
Dialogic® Global Call E1/T1
CAS/R2
Technology Guide

October 2008

05-2445-003

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide – October 2008
Dialogic Corporation

Copyright and Legal Notice

Copyright © 2005-2008 Dialogic Corporation. All Rights Reserved. You may not reproduce this document in whole or in part without permission in
writing from Dialogic Corporation at the address provided below.

All contents of this document are furnished for informational use only and are subject to change without notice and do not represent a commitment on
the part of Dialogic Corporation or its subsidiaries (“Dialogic”). Reasonable effort is made to ensure the accuracy of the information contained in the
document. However, Dialogic does not warrant the accuracy of this information and cannot accept responsibility for errors, inaccuracies or omissions
that may be contained in this document.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH DIALOGIC® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN A
SIGNED AGREEMENT BETWEEN YOU AND DIALOGIC, DIALOGIC ASSUMES NO LIABILITY WHATSOEVER, AND DIALOGIC DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF DIALOGIC PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY INTELLECTUAL PROPERTY
RIGHT OF A THIRD PARTY.

Dialogic products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Due to differing national regulations and approval requirements, certain Dialogic products may be suitable for use only in specific countries, and thus
may not function properly in other countries. You are responsible for ensuring that your use of such products occurs only in the countries where such
use is suitable. For information on specific products, contact Dialogic Corporation at the address indicated below or on the web at www.dialogic.com.

It is possible that the use or implementation of any one of the concepts, applications, or ideas described in this document, in marketing collateral
produced by or on web pages maintained by Dialogic may infringe one or more patents or other intellectual property rights owned by third parties.
Dialogic does not provide any intellectual property licenses with the sale of Dialogic products other than a license to use such product in accordance
with intellectual property owned or validly licensed by Dialogic and no such licenses are provided except pursuant to a signed agreement with
Dialogic. More detailed information about such intellectual property is available from Dialogic’s legal department at 9800 Cavendish Blvd., 5th Floor,
Montreal, Quebec, Canada H4M 2V9. Dialogic encourages all users of its products to procure all necessary intellectual property licenses
required to implement any concepts or applications and does not condone or encourage any intellectual property infringement and
disclaims any responsibility related thereto. These intellectual property licenses may differ from country to country and it is the
responsibility of those who develop the concepts or applications to be aware of and comply with different national license requirements.

Dialogic, Dialogic Pro, Brooktrout, Cantata, SnowShore, Eicon, Eicon Networks, Eiconcard, Diva, SIPcontrol, Diva ISDN, TruFax, Realblocs,
Realcomm 100, NetAccess, Instant ISDN, TRXStream, Exnet, Exnet Connect, EXS, ExchangePlus VSE, Switchkit, N20, Powering The Service-
Ready Network, Vantage, Making Innovation Thrive, Connecting People to Information, Connecting to Growth and Shiva, among others as well as
related logos, are either registered trademarks or trademarks of Dialogic Corporation or its subsidiaries. Dialogic's trademarks may be used publicly
only with permission from Dialogic. Such permission may only be granted by Dialogic’s legal department at 9800 Cavendish Blvd., 5th Floor, Montreal,
Quebec, Canada H4M 2V9. Any authorized use of Dialogic's trademarks will be subject to full respect of the trademark guidelines published by
Dialogic from time to time and any use of Dialogic’s trademarks requires proper acknowledgement.

Windows is a registered trademark of Microsoft Corporation in the United States and/or other countries. Other names of actual companies and
product mentioned herein are the trademarks of their respective owners.

Publication Date: October 2008

Document Number: 05-2445-003

www.dialogic.com

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide – October 2008 3
Dialogic Corporation

Contents

Revision History . 9

About This Publication . 11

1 E1/T1 CAS/R2 Overview . 13

1.1 Making Telephone Calls: Transmission of Digits and Signaling Information 13
1.2 Making Long Distance and Global Telephone Calls . 15
1.3 T1 Robbed Bit Signaling Concepts . 15
1.4 E1 CAS Signaling Concepts . 16
1.5 R2MF Signaling Concepts . 16

1.5.1 R2MF Multifrequency Combinations. 18
1.5.2 R2MF Signal Meanings . 18
1.5.3 R2MF Compelled Signaling . 19

1.6 Direct Dialing In (DDI) Service. 20

2 Dialogic® Global Call Architecture for E1/T1 CAS/R2 . 21

3 E1/T1 CAS/R2 Call Scenarios . 23

4 E1/T1 CAS/R2-Specific Operations . 25

4.1 Call Progress and Call Analysis. 25
4.1.1 Call Analysis with Dialogic® DM3 Boards . 26
4.1.2 Call Analysis with Dialogic® Springware Boards . 28
4.1.3 Call Analysis Functionality for PDK Protocols. 29
4.1.4 Tone Definitions for PDK Protocols . 32
4.1.5 Call Analysis Functionality for ICAPI Protocols. 35

4.2 CAS Pattern Signal Declarations. 37
4.2.1 CAS_SIGNAL_TRANS_t . 37
4.2.2 CAS_SIGNAL_PULSE_t . 38
4.2.3 CAS_SIGNAL_TRAIN_t . 39

4.3 Dynamic Trunk Configuration . 40
4.3.1 Setting the Line Type and Coding for a Trunk . 41
4.3.2 Specifying the Protocol for a Trunk. 43

4.4 Resource Association . 44
4.5 Resource Allocation and Routing . 45

4.5.1 Dedicated Voice Resources . 45
4.5.2 Shared Voice Resources . 47

4.6 Alarm Handling . 49
4.6.1 Alarm Handling for Dialogic® DM3 Boards . 49
4.6.2 Alarm Handling for Dialogic® Springware Boards. 52

4.7 Run-Time Configuration of the PDKRT Call Control Library . 56
4.8 Run-Time Configuration of PDK Protocol Parameters . 57
4.9 Determining the Protocol Version . 59
4.10 Run-Time Control of Single or Double Hookflash on Consultation Drop for FXS/LS Protocol

60
4.11 Retrieving Line Signaling Access . 63

4 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide – October 2008
Dialogic Corporation

Contents

5 E1/T1 CAS/R2 Protocols . 67

5.1 Protocols Supported . 67
5.2 Protocol File Naming Conventions . 68
5.3 Protocol Components . 69

5.3.1 Protocol Modules . 69
5.3.2 Country Dependent Parameter (.cdp) Files . 70

6 Building Dialogic® Global Call E1/T1 CAS/R2 Applications . 71

6.1 Header Files . 71
6.2 Required Libraries . 71
6.3 Required System Software . 71

7 Debugging Dialogic® Global Call E1/T1 CAS/R2 Applications . 73

7.1 Introduction . 73
7.2 Debugging Applications That Use PDK Protocols . 73

7.2.1 Enabling and Disabling the Logging . 73
7.2.2 Populating and Using a CCLIB_START_STRUCT . 74
7.2.3 Defining the GC_PDK_START_LOG Environment Variable 78

7.3 Debugging Applications That Use ICAPI Protocols . 78

8 E1/T1 CAS/R2-Specific Function Information. 81

8.1 Dialogic® Global Call Functions Supported by E1/T1 CAS/R2. 81
8.2 Dialogic® Global Call Function Variances for E1/T1 CAS/R2. 88

8.2.1 gc_AcceptCall() Variances for E1/T1 CAS/R2 . 89
8.2.2 gc_AnswerCall() Variances for E1/T1 CAS/R2. 89
8.2.3 gc_BlindTransfer() Variances for E1/T1 CAS/R2 . 91
8.2.4 gc_CallAck() Variances for E1/T1 CAS/R2. 92
8.2.5 gc_Close() Variances for E1/T1 CAS/R2 . 92
8.2.6 gc_CompleteTransfer() Variances for E1/T1 CAS/R2 . 93
8.2.7 gc_Detach() Variances for E1/T1 CAS/R2 . 93
8.2.8 gc_DropCall() Variances for E1/T1 CAS/R2. 93
8.2.9 gc_Extension() Variances for E1/T1 CAS/R2 . 94
8.2.10 gc_GetCallInfo() Variances for E1/T1 CAS/R2. 94
8.2.11 gc_GetParm() Variances for E1/T1 CAS/R2 . 96
8.2.12 gc_HoldCall() Variances for E1/T1 CAS/R2 . 97
8.2.13 gc_MakeCall() Variances for E1/T1 CAS/R2 . 97
8.2.14 gc_OpenEx() Variances for E1/T1 CAS/R2 . 99
8.2.15 gc_ResetLineDev() Variances for E1/T1 CAS/R2 . 101
8.2.16 gc_RetrieveCall() Variances for E1/T1 CAS/R2 . 101
8.2.17 gc_SetBilling() Variances for E1/T1 CAS/R2 . 101
8.2.18 gc_SetChanState() Variances for E1/T1 CAS/R2 . 102
8.2.19 gc_SetEvtMsk() Variances for E1/T1 CAS/R2 . 102
8.2.20 gc_SetParm() Variances for E1/T1 CAS/R2. 102
8.2.21 gc_SetupTransfer() Variances for E1/T1 CAS/R2 . 103
8.2.22 gc_Start() and gc_Stop() Variances for E1/T1 CAS/R2. 103
8.2.23 gc_StartTrace() Variances for E1/T1 CAS/R2 . 104
8.2.24 gc_SwapHold() Variances for E1/T1 CAS/R2 . 104

9 E1/T1 CAS/R2-Specific Data Structures . 105

10 E1/T1 CAS/R2-Specific Event Cause Values. 109

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide – October 2008 5
Dialogic Corporation

Contents

11 Supplementary Reference Information . 113

Index . 115

6 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide – October 2008
Dialogic Corporation

Contents

Figures

1 Dialogic® Global Call Architecture When Using E1/T1 CAS/R2. 22

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide – October 2008 7
Dialogic Corporation

Contents

Tables

1 Signaling Used to Dial (Hz) . 14
2 Dialogic® Global Call API Call Progress Settings . 27
3 Call Analysis Support on Dialogic® DM3 Boards with CAS. 27
4 TONE_t Signal Definition Parameters . 33
5 CAS_SIGNAL_TRANS_t Signal Definition Parameters . 38
6 CAS_SIGNAL_PULSE_t Signal Definition Parameters. 39
7 CAS_SIGNAL_TRAIN_t Signal Definition Parameters . 40
8 Alarms That Can Be Transmitted on E1 and T1 Interfaces on Dialogic® DM3 Boards 50
9 Alarms That Can Be Transmitted on E1 and T1 Interfaces on Dialogic® Springware Boards . 53
10 Configurable PDKRT Call Control Library Parameters . 56
11 PSL and SYS Parameters . 58
12 Configurable PDK Protocol Parameters . 58
13 Bit Positioning in GC_PARM_DATA value_buf Element . 65
14 Protocol File Naming Conventions . 68
15 Sample ICAPI Protocol File Set. 69
16 Sample PDK Protocol File Set. 69
17 cclib_data Fields and Values . 75
18 Loglevel Parameter Values . 76
19 Service Parameter Values . 76
20 Cachedump Parameter Values . 77
21 Sample Channel Parameter Values . 77
22 icapi.cfg File Parameters . 79
23 gc_GetCallInfo() Billing Type Strings Returned . 95
24 gc_GetCallInfo() Cause Values for GCEV_DISCONNECT . 96
25 Parameters Supported, gc_GetParm() and gc_SetParm() . 103
26 Call Control Library Cause Values When Using Dialogic® DM3 Boards 109
27 Firmware-Related Cause Values When Using Dialogic® DM3 Boards 109

8 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide – October 2008
Dialogic Corporation

Contents

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 9

Dialogic Corporation

Revision History

This revision history summarizes the changes made in each published version of this document.

Document No. Publication Date Description of Revisions

05-2445-003 October 2008 Made global changes to reflect Dialogic brand.

E1/T1 CAS/R2-Specific Operations chapter : Added Run-Time Control of Single or
Double Hookflash on Consultation Drop for FXS/LS Protocol.
Added Retrieving Line Signaling Access.

E1/T1 CAS/R2-Specific Function Information chapter : Under gc_AnswerCall()
Variances for E1/T1 CAS/R2, added Run-Time Control of Double Answer.
Under gc_GetCallInfo() Variances for E1/T1 CAS/R2, added more information
about Use of the CALLINFOTYPE info_id Parameter.

05-2445-002 April 2006 Global Call Architecture for E1/T1 CAS/R2 chapter : Clarified which call control
libraries are applicable to Dialogic® DM3 Boards and to Dialogic® Springware
Boards.

E1/T1 CAS/R2-Specific Operations chapter : In Dynamic Trunk Configuration section,
added note clarifying the use of gc_ResetLineDev() before
gc_SetConfigData() when performing dynamic trunk configuration.
Updated Alarm Handling for DM3 Boards section to more accurately specify the
alarms that can be transmitted to the remote side and provide a mapping to the
0x1626 parameter in the CONFIG file, which is used for trunk preconditioning.
Updated Alarm Handling for Springware Boards section to more accurately
specify the alarms that can be transmitted to the remote side.

E1/T1 CAS/R2-Specific Function Information chapter : In gc_SetChanState()
Variances for E1/T1 CAS/R2 section, added note about protocols that do not
send the blocking pattern by default (PTR 36726).
In gc_SetupTransfer() Variances for E1/T1 CAS/R2 section, corrected the name
of the gc_SetupTransfer() function; the “u” is lower case, not upper case (PTR
35811).

05-2445-001 July 2005 Initial version of document. Much of the information contained in this document was
previously published in the Global Call E1/T1 CAS/R2 Technology User’s Guide for
Linux and Windows, document number 05-0615-011.

10 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

Revision History

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 11

Dialogic Corporation

About This Publication

The following topics provide information about this publication:

• Purpose

• Applicability

• Intended Audience

• How to Use This Publication

• Related Information

Purpose

This guide is for users of the Dialogic® Global Call API who choose to write applications using
E1/T1 CAS/R2 technology. This guide provides Global Call E1/T1 CAS/R2 specific information
only and should be used in conjunction with the Dialogic® Global Call API Programming Guide
and the Dialogic® Global Call API Library Reference, which describe the generic behavior of the
Dialogic® Global Call API.

Applicability

This document version is applicable to Dialogic® Host Media Processing (HMP) Software and to
Dialogic® System Release Software for Linux and Windows® operating systems.

Check the Release Guide for your software release to determine whether this document is
supported.

Intended Audience

This guide is intended for:

• Distributors

• System Integrators

• Toolkit Developers

• Independent Software Vendors (ISVs)

• Value Added Resellers (VARs)

• Original Equipment Manufacturers (OEMs)

This publication assumes that the audience is familiar with the Windows® and Linux operating
systems and has experience using the C programming language.

12 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

About This Publication

How to Use This Publication

This guide is divided into the following chapters:

• Chapter 1, “E1/T1 CAS/R2 Overview” gives a brief introduction to E1/T1 CAS/R2 concepts
for novice users.

• Chapter 2, “Dialogic® Global Call Architecture for E1/T1 CAS/R2” provides an overview of
the Dialogic® Global Call Software architecture when using E1/T1 CAS/R2 technology.

• Chapter 3, “E1/T1 CAS/R2 Call Scenarios” discusses call scenarios.

• Chapter 4, “E1/T1 CAS/R2-Specific Operations” describes how one can use the Dialogic®
Global Call API to perform E1/T1 CAS/R2 specific operations, such call progress and call
analysis, resource association, and others.

• Chapter 5, “E1/T1 CAS/R2 Protocols” describes the protocol conventions used and
programming considerations if incorporating individual country protocol(s) into an
application. (More detailed information about each protocol appears in the Dialogic® Global
Call Country Dependent Parameters (CDP) for PDK Protocols Configuration Guide.)

• Chapter 6, “Building Dialogic® Global Call E1/T1 CAS/R2 Applications” describes the E1/T1
CAS/R2 specific header files and libraries required if building applications.

• Chapter 7, “Debugging Dialogic® Global Call E1/T1 CAS/R2 Applications” provides
information for debugging Dialogic® Global Call applications that use E1/T1 CAS/R2
technology.

• Chapter 8, “E1/T1 CAS/R2-Specific Function Information” describes the additional
functionality of specific Dialogic® Global Call API functions used with E1/T1 CAS/R2
technology.

• Chapter 9, “E1/T1 CAS/R2-Specific Data Structures” lists data structures specific to E1/T1
CAS/R2 technology.

• Chapter 10, “E1/T1 CAS/R2-Specific Event Cause Values” lists the supported E1/T1
CAS/R2-specific event cause values, and provides a description of each value.

• Chapter 11, “Supplementary Reference Information” lists references to publications about
E1/T1 CAS/R2 technology.

Related Information

See the following for additional information:

• http://www.dialogic.com/manuals/ (for Dialogic® product documentation)

• http://www.dialogic.com/support/ (for Dialogic technical support)

• http://www.dialogic.com/ (for Dialogic® product information)

http://www.dialogic.com/manuals/
http://www.dialogic.com/manuals/
http://www.dialogic.com/support/
http://www.dialogic.com

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 13
Dialogic Corporation

11.E1/T1 CAS/R2 Overview

This chapter provides overview information about the following topics:

• Making Telephone Calls: Transmission of Digits and Signaling Information 13

• Making Long Distance and Global Telephone Calls . 15

• T1 Robbed Bit Signaling Concepts . 15

• E1 CAS Signaling Concepts . 16

• R2MF Signaling Concepts. 16

• Direct Dialing In (DDI) Service . 20

1.1 Making Telephone Calls: Transmission of Digits and
Signaling Information

Historically, making a telephone call started with taking your telephone handset out of its cradle.
This action caused your telephone to go off-hook. For analog telephones, going off-hook closes a
circuit (called the local loop) connected to the local Central Office (CO) and causes a loop current
to flow through the local loop circuit created.

The CO reacts by generating dial tone (typically, a combination of 350 Hz and 440 Hz tones),
which indicates that you can dial. Traditionally, you would dial your number using pulse dialing
(also called rotary dialing). Pulse dialing sends digit information to the CO by momentarily
opening and closing (or breaking) the local loop from the calling party to the CO. This local loop is
broken once for the digit 1, twice for 2, etc., and 10 times for the digit 0. As each number is dialed,
the loop current is switched on and off, resulting in a number of pulses being sent to your local CO.

Alternatively, you may dial a number using tone dialing, wherein sounds represent the digits dialed
(0 through 9, # and * are dialing digits). Each digit is assigned a unique pair of frequencies called
Dual Tone Multi Frequency (DTMF) digits (see Table 1). Although DTMF signaling is designed
for operation on international networks with 15 multifrequency combinations in each direction, in
national networks it can be used with a reduced number of signaling frequencies (for example, 10
multifrequency combinations).

In addition to the DTMF digit standard, telcos also use a Multi Frequency (MF) digit standard (see
Table 1). MF digits are typically used for CO-to-CO signaling. The MF digit standard is similar to
the DTMF digit standard except that different pairs of frequencies are assigned. Some MF digits
use approximately the same frequencies as DTMF digits; for example, the digit 4 uses 770 and
1209 Hz for DTMF transmissions or 700 and 1300 Hz for MF transmissions. Because of this
frequency overlap, MF digits could be mistaken for DTMF digits if the incorrect tone detection is
enabled.

14 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2 Overview

The accuracy of digit detection depends on:

• the digit sent

• the type of detection, MF or DTMF, enabled when the digit is detected. See the Dialogic®
Voice API Library Reference for details.

For each call, signaling information (off-hook, number dialed) must be detected by the local CO
and then sent to each successive CO until the destination CO is reached. The destination CO
attempts to connect to the called party. Concurrently, the destination CO sends back signaling
information (such as line busy, network busy signals, etc.) representing the condition or status of
the called party’s line. This signaling information passes through the network as audio tones or as
signaling bits. The number of tones used and the frequency combinations used to convey this
signaling information vary from country to country and from telco to telco. In addition, private
networks may combine various signaling techniques.

After dialing, you listen to hear the progress and status of the call:

• Ringing tones (ringback) indicate that ring voltage has been applied to the called party’s line.

• A busy tone is heard when the called party’s telephone is off-hook.

• A fast busy tone may be heard if the telephone network is busy.

• An operator intercept signal is heard if an invalid number is dialed. The operator intercept
signal is three rising tones followed by a recording.

Note: No ringing tones are heard when connected to some telcos.

The CO typically indicates the progress of making a call by generating these various tones. When
making long distance calls, the telco may make brief drops in loop current to indicate:

• an acknowledgment that the distant CO was reached

• that the calling party’s line went off-hook

Table 1. Signaling Used to Dial (Hz)

Code Pulse DTMF MF
R2MF

Forward
R2MF

Backward

1 1 697, 1209 700, 900 1380, 1500 1140, 1020

2 2 697, 1336 700, 1100 1380, 1620 1140, 900

3 3 697, 1477 900, 1100 1500, 1620 1020, 900

4 4 770, 1209 700, 1300 1380, 1740 1140, 780

5 5 770, 1336 900, 1300 1500, 1740 1020, 780

6 6 770, 1477 1100, 1300 1620, 1740 900, 780

7 7 852, 1209 700, 1500 1380, 1860 1140, 660

8 8 852, 1336 900, 1500 1500, 1860 1020, 660

9 9 852, 1477 1100, 1500 1620, 1860 900, 660

0 10 941, 1336 1300, 1500 1740, 1860 780, 660

* - 941, 1209 1100, 1700 1380, 1980 1140, 540

- 941, 1477 1500, 1700 1500, 1980 1020, 540

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 15
Dialogic Corporation

E1/T1 CAS/R2 Overview

After a call is connected, a telco service may be requested by a flash-hook. A flash-hook puts the
telephone on-hook briefly, long enough for the CO to detect the flash-hook, but not long enough to
cause a disconnect. A flash-hook may signal a request for a second dial tone to allow 3-way
conferencing or to transfer the call.

At the completion of the call, one or both parties hang up the telephone. Typically, the CO sends a
disconnect signal. However, some telcos don’t send a disconnect signal; therefore a local CO must
use other methods to detect a remote disconnect.

1.2 Making Long Distance and Global Telephone Calls

Long distance calls may involve transmitting dialing and other signaling information from the local
CO, through several intermediate COs, to the distant called party’s CO and then connecting to the
called party. A mixture of signaling systems and protocols may be encountered, especially when
making global calls. Local call signaling must be translated into signaling that may pass over
analog lines, T1 digital trunks, E1 digital trunks, optical fiber, satellite links, etc. All signaling sent
over digital trunks must be converted to bits that can be transmitted or multiplexed with the
digitized voice transmissions.

Each telco, country, or region tends to apply different signaling standards that must be observed to
ensure that a call gets switched through to the called party. For example, some telcos may encode
E&M (Ear and Mouth) signals onto the voice path using a single frequency (SF) tone. When
present, this tone indicates an on-hook condition. Otherwise, the line is considered to be off-hook
(absence of tone). Typically, when the same manufacturer’s product is connected to both ends of a
digital trunk, then the signaling technique used is transparent as long as all signaling is handled.

1.3 T1 Robbed Bit Signaling Concepts

A T1 trunk operates at 1.544 Mbps divided into 24 time slots with each time slot operating at 64
kbps [digital signal level 1 (DS-1) rate]. A single 8-bit sample from each of 24 voice channels
comprises a D4 frame of 24 time slots on a T1 trunk. Twelve D4 frames make up a D4 superframe.

Signaling information is carried on a T1 trunk by two signaling bits, an A-bit and a B-bit. Each
time slot in the sixth frame of a D4 superframe has the least significant bit replaced with A-bit
signaling information. Likewise, each time slot in the twelfth frame of the D4 superframe has the
least significant bit replaced with B-bit signaling information. This method of replacing the least
significant bit with signaling information is called robbed bit signaling. Thus, a T1 robbed bit trunk
carries all signaling within the voice time slot (channel) itself.

Dialing, if not done using DTMF or MF tones, is accomplished by alternating the A and B
signaling bits between 0 and 1 to mimic rotary dial pulses. Signaling bits represent the state of the
M lead on the E&M interface of the calling party. When the called party answers, the M lead
returns continuous 1s. When a party hangs up, their signal bits revert to 0s to indicate on-hook.
Some telcos invert these signaling bits so that 0 = off-hook and 1 = on-hook.

16 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2 Overview

New telco services may require the use of more than the four signaling states provided by the A and
B bits. An extended superframe (ESF) adopted by AT&T provides two additional signaling bits, the
C-bit in frame 18 and the D-bit in frame 24.

1.4 E1 CAS Signaling Concepts

An E1 digital trunk operates at 2.048 Mbps divided into 32 time slots with each time slot operating
at 64 kbps. These 32 time slots include:

• 30 time slots available for up to 30 voice calls

• one time slot dedicated to carrying frame synchronization information (time slot 0)

• one time slot dedicated to carrying signaling information (time slot 16)

With this method of signaling, each traffic channel has a dedicated signaling channel, that is,
channel associated signaling (CAS). The signaling for a particular traffic circuit is permanently
associated with that circuit. For E1 CAS, the signaling channel for each traffic channel is located in
time slot 16, which is multiplexed between all 30 traffic channels.

E1 CAS service is available in Europe, Africa, Australia, and in parts of Asia and South America.
The Conference des Administrations Europeenes des Postes et Telecommunications (CEPT)
defines how a PCM carrier system in E1 areas will be used. In addition, the E1 CAS service may
carry national and international signaling bits set in time slot 0:

• The international bit occupies the most significant bit (bit position 7) in time slot 0 of each
frame.

• The national bits occupy bit positions 0 through 4 of time slot 0 of every second frame.

For each E1 CAS call, signaling information is sent to the local CO and then to each successive CO
until the destination CO is reached. The destination CO attempts to connect to the called party.
Concurrently, the destination CO sends back signaling information representing the condition or
status of the called party’s line. This signaling information passes through the network as audio
tones. R2MF signaling is the international standard for conveying call status using these audio
tones. However, the number of tones used, the frequency combinations used, and the adherence to
the R2 standard can vary from country to country.

Also, whenever a call is switched via networks or protocols that do not support full R2MF
signaling, call information may be lost. Although many protocols do not require call analysis
because the called party condition is received via R2 tones, when operating in environments where
call information may be lost, call progress tones (busy, ringback, SIT tones, etc.) may be useful in
determining the condition of a call.

1.5 R2MF Signaling Concepts

R2MF signaling is an international signaling system on E1 that transmits numeric and other
information relating to the called and the calling subscribers’ lines. R2MF signals that control the
call setup are referred to as interregister signals.

