
Dialogic® Multimedia API
Programming Guide and Library Reference

August 2016

05-2454-011

Dialogic® Multimedia API Programming Guide and Library Reference

Copyright and Legal Notice
Copyright © 2005-2016 Dialogic Corporation. All Rights Reserved. You may not reproduce this document in whole or in part without permission in
writing from Dialogic Corporation at the address provided below.

All contents of this document are furnished for informational use only and are subject to change without notice and do not represent a commitment on
the part of Dialogic Corporation and its affiliates or subsidiaries (“Dialogic”). Reasonable effort is made to ensure the accuracy of the information
contained in the document. However, Dialogic does not warrant the accuracy of this information and cannot accept responsibility for errors,
inaccuracies or omissions that may be contained in this document.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH DIALOGIC® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN A
SIGNED AGREEMENT BETWEEN YOU AND DIALOGIC, DIALOGIC ASSUMES NO LIABILITY WHATSOEVER, AND DIALOGIC DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF DIALOGIC PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY INTELLECTUAL PROPERTY
RIGHT OF A THIRD PARTY.

Dialogic products are not intended for use in certain safety-affecting situations. Please see http://www.dialogic.com/company/terms-of-use.aspx for
more details.

Due to differing national regulations and approval requirements, certain Dialogic products may be suitable for use only in specific countries, and thus
may not function properly in other countries. You are responsible for ensuring that your use of such products occurs only in the countries where such
use is suitable. For information on specific products, contact Dialogic Corporation at the address indicated below or on the web at www.dialogic.com.

It is possible that the use or implementation of any one of the concepts, applications, or ideas described in this document, in marketing collateral
produced by or on web pages maintained by Dialogic may infringe one or more patents or other intellectual property rights owned by third parties.
Dialogic does not provide any intellectual property licenses with the sale of Dialogic products other than a license to use such product in accordance
with intellectual property owned or validly licensed by Dialogic and no such licenses are provided except pursuant to a signed agreement with
Dialogic. More detailed information about such intellectual property is available from Dialogic’s legal department at 6700 Cote-de-Liesse Road, Suite
100, Borough of Saint-Laurent, Montreal, Quebec, Canada H4T 2B5. Dialogic encourages all users of its products to procure all necessary
intellectual property licenses required to implement any concepts or applications and does not condone or encourage any intellectual
property infringement and disclaims any responsibility related thereto. These intellectual property licenses may differ from country to
country and it is the responsibility of those who develop the concepts or applications to be aware of and comply with different national
license requirements.

Dialogic, Dialogic Pro, Dialogic Blue, Veraz, Brooktrout, Diva, BorderNet, PowerMedia, PowerVille, PowerNova, MSaaS, ControlSwitch, I-Gate,
Mobile Experience Matters, Network Fuel, Video is the New Voice, Making Innovation Thrive, Diastar, Cantata, TruFax, SwitchKit, Eiconcard, NMS
Communications, SIPcontrol, Exnet, EXS, Vision, inCloud9, NaturalAccess and Shiva, among others as well as related logos, are either registered
trademarks or trademarks of Dialogic Corporation and its affiliates or subsidiaries. Dialogic’s trademarks may be used publicly only with permission
from Dialogic. Such permission may only be granted by Dialogic’s legal department at 6700 Cote-de-Liesse Road, Suite 100, Borough of Saint-
Laurent, Montreal, Quebec, Canada H4T 2B5. Any authorized use of Dialogic’s trademarks will be subject to full respect of the trademark guidelines
published by Dialogic from time to time and any use of Dialogic’s trademarks requires proper acknowledgement.

The names of actual companies and products mentioned herein are the trademarks of their respective owners.

Using the AMR-NB or AMR-WB resource in connection with one or more Dialogic products mentioned herein does not grant the right to practice the
AMR-NB or AMR-WB standard. To seek a patent license agreement to practice the standard, contact the VoiceAge Corporation at http://
www.voiceage.com/licensing.php.

Publication Date: August 2016

Document Number: 05-2454-011

http://www.dialogic.com/company/terms-of-use.aspx
http://www.dialogic.com
http://www.dialogic.com
http://www.voiceage.com/licensing.php
http://www.voiceage.com/licensing.php

Contents

About This Publication . 7
Purpose . 7
Applicability . 7
Intended Audience. 7
How to Use This Publication . 8
Related Information . 8

Revision History . 9

1 Product Description . 18

1.1 Overview of Video Technology . 18
1.2 IP Media Server . 22
1.3 Multimedia Capabilities . 22
1.4 File Formats. 23
1.5 SIP Call Control Using Global Call . 24
1.6 SDP Functionality . 25
1.7 Features. 25

2 Feature Support by Platform . 29

2.1 High-Level Feature Support by Platform . 29
2.2 Dialogic® Multimedia API Function Support by Platform . 30
2.3 Dialogic® Multimedia API Audio Formats by Platform . 31

3 Event Handling . 33

4 Error Handling . 34

5 Application Development Guidelines . 35

5.1 Developing Multimedia Applications . 35
5.2 Building Blocks for Multimedia Applications . 38
5.3 Call Flow of Video Mail . 38
5.4 Requesting I-Frame Using SIP INFO . 42
5.5 Making Connections Using Virtual CT Bus and New Packet Bus 44
5.6 Enabling Digit Detection Using DX . 48
5.7 Enabling and Using Transcoding. 49
5.8 Play a Still Image . 58
5.9 Capture a Still Image . 59
5.10 3GP File Format Direct Playback . 59

6 Building Applications. 63

6.1 Compiling and Linking . 63

7 Function Summary by Category . 65

7.1 Dialogic® Multimedia API Header File . 65
7.2 Device Management Functions . 65
7.3 Configuration Functions. 66
7.4 Input/Output Functions . 66
Dialogic® Multimedia API Programming Guide and Library Reference 3

Contents
7.5 Media Streaming Functions . 67
7.6 DVR Control Functions . 67
7.7 Event Information Functions . 68
7.8 Error Processing Functions . 68

8 Function Information. 69

8.1 Function Syntax Conventions . 69
mm_Capture() – capture a still image from video stream. 70
mm_Close() – close a previously opened multimedia device. 73
mm_DisableEvents() – disable optional notification events . 75
mm_EnableEvents() – enable optional notification events. 77
mm_ErrorInfo() – retrieve current error information for a multimedia function 79
mm_GetDuration() – get the duration of current presentation . 82
mm_GetElapsedTime() – get current presentation time. 84
mm_GetMetaEvent() – get current SRL event information . 86
mm_GetParm() – get the current configuration parameters. 88
mm_Open() – open a multimedia device . 90
mm_Pause() – pause the current presentation . 93
mm_Play() – play a media object . 96
mm_Record() – record a synchronized media object. 102
mm_Reset() – reset an open multimedia device . 108
mm_ResultInfo() – retrieve current event information for multimedia events 111
mm_Resume() – resume current presentation. 113
mm_Seek() – place current presentation at the specified position. 115
mm_SetParm() – set the configuration parameters . 117
mm_Stop() – stop the device operations . 119
mm_StreamClose() – close a media stream . 123
mm_StreamGetStat() – get media stream statistics. 128
mm_StreamOpen() – open a media stream. 129
mm_StreamRead() – read from a media stream . 131
mm_StreamReset() – reset a media stream . 133
mm_StreamSetWaterMark() – set high or low watermark . 134
mm_StreamWrite() – write to media stream. 136

9 Events . 139

9.1 Overview of Dialogic® Multimedia API Events . 139
9.2 Dialogic® Multimedia API Event Types. 140
9.3 Dialogic® Multimedia API Event Types by Function Type . 141
9.4 Dialogic® Multimedia API Events . 141

10 Data Structure Types . 147

10.1 Overview of Dialogic® Multimedia API Data Structures. 147
10.2 Data Structures for Function I/O. 148
10.3 Data Structures for Analyzing Event Information . 149
10.4 Play/Record Data Structure Levels. 151
10.5 Other Data Structure Levels (_DETAILS). 151
10.6 Data Structures By Function. 152

11 Data Structures . 156
4 Dialogic® Multimedia API Programming Guide and Library Reference

Contents
MM_AUDIO_CODEC – audio codec specification . 159
MM_AUDIO_CODEC_OPTION_LIST – list of codec options . 161
MM_CAPTURE_CMPLT_DETAILS – event data for capture still image 165
MM_ERROR_RESULT – error event information . 166
MM_EVENTS – information for optional notification event functions . 167
MM_GET_PARM – information for get parameter function . 168
MM_GET_PARM_RESULT – retrieved parameter event information . 169
MM_GETDURATION_CMPLT_DETAILS – request reply message details 170
MM_GETDURATION_CMPLT – get event data payload. 171
MM_GETDURATION_INFO – get duration information . 172
MM_GETELAPSEDTIME_CMPLT – event data payload count. 173
MM_GETELAPSEDTIME_CMPLT_DETAILS – request reply message details 174
MM_GETELAPSEDTIME_INFO – get stream type details . 175
MM_IMAGE_FORMAT – specifies data contents of image format . 176
MM_INFO – error or result information. 177
MM_MEDIA_ACCESS_MEMORY – access the media buffer . 178
MM_MEDIA_ACCESS_STREAM – access media stream . 179
MM_MEDIA_AUDIO – audio media item specification. 180
MM_MEDIA_IMAGE – still image for play or capture . 182
MM_MEDIA_ITEM – media item information . 184
MM_MEDIA_ITEM_LIST – media item list information . 185
MM_MEDIA_TERM – media termination information. 186
MM_MEDIA_VIDEO – video media item specification . 187
MM_METAEVENT – event descriptor for a metaevent . 189
MM_PAUSE_INFO – pause request details. 191
MM_PAUSE_PLAY_CMPLT – event data count . 192
MM_PAUSE_PLAY_CMPLT_DETAILS – stream type details . 193
MM_PLAY_RECORD_CMPLT – play/record completion event information 194
MM_PLAY_RECORD_CMPLT_DETAILS – play/record completion details 195
MM_PLAY_RECORD_INFO – information for play and record functions 198
MM_PLAY_RECORD_LIST – list of items to play or record . 199
MM_RECORD_CMPLT_DATA_BLOCK – specifies data block. 201
MM_RECORD_CMPLT_INFO_DATA_BLOCKS – contains data block info 203
MM_RESUME_INFO – resume play infomation . 204
MM_RESUME_PLAY_CMPLT – resume/play completion event information 205
MM_RESUME_PLAY_CMPLT_DETAILS – pause request reply message details 206
MM_RET_CODE – error return code information . 207
MM_RUNTIME_CONTROL – set runtime control . 209
MM_SEEK_CMPLT – count of event data payload . 211
MM_SEEK_CMPLT_DETAILS – seek request reply details . 212
MM_SET_PARM – information for set parameter function . 213
MM_STOP – information for stop device operations function . 214
MM_SEEK_INFO – seek operation position . 216
MM_STOP_ACK – stop ACK event information. 218
MM_STOP_ACK_DETAILS – stop ACK detail information . 219
MM_STOP_DETAILS – detailed stop request information. 220
Dialogic® Multimedia API Programming Guide and Library Reference 5

Contents
MM_STREAM_OPEN_INFO – retrieve information on open stream . 221
MM_STREAM_STAT – retrieve stream statistics . 222
MM_STREAM_WATERMARK_INFO – retrieve stream watermark info 224
MM_VIDEO_CODEC – characteristics of video coder . 225
MM_VIDEO_RECORD_STARTED – I-Frame detection information . 230
MM_YUV – content of a YUV bitmap . 231

12 Error Codes . 233

12.1 Overview of Dialogic® Multimedia API Errors. 233
12.2 Dialogic® Multimedia API Function Error Codes . 235
12.3 Multimedia API Event Information Error Return Codes . 236
12.4 Media Streaming Event Information Error Return Codes . 238
12.5 Terminating and Non-Terminating Play/Record Errors. 239
6 Dialogic® Multimedia API Programming Guide and Library Reference

About This Publication

The following topics provide information about this publication:

• Purpose

• Applicability

• Intended Audience

• How to Use This Publication

• Related Information

Purpose

This document provides information about video technology and multimedia library features, as
well as guidelines for those choosing to develop applications using the Dialogic® Multimedia API.

This document also contains reference information for the functions, parameters, data structures,
values, events, and error codes in the Dialogic® Multimedia API. The API provides the ability to
record and play back digitized multimedia (audio and video) to support video services in
application programs.

Applicability

This document is published for the Dialogic® PowerMedia™ Host Media Processing (HMP)
Software Release.

Intended Audience

This document is intended for software developers who will access the Dialogic® Multimedia API
Library. This may included any of the following:

• Distributors

• System Integrators

• Toolkit Developers

• Independent Software Vendors (ISVs)

• Value Added Resellers (VARs)

• Original Equipment Manufacturers (OEMs)
Dialogic® Multimedia API Programming Guide and Library Reference 7

About This Publication
How to Use This Publication

Refer to this document after you have installed the hardware and the system software which
includes the Dialogic® Multimedia API. This publication assumes that you are familiar with the
Linux or Windows® operating system and the C programming language.

The information in this publication is organized as follows:

• Chapter 1, “Product Description” – provides an overview of video technology and the
multimedia features of the Dialogic® PowerMedia™ Host Media Processing (HMP) software.

• Chapter 2, “Feature Support by Platform” provides a list of high-level feature support by
Dialogic® platforms (software releases).

• Chapter 3, “Event Handling” – provides information about Multimedia API events.

• Chapter 4, “Error Handling” – provides information about Multimedia API errors.

• Chapter 5, “Application Development Guidelines” – provides some guidelines for those
choosing to develop multimedia applications.

• Chapter 6, “Building Applications” – provides general information about building applications
using the Multimedia API library.

• Chapter 7, “Function Summary by Category” introduces the categories of functions and
provides a brief description of each function.

• Chapter 8, “Function Information” provides an alphabetical reference to the functions in the
library.

• Chapter 9, “Events” describes the events that are generated by the Multimedia API functions.

• Chapter 10, “Data Structure Types” describes the types of data structures supported by the
Multimedia API, including the basic categories, specific types, naming conventions, purpose,
hierarchy, and association with specific functions.

• Chapter 11, “Data Structures” provides an alphabetical reference to the Multimedia API data
structures, along with their fields and valid values.

• Chapter 12, “Error Codes” describes the errors that can be returned by the Multimedia API.

Related Information

See the following additional information:

• http://www.dialogic.com/manuals/ (for Dialogic® product documentation)

• http://www.dialogic.com/support/ (for Dialogic technical support)

• http://www.dialogic.com/ (for Dialogic® product information)
8 Dialogic® Multimedia API Programming Guide and Library Reference

http://resource.intel.com/telecom/support/documentation/releases/index.htm
http://www.dialogic.com/manuals/default.htm

Revision History

This revision history summarizes the changes made in each published version of this document.

Document No. Publication Date Description of Revisions

05-2454-011 August 2016 Removed references to Dialogic® Host Media Processing Software Release 5.0
as this product is no longer supported.

Feature Support by Platform: Updated the tables for the latest service update, which
now supports HD audio multimedia file I/O and streaming on Windows.

05-2454-010 December 2012 Removed references to Dialogic® Host Media Processing Software Release
3.1LIN as this product is no longer supported.

Feature Support by Platform chapter : Updated all tables in this section by removing
references to the 3.1LIN platform and adding the HMP 5.0 platform. Added
AMR-WB values to the Audio Format Support by Platform table.

mm_Play() function: Added a caution item regarding the data storage format for
native wideband operations.

mm_Record() function: Added a caution item regarding the data storage format for
native wideband operations.

MM_AUDIO_CODEC structure: Updated with AMR-WB support.

MM_AUDIO_CODEC_OPTION_LIST structure: Updated with AMR-WB support.

05-2454-009 August 2011 Removed references to Dialogic® Multimedia Kit Software for PCIe (MMK) and
Dialogic® Multimedia Platform for AdvancedTCA (MMP) as these products are
no longer supported.

Product Description: Added H.264 to the first sentence of the first paragraph in Video
Standards. and added H.264 to last sentence of first paragraph in Intraframe (I-
Frame).

Feature Support by Platform: Updated all of the support tables in this chapter.

Application Development Guidelines: Added a note about image file size to the end
of Section 5.8, “Play a Still Image”. (IPY00081664) and updated Section 5.10,
“3GP File Format Direct Playback” due to feature enhancements.

mm_Play(): Added an item to the Cautions header. (IPY00081664)

MM_PLAY_RECORD_CMPLT_DETAILS: In the Status field, changed the
description of
EMM_STATUS_RCRD_V_MISSING_MPEG4_VISUALCONFIG_ERROR.

MM_RET_CODE: Remove the list of EMMRC_xxx error codes from the unRetCode
field. (IPY00081664)

MM_VIDEO_CODEC: Replaced the reference page with new information because of
new features.

Error Codes: Added new error codes to the Multimedia API Event Information list.
Dialogic® Multimedia API Programming Guide and Library Reference 9

Revision History
05-2454-008 October 2009 Product Description: Added 3GP File Format Direct Playback to the Features section.

Feature Support by Platform: Updated all of the support tables in this chapter.

Application Development Guidelines: Added a new section about 3GP File Format
Direct Playback.

mm_DisableEvents(): Added a reference to the new table of Optional Notification
Events.

mm_EnableEvents(): Added a reference to the new table of Optional Notification
Events.

mm_StreamClose(): Updated example code.

mm_StreamRead(): Added MMEV_RECORD_AUDIO_EOD and
MMEV_RECORD_VIDEO_EOD to the Events section.

Events: Added two events, MMEV_RECORD_AUDIO_EOD and
MMEV_RECORD_VIDEO_EOD, added a table of optional notification events in
the Dialogic® Multimedia API Event Types section, and changed text due to the
addition of the new events.

MM_EVENTS: Added a reference to the new table of Optional Notification Events.

MM_MEDIA_AUDIO: Added the EMM_AUD_FILEFORMAT_3GP value to the
eFileFormat field.

MM_MEDIA_VIDEO: Added the EMM_FILE_FORMAT_3GP value to the
eFileFormat field.

Error Codes: Added new error codes for the 3GP feature.

Document No. Publication Date Description of Revisions
10 Dialogic® Multimedia API Programming Guide and Library Reference

Revision History
05-2454-007 November 2008 About This Publication chapter : Updated the Applicability section.

Product Description: Updated H.264 support bullets for audio and video.

Multimedia Capabilities section: Updated the links to the Multimedia File Conversion
Tools utilities.

Application Development Guidelines: Updated the Play a Still Image and Capture a
Still Image sections.

Feature Support by Platform chapter : Added the Dialogic® Multimedia Kit for PCIe to
the Dialogic® Multimedia API Function Support Platform table.

Function Information chapter : For supported functions, added the Dialogic®
Multimedia Kit for PCIe to the Platform line.

mm_Capture(): Added three notes on the function page and updated code example.

mm_Close(): Updated the pOpenInfo parameter definition and Cautions section.

mm_GetDuration(): Added function for DVR Control support.

mm_GetElapsedTime(): Added function for DVR Control support.

mm_Open(): Updated the pOpenInfo parameter definition.

mm_Pause(): Added function for DVR Control support.

mm_Play(): Updated code examples. Added a fourth bullet to the Cautions section.

mm_Record(): Updates the entire function reference information page.

mm_Reset(): Updated the entire function reference information page.

mm_Resume(): Added function for DVR Control support.

mm_Seek(): Added function for DVR Control support.

mm_StreamOpen(): Added that the pUserInfo parameter is reserved for future use.
Added a caution statement.

mm_StreamRead(): Updated the entire function reference information page.

mm_StreamReset(): Updated the entire function reference information page.

mm_StreamWrite(): Updated the entire function reference information page.

Events: Updated event definitions and added events for DVR Control functions.

Document No. Publication Date Description of Revisions
Dialogic® Multimedia API Programming Guide and Library Reference 11

Revision History
05-2454-007
(continued)

November 2008 Data Structure Types: Added MM_MEDIA_IMAGE to hierarchy.

MM_AUDIO_CODEC: Updated unCoding values.

MM_CAPTURE_CMPLT_DETAILS: Updated structure example and description.

MM_GETDURATION_CMPLT: Updated description and added the details field.

MM_GETDURATION_CMPLT_DETAILS: Updated the entire data structure
reference page.

MM_GETDURATION_INFO: Updated the entire data structure reference page.

MM_GETELAPSEDTIME_CMPLT: Updated description and added the unCount
and details field.

MM_GETELAPSEDTIME_CMPLT_DETAILS: Updated description and added the
unStreamType field.

MM_GETELAPSEDTIME_INFO: Updated structure example and definition.

MM_IMAGE_FORMAT: Updated the structure example and description. Added a
cross-reference to MM_YUV.

MM_MEDIA_ACCESS_MEMORY: Updated the pBuffer and unBufferSize field
descriptions.

MM_MEDIA_ACCESS_STREAM: Added the nStreamHandle field.

MM_MEDIA_AUDIO: Updated all field descriptions.

MM_MEDIA_IMAGE: Updated the structure example, description, and field
descriptions. Added valid values for the eFormat field.

MM_MEDIA_ITEM: Updated field descriptions.

MM_MEDIA_ITEM_LIST: Updated descriptions of the item, next, and prev fields.

MM_MEDIA_TERM: Indicated that this data structure is for future use.

MM_MEDIA_VIDEO: Updated descriptions of the unMode, szFileName, stream,
memory, and unAccessMode fields.

MM_METAEVENT: Updated descriptions of the evtdatap, evtlen, evtdev, evttype,
and evtUserInfo fields.

MM_PAUSE_INFO: Updated the structure example, description, and added the
unStreamType field.

MM_PAUSE_PLAY_CMPLT: Updated the structure description and the unCount
field description. Added details field.

MM_PAUSE_PLAY_CMPLT_DETAILS: Updated the structure description and
added the unStreamType field.

MM_PLAY_RECORD_CMPLT_DETAILS: Updated the description note and the
Complete and Reason fields.

MM_PLAY_RECORD_LIST: Updated the ItemType field.

MM_RECORD_CMPLT_INFO_DATA_BLOCKS: Updated the structure example.

MM_RESUME_INFO: Updated the structure example and the unStreamType and
unAttribute fields.

MM_RESUME_PLAY_CMPLT: Updated the description and the unCount field.
Added the details field.

MM_RESUME_PLAY_CMPLT_DETAILS: Updated the description and the
unStreamType field.

MM_SEEK_CMPLT: Updated the description and the unCount field. Added the
details field.

