference
	Fax Library Overview
	ATFX_BADIOTT()
	ATFX_BADPAGE()
	ATFX_BADSCANLINES()
	ATFX_BSTAT()
	ATFX_CHTYPE()
	ATFX_CODING()
	ATFX_ECM()
	ATFX_ESTAT()
	ATFX_FXVERSION()
	ATFX_LASTIOTT()
	ATFX_PGXFER()
	ATFX_PHDCMD()
	ATFX_PHDRPY()
	ATFX_RESLN()
	ATFX_RTNPAGES()
	ATFX_SCANLINES()
	ATFX_SPEED()
	ATFX_STATE()
	ATFX_TERMMSK()
	ATFX_TFBADTAG()
	ATFX_TFNOTAG()
	ATFX_TFPGBASE()
	ATFX_TRCOUNT()
	ATFX_WIDTH()
	fx_close()
	fx_getctinfo()
	fx_getDCS()
	fx_getDIS()
	fx_GetDllVersion()
	fx_getNSF()
	fx_getparm()
	fx_getxmitslot()
	fx_initstat()
	fx_libinit()
	fx_listen()
	fx_open()
	fx_originate()
	fx_rcvfax()
	fx_rcvfax2()
	fx_rtvContinue()
	fx_sendascii()
	fx_sendfax()
	fx_sendraw()
	fx_sendtiff()
	fx_setiott()
	fx_setparm()
	fx_setuio()
	fx_stopch()
	fx_unlisten()

	Appendix A - TIFF/F Tags and Values
	Appendix B - Fax Phase D Status Values
	Appendix C - Fax Phase E Status Values
	Appendix D - Fax Error Codes
	Appendix E - Fax Event Codes
	Appendix F - ASCII to Fax Tables
	Appendix G - Acronyms List
	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Updated TIPs settings to fix web compatibility issue. The PDF documents can be opened with Acrobat and Reader 4.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