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 17
Dialogic Corporation

E1/T1 CAS/R2 Overview

For each call, whether an inbound or an outbound call, the entity making the call is the “calling
party” and the entity receiving the call is the “called party.” For an inbound call, the calling party is
eventually connected to a central office (CO) that connects to the customer premises equipment
(CPE) of the called party. For this inbound call, the CO is referred to as the outgoing register and
the CPE as the incoming register. Signals sent from the CO are forward signals; signals sent from
the CPE are backward signals. The outgoing register (CO) sends forward interregister signals and
receives backward interregister signals. The incoming register (CPE) receives forward interregister
signals and sends backward interregister signals.

For an outbound call, the calling party’s CPE connects to the CO that switches the outbound call to
the called party. For an outbound call, the signaling described above is reversed. That is, signals
sent from the CPE are forward signals and signals sent from the CO are backward signals.

In addition, address signals can provide the telephone number of the called party’s line. For
national traffic, the address signals can also provide the telephone number of a calling party’s line
for automatic number identification (ANI) applications.

R2MF signals used for supervisory signaling on the network are called line signals.

For example, a calling party sends the first dialed digits to the local CO. The local CO uses these
digits to determine the next CO in the connection chain. The next CO uses these first dialed digits
to determine if they are the destination CO or if the call is to be switched to another CO.
Eventually, the call reaches the destination CO. At the destination CO, the call is received and
acknowledged. The destination CO eventually gets the last dialed digits, which exactly identify the
called party.

The destination CO checks the called party’s line to determine if it is clear, idle, busy, etc. The
destination CO then generates and sends a B-tone backwards to the calling party to indicate the
condition of the line. If the called party’s line is free, the destination CO applies ringing to the line
and sends ringback tones backwards to the calling party. When the called party answers the call, the
calling party is switched through to the called party. If the called party’s line is busy, or in some
other condition, the destination CO sends this information backwards to the calling party via R2
tones. The local CO sends all information received from the destination CO to the calling party.
When calls are made in countries that adhere to the full R2 protocol standard (for example,
Belgium), the condition of the called party’s line is always returned to the calling party.

When traversing networks, protocols, or countries, R2 tonal information can be lost. For example:

• In Italy, for an ICAPI protocol, the calling party would need to use busy tone 103 and ringback
tone 105 to determine the condition of the called party’s line.

• When the call is switched over a T1 span, the B-tones (also called Group B signals, see
Section 1.5.2, “R2MF Signal Meanings”, on page 18) are lost and the condition of the called
party’s line cannot be detected using R2 tones. In this environment, the application must rely
on the call progress tones received to determine the condition of the called party’s line.

• In Spain, the network is not a full Socotel backbone; therefore, B-tones defining the condition
of the called party’s line may or may not be sent backwards to the calling party.

18 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2 Overview

1.5.1 R2MF Multifrequency Combinations

R2MF signaling uses a multifrequency code system based on six fundamental frequencies in the
forward direction (1380, 1500, 1620, 1740, 1860, and 1980 Hz) and a different set of six
frequencies in the backward direction (1140, 1020, 900, 780, 660, and 540 Hz).

Each signal is composed of two of the six frequencies, providing 15 different tone combinations in
each direction. Although R2MF signaling is designed for operation on international networks with
15 multifrequency combinations in each direction, in national networks it can be used with a
reduced number of signaling frequencies (for example, 10 multifrequency combinations). See the
Dialogic® Voice API Library Reference for lists of these signal tone pairs.

1.5.2 R2MF Signal Meanings

The 15 forward signals are classified into Group I forward signals and Group II forward signals.
The 15 backward signals are classified into Group A backward signals and Group B backward
signals.

In general, Group I forward signals and Group A backward signals are used to control call setup
and to transfer address information between the outgoing register (CO) and the incoming register
(CPE). The incoming register can signal the outgoing register to change over to Group II and
Group B signaling.

Group II forward signals provide the calling party’s category and Group B backward signals
provide the condition of the called subscriber’s line. Group B signals, also called B-tones, are
typically the last tone in the protocol. For example, typically a B-3 tone indicates that the called
party’s line is busy.

Signaling must always begin with a Group I forward signal followed by a Group A backward signal
that serves to acknowledge the signal just received; this Group A backward signal may request
additional information. Each signal requires a response from the other party. Each response
becomes an acknowledgment of the event and an event to which the other party must respond.

Backward signals serve to indicate certain conditions encountered during call setup or to announce
switchover to changed signaling, for example, forward signaling switching over to backward
signaling. Changeover to Group II and Group B signaling allows information about the state of the
called subscriber’s line to be transferred.

The incoming register backward signals can request:

• transmission of address:

– send next digit

– send digit previous to last digit

– send second digit previous to last digit sent

– send third digit previous to last digit sent

• category of the call (the nature and origin):

– national or international call

– operator or subscriber

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 19
Dialogic Corporation

E1/T1 CAS/R2 Overview

– data transmission

– maintenance or test call

• whether the circuit includes a satellite link

• country code and language for international calls

• information on use of an echo suppressor

The incoming register backward signals can indicate:

• address complete - send category of call

• address complete - put call through

• international, national, or local congestion

• condition of subscriber’s line:

– send SIT to indicate long term unavailability

– line busy

– unallocated number

– line free - charge on answer

– line free - no charge on answer (only for special destinations)

– line out of order

The meaning of certain forward multifrequency combinations may also vary depending upon their
position in the signaling sequence.

See the Dialogic® Voice API Library Reference for more details and definitions of R2MF signals.

1.5.3 R2MF Compelled Signaling

Compelled signaling protocols vary from country to country and are grouped into two main
categories, both of which are supported by the Dialogic® Global Call Software:

• R2MF derived from the CCITT (International Telegraph and Telephone Consultative
Committee) standard, where the response tones can carry information from the receiver to the
sender. This standard provides a consistent handshake, where the sender always initiates with a
forward tone, and the receiver always responds with a backward tone.

• MF Socotel, where the response tone is a standard, single frequency acknowledgment tone that
cannot carry additional information. In this standard, the handshake of forward and backward
tones changes direction when the receiver needs to send information back to the sender.

The Global Call Software provides network device independence by shielding the application from
protocol-specific details while giving access to each protocol’s full range of features. The
compelled signaling feature uses tone generation and detection IDs that are defined at system
initialization.

R2MF interregister signaling uses forward and backward compelled signaling. With compelled
signaling, each signal is sent until a response (a return) signal is generated. This return signal is
sent until responded to by the other party. Each signal stays on until the other party responds, thus
compelling a response from the other party. Compelled signaling provides a balance between speed

20 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2 Overview

and reliability because it adapts its signaling speed to the working conditions with a minimum loss
of reliability.

Compelled signaling must always begin with a Group I forward signal. For an inbound call:

• The CO starts to send the first forward signal.

• As soon as the CPE recognizes this signal, the CPE starts to send a backward signal that serves
as an acknowledgment and may also request additional information.

• As soon as the CO recognizes the CPE acknowledging signal, the CO stops sending the
forward signal.

• As soon as the CPE recognizes the end of the forward signal, the CPE stops sending the
backward signal.

• As soon as the CO recognizes that the CPE stopped sending the backward signal, the CO may
start to send the next forward signal.

The above scenario describes the CPE handling of an inbound call. The roles of the CO and the
CPE are reversed when the CPE makes an outbound call.

1.6 Direct Dialing In (DDI) Service

Since DTMF, MF, and R2MF tone signals can provide the telephone number of the called
subscriber’s line, these signals may be used by applications providing Direct Dialing In (DDI)
service, also called dialed number identification service (DNIS) and analog DNIS for direct inward
dialing (DID).

DDI service allows an outside caller to dial an extension within a company without requiring an
operator’s assistance to transfer the call. The CO passes the last 2, 3, or 4 digits of the dialed
number to the CPE, and the CPE completes the call.

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 21
Dialogic Corporation

22.Dialogic® Global Call Architecture
for E1/T1 CAS/R2

This chapter describes the Dialogic® Global Call Software architecture when using E1/T1 CAS/R2
technology.

Figure 1 shows the Dialogic® Global Call Software architecture with the two key elements from an
E1/T1 CAS/R2 viewpoint highlighted:

• The Dialogic® Global Call API is a library of functions that provide primarily call control, but
also operation and maintenance functionality to applications.

• The underlying call control libraries provide the interface between the network and the Global
Call API library.

– GC_DM3CC_LIB is the DM3CC call control library. This library is used for call control
using CAS/R2MF (PDK protocols) signaling on Dialogic® DM3 Boards. (It is also used
for Integrated Services Digital Network (ISDN) on Dialogic DM3 Boards, which is not
discussed in this manual; ISDN is covered in the Dialogic® Global Call ISDN Technology
Guide.)

– GC_PDKRT_LIB is the Protocol Development Kit Run Time (PDKRT) call control
library. This library is used for call control using CAS/R2MF (PDK protocols) signaling
on Dialogic® Springware Boards only.

– GC_ICAPI_LIB is the Interface Control Application Programming Interface (ICAPI) call
control library. This library is used for call control using CAS/R2MF (ICAPI protocols)
signaling on Dialogic® Springware Boards only.

Note: The development of the ICAPI protocols supported by Global Call has been capped.
Customers should migrate to equivalent protocols developed using the PDK. New
protocol development as well as existing protocol support will be on the PDK. ICAPI
protocols are supported only on Dialogic Springware Boards. PDK protocols are
supported on both Dialogic DM3 Boards and Dialogic Springware Boards.

See the Dialogic® Global Call API Programming Guide for more information about the Global
Call architecture.

22 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

Dialogic® Global Call Architecture for E1/T1 CAS/R2

Figure 1. Dialogic® Global Call Architecture When Using E1/T1 CAS/R2

User Application

Other
Libraries

Global Call API

Call Control Libraries

ICAPI PDKRT DM3CC SS7 IP

Device Driver Operating Systems

Firmware

Network Interface

Firmware

Network Interface

PSTN

ISDN

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 23
Dialogic Corporation

33.E1/T1 CAS/R2 Call Scenarios

The E1/T1 CAS/R2 technology currently supports all of the call scenarios that are described in the
Dialogic® Global Call API Programming Guide. Please refer to that publication for information on
call scenarios.

24 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2 Call Scenarios

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 25
Dialogic Corporation

44.E1/T1 CAS/R2-Specific
Operations

This chapter offers information for programmers who choose to design and code Dialogic® Global
Call E1 CAS or T1 robbed bit applications in a Linux or Windows® environment. Topics include
the following:

• Call Progress and Call Analysis . 25

• CAS Pattern Signal Declarations. 37

• Dynamic Trunk Configuration. 40

• Resource Association . 44

• Resource Allocation and Routing . 45

• Alarm Handling . 49

• Run-Time Configuration of the PDKRT Call Control Library 56

• Run-Time Configuration of PDK Protocol Parameters . 57

• Determining the Protocol Version . 59

• Run-Time Control of Single or Double Hookflash on Consultation Drop for FXS/LS Protocol
60

• Retrieving Line Signaling Access . 63

4.1 Call Progress and Call Analysis

Call analysis consists of both pre-connect and post-connect information about the progress of the
call. Pre-connect call progress determines the status of the call connection - that is, busy, no dial
tone, no ringback, etc. Post-connect call analysis, which is also known as media type detection,
determines the destination party's media type - that is, answering machine, fax, voice, etc. The term
call progress analysis (CPA) is used to refer to call progress and call analysis collectively.

Note: For CAS (not R2) protocols, separate pre-connect CPA needs to be carried out (initiated) since the
CAS signaling itself does not indicate the condition of the line at any point of call establishment.
For R2 protocols, the signaling is more intelligent. When using R2 compelled signaling, the Group
B tones provide information on the condition of the line as discussed in Section 1.5.2, “R2MF
Signal Meanings”, on page 18.

For R2 protocols, if digits are being sent using R2 tones, pre-connect CPA is part of R2 signaling.
Pre-connect CPA such as NoAnswer can only be initiated after the R2 signaling has been issued.
However, R2 protocols can be configured to dial digits using DTMF/MF, in which case R2
compelled signaling is not used. In this case, full pre-connect CPA is supported and must be
explicitly enabled.

26 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

The following sections discuss:

• Call Analysis with Dialogic® DM3 Boards

• Call Analysis with Dialogic® Springware Boards

• Call Analysis Functionality for PDK Protocols

• Tone Definitions for PDK Protocols

• Call Analysis Functionality for ICAPI Protocols

4.1.1 Call Analysis with Dialogic® DM3 Boards

Note: When using Dialogic® DM3 Boards, Dialogic® Global Call Software provides a consistent method
of pre-connect call progress and post-connect call analysis across analog, CAS, and ISDN
protocols. Refer to the Dialogic® Global Call API Programming Guide for information about this
method of CPA.

The information included below is specific to the E1/T1 CAS technology and is provided for
backward compatibility only. For new applications, it is recommended to use the cross-technology
CPA method described in the Dialogic® Global Call API Programming Guide.

There are two methods available for CPA when using Dialogic® DM3 Boards: the Global Call
method and the dx_dial() method.

The Global Call media detection method is well suited for performing post-connect call analysis.
When activated by setting the GCPR_MEDIADETECT parameter to GCPV_ENABLE for a
particular channel, post-connect call analysis is performed as part of the gc_MakeCall()
function’s operation. The gc_MakeCall() function is used to place a call; the signal detector
analyzes the incoming signals to perform CPA.

After the normal gc_MakeCall() processing finishes and a GCEV_CONNECTED event is sent,
call analysis runs and generates a GCEV_MEDIADETECTED event that tells the application the
result of the analysis (for example, FAX, PVD, or PAMD is detected). The order in which
GCEV_CONNECTED and GCEV_MEDIADETECTED events are received may vary; refer to the
specific protocol in the Dialogic® Global Call Country Dependent Parameters (CDP) for PDK
Protocols Configuration Guide for more details.

The outcome of the analysis determines the events generated and the action that can be taken as
follows:

• If the call is successful, gc_MakeCall() finishes and a GCEV_CONNECTED event is sent,
call analysis runs, and generates a GCEV_MEDIADETECTED event. The gc_ResultValue()
and gc_GetCallInfo() functions can then be used to get more information about the type of
media detected, such as voice, answering machine, and fax.

• If the call is not successful—for example, there is no ringback—a GCEV_DISCONNECTED
event is generated and the gc_ResultValue() function can be used to retrieve the reason for
the failure. See the Dialogic® Global Call API Library Reference for error codes and the
gcerr.h file for more information.

Note: The information above applies when using gc_MakeCall() in asynchronous or synchronous mode.
However, in synchronous mode, since the gc_MakeCall() function must complete, the
GCEV_MEDIADETECTED event is generated after the call is connected.

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 27
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

GCPR_MEDIADETECT and GCPR_CALLPROGRESS parameter settings for gc_SetParm()
actually allow the application to specify whether pre- or post-connect call analysis or both should
be activated. This method for achieving this is shown in Table 2.

As shown in this table, the default behavior (GCPR_MEDIADETECT = GCPV_DISABLE)
disables media detection but actually activates pre-connect call progress for CAS protocols. To
enable full CPA, set the GCPR_MEDIADETECT parameter to GCPV_ENABLE for the
respective channel.

Note: For this Global Call media detection to work, a voice device must be attached to the line device and
properly routed. Failure to do so will cause subsequent outgoing call attempts to fail.

The GCPR_CALLPROGRESS parameter can be used to enable or disable pre-connect call
progress. When combined with GCPR_MEDIADETECT, this allows the application to specify
whether to use pre-connect call progress only or full call progress. If GCPR_CALLPROGRESS
= GCPV_DISABLE, there will be no call progress at all, regardless of the setting of
GCPR_MEDIADETECT.

Table 3 explains call analysis support via the Global Call interface. The table applies to DM3 CAS
protocols with flexible routing clusters, provided that a voice device is attached to the network
device. Check on a protocol-by-protocol basis, as some might not support call analysis at all.

Table 2. Dialogic® Global Call API Call Progress Settings

GCPR_CALLPROGRESS=
GCPV_DISABLE

GCPR_CALLPROGRESS=
GCPV_ENABLE (default)

GCPR_MEDIADETECT=
GCPV_DISABLE (default)

No call progress Pre-connect call progress
only

GCPR_MEDIADETECT=
GCPV_ENABLE

No call progress Full call progress

Table 3. Call Analysis Support on Dialogic® DM3 Boards with CAS

Call Analysis Feature
Support on
Dialogic®

DM3 Boards
How Obtained/Notes

Busy Yes Upon DISCONNECT event, call gc_ResultValue().

No ringback No

SIT Yes Upon DISCONNECT event, call gc_ResultValue().

No answer Yes Upon DISCONNECT event, call gc_ResultValue().

Cadence break No

Discarded No

NA Yes Use GCPR_MEDIADETECT parameter. Upon
MEDIADETECTED event, call gc_GetCallInfo().

Unknown Yes Use GCPR_MEDIADETECT parameter. Upon
MEDIADETECTED event, call gc_GetCallInfo().

PVD Yes Use GCPR_MEDIADETECT parameter. Upon
MEDIADETECTED event, call gc_GetCallInfo().

28 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

Note that the call analysis time-out parameters values apply, and they are configurable by the user.
(They cannot be changed at run time.) The parameters are CaSignalTimeout, CaAnswerTimeout,
and CaPvdTimeout; their values are found in the CHP section of the configuration (.config) file.
However, they apply only to post-connect call analysis and are not used until the call moves from
an initiated to a Proceeding, Alerting, or Connected state.

Another option for call analysis is provided by the Dialogic® Voice API, which provides post-
connect call analysis on Dialogic DM3 Boards through the dx_dial() function. Note that the
Global Call method and the dx_dial() method are mutually exclusive, so you must choose one or
the other.

4.1.2 Call Analysis with Dialogic® Springware Boards

The gc_GetCallInfo() function is used immediately following the receipt of a
GCEV_CONNECTED event to retrieve this post-connect information notifying of the media type
of the answering party. See the Dialogic® Global Call API Library Reference for more
information.

Call analysis tones such as dial tone, ringback, busy, and fax are defined either in the firmware
(global tone detection and global tone generation), or in the country dependent parameters (.cdp)
file, or a combination of both. Tones defined in the firmware can be enabled or disabled by
configuring parameters in the DX_CAP (call analysis parameter) data structure. Similarly, the
DX_CAP data structure can be used to configure the voice detection algorithm that distinguishes
answering machine or human speech. The default parameter values defined in the DX_CAP data
structure can be changed by the gc_LoadDxParm() function to fit the needs of your application.
For a detailed description of enhanced call analysis (Perfect Call) and how to use call analysis, see
the Dialogic® Voice API Programming Guide. For a detailed description of the
gc_LoadDxParm() function, see the Dialogic® Global Call API Library Reference.

Some example uses of call progress tones are as follows:

• By detecting the ringback tone, the Global Call API can count the rings and report a
GCEV_DISCONNECTED event when the call is not answered within the specified number of
rings.

• For telephone circuits that include analog links, the local line may not have access to all of the
digital signaling information. If so, the user must modify the .cdp file accordingly to detect or
generate the busy, ringback, or dial tone of the native country.

PAMD Yes Use GCPR_MEDIADETECT parameter. Upon
MEDIADETECTED event, call gc_GetCallInfo().

Fax Yes Use GCPR_MEDIADETECT parameter. Upon
MEDIADETECTED event, call gc_GetCallInfo().

In progress Yes Use GCPR_MEDIADETECT parameter. Upon
MEDIADETECTED event, call gc_GetCallInfo().

Table 3. Call Analysis Support on Dialogic® DM3 Boards with CAS (Continued)

Call Analysis Feature
Support on
Dialogic®

DM3 Boards
How Obtained/Notes

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 29
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

Global Tone Detection (GTD) Tone Considerations

Global Call will delete all tones and load internally required tones (used for call progress) under
either of the following circumstances:

• If there is a voice device attached to the network device during gc_OpenEx()

• When gc_Attach() or gc_AttachResource() is called, if at least one of the following
statements is true:

– A voice resource is being attached to a network device opened in the PDK library (either
implicitly via gc_OpenEx(), or explicitly via gc_Attach() or gc_AttachResource()).

– Downloading of tones is enabled (gc_SetParm(ldev, GCPR_LOADTONES,
GCPV_ENABLE)).

If Global Call deleted all tones during gc_OpenEx(), gc_Attach(), or gc_AttachResource() as
described above, then the application must reload any tones that it has loaded. It is recommended
that the application not download tones for a voice device prior to calling gc_OpenEx() if the
voice device is specified in the gc_OpenEx(), as the tones will be deleted. Similar considerations
apply to gc_Attach() and gc_AttachResource().

It is the application’s responsibility to ensure that the internally required tones are available to the
protocol during call setup. This can be done by either:

• Never deleting all tones, or

• If the application has deleted all tones while the voice resource is not attached, enabling
downloading of tones

Caution: The application must not delete all tones while the voice resource is attached.

In any case, the application may not delete internally required tones during call setup.

Note: For PDK and ICAPI protocols, the tone IDs for any additional tones that must be redefined after
calling gc_Attach() or gc_AttachResource() cannot be in the range from 101 to 189.

The overhead of downloading tones is expensive. Therefore, for any application that calls
gc_Attach() or gc_AttachResource() several times on the same device (for example, when
resource sharing), this overhead can be avoided by calling gc_SetParm(ldev,
GCPR_LOADTONES, GCPV_DISABLE). This gc_SetParm() function should be called after
the call to the gc_Attach() or gc_AttachResource() function, or after the call to the
gc_OpenEx() function if the voice device is specified in gc_OpenEx(). It is then the application’s
responsibility not to delete all tones on the voice device.

4.1.3 Call Analysis Functionality for PDK Protocols

Call analysis functionality for PDK protocols is discussed in the following sections:

• Overview of Call Analysis When Using PDK Protocols

• Configuring Call Analysis in the Protocol .cdp File

• Enabling the GCEV_MEDIADETECTED Event

• Retrieving the Detected Media Type

30 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

4.1.3.1 Overview of Call Analysis When Using PDK Protocols

On both Dialogic® DM3 and Dialogic® Springware Boards, when using PDK protocols, media
detection (i.e., call analysis) is completed in two parts: protocol and library.

There are parameters in the .cdp file that provide options for media detection with the protocol. The
parameters are PSL_CAMediaDetectOverride (for Dialogic DM3 Boards) and
PSL_MakeCall_MediaDetect (for Dialogic Springware Boards). Further information about these
parameters is given in Section 4.1.3.2, “Configuring Call Analysis in the Protocol .cdp File”, on
page 30.

After the protocol sends the call analysis result to the library, the library determines whether to
send GCEV_MEDIADETECTED to the application, independent of these PSL_ parameter
settings. The GCEV_MEDIADETECTED event is disabled by default in the library, so the
application must explicitly enable the event. See Section 4.1.3.3, “Enabling the
GCEV_MEDIADETECTED Event”, on page 31.

After receiving GCEV_MEDIADETECTED (or after receiving GCEV_CONNECTED if
GCEV_MEDIADETECTED is not enabled), the gc_GetCallInfo() function is used to retrieve
information about the detected media type. See Section 4.1.3.4, “Retrieving the Detected Media
Type”, on page 32.

4.1.3.2 Configuring Call Analysis in the Protocol .cdp File

PDK protocols configure default call analysis operation through the use of two Protocol Service
Layer (PSL) parameters in the protocol .cdp file (the parameter names are different for Dialogic®
DM3 and Dialogic® Springware Boards):

• PSL_CACallProgressOverride (parameter for Dialogic DM3 Boards)
PSL_MakeCall_CallProgress (parameter for Dialogic Springware Boards): Provides default
options for call progress. Possible values are:

– 0 (Always Off): Specifies that the call progress resource cannot be used by the protocol.
This is the default value if this parameter is left undefined in the .cdp file.

– 1 (Preferred): Specifies that the call progress resource is preferred by the protocol. This
value is typically used for T1 and analog protocols. However, the protocol is able to
function without call progress.

– 2 (Pass-through): Specifies that the call progress resource is configured as specified
dynamically by the application, for example, via gc_MakeCall() when using Global Call.
This value is typically used by E1 protocols.

• PSL_CAMediaDetectOverride (parameter for Dialogic DM3 Boards)
PSL_MakeCall_MediaDetect (parameter for Dialogic Springware Boards): Provides options
for media detection. Possible values are:

– 1 (Preferred): Specifies that the media detection resource is preferred by the protocol. This
setting is typically used for T1 and analog protocols. The protocol is able to function
without media detection.

– 2 (Pass-through): Specifies that the media detection resource is configured as specified
dynamically by the application, for example, via gc_MakeCall() or gc_SetParm() when
using Global Call. This value is typically used by E1 protocols. This is the default value if
this parameter is left undefined in the .cdp file.

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 31
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

When call progress or media detection support PSL parameters are specified as pass-through
values in the .cdp file, the application is permitted to define call analysis settings, for example via
gc_MakeCall() when using Global Call. More specifically:

• When the PSL_CACallProgressOverride (DM3) or PSL_MakeCall_CallProgress
(Springware) parameter in the .cdp file is specified as 2 (Pass-through), the application may
disable call progress (the default is enabled) in its call to gc_MakeCall().

• When the PSL_CAMediaDetectOverride (DM3) or PSL_MakeCall_MediaDetect
(Springware) parameter in the .cdp file is not specified as 1 (Preferred, the default is 2, Pass-
through), the application may enable media type detection (the default is disabled) in a call to
gc_MakeCall() or gc_SetParm().

• When call progress or media detection support PSL parameters are specified as pass-through
values in the .cdp file, the application defines call analysis and/or media detection on a per call
basis via the gc_MakeCall() or gc_SetParm() call.

• When call analysis behavior is not specified via PSL parameters in the .cdp file, the default
behavior has call progress always disabled and media type detection disabled by default unless
the application explicitly enables media type detection via the gc_MakeCall() or
gc_SetParm().

• If the call progress and/or media type detection parameters are specified in the .cdp file as 1
(Preferred) or 0 (Always Off), application setting requests (for example, the settings specified
via gc_MakeCall() or gc_SetParm()) are ignored.

4.1.3.3 Enabling the GCEV_MEDIADETECTED Event

On Dialogic® DM3 and Dialogic® Springware Boards, PDK protocols support a method of call
progress configuration using the gc_SetConfigData() / gc_SetParm() function. The parameter
used to specify call analysis (media detection) in this case is GCPR_MEDIADETECT. (See
Table 2, “Dialogic® Global Call API Call Progress Settings”, on page 27.) This enables media type
detection on a per channel basis.

When this method is used to enable media type detection, a GCEV_MEDIADETECTED event is
returned to the application on media type detection so that the gc_GetCallInfo() function can be
used immediately to get information about the type of connection. The application does not have to
wait for a GCEV_CONNECTED event.