MM_SEEK_CMPLT_DETAILS: Updated the description and the unStreamType field.

MM_SEEK_INFO: Updated the description and field descriptions.

MM_STREAM_OPEN_INFO: Updated structure example and description.

MM_STREAM_STAT: Updated structure example and description.

Document No. Publication Date Description of Revisions
12 Dialogic® Multimedia API Programming Guide and Library Reference

Revision History
05-2454-007
(continued)

November 2008 MM_STREAM_WATERMARK_INFO: Updated structure example, description, and
unValue field.

MM_YUV: Added a valid value to the eFormat field.

MM_MODE_AUD_FILE_TYPE_VOX: Removed; deprecated.

05-2454-006 June 2008 Added information from the former Programming Guide to achieve a combined
Programming Guide and API Library Reference.

Added a “Platform” row to each API reference page function table to indicate Platform
support.

Application Development Guidelines: Added the following sections: Enabling and
Using Transcoding, Play a Still Image, Capture a Still Image.

Error Codes: Updated error codes to support the Capture Still Image feature.

Function Summary by Category: Added DVR Control functions category to support
the DVR control feature.

mm_Capture(): Added this new function to support the Capture Still Image feature.

mm_GetDuration(): Added this new function to support the DVR control feature.

mm_GetElapsedTime(): Added this new function to support the DVR control feature.

mm_Pause(): Added this new function to support the DVR control feature.

mm_Play(): New code example with RTC condition support.

mm_Record(): New code example with RTC condition support.

mm_Resume(): Added this new function to support the DVR control feature.

mm_Seek(): Added this new function to support the DVR control feature.

MM_CAPTURE_CMPLT_DETAILS: Added this new function to support the Capture
Still Image feature.

MM_GETDURATION_CMPLT: Added this new data structure to support the DVR
control feature.

MM_GETDURATION_CMPLT_DETAILS: Added this new data structure to support
the DVR control feature.

MM_GETDURATION_INFO: Added this new data structure to support the DVR
control feature.

MM_GETELAPSEDTIME_CMPLT: Added this new data structure to support the
DVR control feature.

MM_GETELAPSEDTIME_CMPLT_DETAILS: Added this new data structure to
support the DVR control feature.

MM_GETELAPSEDTIME_INFO: Added this new data structure to support the DVR
control feature.

MM_MEDIA_AUDIO: Updated data structure fields for WAVE support.

MM_IMAGE_FORMAT: Added this new data structure to support the Capture Still
Image feature.
Continued on the next page.

Document No. Publication Date Description of Revisions
Dialogic® Multimedia API Programming Guide and Library Reference 13

Revision History
05-2454-006
(continued)

June 2008 MM_MEDIA_IMAGE: Added this new data structure to support the Play Still Image
feature.

MM_MEDIA_ITEM: Updated field definitions to support the Play/Capture Still Image
feature.

MM_MEDIA_ITEM_LIST: Updated field definitions to support the Play/Capture Still
Image feature.

MM_PAUSE_INFO: Added this new data structure to support the DVR control
feature.

MM_PAUSE_PLAY_CMPLT: Added this new data structure to support the DVR
control feature.

MM_PAUSE_PLAY_CMPLT_DETAILS: Added this new data structure to support
the DVR control feature.

MM_RESUME_INFO: Added this new data structure to support the DVR control
feature.

MM_RESUME_PLAY_CMPLT: Added this new data structure to support the DVR
control feature.

MM_RESUME_PLAY_CMPLT_DETAILS: Added this new data structure to support
the DVR control feature.

MM_RET_CODE: Added MM_CAPTURE_ACK.

MM_SEEK_CMPLT: Added this new data structure to support the DVR control
feature.

MM_SEEK_CMPLT_DETAILS: Added this new data structure to support the DVR
control feature.

MM_SEEK_INFO: Added this new data structure to support the DVR control feature.

MM_VIDEO_CODEC: Updated the values for the eFramesPerSec field.

MM_YUV: Added this new data structure to support the Play/Capture Still Image
feature.

Document No. Publication Date Description of Revisions
14 Dialogic® Multimedia API Programming Guide and Library Reference

Revision History
05-2454-005 March 2008 mm_Capture(): Removed; not yet supported.

MM_CAPTURE_CMPLT_DETAILS: Removed; not yet supported.

MM_IMAGE_FORMAT: Removed; not yet supported.

MM_MEDIA_IMAGE: Removed; not yet supported.

MM_YUV: Removed; not yet supported.

Feature Support by Platform: Added this new chapter to indicate feature support by
platform.

Dialogic® Multimedia API Events: Removed events related to Capture; not yet
supported.

MM_AUDIO_CODEC: Added the MM_DATA_FORMAT_ALAW type and
MM_DATA_FORMAT_MULAW type to the “Uncoding” field of this data
structure.

MM_AUDIO_CODEC_OPTION_LIST: Updated the example code by replacing the
depreciated MM_MODE_AUD_FILE_TYPE_VOX with a 0.

mm_Play(): Updated the example code by replacing the deprecated
MM_MODE_AUD_FILE_TYPE_VOX with a 0. Removed references to Play Still
Image; not yet supported.

MM_MEDIA_ACCESS_MEMORY: Corrected data structure description.

MM_MEDIA_AUDIO: Removed note referencing WAVE in the unOffset field; not yet
supported. Removed the following value from the eFileFormat field,
EMM_AUD_FILEFORMAT_WAVE; not yet supported.

MM_MEDIA_VIDEO: Updated the description of the unOffset field and updated the
values in the eFileFormat field.

MM_PLAY_RECORD_CMPLT: Updated this data structure to support the User
Recorded Data Update feature.

MM_PLAY_RECORD_CMPLT_DETAILS: Updated the “Complete” and “Status”
fields of this data structure, and added macros for simplifying data update
retrieval to support the User Recorded Data Update feature.Removed the
EMM_TR_DURATION_COMPLETE value.

mm_Record(): Updated the example code by replacing the deprecated
MM_MODE_AUD_FILE_TYPE_VOX with a 0.

MM_RECORD_CMPLT_DATA_BLOCK: Added this new data structure to support
the User Recorded Data Update feature.

MM_RECORD_CMPLT_INFO_DATA_BLOCKS: Added this new data structure to
support the User Recorded Data Update feature.

MM_RUNTIME_CONTROL: Added “Valid only as a return code” to the
EMM_TERM_NORTC value of the “Reason” field. (IPY00042141)
Also added the EMM_TERM_TIME_FROM_AUDIO_RECORD_STARTED
value to the Reason field.

Continued on next page.

Document No. Publication Date Description of Revisions
Dialogic® Multimedia API Programming Guide and Library Reference 15

Revision History
05-2454-005
(continued)

March 2008 mm_StreamRead(): Add EMM_STREAM_EMPTY to the list of “Returns” for this
function.

mm_StreamWrite(): Changed EMM_STREAM_EMPTY in the list of “Returns” to
EMM_STREAM_FULL for this function.

MM_VIDEO_CODEC: Added suggested values in bits per second (bps) to the
“Bitrate” field.

Media Streaming Event Information Error Return Codes: Added “Valid only as a
return code” to the EMM_TERM_NORTC. (IPY00042141)

Media Streaming Event Information Error Return Codes: Added
EMM_TERM_TIME_FROM_AUDIO_RECORD_STARTED.

Terminating and Non-Terminating Play/Record Errors: Added
EMM_STATUS_PLAY_BAD_PACKET,
EMM_STATUS_PLAY_CODING_ERROR, and
EMM_STATUS_RCRD_CODING_ERROR.

05-2454-004 February 2008 Error Codes: Updated error codes to support the Capture Still Image feature.

mm_Capture(): Added this new function to support the Capture Still Image feature.

mm_StreamRead(): Corrected the description for the pDataSize parameter.
(IPY00041590)

Events: Correct the descriptions for MMEV_PLAY_VIDEO_HIGHWATER and
MMEV_PLAY_VIDEO_LOWWATER. (IPY00041454)

MM_IMAGE_FORMAT: Added this new data structure to support the Capture Still
Image feature.

MM_MEDIA_AUDIO: Updated field definitions to support the WAVE file format.

MM_MEDIA_IMAGE: Added this new data structure to support the Play Still Image
feature.

MM_MEDIA_ITEM: Updated field definitions to support the Play/Capture Still Image
feature.

MM_MEDIA_ITEM_LIST: Updated field definitions to support the Play/Capture Still
Image feature.

MM_MEDIA_VIDEO: Updated field definitions to support the WAVE file format.

mm_Play(): Updated the function definitions to support the Play Still Image feature.

MM_PLAY_RECORD_CMPLT_DETAILS: Updated field definitions to support the
Play Still Image feature.

MM_PLAY_RECORD_INFO: Updated field definitions to support the WAVE file
format.

MM_RET_CODE: Updated field definitions to support the Play/Capture Still Image
feature.

MM_STOP: Updated field definitions to support the Play/Capture Still Image feature.

MM_STOP_ACK_DETAILS: Updated field definitions to support the Play/Capture
Still Image feature.

MM_STREAM_OPEN_INFO: Corrected the descriptions for the BufferMode field.
(IPY00041320)

MM_YUV: Added this new data structure to support the Play/Capture Still Image
feature.

Document No. Publication Date Description of Revisions
16 Dialogic® Multimedia API Programming Guide and Library Reference

Revision History
05-2454-003 October 2007 Dialogic® Multimedia API Header File: Added the videodefs.h file.

mm_Play() and mm_Record() : Updated code examples that include compilation
fixes and missing INIT inline functions.

Data Structures: Updated the unVersion field description for all data structure
reference pages.

Overview of Dialogic® Multimedia API Data Structures: Added a note about using
the corresponding INIT_ inline function, required by the application for
initialization, for each data structure.

MM_AUDIO_CODEC: Updated the structure definition and added new fields and
new values for enumerations.

MM_AUDIO_CODEC_OPTION_LIST: Added this new data structure.

MM_MEDIA_VIDEO: Updated structure definition, and description of eFileFormat
and unOffset.

MM_PLAY_RECORD_CMPLT_DETAILS: Added the new error code,
EMM_STATUS_RCRD_V_MISSING_MPEG4_VISUALCONFIG_ERROR.

MM_RUNTIME_CONTROL: Updated the Reason field description.

MM_SET_PARM: Added the EMM_TONE_DETECTION parameter.

Terminating and Non-Terminating Play/Record Errors: Added the new error code,
EMM_STATUS_RCRD_V_MISSING_MPEG4_VISUALCONFIG_ERROR.

05-2454-002 August 2007 Made global changes to reflect Dialogic brand.

Function Summary by Category chapter: Added the Media Streaming category.

Dialogic® Multimedia API Events section: Added the following new events:
MMEV_PLAY_AUDIO_LOWWATER, MMEV_PLAY_AUDIO_HIGHWATER,
MMEV_PLAY_VIDEO_LOWWATER, MMEV_PLAY_VIDEO_HIGHWATER.
MMEV_RECORD_AUDIO_LOWWATER, MMEV_RECORD_AUDIO_EOD,
MMEV_RECORD_VIDEO_LOWWATER, MMEV_RECORD_VIDEO_EOD.

Function Information chapter: Added the following new functions:
mm_StreamClose(), mm_StreamGetStat(), mm_StreamOpen(),
mm_StreamRead(), mm_StreamReset(), mm_StreamSetWaterMark(),
mm_StreamWrite(), mm_ResultInfo()

Data Structures chapter: Added the following new data structures:
MM_STREAM_STAT, MM_RUNTIME_CONTROL, MM_STREAM_OPEN_INFO
MM_STREAM_WATERMARK_INFO, MM_MEDIA_ACCESS_MEMORY.
MM_MEDIA_ACCESS_STREAM.

MM_AUDIO_CODEC: Added new data format values to the unCoding field for AMR-
NB and G.723.1.

Media Streaming Event Information Error Return Codes section: Added new error
codes.

05-2454-001 August 2005 Initial version of document.

Document No. Publication Date Description of Revisions
Dialogic® Multimedia API Programming Guide and Library Reference 17

11.Product Description

This chapter provides an overview of video technology and Dialogic® multimedia features. The
following topics are included:

• Overview of Video Technology . 18

• IP Media Server . 22

• Multimedia Capabilities . 22

• File Formats . 23

• SIP Call Control Using Global Call . 24

• SDP Functionality . 25

• Features . 25

1.1 Overview of Video Technology

This section covers the following concepts in video technology:

• Video Codec

• Audio Codec

• Video Standards

• Intraframe (I-Frame)

• IP Media Server

1.1.1 Video Codec

A video codec is a device or software module that encodes and compresses raw video data to a
digital format or decodes and decompresses from a digital video data format to a raw video data
format. A video codec may also transcode between two digital formats. For multimedia, video
transcoding is provided, if necessary, between the digital video format of the Real-time Transport
Protocol (RTP) stream and the digital video format of the multimedia file that is being played from
or recorded to.

1.1.2 Audio Codec

An audio codec is a device or software module that encodes and compresses analog audio data to a
digital format or decodes and decompresses from a digital audio data format to analog. An audio
codec may also transcode between two digital formats. For multimedia, audio transcoding is
provided, if necessary, between the digital audio format of the RTP stream and the digital audio
format of the multimedia file that is being played from or recorded to.
Dialogic® Multimedia API Programming Guide and Library Reference 18

Product Description
1.1.3 Video Standards

The most important video standards of today are H.261, H.263, MPEG-1, MPEG-2 and MPEG-4,
and H.264. These and other standards are discussed in the following sections:

• H. 261 (P*64)

• H.263

• MPEG-1

• MPEG-2

• MPEG-4

• H.264

Compared to video codecs for CD-ROM or TV broadcast, codecs designed for the Internet require
greater scalability, lower computational complexity, greater resiliency to network losses, and lower
encode/decode latency for video conferencing. In addition, the codecs must be tightly linked to
network delivery software to achieve high frame rates and picture quality.

Not all video standards are well suited for Internet video. Standards such as MPEG-4 part 10 and
H.264 (which are the same codec) have emerged which bridge the gap between high efficiency
error-resistant codecs for telephony applications (H.26x) and codecs designed for entertainment
content streaming (MPEG-x). It is poised for more effort to be focused on algorithms specifically
designed for real-time video applications in the Internet. Research is currently underway looking at
new scalable and flexible codecs, video QoS, etc.

H. 261 (P*64)

H.261, also known as P*64 codec (where P is an integer number meant to represent multiples of 64
Kbps), is an old standard and was targeted at teleconferencing applications. H.261 is used for
carrying video over ISDN – in particular for face-to-face videophone applications and video
conferencing. The actual encoding algorithm is similar to but incompatible with that of MPEG
codecs. However, H.261 needs substantially less CPU power for real-time encoding than MPEG.
The algorithm includes a mechanism that optimizes bandwidth usage by trading picture quality
against motion, so that a quickly-changing picture will have a lower quality than a relatively static
picture. Used in this way, H.261 is a constant-bit-rate encoding codec rather than a constant-
quality, variable-bit-rate encoding codec.

H.263

H.263 is the ITU-T standard designed for low bit rate communication. However, this standard can
probably be used for a wide range of applications – not just low bit rate applications. H.263 is
expected to replace H.261 in most applications.

The coding algorithm of H.263 is similar to that used by H.261, but it has been enhanced to
improve performance and error recovery. H.263 uses half-pixel precision, whereas H.261 uses full-
pixel precision and a loop filter. Some parts of the hierarchical structure of the data stream are now
optional, so the codec can be configured for a lower data rate or better error recovery.
Dialogic® Multimedia API Programming Guide and Library Reference 19

Product Description
There are now four optional negotiable options included to improve performance:

• Unrestricted motion vectors

• Syntax-based arithmetic coding

• Advance prediction

• Forward and backward frame prediction similar to MPEG called P-B frames.

H.263 supports the following resolutions:

• Quarter Common Intermediate Format (QCIF) and Common Intermediate Format (CIF) – the
resolutions supported by H.261

• Sub-QCIF (SQCIF) – half the resolution of QCIF

• 4CIF – 4 times the resolution of CIF

• 16CIF – 16 times the resolution of CIF

The support of 4CIF and 16CIF means the codec can compete with other, higher bit rate video
coding standards such as the MPEG standards.

MPEG-1

MPEG-1, 2, and 4 are currently accepted standards for the bandwidth efficient transmission of
video and audio. The MPEG-1 codec targets a bandwidth of 1 to 1.5 Mbps offering VHS quality
video at CIF (352x288) resolution and 30 frames per second. MPEG-1 requires expensive
hardware for real-time encoding. Although decoding can be done in software, most
implementations consume a large fraction of a high-end processor. MPEG-1 does not offer
resolution scalability and the video quality is susceptible to packet losses due to the dependencies
present in the P (predicted) and B (bi-directionally predicted) frames (for more information about P
and B frames, refer to Section 1.1.4, “Intraframe (I-Frame)”, on page 22). The B-frames also
introduce latency in the encode process, since encoding frame N needs access to frame N+k,
making it less suitable for video conferencing.

MPEG-2

MPEG-2 extends MPEG-1 by including support for higher resolution video and increased audio
capabilities. The targeted bit rate for MPEG-2 is 4 to15 Mbps, providing broadcast quality full-
screen video. The MPEG-2 draft standard does provide for scalability. Three types of scalability
have been defined:

• Signal-to-Noise Ratio (SNR)

• Spatial and temporal

• One extension that can be used to implement scalability: data partitioning.

Compared with MPEG-1, MPEG-2 requires even more expensive hardware to encode and decode.
MPEG-2 is also prone to poor video quality in the presence of losses, for the same reasons as
MPEG-1. Both MPEG-1 and MPEG-2 are well suited to the purposes for which they were
developed. For example, MPEG-1 works very well for playback from CD-ROM, and MPEG-2
performs well for high-quality archiving applications and for TV broadcast applications. In the
case of satellite broadcasts, MPEG-2 allows more than five digital channels to be encoded using
20 Dialogic® Multimedia API Programming Guide and Library Reference

Product Description
the same bandwidth as used by a single analog channel today, without sacrificing video quality.
The large encoding costs are really not a factor. However, for existing computer and Internet
infrastructures, MPEG-based solutions can be expensive and can require too much bandwidth
because they were not designed with the Internet in mind.

MPEG-4

MPEG-4, the most recent encoding standard from MPEG, was finalized in October 1998 and
ratified as a standard in 1999. MPEG-4 arose from a need to have a scalable standard supporting a
wide bandwidth range from streaming video at less than 64 Kbps, suitable for Internet applications,
to approximately 4 Mbps for higher-bandwidth video needs. MPEG-4 also arose from a desire, as
digital encoding matures, to advance beyond simple conversion and compression to object
recognition and encoding, as well as provide synchronized text and metadata tracks, to create a
digital file that carries a meaning greater than the sum of its individual parts.

MPEG-4 supports both progressive and interlaced video encoding. One notable concept of MPEG-
4 is that it is object-based, coding multiple video object planes into images of arbitrary shape.
Successive video object planes (VOPs) belonging to the same object in the same scene are encoded
as video objects. MPEG-4 supports both natural (“analog”) and synthetic (“computer-generated”)
data coding. Some VRML (Virtual Reality Modeling Language) technology is also incorporated to
encode dimensionality.

MPEG-4 compression provides temporal scalability utilizing object recognition, providing higher
compression for background objects, such as trees and scenery, and lower compression for
foreground objects, such as an actor or speaker – much as the human eye filters information by
focusing on the most significant object in view, such as the other party in a conversation. Object
encoding provides potential for object or visual recognition indexing, based on discrete objects
within a frame rather than requiring a separate text-based or storyboard indexing database. In
addition, MPEG-4 provides a synchronized text tract for courseware development and a
synchronized metadata track for indexing and access at the frame level.

H.264

The H.264 project was to develop a high-performance video coding standard by adopting a “back
to basics” approach where simple and straightforward design using well-known building blocks is
used. The H.264 standard has a number of advantages that distinguish it from the other existing
standards mentioned above, while at the same time sharing common features with other existing
standards. The following are some of the key advantages of H.264:

• Compared to H.263v2 (H.263+) or MPEG-4 Simple Profile, H.264 permits a reduction in bit
rate by up to 50% for a similar degree of encoder optimization at most bit rates.

• Higher quality video: H.264 offers consistently good video quality at high and low bit rates.

• Error resilience: H.264 provides the tools necessary to deal with packet loss in packet
networks and bit errors in error-prone wireless networks.

• Network friendliness: Through the Network Adaptation Layer, H.264 bit streams can be easily
transported over different networks.

In general, H.263 and MPEG-4 have become the de facto standards for video delivery over low
bandwidths. But broadband standards such as MPEG-1 and MPEG-2, which are useful for many
Dialogic® Multimedia API Programming Guide and Library Reference 21

Product Description
types of broadcast and CD-ROM applications, are unsuitable for the Internet. In fact, with the
adoption of broadband, there may be significant growth in MPEG-1 and MPEG-2 applications.
Although MPEG-2 has had scalability enhancements, these likely will not be exploitable until the
availability of reasonably priced hardware encoders and decoders that support scalable MPEG-2.

1.1.4 Intraframe (I-Frame)

To create motion in a video, individual frames of pictures are grouped together and played back.
An Intraframe (I-frame) is a single frame of digital content that the compressor examines,
independent of the frames that precede and follow it, and stores all of the data needed to display
that frame. Several video codec standards, such as MPEG-4, H.263, and H.264, use I-frames.

In a compressed video, I-frames are usually used along with P-frames and B-frames, which are
sometimes referred to as Interframes or delta frames. P-frames (short for predictive frames) follow
I-frames and contain only data that has changed from the I-frame that comes before it. B-frames
(short for bi-directional predictive frames) contain only the data that have changed from the
preceding frame or differ from the data in the next frame.

So only the I-frame contains all the data needed to display the frame whereas the P- and B-frames
store the changes that occur between the I-frames. For this reason, video decoders typically require
at least a single initial I-frame before they can begin to accurately display video content. The
quality of the video increases with a higher amount of I-frames, but I-frames take up more storage
space and transmission bandwidth because they contain higher amounts of information bits.

1.2 IP Media Server

The Dialogic® PowerMedia™ Host Media Processing (HMP) Software provides the services of an
IP Multimedia Server (IPMS). An IPMS provides various audio and video media functions for
wireline and wireless network environments. Some applications that use the Dialogic®
PowerMedia™ HMP Software include video mail, video conferencing, and video streaming. The
user application uses the Dialogic® Multimedia API to access and manage these multimedia
functions.