Note that if this method of call progress configuration is not used and only
PSL_CAMediaDetectOverride / PSL_MakeCall_MediaDetect is enabled for media detection,
the application must receive a GCEV_CONNECTED event before the gc_GetCallInfo() function
can be used to get information about the type of connection. Even after the GCEV_CONNECTED
event is received, the call information may not be available. (In this situation, gc_GetCallInfo()
returns GCCT_NA.) Consequently, the application may need to poll for the information.

On Dialogic Springware Boards, PDK protocols support another method of call analysis via the
gc_MakeCall() function. The gc_MakeCall() function uses the flags parameter in the
PDK_MAKECALL_BLK structure to determine if call progress and/or media type detection are
enabled on a per call basis. The two flags are NO_CALL_PROGRESS and
MEDIA_TYPE_DETECT. The default values are such that call progress is enabled and media type
detection is disabled, but the bits in the flags parameter can be changed to enable/disable call
progress and/or media type detection as required. (See PDK_MAKECALL_BLK in Chapter 9,

32 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

“E1/T1 CAS/R2-Specific Data Structures”.) If this method is used for media detection, the
application must receive a GCEV_CONNECTED event before the gc_GetCallInfo() function can
be used as described above.

4.1.3.4 Retrieving the Detected Media Type

When the gc_GetCallInfo() function is used to retrieve information about the detected media
type, the info_id parameter to the gc_GetCallInfo() function must be CONNECT_TYPE. The
values that may be returned when the info_id parameter is CONNECT_TYPE include:

GCCT_CAD
Connection due to cadence break

GCCT_PVD
Connection due to voice detection

GCCT_PAMD
Connection due to answering machine detection

GCCT_FAX
Connection due to fax machine detection

GCCT_NA
Connection type is not available

Whether a positive media detection result is sufficient to signal a call state change to the
CONNECTED state is dependent upon the specific PDK protocol. For example, in PDK protocols
where CAS signaling is required for identifying a connection, a signaling bit change must be
received before signaling a CONNECTED call state change. For increased flexibility, a separate
.cdp file parameter, CDP_Connect_Upon_Media, may be defined in the associated parameter file
and used inside the protocol to enable the protocol to perform a call state change to the Connected
state immediately upon positive media detection. This parameter is mostly of interest to T1
protocols.

4.1.4 Tone Definitions for PDK Protocols

On Dialogic® Springware Boards, call analysis and progress tones are mapped to US specified
tones by default. PDK protocols also permit call analysis and progress tones to be customized for
non-US defaults via PSL_TONE_CP_xxx (where xxx is the call analysis tone type, that is, BUSY,
RINGBACK, etc.) parameters as specified in the protocol .cdp file.

The format of a tone definition in the .cdp file is as follows:

ALL TONE_t TONE_<NAME> = Frequency_1, Frequency_1_Deviation, Frequency_2, Frequency_2_Deviation,
Amplitude_1, Amplitude_2, OnTime, OnTime_Deviation, OffTime, OffTime_Deviation, Mode, Repeat
Count

There are two basic types of tone detection for both single and dual tones: edge detection and
cadence detection.

Tone detection using the edge detection algorithm provides notification either when the energy in
the specified frequency band(s) exceeds the threshold (leading-edge detection) or no longer

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 33
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

exceeds the threshold (trailing-edge detection). Edge detection is identified by assigning a value of
zero (0) to the On Time parameter. See Table 4 below.

Tone detection using the cadence detection algorithm provides notification when the energy in the
specified frequency band(s) exceeds threshold and meets the timing requirements of the specified
ring cadence. Cadence detection, like edge detection, can provide notification either when the
cadence completes the specified number of cycles (Repeat Count parameter) or when the cadence
ceases after ringing the specified number of cycles. Cadence detection is identified by assigning a
non-zero value to the On Time parameter.

Another tone detection feature is the ability to debounce the leading edge of the tone. Rather than
notifying the protocol immediately when the leading edge of the tone is detected, the protocol can
specify to wait for a period of time (debounce time) before the tone signal is delivered to the
protocol, that is, debouncing. This type of tone detection can be specified in the tone template as:

• On Time: plus half the debounce time

• On Time Deviation: minus half the debounce time

• Off Time: 0

• Off Time Deviation: 0

• Repeat Count: 0

Note: Many Dialogic Springware Boards cannot detect dual tones with frequency components closer than
65 Hz. In these instances, use a single tone template with the specified frequency band (that is,
Frequency1 +/- Frequency1 Deviation) encompassing both dual tone ranges.

The meaning of each argument of a tone definition is explained in Table 4.

Table 4. TONE_t Signal Definition Parameters

Parameter
Number

Name Description
Detect/

Generate

Edge/
Cadence
Detection

1 Frequency 1 Frequency of first tone (in Hz) Detect,
Generate

Edge,
Cadence

2 Frequency 1
Deviation

Frequency deviation for first tone (in Hz)

Note: The minimum recommended value
for this parameter is 50.

Detect Edge,
Cadence

3 Frequency 2 Frequency of second tone (in Hz) Detect,
Generate

Edge,
Cadence

4 Frequency 2
Deviation

Frequency deviation for second tone (in Hz)

Note: The minimum recommended value
for this parameter is 50.

Detect Edge,
Cadence

5 Amplitude 1 Amplitude of first tone (in dB) Generate Neither

6 Amplitude 2 Amplitude of second tone (in dB) Generate Neither

7 On Time On duration (in milliseconds)

Note: The minimum recommended value is
50.

Detect,
Generate

Cadence

34 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

8 On Time Deviation On time deviation (in milliseconds)

Note: The minimum recommended value is
50.

Detect Cadence

9 Off Time Off duration (in milliseconds)

Note: The minimum recommended value is
50.

Detect,
Generate

Cadence

10 Off Time Deviation Off time deviation (in milliseconds)

Note: The minimum recommended value is
50.

Detect Cadence

11 Mode Detection notification. For Dialogic
Springware Boards, the values and their
meanings are:
• 0 – Report a tone match at the

termination of the tone. For edge
detection, this is the trailing edge. For
cadence detection, this is the
termination of the cadence after the
specified number of cycles.

• 1 – Report a tone match at the beginning
of the tone. For edge detection, this is
the leading edge. For cadence
detection, this is the onset of cadence
detection.

For Dialogic DM3 Boards, the values and
their meanings are:
• 0 – Report a tone match at the

termination of the tone. For edge
detection, this is the trailing edge. For
cadence detection, this is after
cadence has ended.

• 1 – Report a tone match at the beginning
of the tone. For edge detection, this is
the leading edge. For cadence
detection, this is after the first pulse
has been detected and at the
beginning of the second pulse.
(Normal cadence detection for DM3
Boards requires at least 2 pulses.)

• 2 – Report a tone match at both the
beginning and end.

• 3 – Disable tone detection. This is used
for definitions intended only for tone
generation.

• 4 – Report a tone match at the beginning
of the tone. For edge detection, this is
the leading edge. For cadence
detection, this is after the first pulse
has been detected. (Unlike mode 1,
this mode does not require 2 pulses.)

Detect Edge,
Cadence

12 Repeat Count Repetition count (the number of repetitions
on cycles)

Detect,
Generate

Cadence

Table 4. TONE_t Signal Definition Parameters (Continued)

Parameter
Number

Name Description
Detect/

Generate

Edge/
Cadence
Detection

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 35
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

If TONE_x is previously defined, TONE_y may be set equal to TONE_x in the following manner:

ALL TONE_t TONE_y = TONE_x

The following are examples of tone declarations in a .cdp file:

/*
This defines the ringback tone. The currently defined tone is a
tone (440Hz+480Hz) on for 0.25 secs and off for 0.25 secs and a
ring count of 1
*/
R4 TONE_t TONE_RINGBACK = 440,0,480,0,0,0,250,0,250,0,0,1

/*
This identifies the KP tone for ANI.
*/
R4 TONE_t TONE_ANI_KP = 1100,0,1700,0,0,0,100,0,0,0,0,1

4.1.5 Call Analysis Functionality for ICAPI Protocols

Note: The information in this section is applicable to Dialogic® Springware Boards only. Dialogic® DM3
Boards do not use ICAPI protocols.

Global Call call analysis uses global tone detection (GTD) and timers. Some of the country
dependent parameters (.cdp) files define tone templates for recognition of call progress tones. The
tone IDs defined match the protocol parameter numbers (for example, parameter $103 creates tone
ID# 103). See the Dialogic® Voice API Programming Guide for information about working with
and building tone templates.

Parameter $1, $6, or $13 in the .cdp file defines the maximum time (in seconds) for a call to be
answered. Within that interval, a busy tone and ringback tone can be detected. If the timer expires,
the GCEV_DISCONNECTED event is reported to the application.

Two separate busy tones can be defined to accommodate two different call progress failure tones
(that is, busy and out-of-order). Busy tones are defined in parameters $103 and $104 using the
following format:

$103: - <frequency 1> <deviation> <frequency 2> <deviation>
%01: - <on time> <on deviation> <off time> <off deviation>
%02: - <number of cycles before detect>

Frequency is expressed in Hz; time duration is expressed in 10 ms units; unspecified values are set
to 0. The deviation value for frequency 1 or 2 specifies the allowable variation in Hz. The %01
parameter relates to cadence detection. Cadence detection analyzes the audio signal on the line to
detect a repeating pattern of sound (on time) and silence (off time). The deviation value for cadence
detection is the allowable variation in 10 ms units. The %02 parameter specifies the number of
times that the cadence on/off pattern must be detected before classifying the tone detected.

To comment out a tone template, insert a “;” (semicolon) as the first character in all three lines of
the definition. If either of the busy tones is detected, the GCEV_DISCONNECTED event is
reported to the application.

A ringback tone is defined in parameter $105 using the format defined above. The maximum
allowable time between successive rings is defined in parameter $3 in 10 ms units. ICAPI starts a

36 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

timer after receiving a ringback TONEOFF event. Typically, Connect is indicated by line signaling.
However, if the network cannot indicate a Connect via line signaling, then Connect can be
indicated if the next TONEON event does not arrive before the ICAPI timer expires.

To disable Connect detection, set parameter $3 to 0. Global Call will still be able to count the rings
and report the GCEV_DISCONNECTED event if the maximum number of rings is reached. The
maximum number of rings is set in parameter $1.

The ringback tone heard on any specific call depends on the specific CO that is serving the called
party, not the local CO. If the ringback tone is not known, the recommendation is to remove this
tone from the country dependent parameters (.cdp) file.

Only the call progress tone definitions in the .cdp file are used by the Global Call API. The R1 and
R2 tone definitions are used only if you disable R2 MF support in the icapi.cfg file by setting the
$17 parameter to 1.

The following are examples of the definitions of busy tones $103 and $104 and ringback tone $105
in the .cdp file:

* TID # 103 BUSY *

$103 BUSY : 450 35
%01 cadence : 50 10 50 10
%02 cycle : 2

* TID # 104 SBUSY *

$104 SBUSY :450 35
%01 cadence : 25 5 25 5
%02 cycle : 3

* TND # 105 RINGBACK *

$105 RINGBACK : 450 35
%01 cadence : 80

See the Dialogic® Voice API Programming Guide for information about using cadence, cadence
detection, and tone definitions for determining the progress of outbound calls.

In addition, the following outbound parameters in the .cdp file may need to be modified when using
these call progress tones:

• Number of ringback tones before returning GCEV_CALLSTATUS event with a
GCRV_NOANSWER result value (typically, parameter $1 or $5)

• Default maximum time in seconds for a call to be answered (typically, parameter $1, $6, or
$13)

After the .cdp file is modified as described above, whenever one of the defined conditions is
detected on a channel, the gc_MakeCall() function is terminated with a busy, no answer, or time-
out result/error value.

Note: For ICAPI protocols, the filename specified after @0 in the .cdp file must also be specified in the
country.c file used in Linux applications.

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 37
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

4.2 CAS Pattern Signal Declarations

CAS signals are defined in the cdp file for each protocol. They are typically set to default values
based on protocol specifications, but can be tuned if needed. The following sections describe the
formats of CAS signal declarations for different types of signals:

• CAS_SIGNAL_TRANS_t

• CAS_SIGNAL_PULSE_t

• CAS_SIGNAL_TRAIN_t

Notes: 1. When editing CAS signals in the .cdp file, CAS signal x may be set equal to CAS signal y, for
example: All CAS_SIGNAL_TRANS_t CAS_x = CAS_y

2. In the signal definitions:

• When the term “minimum” is used, this implies the information is used for detection and
represents a minimum time for which the associated signal must occur.

• When the term “maximum” is used, this implies the information is used for detection and
represents the maximum time that the associated signal may occur.

• When the term “nominal” is used, this implies the information is used for generation and
represents the actual time to transmit the associated signal.

4.2.1 CAS_SIGNAL_TRANS_t

CAS_SIGNAL_TRANS_t signal declarations represent a transition from one signaling pattern to
another. The format of a CAS_SIGNAL_TRANS_t signal definition in the .cdp file is:

CAS_SIGNAL_TRANS_t format = PreTrans, PostTrans, PreTransInterval, PostTransInterval,
PreTransIntervalNominal, PostTransIntervalNominal

Some examples are:

R4 CAS_SIGNAL_TRANS_t CAS_BLOCK = 00xx,11xx,50,50,80,80
R4 CAS_SIGNAL_TRANS_t CAS_UNBLOCK = 11xx,00xx,50,50,80,80
ALL CA_ SIGNAL_TRANS_t CAS_SEIZE = xxx, 10xx

The meaning of each argument is explained in Table 5.

38 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

4.2.2 CAS_SIGNAL_PULSE_t

CAS_SIGNAL_PULSE_t signal declarations represent a transition from one signaling pattern to
another and then back to the original signaling pattern. The format of a CAS_SIGNAL_PULSE_t
signal definition in the .cdp file is:

CAS_SIGNAL_PULSE_t format = OffPulse, OnPulse, PrePulseInterval, PostPulseInterval,
PrePulseIntervalNominal, PostPulseIntervalNominal, PulseIntervalMin, PulseIntervalNominal,
PulseIntervalMax

Some examples are:

R4 CAS_SIGNAL_PULSE_t CAS_WINK = 00xx,11xx,50,50,80,80,200,250,300
R4 CAS_SIGNAL_PULSE_t CAS_SEIZE_ACK = 00xx,11xx,50,50,80,80,200,250,300

The meaning of each argument is explained in Table 6.

Table 5. CAS_SIGNAL_TRANS_t Signal Definition Parameters

Parameter
Number

Name Description

1 PreTrans BaBbBcBd

where Bi represents a signaling bit (0, 1, - = don’t care, or x = don’t
care) for bit i, where i = a, b, c, or d.

Note: Although T1 signaling does not have c and d bits, they
must be specified for T1 protocols as don’t care values.

2 PostTrans BaBbBcBd

(See description of PreTrans.)

3 PreTransInterval Minimum time for the duration of the pre-transition interval.

If the value is -1 or not present, then the global timing parameter
PSL_PreTransInterval is used.

4 PostTransInterval Minimum time for the duration of the post-transition interval. 0 is
allowed.

If the value is -1 or is not present, then the global timing parameter
PSL_PostTransInterval is used.

5 PreTransIntervalNominal Nominal time for the duration of the pre-transition interval.

If the value is -1 or is not present, then the global timing parameter
PSL_PreTransIntervalNominal is used.

Note: For Dialogic DM3 Boards, this value is always ignored, and
the PreTransInterval value is used.

6 PostTransIntervalNominal Nominal time for the duration of the post-transition interval.

If the value is -1 or is not present, then the global timing parameter
PSL_PostTransIntervalNominal is used.

Note: For Dialogic DM3 Boards, this value is always ignored, and
the PostTransInterval value is used.

Notes:
Time intervals are specified in units of 1 millisecond. The actual granularity is implementation dependent, as is the maximum
value.
Due to implementation restrictions, no time value should be less than 20 milliseconds (except where 0 is allowed).

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 39
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

4.2.3 CAS_SIGNAL_TRAIN_t

CAS_SIGNAL_TRAIN_t signal declarations represent a “train,” that is, a sequence of pulses. The
format of a CAS_SIGNAL_TRAIN_t signal definition in the .cdp file is:

CAS_SIGNAL_TRAIN_t format = OffPulse, OnPulse, PreTrainInterval, PostTrainInterval,
PreTrainIntervalNominal, PostTrainIntervalNominal, PulseIntervalMin, PulseIntervalNominal,
PulseIntervalMax, InterPulseIntervalMin, InterPulseIntervalNominal, InterPulseIntervalMax

The meaning of each argument is explained in Table 7.

Table 6. CAS_SIGNAL_PULSE_t Signal Definition Parameters

Parameter
Number

Name Description

1 OffPulse BaBbBcBd

where Bi represents a signaling bit (0, 1, - = don’t care, or x = don’t
care) for bit i, where i = a, b, c, or d.

Note: Although T1 signaling does not have c and d bits, they
must be specified for T1 protocols as don’t care values.

2 OnPulse BaBbBcBd

(See description of OffPulse.)

3 PrePulseInterval Minimum time for the duration of the pre-pulse interval. 0 is
allowed.

4 PostPulseInterval Minimum time for the duration of the post-pulse interval. 0 is
allowed.

5 PrePulseIntervalNominal Nominal time for the duration of the pre-pulse. 0 is allowed.

Note: For Dialogic DM3 Boards, this value is always ignored, and
the PrePulseInterval value is used.

6 PostPulseIntervalNominal Nominal time for the duration of the post-pulse. 0 is allowed.

Note: For Dialogic DM3 Boards, this value is always ignored, and
the PostPulseInterval value is used.

7 PulseIntervalMin Minimum time for the duration of the pulse.

8 PulseIntervalNominal Nominal time for the duration of the pulse.

9 PulseIntervalMax Maximum time for the duration of the pulse.

Notes:
Time intervals are specified in units of 1 millisecond. The actual granularity is implementation dependent, as is the maximum
value.
Due to implementation restrictions, no time value should be less than 20 milliseconds (except where 0 is allowed).

40 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

4.3 Dynamic Trunk Configuration

When using Dialogic® DM3 Boards, the Dialogic® Global Call API provides the ability to perform
the following dynamic configuration operations at run time:

• Setting the Line Type and Coding for a Trunk

• Specifying the Protocol for a Trunk

Note: The gc_SetConfigData() function can be used on a board device to perform these operations.
However, it is the application's responsibility to handle all active calls on the trunk, and terminate
them if necessary. In addition, the gc_ResetLineDev() function may be issued on all channels
(time slots) prior to issuing gc_SetConfigData() to prevent incoming calls. If there are any active

Table 7. CAS_SIGNAL_TRAIN_t Signal Definition Parameters

Parameter
Number

Name Description

1 OffPulse BaBbBcBd

where Bi represents a signaling bit (0, 1, - = don’t care, or x = don’t
care) for bit i, where i = a, b, c, or d.

Note: Although T1 signaling does not have c and d bits, they
must be specified for T1 protocols as don’t care values.

2 OnPulse BaBbBcBd

(See description of OffPulse.)

3 PreTrainInterval Minimum time for the duration of the pre-train interval. 0 is
allowed.

4 PostTrainInterval Minimum time for the duration of the post-train interval. Must be
greater than or equal to InterPulseIntervalMax + 20.

5 PreTrainIntervalNominal Nominal time for the duration of the pre-train interval.

Note: For Dialogic DM3 Boards, this value is always ignored, and
the PreTrainInterval value is used.

6 PostTrainIntervalNominal Nominal time for the duration of the post-train interval.

Note: For Dialogic DM3 Boards, this value is always ignored, and
the PostTrainInterval value is used.

7 PulseIntervalMin Minimum time for the duration of the pulse.

8 PulseIntervalNominal Nominal time for the duration of the pulse.

9 PulseIntervalMax Maximum time for the duration of the pulse.

10 InterPulseIntervalMin Minimum time for the duration of the interval between pulses.

11 InterPulseIntervalNominal Nominal time for the duration of the interval between pulses.

12 InterPulseIntervalMax Maximum time for the duration of the interval between pulses.

Notes:
Time intervals are specified in units of 1 millisecond. The actual granularity is implementation dependent, as is the maximum
value.
Due to implementation restrictions, no time value should be less than 20 milliseconds (except where 0 is allowed).

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 41
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

calls present at the time the gc_ResetLineDev() or gc_SetConfigData() function is issued, they
are gracefully terminated internally. The application does not receive GCEV_DISCONNECTED
events when calls are terminated in this manner.

4.3.1 Setting the Line Type and Coding for a Trunk

Note: This feature is only applicable when using Dialogic® DM3 Boards.

The gc_SetConfigData() function uses a GC_PARM_BLK structure that contains the
configuration information. The GC_PARM_BLK is populated using the
gc_util_insert_parm_val() function.

To configure the line type, use the gc_util_insert_parm_val() function with the following
parameter values:

• parm_blkpp = pointer to the address of a valid GC_PARM_BLK structure where the
parameter and value are to be inserted

• setID = CCSET_LINE_CONFIG

• parmID = CCPARM_LINE_TYPE

• data_size = sizeof(int)

• data = One of the following values:

– Enum_LineType_dsx1_D4 - D4 framing type, Superframe (SF)

– Enum_LineType_dsx1_ESF - Extended Superframe (ESF)

– Enum_LineType_dsx1_E1 - E1 standard framing

– Enum_LineType_dsx1_E1_CRC - E1 standard framing and CRC-4

To configure coding type, use the gc_util_insert_parm_val() function with the following
parameter values:

• parm_blkpp = pointer to the address of a valid GC_PARM_BLK structure where the
parameter and value are to be inserted

• setID = CCSET_LINE_CONFIG

• parmID = CCPARM_CODING_TYPE

• data_size = sizeof(int)

• data = One of the following values:

– Enum_CodingType_AMI - Alternate Mark Inversion

– Enum_CodingType_B8ZS - Modified AMI used on T1 lines

– Enum_CodingType_HDB3 - High Density Bipolar of Order 3 used on E1 lines

Once the GC_PARM_BLK has been populated with the desired values, the gc_SetConfigData()
function can be issued to perform the configuration. The parameter values for the
gc_SetConfigData() function are as follows:

• target_type = GCTGT_CCLIB_NETIF

• target_id = the trunk line device handle, as obtained from gc_OpenEx() with a devicename
string of “:N_dtiBx:P...”.

42 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

• target_datap = GC_PARM_BLKP parameter pointer, as constructed by the utility function
gc_util_insert_parm_val()

• time_out = time interval (in seconds) during which the target object must be updated with the
data. If the interval is exceeded, the update request is ignored. This parameter is supported in
synchronous mode only, and it is ignored when set to 0.

• update_cond = GCUPDATE_IMMEDIATE

• request_idp = pointer to the location for storing the request ID

• mode = EV_ASYNC for asynchronous execution or EV_SYNC for synchronous execution

The application receives one of the following events:

• GCEV_SETCONFIGDATA to indicate that the request to dynamically change the line type
and/or coding has been successfully initiated.

• GCEV_SETCONFIGDATAFAIL to indicate that the request to dynamically change the line
type and/or coding failed. More information is available from the GC_RTCM_EVTDATA
structure associated with the event.

The following code example shows how to dynamically configure a T1 trunk to operate with the
Extended Superframe (ESF) line type and the B8ZS coding type.

GC_PARM_BLKP ParmBlkp = NULL;
long id;

/* configure Line Type = Extended Superframe for a T1 trunk */
gc_util_insert_parm_val(&ParmBlkp, CCSET_LINE_CONFIG, CCPARM_LINE_TYPE, sizeof(int),
 Enum_LineType_dsx1_ESF);

/* configure Coding Type = B8ZS for a T1 trunk */
gc_util_insert_parm_val(&ParmBlkp, CCSET_LINE_CONFIG, CCPARM_CODING_TYPE, sizeof(int),
 Enum_CodingType_B8ZS);

gc_SetConfigData(GCTGT_CCLIB_NETIF, bdev, ParmBlkp, 0, GCUPDATE_IMMEDIATE, &id, EV_ASYNC);
 gc_util_delete_parm_blk(ParmBlkp);

if (sr_waitevt(-1) >= 0)
{
 METAEVENT meta;
 gc_GetMetaEvent(&meta);
 switch(sr_getevttype())
 {
 case GCEV_SETCONFIGDATA:
 printf("Received event GCEV_SETCONFIGDATA(ReqID=%d) on device %s
 \n",((GC_RTCM_EVTDATA *)(meta.evtdatap))->request_ID,
 ATDV_NAMEP(sr_getevtdev()));
 break;
 case GCEV_SETCONFIGDATA_FAIL
 printf("Received event GCEV_SETCONFIGDATAFAIL(ReqID=%d) on device
 %s, Error=%s\n",((GC_RTCM_EVTDATA *)(meta.evtdatap))->request_ID,
 ATDV_NAMEP(sr_getevtdev()),
 ((GC_RTCM_EVTDATA *)(meta.evtdatap))->additional_msg);
 break;
 default:
 printf("Received event 0x%x on device %s\n", sr_getevttype(),
 ATDV_NAMEP(sr_getevtdev()));
 break;
 }
}

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 43
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

4.3.2 Specifying the Protocol for a Trunk

Note: This feature is only applicable when using Dialogic® DM3 Boards.

The protocol used by a trunk can be dynamically configured by using the gc_SetConfigData()
function after devices have been opened. All channels on the affected trunk inherit the newly
selected protocol.

The gc_SetConfigData() function uses a GC_PARM_BLK structure that contains the
configuration information. The GC_PARM_BLK is populated using the
gc_util_insert_parm_ref() function.

To configure the protocol, use the gc_util_insert_parm_ref() function with the following
parameter values:

• parm_blkpp = pointer to the address of a valid GC_PARM_BLK structure where the
parameter and value are to be inserted

• setID = GCSET_PROTOCOL

• parmID = GCPARM_PROTOCOL_NAME

• data_size = strlen(“<protocol_name>”), for example strlen(“pdk_ar_r2_io”)

• data = “<protocol_name>”, for example, “pdk_ar_r2_io” (a null-terminated string). For
CAS/R2 protocols, this is the name of the CDP file (without the .cdp extension) of the protocol
variant being selected. This protocol variant must already be downloaded, i.e., it must already
be specified in the pdk.cfg file.

Once the GC_PARM_BLK has been populated with the desired values, the gc_SetConfigData()
function can be issued to perform the configuration. The parameter values for the
gc_SetConfigData() function are as follows:

• target_type = GCTGT_CCLIB_NETIF

• target_id = the trunk line device handle, as obtained from gc_OpenEx() with a devicename
string of “:N_dtiBx:P...”.