1.3 Multimedia Capabilities

This section lists the multimedia capabilities provided by the Dialogic® Multimedia API Library
and other related Dialogic® API libraries:

• Dialogic® Multimedia API Library - records and plays the multimedia data using a multimedia
device.

• Dialogic® Device Management API Library - used to manage connections between devices
for communication.

• Dialogic® IP Media Library API Library - provides the IP multimedia session control.

• Dialogic® Global Call API Library - provides IP call control for multimedia using SIP and
Session Description Protocol (SDP) and must be used in third party call control (3PCC) mode.
22 Dialogic® Multimedia API Programming Guide and Library Reference

Product Description
Refer for Chapter 7, “Function Summary by Category” and beyond for more information about the
Dialogic® Multimedia API Library. Information about the other APIs can be found in the
corresponding API Library Reference documentation provided with this release.

These capabilities support applications providing video services, such as video mail, video color
ring, video caller ID, and video location-based services.

The following multimedia capabilities are provided:

• Multimedia record and playback with basic playback control and synchronized audio and
video.

– Record and playback of audio and video, video only, or audio only

– Record to and playback from a file or set of files

– Transmit notification tone at start of recording

• Record from RTP stream to multimedia file. Play from multimedia file into RTP stream while
maintaining synchronization.

• Supports audio codecs for RTP. Refer to the Release Guide for a current list of supported
audio codecs.

• Supports video picture formats at 30, 15, 10, or 6 frames per second. Refer to the Release
Guide for a current list of supported video picture formats.

• Supports video codec for RTP. Refer to the Release Guide for a current list of supported video
codecs.

• Multimedia File Conversion Tools: These utilities (e.g., mmconvert and hmp3gp) provide off-
line conversion of multimedia files. For information on obtaining and using the multimedia
file conversion tools, see following web sites. Check these web sites periodically for updates
to the conversion tools and their capabilities, as well as to the Multimedia File Conversion
Tools User Guide:

– http://www.dialogic.com/products/media-server-software/default.htm

– http://www.dialogic.com/manuals

• Play to and record from SIP devices, depending on the capability of the device (audio or
audio/video). Play video only if no audio is required. Play audio only for non-video devices.

• Supports existing Dialogic® IP Media Library API audio alarms for the voice portion of the
multimedia stream.

Note: Quality of Service (QoS) alarms and events are not supported for video streams.

• Play Dialogic® Voice API audio files in a multimedia session. You can play Dialogic® Voice
API audio files in a multimedia session as long as tight synchronization with video is not
required (as when playing with a video menu or status display). In this case, the “ipm” device
in a multimedia session will listen to the “dxxx” device to which the Dialogic® Voice API is
playing an audio file. This overrides any audio stream (but not video) from the “mm” device in
the multimedia session.

1.4 File Formats

The Dialogic® Multimedia API supports the following file formats:

• Dialogic® Voice API Audio Play and Record File Formats
Dialogic® Multimedia API Programming Guide and Library Reference 23

Product Description
– G.711 µ-law and A-law (48 kbps and 64 kbps)

– OKI ADPCM (24 kbps and 32 kbps)

– G.726 (16 kbps and 32 kbps)

– Linear PCM (88 kbps)

– Linear PCM (128 kbps).

• Dialogic® Multimedia API Audio Play and Record File Format

– Linear PCM (128 kbps): 16-bit, 8 kHz, mono, LSB-MSB (“little-endian”).

• Dialogic® Multimedia API Video Play and Record File Formats

– Dialogic proprietary format

Note: Except for the 128 kbps linear PCM file format, the Dialogic® Multimedia API does
not directly support the Dialogic® Voice API audio files. However, they are
indirectly supported and you can play these Dialogic® Voice API audio files in a
multimedia session as long as tight synchronization with video is not required (as
when playing with a video menu or status display). In this case, the “ipm” device in a
multimedia session will listen to the “dxxx” device to which the Dialogic® Voice API
is playing an audio file. This overrides any audio stream (but not video) from the
“mm” device in the multimedia session.

1.5 SIP Call Control Using Global Call

This section discusses the use of Dialogic® Global Call APIs for SIP call control in multimedia
applications.

Note: More information about the Dialogic® Global Call API can be found in the Dialogic® Global Call
API Library Reference and Dialogic® Global Call API Programming Guide. The Dialogic®
Global Call API provides a “C” interface that allows you to develop both TDM and IP call control
applications using a variety of TDM protocols such as ISDN PRI and T1 CAS, and IP protocols
like SIP and H.323. It provides an abstraction to the application from the lower level details of each
individual protocol, thus enabling faster deployment of multimedia applications.

The Global Call call control library operates in two modes:

• First Party Call Control (1PCC) mode, which is the default

• Third Party Call Control (3PCC) mode

First Party Call Control (1PCC) mode is where the Global Call call control library manages IP
signaling (SIP or H.323) as well as the RTP media control via the Dialogic® IP Media Library API.
The Dialogic® IP Media Library API is a complementary API that is used to manipulate RTP
media streams (start, stop, or modify them). The call control library synchronizes the call control
and media control state machines, thus abstracting the application from the details of creating and
parsing Session Description Protocol (SDP) bodies that are embedded in SIP messages and
invoking the Dialogic® IP Media Library API functions to start, stop, or modify RTP streams.

Note: More information about the Dialogic® IP Media Library API can be found in the Dialogic® IP
Media Library API Library Reference and Dialogic® IP Media Library API Programming Guide.

In the Third Party Call Control (3PCC) mode, the Dialogic® Global Call API call control library
provides maximum flexibility to the application, allowing it to manipulate both SDP bodies and
24 Dialogic® Multimedia API Programming Guide and Library Reference

Product Description
invoke Dialogic® IP Media Library API functions as needed. The Dialogic® Global Call API
library in this mode is acting as a pure SIP application. The application is responsible for
monitoring the various SIP transactions and invoking appropriate IPML functions to start, stop, or
modify RTP streaming and create or parse SDP bodies.

Apart from the capabilities discussed above, Dialogic® Global Call API allows the application to
manipulate any standard SIP header (read or write), while also providing the flexibility to add
custom headers to SIP messages.

Note: To play and record multimedia with the Multimedia API, you must configure and use the
Dialogic® Global Call API library for 3PCC mode.

1.6 SDP Functionality

This section discusses Session Description Protocol (SDP) functionality.

SDP, which is defined in IETF RFC 2327, provides a standard way to specify the media
information for an IP call. It is used by SIP, MGCP, and H.248 (or Megaco) protocols. The media
information could be anything from RTP audio and video details such as UDP port numbers, IP
addresses, audio/video coder information, or bandwidth. A sample SDP body is shown below:

v=0
o=mhandley 2890844526 2890842807 IN IP4 126.16.64.4
s=SDP Seminar
i=A Seminar on the session description protocol
u=http://www.cs.ucl.ac.uk/staff/M.Handley/sdp.03.ps
e=mjh@isi.edu (Mark Handley)
c=IN IP4 224.2.17.12/127
t=2873397496 2873404696
a=recvonly
m=audio 49170 RTP/AVP 0
m=video 51372 RTP/AVP 31
m=application 32416 udp wb
a=orient:portrait

In this Dialogic® PowerMedia™ HMP Software release, the application is responsible for creating
and parsing SDP bodies that are embedded in SIP messages. For convenience, a sample class
library is provided “as is” for developers who choose to create and parse SDP bodies. It is a simple
C++ interface provided as source and can be modified to suit application needs.

1.7 Features

This section covers the following features included in this release and implemented using the
Dialogic® Multimedia API library. The library is used to play and record digitized multimedia in
support of applications providing video services, such as video mail, video color ring, video caller
ID, and video location-based services.

• Digital Video Recorder (DVR) Controls

• Native RTP Hairpinning
Dialogic® Multimedia API Programming Guide and Library Reference 25

Product Description
• Native RTP Play and Record

• Multimedia User I/O

• Multimedia Buffer I/O

• Multimedia Runtime Control

• Play/Capture Still Image

• Video Transcoding

• 3GP File Format Direct Playback

Note: Not all features are supported on all platforms and releases. Refer to the Release Guide for the
applicable platform to determine feature support. See Chapter 2, “Feature Support by Platform” for
more information.

1.7.1 Digital Video Recorder (DVR) Controls

This feature enables the application to pause, resume, and seek during audio and video playback.

1.7.2 Native RTP Hairpinning

Native RTP hairpinning enables applications to form RTP media stream connections between IP
media streams, allowing the RTP media stream received from one IP media session to be
retransmitted to the outgoing RTP media stream of another IP media session. This is done without
processing or transcoding the RTP payload. The RTP packets that are hairpinned may be
hairpinned as received, with packets out of order or even missing as long as the RTP stream is
retransmitted so that the receiving terminating endpoint can perform necessary packet loss
recovery type functions.

Native RTP hairpinning is supported for both audio and video RTP streams.

In addition to IPM to IPM connections, native hairpinning connections may also be formed
between 3G-324M and IPM devices. Connections between devices are made using the Dialogic®
Device Management API library.

Use cases for native RTP hairpinning include switching type applications, such as an IPPBX, or
streaming data to an external speech server. Benefits of using native RTP hairpinning include
increasing achievable system densities, reducing latencies, and improving voice quality by
eliminating an additional decode/encode operation.

Note: RTCP data is not hairpinned, and SRTP data cannot be hairpinned.

1.7.3 Native RTP Play and Record

The RTP data in both incoming and outgoing directions is not processed or transcoded by
Dialogic® HMP Software. With this feature, the RTP data is stored directly by and retrieved
directly from Dialogic® HMP Software without application data handling.

The application must negotiate the proper coder formats when establishing the IP media sessions
and match these formats when receiving and sourcing data. Additional media stream data such as
26 Dialogic® Multimedia API Programming Guide and Library Reference

Product Description
RTP timestamps and sequence numbers are made available to the application by the native RTP
feature. The RTP packets may be stored exactly as received, with packets out of order or even
missing, as long as the RTP stream is retransmitted so that the receiving terminating endpoint can
perform necessary packet loss recovery (PLR) activity.

1.7.4 Multimedia User I/O

This feature enables applications to directly play and record RTP data via user I/O buffers. New
functions and data structures have been added to support native RTP play and record, multimedia
user I/O, multimedia buffer I/O.

1.7.5 Multimedia Buffer I/O

This feature enables applications to directly play and record RTP data via memory.

1.7.6 Multimedia Runtime Control

This feature allows multimedia play and record functions to be terminated on certain conditions
such as digits received. These conditions are specified in the MM_RUNTIME_CONTROL data
structure.

1.7.7 Play/Capture Still Image

This feature provides a method to play a still image over a video stream and to capture a still image
from a video stream.

1.7.8 Video Transcoding

Video transcoding enables applications to record incoming video in a different format than what is
being received from the network and to play back outgoing video in a different format than that of
the locally stored file. Transcoding involves decoding and decompressing the original data to a raw
intermediate format (YUV format).

Video transrating adjusts the number of video frames per second (and bit rate of the video) between
two endpoints to suit the requirements of the device at each endpoint.

Image resizing converts video from one image size to another (for example, from CIF to QCIF)
between two endpoints to suit the requirements of the device at each endpoint.

Note: In this document, the term “video transcoding” encompasses video transcoding, video transrating,
and image resizing.

1.7.9 3GP File Format Direct Playback

With this feature, Dialogic® products support the playback of contiguous multimedia files in an
ISO/IEC standardized structure, known as 3GPP or 3GP file format. This feature also enables
Dialogic® Multimedia API Programming Guide and Library Reference 27

Product Description
direct playback of 3GP files via the Dialogic® Multimedia API library. For more information, refer
to Section 5.10, “3GP File Format Direct Playback”, on page 59.
28 Dialogic® Multimedia API Programming Guide and Library Reference

22.Feature Support by Platform

This Multimedia API Library Reference is used across many Dialogic® platforms. There may be
information in this manual that is not yet implemented in a Dialogic® platform software release. Be
sure to refer to the Release Guide for the applicable platform to determine feature support.

• High-Level Feature Support by Platform

• Dialogic® Multimedia API Function Support by Platform

• Dialogic® Multimedia API Audio Formats by Platform

2.1 High-Level Feature Support by Platform

This section lists the high-level features documented in this current version and lists the Dialogic®
platform (software release) that currently supports each feature.

Note: Features and functionality are being introduced in phases. This table will be updated as a feature
documented in this manual becomes available on a particular platform (software release) or service
update (SU). Refer to the Release Guide for the applicable platform to determine feature support.

Table 1. High-Level Feature Support by Platform

Feature HMP 3.0WIN HMP 4.1LIN

Multimedia User I/O S S

Multimedia Buffer I/O NS S

Multimedia Play and Record
from/to File

S S

Multimedia Runtime Control
(RTC)

S S

Native Audio Play and Record S S

Native Video Play and Record S S

Audio Transcoding S S

Video Transcoding NS S

Play Still Image NS S

Capture Still Image NS S

DVR Control NS S

File Format P,V, O P,V,W,
O,G

Legend:
S = supported; NS = not supported
HMP 3.0WIN = Dialogic® PowerMedia™ Host Media Processing Software Release 3.0WIN
HMP 4.1LIN = Dialogic® PowerMedia™ Host Media Processing Software Release 4.1LIN
File Format: P-Proprietary, V-Vox, W-Wave, O-3GP Offline Conversion, G-3GP Runtime
Support (play only)
Dialogic® Multimedia API Programming Guide and Library Reference 29

Feature Support by Platform
2.2 Dialogic® Multimedia API Function Support by
Platform

The following table provides an alphabetical listing of Dialogic® Multimedia API functions. The
table indicates which platforms are supported for each of the functions.

Although a function may be supported on all platforms, there may be some differences on its use.
For details, see the function reference descriptions in Chapter 8, “Function Information”.

Table 2. Dialogic® Multimedia API Function Support by Platform

Function Name HMP 3.0WIN HMP 4.1LIN

Device Management Functions

mm_Close() S S

mm_Open() S S

mm_Reset() S S

Configuration Functions

mm_GetParm() S S

mm_SetParm() S S

Input/Output Functions

mm_Capture() NS S

mm_Play() S S

mm_Record() S S

mm_Stop() S S

Media Streaming Functions

mm_StreamClose() S S

mm_StreamGetStat() NS S

mm_StreamOpen() S S

mm_StreamRead() S S

mm_StreamReset() S S

mm_StreamSetWaterMark() S S

mm_StreamWrite() S S

DVR Control Functions

mm_GetDuration() NS S

mm_GetElapsedTime() NS S

mm_Pause() NS S

mm_Resume() NS S

Legend:
S = supported, NS = not supported
HMP 3.0WIN = Dialogic® PowerMedia™ Host Media Processing Software Release 3.0WIN
HMP 4.1LIN = Dialogic® PowerMedia™ Host Media Processing Software Release 4.1LIN
30 Dialogic® Multimedia API Programming Guide and Library Reference

Feature Support by Platform
2.3 Dialogic® Multimedia API Audio Formats by
Platform

The following table indicates the formats in which audio data can be recorded and played back by
the Dialogic® software. For more information, refer to the MM_AUDIO_CODEC reference page
in this document.

mm_Seek() S S

Event Information Functions

mm_DisableEvents() S S

mm_EnableEvents() S S

mm_GetMetaEvent() S S

mm_ResultInfo() S S

Error Processing Function

mm_ErrorInfo() S S

Table 2. Dialogic® Multimedia API Function Support by Platform

Function Name HMP 3.0WIN HMP 4.1LIN

Legend:
S = supported, NS = not supported
HMP 3.0WIN = Dialogic® PowerMedia™ Host Media Processing Software Release 3.0WIN
HMP 4.1LIN = Dialogic® PowerMedia™ Host Media Processing Software Release 4.1LIN

Table 3. Audio Format Support by Platform

Value Description HMP 3.0WIN HMP 4.1LIN

MM_DATA_FORMAT_PCM Linear PCM,
16-bit “little endian”

S* S

MM_DATA_FORMAT_ALAW A-Law PCM NS S

MM_DATA_FORMAT_MULAW µ-Law PCM NS S

MM_DATA_FORMAT_AMR_NB_4_75K GSM AMR-NB,
4.75 kbps

NS S

MM_DATA_FORMAT_AMR_NB_5_15K GSM AMR-NB,
5.15 kbps

NS S

MM_DATA_FORMAT_AMR_NB_5_90K GSM AMR-NB,
5.9 kbps

NS S

MM_DATA_FORMAT_AMR_NB_6_70K GSM AMR-NB,
6.7 kbps

NS S

MM_DATA_FORMAT_AMR_NB_7_40K GSM AMR-NB,
7.4 kbps

NS S

Legend:
S = Audio data can be recorded and played in this data format by a non-native record/play and a native record/play.
S* = Audio data can be recorded and played in this format by a non-native record/play only.
S** = Audio data can be recorded and played in this format by a native record/play only.
S*** = Audio data can be natively recorded/played in this format though a 3G-324 interface only.
NS = Not Supported - Audio data cannot be recorded or played in this format.
HMP 3.0WIN = Dialogic® PowerMedia™ Host Media Processing Software Release 3.0WIN
HMP 4.1LIN = Dialogic® PowerMedia™ Host Media Processing Software Release 4.1LIN
Dialogic® Multimedia API Programming Guide and Library Reference 31

Feature Support by Platform
Note: A native record/play is configured by disabling audio transcoding. Audio transcoding is disabled if
the DMFL_TRANSCODE_NATIVE flag is set for audio port connections when the
dev_PortConnect() function is called. See the Dialogic® Device Management API Library
Reference for more information about this function.

MM_DATA_FORMAT_AMR_NB_7_95K GSM AMR-NB,
7.95 kbps

NS S

MM_DATA_FORMAT_AMR_NB_10_20K GSM AMR-NB,
10.2 kbps

NS S

MM_DATA_FORMAT_AMR_NB_12_20K GSM AMR-NB,
12.2 kbps

NS S

MM_DATA_FORMAT_G723_1_5_30K G.723.1,
5.3 kbps

NS S

MM_DATA_FORMAT_G723_1_6_30K G.723.1,
6.3 kbps

NS S

MM_DATA_FORMAT_G726 G.726 NS S

MM_DATA_FORMAT_G729A G.729A NS S

MM_DATA_FORMAT_AMR_WB_6_6K AMR-WB,
6.6 kbps

NS S

MM_DATA_FORMAT_AMR_WB_8_85K AMR-WB,
8.85 kbps

NS S

MM_DATA_FORMAT_AMR_WB_12_65K AMR-WB,
12.65 kbps

NS S

MM_DATA_FORMAT_AMR_WB_14_25K AMR-WB,
14.25 kbps

NS S

MM_DATA_FORMAT_AMR_WB_15_85K AMR-WB,
15.85 kbps

NS S

MM_DATA_FORMAT_AMR_WB_18_25K AMR-WB,
18.25 kbps

NS S

MM_DATA_FORMAT_AMR_WB_19_85K AMR-WB,
19.85 kbps

NS S

MM_DATA_FORMAT_AMR_WB_23_05K AMR-WB,
23.05 kbps

NS S

MM_DATA_FORMAT_AMR_WB_23_85K AMR-WB,
23.85 kbps

NS S

Table 3. Audio Format Support by Platform (Continued)

Value Description HMP 3.0WIN HMP 4.1LIN

Legend:
S = Audio data can be recorded and played in this data format by a non-native record/play and a native record/play.
S* = Audio data can be recorded and played in this format by a non-native record/play only.
S** = Audio data can be recorded and played in this format by a native record/play only.
S*** = Audio data can be natively recorded/played in this format though a 3G-324 interface only.
NS = Not Supported - Audio data cannot be recorded or played in this format.
HMP 3.0WIN = Dialogic® PowerMedia™ Host Media Processing Software Release 3.0WIN
HMP 4.1LIN = Dialogic® PowerMedia™ Host Media Processing Software Release 4.1LIN
32 Dialogic® Multimedia API Programming Guide and Library Reference

Dialogic® Multimedia API Programming Guide and Library Reference 33
Dialogic Inc.

33.Event Handling

This chapter provides information about event handling

An event indicates that a specific activity has occurred. Events provide feedback on the progress
and completion of functions and indicate the occurrence of other activities. Multimedia API library
events are defined in the mmevts.h header file.

Refer to Chapter 9, “Events” for a list of events that may be returned by the multimedia software.

Following is an example of how Multimedia API events and errors are handled. The function used
in the example is mm_Play().

A typical application scenario when doing mm_Play() is as follows:

1. The application initiates the multimedia play operation by calling the mm_Play() function.

2. A return value of the call (EMM_SUCCESS or EMM_ERROR) indicates the success or
failure of the call. Failure usually indicates that the parameter list is incorrect. No Dialogic®
Standard Runtime Library (SRL) events are generated for this.

If EMM_ERROR is returned, use the mm_ErrorInfo() function to obtain the reason for the
failure. This function should be called immediately after the failed mm_Play() call and in the
same execution thread. The mm_ErrorInfo() function returns a structure with an error code
(one of the EMM_ prefixed values defined in the mmerrs.h header file) and character strings
with text messages describing the error.

3. Upon initiation of the play operation, either the MMEV_PLAY_ACK or
MMEV_PLAY_ACK_FAIL event is posted to the SRL event queue with event data pointing
to the MM_PLAY_ACK structure. This structure holds the return code of the operation.
Return codes are defined in the mmerrs.h header file and have a EMMRC_ prefix. Success is
indicated with the EMMRC_OK return code.

If the play initiation fails, no further processing takes place and no more SRL events are
generated for this operation.

4. When the play operation finishes (because the end of data or stop operation is issued), either
the MMEV_PLAY or MMEV_PLAY_FAIL event is posted to the SRL queue with event data
pointing to the MM_PLAY_CMPLT structure. This structure holds the details of the
operation.

It is recommended that you use the mm_GetMetaEvent() function to obtain detailed information
about SRL events related to Multimedia API calls. This function returns a structure with all details
of the event.

At any point of operation execution, a general error event (MMEV_ERROR) could be posted to the
SRL queue. This error indicates that some unexpected system error event occurred. It could
indicate a problems such as resources depletion, memory corruption, or internal communication
failures.

Dialogic® Multimedia API Programming Guide and Library Reference 34

44.Error Handling

This chapter describes error handling for the multimedia software.

All Dialogic® Multimedia API library functions return a value that indicates the success or failure
of the function call. Success is indicated by a return value of EMM_SUCCESS for success or
EMM_ERROR for failure. Failure usually indicates that the parameter list is incorrect. No
Dialogic® Standard Runtime Library (SRL) events are generated for this.

If a function fails, use the mm_ErrorInfo() function to obtain the reason for the failure. This
function should be called immediately after the failed function call and in the same execution
thread. It returns a structure with the error code (one of the EMM_ prefixed values defined in the
mmerrs.h header file) and character strings with test messages describing the error.

At any point of operation execution, a general error event (MMEV_ERROR) could be posted to the
SRL queue. This error indicates that some unexpected system error event occurred. It could be
indication of a problem such as resource depletion, memory corruption, or internal communication
failures.

Refer to Chapter 12, “Error Codes” for a list of error codes.

55.Application Development
Guidelines

This chapter provides some guidelines for those choosing to develop multimedia applications. The
following topics are included:

• Developing Multimedia Applications . 35

• Building Blocks for Multimedia Applications . 38

• Call Flow of Video Mail . 38

• Requesting I-Frame Using SIP INFO . 42

• Making Connections Using Virtual CT Bus and New Packet Bus 44

• Enabling Digit Detection Using DX . 48

• Enabling and Using Transcoding. 49

• Play a Still Image. 58

• Capture a Still Image . 59

• 3GP File Format Direct Playback . 59

5.1 Developing Multimedia Applications

This section describes the following multimedia applications:

• Video Mail

• Video Color Ring

• Video Caller ID

• Video Location Based Services

5.1.1 Video Mail

In the context of Dialogic® Host Media Processing (HMP) Software, video mail is an extension of
voice mail services. The IP Multimedia Server (IPMS), in conjunction with other network
elements, can provide the following capabilities to phone users, both mobile and wired, including
soft-phone users:

• a party of an a/v (audio/video) call can leave an a/v message (or greeting)

• a party of an a/v call can be greeted by an a/v message

• a party of an a/v call can retrieve an a/v message

• a party of an a/v call can retrieve an audio only message while being presented a status menu,
a still image, or no video
Dialogic® Multimedia API Programming Guide and Library Reference 35

Application Development Guidelines
• a party of an a/v call can navigate through a menu, both visual and audio, by pressing phone
keys

• a party of an audio only call can retrieve the audio portion of an a/v message

The IPMS, in conjunction with other system elements (primarily the application), can provide the
following capabilities to PC web browser users:

• leave an a/v message or greeting

• retrieve an a/v message

The IPMS, along with tools and utilities provided with Dialogic® HMP Software, allows the output
(such as a/v files) of popular content creation tools to be used by the IPMS as a source of the a/v
content that is streamed to a caller. One use of this a/v content would be to support the creation and
use of video menus.

5.1.2 Video Color Ring

Video color ring is a telecom service where instead of standard ring-back tones, a caller receives a
specially prepared audio or audio/visual greeting while the called phone is ringing. The greeting is
specific to the called number and may also be specific to the calling number. For example, special
greetings may be provided to family or friends and a general greeting may be provided to all other
callers.

Unlike video mail, where a full duplex, normal media session is established between the IPMS and
the calling party, for video color ring, a half duplex, early media session (pre-answer) needs to be
established between the IPMS and the calling party.

For this release, Dialogic® HMP Software will not directly support early media between the IPMS
and the caller and therefore depends on other network elements, such as a gateway, to provide this
capability. Phones that support video color ring are also required.

In a 3G or IP environment, where the IPMS resides behind a gateway, video color ring can be
supported without the IPMS directly supporting early media. Early media support can be
established to the caller by another subsystem in the network, such as by the gateway. Again, this
assumes that the gateway supports early media. A full duplex call between the IPMS and the
gateway could be established and the IPMS could provide the IP address and RTP port of the
caller, allowing the IPMS to stream the video color ring to the caller. As an alternate approach, call
signaling to the IPMS is not even required. The IPMS could be instructed to just stream the
appropriate media to a specified IP address and RTP port(s).

Assuming that early media is handled by other network elements and phones supporting video
color ring are available, the IPMS can provide the following capabilities in support of the video
color ring service:

• set up an a/v ring back greeting or greetings from a phone or a PC web browser

• set up an a/v session and stream an a/v ring back greeting to a specified IP address and port.
36 Dialogic® Multimedia API Programming Guide and Library Reference

Application Development Guidelines
5.1.3 Video Caller ID

Video caller identification is a telecom service where instead of the caller's phone number
appearing on the called phone, a pre-recorded audio/visual message is sent and presented according
to the capability of the called phone.

The capabilities needed to be supported by the IPMS are similar to those required to support video
mail and video color ring services (refer to Section 5.1.1, “Video Mail”, on page 35 and
Section 5.1.2, “Video Color Ring”, on page 36).

Similar to the video color ring service, where a half duplex, early media session (pre-answer) is
established between the calling party and the IPMS, for video caller ID, a half duplex, early media
session (pre-answer) is also established but in this case it is between the IPMS and the called party.

For this Dialogic® HMP Software release, Dialogic® HMP Software will not directly support early
media between the IPMS and the called party and therefore depends on other network elements,
such as a gateway, to provide this capability. Phones that support video caller ID will also be
required. Most phones that support video caller ID today support a different form of video caller
ID. These phones allow photos to be stored locally on the phone and the stored picture is associated
with a caller ID number and are displayed when a incoming call with one of these numbers arrives
at the phone.

In a 3G or IP environment, where the IPMS resides behind a gateway, video caller ID can be
supported without the IPMS directly supporting early media. Early media support can be
established to the called party by another subsystem in the network, such as by the gateway. Again,
this assumes that the gateway supports early media. A full duplex call between the IPMS and the
gateway could be established and the IPMS could provide the IP address and RTP port of the called
party, allowing the IPMS to stream the video caller ID to the called party. As an alternate approach,
call signaling to the IPMS is not even required. The IPMS could be instructed to just stream the
appropriate media to a specified IP address and RTP port(s).

Assuming that early media is handled by other network elements and phones supporting this type
of video caller ID are available, the IPMS can provide the following capabilities in support of the
video caller ID service:

• set up an a/v caller ID greeting (or greetings) from a phone or a PC web browser.

• set up an a/v session and stream an a/v caller ID greeting to a specified IP address and port.

5.1.4 Video Location Based Services

Video location based service is a telecom service where subscribers can access local information
such as local weather, restaurant guides and reviews, movie listings, and sports highlight clips.
Video content is stored on a central server where it can be accessed by video subscribers.

Like video mail, a full duplex, normal media session is established between the IPMS and the
calling party.
Dialogic® Multimedia API Programming Guide and Library Reference 37

Application Development Guidelines
The IPMS, in conjunction with other network elements, can provide the following capabilities to
phone users, both mobile and wired:

• a party of an a/v call can be greeted by an a/v message

• a party of an a/v call can navigate through a menu by pressing phone keys

• a party of an a/v call can retrieve a/v content

The IPMS, along with tools and utilities provided with Dialogic® HMP Software, will allow the
output (such as a/v files) of popular content creation tools to be used by the IPMS as a source of the
a/v content that is streamed to a caller.

5.2 Building Blocks for Multimedia Applications

The Dialogic® HMP Software release provides API libraries for developing a variety of
applications. The Apes or building blocks for those choosing to develop audio/video applications
include the following:

• Dialogic® Global Call API Library for SIP call control (gc_)

• Dialogic® IP Media Library API Library for RTP control (ipm_)

• Dialogic® Multimedia API Library for playing and recording audio/video files (mm_)

• Dialogic® Voice API Library for DTMF detection/generation (dx_)

• Dialogic® Device Management API Library for setting up virtual connections between
devices (dev_)

• Session Description Protocol API Library to create and parse SDP bodies

Using the above sets of APIs, the applications that have been discussed in previous sections can be
easily developed. The Dialogic® HMP Software release includes a sample demo (multimedia
demo) that demonstrates a video mail and a video portal application using the above APIs and their
associated libraries.

5.3 Call Flow of Video Mail

This section provides illustrations of a typical call flow and the steps to take if one chooses to
develop a video mail application using the Dialogic® Global Call API.

Figure 1 shows a typical scenario of the video mail application.
38 Dialogic® Multimedia API Programming Guide and Library Reference

Application Development Guidelines

1234)
Figure 1. Typical Call Flow of Video Mail

Call john@company.com

Video Gateway
Audio/Video

Messaging ServerProxy/Softswitch John (

Call 1234@company.com

No Answer
Start IVR

Audio:video
Start RTP Stream (a/v)

Get audio:video Info

RTP
Audio:G.711, video: H.263

3G-324M
Audio:AMR, video: H.263

a/v file
Hang Up

Stop IVR

Stop RTP Stream (a/v)
SMS indicating new mail

Retrieve Messages
RTP

G.711:H.263

Play Greeting (a/v)

Bob (1111)
Dialogic® Multimedia API Programming Guide and Library Reference 39

Application Development Guidelines
Figure 2 and Figure 3 show the steps to take to develop a video mail application using the
Dialogic® Global Call API. Figure 2 shows a scenario in which the SIP message has both audio
and video information in the SDP.

Figure 2. Incoming SIP Call with Audio and Video SDP

Initialize

Gather Local Media
Information

Establish Connections

Open devices gc, ipm, dx, mm and start
polling for SRL events

ipm_GetLocalMediaInfo() – retrieve local audio/video ip:udp information

dev_connect() – establish full duplex packet bus connections between IPM
and MM devices
Ipm_GetXMitSlot() – retrieve the virtual CTBus timeslot of IPM device
Dx_listen() – Make the voice channel listen to IPM timeslot to be able to
detect DTMF digits

Wait for incoming SIP
call

GCEV_OFFERED

gc_WaitCall()

Answer Call
GCEV_ACCEPT

gc_GetCallInfo() - Retrieve FROM and TO fields (ANI and DNIS) from SIP
message header
gc_AcceptCall() – Send SIP ACK
Parse offer SDP and retrieve remote IP address, audio/video UDP port
numbers, audio/video codec information

gc_AnswerCall() – send SIP 200 OK with local SDP
ipm_StartMedia() – start streaming RTP audio/video data

Connected
GCEV_ANSWERED

mm_Play() – initiate playback of audio/video menu/clip
dx_getdig() – start to look for DTMF digits

Disconnect Call
GCEV_DISCONNECTED

mm_Stop() – stop playing/recording audio/video menus/clips
ipm_Stop() – stop send/rcv of RTP data
dx_stopch() – stop detecting DTMF digits
gc_DropCall() – Drop the active call, SIP CANCEL
gc_ReleaseCall() – complete call processing – hang up

Interact with Video Mail – record message, review message, send message
40 Dialogic® Multimedia API Programming Guide and Library Reference

Application Development Guidelines
Figure 3 shows a scenario in which the SIP message has only audio first and then with a subsequent
re-INVITE the audio plus video information is provided in the SDP.

Figure 3. Incoming SIP Call with Only Audio SDP (video part is sent via re-INVITE)

Initialize

Gather Local Media
Information

Establish Connections

Open devices gc, ipm, dx, mm and start
polling for SRL events

ipm_GetLocalMediaInfo() – retrieve local audio/video ip:udp information

dev_connect() – establish full duplex packet bus connections between IPM
and MM devices
Ipm_GetXMitSlot() – retrieve the virtual CTBus timeslot of IPM device
Dx_listen() – Make the voice channel listen to IPM timeslot to be able to
detect DTMF digits

Wait for incoming SIP
call

GCEV_OFFERED

gc_WaitCall()

Answer Call
GCEV_ACCEPT

gc_GetCallInfo() - Retrieve FROM and TO fields (ANI and DNIS) from SIP
message header
gc_AcceptCall() – Send SIP ACK
Parse offer SDP (only 1 ‘m’ line for audio RTP information)
Store audio RTP information

gc_AnswerCall() – send SIP 200 OK with local SDP
ipm_StartMedia() – start audio only RTP stream

Connected
GCEV_ANSWERED

mm_Play() – initiate playback of audio part of menu/clip
dx_getdig() – start to look for DTMF digitt

Disconnect Call
GCEV_DISCONNECTED

mm_Stop() – stop playing/recording audio/video menus/clips
ipm_Stop() – stop send/rcv of RTP data
dx_stopch() – stop detecting DTMF digits
gc_DropCall() – Drop the active call, SIP CANCEL
gc_ReleaseCall() – complete call processing – hang up

Connected
GCEV_REQ_MODIFY_CALL

Parse incoming offer SDP that has both audio and video RTP ‘m’ lines
gc_AcceptModifyCall() – Accept the ReINVITE – send 200 OK
ipm_Stop() – Stop ongoing audio only RTP stream
ipm_StartMedia() – Restart audio + video RTP stream

Answer Call
GCEV_ACCEPT_MODIFY_CALL

Interact with Video Mail – record message, review message, send message
Dialogic® Multimedia API Programming Guide and Library Reference 41

Application Development Guidelines
5.4 Requesting I-Frame Using SIP INFO

As previously discussed in Section 1.1.4, “Intraframe (I-Frame)”, on page 22, Intraframe, or I-
frame, is a frame that contains complete information about the scene or picture of video. The other
types of frames in the video stream that contain only partial information are called P or B-frames.
When a SIP User Agent (UA) detects that its video picture quality is being compromised, it may
request the source to send an I-frame so that it can refresh the screen and improve picture quality.
This mechanism has been defined by the IETF working group mmusic: Multiparty Multimedia
Session Control (draft-levin-mmusic-xml-schema-media-control-03). Although the draft never got
ratified and has expired, it has been through a few versions and has already been used in the
industry: some SIP phone vendors and SIP servers currently implement it.

Using Global Call SIP in 3PCC mode, an application is able to attach the XML schema as the
message body to a SIP INFO method and sent that to a SIP endpoint to request an I-frame. Shown
below is the XML schema and a code snippet from the multimedia demo that is part of the
Dialogic® HMP Software:

INFO sip:bob@biloxi.com SIP/2.0
Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bK7
To: Bob <sip:bob@biloxi.com>
From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710@pc33.atlanta.com
Contact: <sip:alice@pc33.atlanta.com>
Content-Type: application/media_control+xml
Message Body
<?xml version="1.0" encoding="utf-8" ?>
<media_control>
 <vc_primitive>
 <to_encoder>
 <picture_fast_update>
 </picture_fast_update>
 </to_encoder>
 </vc_primitive>
</media_control>

//***
// NAME : bool CMMStream::SendIFrameRequest()
// DESCRIPTION : Sends the IFrame Request
// INPUT : None
// OUTPUT : None
// RETURNS : Bool - True if the function succeeded, False otherwise
// CAUTIONS : None
//***
bool CMMStream::SendIFrameRequest()
{
 // Local Variable Declaration
 GC_PARM_BLKP gcParmBlk_mime = 0;
 GC_PARM_BLKP gcParmBlk_mime1 = 0;
 GC_PARM_BLKP gcParmBlk_info = 0;
 bool bOk = true;
 char *pBodyType = "Content-Type:application/media_control+xml"; // specify the
body type
42 Dialogic® Multimedia API Programming Guide and Library Reference

Application Development Guidelines
 mmReport(INFO_MSG, s_eType, "SendIFrameRequest()");
 if (gc_util_insert_parm_ref(&gcParmBlk_mime,
 IPSET_MIME,
 IPPARM_MIME_PART_TYPE,
 (unsigned char)(strlen(pBodyType) + 1),
 pBodyType) < 0)
 {
 mmReport(ERROR_GCALL, s_eType, "SendIFrameRequest() -> gc_util_insert_parm_ref()
failed on %s for IPPARM_MIME_PART_TYPE ", m_devName);
 bOk = false;
 }

 // insert the body size
 if (gc_util_insert_parm_val(&gcParmBlk_mime,
 IPSET_MIME,
 IPPARM_MIME_PART_BODY_SIZE,
 sizeof(unsigned long),
 strlen(c_iFrameRequest)) < 0)
 {
 mmReport(ERROR_GCALL, s_eType, "SendIFrameRequest() -> gc_util_insert_parm_val()
failed on %s for IPPARM_MIME_PART_BODY_SIZE ", m_devName);
 bOk = false;
 }

 // insert the body
 if (gc_util_insert_parm_val(&gcParmBlk_mime,
 IPSET_MIME,
 IPPARM_MIME_PART_BODY,
 sizeof(unsigned long),
 (unsigned long)(c_iFrameRequest)) < 0)
 {
 mmReport(ERROR_GCALL, s_eType, "SendIFrameRequest() -> gc_util_insert_parm_val()
failed on %s for IPPARM_MIME_PART_BODY ", m_devName);
 bOk = false;
 }

 // insert the list of parmBlks into the top level parmBlk
 if (gc_util_insert_parm_val(&gcParmBlk_mime1,
 IPSET_MIME,
 IPPARM_MIME_PART,
 sizeof(unsigned long),
 (unsigned long)gcParmBlk_mime) < 0)
 {
 mmReport(ERROR_GCALL, s_eType, "SendIFrameRequest() -> gc_util_insert_parm_val()
failed on %s for IPPARM_MIME_PART", m_devName);
 bOk = false;
 }

 // now set it on the device
 if (gc_SetUserInfo(GCTGT_GCLIB_CRN,
 m_gcCurrentCrn,
 gcParmBlk_mime1,
 GC_SINGLECALL) < 0) // for this call only
 {
 mmReport(ERROR_GCALL, s_eType, "gc_SetUserInfo() failed on %s for MIME body in
INFO");
 bOk = false;
 }
 // insert the message type
 if (gc_util_insert_parm_val(&gcParmBlk_info,
 IPSET_MSG_SIP,
 IPPARM_MSGTYPE,
 sizeof(int),
 IP_MSGTYPE_SIP_INFO) < 0)
Dialogic® Multimedia API Programming Guide and Library Reference 43

Application Development Guidelines
 {
 mmReport(ERROR_GCALL, s_eType, "SendIFrameRequest() -> gc_util_insert_parm_val()
failed on %s for SIP INFO", m_devName);
 bOk = false;
 }

 if (gc_Extension(GCTGT_GCLIB_CRN, m_gcCurrentCrn, IPEXTID_SENDMSG, gcParmBlk_info, NULL,
EV_ASYNC) < 0)
 {
 mmReport(ERROR_GCALL, s_eType, "SendIFrameRequest() -> gc_Extension failed");
 bOk = false;
 }
 gc_util_delete_parm_blk(gcParmBlk_info);
 gc_util_delete_parm_blk(gcParmBlk_mime);

 return bOk;
}

The above code snippet can be found in the mmstream.cpp file of the multimedia demo application.

5.5 Making Connections Using Virtual CT Bus and New
Packet Bus

This section shows several connection scenarios.
44 Dialogic® Multimedia API Programming Guide and Library Reference

Application Development Guidelines
Figure 4 shows a connection diagram for a multimedia play and/or record session. Connections are
made between the MM (multimedia) Device and the IPM Device using the dev_Connect() API.

Figure 4. Connection Scenario 1
Dialogic® Multimedia API Programming Guide and Library Reference 45

Application Development Guidelines
Figure 5 shows a connection diagram for a multimedia play and/or record session in which a
dx_ Voice Device is used simultaneously to listen for inband digits received from the audio RTP
stream received from the IP Network via the IPM Device. Connections are made between the MM
(multimedia) Device and the IPM Device using the dev_Connect() API followed by a
dx_Listen() to the IPM Device transmit timeslot.

Figure 5. Connection Scenario 2
46 Dialogic® Multimedia API Programming Guide and Library Reference

Application Development Guidelines
Figure 6 shows a connection diagram for a multimedia play session where the MM (multimedia)
Device plays video, the dx_ Voice Device plays audio, and the dx_ Voice Device is also used to
listen for inband digits received from the audio RTP stream received from the IP Network via the
IPM Device. Connections are first made between the MM Device and the IPM Device using the
dev_Connect() API followed by a dx_Listen() to the IPM Device transmit timeslot and an
ipm_Listen() to the dx_ Voice Device transmit timeslot. To satisfy this use case, the order of
connections must be dev_Connect() followed by the ipm_Listen().

Note: The audio data sent from the audio Tx RTP port of the IPM Device to the IP Network depends on
the last active connection established. If an ipm_UnListen() is now called, the source of the audio
data will become the MM Device again.

Figure 6. Connection Scenario 3

Note: If calls are recorded using a dx device, you can still play these recordings to a multimedia
(audio/video) session. When you do this, the video is not tightly synchronized with the audio since
the audio was recorded separately, but you may wish to play a video menu or status display while
playing back the audio message. You can do this by making a dev_connect between the IPM
device and the MM Device and follow this with an ipm_Listen() to a dx device. Then play the
video file using the MM Device and the audio file using the dx_ Voice Device. If you then do an
ipm_UnListen(), the audio connection to the IPM device (towards IP) will reconnect to the MM
Device as the audio source.
Dialogic® Multimedia API Programming Guide and Library Reference 47

Application Development Guidelines
5.6 Enabling Digit Detection Using DX

DTMF digits can be detected using the Dialogic® Voice API dx_getdig(). However, to specify the
type of digits (inband or RFC 2833), the application should use ipm_SetParm() to specify the
type of digits. This information can be retrieved in the SDP body that is provided in the incoming
SIP INVITE from the SIP endpoint. The following code snippet shows how this is done in the
multimedia demo (the sample program provided in the Dialogic® HMP Software release).

Note: For more information about the multimedia demo, refer to the Dialogic® Multimedia Demo Guide.