• target_datap = GC_PARM_BLKP parameter pointer, as constructed by the utility function
gc_util_insert_parm_ref()

• time_out = time interval (in seconds) during which the target object must be updated with the
data. If the interval is exceeded, the update request is ignored. This parameter is supported in
synchronous mode only, and it is ignored when set to 0.

• update_cond = GCUPDATE_IMMEDIATE

• request_idp = pointer to the location for storing the request ID

• mode = EV_ASYNC for asynchronous execution or EV_SYNC for synchronous execution

The application receives one of the following events:

• GCEV_SETCONFIGDATA to indicate that the request to dynamically change the protocol
has been successfully initiated.

• GCEV_SETCONFIGDATAFAIL to indicate that the request to change the protocol has failed.
More information is available from the GC_RTCM_EVTDATA structure associated with the
event.

44 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

The following code example shows how to dynamically configure a trunk to operate with the
pdk_ar_r2_io protocol.

static int MAX_PROTOCOL_LEN=20;
GC_PARM_BLKP ParmBlkp = NULL;
long id;
char protocol_name[]="pdk_ar_r2_io";

gc_util_insert_parm_ref(&ParmBlkp, GCSET_PROTOCOL, GCPARM_PROTOCOL_NAME,
strlen(protocol_name)+1, protocol_name);

gc_SetConfigData(GCTGT_CCLIB_NETIF, bdev, ParmBlkp, 0, GCUPDATE_IMMEDIATE, &id, EV_ASYNC);
gc_util_delete_parm_blk(ParmBlkp);

if (sr_waitevt(-1) >= 0)
{
 METAEVENT meta;
 gc_GetMetaEvent(&meta);

 switch(sr_getevttype())
 {
 case GCEV_SETCONFIGDATA:
 printf("Received event GCEV_SETCONFIGDATA(ReqID=%d) on device %s
 \n",((GC_RTCM_EVTDATA *)(meta.evtdatap))->request_ID,
 ATDV_NAMEP(sr_getevtdev()));
 break;
 case GCEV_SETCONFIGDATA_FAIL:
 printf("Received event GCEV_SETCONFIGDATAFAIL(ReqID=%d) on device
 %s, Error=%s\n",((GC_RTCM_EVTDATA *)(meta.evtdatap))->request_ID,
 ATDV_NAMEP(sr_getevtdev()),
 ((GC_RTCM_EVTDATA *)(meta.evtdatap))->additional_msg);
 break;
 default:
 printf("Received event 0x%x on device %s\n", sr_getevttype(),
 ATDV_NAMEP(sr_getevtdev()));
 break;
 }
}

4.4 Resource Association

In E1 CAS and T1 robbed bit protocols, a combination of line signaling and audio tones are used to
establish a call. The line signaling is controlled by a network time slot device, or resource, and the
tones are controlled by a voice channel (voice resource). Voice channel, voice resource, and tone
resource are used interchangeably in this manual when discussing Dialogic® Global Call Software
functionality.

Typically, in E1 CAS or T1 robbed bit environments, a Global Call line device consists of a
network time slot resource and a voice resource. When the same voice resource is always used for a
given network time slot, then this configuration is called a dedicated voice resource. The Global
Call line device ID is a single ID that represents the combination of the voice and network
resources that work together to establish and to tear-down calls.

In configurations with more network time slot resources than available voice (or tone) resources,
the application may share these available voice resources among the time slots (resource sharing).
When voice resources are shared, the Global Call line device ID represents a network time slot
after issuing a gc_OpenEx() function. However, before issuing a gc_MakeCall() or a

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 45
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

gc_WaitCall() function, a voice resource must be attached to the Global Call line device using the
gc_Attach() function and then routed to the line device’s network time slot. The gc_Attach()
function tells the Global Call protocol handler which voice channel will be used to establish the
call. Once the call is established (answered), the application can use this voice resource for other
calls by first detaching the voice resource using the gc_Detach() function from the current line
device and then attaching this voice resource to another line device using the gc_Attach()
function. The gc_Detach() function must not be used to detach the voice resource until the call is
in the connected state.

See Section 4.5, “Resource Allocation and Routing”, on page 45 for more information.

4.5 Resource Allocation and Routing

E1 CAS and T1 robbed bit protocols require tone generation and detection capability and therefore
require a voice or tone resource for setting up a call. Application development considerations for
using dedicated voice (or tone) resources or shared voice (or tone) resources in an E1 CAS and T1
robbed bit environment are discussed in the following sections:

• Dedicated Voice Resources

• Shared Voice Resources

4.5.1 Dedicated Voice Resources

Applications requiring voice resources during the entire call (for example, voice-mail and
announcements) must have enough voice channels to dedicate one channel to each network
interface time slot. The Dialogic® Global Call API simplifies applications written to handle E1
CAS and T1 robbed bit protocols using dedicated voice resource configurations. To use Global Call
functionality to set up dedicated resources, the application must pass both the network time slot and
the voice channel to the gc_OpenEx() function. Global Call uses this information to
automatically:

• Open the network board device, if not previously opened (the board device is used internally
by Global Call)

• Open both the voice channel and the network time slot

• Route the voice channel and network time slot together (full duplex) (CT Bus configurations
only)

• Associate the voice channel and the network time slot by issuing an internal gc_Attach()
function

For CT Bus applications, applications using dedicated voice resources (a voice resource dedicated
to a network resource) do not need to route the voice and network resources together nor issue the
gc_Attach() function before making a call or when handling a pending call. For applications using
shared voice resources, the voice resource must be attached to a network resource before call
establishment. After call establishment, this voice resource may be detached and then attached to a
different network resource.

46 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

To perform activities such as routing and voice store and forward, etc., use the
gc_GetResourceH() function to obtain the voice and network handles associated with a line
device. For example, before playing a file, you can retrieve the voice handle using the
gc_GetResourceH() function. If needed, you may route other resources to the network interface
(for example, to send a fax) and reroute the voice channel back to the network interface before
setting up or waiting for another call. You must route the same voice channel back to the associated
network interface channel because these two resources were internally attached when opened.

The following example illustrates the function calls that apply when using dedicated voice
resources.

Dedicated Voice Resources Example

.

.
#define MAXCHAN 30
struct linebag{
 LINEDEV ldev;
 CRN crn;
 INT state;
}port[MAXCHAN+1]
.
.

/* Open a Global Call device with a voice channel and a network time slot */

1 ----> if (gc_OpenEx(&linedev, ":N_dtiB1T1:P_br_r2_o:V_dxxxB1C1", 0,
 (void*)&port[port_index]) == GC_SUCCESS) {

 /*
 * Wait for GCEV_UNBLOCKED event.
 */

 .
 .
 /* Make an outgoing call */

2 ----> if (gc_MakeCall(linedev, &crn, "123456", NULL, 0,
 EV_ASYNC) == GC_SUCCESS) {

 /*
 * Wait for GCEV_CONNECTED event.
 */

 } else {

 /* Process error from gc_MakeCall() */

 }

} else {

 /* Process error from gc_Open() */

}

.

.

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 47
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

4.5.2 Shared Voice Resources

Applications requiring voice resources for a limited portion of the call, typically during call setup,
may share voice resources among the available network time slots. For example, using a Dialogic®
D/320SC Voice Board and two Dialogic® DTI/300SC (E1 interface) Network Boards, 32 voice
channels may be able to handle the audio portions of the call control for 60 network interface time
slots. This savings in hardware requires more complexity in writing the application, which must
manage both the voice and network resources, and places limits on your call throughput. The
number of calls that can be established simultaneously is limited to the number of voice resources
in the system.

For voice resource sharing configurations, you need only specify the network time slot and
protocol in the gc_OpenEx() function. This function uses the Dialogic® Global Call API library to
open the network time slot device. Your application must also open the voice device and then route
and attach the necessary resources before these resources are needed for signaling. You must
explicitly open the voice device by issuing a dx_open() function to open the voice device selected.
For routing these devices, use the native time slot routing functions or the CT Bus nr_scroute()
and nr_scunroute() functions provided for the voice and network devices. For example, route the
devices using the routing functions provided by the network and voice libraries, and then use the
gc_Attach() and gc_Detach() functions to associate or disassociate a voice channel and a Global
Call line device and therefore a network time slot. When the above sequence of operations
completes, use the gc_MakeCall() or gc_WaitCall() function, as appropriate.

After a call is answered, the voice resource can be detached from the network time slot using the
gc_Detach() function and routed to another network time slot using the nr_scunroute() and
nr_scroute() functions.

The following example illustrates the function calls that apply when using shared voice resources.

Shared Voice Resources Example

Legend:

1 The gc_OpenEx() function:

• Opens a Global Call line device using time slot 1 of dtiB1, opens voice channel dxxxB1C1, and
configures the line device to use outbound Brazilian R2 protocol

• Opens the time slot and voice channel automatically

• Opens the network board device automatically, if not already opened to monitor the alarm

• Sets the user attribute, usrattr, (void*)&port[port_index] into the channel information structure

CT Bus time slot routing and attaching are done automatically. The function need only be called once
for a time slot/voice channel pair.

2 The gc_MakeCall() function is invoked once for each outbound call.

1 ----> if (gc_OpenEx(&linedev, ":N_dtiB1T1:P_br_r2_o", 0,
 (void*)&port[port_index]) == GC_SUCCESS) {
 /* process error */
}

48 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

2 ----> if (gc_GetNetworkH(linedev, &networkh) != GC_SUCCESS)
{
 /* process error */
}

3 ----> if ((voiceh = dx_open("dxxxB1C1", 0)) == -1)
{
 /* process error */
}

4 ----> printf("******* %d: Calling Attach %d\n", index, voiceh);
if (gc_Attach(linedev, voiceh, EV_SYNC) != GC_SUCCESS)
{
 /* process error */
}

5 ----> if (nr_scroute(networkh, SC_DTI, voiceh, SC_VOX,
 SC_FULLDUP) == -1)
 {
 /* process error */
 }

 /* Wait for GCEV_UNBLOCKED event */

6 ----> if (gc_MakeCall(linedev, &crn, "123456", NULL, 0, EV_ASYNC)

 != GC_SUCCESS)
 {
 /* process error */
 }
.
.
/*
 * Wait for GCEV_CONNECTED event. Voice resource may be detached
 * if necessary after receiving this event.
 */

7 ----> if (gc_Detach(linedev, voiceh, EV_SYNC) != GC_SUCCESS)
 {
 /* process error */
 }

8 ----> if (nr_scunroute(networkh, SC_DTI, voiceh, SC_VOX, SC_FULLDUP) == -1)
{
 /* process error */

}

Legend:

1 The gc_OpenEx() function:

• Opens a Global Call line device using time slot 1 of dtiB1 using outbound Brazilian R2 protocol

• Opens the network board device automatically, if not already opened

• Sets the user attribute, usrattr, (void*)&port[port_index] into the channel information structure

The specified network time slot device is opened. This function need only be called once for a time
slot.

2 The gc_GetNetworkH() function retrieves the network device handle.

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 49
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

4.6 Alarm Handling

Alarm handling using the Dialogic® Global Call API is different depending on the board
architecture (DM3 or Springware). The following sections provide information about handling
alarms in each architecture:

• Alarm Handling for Dialogic® DM3 Boards

• Alarm Handling for Dialogic® Springware Boards

4.6.1 Alarm Handling for Dialogic® DM3 Boards

When using Dialogic® DM3 Boards, alarms are recognized, and can also be transmitted, on a span
(trunk) basis. Once an alarm is detected, all open channels on that span receive a
GCEV_BLOCKED event. When the alarm is cleared, open channels receive a
GCEV_UNBLOCKED event.

The gc_SetEvtMsk() function can be used to mask events on a line device. Using the
gc_SetEvtMsk() function on a line device for a time slot sets the mask for the specified time slot
only and does not apply to all time slots on the same trunk as is the case when using Dialogic®
Springware Boards.

The set of Dialogic® Global Call API functions that comprise the Global Call Alarm Management
System (GCAMS) interface are supported with the following restrictions:

• Using GCAMS, the application has the ability to set which detected alarms are blocking and
non-blocking as described in the Dialogic® Global Call API Programming Guide. However,
this capability applies on a span basis only. Changing which alarms are blocking and non-
blocking for one time slot results in changing which alarms are blocking and non-blocking for
all time slots on the span.

• Using the gc_GetAlarmParm() and gc_SetAlarmParm() functions to retrieve and set
specific alarm parameters, for example alarm triggers, is not supported.

• The gc_TransmitAlarms() and gc_StopTransmitAlarms() functions can be used to start
and stop the transmission of alarms to the remote side. Table 8 gives the alarms that can be
transmitted on E1 and T1 interfaces.

3 The dx_open() function opens a voice device and gets a voice device handle.

4 The gc_Attach() function logically connects voice and network resources.

5 The nr_scroute() function routes voice and network resources together.

6 The gc_MakeCall() function is invoked each time a call is to be made.

7 The gc_Detach() function disassociates the voice resource from the Global Call line device.

8 The nr_scunroute() function unroutes the voice and network resources.

50 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

The following list shows the detected (incoming) alarms that are supported on E1 for Dialogic
DM3 Boards. The dagger symbol (†) next to an alarm name indicates that the alarm is blocking by
default. The default can be changed using gc_SetAlarmConfiguration(). For alarms where a
default threshold value is shown, the default can be changed in the .config file for the board as
explained in the Dialogic® DM3 Configuration Guide.

DTE1_BPVS
Bipolar violation count saturation. The default threshold value is 255 and the range is 0 to 255.

DTE1_CECS
CRC4 error count saturation. The default threshold value is 255 and the range is 0 to 255.

DTE1_CRC_CFA†
Time slot 16 CRC failure

DTE1_CRC_CFAOK
Time slot 16 CRC failure recovered

DTE1_ECS
Frame sync bit error count saturation. The default threshold value is 0 and the range is 0 to
255.

DTE1_FSERR
Received frame sync error

DTE1_FSERROK
Received frame sync error recovered

DTE1_LOOPBACK_CFA
Diagnostic mode on the line trunk

DTE1_LOOPBACK_CFAOK
Diagnostic mode on the line trunk recovered

DTE1_LOS
Received loss of signal

Table 8. Alarms That Can Be Transmitted on E1 and T1 Interfaces on Dialogic® DM3 Boards

E1 Alarm T1 Alarm Description

Equivalent 0x1626
Parameter Value in CONFIG

Files Used for Trunk
Preconditioning ‡

DEA_REMOTE † YELLOW † Remote alarm indication (RAI) 2

DEA_UNFRAMED1 † BLUE † Alarm indication signal (AIS) 1

DEA_SIGNALALL1 † — Signaling all 1s alarm (a multi-frame
alarm)

Not applicable

DEA_DISTANTMF † — Distant multi-frame alarm Not applicable

† Defines that can be used in the alarm_number field of the ALARM_FIELD structure when using the gc_TransmitAlarms()
and gc_StopTransmitAlarms() functions to start and stop the transmission of specific alarms.
‡ Trunk preconditioning is the ability to place board interface trunks in an alarm state during board initialization. See the
Dialogic® DM3 Configuration Guide for more information.

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 51
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

DTE1_LOSOK
Received loss of signal recovered

DTE1_MFSERR
Received multi-frame sync error

DTE1_MFSERROK
Received multi-frame sync error recovered

DTE1_RDMA
Received distant multi-frame alarm

DTE1_RDMAOK
Received distant multi-frame alarm recovered

DTE1_RED†
Received red alarm

DTE1_REDOK
Received red alarm recovered

DTE1_RLOS
Received loss of sync

DTE1_RLOSOK
Received loss of sync recovered

DTE1_RRA†
Received remote alarm

DTE1_RRAOK
Received remote alarm recovered

DTE1_RSA1
Received signaling all 1’s

DTE1_RSA1OK
Received signaling all 1’s recovered

DTE1_RUA1
Received unframed all 1’s

DTE1_RUA1OK
Received unframed all 1’s recovered

The following list shows the detected (incoming) alarms that are supported on T1 for Dialogic
DM3 Boards. The dagger symbol (†) next to an alarm name indicates that the alarm is blocking by
default. The default can be changed using gc_SetAlarmConfiguration(). For alarms where a
default threshold value is shown, the default can be changed in the .config file for the board as
explained in the Dialogic® DM3 Configuration Guide.

DTT1_BPVS
Bipolar violation count saturation. The default threshold value is 255 and the range is 0 to 255.

DTT1_ECS
Frame sync bit error count saturation. The default threshold value is 0 and the range is 0 to
255.

52 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

DTT1_FERR
Two out of four consecutive frame bits (F bit) in error. The default threshold value is 0 and the
range is 0 to 255.

DTT1_LOOPBACK_CFA
Diagnostic mode on the line trunk

DTT1_LOOPBACK_CFAOK
Diagnostic mode on the line trunk recovered

DTT1_LOS
Initial loss of signal detected

DTT1_LOSOK
Signal restored

DTT1_OOF
Out of frame error count saturation. The default threshold value is 0 and the range is 0 to 255.

DTT1_RBL
Received blue alarm

DTT1_RBLOK
Received blue alarm restored

DTT1_RCL
Received carrier loss

DTT1_RCLOK
Received carrier loss restored

DTT1_RED†
Received a red alarm condition

DTT1_REDOK
Red alarm condition recovered

DTT1_RLOS
Received loss of sync

DTT1_RLOSOK
Received loss of sync restored

DTT1_RYEL†
Received yellow alarm

DTT1_RYELOK
Received yellow alarm restored

4.6.2 Alarm Handling for Dialogic® Springware Boards

As described in the Dialogic® Global Call API Library Reference, the GCEV_BLOCKED event
indicates that a line is blocked and the application cannot issue call-related function calls, and the
GCEV_UNBLOCKED event indicates that the line has become unblocked. For example, an alarm
condition has occurred or has been cleared, respectively. These events are generated on every
opened line device associated with the trunk on which the alarm occurs, if the event is enabled.

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 53
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

These events are enabled by default. The application may disable and enable the events by using
the gc_SetEvtMsk() function.

Setting the event mask on any line device that represents a time slot will result in setting the mask
to the same value on all time slot level line devices on the same trunk. Additionally, setting the
event mask on a line device that represents the board will have the same effect (that is, it will set the
mask for all time slot level line devices on that trunk).

When an alarm occurs on a Dialogic® Global Call line device, the application must call the
dx_stopch() function to stop any application initiated voice processing, such as dx_play() and
dx_record(), that is associated with that line device. The application should wait for the receipt of
the GCEV_UNBLOCKED event that signals the end of the alarm condition; then the application
can proceed with its call processing (for example, making or receiving calls).

Alarm notification can be configured for time slot devices using the Global Call Alarm
Management System (GCAMS). The Global Call functions that comprise the GCAMS interface
for alarm management are supported. See the Dialogic® Global Call API Programming Guide for
more information on GCAMS and the Dialogic® Global Call API Library Reference for more
information on the GCAMS functions.

The gc_TransmitAlarms() and gc_StopTransmitAlarms() functions can be used to start and
stop the transmission of alarms to the remote side. Table 9 gives the alarms that can be transmitted
on E1 and T1 interfaces.

The following list shows the detected (incoming) alarms that are supported on E1 for Dialogic
Springware Boards. The dagger symbol (†) next to an alarm name indicates that the alarm is
blocking by default. The default can be changed using gc_SetAlarmConfiguration().

DTE1_BPVS†
Bipolar violation count saturation

DTE1_BPVSOK
Bipolar violation count saturation recovered

DTE1_CECS†
CRC4 error count saturation

DTE1_CECSOK
CRC4 error count saturation recovered

Table 9. Alarms That Can Be Transmitted on E1 and T1 Interfaces on Dialogic® Springware
Boards

E1 Alarm T1 Alarm Description

DEA_REMOTE † YELLOW † Remote alarm indication (RAI)

DEA_UNFRAMED1 † BLUE † Alarm indication signal (AIS)

DEA_SIGNALALL1 † — Signaling all 1s alarm (a multi-frame alarm)

DEA_DISTANTMF † — Distant multi-frame alarm

† Defines that can be used in the alarm_number field of the ALARM_FIELD structure when using the gc_TransmitAlarms()
and gc_StopTransmitAlarms() functions to start and stop the transmission of specific alarms.

54 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

DTE1_DPM†
Driver performance monitor failure

DTE1_DPMOK
Driver performance monitor failure recovered

DTE1_ECS†
Error count saturation

DTE1_ECSOK
Error count saturation recovered

DTE1_FSERR†
Received frame sync error

DTE1_FSERROK
Received frame sync error recovered

DTE1_LOS†
Received loss of signal

DTE1_LOSOK
Received loss of signal recovered

DTE1_MFSERR†
Received multi-frame sync error

DTE1_MFSERROK
Received multi-frame sync error recovered

DTE1_RDMA†
Received distant multi-frame alarm

DTE1_RDMAOK
Received distant multi-frame alarm recovered

DTE1_RED
Received red alarm

DTE1_REDOK
Received red alarm recovered

DTE1_RLOS†
Received loss of sync

DTE1_RLOSOK
Received loss of sync recovered

DTE1_RRA†
Received remote alarm

DTE1_RRAOK
Received remote alarm recovered

DTE1_RSA1†
Received signaling all 1’s

DTE1_RSA1OK
Received signaling all 1’s recovered

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 55
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

DTE1_RUA1†
Received unframed all 1’s

DTE1_RUA1OK
Received unframed all 1’s recovered

The following list shows the detected (incoming) alarms that are supported on T1 for Dialogic
Springware Boards. The dagger symbol (†) next to an alarm name indicates that the alarm is
blocking by default. The default can be changed using gc_SetAlarmConfiguration().

DTT1_B8ZSD†
Bipolar eight zero substitution detected

DTT1_B8ZSD
Bipolar eight zero substitution detected recovered

DTT1_BPVS†
 Bipolar violation count saturation

DTT1_BPVSOK
BPVS restored

DTT1_DPM†
Driver performance monitor

DTT1_DPMOK
Driver performance monitor restored

DTT1_ECS†
Error count saturation

DTT1_ECSOK
Error count saturation recovered

DTT1_FERR†
Frame bit error

DTT1_FERROK
Frame bit error restored

DTT1_LOS†
Initial loss of signal detected

DTT1_LOSOK
Signal restored

DTT1_OOF†
Out of frame error; count saturation

DTT1_OOFOK
Out of frame restored

DTT1_RBL†
Received blue alarm

DTT1_RBLOK
Received blue alarm recovered

56 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

DTT1_RCL†
Received carrier loss

DTT1_RCLOK
Received carrier loss restored

DTT1_RED†
Received a red alarm condition

DTT1_REDOK
Red alarm condition recovered

DTT1_RLOS†
Received loss of sync

DTT1_RLOSOK
Received loss of sync restored

DTT1_RYEL†
Received yellow alarm

DTT1_RYELOK
Received yellow alarm restored

4.7 Run-Time Configuration of the PDKRT Call Control
Library

Note: The information in this section is applicable to Dialogic® Springware Boards only.

Table 10 shows the parameters of the PDKRT call control library that can be configured using the
real time configuration management (RTCM) functions. The gc_GetConfigData() function can be
used to retrieve the target object configuration, and the gc_SetConfigData() function can be used
to update the target object configuration.

Note: Since these parameters are statically defined, the gc_QueryConfigData() is not applicable.

Table 10. Configurable PDKRT Call Control Library Parameters

Set ID Parm ID Target Object Type Description
Data
Type

Access
Attribute*

GCSET_
CALLINFO

CALLINFO TYPE GCTGT_CCLIB_
CRN

Calling info type
(alternative to
gc_GetCallInfo())

string GC_R_O

CATEGORY_DIGIT GCTGT_CCLIB_
CRN

Category digit type
(alternative to
gc_GetCallInfo())

char GC_R_O

*Access attributes are:
GC_W_I: update
GC_R_O: retrieve only
GC_W_N: update only at null state
GC_W_X: not available

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 57
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

4.8 Run-Time Configuration of PDK Protocol
Parameters

Note: The information in this section is applicable to Dialogic® Springware Boards only.

Configurable PDK protocol parameters are grouped into two sets:

• Protocol state information (PSI) variable parameters

• Protocol service layer (PSL) variable parameters

Note: To avoid errors, the PSI and PSL parameters of a GCTGT_PROTOCOL_CHAN channel are
allowed to be changed only when the channel object does not have an active call.

PSI variable parameters are interpreted by the PDK run-time component (PDKRT).The names of
the PSI variable parameters (beginning with CDP_) are found in the .cdp file. The PSI parameters
that can be accessed via gc_GetConfigData(), gc_SetConfigData(), and
gc_QueryConfigData() are protocol dependent. Refer to the Dialogic® Global Call Country
Dependent Parameters (CDP) for PDK Protocols Configuration Guide for further information.

The PSL variable parameters are not available to the protocol state machine, but rather are used by
the protocol services layer to control the behavior of various network and voice functions. The
names of the PSL variable parameters begin with PSL_ and SYS_. No variation in the names is
allowed. These parameters are required to control protocol parameters (e.g., timing) or they may
control the behavior of the underlying implementation. In the latter case, the parameters will most

CONNECT_ TYPE GCTGT_CCLIB_
CRN

Connect type
(alternative to
gc_GetCallInfo())

char GC_R_O

GCSET_ PARM GCPR_ CALLING
PARTY

GCTGT_CCLIB_
CHAN

Calling party
(alternative to
gc_GetParm()/
gc_SetParm())

string GC_W_I

GCPR_
LOADTONES

GCTGT_CCLIB_
CHAN

Load tones (alternative
to gc_GetParm()/
gc_SetParm())

short GC_W_I

GCPR_
MEDIADETECT

GCTGT_CCLIB_
CHAN

Set Media Detect
(alternative to
gc_SetParm())

short GC_W_I

GCSET_
ORIG_ ADDR

GCPARM_
ADDR_DATA

GCTGT_CCLIB_
CHAN

Calling number
(alternative to
gc_SetCallingNum())

string GC_W_I

Table 10. Configurable PDKRT Call Control Library Parameters (Continued)

Set ID Parm ID Target Object Type Description
Data
Type

Access
Attribute*

*Access attributes are:
GC_W_I: update
GC_R_O: retrieve only
GC_W_N: update only at null state
GC_W_X: not available

58 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

likely have a platform tag. All of these parameter names must begin with PSL. The PSL parameters
that can be accessed via gc_GetConfigData(), gc_SetConfigData(), and
gc_QueryConfigData() are shown in Table 11.

Table 12 shows the Set ID and Parm ID for these parameter types.

The PDK GCTGT_PROTOCOL_SYSTEM target object is not available until the first
gc_OpenEx() function is called to run this protocol.