//***
// NAME : bool CMMStream::SetDtmfMode(dtmfMode_e eMode)
// DESCRIPTION : Sets the DTMF XFer Mode based on the input
// INPUT : eMode - Object of type dtmfMode containing the input
// OUTPUT : None
// RETURNS : Bool - True if function succeeds, False otherwise
// CAUTIONS : None
//***
bool CMMStream::SetDtmfMode(dtmfMode_e eMode)
{
 // Local Variable Declaration
 IPM_PARM_INFO parmInfo;
 eIPM_DTMFXFERMODE value;
 int PLType = 0;
 switch (eMode)
 {

 case dtmfMode_rfc2833:
 {
 // set the dtmf mode to RFC2833
 value = DTMFXFERMODE_RFC2833;
 parmInfo.eParm = PARMCH_DTMFXFERMODE;
 parmInfo.pvParmValue = &value;

 mmReport(INFO_MSG, s_eType, "[%s] Setting Parameter
PARMCH_DTMFXFERMODE to DTMFXFERMODE_RFC2833", m_ipmDevName);

 if (ipm_SetParm(m_ipmH, &parmInfo, EV_SYNC) < 0)
 {
 mmReport(ERROR_IPM, s_eType, "ipm_SetParm() on %s", m_ipmDevName);
 }

 // set the TX Payload Type

 PLType = m_nRfc2833PayloadType;
 parmInfo.eParm = PARMCH_RFC2833EVT_TX_PLT;
 parmInfo.pvParmValue = &PLType;

 mmReport(INFO_MSG, s_eType, "[%s] Setting Parameter PARMCH_RFC2833EVT_TX_PLT to
%d", m_ipmDevName, m_nRfc2833PayloadType);

 if (ipm_SetParm(m_ipmH, &parmInfo, EV_SYNC) < 0)
 {
 mmReport(ERROR_IPM, s_eType, "ipm_SetParm() on %s", m_ipmDevName);
 }

 // set the RX Payload Type
 PLType = m_nRfc2833PayloadType;
 parmInfo.eParm = PARMCH_RFC2833EVT_RX_PLT;
 parmInfo.pvParmValue = &PLType;

 mmReport(INFO_MSG, s_eType, "[%s] Setting Parameter PARMCH_RFC2833EVT_RX_PLT
to %d", m_ipmDevName, m_nRfc2833PayloadType);
48 Dialogic® Multimedia API Programming Guide and Library Reference

Application Development Guidelines
 if (ipm_SetParm(m_ipmH, &parmInfo, EV_SYNC) < 0)
 {
 mmReport(ERROR_IPM, s_eType, "ipm_SetParm() on %s", m_ipmDevName);
 }
 }
 break;

 case dtmfMode_inband:
 {
 eIPM_DTMFXFERMODE value = DTMFXFERMODE_INBAND;
 parmInfo.eParm = PARMCH_DTMFXFERMODE;
 parmInfo.pvParmValue = &value;

 mmReport(INFO_MSG, s_eType, "[%s] Setting Parameter PARMCH_DTMFXFERMODE
to DTMFXFERMODE_INBAND", m_ipmDevName);

 if (ipm_SetParm(m_ipmH, &parmInfo, EV_SYNC) < 0)
 {
 mmReport(ERROR_IPM, s_eType, "ipm_SetParm() on %s", m_ipmDevName);

 }
 }
 break;
 }
 return true;
}

5.7 Enabling and Using Transcoding

This section provides high-level guidelines on enabling and using transcoding in your application.
You will use API functions from the Dialogic® Multimedia API library, Dialogic® IP Media
Library API library, and Dialogic® Device Management API library.

1. Specify coder options through mm_Play(), mm_Record(), and ipm_StartMedia().

2. Set the DMFL_TRANSCODE_ON flag in the DM_PORT_CONNECT_INFO structure to
enable transcoding. Transcoding is invoked when connections are formed between devices,
such as between MM and IPM devices.

3. If digit terminated runtime control (RTC) on a transcoded connection is desired, set the
EMM_TONE_DETECTION parameter in the MM_SET_PARM structure using
mm_SetParm(). This parameter enables/disables detection of DTMF tones in the incoming
audio stream on the given device.

Setting Video Coder Parameters

This section describes how to set video coder parameters in mm_Play(), mm_Record(), and
ipm_StartMedia().

Table 4, “Video Coder Parameters for Decode Operation”, on page 50 applies to
ipm_StartMedia(MEDIATYPE_VIDEO_LOCAL_CODER_INFO) to decode incoming video
stream or to mm_Play() to decode a video file being played.
Dialogic® Multimedia API Programming Guide and Library Reference 49

Application Development Guidelines
Table 5, “Video Coder Parameters for Encode Operation”, on page 51 applies to
ipm_StartMedia(MEDIATYPE_VIDEO_REMOTE_CODER_INFO) to encode outgoing video
stream or to mm_Record() to record encoded video file.

Table 4. Video Coder Parameters for Decode Operation

Field If transcoding is disabled If transcoding is enabled

Coding

Field ignored. Use default value
initialized by inline function.

Used to decode incoming steam or file
being played.

Profile For MPEG-4, specifies both profile and
level.

Level For MPEG-4, field ignored. Use default
value initialized by inline function.

Width Sets image width of decoded output. If
image width of file being played or
incoming video stream is different from
the application setting, image will be
resized in decoded output.

Height Sets image height of decoded output. If
image height of file being played or
incoming video stream is different from
the application setting, image will be
resized in decoded output.

Bitrate Field ignored. Use default value
initialized by inline function.

Frames per second Field ignored. Use default value
initialized by inline function.

Sampling rate Field ignored. Use default value
initialized by inline function.

VisualConfiguration Applies to MEPG-4 only.

Used to decode incoming stream or file
being played.

Application settings are used only if the
incoming stream or the file being played
does not contain VisualConfiguration
data. If the application has not specified
this data either, an error will be reported.
50 Dialogic® Multimedia API Programming Guide and Library Reference

Application Development Guidelines
The following example code illustrates transcoding.

#include <ipmlib.h>
#include <mmlib.h>
#include <devmgmt.h>
#include <port_connect.h>

#define PLAY 0x0004
#define RECORD 0x0008

/**/
int getportindex(DM_PORT_INFO_LIST portlist, DM_PORT_MEDIA_TYPE porttype)
{
 for (int i = 0; i < portlist.unCount; i++)
 {
 if (portlist.port_info[i].port_media_type == porttype)
 return i;
 }
 return -1;
}

/**/
void add_audio_item(PMM_MEDIA_ITEM_LIST AudioItemList, int *AudioItemCountp, MM_AUDIO_CODEC
AudioCodec, char *AudioFileName)
{
 int index = *AudioItemCountp;

 INIT_MM_MEDIA_ITEM_LIST (&AudioItemList[index]);
 INIT_MM_MEDIA_AUDIO(&(AudioItemList[index].item.audio));

 if (index >= 1)
 {
 AudioItemList[index-1].ItemChain = EMM_ITEM_CONT;
 }

Table 5. Video Coder Parameters for Encode Operation

Field If transcoding is disabled If transcoding is enabled

Coding

Application settings are embedded in
the outgoing stream or the file being
recorded.

Application settings determine the
encoded output.

Profile

Level

Width

Height

Bitrate

Frames per second

Sampling rate

VisualConfiguration Applies to MPEG-4 only.

If available, VisualConfiguration data
from the incoming stream is
embedded in the outgoing stream or
recorded file. If not available and the
application has not specified this
data either, an error will be reported.

Applies to MPEG-4 only.

Application setting not used.

VisualConfiguration data string is
automatically created and embedded in
the outgoing stream or recorded file.
Dialogic® Multimedia API Programming Guide and Library Reference 51

Application Development Guidelines

 AudioItemList[index].ItemChain = EMM_ITEM_EOT;
 AudioItemList[index].item.audio.codec = AudioCodec;
 AudioItemList[index].item.audio.unMode = 0;
 AudioItemList[index].item.audio.unOffset = 0;
 AudioItemList[index].item.audio.szFileName = AudioFileName;
 AudioItemList[index].item.audio.eFileFormat = EMM_AUD_FILEFORMAT_VOX;
 AudioItemList[index].item.audio.unAccessMode = MM_MEDIA_ACCESS_MODE_FILE;

 (*AudioItemCountp)++;
}

/**/
void add_video_item(PMM_MEDIA_ITEM_LIST VideoItemList, int *VideoItemCountp, MM_VIDEO_CODEC
VideoCodec, char *VideoFileName)
{
 int index = *VideoItemCountp;

 INIT_MM_MEDIA_ITEM_LIST (&(VideoItemList[index]));
 INIT_MM_MEDIA_VIDEO(&(VideoItemList[index].item.video));

 if (index >= 1)
 {
 VideoItemList[index-1].ItemChain = EMM_ITEM_CONT;
 }

 VideoItemList[index].ItemChain = EMM_ITEM_EOT;
 VideoItemList[index].item.video.codec = VideoCodec;
 VideoItemList[index].item.video.unMode = 0;
 VideoItemList[index].item.video.szFileName = VideoFileName;
 VideoItemList[index].item.video.eFileFormat = EMM_FILE_FORMAT_PROPRIETARY;
 VideoItemList[index].item.video.unAccessMode = MM_MEDIA_ACCESS_MODE_FILE;

 (*VideoItemCountp)++;
}

/**/
void add_playrecordlist_item(PMM_PLAY_RECORD_LIST PlayRecordList, int *PlayRecordListItemCount,
CPMM_MEDIA_ITEM_LIST PlayRecordListItem, eMM_MEDIA_TYPE MediaType)
{
 int index = *PlayRecordListItemCount;
 INIT_MM_PLAY_RECORD_LIST(&(PlayRecordList[index]));

 if (index >= 1)
 {
 PlayRecordList[index-1].ItemChain = EMM_ITEM_CONT;
 }

 PlayRecordList[index].ItemChain = EMM_ITEM_EOT;
 PlayRecordList[index].ItemType= MediaType;
 PlayRecordList[index].list= PlayRecordListItem;

 (*PlayRecordListItemCount)++;
}

void mpeg4_transcode_sample()
{
 DM_PORT_INFO_LIST mmportinfo_tx;
 DM_PORT_INFO_LIST mmportinfo_rx;
 DM_PORT_INFO_LIST ipmportinfo_tx;
 DM_PORT_INFO_LIST ipmportinfo_rx;

 DM_PORT_CONNECT_INFO_LIST mmConnList;
 DM_PORT_CONNECT_INFO_LIST ipmConnList;

 int mmdevh, ipmdevh;
52 Dialogic® Multimedia API Programming Guide and Library Reference

Application Development Guidelines
 int mm_arx, mm_vrx, ipm_arx, ipm_vrx, mm_atx, mm_vtx, ipm_atx, ipm_vtx;
 int count=0;

 /******************************* open devices ************************************/
 ipmdevh = ipm_Open("ipmB1C1", 0, EV_ASYNC);
 mmdevh = mm_Open("mmB1C1", 0, NULL);

 /*.
 .
 .

 wait for MMEV_OPEN & IPMEV_OPEN
 */

 /******************************* get port information ****************************/
 dev_GetTransmitPortInfo(ipmdevh, &ipmportinfo_tx);
 dev_GetReceivePortInfo(ipmdevh, &ipmportinfo_rx);
 dev_GetTransmitPortInfo(mmdevh, &mmportinfo_tx);
 dev_GetReceivePortInfo(mmdevh, &mmportinfo_rx);

 /*.
 .
 .

 wait for DMEV_GET_TX_PORT_INFO & DMEV_GET_RX_PORT_INFO on both ipm & mm devices
 */

 mm_atx = getportindex(mmportinfo_tx,DM_PORT_MEDIA_TYPE_AUDIO);
 mm_vtx = getportindex(mmportinfo_tx,DM_PORT_MEDIA_TYPE_VIDEO);

 mm_arx = getportindex(mmportinfo_rx,DM_PORT_MEDIA_TYPE_AUDIO);
 mm_vrx = getportindex(mmportinfo_rx,DM_PORT_MEDIA_TYPE_VIDEO);

 ipm_atx = getportindex(ipmportinfo_tx,DM_PORT_MEDIA_TYPE_AUDIO);
 ipm_vtx = getportindex(ipmportinfo_tx,DM_PORT_MEDIA_TYPE_VIDEO);

 ipm_arx = getportindex(ipmportinfo_rx,DM_PORT_MEDIA_TYPE_AUDIO);
 ipm_vrx = getportindex(ipmportinfo_rx,DM_PORT_MEDIA_TYPE_VIDEO);

 if ((mm_atx == -1) || (mm_vtx == -1) || (mm_arx == -1) || (mm_vrx == -1) ||
 (ipm_atx == -1) || (ipm_vtx == -1) || (ipm_arx == -1) || (ipm_vrx == -1))
 {
 printf("ERROR: a port index is -1\n");
 }

 /******************************* connect MM ports to IPM ****************************/
 INIT_DM_PORT_CONNECT_INFO_LIST(&mmConnList);
 count=0;

 /* set up MM audio tx to IPM port connections with transcoding enabled */
 mmConnList.port_connect_info[count].unFlags = DMFL_TRANSCODE_ON;
 mmConnList.port_connect_info[count].port_info_tx = mmportinfo_tx.port_info[mm_atx];
 mmConnList.port_connect_info[count].port_info_rx = ipmportinfo_rx.port_info[ipm_arx];
 count++;

 /* set up MM video tx to IPM port connections with transcoding enabled */
 mmConnList.port_connect_info[count].unFlags = DMFL_TRANSCODE_ON;
 mmConnList.port_connect_info[count].port_info_tx = mmportinfo_tx.port_info[mm_vtx];
 mmConnList.port_connect_info[count].port_info_rx = ipmportinfo_rx.port_info[ipm_vrx];
 count++;

 mmConnList.unCount = count;

 /* make the MM tx connections */
 dev_PortConnect(mmdevh, &mmConnList, NULL);

Dialogic® Multimedia API Programming Guide and Library Reference 53

Application Development Guidelines
 /*.
 .
 .

 wait for DMEV_PORT_CONNECT events
 */

 /******************************* connect IPM ports to MM ****************************/
 INIT_DM_PORT_CONNECT_INFO_LIST(&ipmConnList);
 count = 0;

 /* set up IPM audio tx to MM port connections with transcoding enabled */
 ipmConnList.port_connect_info[count].unFlags = DMFL_TRANSCODE_ON;
 ipmConnList.port_connect_info[count].port_info_tx = ipmportinfo_tx.port_info[ipm_atx];
 ipmConnList.port_connect_info[count].port_info_rx = mmportinfo_rx.port_info[mm_arx];
 count++;

 /* set up IPM video tx to MM port connections with transcoding enabled */
 ipmConnList.port_connect_info[count].unFlags = DMFL_TRANSCODE_ON;
 ipmConnList.port_connect_info[count].port_info_tx = ipmportinfo_tx.port_info[ipm_vtx];
 ipmConnList.port_connect_info[count].port_info_rx = mmportinfo_rx.port_info[mm_vrx];
 count++;

 ipmConnList.unCount = count;

 /* make the MM tx connections */
 dev_PortConnect(ipmdevh, &ipmConnList, NULL);

 /*.
 .
 .

 wait for DMEV_PORT_CONNECT events
 */

 /******************************* start audio/video RTP streaming ************************/
 int rc;

 IPM_MEDIA_INFO MediaInfo;
 unsigned int rartpPort, rartcpPort, rvrtpPort, rvrtcpPort;
 char rartpAddress[IP_ADDR_SIZE], rartcpAddress[IP_ADDR_SIZE], rvrtpAddress[IP_ADDR_SIZE],
rvrtcpAddress[IP_ADDR_SIZE];

 /*.
 .
 .

 get remote side's port ids for:
 audio rtp (rartpPort),
 audio rtcp (rartcpPort),
 video rtp (rvrtpPort),
 video rtcp (rvrtcpPort)

 get remote side's IP address for:
 audio rtp (rartpAddress),
 audio rtcp (rartcpAddress),
 video rtp (rvrtpAddress),
 video rtcp (rvrtcpAddress)

 */

 count = 0;

 MediaInfo.MediaData[count].eMediaType = MEDIATYPE_AUDIO_REMOTE_RTP_INFO;
 MediaInfo.MediaData[count].mediaInfo.PortInfo.unPortId = rartpPort;
 strcpy(MediaInfo.MediaData[count].mediaInfo.PortInfo.cIPAddress, rartpAddress);
54 Dialogic® Multimedia API Programming Guide and Library Reference

Application Development Guidelines
 count++;

 MediaInfo.MediaData[count].eMediaType = MEDIATYPE_AUDIO_REMOTE_RTCP_INFO;
 MediaInfo.MediaData[count].mediaInfo.PortInfo.unPortId = rartcpPort;
 strcpy(MediaInfo.MediaData[count].mediaInfo.PortInfo.cIPAddress, rartcpAddress);
 count++;

 MediaInfo.MediaData[count].eMediaType = MEDIATYPE_AUDIO_REMOTE_CODER_INFO;
 MediaInfo.MediaData[count].mediaInfo.CoderInfo.eCoderType = CODER_TYPE_G711ULAW64K;
 MediaInfo.MediaData[count].mediaInfo.CoderInfo.eFrameSize = CODER_FRAMESIZE_20;
 MediaInfo.MediaData[count].mediaInfo.CoderInfo.unFramesPerPkt = 1;
 MediaInfo.MediaData[count].mediaInfo.CoderInfo.eVadEnable = CODER_VAD_DISABLE;
 MediaInfo.MediaData[count].mediaInfo.CoderInfo.unCoderPayloadType = 0;
 MediaInfo.MediaData[count].mediaInfo.CoderInfo.unRedPayloadType = 0;
 count++;

 MediaInfo.MediaData[count].eMediaType = MEDIATYPE_AUDIO_LOCAL_CODER_INFO;
 MediaInfo.MediaData[count].mediaInfo.CoderInfo.eCoderType = CODER_TYPE_G711ULAW64K;
 MediaInfo.MediaData[count].mediaInfo.CoderInfo.eFrameSize = CODER_FRAMESIZE_20;
 MediaInfo.MediaData[count].mediaInfo.CoderInfo.unFramesPerPkt = 1;
 MediaInfo.MediaData[count].mediaInfo.CoderInfo.eVadEnable = CODER_VAD_DISABLE;
 MediaInfo.MediaData[count].mediaInfo.CoderInfo.unCoderPayloadType = 0;
 MediaInfo.MediaData[count].mediaInfo.CoderInfo.unRedPayloadType = 0;
 count++;

 MediaInfo.MediaData[count].eMediaType = MEDIATYPE_VIDEO_REMOTE_RTP_INFO;
 MediaInfo.MediaData[count].mediaInfo.PortInfo.unPortId = rvrtpPort;
 strcpy(MediaInfo.MediaData[count].mediaInfo.PortInfo.cIPAddress, rvrtpAddress);
 count++;

 MediaInfo.MediaData[count].eMediaType = MEDIATYPE_VIDEO_REMOTE_RTCP_INFO;
 MediaInfo.MediaData[count].mediaInfo.PortInfo.unPortId = rvrtcpPort;
 strcpy(MediaInfo.MediaData[count].mediaInfo.PortInfo.cIPAddress, rvrtcpAddress);
 count++;

 /* For MEDIATYPE_VIDEO_LOCAL_CODER_INFO:
 1. When video transcoding is enabled, no need to specify VisualConfiguration info
 (HMP automatically generates it and inserts into every outgoing I-Frame

 2. if coder settings do not match received image (in this case, the mm_Play()
 settings), the IPM device will resize the video image going out on the network
 */
 IPM_VIDEO_CODER_INFO_EX ExtraCoderInfo1;
 INIT_IPM_VIDEO_CODER_INFO_EX(&ExtraCoderInfo1);
 ExtraCoderInfo1.eProfile = VIDEO_PROFILE_LEVEL_SP0_MPEG4; // simple profile, level 0
 ExtraCoderInfo1.eImageWidth = VIDEO_IMAGE_WIDTH_128; // Sub-QCIF
 ExtraCoderInfo1.eImageHeight = VIDEO_IMAGE_HEIGHT_96; // Sub-QCIF
 ExtraCoderInfo1.unBitRate = 64000; // 64 kbps
 ExtraCoderInfo1.eFramesPerSec = VIDEO_FRAMESPERSEC_6; // 6 fps

 MediaInfo.MediaData[count].eMediaType = MEDIATYPE_VIDEO_REMOTE_CODER_INFO;
 INIT_IPM_VIDEO_CODER_INFO(&MediaInfo.MediaData[count].mediaInfo.VideoCoderInfo);
 MediaInfo.MediaData[count].mediaInfo.VideoCoderInfo.eCoderType = CODER_TYPE_MP4V_ES;
 MediaInfo.MediaData[count].mediaInfo.VideoCoderInfo.unCoderPayloadType = 0;
 MediaInfo.MediaData[count].mediaInfo.VideoCoderInfo.pExtraCoderInfo = &ExtraCoderInfo1;
 count++;

 /* For MEDIATYPE_VIDEO_LOCAL_CODER_INFO:
 1. the following fields do not neet to be specified for MPEG4
 unBitRate (not applicable)
 eFramesPerSec (not applicable)
 eLevel (profile & level in Profile field for MPEG4)

 2. VisualConfiguration info from the app (MEDIATYPE_VIDEO_LOCAL_CODER_INFO) is
 used by the IPM device for decoding only if this information is not already
 present in the incoming video stream
Dialogic® Multimedia API Programming Guide and Library Reference 55

Application Development Guidelines
 3. if coder settings do not match received image (incoming video stream
 from network), the IPM device will resize the video image

 */

 /*
 VisualConfiguration string below (encoded as per the ISO standard ISO/IEC 14496-2)
 indicates the following:

 Simple Profile Level 0, Image Height/Width = QCIF
 */

 unsigned char DCI[] = { 0x00, 0x00, 0x01, 0xb0, 0x08, 0x00, 0x00, 0x01,
 0xb5, 0x09, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
 0x01, 0x20, 0x00, 0x84, 0x5d, 0x4c, 0x28, 0x2c,
 0x20, 0x90, 0xa2, 0x8f
 };
 IPM_VIDEO_CODER_INFO_EX ExtraCoderInfo2;
 INIT_IPM_VIDEO_CODER_INFO_EX(&ExtraCoderInfo2);
 ExtraCoderInfo2.eProfile = VIDEO_PROFILE_LEVEL_SP1_MPEG4; // simple profile, level 1
 ExtraCoderInfo2.eImageWidth = VIDEO_IMAGE_WIDTH_176; // QCIF
 ExtraCoderInfo2.eImageHeight = VIDEO_IMAGE_HEIGHT_144; // QCIF
 ExtraCoderInfo2.unVisualConfigSize = sizeof(DCI);
 ExtraCoderInfo2.szVisualConfiguration = DCI;

 MediaInfo.MediaData[count].eMediaType = MEDIATYPE_VIDEO_LOCAL_CODER_INFO;
 INIT_IPM_VIDEO_CODER_INFO(&MediaInfo.MediaData[count].mediaInfo.VideoCoderInfo);
 MediaInfo.MediaData[count].mediaInfo.VideoCoderInfo.eCoderType = CODER_TYPE_MP4V_ES;
 MediaInfo.MediaData[count].mediaInfo.VideoCoderInfo.unCoderPayloadType = 0;
 MediaInfo.MediaData[count].mediaInfo.VideoCoderInfo.pExtraCoderInfo = &ExtraCoderInfo2;
 count++;

 MediaInfo.unCount = count;

 rc = ipm_StartMedia(ipmdevh, &MediaInfo, DATA_IP_TDM_BIDIRECTIONAL, EV_ASYNC);

 /*.
 .
 .

 wait for IPMEV_STARTMEDIA event
 */

 /******************************* start playing/recording multimedia************************/
 MM_PLAY_RECORD_INFO PlayRecordInfo;
 MM_PLAY_RECORD_LIST PlayRecordList[2];
 MM_MEDIA_ITEM_LIST AudioItemList[1];
 MM_MEDIA_ITEM_LIST VideoItemList[1];

 MM_AUDIO_CODEC AudioCodec;
 MM_VIDEO_CODEC VideoRecordCodec;
 MM_VIDEO_CODEC VideoPlayCodec;

 //Set PlayRecordOption to choose between mm_Play() and mm_Record()
 int PlayRecordOption = PLAY; //set to RECORD if recording

 INIT_MM_AUDIO_CODEC (&AudioCodec);
 INIT_MM_VIDEO_CODEC (&VideoRecordCodec);
 INIT_MM_VIDEO_CODEC (&VideoPlayCodec);

 /*
 VisualConfiguration string below (encoded as per the ISO standard ISO/IEC 14496-2)
 indicates the following:

 Simple Profile Level 2, Image Height/Width = CIF
 */
56 Dialogic® Multimedia API Programming Guide and Library Reference

Application Development Guidelines
 unsigned char PlayDCI[] = { 0x00, 0x00, 0x01, 0xb0, 0x02, 0x00, 0x00, 0x01,
 0xb5, 0x09, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
 0x01, 0x20, 0x00, 0x84, 0x5d, 0x4c, 0x28, 0x58,
 0x21, 0x20, 0xa2, 0x8f
 };

 /* 1. The following fields are not applicable for mm_Play():
 BitRate
 FramesPerSec

 2. When video transcoding is enabled, no need to specify VisualConfiguration info
 for mm_Record(), HMP automatically generates it and inserts into every I-Frame in
 recorded file

 3. The following fields are not applicable for MPEG4 (mm_Play nor mm_Record):
 Level (profile & level in Profile field for MPEG4)

 4. App settings for VisualConfiguration in mm_Play will be used only if the play file
 does not already contain this information

 5. The following fields don't need to be explicitly set once the INIT macros are called:
 SamplingRate (the INIT macros already set it to the one valid value)
 */

 /* video play settings (image will be resized by MM device if file being played is not QCIF)
*/
 VideoPlayCodec.Coding = VIDEO_CODING_MP4V_ES;
 VideoPlayCodec.Profile = VIDEO_PROFILE_LEVEL_SP2_MPEG4;
 VideoPlayCodec.ImageWidth = VIDEO_IMAGE_WIDTH_176; //QCIF
 VideoPlayCodec.ImageHeight = VIDEO_IMAGE_HEIGHT_144; //QCIF
 VideoPlayCodec.VisualConfigSize = sizeof(PlayDCI);
 VideoPlayCodec.VisualConfiguration = PlayDCI; // will only be used for decoding of MPEG4
 // file if file being played does not contain visual config info

 /* video record settings (image will be resized by MM device since
 received image (in this case, settings in
 ipm_StartMedia(MEDIATYPE_VIDEO_LOCAL_CODER_INFO)) is not CIF)
 */
 VideoRecordCodec.Coding = VIDEO_CODING_MP4V_ES;
 VideoRecordCodec.Profile = VIDEO_PROFILE_LEVEL_SP2_MPEG4;
 VideoRecordCodec.ImageWidth = VIDEO_IMAGE_WIDTH_352; //CIF
 VideoRecordCodec.ImageHeight = VIDEO_IMAGE_HEIGHT_288; //CIF
 VideoRecordCodec.BitRate = (eVIDEO_BITRATE)64000;
 VideoRecordCodec.FramesPerSec = VIDEO_FRAMESPERSEC_10;

 char VideoFileName[] = "clip1a.vid";
 char AudioFileName[] = "clip1a.pcm";

 int AudioItemCount = 0;
 int VideoItemCount = 0;
 int PlayRecordListItemCount = 0;

 add_audio_item(AudioItemList, &AudioItemCount, AudioCodec, AudioFileName);
 add_playrecordlist_item(PlayRecordList, &PlayRecordListItemCount, AudioItemList,
 EMM_MEDIA_TYPE_AUDIO);

 if (PlayRecordOption == PLAY)
 {
 add_video_item(VideoItemList, &VideoItemCount, VideoPlayCodec, VideoFileName);
 }
 else
 {
 add_video_item(VideoItemList, &VideoItemCount, VideoRecordCodec, VideoFileName);
 }

 add_playrecordlist_item(PlayRecordList, &PlayRecordListItemCount, VideoItemList,
 EMM_MEDIA_TYPE_VIDEO);
Dialogic® Multimedia API Programming Guide and Library Reference 57

Application Development Guidelines

 PlayRecordInfo.list = PlayRecordList;

 if (PlayRecordOption == PLAY)
 {
 rc = mm_Play(mmdevh, &PlayRecordInfo, NULL, NULL);
 }
 else
 {
 rc = mm_Record(mmdevh, &PlayRecordInfo, NULL, NULL);
 }

 /*.
 .
 .

 wait for MMEV_PLAY or MMEV_RECORD event
 */
}
/***/
int main(int argc, char *argv[])
{
 mpeg4_transcode_sample();
 return 0;
}

5.8 Play a Still Image

This features provides the capability of playing a still image over a video stream.

A still image play can only be performed after a connection is set up using the
dev_PortConnect() function between an outbound endpoint device, such as an IP media device,
and a multimedia device with transcoding ON. Refer to Section 5.7, “Enabling and Using
Transcoding”, on page 49 and the dev_PortConnect() function in the Dialogic® Device
Management API Library Reference for details about turning transcoding ON when connecting an
IP media device to another device.

To play a still image, the application sets ItemType in the MM_PLAY_RECORD_LIST structure to
EMM_MEDIA_TYPE_IMAGE and specifies details of the image such as image format (YUV or
JPEG), format details (such as height or width) and type of I/O access through the
MM_MEDIA_IMAGE structure.

Notes: 1. For still image play, the unNumberOfBytes field in the event data for MMEV_PLAY,
MM_PLAY_RECORD_CMPLT_DETAILS, will be the total byte count of the image data. For a
JPEG image, the total count will not include the header data size.

2. The input YUV 4:2:0 or JPEG image file size should not exceed 152,064 bytes. This limit is
based upon the maximum file size required to support CIF (352x288) frames in YUV 4:2:0
format. A compressed JPEG input file may contain a frame with a resolution larger than CIF
(352x288) as long as the file size is less than 152,064 bytes
58 Dialogic® Multimedia API Programming Guide and Library Reference

Application Development Guidelines
5.9 Capture a Still Image

This features provides the capability of capturing a still image from a video stream that is currently
playing.

A still image capture can only be performed after a connection is set up using the
dev_PortConnect() function between an outbound endpoint device, such as an IP media device,
and a multimedia device with transcoding ON. Refer to Section 5.7, “Enabling and Using
Transcoding”, on page 49 and the dev_PortConnect() function in the Dialogic® Device
Management API Library Reference for details about turning transcoding ON when connecting an
IP media device to another device.

Before a still image can be captured, a video play must first be initiated and then paused. To capture
a still image, the application pauses a currently playing video stream using the mm_Pause()
function and then calls the mm_Capture() function. Specifics of the image to be captured such as
image format (YUV), format details (height or width) and type of I/O access are to be provided in
the MM_MEDIA_IMAGE structure of the mm_Capture() function.

The application will receive an MMEV_CAPTURE event upon successful completion of the
capture. The associated event data is an MM_CAPTURE_CMPLT_DETAILS structure.

Note: For still image capture the unWidth and unHeight fields in the event data for MMEV_CAPTURE,
MM_CAPTURE_CMPLT_DETAILS, will be the width and height of the captured image.

Refer to mm_Capture() for a code example of capturing a still image.

5.10 3GP File Format Direct Playback

This feature enables Dialogic® products to support the playback of contiguous multimedia files in
an ISO/IEC standardized structure, known as 3GPP or 3GP file format. A 3GP file (suffix “.3gp”)
is a multimedia (audio and video) storage container format defined by the 3GPP standards body for
transmitting and transferring media content between 3G cell phones and 3G network entities over
the Internet. It is structured to facilitate the streaming of multimedia data to 3G and IP network
entities and is commonly used by 3G compatible phones in 3G mobile networks.

The 3GP file format stores video streams and audio streams as encoded data tracks. Files describe
image sizes, bandwidth, and other characteristics of the media, so that content is correctly sized for
display screens when streamed to the intended network endpoint.

This feature also enables direct playback of 3GP files via the Dialogic® Multimedia API library.
The file must be compliant with the 3GPP standard and meet the guidelines described in
Section 5.10.2, “Guidelines”, on page 61. Third party content creation tools can be used to generate
3GP files in addition to the hmp3gp utility, which converts Dialogic® PowerMedia™ HMP
proprietary format files to 3GP files and vice versa. The feature supports 3GP files containing any
of the following audio/video media data tracks defined by the 3GP file format:

• MPEG-4 video

• H.263 Video
Dialogic® Multimedia API Programming Guide and Library Reference 59

Application Development Guidelines
• H.264 Video

• AMR-NB audio

• AMR-WB audio

Applications are capable of directly streaming multimedia stored in 3GP files to 3G and IP
endpoints. Media can be streamed natively or transcoded during the playback operation. When
performing a playback operation, compliance with the guidelines in Section 5.10.2, “Guidelines”,
on page 61 is recommended.

Hint tracks are used to facilitate the packetization of the media data for streaming. They describe
the protocol characteristics used during the streaming process. Dialogic® PowerMedia™ HMP
supports a 3GP play operation regardless of whether or not hint tracks are present in the file.

Authoring tools may be used to create hint tracks that can be added to existing 3GP files. See the
Section 5.10.4, “Dialogic® Multimedia API Library Support”, on page 61 for additional
information.

5.10.1 Feature Highlights

The following table summarizes the features supported for 3GP file direct playback.
Table 6. 3GP File Format Direct Playback Feature Table

Feature Support

Format Native Streaming Yes

Transcode StreamingVideo Yes (any mix of MPEG-4, H.263, H.264)

Transcode StreamingAudio Yes (Either AMR-NB or AMR-WB to any
supported audio codec)

IP Endpoint Yes

3G Endpoint Yes

Record DMF1

3GP Profiles Basic, Streaming Server, Progressive
Download2

Hint Tracks Hinted or non-hinted supported

MPEG-4 Codec Simple profile, levels 0,1,2,3. RFC3016
packetization

H.263 Codec Profile 0, levels 10,20,30. RFC2190 or
RFC2429/4629 packetization3

H.264 Codec Baseline profile, levels 1-1.3, RFC3984
packetization4

AMR-NB/AMR-WB Codec 1fpp, RFC3267/4867 packetization.

Random Access (seek) No

Multi-track files Partial5
60 Dialogic® Multimedia API Programming Guide and Library Reference

Application Development Guidelines
5.10.2 Guidelines

The following guidelines provide additional information, limitations, and constraints when
performing direct 3GP file operations. Applications utilizing this feature must comply with these
guidelines:

• Only a single file can be played at a time; a multiple file list is not supported.

• All 3GP files playback operations using the Dialogic® Multimedia API library must reference
files that are locally stored (this includes NFS mounts). HTTP, FTP or other remote access
protocols are not supported for direct 3GP file playback.

• When streaming to 3G endpoints (3G-324M channel) the audio, video, and control data must
not exceed 64 kbps bit rate. Third-party authoring and content creation tools can be used to
alter files for compliance. See the Section 5.10.3, “3GP File Compatibility”, on page 61 for
more details.

• Files can be played natively or played using video and/or audio transcoding.

5.10.3 3GP File Compatibility

Often an application will require playback of multiple 3GP files during a call and/or media session
in succession (such as announcements, prompts, and advertisements). Such cases require that all
files be compatible with the system and have the same media characteristics (coding format, bit
rate, frame rate, and display size) to ensure expected playback results. In some cases, network
constraints require that the files conform to specific transmission guidelines.

Creating compatible 3GP files for direct playback using the Dialogic® Multimedia API library may
require specific offline content authoring and editing tools due to the profiles/levels/bit rates/frame
rates/picture sizes, etc., supported by HMP. While there are many such tools that can be used,
Dialogic has specifically validated playback operations with the following:

• Helix Mobile Producer (Standard) version 11.1
Content creation utility software for 3GPP mobile content.

5.10.4 Dialogic® Multimedia API Library Support

For 3GP file playback, the Dialogic® Multimedia API library provides the
EMM_FILE_FORMAT_3GP value to indicate that the file is in 3GP format. Refer to the
MM_MEDIA_VIDEO and MM_MEDIA_AUDIO data structures for file formats.

For event information error return codes used to indicate playback failure, refer to Section 12.3,
“Multimedia API Event Information Error Return Codes”, on page 236.

1.Record operations are possible via the Dialogic® Multimedia API. Media data is recorded in
Dialogic‘s proprietary Media Format (DMF). Media stored in DMF format can be converted to
3GP format using the hmp3gp conversion tool.
2.Progressive download profile 3GP files can be played only if they are stored locally.
3.For hinted files with H.263, follow the packetization used in the hint track. For non-hinted
files, will default to RFC2429/4629 packetization.
4.For hinted files with H.264, follow the packetization used in the hint track. For non-hinted
files, will default to Mode 1 (non-interleaved) packetization.
5.While track selection is not currently supported, a multi-track 3GP file can be played. The last
audio/video media track will be automatically selected for playing.
Dialogic® Multimedia API Programming Guide and Library Reference 61

Application Development Guidelines
The following sample scenario illustrates how to record, convert, and then play a 3GP file.

1. The application calls the mm_Record() function to create a Dialogic® Media Format for
HMP (DMF) audio and/or video file(s).

2. The application converts the DMF files recorded to 3GP file format using the hmp3gp
utility tool. Refer to the Dialogic® Multimedia File Conversion Tools User Guide for
information about using this utility.

3. The application calls the mm_Play() function to play the converted 3GP file.

The following sample scenario describes how to record and play a DMF audio/video file, and then
convert it to a 3GP file.

1. The application calls the mm_Record() function to initiate a recording of a multimedia
stream and create DMF audio and/or video file(s).

2. The application calls the mm_Play() function to play the DMF audio and/or video file(s).

3. The application converts the DMF files (audio/video) to 3GP file format using the
hmp3gp utility tool. Refer to the Dialogic® Multimedia File Conversion Tools User
Guide for information about using this utility.
62 Dialogic® Multimedia API Programming Guide and Library Reference

66.Building Applications

This chapter provides general information on building applications using the Dialogic®

Multimedia API library. The following information is provided:

• Compiling and Linking . 63

6.1 Compiling and Linking

The following topics discuss compiling and linking requirements:

• Include Files

• Required Libraries

• Variables for Compiling and Linking

Note: When compiling an application, you must list Dialogic® libraries before all other libraries such as
operating system libraries.

6.1.1 Include Files

The following Dialogic® Multimedia API header file is required when building your C or C++
application: mmlib.h

Other Dialogic® header files may also be required for your application, depending on the
functionality. A commonly included header file is the srllib.h file with prototypes and definitions
for the Dialogic® Standard Runtime Library (SRL).

6.1.2 Required Libraries

The following Dialogic® Multimedia API library is required when building your application:
libmml.so

Other Dialogic® libraries may also be required for your application, depending on the
functionality. A commonly used library is libsrl.so with implementation of the Dialogic® Standard
Runtime Library (SRL).

6.1.3 Variables for Compiling and Linking

When building your applications you may use the following variables to reference the directories
that contain header files and libraries:

INTEL_DIALOGIC_INC
Variable that points to the directory where header files are stored.
Dialogic® Multimedia API Programming Guide and Library Reference 63

Building Applications
INTEL_DIALOGIC_LIB
Variable that points to the directory where library files are stored.

These variables are automatically set at login and should be used in compiling and linking
commands.
64 Dialogic® Multimedia API Programming Guide and Library Reference

77.Function Summary by Category

This chapter contains an overview of the API functions and the categories into which they are
logically grouped. Major topics include the following:

• Dialogic® Multimedia API Header File . 65

• Device Management Functions . 65

• Configuration Functions . 66

• Input/Output Functions . 66

• Media Streaming Functions. 67

• DVR Control Functions . 67

• Event Information Functions . 68

• Error Processing Functions . 68

7.1 Dialogic® Multimedia API Header File

The Dialogic® Multimedia API functions, parameters, data structures, values, events, and error
codes are defined in the mmlib.h, mmevts.h, mmparms.h, and mmerrs.h header files. Video
enumerations are defined in the videodefs.h header file. The Dialogic® Multimedia API functions
use an “mm_” prefix.

7.2 Device Management Functions

Device Management functions open and close channel devices.

Before you can call any other library function on a device, that device must be opened using a
Device Management open function. The open function specifies the name of a device and returns a
unique device handle, which contains a numerical reference to the device. This device handle is
how the device is identified once the device has been opened. The handle is specified as an input
parameter for any function that operates on that device. The close function is used to close a device
and release its handle. Device Management functions do not cause a device to be busy and will
work on a device whether the device is busy or idle.

The following naming convention is used for channel-level multimedia device names:

mmBnCy
where “n” is the board device number assigned to the virtual multimedia board and “y” is the
number of a multimedia channel device associated with that board. Examples of multimedia
channel device names are mmB1C1 and mmB1C2.
Dialogic® Multimedia API Programming Guide and Library Reference 65

Function Summary by Category
See the Dialogic® Standard Runtime Library API Programming Guide for more information on
device names.

Note: This category of Device Management function is common among the APIs of the Dialogic®
Software, but is a completely different subject from the Dialogic® Device Management API library
functions, which provide run-time control and management of configurable system devices.

mm_Close()
Close a previously opened multimedia device

mm_Open()
Open a multimedia device

mm_Reset()
Reset an open multimedia device

7.3 Configuration Functions

Configuration functions allow you to alter, examine, and control the configuration of an open
device. They operate on an idle device, cause the device to be busy, and return the device to an idle
state once the configuration operation is complete.

Configuration functions can only be executed asynchronously. They return immediately to indicate
successful initiation or an error. If successfully initiated, they perform their operations and stop,
reporting either completion or failure through an appropriately named event. See the Dialogic®
Standard Runtime Library API Programming Guide for more information on asynchronous
operation.

mm_GetParm()
Get the current configuration parameters

mm_SetParm()
Set the configuration parameters

7.4 Input/Output Functions

The Input/Output functions control the transfer of data. Except for the mm_Stop() function, the
Input/Output functions transfer data to and from an open, idle channel; they cause a channel to be
busy while data transfer is taking place and return the channel to an idle state when data transfer is
complete.

Input/Output functions can only be executed asynchronously. They return immediately to indicate
successful initiation or an error. If successfully initiated, they perform their operations, reporting
any intermediate events, and then stop, reporting either completion or failure through an
appropriately named event.

See the Dialogic® Standard Runtime Library API Programming Guide for more information on
asynchronous operation.
66 Dialogic® Multimedia API Programming Guide and Library Reference

Function Summary by Category
mm_Capture()
Capture a still image from video stream

mm_Play()
Play a media object

mm_Record()
Record a media object

mm_Stop()
Stop the device operations

7.5 Media Streaming Functions

Media Streaming functions allow the application to create, maintain, and delete a circular stream
buffer within the library. These functions also provide notification when high and low water marks
are reached.

mm_StreamClose()
Close a media stream

mm_StreamGetStat()
Get media stream statistics

mm_StreamOpen()
Open a media stream

mm_StreamRead()
Read from a media stream

mm_StreamReset()
Reset a media stream

mm_StreamSetWaterMark()
Set a media stream watermark

mm_StreamWrite()
Write to a media stream

7.6 DVR Control Functions

Digital Video Recorder (DVR) Control functions allow the application to pause, resume, and seek
during audio and video playback.

mm_GetDuration()
 Get duration of current presentation

mm_GetElapsedTime()
Get current presentation time

mm_Pause()
Pause current presentation
Dialogic® Multimedia API Programming Guide and Library Reference 67

Function Summary by Category
mm_Resume()
Resume current presentation

mm_Seek()
Place current presentation at specified position

7.7 Event Information Functions

Event Information functions primarily provide information on Dialogic® Multimedia API events.

mm_DisableEvents()
Disable optional notification events

mm_EnableEvents()
Enable optional notification events

mm_GetMetaEvent()
Get current SRL event information

 mm_ResultInfo()
Retrieve error information for certain failure events.

7.8 Error Processing Functions

Error Processing functions provide Dialogic® Multimedia API error information.

mm_ErrorInfo()
Retrieve current error information for a multimedia function
68 Dialogic® Multimedia API Programming Guide and Library Reference

Dialogic® Multimedia API Programming Guide and Library Reference 69

88.Function Information

This chapter is arranged in alphabetical order by function name and contains detailed information
about each function in the Dialogic® Multimedia API.

8.1 Function Syntax Conventions

The Dialogic® Multimedia API functions use the following format:

int mm_FunctionName (nDeviceHandle, Parameter1, Parameter2, ..., ParameterN)

where:

int
specifies integer as the return data type of the function.

mm_FunctionName
represents the function name. All Dialogic® Multimedia API functions use the “mm_” prefix.

nDeviceHandle
represents the device handle, which contains a numerical reference to a device. The device
handle is obtained when the device is opened and must be specified as an input parameter for
any function that operates on that device.

Parameter1, Parameter2, ..., ParameterN
represent input or output parameters

mm_Capture() — capture a still image from video stream
mm_Capture()

capture a still image from video stream

 Description

The mm_Capture() function provides the capability to capture a still image from a video stream,
and is called after a connection is set up using the dev_PortConnect() function between an
outbound endpoint device and a multimedia device.

 Asynchronous Mode Events

Use the Dialogic® Standard Runtime Library (SRL) functions to process the events. Use the
Dialogic® Multimedia API mm_GetMetaEvent() Event Information function to retrieve the event
information. Event data is indicated for the following events where applicable and can be obtained
through the MM_METAEVENT structure evtdatap field after calling the mm_GetMetaEvent()
function. The event data is valid only until the next mm_GetMetaEvent() is called. For more
information on these events, see Chapter 9, “Events”.

If the function returns EMM_SUCCESS, it can generate any of the following events:

MMEV_CAPTURE
Termination event reported upon successful completion of the operation.