The Global Call application can call gc_GetConfigData() to retrieve protocol configuration
information or gc_SetConfigData() to set protocol configuration information. Since these
parameters are protocol dependent, their parameters are dynamically assigned when a protocol is
loaded into the PDKRT. Therefore, a Global Call application must call gc_QueryConfigData() to
find the parameter information (set ID, parm ID, and value data type, etc.) first. For more
information about these functions, refer to the Dialogic® Global Call API Programming Guide.

Table 11. PSL and SYS Parameters

PSL Variable Name Data Type

PSL_AcceptCallDefaultNumOfRings Integer

PSL_AnswerCallDefaultNumOfRings Integer

PSL_MakeCall_CallProgress Integer

PSL_MakeCall_MediaDetect Integer

PSL_DefaultMakeCallTimeout Integer

PSL_DXCAS_HOOKFLASH_DURATION Integer

SYS_FEATURES String

SYS_PSINAME String

Table 12. Configurable PDK Protocol Parameters

Set ID Parm ID Target Object Type Explanation
Access

Attribute**

PDKSET_
PSI_VAR *

Dynamically
assigned

GCTGT_ PROTOCOL_
SYSTEM,
GCTGT_PROTOCOL_
CHAN

Protocol state information
(PSI) variable parameters

GC_W_N

PDKSET_
SERVICE_ VAR

Dynamically
assigned

GCTGT_ PROTOCOL_
SYSTEM,
GCTGT_PROTOCOL_
CHAN

Protocol service layer (PSL)
variable parameter and
system parameters

GC_W_N

*Indicates that CAS pattern signals and tones cannot be accessed.
**Access attributes are:
GC_W_I: update
GC_R_O: retrieve only
GC_W_N: update only at null state
GC_W_X: not available

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 59
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

The pair (target object type, target object ID) supporting gc_QueryConfigData() to find PDKRT
protocol parameter information can be one of the following:

• (GCTGT_PROTOCOL_SYSTEM, Global Call protocol ID)

• (GCTGT_PROTOCOL_CHAN, Global Call line device ID)

For a given protocol, although the GCTGT_PROTOCOL_SYSTEM target object and
GCTGT_PROTOCOL_CHAN target object share the same set ID and parm ID for PSI variables,
they can have different values. When a new GCTGT_PROTOCOL_CHAN target object is opened,
it gets a copy of the current PSI variable configuration of GCTGT_PROTOCOL_SYSTEM target
object. Under this situation, changes to the GCTGT_PROTOCOL_SYSTEM target object
configuration will not affect the configuration of the GCTGT_PROTOCOL_CHAN target object.
But the GCTGT_PROTOCOL_SYSTEM target object shares the same PSL variable configuration
with other GCTGT_PROTOCOL_CHAN target objects.

The following example shows how to set the CDP_ANI_ENABLED parameter for channel ldev
running a PDK protocol at the NULL state in asynchronous mode.

Note: Error handling is not shown.

 GC_PARM t_SourceParm, t_DestParm;
 GC_PARM_ID t_ParmIDSt;
 char t_name[20] = "CDP_ANI_ENABLED";
 long request_id;
 LINEDEV ldev;
 GC_PARM_BLK * t_pParmBlk = NULL;

/* first find the parameter info by calling gc_QueryConfigData() function */
 t_SourceParm.padress = t_name; /* Pass the PSI variable name */
 memset(&t_ParmIDSt, 0, sizeof(GC_PARM_ID));
 t_DestParm.pstruct = &t_ParmIDStruct; /* Pass desired the parm info */
 gc_QueryConfigData(GCTGT_PROTOCOL_CHAN, ldev, &t_SourceParm,
 GCQUERY_PARM_NAME_TO_ID, &t_DestParm);

/* Call GC utility function to insert a parameter data to GC_PARM_BLK */
 gc_util_insert_parm_val(&t_pParmBlk, t_ParmIDStruct.set_ID,
 t_ParmIDStruct.parm_ID, sizeof(int), 10);

 /* Call gc_SetConfigData() function to set the "CDP_ANI_ENABLE" */
 gc_SetConfigData(GCTGT_PROTOCOL_CHAN, ldev, t_pParmBlk, 0,
 GCUPDATE_ATNULL, &request_id, EV_ASYNC);
 ...
 /* Call GC utility function to release the memory after using the GC_PARM_BLK */
 gc_util_delete_parm_blk(t_pParmBlk);

4.9 Determining the Protocol Version

Note: The information in this section is applicable to Dialogic® Springware Boards only.

The following software code demonstrates how you can determine the Dialogic® Global Call
protocol version you are running.

#include <gclib.h>
#include <gcerr.h>
#include <srllib.h>

60 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

int main()
{
 LINEDEV ldev;
 GC_PARM parm;
 int retcode;
 METAEVENT metaevent;
 parm.paddress = NULL;
 int mode;

ifdef _WIN32
 mode = SR_STASYNC|SR_POLLMODE;
#else
 mode = SR__POLLMODE;
#endif

 if (sr_setparm(SRL_DEVICE, SR_MODELTYPE, &mode) == -1)
 {
 // Error processing
 }

 gc_Start(NULL);
 retcode = gc_Open(&ldev,":P_na_an_io:N_dtiB1T1:V_dxxxB1C1", 0);
 if (retcode != GC_SUCCESS)
 {
 // Error processing
 }

 sr_waitevt(50);
 retcode = gc_GetMetaEvent(&metaevent);
 if (retcode != GC_SUCCESS)
 {
 // Error processing
 }
 if (metaevent.flags & GCME_GC_EVENT)
 {
 if (metaevent.evttype == GCEV_UNBLOCKED)
 {
 if (gc_GetParm(ldev, GCPR_PROTVER, &parm) == GC_SUCCESS)
 {
 printf("The protocol version: %s\n", parm.paddress);
 }
 else
 {
 // Error processing
 }
 }
 }

 gc_Close(ldev);
 gc_Stop();
 return(0);
}

4.10 Run-Time Control of Single or Double Hookflash on
Consultation Drop for FXS/LS Protocol

Note: The information in this section is applicable to Dialogic® DM3 Boards only. For information about
boards supported and the features supported on each board, see the Release Guide and Release
Update for your Dialogic® Software release.

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 61
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

Run-time control of sending either a single or double hookflash when dropping a consultation call
on a supervised transfer is supported for Dialogic® DM3 Boards using the United States T1
FXS/LS Bidirectional protocol.

The signal pattern normally used by the FXS/LS protocol to drop a supervised transfer consultation
call is a single hookflash. For PBXs that require a double hookflash to drop a consultation call, this
can be set in the country dependent parameters (CDP) file for the FXS/LS protocol,
pdk_us_ls_fxs_io.cdp, by enabling the CDP_AllowDblHookflashOnConsultationDrop
parameter. (This parameter is disabled by default.) CDP file parameters are set on a board basis.
Parameter settings are static and apply to all calls (per board).

However, some PBXs may require either a single or double hookflash depending on the
circumstances of the call. For example, a particular PBX may require:

• Single hookflash on consultation call drop if the call went through

• Double hookflash on consultation call drop if the call was in progress but did not go through
and never got connected (for example, call progress failure or call abort before connect)

Note: These are only examples; the circumstances requiring a single or double hookflash can vary
depending the PBX. It is up to the application developer to determine when to apply a single or
double hookflash in any scenario or deployment.

For PBXs that require either a single or double hookflash, applications must be able to:

• Programmatically select either single or double hookflash when dropping a consultation call in
a supervised transfer

• Change this behavior on a call-by-call basis

Run-time control of single or double hookflash is implemented using the gc_SetConfigData()
function. The parameter settings in gc_SetConfigData() are limited to the current call, that is, to
the call reference number (CRN) specified as the target_id in gc_SetConfigData(). The CRN
should be that of the consultation call. The application should call gc_SetConfigData() with the
correct hookflash value before calling gc_DropCall() on the consultation call.

The gc_SetConfigData() function uses a GC_PARM_BLK data structure that contains the
configuration information. The GCPARM_CONSDROP_HKFLASH_OVERRIDE parmID is
used to set the single or double hookflash. As its name implies, this is a parameter to override the
CDP_AllowDblHookflashOnConsultationDrop parameter in the CDP file. It does so only on a
temporary basis and for a single consultation call. (See the Implementation Guidelines section
below for further information about related parameters in the CDP file.)

The GC_PARM_BLK structure is populated using the gc_util_insert_parm_val() function with
the following values:

• parm_blkpp = pointer to the address of a valid GC_PARM_BLK structure where the
parameter and value are to be inserted

• setID = GCSET_CALLINFO

• parmID = GCPARM_CONSDROP_HKFLASH_OVERRIDE

• data_size = sizeof(int)

• data = One of the following values:

62 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

– GCPV_SINGLE_HKFLASH - single hookflash

– GCPV_DBL_HKFLASH - double hookflash

– GCPV_DISABLED - not set

Once the GC_PARM_BLK has been populated with the desired values, the gc_SetConfigData()
function can be issued to perform the configuration. The parameter values for the
gc_SetConfigData() function are as follows:

• target_type = GCTGT_CCLIB_CRN

• target_id = the call reference number (CRN) of the consultation call

• target_datap = pointer to the GC_PARM_BLK structure

• time_out = time-out in seconds

• update_cond = when to update (GCUPDATE_IMMEDIATE or GCUPDATE_ATNULL)

• request_idp = pointer to the location for storing the request ID

• mode = async or sync

The gc_GetConfigData() function returns the value previously set by gc_SetConfigData() on the
same CRN. If no previous setting occurred for that CRN, GCPV_DISABLED is returned.

Implementation Guidelines

The following guidelines apply when implementing runtime control of single or double hookflash:

• This feature is only available on Dialogic DM3 Boards using the United States T1 FXS/LS
Bidirectional protocol.

• The GCPARM_CONSDROP_HKFLASH_OVERRIDE parameter setting via
gc_SetConfigData() does not take effect until a gc_DropCall() on the consultation call CRN
is invoked. The application must invoke the gc_DropCall() with the appropriate CRN for the
parameter to take effect (that is, single or double hookflash sent).

• In asynchronous mode, the application must update its state machine to wait for a success
event on the gc_SetConfigData() before a gc_DropCall() on the consultation call is invoked.

• The GCPARM_CONSDROP_HKFLASH_OVERRIDE parameter has no effect on a CRN
other than the consultation call CRN resulting from a successful gc_SetupTransfer().

• The setting of this parameter, and therefore the behavior for a drop on a consultation call, is not
retained for subsequent calls on the same channel, unless explicitly set on each call.

The following guidelines discuss the use of the
GCPARM_CONSDROP_HKFLASH_OVERRIDE parameter with regard to the related
parameters in the pdk_us_ls_fxs_io.cdp file:

• The related parameters in the pdk_us_ls_fxs_io.cdp file are
CDP_AllowDblHookflashOnConsultationDrop and
CDP_BypassHookflashOnConsultationDrop. Both are disabled by default; the default
behavior is that a single hookflash is sent when dropping a consultation call.

– When CDP_AllowDblHookflashOnConsultationDrop is enabled, a double hookflash is
sent when dropping a consultation call.

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 63
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

– When CDP_BypassHookflashOnConsultationDrop is enabled, no hookflash is sent
when dropping a consultation call.

Note: Within the CDP file, the CDP_BypassHookflashOnConsultationDrop setting takes
precedence over CDP_AllowDblHookflashOnConsultationDrop. But when
GCPARM_CONSDROP_HKFLASH_OVERRIDE is set via
gc_SetConfigData(), its setting takes precedence over both of these CDP file
parameters for the consultation call with the specified CRN.

• When GCPARM_CONSDROP_HKFLASH_OVERRIDE is set, the values of the CDP file
parameters are not affected. However, the
GCPARM_CONSDROP_HKFLASH_OVERRIDE parameter overrides the values of
CDP_AllowDblHookflashOnConsultationDrop and
CDP_BypassHookflashOnConsultationDrop for the consultation call with the specified
CRN.

• If not set, the GCPARM_CONSDROP_HKFLASH_OVERRIDE parameter has no default
(GCPV_DISABLED). Whatever is set at configuration time with the
CDP_AllowDblHookflashOnConsultationDrop and
CDP_BypassHookflashOnConsultationDrop parameters in the pdk_us_ls_fxs_io.cdp file
will apply.

4.11 Retrieving Line Signaling Access

Note: The information in this section is applicable to Dialogic® DM3 Boards only.

The gc_Extension() function can be used to retrieve the current transmit/receive ABCD signaling
bits on a particular channel. For this feature, the gc_Extension() function should use
GCTGT_GCLIB_CHAN as target type, the Global Call device handle for the line device as the
target ID, and DM3CC_EXID_TXRX_SIGBITS_GET as the extension ID.

The following example shows how to retrieve the signaling bits. The format of the response is
explained below.

#include <iostream.h>
#include "srllib.h"
#include "gclib.h"
#include "gcerr.h"
#include "dm3cc_parm.h"

/* Some macros to get the signaling bits */
#define GET_TX_BITS(x) ((x & 0xF0) >> 4)
#define GET_RX_BITS(x) ((x & 0xF))

LINEDEV g_channel;
GC_PARM_BLKP g_pblkp = NULL;
GC_PARM_DATAP g_parmp = NULL;
METAEVENT g_EvtData;
int g_TxABCDbits;
int g_RxABCDbits;
int g_SignalingBits;

64 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

void main(void)
{
 gc_Start(NULL);
 if(gc_OpenEx(&g_channel, ":N_dtiB1T1:V_dxxxB1C1:P_dm3", 0, NULL) != GC_SUCCESS)
 {
 gc_Stop();
 return;
 }

 /* Wait for GCEV_UNBLOCKED event */

 gc_Extension(GCTGT_GCLIB_CHAN, g_channel, DM3CC_EXID_TXRX_SIGBITS_GET, g_pblkp,
 NULL, EV_ASYNC);

 /* Wait for GCEV_EXTENSIONCMPLT event */

 g_parmp = gc_util_next_parm(&(((EXTENSIONEVTBLK *)g_EvtData.extevtdatap)->parmblk),
 NULL);

 if(g_parmp == NULL)
 {
 cout << "No parameters in event GC_PARM_BLK." << endl;
 }
 else
 {
 g_SignalingBits = *((int *)parmp->value_buf);
 g_TxABCDbits = GET_TX_ BITS(g_SignalingBits);
 g_RxABCDbits = GET_RX_BITS(g_SignalingBits);

 cout << "Signaling Bits:" << endl;
 cout << " Transmit ABCD Bits = " << g_TxABCDbits << "." << endl;
 cout << " Receive ABCD Bits = " << g_RxABCDbits << "." << endl;
 }

 gc_ResetLineDev(g_channel, EV_SYNC);
 gc_Close(g_channel);
 gc_Stop();
}

The response is the GCEV_EXTENSIONCMPLT event, which will contain a GC_PARM_DATA
pointer that is structured as follows:

typedef struct
{
 unsigned short set_ID; /* Set ID (two bytes long)*/
 unsigned short parm_ID; /* Parameter ID (two bytes long) */
 unsigned char value_size; /* Size of value_buf in bytes */
 unsigned char value_buf[1]; /* Address to the parm value buffer */
}GC_PARM_DATA, *GC_PARM_DATAP;

The fields of GC_PARM_DATA will be set to the following parameters:

• set_ID = CCSET_SIG_BITS

• parm_ID = CCPARM_CURRENT_STATE

• value_size = 0x1

• value_buf[1] = see Table 13

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 65
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

Setting the Initial Bit Pattern

In addition to using Global Call functions to retrieve the bit values, you can set the initial bit pattern
that is sent on the line when the board is downloaded. To do this, add or change the following
parameter in the CHP section in the .config file for the firmware:

[CHP]
SetParm=0x1316,0xfd ! Initial Bit Pattern on the line - should be 0xF<pattern>, where
<pattern> is the ABCD bit values. The default is 0xfd -> ABCD=1101 (blocking pattern for E1)

This allows the application to know what the initial bit pattern is whenever the board is
downloaded.

Table 13. Bit Positioning in GC_PARM_DATA value_buf Element

Bit No. 7 6 5 4 3 2 1 0

Value ATX BTX CTX DTX ARX BRX CRX DRX

66 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2-Specific Operations

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 67
Dialogic Corporation

55.E1/T1 CAS/R2 Protocols

This chapter describes the E1/T1 CAS/R2 protocols supported by the Dialogic® Global Call
Software. Topics include:

• Protocols Supported. 67

• Protocol File Naming Conventions . 68

• Protocol Components . 69

Notes: 1. See the Dialogic® Global Call Country Dependent Parameters (CDP) for PDK Protocols
Configuration Guide for more information about using the protocols and the country dependent
parameter (CDP) files, including detailed procedures for configuring country dependent
parameters and for downloading the protocol and CDP file.

2. With newer releases of Dialogic® System Release Software, the Dialogic® Global Call protocols
can be installed as part of the System Release or with a Service Update for the System Release.
You do not have to install the Global Call protocols separately as in the past.

3. The development of the ICAPI protocols supported by Global Call has been capped. Customers
should migrate to equivalent protocols developed using the Protocol Development Kit (PDK).
New protocol development as well as existing protocol support will be on the PDK. ICAPI
protocols are supported only on Dialogic® Springware Boards. PDK protocols are supported on
both Dialogic® DM3 Boards and Springware Boards.

5.1 Protocols Supported

The Dialogic® Global Call protocols available are listed in the Dialogic® Global Call Country
Dependent Parameters (CDP) for PDK Protocols Configuration Guide. For the most up-to-date list
of available protocols, contact your nearest Dialogic Sales Office.

The protocol and parameters used at the application’s interface to the PTT must complement those
used by the local central office (CO). To maintain compatibility with the local PTT, Dialogic
provides .cdp country dependent parameter files that can be modified to satisfy local requirements.
User selectable options allow customization of the country dependent parameters to fit a particular
application or configuration within a country (for example, switches within the same country may
use the same protocol but may require different parameter values for local use). These parameters
(for example, the number of DNIS digits, time-outs, party calling number, idle patterns, signaling
patterns, and protocol-specific definitions) are specified in the .cdp file and may be modified at
configuration time (that is, at any time before starting your application). See the Dialogic® Global
Call Country Dependent Parameters (CDP) for PDK Protocols Configuration Guide for additional
information.

68 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2 Protocols

5.2 Protocol File Naming Conventions

When a protocol is installed on your system, several files are installed, including the protocol
module(s) and country dependent parameter files. For most protocols, the files are named
according to the conventions in Table 14.

where:

• ccl indicates the call control library for which the protocol is written, for example, pdk
represents the PDKRT call control library. For the ICAPI call control library, ccl is blank.

• cc is a 2-character ISO country code, regional code (for example, es = Spain, fr = France, mx =
Mexico, na = North America, etc.), or an indication of a switch-specific protocol.

• tt is a 2-character protocol type. Valid types are:

– em: a T1 protocol using E&M signaling with support for DTMF digits only

– mf: a T1 protocol using E&M signaling with support for MF digits

– r2: a protocol using R2 MFC signaling

– r1: a protocol using R1 MFC signaling

– e1: a pulse, MF SOCOTEL, or other E1 protocol

– sw: a protocol that is switch specific

– ls: a loop start protocol

• d is a 1- or 2-character direction indicator. Valid directions are:

– i: inbound

– o: outbound

– io: inbound/outbound

• ffff is optional and defines a special software or hardware feature supported by the protocol; 1
to 4 characters. If the protocol type is “sw”, then this field provides additional information
about the switch.

Note: Requires ICAPI call control library level 2, or else a compatibility error,
EGC_COMPATIBILITY, will be generated when the application attempts to load the
protocol.

The protocol name used in the devicename parameter of the gc_OpenEx() function is the root
name of the .cdp file. (On Dialogic® DM3 Boards, the protocol is determined at board initialization

Table 14. Protocol File Naming Conventions

File Name Description

ccl_cc_tt_d.hot and
ccl_cc_tt_d.qs

PDK protocol module (Dialogic® DM3 Boards)

ccl_cc_tt_d.psi PDK protocol module (Dialogic® Springware Boards)

ccl_cc_tt_d.so or
ccl_cc_tt_ffff_d.so

ICAPI protocol module for Linux (Dialogic® Springware
Boards)

ccl_cc_tt_d.dll or
ccl_cc_tt_ffff_d.dll

ICAPI protocol module for Windows® (Dialogic® Springware
Boards)

ccl_cc_tt_d.cdp or
ccl_cc_tt_ffff_d.cdp

Country dependent parameter file (Dialogic® DM3 Boards
and Dialogic® Springware Boards)

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 69
Dialogic Corporation

E1/T1 CAS/R2 Protocols

time and not when a Global Call device is opened. For compatibility, the gc_OpenEx() protocol
name may be specified for Dialogic DM3 Boards, but it is not used.)

Most ICAPI protocol releases use separate protocol modules to handle the inbound and the
outbound portions of a protocol. For example, Table 15 describes the files included for the
Argentina R2 ICAPI protocol.

PDK protocols are bidirectional protocols. For example, Table 16 describes the files included with
the Argentina R2 PDK protocol.

5.3 Protocol Components

Each protocol requires specific firmware parameter file(s) to be downloaded to the voice and
network boards:

• Protocol Modules

• Country Dependent Parameter (.cdp) Files

5.3.1 Protocol Modules

These files contain protocol specific information and are dynamically linked to the application as
needed.

PDK protocols are supported on both Dialogic® DM3 Boards and Dialogic® Springware Boards.
For Dialogic DM3 Boards, the protocol modules are .hot and .qs files. For Dialogic Springware

Table 15. Sample ICAPI Protocol File Set

Description
Protocol Files

Linux Windows®

Inbound protocol module ar_r2_i.so ar_r2_i.dll

Outbound protocol module ar_r2_o.so ar_r2_o.dll

Inbound country dependent parameters ar_r2_i.cdp ar_r2_i.cdp

Outbound country dependent parameters ar_r2_o.cdp ar_r2_o.cdp

Table 16. Sample PDK Protocol File Set

Description
Protocol Files

Linux and Windows®

Bidirectional protocol module (Dialogic® DM3
Boards)

pdk_r2_io.hot, pdk_r2_io.qs

Bidirectional protocol module (Dialogic®

Springware Boards)
pdk_r2_io.psi

Bidirectional country dependent parameters
(Dialogic® DM3 Boards and Dialogic® Springware
Boards)

pdk_ar_r2_io.cdp

70 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2 Protocols

Boards, the protocol module is a protocol state information (.psi) file, a binary file that is
interpreted by the PDK run-time component (PDKRT).

ICAPI protocols are supported on Dialogic Springware Boards only. The protocol modules for
Linux are .so files. The protocol modules for Windows® are .dll files.

5.3.2 Country Dependent Parameter (.cdp) Files

These files contain country specific and protocol specific parameters for use by the Dialogic®
Global Call Software. Country dependent parameter (.cdp) files may be customized. Descriptions
of the country dependent parameters most likely to be modified for a protocol are provided in the
Dialogic® Global Call Country Dependent Parameters (CDP) for PDK Protocols Configuration
Guide.

For ICAPI protocols, the special parameter @0 identifies the protocol to be run. This parameter
specifies the name of the protocol module (ignoring the filename extension and without the path) to
be run by the application. Two variations of the same protocol can be run if two .cdp files point to
the same protocol module filename after @0.

The .cdp file should be located only under the installation directory:

• For Linux: $INTEL_DIALOGIC_CFG

• For Windows®: %INTEL_DIALOGIC_CFG%

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 71
Dialogic Corporation

66.Building Dialogic® Global Call
E1/T1 CAS/R2 Applications

This chapter describes the E1/T1 CAS/R2 specific header files and libraries required when building
applications.

• Header Files . 71

• Required Libraries . 71

• Required System Software . 71

6.1 Header Files

When compiling Dialogic® Global Call applications for the E1/T1 CAS/R2 technology, it may be
necessary to include the following header files in addition to the standard Global Call header files,
which are listed in the Dialogic® Global Call API Library Reference and Dialogic® Global Call
API Programming Guide:

For Dialogic® DM3 Boards

dm3cc_parm.h
required when using Dialogic DM3 Boards

For Dialogic® Springware Boards

gcpdkrt.h
required when using PDK error codes, the PDK_MAKECALL_BLK structure for call
analysis, or logging via the gc_Start() function

icapi.h
required when using ICAPI error codes and features

6.2 Required Libraries

When building Dialogic® Global Call applications for the E1/T1 CAS/R2 technology, it is not
necessary to link any libraries other than the standard Global Call library, libgc.lib.

6.3 Required System Software

The Dialogic® System Software must be installed on the development system. See the Software
Installation Guide for your Dialogic® software release for further information.

72 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

Building Dialogic® Global Call E1/T1 CAS/R2 Applications

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 73
Dialogic Corporation

77.Debugging Dialogic® Global Call
E1/T1 CAS/R2 Applications

The Dialogic® Global Call debugging utilities are described in this chapter.

• Introduction . 73

• Debugging Applications That Use PDK Protocols . 73

• Debugging Applications That Use ICAPI Protocols . 78

Note: The information in this chapter is applicable to Dialogic® Springware Boards only. For information
about the pdktrace tool used with Dialogic® DM3 Boards, see the Diagnostics Guide for your
Dialogic® software release. The pdktrace tool requires Dialogic® Global Call Protocols Version 4.1
or later.

7.1 Introduction

The Dialogic® Global Call Software includes powerful debugging capabilities for troubleshooting
protocol-related problems, including the ability to generate a detailed log file. These debugging
tools should not be used during normal operations or when running an application for an extended
period of time since they increase the processing load on the system and they can quickly generate
a large log file.

Note: Only run the debugging and logging utilities on a limited number of channels at a time to avoid the
possibility of losing events.

7.2 Debugging Applications That Use PDK Protocols

This section discusses the following topics:

• Enabling and Disabling the Logging

• Populating and Using a CCLIB_START_STRUCT

• Defining the GC_PDK_START_LOG Environment Variable

7.2.1 Enabling and Disabling the Logging

The Dialogic® Global Call PDKRT (Protocol Development Kit Run Time) provides a rich set of
logging features that are useful to protocol developers and implementers of the engine and call
control libraries. The application may add additional log records to the log file when logging is
enabled.

Notes: 1. It is recommended to use logging on an as-needed basis. Logging uses significant resources and
can reduce the performance of the Global Call PDKRT call control library. Full logging (debug

74 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

Debugging Dialogic® Global Call E1/T1 CAS/R2 Applications

logging) enabled on many channels can reduce performance to such a degree that time-critical
operations are affected and the behavior of a protocol may be altered.

2. The LogView tool is required to view the log file.

The PDKRT call control library provides a service for capturing error and debug information in a
log file. Enabling and disabling logging is achieved using the gc_Start() function. Once logging is
enabled, the gc_StartTrace() function can be used to enable logging on each individual channel.
See Section 8.2.22, “gc_Start() and gc_Stop() Variances for E1/T1 CAS/R2”, on page 103 and
Section 8.2.23, “gc_StartTrace() Variances for E1/T1 CAS/R2”, on page 104 for more
information.