Event Data: MM_CAPTURE_CMPLT_DETAILS structure

Name: int mm_Capture(nDeviceHandle, pImage, pRuntimeControl, pUserInfo)

Inputs: int nDeviceHandle • valid SRL handle representing a multimedia device

CPMM_MEDIA_IMAGE
pImage

• pointer to image structure

CPMM_RUNTIME_CONTROL
pRuntimeControl

• set to NULL

void* pUserInfo • pointer to user-defined buffer

Returns: EMM_SUCCESS if successful
EMM_ERROR if failure

Includes: mmlib.h

Category: Input/Output

Mode: Asynchronous

Platform: Dialogic® PowerMedia™ HMP 4.1LIN software

Parameter Description

 nDeviceHandle specifies a valid multimedia device handle obtained from a previous open

pImage points to the MM_MEDIA_IMAGE structure

pRuntimeControl set to NULL; reserved for future use

pUserInfo points to user-defined buffer. See the evtUserInfo field in the
MM_METAEVENT structure.
70 Dialogic® Multimedia API Programming Guide and Library Reference

capture a still image from video stream — mm_Capture()
MMEV_CAPTURE_FAIL
Operation failure termination event reported upon encountering an error during the operation.

Event Data: MM_CAPTURE_CMPLT_DETAILS structure

MMEV_ERROR
Unsolicited event reported upon encountering an unexpected failure.

Event Data: MM_ERROR_RESULT structure

 Cautions

• Before a still image can be captured, a video play should be initiated and then paused. To
capture a still image, the application pauses a currently playing video stream using the
mm_Pause() function and then calls the mm_Capture() function. Specifics of the image to
be captured, such as image format (YUV), format details (height and width), and type of I/O
access are specified in an MM_MEDIA_IMAGE structure and then passed to the
mm_Capture() function.

• Currently, only the file I/O mode is supported. For this mode, a file name must be specified.

• Currently, only the YUV 4:2:0 format is supported for image capture. The width and height of
the image captured is determined by the video stream that is being played and is not
configurable through the mm_Capture() function. The width and height specified in the
MM_MEDIA_IMAGE pointer argument, pImage, is not used for capture. The actual width
and height of the image captured is returned in the capture completion event data,
MM_CAPTURE_CMPLT_DETAILS.

 Errors

If a Multimedia API function returns EMM_ERROR to indicate a failure, use the
mm_ErrorInfo() function to retrieve the reason for the error. If the function generates a failure
event, use the mm_GetMetaEvent() function to obtain the error information. See Chapter 12,
“Error Codes” for the function error codes and event information error return codes.

 Example

int main(int argc, char* argv[])
{

 .
 .
 .
 /*
 * ASSUMPTION: A valid nDeviceHandle was obtained from prior call to mm_Open()
 * and mm_Play() has been called on this device.
 */

 // pause the playing stream

 // wait for and process the pause events...

 const char imageFileName[] = "./overlay2.yuv";

 MM_MEDIA_IMAGE image;

 INIT_MM_MEDIA_IMAGE(&image);
Dialogic® Multimedia API Programming Guide and Library Reference 71

mm_Capture() — capture a still image from video stream
 image.unAccessMode = MM_MEDIA_ACCESS_MODE_FILE;
 image.szFileName = imageFileName;
 image.eFormat = eMTK_IMAGE_FORMAT_YUV;
 image.format.yuv.eFormat = eMTK_YUV_IMAGE_FORMAT_420;
 image.format.yuv.unWidth = 352;
 image.format.yuv.unHeight = 288;

 cout << "Calling mm_Capture" <<endl;
 /* Initiate Capture */
 if (mm_Capture(nDeviceHandle, &image, NULL, NULL) == EMM_ERROR)
 {
 //process error
 exit(1);
 }

 /* wait for and process capture events */

.

.

.

/* issue resume */
/* wait for and process resume events */
 exit(0);
}

 See Also

• None.
72 Dialogic® Multimedia API Programming Guide and Library Reference

close a previously opened multimedia device — mm_Close()
mm_Close()

close a previously opened multimedia device

 Description

This function closes a multimedia device handle that was previously opened using mm_Open().

Note: This function does not affect any of the parameters that have been set for the device.

The mm_Close() function stops any media operations on the device, but does not report these
terminations with corresponding events (e.g., does not generate MMEV_PLAY or
MMEV_PLAY_FAIL), because this function releases the handle on which the device events are
reported. This function discards any outstanding events on the device handle and disables the
generation of any new events on the handle.

 Cautions

• The only process affected by this function is the process that called the function. Once a device
is closed, a process can no longer act on that device using that device handle.

• This function discards any outstanding events on that handle.

• This function disables the generation of all events on that handle.

• Do not use the operating system close command to close a multimedia device; unpredictable
results will occur.

 Errors

If a Dialogic® Multimedia API function returns EMM_ERROR to indicate a failure, use the
mm_ErrorInfo() function to retrieve the reason for the error. If the function generates a failure

Name: int mm_Close(nDeviceHandle, pCloseInfo)

Inputs: int nDeviceHandle • valid SRL handle representing a multimedia device

CPMM_CLOSE_INFO
pCloseInfo

• set to NULL

Returns: EMM_SUCCESS if successful
EMM_ERROR if failure

Includes: mmlib.h

Category: Device Management

Mode: Synchronous

Platform: Dialogic® PowerMedia™ HMP software

Parameter Description

nDeviceHandle specifies a valid multimedia device handle obtained from a previous open

pCloseInfo set to NULL; reserved for future use
Dialogic® Multimedia API Programming Guide and Library Reference 73

mm_Close() — close a previously opened multimedia device
event, use the mm_GetMetaEvent() function to obtain the error information. See Chapter 12,
“Error Codes” for the function error codes and event information error return codes.

 Example

#include <mmlib.h>
int main(int argc, char* argv[])
{
 int nDeviceHandle; /* multimedia device handle */
 /* Main Processing
 .
 .
 */

 /*
 * Application is shutting down.
 * Need to close MM device handle.
 * ASSUMPTION: A valid nDeviceHandle was obtained from prior call to mm_Open().
 */
 if (mm_Close(nDeviceHandle, NULL) == EMM_ERROR)
 {
 /* process error */
 }
}

 See Also

• mm_Open()

• mm_Reset()

• mm_Close()
74 Dialogic® Multimedia API Programming Guide and Library Reference

disable optional notification events — mm_DisableEvents()
mm_DisableEvents()

disable optional notification events

 Description

This function disables optional notification events that are enabled by default or were previously
enabled by mm_EnableEvents(). It disables optional notification events only in the process in
which it is called. See Table 7, “Optional Notification Events”, on page 141 for the list of the
optional notification events that can be enabled or disabled.

Use the INIT_MM_EVENTS() function to initialize the MM_EVENTS structure.

 Asynchronous Mode Events

Use the Dialogic® Standard Runtime Library (SRL) functions to process the events. Use the
Dialogic® Multimedia API mm_GetMetaEvent() Event Information function to retrieve the event
information. Event data is indicated for the following events where applicable and can be obtained
through the MM_METAEVENT structure evtdatap field after calling the mm_GetMetaEvent()
function. The event data is valid only until the next mm_GetMetaEvent() is called. For more
information on these events, see Chapter 9, “Events”.

If the function returns EMM_SUCCESS, it can generate any of the following events:

MMEV_DISABLEEVENTS
Termination event reported upon successful completion of the function.

Event Data: MM_DISABLE_EVENTS_RESULT structure (MM_RET_CODE)

Name: int mm_DisableEvents(nDeviceHandle, pEvents, pUserInfo)

Inputs: int nDeviceHandle • valid SRL handle representing a multimedia device

CPMM_EVENTS pEvents • pointer to events information structure

void* pUserInfo • pointer to user-defined buffer

Returns: EMM_SUCCESS if successful
EMM_ERROR if failure

Includes: mmlib.h

Category: Event Information

Mode: Asynchronous

Platform: Dialogic® PowerMedia™ HMP software

Parameter Description

nDeviceHandle specifies a valid multimedia device handle obtained from a previous open

pEvents points to MM_EVENTS structure

pUserInfo points to user-defined buffer. See MM_METAEVENT evtUserInfo field.
Dialogic® Multimedia API Programming Guide and Library Reference 75

mm_DisableEvents() — disable optional notification events
MMEV_DISABLEEVENTS_FAIL
Operation failure termination event reported upon encountering an error during the operation.

Event Data: MM_DISABLE_EVENTS_RESULT structure (MM_RET_CODE)

MMEV_ERROR
Unsolicited event reported upon encountering an unexpected failure.

Event Data: MM_ERROR_RESULT structure

 Cautions

None.

 Errors

If a Dialogic® Multimedia API function returns EMM_ERROR to indicate a failure, use the
mm_ErrorInfo() function to retrieve the reason for the error. If the function generates a failure
event, use the mm_GetMetaEvent() function to obtain the error information. See Chapter 12,
“Error Codes” for the function error codes and event information error return codes.

 Example

int main(int argc, char* argv[])
{
 /* . . . */
 /*
 * ASSUMPTION: A valid nDeviceHandle was obtained from prior call to mm_Open().
 */
 MM_EVENTS events;
 INIT_MM_EVENTS(&events);
 events.unMask = MMR_EVENT_VIDEO_RECORD_STARTED;
 if (mm_DisableEvents(nDeviceHandle, &events, NULL) == EMM_ERROR)
 {
 /* process error */
 }

 See Also

• mm_EnableEvents()

• mm_GetMetaEvent()
76 Dialogic® Multimedia API Programming Guide and Library Reference

enable optional notification events — mm_EnableEvents()
mm_EnableEvents()

enable optional notification events

 Description

This function enables optional notification events only in the process in which it is called. See
Table 7, “Optional Notification Events”, on page 141 for the list of the optional notification events
that can be enabled or disabled.

Use the INIT_MM_EVENTS() function to initialize the MM_EVENTS structure.

 Asynchronous Mode Events

Use the Dialogic® Standard Runtime Library (SRL) functions to process the events. Use the
Dialogic® Multimedia API mm_GetMetaEvent() Event Information function to retrieve the event
information. Event data is indicated for the following events where applicable and can be obtained
through the MM_METAEVENT structure evtdatap field after calling the mm_GetMetaEvent()
function. The event data is valid only until the next mm_GetMetaEvent() is called. For more
information on these events, see Chapter 9, “Events”.

If the function returns EMM_SUCCESS, it can generate any of the following events:

MMEV_ENABLEEVENTS
Termination event reported upon successful completion of the function.

Event Data: MM_ENABLE_EVENTS_RESULT structure (MM_RET_CODE)

Name: int mm_EnableEvents(nDeviceHandle, pEvents, pUserInfo)

Inputs: int nDeviceHandle • valid SRL handle representing a multimedia device

CPMM_EVENTS pEvents • pointer to events information structure

void* pUserInfo • pointer to user-defined buffer

Returns: EMM_SUCCESS if successful
EMM_ERROR if failure

Includes: mmlib.h

Category: Event Information

Mode: Asynchronous

Platform: Dialogic® PowerMedia™ HMP software

Parameter Description

nDeviceHandle specifies a valid multimedia device handle obtained from a previous open

pEvents points to MM_EVENTS structure

pUserInfo points to user-defined buffer. See MM_METAEVENT evtUserInfo field.
Dialogic® Multimedia API Programming Guide and Library Reference 77

mm_EnableEvents() — enable optional notification events
MMEV_ENABLEEVENTS_FAIL
Operation failure termination event reported upon encountering an error during the operation.

Event Data: MM_ENABLE_EVENTS_RESULT structure (MM_RET_CODE)

MMEV_ERROR
Unsolicited event reported upon encountering an unexpected failure.

Event Data: MM_ERROR_RESULT structure

 Cautions

None.

 Errors

If a Dialogic® Multimedia API function returns EMM_ERROR to indicate a failure, use the
mm_ErrorInfo() function to retrieve the reason for the error. If the function generates a failure
event, use the mm_GetMetaEvent() function to obtain the error information. See Chapter 12,
“Error Codes” for the function error codes and event information error return codes.

 Example

int main(int argc, char* argv[])
{
 /* . . . */
 /*
 * ASSUMPTION: A valid nDeviceHandle was obtained from prior call to mm_Open().
 */
 MM_EVENTS events;
 INIT_MM_EVENTS(&events);
 events.unMask = MMR_EVENT_VIDEO_RECORD_STARTED;
 if (mm_EnableEvents(nDeviceHandle, &events, NULL) == EMM_ERROR)
 {
 /* process error */
 }

 See Also

• mm_DisableEvents()

• mm_GetMetaEvent()
78 Dialogic® Multimedia API Programming Guide and Library Reference

retrieve current error information for a multimedia function — mm_ErrorInfo()
mm_ErrorInfo()

retrieve current error information for a multimedia function

 Description

This function obtains the error information for the last error that occurred in the Dialogic®
Multimedia API and provides it in the MM_INFO structure. To retrieve the error information about
a failed function, the mm_ErrorInfo() function must be called immediately after the Dialogic®
Multimedia API function failed.

Use the INIT_MM_INFO() inline function to initialize the MM_INFO structure.

 Cautions

• The mm_ErrorInfo() function can only be called in the same thread in which the routine that
had the error was called. The mm_ErrorInfo() function cannot be called to retrieve error
information for a function that returned error information in another thread.

• Because the Dialogic® Multimedia API keeps the error information for the last Dialogic®
Multimedia API function call that sets it, the error information may be changed by succeeding
Dialogic® Multimedia API calls. Therefore it is recommended to check and retrieve error
information immediately after a Dialogic® Multimedia API function fails.

 Errors

This function returns an EMM_ERROR if an incorrect parameter is specified. The
mm_ErrorInfo() function should not be called recursively if it returns EMM_ERROR to indicate
failure. An EMM_ERROR generally indicates that pInfo is NULL or invalid.

Name: int mm_ErrorInfo(pInfo)

Inputs: PMM_INFO pInfo • pointer to the MM_INFO data structure

Returns: EMM_SUCCESS if successful
EMM_ERROR if failure

Includes: mmlib.h

Category: Error Processing

Mode: Synchronous

Platform: Dialogic® PowerMedia™ HMP software

Parameter Description

pInfo points to the MM_INFO structure where information about the error is
contained.
Dialogic® Multimedia API Programming Guide and Library Reference 79

mm_ErrorInfo() — retrieve current error information for a multimedia function
 Example

#include <mmlib.h>
/*
* This function is called to print MM_INFO to the system console
* Typically it would be called after a call to mm_ErrorInfo
* to print the resulting MM_INFO data structure
*/
void PrintMM_INFO(const MM_INFO* pInfo)
{
 printf("mmValue = %#x\n", pInfo->mmValue);
 printf("mmMsg = %s\n", pInfo->mmMsg);
 printf("additionalInfo = %s\n", pInfo->additionalInfo);
}

/*
* This function can be called anytime an error occurs
* Not shown is an MM function which fails and calls this function
* This procedure prints error information to the console with no other side effects
*/
void PrintErrorInfo(void)
{
 int retCode;
 MM_INFO t_Info;
 INIT_MM_INFO(&t_Info);
 retCode = mm_ErrorInfo(&t_Info);
 if (retCode == EMM_SUCCESS)
 {
 printf("mm_ErrorInfo successfully called\n");
 PrintMM_INFO(&t_Info);
 }
 else
 {
 printf("mm_ErrorInfo call failed\n");
 }
}
int main(int argc, char* argv[])
{
 /* . . . */

 /*
 * Calling an MM function with error processing
 */
 if (mm_DisableEvents(nDeviceHandle, &events, NULL) == EMM_ERROR)
 {
 /* process error */
 PrintErrorInfo();
 }
}

 See Also

• mm_GetMetaEvent()
80 Dialogic® Multimedia API Programming Guide and Library Reference

retrieve current error information for a multimedia function — mm_ErrorInfo()
Dialogic® Multimedia API Programming Guide and Library Reference 81

mm_GetDuration() — get the duration of current presentation
mm_GetDuration()

get the duration of current presentation

 Description

The mm_GetDuration() function gets the duration of the currently playing multimedia stream on
the specified multimedia device. The returned value will be the length of the entire file in time
units.

 Asynchronous Mode Events

Use the Dialogic® Standard Runtime Library (SRL) functions to process the events. Use the
Dialogic® Multimedia API mm_GetMetaEvent() Event Information function to retrieve the event
information. Event data is indicated for the following events where applicable and can be obtained
through the MM_METAEVENT structure evtdatap field after calling the mm_GetMetaEvent()
function. The event data is valid only until the next mm_GetMetaEvent() is called. For more
information on these events, see Chapter 9, “Events”.

If the function returns EMM_SUCCESS, it can generate any of the following events:

MMEV_GETDURATION
Termination event reported upon successfully getting the requested duration.

Event Data: MM_GETDURATION_CMPLT structure

Name: int mm_GetDuration(nDeviceHandle, pGetDurationInfo, * pUserInfo);

Inputs: int nDeviceHandle • Multimedia device handle

CPMM_GETDURATION_INFO
pGetDurationInfo

• pointer to details of the request

void* pUserInfo • pointer to user-defined data

Returns: EMM_SUCCESS if successful
EMM_ERROR if failure

Includes: mmlib.h

Category: DVR Control

Mode: Asynchronous

Platform: Dialogic® PowerMedia™ HMP software

Parameter Description

nDeviceHandle valid SRL handle representing a multimedia device

pGetDurationInfo specifies a pointer to the MM_GETDURATION_INFO structure that
contains the details of the request

 pUserInfo points to the user-defined buffer. See the MM_METAEVENT evtUserInfo
field.
82 Dialogic® Multimedia API Programming Guide and Library Reference

get the duration of current presentation — mm_GetDuration()
MMEV_GETDURATION_FAIL
Termination event reported upon encountering an error while getting the requested duration.

Event Data: MM_GETDURATION_CMPLT structure

 Cautions

• mm_GetDuration() will only be valid during the period of time between the
MMEV_PLAY_ACK event and the MMEV_PLAY event for the requested stream type. See
MM_GETDURATION_INFO for more information.

• mm_GetDuration() is only supported for multimedia that is playing in file I/O mode (when
unAccessMode is set to MM_MEDIA_ACCESS_MODE_FILE in mm_Play()) and not in
memory I/O or stream I/O mode.

• mm_GetDuration() is only supported for files in the Dialogic® proprietary file format –
when eFileFormat is set to EMM_FILE_FORMAT_PROPRIETARY or
EMM_AUD_FILEFORMAT_PROPRIETARY in mm_Play().

 Errors

If a Dialogic® Multimedia API function returns EMM_ERROR to indicate a failure, use the
mm_ErrorInfo() function to retrieve the reason for the error. If the function generates a failure
event, use the mm_GetMetaEvent() function to obtain the error information. See Chapter 12,
“Error Codes” for the function error codes and event information error return codes.

 Example

For an example of using the mm_GetDuration() function, refer to the Example section for
mm_Pause().

 See Also

None.
Dialogic® Multimedia API Programming Guide and Library Reference 83

mm_GetElapsedTime() — get current presentation time
mm_GetElapsedTime()

get current presentation time

 Description

The mm_GetElapsedTime() function gets the elapsed time of the currently playing multimedia
stream on the specified multimedia device. The returned value will be the time between the
beginning of the specified stream and the current position within that stream.

 Asynchronous Mode Events

Use the Dialogic® Standard Runtime Library (SRL) functions to process the events. Use the
Dialogic® Multimedia API mm_GetMetaEvent() Event Information function to retrieve the event
information. Event data is indicated for the following events where applicable and can be obtained
through the MM_METAEVENT structure evtdatap field after calling the mm_GetMetaEvent()
function. The event data is valid only until the next mm_GetMetaEvent() is called. For more
information on these events, see Chapter 9, “Events”.

If the function returns EMM_SUCCESS, it can generate any of the following events:

MMEV_GETELAPSEDTIME

Termination event reported upon successfully getting the requested elapsed time.

 Event Data: MM_GETELAPSEDTIME_CMPLT structure

Name: int mm_GetElapsedTime(nDeviceHandle, pGetElapsedTimeInfo, * pUserInfo)

Inputs: int nDeviceHandle • Multimedia device handle

CPMM_GETELAPSEDTIME_I
NFO pGetElapsedTimeInfo

• pointer to details of the request

void* pUserInfo • pointer to user-defined data

Returns: EMM_SUCCESS if successful
EMM_ERROR if failure

Includes: mmlib.h

Category: DVR Control

Mode: Asynchronous

Platform: Dialogic® PowerMedia™ HMP software

Parameter Description

 nDeviceHandle valid SRL handle representing a multimedia device

pGetElapsedTime
Info

specifies a pointer to the MM_GETELAPSEDTIME_INFO structure that
contains the details of the request

pUserInfo points to user-defined buffer. See the MM_METAEVENT evtUserInfo
field.
84 Dialogic® Multimedia API Programming Guide and Library Reference

get current presentation time — mm_GetElapsedTime()
MMEV_GETELAPSEDTIME_FAIL
Termination event reported upon encountering an error while getting the requested elapsed
time.

Event Data: MM_GETELAPSEDTIME_CMPLT structure

 Cautions

• mm_GetElapsedTime() will only be valid during the period of time between the
MMEV_PLAY_ACK event and the MMEV_PLAY event for the requested stream type. See
MM_GETELAPSEDTIME_INFO for more information.

• mm_GetElapsedTime() is only supported for multimedia that is playing in file I/O mode
(when unAccessMode is set to MM_MEDIA_ACCESS_MODE_FILE in mm_Play()) and
not in memory I/O or stream I/O mode.

• mm_GetElapsedTime() is only supported for files in the Dialogic® proprietary file format –
when eFileFormat is set to EMM_FILE_FORMAT_PROPRIETARY or
EMM_AUD_FILEFORMAT_PROPRIETARY in mm_Play().

 Errors

If a Dialogic® Multimedia API function returns EMM_ERROR to indicate a failure, use the
mm_ErrorInfo() function to retrieve the reason for the error. If the function generates a failure
event, use the mm_GetMetaEvent() function to obtain the error information. See Chapter 12,
“Error Codes” for the function error codes and event information error return codes.

 Example

For an example of using the mm_GetElapsedTime() function, refer to the Example section for
mm_Pause().

 See Also

None.
Dialogic® Multimedia API Programming Guide and Library Reference 85

mm_GetMetaEvent() — get current SRL event information
mm_GetMetaEvent()

get current SRL event information

 Description

This function retrieves event information for the current Dialogic® Standard Runtime Library
(SRL) event that stores the Dialogic® Multimedia API and non-Dialogic® Multimedia API event
information. The MM_METAEVENT data structure contains explicit information describing the
SRL event to be returned to the application program. This data structure provides uniform
information retrieval among call control libraries and across operating systems.