The parameters that control the logging mechanism can be set by:

• Populating and using a CCLIB_START_STRUCT. See Section 7.2.2, “Populating and Using a
CCLIB_START_STRUCT”, on page 74.

• Defining the GC_PDK_START_LOG environment variable. See Section 7.2.3, “Defining the
GC_PDK_START_LOG Environment Variable”, on page 78.

When both methods are used, the CCLIB_START_STRUCT takes precedence over the
GC_PDK_START_LOG environment variable.

Note: Two applications should not use the same log file.

7.2.2 Populating and Using a CCLIB_START_STRUCT

The following code shows an example of how to define a CCLIB_START_STRUCT, populate the
fields, and use it to enable logging when issuing the gc_Start() function.

GC_START_STRUCT t_GcStart;
CCLIB_START_STRUCT t_PdkStart;
t_PdkStart.cclib_name = "GC_PDKRT_LIB";
t_PdkStart.cclib_data = "filename: pdktest.log;
loglevel: ENABLE_DEBUG;
service: R2MF_ENABLE | CAS_ENABLE;
cachedump: WHEN_FULL | THREAD_ON;
channel: B1C1, B2C2-4;
cachesize: 10;
maxfilesize: 0;
mindiskfree: 20";
t_GcStart.num_cclibs = 1;
t_GcStart.cclib_list = (void *)
 (& t_PdkStart);
int t_result = gc_Start((GC_START_STRUCTP)& t_GcStart);

Note: The example above shows all the possible fields in a cclib_data string. In practice, you only need
to specify the values of fields that are different than the default values.

The length of the filename must be less than 8 characters.

The value of the cclib_name field must be GC_PDKRT_LIB and the cclib_data field should have
the following format:

"field name 1 : field value 1; field name 2 : field value 2; ..."

where the allowable field names and values are given in Table 17.

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 75
Dialogic Corporation

Debugging Dialogic® Global Call E1/T1 CAS/R2 Applications

The fields can be defined in any sequence. If any field is not defined or defined incorrectly (either
in name or value), then the default value is used for logging. The actual values of the fields are
posted as the first record of the log file. In this way, when a log file is received, the user knows how
logging was configured (that is, which log level and services were enabled, what the cache size and
cache dump conditions were when it was generated).

The following examples show how to set the cclib_data string:

• The example below shows all the possible fields. In practice, you only have to specify the
values of fields that are different than the default values.

 cclib_data = "filename: pdktest.log;
 loglevel: ENABLE_DEBUG;
 service: R2MF_ENABLE;
 cachedump: WHEN_FULL|THREAD_ON;
 channel: B1C1, B2C2-4;
 cachesize: 10;
 maxfilesize: 0;
 mindiskfree: 20"

• For simplicity and to avoid errors, use only the values of fields that are different than the
default values. For example, to specify a log file name called mylog.log that includes all log
entries, use the following cclib_data string:

 cclib_data = "filename: mylog.log; loglevel: ENABLE_DEBUG"

The following tables show the allowable values for the loglevel, service, cachedump, and channel
fields respectively. The values of loglevel, service, and cachedump can be numbers or symbols. (If
hex format is used, the prefix 0x should be used.) Consequently, before these values are passed to
the LOG_INIT, the values must be examined and converted from symbols to numbers, if necessary.
The value symbol of service and cachedump can be a bit mask.

Table 18 shows the valid values for the loglevel parameter.

Table 17. cclib_data Fields and Values

Field Name Field Values Default Value

filename Log file name gc_pdk.log

loglevel See Table 18. ENABLE_FATAL or 5

service See Table 19. ALL_SERVICES

cachedump See Table 20. WHEN_FULL or 1

cachesize Any positive integer 1 (number of records in cache)

channel See Table 21. B*C*

maxfilesize Integer 0 (Megabytes)

mindiskfree Integer 20 (Megabytes)

76 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

Debugging Dialogic® Global Call E1/T1 CAS/R2 Applications

Table 19 shows the valid values for the service parameter.

Table 18. Loglevel Parameter Values

loglevel
Valid
Value

Description

ENABLE_FATAL (default) 5 Only fatal errors are logged. A fatal error is an error that will make the
program run abnormally or will stop the program. For example, in
channelimpl.cpp, dx_open() returns INVALID_VOICEH. It is
expected that an exception will be thrown and the log cache will be
dumped to a file if possible.

ENABLE_WARNING 4 All levels above ALERT are logged. An error occurs that may make
the program run abnormally. For example, in channelimpl.cpp, the
new local state is not ChanState_InService while the reason is Wait
Call. An exception may be thrown, but log cache will not be dumped
to a file automatically.

ENABLE_ALERT 3 All levels above INFO are logged. There is a problem, generally not
an error, that the user should know about.

ENABLE_INFO 2 All levels above DEBUG are logged. Important information that the
user needs to be aware of is logged. For example, in channelimpl.cpp,
issuing a gc_StartTrace() and gc_StopTrace() determines if
logging for a specific channel is on or off. This kind of information is a
level higher than DEBUG.

ENABLE_DEBUG 1 All levels are logged. This gives the most detailed information to help
debug protocols or code step-by-step. For example, in
channelimpl.cpp, a call to any of the GC_PDK_C_XXX functions
should be logged at this level. Most routine logging should use this
level.

Note: Values are in decimal but can also be specified in hex using a 0x prefix.

Table 19. Service Parameter Values

service Valid Value Description

ALL_SERVICES (default) 0xFFFFFFFF (65535) All services are enabled.

USRAPP_ENABLE 0x00000001 (1) Only USRAPP service enabled.

GCAPI_ENABLE 0x00000002 (2) Only GCAPI service enabled.

GCXLTR_ENABLE 0x00000004 (4) Only GCXLTR service enabled.

LINEADMIN_ENABLE 0x00000008 (8) Only LINEADMIN service enabled.

CHANNEL_ENABLE 0x00000010 (16) Only CHANNEL service enabled.

LOADER_ENABLE 0x00000020 (32) Only LOADER service enabled.

CALL_ENABLE 0x00000040 (64) Only CALL service enabled.

R2MF_ENABLE 0x00000080 (128) Only R2 MF service enabled.

TONE_ENABLE 0x00000100 (256) Only TONE service enabled.

CAS_ENABLE 0x00000200 (512) Only CAS service enabled.

TIMER_ENABLE 0x00000400 (1024) Only TIMER service enabled.

Note: Values prefixed with 0x are hexadecimal values. Decimal values are shown in parentheses.

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 77
Dialogic Corporation

Debugging Dialogic® Global Call E1/T1 CAS/R2 Applications

Table 20 shows the valid values for the cachedump parameter.

Table 21 shows some examples of the channel parameter.

SDL_ENABLE 0x00000800 (2048) Only SDL service enabled.

SRL_ENABLE 0x00001000 (4096) Only SRL service enabled.

ERRHNDLR_ENABLE 0x00002000 (8192) Only ERRHNDLR service enabled.

LOGGER_ENABLE 0x00004000 (16384) Only LOGGER service enabled.

RTCM_ENABLE 0x00008000 (32768) Only RTCM service enabled.

GCLIB_ENABLE 0x00010000 (65546) Only GCLIB service enabled.

Table 19. Service Parameter Values (Continued)

service Valid Value Description

Note: Values prefixed with 0x are hexadecimal values. Decimal values are shown in parentheses.

Table 20. Cachedump Parameter Values

cachedump Valid Value Description

ON_FATAL 0x0000 (bit 1 = 0) The cache memory will be dumped to the log file once there
is a log record with a FATAL level.

WHEN_FULL (default) 0x0001 (bit 1 = 1) The cache memory will be dumped to the log file once the log
cache is full as determined by the cachesize parameter. For
example, if cachesize is 10, the log cache is dumped to a file
when it contains 10 log records.

THREAD_OFF (default) 0x0000 (bit 2 = 0) The dump operation will be executed by the calling thread.

THREAD_ON 0x0002 (bit 2 = 1) The dump operation will be executed by a separate cache
dumping thread.

Note: Values prefixed with 0x are hexadecimal values.

Table 21. Sample Channel Parameter Values

Example Value Boards and Channels Enabled for Logging

B*C* (default) All boards and all channels

B-1C-1 Only board number = -1 and channel number = -1.

B1C* All channels on board 1.

B1C-1 Only board 1 level.

B1C1 Channel 1 on board 1.

B1C1-5 Channels 1 to 5 on board 1.

B1C1,20 Channels 1 and 20 on board 1.

B1-4C* All channels of boards 1 to 4.

B1C2, B2C2,20-22 Channel 2 on board 1, channels 2, 20, 21, and 22 on board 2.

78 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

Debugging Dialogic® Global Call E1/T1 CAS/R2 Applications

7.2.3 Defining the GC_PDK_START_LOG Environment Variable

The GC_PDK_START_LOG environment variable can also be used to enable and configure
logging.

The following examples show how to set the GC_PDK_START_LOG environment variable in
Windows®:

• The following is an example of a GC_PDK_START_LOG environment variable definition
showing all the possible field values in the environment variable. In practice, you only have to
specify the values of fields that are different than the default values.

 set GC_PDK_START_LOG="filename : pdktest.log;
 loglevel: ENABLE_DEBUG; services: ALL_SERVICES;
 cachedump : WHEN_FULL | THREAD_ON; channel : B1C1, B2C2-4;
 cachesize : 10; maxfilesize : 0; mindiskfree : 20"

• For simplicity and to avoid errors, use only the values of fields that are different than the
default values. For example, to specify a log file name called mylog.log that includes all log
entries, use the following GC_PDK_START_LOG environment variable definition:

 set GC_PDK_START_LOG = "filename: mylog.log; loglevel: ENABLE_DEBUG"

This definition is equivalent to the logging configuration used in Section 7.2.2, “Populating
and Using a CCLIB_START_STRUCT”, on page 74 and the definition for each field is also
the same as described in that section.

The setting of the environment variable to enable PDK logging in Linux is:

export GC_PDK_START_LOG="filename:gc_pdk.log;loglevel:ENABLE_DEBUG;
service:ALL_SERVICES;cachedump:WHEN_FULL|THREAD_OFF;cachesize:1;maxfilesize:2"

7.3 Debugging Applications That Use ICAPI Protocols

The parameters shown in Table 22 are available in the icapi.cfg file as debugging tools. Unless
otherwise instructed, these parameters should retain their original settings.

The icapi.cfg file is located in the following directory:

• For Linux: $INTEL_DIALOGIC_CFG

• For Windows®: %INTEL_DIALOGIC_CFG%

When logging is enabled, the log file generated is icapi.log.<pid>, where pid = the process
identification number.

For Linux applications, the log file is generated by compiling the country.c file with the symbol
DEBUG defined and then setting the parameters $11 and $12 in the icapi.cfg file as indicated in the
following table. To write additional information directly to the ICAPI log file, use the
rs_log_printf() function. This function works like the fprintf() function except that a file
descriptor is not used.

For Windows® applications, the log file is generated by setting parameters $11 and $12 in the
icapi.cfg file as indicated in Table 22.

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 79
Dialogic Corporation

Debugging Dialogic® Global Call E1/T1 CAS/R2 Applications

Any unspecified parameter defaults to 0. If parameters $13 and $15 are set to 0, they are ignored.

Parameters $16 and $17 (not shown in Table 22) are for backwards compatibility only and should
not be changed.

Table 22. icapi.cfg File Parameters

Parameter Description

$11 Logging utility (default = 0):

• Set to 0 to ignore parameters $12, $13 and $15.

• Set to 1 to enable logging, either to the screen (set $13 parameter to 1) or to the
icapi.log.<pid> file to track all the events that occur at the device selected for monitoring
(parameter $12). This setting enables the debug tools associated with the protocol.
These tools help to locate the source of a protocol problem.

• (Windows® only) Set to 2 to enable logging to a memory buffer and to generate an
icapi.inf file. The icapi.inf file contains the memory address where the debug information
is stored.

Note: Enabling logging is not recommended during normal operation due to the increased
host processor loading.

$12 Number of the channel to be monitored (default = 0):

• A value of 0 means monitor all opened devices.

• A value of -1 means do not monitor any device.

• Entering a channel number designates the channel to be monitored.

$13 Echo on screen (default = 0):

• Set to 0 to ignore parameter.

• Set to 1 to send the debug information to the screen.

$14 Disable DTI Wait Call function (default = 0):

• The 0 default value causes the DTI Wait Call firmware function to wait for an incoming call
at the board firmware level.

• A value of 1 causes the DTI Wait Call firmware function to wait for an incoming call at the
ICAPI call control library level.

The value selected is protocol-dependent; do not change the default value unless instructed
to do so in the documentation for your protocol.

$15 (Linux only) Size of debug memory (default = 1; that is, 1 = 1 event or action in memory)

The debug memory saves passed actions or events to a buffer. The built-in debug function
does not use this feature. Change this parameter only if you implement your own debug
function and you need a larger circular buffer than 1 event or action.

• Set to 1 to store one action or event in the buffer.

• Set to 0 to ignore feature (default).

$18 Enables cadenced tones, such as ringback and busy, to be played using the firmware rather
than using host-based function calls such as dx_playtone() and sleep().

• Set to 0 to disable firmware cadence tones (default).

• Set to 1 to enable firmware cadence tones.

80 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

Debugging Dialogic® Global Call E1/T1 CAS/R2 Applications

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 81
Dialogic Corporation

88.E1/T1 CAS/R2-Specific Function
Information

This chapter describes the Dialogic® Global Call API functions that have additional functionality
or perform differently when used with E1/T1 CAS/R2 technology. The function descriptions are
presented alphabetically and contain information that is specific to E1/T1 CAS/R2 applications.
Generic function description information (that is, information that is not technology-specific) is
provided in the Dialogic® Global Call API Library Reference.

Topics in this chapter include:

• Dialogic® Global Call Functions Supported by E1/T1 CAS/R2. 81

• Dialogic® Global Call Function Variances for E1/T1 CAS/R2. 88

8.1 Dialogic® Global Call Functions Supported by E1/T1
CAS/R2

The following is a list of the Dialogic® Global Call functions that indicates the level of support
when used with E1/T1 CAS/R2 technology. The list indicates whether the function is supported,
not supported, or supported with variances.

gc_AcceptCall()
Supported with variances described in Section 8.2.1, “gc_AcceptCall() Variances for E1/T1
CAS/R2”, on page 89.

gc_AcceptInitXfer()
Not supported.

gc_AcceptModifyCall()
Not supported.

gc_AcceptXfer()
Not supported.

gc_AlarmName()
Supported.

gc_AlarmNumber()
Supported.

gc_AlarmNumberToName()
Supported.

gc_AlarmSourceObjectID()
Supported.

gc_AlarmSourceObjectIDToName()
Supported.

82 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2-Specific Function Information

gc_AlarmSourceObjectName()
Supported.

gc_AlarmSourceObjectNameToID()
Supported.

gc_AnswerCall()
Supported with variances described in Section 8.2.2, “gc_AnswerCall() Variances for E1/T1
CAS/R2”, on page 89.

gc_Attach() (deprecated)
Supported.

gc_AttachResource()
Supported.

gc_BlindTransfer()
Supported with variances described in Section 8.2.3, “gc_BlindTransfer() Variances for E1/T1
CAS/R2”, on page 91.

gc_CallAck()
For Dialogic® Springware Boards: Supported with variances described in Section 8.2.4,
“gc_CallAck() Variances for E1/T1 CAS/R2”, on page 92. For Dialogic® DM3 Boards: Not
supported.

gc_CallProgress()
Not supported.

gc_CCLibIDToName()
Supported.

gc_CCLibNameToID()
Supported.

gc_CCLibStatus() (deprecated)
Supported.

gc_CCLibStatusAll() (deprecated)
Supported.

gc_CCLibStatusEx()
Supported.

gc_Close()
Supported with variances described in Section 8.2.5, “gc_Close() Variances for E1/T1
CAS/R2”, on page 92.

gc_CompleteTransfer()
Supported with variances described in Section 8.2.6, “gc_CompleteTransfer() Variances for
E1/T1 CAS/R2”, on page 93.

gc_CRN2LineDev()
Supported.

gc_Detach()
Supported with variances described in Section 8.2.7, “gc_Detach() Variances for E1/T1
CAS/R2”, on page 93.

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 83
Dialogic Corporation

E1/T1 CAS/R2-Specific Function Information

gc_DropCall()
Supported with variances described in Section 8.2.8, “gc_DropCall() Variances for E1/T1
CAS/R2”, on page 93.

gc_ErrorInfo()
Supported.

gc_ErrorValue() (deprecated)
Supported.

gc_Extension()
Supported with variances described in Section 8.2.9, “gc_Extension() Variances for E1/T1
CAS/R2”, on page 94.

gc_GetAlarmConfiguration()
Supported.

gc_GetAlarmFlow()
Supported.

gc_GetAlarmParm()
For Dialogic® Springware Boards: Supported. For Dialogic® DM3 Boards: Not supported.

gc_GetAlarmSourceObjectList()
Supported.

gc_GetAlarmSourceObjectNetworkID()
Supported.

gc_GetANI() (deprecated)
Supported.

gc_GetBilling()
Not supported.

gc_GetCallInfo()
Supported with variances described in Section 8.2.10, “gc_GetCallInfo() Variances for E1/T1
CAS/R2”, on page 94.

gc_GetCallProgressParm()
For Dialogic® Springware Boards: Supported (PDKRT only). For Dialogic® DM3 Boards:
Not supported.

gc_GetCallState()
Supported.

gc_GetConfigData()
For Dialogic® Springware Boards: Supported (PDKRT only). For Dialogic® DM3 Boards:
Not supported.

gc_GetCRN()
Supported.

gc_GetCTInfo()
For Dialogic® Springware Boards: Supported (PDKRT only). For Dialogic® DM3 Boards:
Supported.

gc_GetDNIS() (deprecated)
Supported.

84 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2-Specific Function Information

gc_GetFrame()
Not supported.

gc_GetInfoElem()
Not supported.

gc_GetLineDev()
Supported.

gc_GetLineDevState()
For Dialogic® Springware Boards: Not supported. For Dialogic® DM3 Boards: Supported.

gc_GetMetaEvent()
Supported.

gc_GetMetaEventEx()
Supported (Windows® extended asynchronous mode only).

gc_GetNetCRV()
Not supported.

gc_GetNetworkH() (deprecated)
Supported.

gc_GetParm()
Supported with variances described in Section 8.2.11, “gc_GetParm() Variances for E1/T1
CAS/R2”, on page 96.

gc_GetResourceH()
Supported.

gc_GetSigInfo()
Not supported.

gc_GetUserInfo()
Not supported.

gc_GetUsrAttr()
Supported.

gc_GetVer()
For Dialogic® Springware Boards: Supported. For Dialogic® DM3 Boards: Not supported.

gc_GetVoiceH() (deprecated)
Supported.

gc_GetXmitSlot()
For Dialogic® Springware Boards: Supported (PDKRT only). For Dialogic® DM3 Boards:
Supported.

gc_HoldACK()
Not supported.

gc_HoldCall()
Supported with variances described in Section 8.2.12, “gc_HoldCall() Variances for E1/T1
CAS/R2”, on page 97.

gc_HoldRej()
Not supported.

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 85
Dialogic Corporation

E1/T1 CAS/R2-Specific Function Information

gc_InitXfer()
Not supported.

gc_InvokeXfer()
Not supported.

gc_LinedevToCCLIBID()
Supported.

gc_Listen()
For Dialogic® Springware Boards: Supported (PDKRT only). For Dialogic® DM3 Boards:
Supported.

gc_LoadDxParm()
For Dialogic® Springware Boards: Supported (PDKRT only). For Dialogic® DM3 Boards:
Not supported.

gc_MakeCall()
Supported with variances described in Section 8.2.13, “gc_MakeCall() Variances for E1/T1
CAS/R2”, on page 97.

gc_Open() (deprecated)
Supported.

gc_OpenEx()
Supported with variances described in Section 8.2.14, “gc_OpenEx() Variances for E1/T1
CAS/R2”, on page 99.

gc_QueryConfigData()
For Dialogic® Springware Boards: Supported (PDKRT only). For Dialogic® DM3 Boards:
Not supported.

gc_RejectInitXfer()
Not supported.

gc_RejectModifyCall()
Not supported.

gc_RejectXfer()
Not supported.

gc_ReleaseCall() (deprecated)
Supported.

gc_ReleaseCallEx()
Supported.

gc_ReqANI()
Not supported.

gc_ReqModifyCall()
Not supported.

gc_ReqMoreInfo()
For Dialogic® Springware Boards: Supported (PDKRT only). For Dialogic® DM3 Boards:
Not supported.

gc_ReqService()
Not supported.

86 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2-Specific Function Information

gc_ResetLineDev()
For Dialogic® Springware Boards: Supported with variances described in Section 8.2.15,
“gc_ResetLineDev() Variances for E1/T1 CAS/R2”, on page 101. For Dialogic® DM3
Boards: Supported.

gc_RespService()
Not supported.

gc_ResultInfo()
Supported.

gc_ResultMsg() (deprecated)
Supported.

gc_ResultValue() (deprecated)
Supported.

gc_RetrieveAck()
Not supported.

gc_RetrieveCall()
Supported with variances described in Section 8.2.16, “gc_RetrieveCall() Variances for E1/T1
CAS/R2”, on page 101.

gc_RetrieveRej()
Not supported.

gc_SendMoreInfo()
For Dialogic® Springware Boards: Supported (PDKRT only). For Dialogic® DM3 Boards:
Not supported.

gc_SetAlarmConfiguration()
Supported.

gc_SetAlarmFlow()
Supported.

gc_SetAlarmNotifyAll()
Supported.

gc_SetAlarmParm()
For Dialogic® Springware Boards: Supported. For Dialogic® DM3 Boards: Not supported.

gc_SetAuthenticationInfo()
Not supported.

gc_SetBilling()
For Dialogic® Springware Boards: Supported with variances described in Section 8.2.17,
“gc_SetBilling() Variances for E1/T1 CAS/R2”, on page 101. For Dialogic® DM3 Boards:
Not supported.

gc_SetCallingNum() (deprecated)
Supported.

gc_SetCallProgressParm()
For Dialogic® Springware Boards: Supported (PDKRT only). For Dialogic® DM3 Boards:
Not supported.

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 87
Dialogic Corporation

E1/T1 CAS/R2-Specific Function Information

gc_SetChanState()
Supported with variances described in Section 8.2.18, “gc_SetChanState() Variances for
E1/T1 CAS/R2”, on page 102.

gc_SetConfigData()
For Dialogic® Springware Boards: Supported (PDKRT only). For Dialogic® DM3 Boards:
Supported.

gc_SetEvtMsk() (deprecated)
For Dialogic® Springware Boards: Supported with variances described in Section 8.2.19,
“gc_SetEvtMsk() Variances for E1/T1 CAS/R2”, on page 102. For Dialogic® DM3 Boards:
Supported.

gc_SetInfoElem()
Not supported.

gc_SetParm()
Supported with variances described in Section 8.2.20, “gc_SetParm() Variances for E1/T1
CAS/R2”, on page 102.

gc_SetupTransfer()
Supported with variances described Section 8.2.21, “gc_SetupTransfer() Variances for E1/T1
CAS/R2”, on page 103.

gc_SetUserInfo()
Not supported.

gc_SetUsrAttr()
Supported.

gc_SipAck()
Not supported.

gc_SndFrame()
Not supported.

gc_SndMsg()
Not supported.

gc_Start()
For Dialogic® Springware Boards: Supported with variances described in Section 8.2.22,
“gc_Start() and gc_Stop() Variances for E1/T1 CAS/R2”, on page 103. For Dialogic® DM3
Boards: Supported.

gc_StartTrace()
For Dialogic® Springware Boards: Supported with variances described in Section 8.2.23,
“gc_StartTrace() Variances for E1/T1 CAS/R2”, on page 104. For Dialogic® DM3 Boards:
Not supported.

gc_Stop()
For Dialogic® Springware Boards: Supported with variances described in Section 8.2.22,
“gc_Start() and gc_Stop() Variances for E1/T1 CAS/R2”, on page 103. For Dialogic® DM3
Boards: Supported.

gc_StopTrace()
For Dialogic® Springware Boards: Supported (PDKRT only). For Dialogic® DM3 Boards:
Not supported.

88 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2-Specific Function Information

gc_StopTransmitAlarms()
Supported.

gc_SwapHold()
Supported with variances described in Section 8.2.24, “gc_SwapHold() Variances for E1/T1
CAS/R2”, on page 104.

gc_TransmitAlarms()
Supported.

gc_UnListen()
For Dialogic® Springware Boards: Supported (PDKRT only). For Dialogic® DM3 Boards:
Supported.

gc_util_copy_parm_blk()
Supported.

gc_util_delete_parm_blk()
Supported.

gc_util_find_parm()
Supported.

gc_util_find_parm_ex()
Supported.

gc_util_insert_parm_ref()
Supported.

gc_util_insert_parm_ref_ex()
Supported.

gc_util_insert_parm_val()
Supported.

gc_util_next_parm()
Supported.

gc_util_next_parm_ex()
Supported.

gc_WaitCall()
Supported.

8.2 Dialogic® Global Call Function Variances for E1/T1
CAS/R2

The Dialogic® Global Call function variances that apply when using E1/T1 CAS/R2 technology
are described in the following sections. See the Dialogic® Global Call API Library Reference for
generic (technology-independent) descriptions of the Global Call API functions.

• gc_AcceptCall() Variances for E1/T1 CAS/R2

• gc_AnswerCall() Variances for E1/T1 CAS/R2

• gc_BlindTransfer() Variances for E1/T1 CAS/R2

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 89
Dialogic Corporation

E1/T1 CAS/R2-Specific Function Information

• gc_CallAck() Variances for E1/T1 CAS/R2

• gc_Close() Variances for E1/T1 CAS/R2

• gc_CompleteTransfer() Variances for E1/T1 CAS/R2

• gc_Detach() Variances for E1/T1 CAS/R2

• gc_DropCall() Variances for E1/T1 CAS/R2

• gc_Extension() Variances for E1/T1 CAS/R2

• gc_GetCallInfo() Variances for E1/T1 CAS/R2

• gc_GetParm() Variances for E1/T1 CAS/R2

• gc_HoldCall() Variances for E1/T1 CAS/R2

• gc_MakeCall() Variances for E1/T1 CAS/R2

• gc_OpenEx() Variances for E1/T1 CAS/R2

• gc_ResetLineDev() Variances for E1/T1 CAS/R2

• gc_RetrieveCall() Variances for E1/T1 CAS/R2

• gc_SetBilling() Variances for E1/T1 CAS/R2

• gc_SetChanState() Variances for E1/T1 CAS/R2

• gc_SetEvtMsk() Variances for E1/T1 CAS/R2

• gc_SetParm() Variances for E1/T1 CAS/R2

• gc_SetupTransfer() Variances for E1/T1 CAS/R2

• gc_Start() and gc_Stop() Variances for E1/T1 CAS/R2

• gc_StartTrace() Variances for E1/T1 CAS/R2

• gc_SwapHold() Variances for E1/T1 CAS/R2

8.2.1 gc_AcceptCall() Variances for E1/T1 CAS/R2

The gc_AcceptCall() function optionally responds to an inbound call request by providing an
indication to the remote end that a call was received but not yet answered. This function causes
ringback to be generated.

The gc_AcceptCall() function uses the rings parameter to specify the number of rings to wait
before terminating the function, that is, before the Dialogic® Global Call API sends the
GCEV_ACCEPT event to the application.

• For PDK protocols, if the rings parameter is set to 0, the value of the
PSL_AcceptCallDefaultNumOfRings parameter in the country dependent parameters (.cdp)
file is used.

• For ICAPI protocols (Dialogic® Springware Boards only), if the rings parameter is set to 0,
the value specified in parameter $9 of the country dependent parameters (.cdp) file is used.

8.2.2 gc_AnswerCall() Variances for E1/T1 CAS/R2

gc_AnswerCall() function variances for E1/T1 CAS/R2 are discussed in the following topics:

• Use of the rings Parameter

90 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2-Specific Function Information

• Run-Time Control of Double Answer

8.2.2.1 Use of the rings Parameter

The gc_AnswerCall() function indicates to the remote end that the connection is established (call
has been answered). The rings parameter specifies the number of rings to wait before terminating
the gc_AnswerCall() function, that is, before answering the call.

• For PDK protocols, if the rings parameter is set to 0, the value of the
PSL_AnswerCallDefaultNumOfRings parameter in the country dependent parameters (.cdp)
file is used.

• For ICAPI protocols (Dialogic® Springware Boards only), if the rings parameter is set to 0,
the value specified in parameter $9 of the country dependent parameters (.cdp) file is used.

8.2.2.2 Run-Time Control of Double Answer

Double answer is a feature supported in some protocols for blocking collect calls.

Double answer signaling can be statically enabled or disabled by setting the
CDP_DOUBLE_ANSWER_FLAG parameter in the CDP file. This setting applies to all the calls
on the channels and cannot be controlled on a call-by-call basis.

The gc_AnswerCall() function provides a method of rejecting collect calls on a call-by-call basis.
The following Dialogic® Boards currently support this feature:

• Dialogic® DM/V-A Media Boards

• Dialogic® DM/V-B Media Boards

• Dialogic® D/300JCT-E1 Media Boards

• Dialogic® D/600JCT-1E1 Media Boards

• Dialogic® D/600JCT-2E1 Media Boards

Double answer can be triggered on a call-by-call basis by issuing gc_AnswerCall() with the
number of rings ORed with the GC_DBL_ANSWER define (0x100).

Notes: 1. The double answer feature must be disabled (disabled by default) in the CDP file. If the double
answer feature is enabled by setting the CDP_DOUBLE_ANSWER_FLAG parameter in the
CDP file, then there will be no application control of this feature on a call-by-call basis (this
feature will always be triggered).

2. If gc_AnswerCall() is issued with the number of rings ORed with GC_DBL_ANSWER on a
protocol that does not support double answer functionality, there will be no error reported as
there is no range checking done in the PDK protocols for the number of rings. The expected
behavior is that while the inbound side is busy generating the ring back tone (>= 256 rings), the
remote side will time out and the call will eventually get dropped.

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 91
Dialogic Corporation

E1/T1 CAS/R2-Specific Function Information

Example Code

#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>
/*
* Assume the following has been done:
* 1. Opened line devices for each time slot on DTIB1.
* 2. Wait for a call using gc_WaitCall()
* 3. An event has arrived and has been converted to a metaevent
* using gc_GetMetaEvent() or gc_GetMetaEventEx() (Windows)
* 4. The event is determined to be a GCEV_OFFERED event
*/

int answer_call(int num_rings, int dbl_answ_flag)
{

CRN crn; /* call reference number */
GC_INFO gc_error_info; /* GlobalCall error information data */
int rings = 0;

/*
* Do the following:
* 1. Get the CRN from the metaevent
* 2. Proceed to answer the call as shown below
*/
crn = metaevent.crn;

/*
* Answer the incoming call. Check the dbl_answ_flag to determine
* if double answer should be triggered or not
*/
if (dbl_answ_flag)
 rings = num_rings | GC_DBL_ANSWER;
else
 rings = num_rings;

if (gc_AnswerCall(crn, rings, EV_ASYNC) != GC_SUCCESS) {
 /* process error return as shown */
 gc_ErrorInfo(&gc_error_info);
 printf ("Error: gc_AnswerCall() on device handle: 0x%lx, GC ErrorValue: 0x%hx - %s,
 CCLibID: %i - %s, CC ErrorValue: 0x%lx - %s\n",
 metaevent.evtdev, gc_error_info.gcValue, gc_error_info.gcMsg,
 gc_error_info.ccLibId, gc_error_info.ccLibName,
 gc_error_info.ccValue, gc_error_info.ccMsg);
 return (gc_error_info.gcValue);
}

/*
* gc_AnswerCall() terminates with GCEV_ANSWERED event
*/
return (0);

}

8.2.3 gc_BlindTransfer() Variances for E1/T1 CAS/R2

The gc_BlindTransfer() function is only valid for applications using PDK protocols that support
call hold and transfer. Check the sys_features parameter in the .cdp file for a value of
Feature_Transfer. See the Dialogic® Global Call Country Dependent Parameters (CDP) for PDK
Protocols Configuration Guide for more information.

92 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2-Specific Function Information

8.2.4 gc_CallAck() Variances for E1/T1 CAS/R2

Note: The variances described in this section apply when using Dialogic® Springware Boards only. The
gc_CallAck() function is not supported when using Dialogic® DM3 Boards.

The gc_CallAck() function may be called before issuing a gc_AcceptCall() or a
gc_AnswerCall() function to indicate to the network if more information is desired before
completing the call. This function is used to request additional DDI digits from the network. After
using this function, call the gc_GetCallInfo() function to retrieve the digits. The
gc_GetCallInfo() function will return all DDI digits collected from the network (including both
the digits already received and those returned by the network in response to the gc_CallAck()
function call). Using the gc_CallAck() function for this service is described in the Dialogic®
Global Call API Library Reference.

The valid range of values for the gc_CallAck() function info_len field is from 1 to
GCDG_MAXDIGIT. If more than GCDG_MAXDIGIT digits are required, or if an unknown
number of digits is to be requested, set the info_len field to GCDG_NDIGIT.

The value GCDG_PARTIAL may be ORed with the number of digits field if the application needs
to call the gc_CallAck() function again for this call (that is, if the application needs additional
DDI digits before accepting or rejecting the call).

8.2.5 gc_Close() Variances for E1/T1 CAS/R2

The gc_Close() function only affects the link between the calling process and the device. For CAS
protocols, if a voice resource is currently assigned to the specified line device, the voice resource
will be closed. To keep the voice resource open for other operations, use the gc_Detach() function
to detach the voice resource from the line device before issuing the gc_Close() function.

Functionality of gc_Close() is different for Dialogic® Springware Boards and Dialogic® DM3
Boards with regards to stopping the protocol.

Dialogic® Springware Board-specific variances

Dialogic® Springware Boards stop the protocol after gc_Close().

Dialogic® DM3 Board-specific variances

Dialogic® DM3 Boards do not stop the protocol after gc_Close().

On Dialogic DM3 Boards, gc_Close() typically sets the protocol out of service; the protocol is not
stopped until the board is stopped. Therefore, when a Dialogic DM3 Board uses a protocol that
includes the CDP_ProtocolStopsOffhook parameter, which determines the state of the hook
switch signaling (on-hook or off-hook) when the protocol stops after gc_Close(), this parameter
has no effect.

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 93
Dialogic Corporation

E1/T1 CAS/R2-Specific Function Information

8.2.6 gc_CompleteTransfer() Variances for E1/T1 CAS/R2

The gc_CompleteTransfer() function is only valid for applications using PDK protocols that
support call hold and transfer. Check the sys_features parameter in the .cdp file for a value of
Feature_Transfer. See the Dialogic® Global Call Country Dependent Parameters (CDP) for PDK
Protocols Configuration Guide for more information.

8.2.7 gc_Detach() Variances for E1/T1 CAS/R2

The gc_Detach() function logically disconnects a voice channel from a line device. It is the
responsibility of the application to make sure that there is a voice resource available while the
gc_WaitCall() function is active and that the current Global Call call state is Null or Idle.
Furthermore, the gc_Detach() function can only be called in the Null, Idle, or Connected states.

8.2.8 gc_DropCall() Variances for E1/T1 CAS/R2

The gc_DropCall() function supports the following values for its cause parameter:

GC_CALL_REJECTED
Call is not accepted

GC_NETWORK_CONGESTION
Cannot establish connection due to volume of traffic on network

GC_NORMAL_CLEARING
Normal end of call

GC_SEND_SIT
Sends a special information tone

GC_UNASSIGNED_NUMBER
Invalid called party number

GC_USER_BUSY
Called party is busy

Note: You must use the dx_stopch() function to terminate any application-initiated voice functions, such
as dx_play() or dx_record(), before calling gc_DropCall().

Some protocols do not support all gc_DropCall() causes for dropping a call. Any unsupported
cause(s) is automatically mapped to the most appropriate cause. This approach facilitates
developing protocol independent applications.

From the Accepted state, some protocols do not support a forced release of the line; that is, issuing
a gc_DropCall() function after a gc_AcceptCall() function. Refer to the Protocol Limitations
section in the Dialogic® Global Call Country Dependent Parameters (CDP) for PDK Protocols
Configuration Guide for your protocol. If a forced release is attempted, the function fails and an
error is returned. To recover, the application should issue a gc_AnswerCall() function followed by
gc_DropCall() and gc_ReleaseCall() functions. However, anytime a GCEV_DISCONNECTED
event is received in the Accepted state, the gc_DropCall() function can be issued.

94 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2-Specific Function Information

After the gc_AnswerCall() function is issued, the application must wait for a GCEV_ANSWER
event. Otherwise the gc_DropCall() function is ignored, no error is returned, and no drop call
action is taken.

When using ICAPI protocols (Dialogic® Springware Boards only), the gc_DropCall() function
occasionally results in the generation of the GCEV_DROPCALL event followed by a
GCEV_BLOCKED event. The generation of the GCEV_BLOCKED event is most likely if the
gc_DropCall() function is issued before the call is connected. The reason for the
GCEV_BLOCKED event is that the remote side does not recognize the disconnection in a timely
manner. When the GCEV_BLOCKED event occurs, call-related Global Call functions should not
be issued until a GCEV_UNBLOCKED event is detected on the respective device.

In some protocols, a gc_DropCall() command on a call in the Accepted state requires a
momentary transition to the Connected state. This may result in a charge being registered for the
call.

8.2.9 gc_Extension() Variances for E1/T1 CAS/R2

Dialogic® DM3 Board-specific variances

The gc_Extension() function can be used to access the functionality of the Direct Signaling
protocol. The Direct Signaling protocol is not a call control protocol; it is used strictly to give
applications direct control over the signaling patterns on a line, as a means to allow the application
to implement its own protocols. The Direct Signaling protocol allows the application to generate
and detect signaling patterns. Applications can call the gc_Extension() function to generate up to
11 distinct CAS patterns, and through the GCEV_EXTENSION event, be notified when one of the
patterns is detected by the protocol. For details about the Direct Signaling protocol and the
gc_Extension() function, see the Dialogic® Global Call Country Dependent Parameters (CDP)
for PDK Protocols Configuration Guide.

8.2.10 gc_GetCallInfo() Variances for E1/T1 CAS/R2

gc_GetCallInfo() function variances for E1/T1 CAS/R2 are discussed in the following topics:

• Use of the CONNECT_TYPE info_id Parameter

• Use of the CALLINFOTYPE info_id Parameter

8.2.10.1 Use of the CONNECT_TYPE info_id Parameter

For E1 CAS and T1 robbed bit protocols that support enhanced call analysis (call progress), the
gc_GetCallInfo() CONNECT_TYPE info_id parameter contains the type of connection as
returned by the function. These connection types are:

GCCT_CAD
Connection due to cadence break

GCCT_PVD
Connection due to voice detection

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 95
Dialogic Corporation

E1/T1 CAS/R2-Specific Function Information

GCCT_PAMD
Connection due to answering machine detection

GCCT_FAX
Connection due to fax machine detection

GCCT_NA
Connection type is not available

PDK protocols provide support for enhanced call analysis.

For protocols that do not support enhanced call progress analysis, the gc_GetCallInfo() function
with the CONNECT_TYPE parameter specified will return a CONNECT_TYPE value of
GCCT_NA (not available).

8.2.10.2 Use of the CALLINFOTYPE info_id Parameter

For E1 CAS protocols that support the CALLINFOTYPE info_id parameter, a call information
string containing either CHARGE, NO CHARGE, or CHARGE WITH CLEARING FROM
INBOUND is returned by the parameter; check your protocol in the Dialogic® Global Call
Country Dependent Parameters (CDP) for PDK Protocols Configuration Guide for applicability.
This allows the application to know which billing type was received when the lines are available for
call establishment. B tones are sent to indicate whether the line is available, and also to indicate the
type of billing for the call.

The following Dialogic® Boards currently support this feature:

• Dialogic® DM/V-A Media Boards

• Dialogic® DM/V-B Media Boards

• Dialogic® D/300JCT-E1 Media Boards

• Dialogic® D/600JCT-1E1 Media Boards

• Dialogic® D/600JCT-2E1 Media Boards

The user is notified of the billing type for a successful call establishment. The gc_GetCallInfo()
function with info_id equal to CALLINFOTYPE is used to retrieve the billing type. Table 23
shows the mapping of group B tones to billing type string returned.

For B tones indicating unavailability of the line (call establishment failure), Table 24 shows the
mappings that are used for assigning cause values to the GCEV_DISCONNECT event.

Table 23. gc_GetCallInfo() Billing Type Strings Returned

Group B Tone Billing Type String Returned

GrpB - line free, charge “CHARGE”

GrpB - line free, no charge “NO CHARGE”

GrpB - line free, charge with clearing from inbound only “CHARGE WITH CLEARING FROM INBOUND”

96 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2-Specific Function Information

Note: If the billing type is not supported on a protocol, then gc_GetCallInfo(CALLINFOTYPE) returns
“UNKNOWN BILLING”.

8.2.11 gc_GetParm() Variances for E1/T1 CAS/R2

The gc_GetParm() function retrieves the value of the specified parameter for a line device.

Dialogic® Springware Board-specific variances

In addition to the GCPR_CALLINGPARTY parameter, which is common across all technologies
and documented in the Dialogic® Global Call API Library Reference, the following parameters are
supported:

• GCPR_LOADTONES

• GCPR_MEDIADETECT

See Section 8.2.20, “gc_SetParm() Variances for E1/T1 CAS/R2”, on page 102 for more
information on the meaning of these parameters.

Dialogic® DM3 Board-specific variances

In addition to the GCPR_CALLINGPARTY parameter, which is common across all technologies
and documented in the Dialogic® Global Call API Library Reference, the following parameters are
supported:

• GCPR_CALLPROGRESS

• GCPR_MEDIADETECT

• GCPR_MINDIGITS

Table 24. gc_GetCallInfo() Cause Values for GCEV_DISCONNECT

Group B Tone GC Cause Value Description

GrpB - User Busy GCRV_BUSY “Line is busy”

GrpB - Network Congestion GCRV_CONGESTION “Congestion”

GrpB - Normal Clearing GCRV_NORMAL “Normal Clearing”

GrpB - UnAssigned Number For Dialogic® DM3 Boards:
GCRV_UNALLOCATED

For Dialogic® Springware Boards:
GCRV_NOT_INSERVICE

For Dialogic® DM3 Boards:
 “Number not allocated”

For Dialogic® Springware
Boards:
 “Number not in service”

GrpB - SIT For Dialogic® DM3 Boards:
GCRV_SIT_UNKNOWN

For Dialogic® Springware Boards:
GCRV_CEPT

For Dialogic® DM3 Boards:
“Unknown SIT detected”

For Dialogic® Springware
Boards:
“Operator intercept”

GrpB - Rejected GCRV_REJECT “Call Rejected”

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 97
Dialogic Corporation

E1/T1 CAS/R2-Specific Function Information

See Section 8.2.20, “gc_SetParm() Variances for E1/T1 CAS/R2”, on page 102 for more
information on the meaning of these parameters.

8.2.12 gc_HoldCall() Variances for E1/T1 CAS/R2

The gc_HoldCall() function is only valid for applications using PDK protocols that support call
hold and transfer. Check the sys_features parameter in the .cdp file for a value of Feature_Hold.
See the Dialogic® Global Call Country Dependent Parameters (CDP) for PDK Protocols
Configuration Guide for more information.

8.2.13 gc_MakeCall() Variances for E1/T1 CAS/R2

gc_MakeCall() function variances for E1/T1 CAS/R2 are discussed in the following topics:

• Use of the timeout Parameter

• Other gc_MakeCall() Considerations

8.2.13.1 Use of the timeout Parameter

When using E1 CAS or T1 robbed bit line devices, the timeout parameter in the gc_MakeCall()
function is supported when the mode parameter is set to either EV_SYNC or EV_ASYNC.

For ICAPI protocols (Dialogic® Springware Boards only), when the mode parameter is set to
EV_ASYNC, the timeout parameter overrides the time-out parameter ($13) value and the
outbound number of ringback tones parameter ($1) in most protocol country dependent parameters
(.cdp) files.

• If the timeout parameter is set to 0, then the time-out and ringback parameters in the .cdp file
are used to set the time-out conditions.

• If the timeout parameter is set to a value larger than a protocol time-out value, a protocol time-
out may occur first, which will cause the gc_MakeCall() function to fail. The protocol time-
out is configured in the .cdp file.

• If the timeout value is reached before the remote end answers the call, the application is
notified of this condition and should respond as described in the gc_MakeCall() function
description in the Dialogic® Global Call API Library Reference.

• If all timeout values are set to 0, no time-out condition will apply.

For PDK protocols, the time-out value used is determined by:

• The timeout parameter in the gc_MakeCall() function.

• The PSL_DefaultMakeCallTimeout parameter specified in the .cdp file if the timeout
parameter in the gc_MakeCall() function is 0 and call analysis is not specified.

• The PSL_CallProgressMaxDialingTime parameter specified in the .cdp file if the timeout
parameter in the gc_MakeCall() function is 0, call analysis is specified, and
PSL_DefaultMakeCallTimeout is less than PSL_CallProgressMaxDialingTime.

Note: PDK protocols do not use the outbound number of ringback tones to define the time-out.

98 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2-Specific Function Information

8.2.13.2 Other gc_MakeCall() Considerations

If your T1 robbed bit circuit is provisioned for Feature Group A, your application should call the
gc_MakeCall() function with a null dial string.

When using R2 protocols, a “#” in the dial string is not supported.

If a protocol error occurs during dialing and the default call progress enabled governs, then an error
code or an event is returned as described in the gc_MakeCall() function description in the
Dialogic® Global Call API Library Reference. If call progress is disabled and a protocol error
occurs during dialing, then a GCRV_BUSY result value or an EGC_BUSY error is returned.

For drop and insert applications, call progress is typically disabled to enable the application to
complete the dialing sequence, listen for voice or ringback on the line, and:

• if ringback is detected, to transition to the Alerting state

• if voice is detected, to transition to the Connected (call answered) state and to implement voice
cut-through immediately

This methodology enables the application to pass signaling from the remote end (outbound line) to
the caller on the inbound line. If call progress is not disabled, then the GCEV_ALERTING event
and the GCEV_ANSWERED event may be received from the outbound line for an unacceptable
amount of time after the dialing sequence was completed. During this period of time, the caller
could misinterpret the silence on the line as a disconnect or a failure, and then hang up and redial.
For further information, see the tips for programming drop and insert applications in the Dialogic®
Global Call API Programming Guide.

In an E1 environment, the GCEV_ALERTING event is generated when the equivalent of ringback
is recognized. For almost all E1 protocols, this is a required part of the protocol, so E1 applications
will receive the GCEV_ALERTING event by default.

In a T1 environment, the GCEV_ALERTING event is generated when the ringback is recognized.
However, not all inbound applications will generate a ringback tone; for example, the PDK US MF
protocol has disabled ringback tone generation by default to minimize call setup time. (Detecting
the ringback tone can take several tenths of a second.) If the outbound application does not wish to
use the detection of the ringback tone to generate the GCEV_ALERTING event, the
CDP_OUT_Send_Alerting_After_Dialing parameter in the pdk_us_mf_io.cdp file should be set
to 1 (default is 0). That way, if call progress is enabled, GCEV_ALERTING is sent after dialing is
initiated rather than when ringback is detected.

Since GCEV_ALERTING is an optional event triggered by the inbound side, all applications must
be able to handle not receiving the GCEV_ALERTING event.

When the gc_MakeCall() function sets up a call, the default is to enable call analysis (call
progress). To change the enabled call progress default when making a call on Dialogic®
Springware Boards, use PDK_MAKECALL_BLK for PDK protocols and
IC_MAKECALL_BLK for ICAPI protocols as discussed in Chapter 9, “E1/T1 CAS/R2-Specific
Data Structures”. (These structures do not apply to Dialogic® DM3 Boards, which use
gc_SetParm() parameters to change call progress configuration as discussed in Section 4.1.1,
“Call Analysis with Dialogic® DM3 Boards”, on page 26.)

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 99
Dialogic Corporation

E1/T1 CAS/R2-Specific Function Information

8.2.14 gc_OpenEx() Variances for E1/T1 CAS/R2

The gc_OpenEx() function is used to open both network board and channel (time slot) devices.
This generic call control function initializes the specified time slot on the specified trunk. A line
device ID will be returned to the application. The E1 or T1 feature of this function specifies the
voice device as part of the devicename parameter.

gc_OpenEx() function variances for E1/T1 CAS/R2 are discussed in the following topics:

• Conventions for Specifying the devicename Parameter

• Other gc_OpenEx() Considerations

• Handling GCEV_BLOCKED and GCEV_UNBLOCKED Events

8.2.14.1 Conventions for Specifying the devicename Parameter

A device is specified by the devicename parameter using a format that includes protocol specific
information.

The format for the fields used to specify this parameter is:

:N_<network_device_name>:P_<protocol_name>:V_<voice_channel_name>

The prefixes (N_, P_, and V_) are used for parsing purposes. These fields may appear in any order.
The fields within the devicename parameter must each begin with a colon.

The conventions described below allow the Dialogic® Global Call API to map subsequent calls
made on specific line devices or CRNs to interface-specific libraries.

<network_device_name>
This field is required. It may be a board name or a time slot name:

• If <network_device_name> is a board name, use the format: dtiB<number of board>.

• If <network_device_name> is a time slot name, use the format: dtiB<number of
board>T<number of time slot>.

<protocol_name>
This field is required on Dialogic® Springware Boards. It specifies the protocol to use. Use the
root file name of the country dependent parameters (.cdp) file.

On Dialogic® DM3 Boards, the protocol is determined at board initialization time and not
when a Global Call device is opened. For compatibility, the <protocol_name> field may be
specified, but it is not used.

<voice_channel_name>
This field is optional depending on your application (see Section 4.5, “Resource Allocation
and Routing”, on page 45). It specifies the name of the voice channel to be associated with the

100 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2-Specific Function Information

device being opened. Use the following format: dxxxB<virtual board number>C<channel
number>.

Note: Attachment to different types of Dialogic® DM3 voice devices is dependent on the
protocol downloaded. For example, if one board has ISDN for protocols and another
has T1 CAS, the T1 CAS network devices cannot be attached to the voice devices on
the ISDN board. See the Dialogic® Global Call API Programming Guide for further
information.

8.2.14.2 Other gc_OpenEx() Considerations

For E1 CAS or T1 robbed bit applications, always specify a network resource (board or time slot
level) and a protocol. A voice resource (<voice_channel_name>) may also be specified for E1 CAS
or T1 robbed bit operations. When a voice resource is specified, Global Call automatically opens
the voice device and internally attaches the voice device to the line device.

When using the CT Bus and a voice resource is specified, the gc_OpenEx() function routes the
voice and network resources together.

When the voice resource is not specified, the application must perform these functions (open
device, route, attach); see Section 4.5, “Resource Allocation and Routing”, on page 45 for details.

When a network resource is specified, the gc_OpenEx() function internally issues a dt_open()
function. Likewise, when a voice resource is specified, the gc_OpenEx() function internally issues
a dx_open() function. The corresponding network or voice device handle may be retrieved using
the gc_GetResourceH() function. These lower level device handles may be useful for routing or
for playing or recording a file.

If a gc_OpenEx() function fails with an error value of EGC_DXOPEN, then the internally issued
dx_open() function failed. If a gc_OpenEx() function fails with an error value of
EGC_DTOPEN, then the internally issued dt_open() function failed.

8.2.14.3 Handling GCEV_BLOCKED and GCEV_UNBLOCKED Events

At the firmware level, when using Dialogic® Springware Boards, the line is considered unblocked
until otherwise informed (that is, some event occurs to change the state). From the Global Call
perspective, the line is considered blocked until otherwise informed. To reconcile this difference in
behavior, the Global Call Software generates the required GCEV_UNBLOCKED event as part of
the gc_OpenEx() functionality with Dialogic Springware Boards.

When using Dialogic Springware Boards, if a blocking alarm exists on the line when an application
tries to open a device, the gc_OpenEx() function will complete, generating the
GCEV_UNBLOCKED event, before the firmware detects that the alarm exists, which would
trigger the generation of a GCEV_BLOCKED event. This means that the application temporarily
sees a GCEV_UNBLOCKED event even though an alarm exists on the line. The application must
be capable of handling a GCEV_BLOCKED event at any time, even milliseconds after a
GCEV_UNBLOCKED event.

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 101
Dialogic Corporation

E1/T1 CAS/R2-Specific Function Information

8.2.15 gc_ResetLineDev() Variances for E1/T1 CAS/R2

Dialogic® Springware Board-specific variances

For applications that use PDK protocols, the gc_ResetLineDev() function cannot be called while
there is an alarm on the line.

For applications that use ICAPI protocols, the gc_ResetLineDev() function is not supported in
synchronous mode. If the application calls gc_ResetLineDev() on a line device in synchronous
mode (that is, with the mode parameter set to EV_SYNC), the function fails silently.

Dialogic® DM3 Board-specific variances

There are no restrictions on using gc_ResetLineDev() with Dialogic® DM3 Boards.

8.2.16 gc_RetrieveCall() Variances for E1/T1 CAS/R2

The gc_RetrieveCall() function is only valid for applications using PDK protocols that support
call hold and transfer. Check the sys_features parameter in the .cdp file for a value of
Feature_Hold. See the Dialogic® Global Call Country Dependent Parameters (CDP) for PDK
Protocols Configuration Guide for more information.

8.2.17 gc_SetBilling() Variances for E1/T1 CAS/R2

Note: The variances described in this section apply when using Dialogic® Springware Boards only. The
gc_SetBilling() function is not supported when using Dialogic® DM3 Boards.

On Dialogic Springware Boards, the gc_SetBilling() function sets different billing rates on a per
call basis. For example:

• To charge the call, use gc_SetBilling(crn, GCR_CHARGE, NULL, EV_SYNC).

• To select no-charge for the call, use gc_SetBilling(crn, GCR_NOCHARGE, NULL,
EV_SYNC).

The gc_SetBilling() function is called after the GCEV_OFFERED event arrives and before
issuing a gc_AcceptCall() or gc_AnswerCall() function.

Not all protocols support this feature; see the Dialogic® Global Call Country Dependent
Parameters (CDP) for PDK Protocols Configuration Guide for protocol specific limitations.

The mode parameter must be set to EV_SYNC. Asynchronous mode (EV_ASYNC) is not
supported for this function.

102 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2-Specific Function Information

8.2.18 gc_SetChanState() Variances for E1/T1 CAS/R2

The GCLS_INSERVICE and GCLS_OUT_OF_SERVICE states are the only valid service states
that can be used to set the state of a line in an E1 CAS or T1 robbed bit environment.

Note: When a channel is set to out-of-service state, not all protocols send the blocking pattern by default.
For such protocols, a parameter in the .cdp file has to be set to the appropriate value so that the
blocking pattern is sent when the channel is put out-of-service. Refer to the Dialogic® Global Call
Country Dependent Parameters (CDP) for PDK Protocols Configuration Guide for more
information.

8.2.19 gc_SetEvtMsk() Variances for E1/T1 CAS/R2

Dialogic® Springware Board-specific variances

On Dialogic® Springware Boards using PDK protocols, all of the mask parameter values are
supported. See the gc_SetEvtMsk() function reference page in the Dialogic® Global Call API
Library Reference for more information.

On Dialogic Springware Boards using ICAPI protocols, the following mask parameter values are
supported:

• GCMSK_ALERTING

• GCMSK_BLOCKED

• GCMSK_UNBLOCKED

Dialogic® DM3 Board-specific variances

There are no restrictions on using gc_SetEvtMsk() with Dialogic® DM3 Boards. All of the mask
parameter values are supported. See the gc_SetEvtMsk() function reference page in the Dialogic®
Global Call API Library Reference for more information.

8.2.20 gc_SetParm() Variances for E1/T1 CAS/R2

The gc_SetParm() function sets the default parameters and all channel information associated
with the specific line device. In addition to the GCPR_CALLINGPARTY parameter, which is
common across all technologies and documented in the Dialogic® Global Call API Library
Reference, the parameters listed in Table 25 are supported.

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 103
Dialogic Corporation

E1/T1 CAS/R2-Specific Function Information

For further information about the GCPR_CALLPROGRESS, GCPR_LOADTONES, and
GCPR_MEDIADETECT parameters, see Section 4.1, “Call Progress and Call Analysis”, on
page 25.

8.2.21 gc_SetupTransfer() Variances for E1/T1 CAS/R2

The gc_SetupTransfer() function is only valid for applications using PDK protocols that support
call hold and transfer. Check the sys_features parameter in the .cdp file for a value of
Feature_Transfer. See the Dialogic® Global Call Country Dependent Parameters (CDP) for PDK
Protocols Configuration Guide for more information.

8.2.22 gc_Start() and gc_Stop() Variances for E1/T1 CAS/R2

Dialogic® Springware Board-specific variances

On Dialogic® Springware Boards using PDK protocols, the gc_Start() function is used to access
the error and debug logging capabilities of the PDKRT call control library. See Section 7.2,
“Debugging Applications That Use PDK Protocols”, on page 73 for more information.

On Dialogic Springware Boards using ICAPI protocols, when the gc_Start() function is called, a
log file, if enabled, is created. This file logs debug information for all ICAPI call control libraries
for all open channels. The log file remains open until the gc_Stop() function is called. This allows
channels to be opened, closed, and reopened multiple times without overwriting or otherwise

Table 25. Parameters Supported, gc_GetParm() and gc_SetParm()

Parameter Level Description Supported on

GCPR_CALLPROGRESS channel Enables or disables call progress; enabled by
default. If this parameter is disabled, post-
connect call progress is also disabled,
regardless of the setting of
GCPR_MEDIADETECT.

Dialogic® DM3
Boards

GCPR_LOADTONES channel Enables or disables downloading of predefined
call progress tones to the firmware. These
tones are predefined in the E1 CAS or T1
robbed bit specific configuration files and are
used for call progress. The tones are
downloaded during execution of the
gc_Attach() or gc_AttachResource()
function.

Dialogic®
Springware
Boards

GCPR_MEDIADETECT channel Enables or disables post-connect call progress
or media detection; disabled by default.

Dialogic® DM3
Boards and
Dialogic®

Springware
Boards

GCPR_MINDIGITS channel Specifies the minimum number of digits to
receive before a call is offered to the
application.

Dialogic® DM3
Boards

104 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2-Specific Function Information

affecting the continuity of the log file. See Section 7.3, “Debugging Applications That Use ICAPI
Protocols”, on page 78 for more information.

Dialogic® DM3 Board-specific variances

There are no restrictions on using gc_Start() and gc_Stop() with Dialogic® DM3 Boards.

8.2.23 gc_StartTrace() Variances for E1/T1 CAS/R2

Note: The variances described in this section apply when using Dialogic® Springware Boards only. The
gc_StartTrace() function is not supported when using Dialogic® DM3 Boards.

When using PDK protocols, the gc_StartTrace() function can be used to enable logging on
individual channels. This function has no effect unless the name of the log file and the logging level
have been set using the gc_Start() function. The gc_StartTrace() filename parameter is ignored.
The name of the log file is specified in the PDK_START_STRUCT data structure. See Section 7.2,
“Debugging Applications That Use PDK Protocols”, on page 73 for more information.

8.2.24 gc_SwapHold() Variances for E1/T1 CAS/R2

The gc_SwapHold() function is only valid for applications using PDK protocols that support call
hold and transfer. Check the sys_features parameter in the .cdp file for a value of Feature_Transfer.
See the Dialogic® Global Call Country Dependent Parameters (CDP) for PDK Protocols
Configuration Guide for more information.

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 105
Dialogic Corporation

99.E1/T1 CAS/R2-Specific Data
Structures

This chapter describes the data structures that are specific to E1/T1 CAS/R2 technology.

• IC_MAKECALL_BLK . 106

• PDK_MAKECALL_BLK . 107

Note: These data structures are used with Dialogic® Springware Boards only.

106 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

IC_MAKECALL_BLK — call setup information for call progress analysis

IC_MAKECALL_BLK

call setup information for call progress analysis
typedef struct ic_makecall_blk{
 unsigned long flags;
 void *v_rfu_ptr;
 unsigned long ul_rfu[4];
}IC_MAKECALL_BLK;

Description

For Dialogic® Springware Boards using ICAPI protocols, the IC_MAKECALL_BLK structure
contains information used by the gc_MakeCall() function when setting up a call. When the
gc_MakeCall() function sets up a call, the default is to enable call analysis (call progress). This
default can be changed on a call basis by setting the flags parameter in the IC_MAKECALL_BLK
data structure.

Field Descriptions

The fields of the IC_MAKECALL_BLK data structure are described as follows:

flags
Controls call analysis on a per call basis. The flags included are:

• NO_CALL_PROGRESS – Set to 0 to enable call analysis (default). Set to 1 to disable call
analysis.

*v_rfu_ptr
Reserved for future use.

ul_rfu[4]
Reserved for future use.

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 107

Dialogic Corporation

call setup information for call progress analysis — PDK_MAKECALL_BLK

PDK_MAKECALL_BLK

call setup information for call progress analysis
typedef struct pdk_makecall_blk{
 unsigned long flags;
 void *v_rfu_ptr;
 unsigned long ul_rfu[4];
}PDK_MAKECALL_BLK;

Description

For Dialogic® Springware Boards using PDK protocols, the PDK_MAKECALL_BLK structure
contains information used by the gc_MakeCall() function when setting up a call. When the
gc_MakeCall() function sets up a call, the default is to enable call analysis (call progress). This
default can be changed on a call basis by setting the flags parameter in the
PDK_MAKECALL_BLK data structure.

Note: Control of call progress and media detection at gc_MakeCall() time works only when the
following parameters in the .cdp file are set to allow application control:

/* Set to 0 to disable, 1 to enable, and 2 to allow app control */
R4 INTEGER_t PSL_MakeCall_CallProgress = 0
DM3 INTEGER_t PSL_CACallProgressOverride = 0

/* Set 1 to enable, 2 to allow app control */
R4 INTEGER_t PSL_MakeCall_MediaDetect = 2
DM3 INTEGER_t PSL_CAMediaDetectOverride = 2

Field Descriptions

The fields of the PDK_MAKECALL_BLK data structure are described as follows:

flags
Contains a bitmask that controls call analysis and media type detection on a per call basis. The
possible values that can be ORed are:

• NO_CALL_PROGRESS – To disable call analysis.
• MEDIA_TYPE_DETECT – To enable media type detection.

*v_rfu_ptr
Reserved for future use.

ul_rfu[4]
Reserved for future use.

Example

/* To enable Media Detection and disable CPA*/
if (disableCPA && enableMediaDetection)
{
 m_pdkMakecallBlk.flags |= (NO_CALL_PROGRESS|MEDIA_TYPE_DETECT);
 m_gcMakecallBlk.cclib = &m_pdkMakecallBlk;
}

/* To disable CPA */
if (disableCPA)
{
 m_pdkMakecallBlk.flags |= NO_CALL_PROGRESS;
 m_gcMakecallBlk.cclib = &m_pdkMakecallBlk;
}

108 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

PDK_MAKECALL_BLK — call setup information for call progress analysis

/* To enable Media Detection */
if (enableMediaDetection)
{
 m_pdkMakecallBlk.flags |= MEDIA_TYPE_DETECT;
 m_gcMakecallBlk.cclib = &m_pdkMakecallBlk;
}

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 109
Dialogic Corporation

1010.E1/T1 CAS/R2-Specific Event
Cause Values

This chapter lists the supported E1/T1 CAS/R2-specific event cause values, which are retrieved by
gc_ResultValue() and gc_ResultInfo(), and provides a description of each value.

Note: The information in this chapter is applicable to Dialogic® DM3 Boards only.

Table 26 lists the E1/T1 CAS/R2 call control library cause values supported by Dialogic DM3
Boards.

Table 27 lists the firmware-related cause values supported by Dialogic DM3 Boards.

Table 26. Call Control Library Cause Values When Using Dialogic® DM3 Boards

Cause
Value

(Decimal)

Cause
Value
(Hex)

Description

128 0x80 Requested information available. No more expected.

129 0x81 Requested information available. More expected.

130 0x82 Some of the requested information available. Timeout.

131 0x83 Some of the requested information available. No more expected.

132 0x84 Requested information not available. Timeout.

133 0x85 Requested information not available. No more expected.

134 0x86 Information has been sent successfully.

Note: The cause values in this table are ORed with the value 0x300, which identifies them as call control library cause values.

Table 27. Firmware-Related Cause Values When Using Dialogic® DM3 Boards

Cause
Value

(Decimal)

Cause
Value
(Hex)

Description

01 0x01 Busy

02 0x02 Call Completion

03 0x03 Canceled

04 0x04 Network congestion

05 0x05 Destination busy

06 0x06 Bad destination address

07 0x07 Destination out of order

08 0x08 Destination unreachable

Note: The cause values in this table are ORed with the value 0xC0, which identifies them as firmware-related cause values.

110 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2-Specific Event Cause Values

09 0x09 Forward

10 0x0A Incompatible

11 0x0B Incoming call

12 0x0C New call

13 0x0D No answer from user

14 0x0E Normal clearing

15 0x0F Network alarm

16 0x10 Pickup

17 0x11 Protocol error

18 0x12 Redirection

19 0x13 Remote termination

20 0x14 Call rejected

21 0x15 Special Information Tone (SIT)

22 0x16 SIT Custom Irregular

23 0x17 SIT No Circuit

24 0x18 SIT Reorder

25 0x19 Transfer

26 0x1A Unavailable

27 0x1B Unknown cause

28 0x1C Unallocated number

29 0x1D No route

30 0x1E Number changed

31 0x1F Destination out of order

32 0x20 Invalid format

33 0x21 Channel unavailable

34 0x22 Channel unacceptable

35 0x23 Channel not implemented

36 0x24 No channel

37 0x25 No response

38 0x26 Facility not subscribed

39 0x27 Facility not implemented

40 0x28 Service not implemented

41 0x29 Barred inbound

Table 27. Firmware-Related Cause Values When Using Dialogic® DM3 Boards (Continued)

Cause
Value

(Decimal)

Cause
Value
(Hex)

Description

Note: The cause values in this table are ORed with the value 0xC0, which identifies them as firmware-related cause values.

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 111
Dialogic Corporation

E1/T1 CAS/R2-Specific Event Cause Values

42 0x2A Barred outbound

43 0x2B Destination incompatible

44 0x2C Bearer capability unavailable

Table 27. Firmware-Related Cause Values When Using Dialogic® DM3 Boards (Continued)

Cause
Value

(Decimal)

Cause
Value
(Hex)

Description

Note: The cause values in this table are ORed with the value 0xC0, which identifies them as firmware-related cause values.

112 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

E1/T1 CAS/R2-Specific Event Cause Values

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 113
Dialogic Corporation

1111.Supplementary Reference
Information

This chapter lists references to publications about E1/T1 CAS/R2 technology.

For additional information about E1 or T1 telephony, see the following publications:

• R2 MF Signaling References

– Specifications of Signaling Systems R1 and R2, International Telegraph and Telephone
Consultative Committee (CCITT), Blue Book Vol. VI, Fascicle VI.4, ISBN 92-61-03481-
0

– General Recommendations on Telephone Switching and Signaling, International
Telegraph and Telephone Consultative Committee (CCITT), Blue Book Vol. VI, Fascicle
VI.1, ISBN 92-61-03451-9

• T1 Robbed Bit Signaling References

– Bellamy, John, Digital Telephony, 2nd ed. New York: John Wiley & Sons, 1991

– Fike, John L., and George Friend, Understanding Telephone Electronics, Indiana: Howard
W. Sams & Company, 1988

– Flanagan, William A., The Guide to T-1 Networking, 4th ed. New York, Telecom Library
Inc., 1990

– LATA Switching Systems Generic Requirements (LSSGR), Bellcore Technical Reference
TR-TSY-000064, Issue 2, July 1987, and modules, Bellcore

114 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

Supplementary Reference Information

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 115

Dialogic Corporation

Index

Symbols
@0

ICAPI special parameter 70

A
address signals 17

alarm handling 49, 52

analog links 28

ANI 17

answering machine detection 32, 95

automatic number identification 17

B
backward signal 17

billing rates 101

B-tones 17

C
cadence break 32, 94

call analysis 14, 25

call progress 25

call progress tones 16, 36

called party 17

calling party 17

CAS pattern signal declarations 37

CAS_SIGNAL_PULSE_t 38

CAS_SIGNAL_TRAIN_t 39

CAS_SIGNAL_TRANS_t 37

central office 17

CO 17

code example
call progress tones 36

compelled signaling 19

connect detection 36

CPE 17

customer premises equipment 17

D
D4 frame 15

D4 superframe 15

DDI 20

DDI digits 92

debugging applications
ICAPI protocols 78
PDK protocols 73

dedicated voice resource
example of 46

destination CO 14

dial tone 13

dialed number identification service 20

DID 20

direct dialing in 20

direct inward dialing 20

direction indicator
in protocol name 68

dm3cc_parm.h
header file 71

DNIS 20

DTMF 13

dynamic trunk configuration 40

E
E&M

interface 15
signals 15

E1 protocol name 68

ESF 16

event cause values 109

extended superframe 16

F
fax machine detection 32, 95

flash-hook 15

forward signal 17

frequency overlap 13

G
gc_AcceptCall() 89

gc_AnswerCall() 90

gc_Attach(_) 29, 45

116 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

gc_AttachResource(_) 29

gc_BlindTransfer(_) 91

gc_CallAck() 92

gc_Close(_) 92

gc_CompleteTransfer() 93

gc_Detach(_) 45, 93

gc_DropCall(_) 93

gc_Extension(_) 94

gc_GetCallInfo(_) 26, 28, 32, 94

gc_GetConfigData(_) 56, 57

gc_GetParm(_) 96

gc_GetResourceH(_) 46

gc_HoldCall() 97

gc_LoadDxParm(_) 28

gc_MakeCall(_) 26, 30, 97

gc_OpenEx(_) 29, 45, 99
devicename parameter 99

gc_QueryConfigData(_) 57

gc_ResetLineDev(_) 101

gc_ResultInfo() 109

gc_ResultValue(_) 26, 109

gc_RetrieveCall() 101

gc_SetBilling() 101

gc_SetChanState(_) 102

gc_SetConfigData(_) 56, 57

gc_SetEvtMsk(_) 102

gc_SetParm(_) 27, 29, 31, 102

gc_SetupTransfer() 103

gc_Start(_) 103

gc_StartTrace() 104

gc_Stop(_) 103

gc_SwapHold() 104

gc_WaitCall(_) 93

GCEV_ALERTING event 98

GCEV_ANSWERED event 98

GCEV_BLOCKED event 49, 52

GCEV_UNBLOCKED event 49, 52

gcpdkrt.h
header file 71

GCPR_CALLPROGRESS 27, 103

GCPR_LOADTONES 29, 103

GCPR_MEDIADETECT 26, 27, 31, 103

GCPR_MINDIGITS 103

Group A backward signal 18

Group B backward signal 18

Group I forward signal 18

Group II forward signal 18

GTD 35

I
IC_MAKECALL_BLK structure 106

ICAPI protocol
debugging applications 78
file set 69

icapi.cfg file 78

icapi.h
header file 71

icapi.inf file
generation of 79

incoming register 17
backward signals 18

international networks 18

interregister signals 16

L
local CO 14

local loop 13

log file 73
gc_Start(_) 103
ICAPI protocols 78

logging
enabling and disabling for PDK protocols 74
enabling for ICAPI protocols 79
number of channels to monitor 79

M
media type detection 25

MF
description 13

MF SOCOTEL
protocol name 68
signaling 19

N
national networks 18

national traffic 17

network resource 44

O
off-hook 15

operator intercept 14

outbound call 17

Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008 117

Dialogic Corporation

outgoing register 17

P
PCM carrier system 16

PDK protocol
debugging applications 73
file set 69

PDK protocol parameters 57

PDK_MAKECALL_BLK structure 107

PDKRT call control library 56

pdktrace tool 73

protocol
dynamically configuring 43
file set for ICAPI 69
file set for PDK 69
sample component names 69

protocol component
.cdp file 70
protocol module 69

protocol module
ICAPI 70
PDK 69

protocol name
country code 68
direction indicator 68
E&M 68
E1 protocol 68
MF SOCOTEL 68
protocol type 68
R1 MFC protocol 68
R2 protocol 68
T1 E&M with MF protocol 68

protocol service layer parameters 57

protocol state information parameters 57

protocol version 59

pulse dialing 13

R
R1 MFC protocol name 68

R2 MF
compelled signaling 19
forward signal 18
multifrequency combinations 18
signaling 16
signaling concepts 16

R2 MFC protocol name 68

R2 tones 16

rates
billing 101

resource association 44

resource sharing 44

ringback 14

ringback tone 28

ringing tone 14

robbed bit signaling 15

rotary dialing 13

S
service states 102

setting up a call 106, 107

SF 15

shared voice resource
example 47

signaling bits 15

signaling concepts
R2 MF 16

single frequency 15

Socotel backbone 17

supervisory signaling
R2 MF 17

T
T1 E&M protocol name 68

T1 trunk 15

tonal information
R2 17

tone dialing 13

tone template 35
commenting out 35

TONEOFF event 36

TONEON event 36

trunk configuration
dynamic 40
dynamically setting the protocol 43

V
voice detection 32, 94

voice resource
attaching 45
dedicated 44, 45
detaching 45
shared 47

118 Dialogic® Global Call E1/T1 CAS/R2 Technology Guide — October 2008
Dialogic Corporation

	Contents
	Figures
	Tables
	Revision History
	About This Publication
	Purpose
	Applicability
	Intended Audience
	How to Use This Publication
	Related Information

	1. E1/T1 CAS/R2 Overview
	1.1 Making Telephone Calls: Transmission of Digits and Signaling Information
	1.2 Making Long Distance and Global Telephone Calls
	1.3 T1 Robbed Bit Signaling Concepts
	1.4 E1 CAS Signaling Concepts
	1.5 R2MF Signaling Concepts
	1.5.1 R2MF Multifrequency Combinations
	1.5.2 R2MF Signal Meanings
	1.5.3 R2MF Compelled Signaling

	1.6 Direct Dialing In (DDI) Service

	2. Dialogic® Global Call Architecture for E1/T1 CAS/R2
	3. E1/T1 CAS/R2 Call Scenarios
	4. E1/T1 CAS/R2-Specific Operations
	4.1 Call Progress and Call Analysis
	4.1.1 Call Analysis with Dialogic® DM3 Boards
	4.1.2 Call Analysis with Dialogic® Springware Boards
	4.1.3 Call Analysis Functionality for PDK Protocols
	4.1.4 Tone Definitions for PDK Protocols
	4.1.5 Call Analysis Functionality for ICAPI Protocols

	4.2 CAS Pattern Signal Declarations
	4.2.1 CAS_SIGNAL_TRANS_t
	4.2.2 CAS_SIGNAL_PULSE_t
	4.2.3 CAS_SIGNAL_TRAIN_t

	4.3 Dynamic Trunk Configuration
	4.3.1 Setting the Line Type and Coding for a Trunk
	4.3.2 Specifying the Protocol for a Trunk

	4.4 Resource Association
	4.5 Resource Allocation and Routing
	4.5.1 Dedicated Voice Resources
	4.5.2 Shared Voice Resources

	4.6 Alarm Handling
	4.6.1 Alarm Handling for Dialogic® DM3 Boards
	4.6.2 Alarm Handling for Dialogic® Springware Boards

	4.7 Run-Time Configuration of the PDKRT Call Control Library
	4.8 Run-Time Configuration of PDK Protocol Parameters
	4.9 Determining the Protocol Version
	4.10 Run-Time Control of Single or Double Hookflash on Consultation Drop for FXS/LS Protocol
	4.11 Retrieving Line Signaling Access

	5. E1/T1 CAS/R2 Protocols
	5.1 Protocols Supported
	5.2 Protocol File Naming Conventions
	5.3 Protocol Components
	5.3.1 Protocol Modules
	5.3.2 Country Dependent Parameter (.cdp) Files

	6. Building Dialogic® Global Call E1/T1 CAS/R2 Applications
	6.1 Header Files
	6.2 Required Libraries
	6.3 Required System Software

	7. Debugging Dialogic® Global Call E1/T1 CAS/R2 Applications
	7.1 Introduction
	7.2 Debugging Applications That Use PDK Protocols
	7.2.1 Enabling and Disabling the Logging
	7.2.2 Populating and Using a CCLIB_START_STRUCT
	7.2.3 Defining the GC_PDK_START_LOG Environment Variable

	7.3 Debugging Applications That Use ICAPI Protocols

	8. E1/T1 CAS/R2-Specific Function Information
	8.1 Dialogic® Global Call Functions Supported by E1/T1 CAS/R2
	8.2 Dialogic® Global Call Function Variances for E1/T1 CAS/R2
	8.2.1 gc_AcceptCall() Variances for E1/T1 CAS/R2
	8.2.2 gc_AnswerCall() Variances for E1/T1 CAS/R2
	8.2.3 gc_BlindTransfer() Variances for E1/T1 CAS/R2
	8.2.4 gc_CallAck() Variances for E1/T1 CAS/R2
	8.2.5 gc_Close() Variances for E1/T1 CAS/R2
	8.2.6 gc_CompleteTransfer() Variances for E1/T1 CAS/R2
	8.2.7 gc_Detach() Variances for E1/T1 CAS/R2
	8.2.8 gc_DropCall() Variances for E1/T1 CAS/R2
	8.2.9 gc_Extension() Variances for E1/T1 CAS/R2
	8.2.10 gc_GetCallInfo() Variances for E1/T1 CAS/R2
	8.2.11 gc_GetParm() Variances for E1/T1 CAS/R2
	8.2.12 gc_HoldCall() Variances for E1/T1 CAS/R2
	8.2.13 gc_MakeCall() Variances for E1/T1 CAS/R2
	8.2.14 gc_OpenEx() Variances for E1/T1 CAS/R2
	8.2.15 gc_ResetLineDev() Variances for E1/T1 CAS/R2
	8.2.16 gc_RetrieveCall() Variances for E1/T1 CAS/R2
	8.2.17 gc_SetBilling() Variances for E1/T1 CAS/R2
	8.2.18 gc_SetChanState() Variances for E1/T1 CAS/R2
	8.2.19 gc_SetEvtMsk() Variances for E1/T1 CAS/R2
	8.2.20 gc_SetParm() Variances for E1/T1 CAS/R2
	8.2.21 gc_SetupTransfer() Variances for E1/T1 CAS/R2
	8.2.22 gc_Start() and gc_Stop() Variances for E1/T1 CAS/R2
	8.2.23 gc_StartTrace() Variances for E1/T1 CAS/R2
	8.2.24 gc_SwapHold() Variances for E1/T1 CAS/R2

	9. E1/T1 CAS/R2-Specific Data Structures
	IC_MAKECALL_BLK
	PDK_MAKECALL_BLK

	10. E1/T1 CAS/R2-Specific Event Cause Values
	11. Supplementary Reference Information
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Updated TIPs settings to fix web compatibility issue. The PDF documents can be opened with Acrobat and Reader 4.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