You must call the mm_GetMetaEvent() function to retrieve any Dialogic® Multimedia API event
information and any other event information if you are not sure of the event type. If the metaevent
is a Dialogic® Multimedia API event, the MMME_MM_EVENT bit in the MM_METAEVENT
flags field will be set. The MM_METAEVENT fields contain valid Dialogic® Multimedia API-
related data only when the MMME_MM_EVENT bit is set. Do not use these fields for obtaining
multimedia information if the bit is not set.

The current SRL event information is not changed or altered by calling the mm_GetMetaEvent()
function to retrieve event information. This function may be used as a convenience function to
retrieve the event information for all SRL events. Whether the event is a Dialogic® Multimedia
API event or any other SRL event, the SRL event information (for example, evtdatap, evttype) may
be retrieved from the MM_METAEVENT data structure instead of using SRL functions to retrieve
this information. For information on the Dialogic® SRL API, see the Dialogic® Standard Runtime
Library API Library Reference.

Use the INIT_MM_METAEVENT() function to initialize the MM_METAEVENT structure.

 Cautions

• The mm_GetMetaEvent() function must be the first function called before processing any
Dialogic® Multimedia API event.

Name: int mm_GetMetaEvent(pMetaEvent)

Inputs: MM_METAEVENT
pMetaEvent

• pointer to MM_METAEVENT data structure of metaevent data

Returns: EMM_SUCCESS if successful
EMM_ERROR if failure

Includes: mmlib.h

Category: Event Information

Mode: Synchronous

Platform: Dialogic® PowerMedia™ HMP software

Parameter Description

pMetaEvent points to the MM_METAEVENT structure filled by this function
86 Dialogic® Multimedia API Programming Guide and Library Reference

get current SRL event information — mm_GetMetaEvent()
• An application should call the mm_GetMetaEvent() function only once for a given event.
Calling the function more than once will result in data corruption or an access violation.

• The event must be processed entirely in the same thread or all information about the event
must be retrieved before processing the event in another thread.

 Errors

This function returns an EMM_ERROR if an incorrect parameter is specified.

If this function returns EMM_ERROR to indicate a failure, use the mm_ErrorInfo() function to
retrieve the reason for the error. See Chapter 12, “Error Codes” for the function error codes.

 Example

MM_METAEVENT metaevent;
INIT_MM_METAEVENT(&metaevent);
if (sr_waitevt(timeout) != -1)
{
 if (mm_GetMetaEvent(&metaevent) == EMM_ERROR)
 {
 /* get and process the error */
 }
 else
 {
 /* Process retrieved metaevent */
 }
}

 See Also

• mm_DisableEvents()

• mm_EnableEvents()
Dialogic® Multimedia API Programming Guide and Library Reference 87

mm_GetParm() — get the current configuration parameters
mm_GetParm()

get the current configuration parameters

 Description

This function gets the value of the specified configuration parameters.

Use the INIT_MM_GET_PARM() function to initialize the MM_GET_PARM structure.

 Asynchronous Mode Events

Use the Dialogic® Standard Runtime Library (SRL) functions to process the events. Use the
Dialogic® Multimedia API mm_GetMetaEvent() Event Information function to retrieve the event
information. Event data is indicated for the following events where applicable and can be obtained
through the MM_METAEVENT structure evtdatap field after calling the mm_GetMetaEvent()
function. The event data is valid only until the next mm_GetMetaEvent() is called. For more
information on these events, see Chapter 9, “Events”.

If the function returns EMM_SUCCESS, it can generate any of the following events:

MMEV_GETPARM
Termination event reported upon successful completion of the function.

Event Data: MM_GET_PARM_RESULT structure

MMEV_GETPARM_FAIL
Operation failure termination event reported upon encountering an error during the operation.

Event Data: MM_GET_PARM_RESULT structure

Name: int mm_GetParm(nDeviceHandle, pGetParm, pUserInfo)

Inputs: int nDeviceHandle • valid SRL handle representing a multimedia device

CPMM_GET_PARM pGetParm • pointer to get parameters information structure

void* pUserInfo • pointer to user-defined buffer

Returns: EMM_SUCCESS if successful
EMM_ERROR if failure

Includes: mmlib.h

Category: Configuration

Mode: Asynchronous

Platform: Dialogic® PowerMedia™ HMP software

Parameter Description

nDeviceHandle specifies a valid multimedia device handle obtained from a previous open

pGetParm points to MM_GET_PARM information structure

pUserInfo points to user-defined buffer. See MM_METAEVENT evtUserInfo field.
88 Dialogic® Multimedia API Programming Guide and Library Reference

get the current configuration parameters — mm_GetParm()
MMEV_ERROR
Unsolicited event reported upon encountering an unexpected failure.

Event Data: MM_ERROR_RESULT structure

 Cautions

• If an MMEV_GET_PARM_FAIL event is generated, the MM_GET_PARM_RESULT data
structure contains invalid data.

 Errors

If a Dialogic® Multimedia API function returns EMM_ERROR to indicate a failure, use the
mm_ErrorInfo() function to retrieve the reason for the error. If the function generates a failure
event, use the mm_GetMetaEvent() function to obtain the error information. See Chapter 12,
“Error Codes” for the function error codes and event information error return codes.

 Example

#include <mmlib.h>
int main(int argc, char* argv[])
{
 /* . . . */
 /*
 * ASSUMPTION: A valid nDeviceHandle was obtained from prior call to mm_Open().
 */
 MM_GET_PARM parm;
 INIT_GET_PARM(&parm);
 parm.eParm = MM_PARM_REC_IFRAME_TIMEOUT;
 if (mm_GetParm(nDeviceHandle, &parm, NULL) == EMM_ERROR)
 {
 /* process error */
 }
}

 See Also

• mm_SetParm()
Dialogic® Multimedia API Programming Guide and Library Reference 89

mm_Open() — open a multimedia device
mm_Open()

open a multimedia device

 Description

The mm_Open() function opens a multimedia device and returns a unique Dialogic® Standard
Runtime Library (SRL) device handle to identify the device. All subsequent references to the
opened device must be made using the handle until the device is closed. For information on the
Dialogic® SRL API, see the Dialogic® Standard Runtime Library API Library Reference.

The device handle returned by this function is defined by Dialogic. It is not a standard operating
system file descriptor.

If this function is called with valid arguments, a device handle is returned immediately. Before
using this device handle in other function calls, the application must wait for an MMEV_OPEN
event indicating the handle is valid.

If this function is called and it generates an MMEV_OPEN_FAIL event, a device handle is
returned, but the application must close the handle by calling mm_Close().

Name: int mm_Open(szDevName, pOpenInfo, pUserInfo)

Inputs: const char* szDevName • pointer to device name to open

CPMM_OPEN_INFO pOpenInfo • set to NULL

void* pUserInfo • pointer to user-defined buffer

Returns: device handle if successful
EMM_ERROR if failure

Includes: mmlib.h

Category: Device Management

Mode: Asynchronous

Platform: Dialogic® PowerMedia™ HMP software

Parameter Description

szDevName points to a multimedia device name to open. The following naming
convention is used for channel-level multimedia device names:
• mmBnCy – where “n” is the board device number assigned to the

virtual multimedia board and “y” is the number of a multimedia
channel device associated with that board. Examples of multimedia
channel device names are mmB1C1 and mmB1C2.

pOpenInfo set to NULL; reserved for future use

pUserInfo points to user-defined buffer. See MM_METAEVENT evtUserInfo field.
90 Dialogic® Multimedia API Programming Guide and Library Reference

open a multimedia device — mm_Open()
 Asynchronous Mode Events

Use the Dialogic® Standard Runtime Library (SRL) functions to process the events. Use the
Dialogic® Multimedia API mm_GetMetaEvent() Event Information function to retrieve the event
information. Event data is indicated for the following events where applicable and can be obtained
through the MM_METAEVENT structure evtdatap field after calling the mm_GetMetaEvent()
function. The event data is valid only until the next mm_GetMetaEvent() is called. For more
information on these events, see Chapter 9, “Events”.

If the function returns EMM_SUCCESS, it can generate any of the following events:

MMEV_OPEN
Termination event reported upon successful completion of the function.

Event Data: MM_OPEN_RESULT structure (MM_RET_CODE)

MMEV_OPEN_FAIL
Operation failure termination event reported upon encountering an error during the operation.

Event Data: MM_OPEN_RESULT structure (MM_RET_CODE)

Note: The application program must call mm_Close() to clean up after this failure.

MMEV_ERROR
Unsolicited event reported upon encountering an unexpected failure.

Event Data: MM_ERROR_RESULT structure

 Cautions

• You must obtain an MMEV_OPEN event before using the device handle.

• You must close the handle by calling mm_Close() if the function generates an
MMEV_OPEN_FAIL event.

• Do not use the operating system open function to open multimedia devices; unpredictable
results will occur.

 Errors

If a Dialogic® Multimedia API function returns EMM_ERROR to indicate a failure, use the
mm_ErrorInfo() function to retrieve the reason for the error. If the function generates a failure
event, use the mm_GetMetaEvent() function to obtain the error information. See Chapter 12,
“Error Codes” for the function error codes and event information error return codes.

 Example

#include <mmlib.h>
int main(int argc, char* argv[])
{
 int nDeviceHandle; /* multimedia device handle */
 /* Open Device */
 if ((nDeviceHandle = mm_Open("mmB1C1", NULL, NULL)) == EMM_ERROR) {
 /* process error */
}
.
.
.

Dialogic® Multimedia API Programming Guide and Library Reference 91

mm_Open() — open a multimedia device
 See Also

• mm_Close()

• mm_Reset()
92 Dialogic® Multimedia API Programming Guide and Library Reference

pause the current presentation — mm_Pause()
mm_Pause()

pause the current presentation

 Description

 The mm_Pause() function pauses a multimedia stream that is currently playing.

 Asynchronous Mode Events

Use the Dialogic® Standard Runtime Library (SRL) functions to process the events. Use the
Dialogic® Multimedia API mm_GetMetaEvent() Event Information function to retrieve the event
information. Event data is indicated for the following events where applicable and can be obtained
through the MM_METAEVENT structure evtdatap field after calling the mm_GetMetaEvent()
function. The event data is valid only until the next mm_GetMetaEvent() is called. For more
information on these events, see Chapter 9, “Events”.

If the function returns EMM_SUCCESS, it can generate any of the following events:

MMEV_PAUSE
Termination event reported upon successfully pausing.

Event Data: MM_PAUSE_PLAY_CMPLT structure

MMEV_PAUSE_FAIL

Termination event reported upon encountering an error while attempting to pause.

Event Data: MM_PAUSE_PLAY_CMPLT structure

Name: int mm_Pause(nDeviceHandle, pPauseInfo, pUserInfo)

Inputs: int nDeviceHandle • Multimedia device handle

CPMM_PAUSE_INFO
pPauseInfo

• pointer to details of the pause request

void* pUserInfo • pointer to user-defined data

Returns: EMM_SUCCESS if successful
EMM_ERROR if failure

Includes: mmlib.h

Category: DVR Control

Mode: Asynchronous

Platform: Dialogic® PowerMedia™ HMP software

Parameter Description

nDeviceHandle valid SRL handle representing a multimedia device

pPauseInfo specifies a pointer to the MM_PAUSE_INFO structure that contains the
details of the pause request

pUserInfo points to user-defined buffer. See the MM_METAEVENT evtUserInfo
field
Dialogic® Multimedia API Programming Guide and Library Reference 93

mm_Pause() — pause the current presentation
 Cautions

• The mm_Pause() function is only valid during the period of time between the
MMEV_PLAY_ACK event and the MMEV_PLAY event for the requested stream type. See
the MM_PAUSE_INFO for more information.

• mm_Pause() is only supported for multimedia that is playing in file I/O mode (when
unAccessMode is set to MM_MEDIA_ACCESS_MODE_FILE in mm_Play()) and not in
memory I/O or stream I/O mode.

• mm_Pause() is only supported for files in the Dialogic® proprietary file format – when
eFileFormat is set to EMM_FILE_FORMAT_PROPRIETARY or
EMM_AUD_FILEFORMAT_PROPRIETARY in mm_Play().

• In an audiovideo playback, if the playback is synchronous (both audio and video play is
initiated by a single mm_Play() function call), BOTH the audio and video streams will be
resumed, regardless of the unStreamType setting in MM_PAUSE_INFO. This allows
synchronization to be maintained.

 Example

int main()
{

#include "mmlib.h"
................

 // Open device

 sprintf(channame,"mmB1C1");
 if ((ddd = mm_Open(channame, 0, NULL)) < 0)
 {
 printf("mm_Open() failed for %s\n", channame);
 }
..................

 // Do a play

.................

 // Pause
 MM_PAUSE_INFO pauseinfo;
 INIT_MM_PAUSE_INFO(&pauseinfo);
 pauseinfo.unStreamType = EMM_PAUSE_VIDEO_AUDIO;
 pauseinfo.unAttribute = EMM_PAUSE_AUDIO_SILENCE;

 ret = mm_Pause(ddd, &pauseinfo, NULL);
 if (ret == EMM_ERROR) {
 printf("mm_Pause() failed!\n");
 exit (-1);
 }
 printf("Pausing\n");

 // Resume
 MM_RESUME_INFO resumeinfo;
 INIT_MM_RESUME_INFO(&resumeinfo);
 resumeinfo.unStreamType = EMM_RESUME_VIDEO_AUDIO;
 resumeinfo.unAttribute = EMM_RESUME_VIDEO_NONE;

 ret = mm_Resume(ddd, &resumeinfo, NULL);
 if (ret == EMM_ERROR) {
 printf("mm_Resume() failed!\n");
 exit (-1);
94 Dialogic® Multimedia API Programming Guide and Library Reference

pause the current presentation — mm_Pause()
 }
 printf("Resuming\n");

 // Seek
 MM_SEEK_INFO seekinfo;
 INIT_MM_SEEK_INFO(&seekinfo);
 seekinfo.unStreamType = EMM_SEEK_VIDEO_AUDIO;
 seekinfo.unOrigin = EMM_SEEK_SET;
 seekinfo.nOffset = atoi(&buffer[1]);

 ret = mm_Seek(ddd, &seekinfo, NULL);
 if (ret == EMM_ERROR) {
 printf("mm_Seek() failed!\n");
 exit (-1);
 }
 printf("Seeking\n");
 }

 // Get elapsed time
 MM_GETELAPSEDTIME_INFO etinfo;
 INIT_MM_GETELAPSEDTIME_INFO(&etinfo);
 etinfo.unStreamType = EMM_GETELAPSEDTIME_VIDEO_AUDIO;
 ret = mm_GetElapsedTime(ddd, &etinfo, NULL);
 if (ret == EMM_ERROR) {
 printf("mm_GetElapsedTime() failed!\n");
 exit (-1);
 }
 printf("getting time\n");
 }

 // Get duration
 MM_GETDURATION_INFO dinfo;
 INIT_MM_GETDURATION_INFO(&dinfo);
 dinfo.unStreamType = EMM_GETDURATION_VIDEO_AUDIO;

 ret = mm_GetDuration(ddd, &dinfo, NULL);
 if (ret == EMM_ERROR) {
 printf("mm_GetDuration() failed!\n");
 exit (-1);
 }
 printf("getting duration\n");
 }

 Errors

If a Dialogic® Multimedia API function returns EMM_ERROR to indicate a failure, use the
mm_ErrorInfo() function to retrieve the reason for the error. If the function generates a failure
event, use the mm_GetMetaEvent() function to obtain the error information. See Chapter 12,
“Error Codes” for the function error codes and event information error return codes.

 See Also

None.
Dialogic® Multimedia API Programming Guide and Library Reference 95

mm_Play() — play a media object
mm_Play()

play a media object

 Description

The mm_Play() function plays back audio and video data from multimedia files while
maintaining their synchronization. It can also play back only the audio portion or video portion.
Multimedia files consist of a Dialogic® Multimedia API audio file and video file as specified in the
MM_MEDIA_AUDIO and MM_MEDIA_VIDEO structures. When performing multimedia
recording or playback, the video data is synchronized with the audio data.

Note: This function currently supports a single set of concurrent audio and video files. It does not support
multiple sets of audio and video files.

The mm_Play() function also includes the ability to play a still image over a video stream. To
play a still image, use the pPlayInfo parameter to specify the image. Set the ItemType field in the
MM_PLAY_RECORD_LIST structure to EMM_MEDIA_TYPE_IMAGE and provide details
such as image format (YUV or JPEG), format details (height, width) and type of I/O access in the
MM_MEDIA_IMAGE structure.

Use the INIT_MM_PLAY_INFO() inline function to initialize the MM_PLAY_INFO structure.
Also initialize all structures nested within MM_PLAY_INFO with their corresponding INIT inline
functions.

Name: int mm_Play(nDeviceHandle, pPlayInfo, pRuntimeControl, pUserInfo)

Inputs: int nDeviceHandle • valid SRL handle representing a multimedia device

CPMM_PLAY_INFO pPlayInfo • pointer to play information structure

CPMM_RUNTIME_CONTROL
pRuntimeControl

• pointer to runtime control information structure.

void* pUserInfo • pointer to user-defined buffer

Returns: EMM_SUCCESS if successful
EMM_ERROR if failure

Includes: mmlib.h

Category: Input/Output

Mode: Asynchronous

Platform: Dialogic® PowerMedia™ HMP software

Parameter Description

nDeviceHandle specifies a valid multimedia device handle obtained from a previous open.

pPlayInfo points to MM_PLAY_INFO (MM_PLAY_RECORD_INFO) structure.

pRuntimeControl points to MM_RUNTIME_CONTROL structure.

pUserInfo points to user-defined buffer. See MM_METAEVENT evtUserInfo field.
96 Dialogic® Multimedia API Programming Guide and Library Reference

play a media object — mm_Play()
Notes: 1. The MM_MEDIA_AUDIO and MM_MEDIA_VIDEO structures must be initialized using the
INIT_MM_MEDIA_AUDIO and INIT_MM_MEDIA_VIDEO inline functions, respectively.

2. This function can transmit a tone or “beep” to indicate the start of playback. See
MM_MEDIA_AUDIO and MM_MEDIA_VIDEO for more information.

3. For memory I/O, the pointer to the buffer and size of the buffer, pBuffer and unBufferSize, must
be specified. For file I/O, the file name, szFileName, must be specified. For stream I/O, the
stream handle, nStreamHandle, must be specified.

 Asynchronous Mode Events

Use the Dialogic® Standard Runtime Library (SRL) functions to process the events. Use the
Dialogic® Multimedia API mm_GetMetaEvent() Event Information function to retrieve the event
information. Event data is indicated for the following events where applicable and can be obtained
through the MM_METAEVENT structure evtdatap field after calling the mm_GetMetaEvent()
function. The event data is valid only until the next mm_GetMetaEvent() is called. For more
information on these events, see Chapter 9, “Events”.

If the function returns EMM_SUCCESS, it can generate any of the following events:

MMEV_PLAY_ACK
Initiation event reported upon successful start of the play operation.

Event Data: MM_PLAY_ACK structure (MM_RET_CODE)

MMEV_PLAY_ACK_FAIL
Initiation failure termination event reported upon encountering an error before the play
operation begins.

Event Data: MM_PLAY_ACK structure (MM_RET_CODE)

MMEV_PLAY
Termination event reported upon successful completion or successful termination of the play
operation.

Event Data: MM_PLAY_CMPLT structure (MM_PLAY_RECORD_CMPLT)

After a play operation has begun, an MMEV_PLAY event is reported to the application
program when one of the following conditions occurs:

• the device finishes playing the media specified in the pPlayInfo parameter; i.e., it reaches
the end of file

• the application program issues a stop operation with mm_Stop(). See the mm_Stop()
function for conditions that generate no completion events or multiple completion events

• the application program issues a reset operation with mm_Reset()

• one of the runtime control conditions specified in the pRuntimeControl parameter has
been met

MMEV_PLAY_FAIL
Operation failure termination event reported upon encountering an error during the play
operation.

Event Data: MM_PLAY_CMPLT structure (MM_PLAY_RECORD_CMPLT)

Note: See Section 12.5, “Terminating and Non-Terminating Play/Record Errors”, on
page 239 for related information.
Dialogic® Multimedia API Programming Guide and Library Reference 97

mm_Play() — play a media object
MMEV_ERROR
Unsolicited event reported upon encountering an unexpected failure of the play operation.

Event Data: MM_ERROR_RESULT structure

Note: For more information on these events, see Chapter 9, “Events”. See also Section 12.5,
“Terminating and Non-Terminating Play/Record Errors”, on page 239 for useful information.

 Cautions

• See the MMEV_PLAY event above for conditions under which you can receive more than one
MMEV_PLAY event.

• When playing a WAVE file, codec information contained in the WAVE header of the file
being played will take precedence over the application’s settings for the unCoding,
unSampleRate, and unBitsPerSample fields of the MM_AUDIO_CODEC structure.

• Only JPEG and YUV formats are currently supported for playing a still image.

• Only file I/O access mode is supported for still image play. Memory I/O and stream I/O are
not supported.

• If there is no place to send packets, the expected behavior is that the mm_play() function will
hang. This occurs when an IP media session has not been established and the multimedia
device connects to and relies on the IP media device to be a transport layer, or when the IP
media session has been established but the direction goes against the mm_play() function. To
resolve this, the application should call the mm_Stop() function to terminate the play, or set
the runtime control condition EMM_TERM_MAXTIME beforehand.

• The input YUV 4:2:0 or JPEG image file size should not exceed 152,064 bytes. This limit is
based upon the maximum file size required to support CIF (352x288) frames in YUV 4:2:0
format. A compressed JPEG input file may contain a frame with a resolution larger than CIF
(352x288) as long as the file size is less than 152,064 bytes.

• Multimedia native wideband play operations require that the data storage format are in
Dialogic's proprietary media format. Thus, for a native operation, the MM_MEDIA_AUDIO
structure should have the eFileFormat field set to
EMM_AUD_FILEFORMAT_PROPRIETARY when specifying the audio media attributes.
For wideband transcoding operations, the MM_MEDIA_AUDIO structure should have the
eFileFormat field set to EMM_AUD_FILEFORMAT_WAVE, as well as the
MM_AUDIO_CODEC structure fields unCoding set to MM_DATA_FORMAT_PCM and
unSampleRate set to MM_DRT_16KHZ. This implies that target media file for the operation
is 16k linear PCM Wave format for the play target file.

 Errors

If a Dialogic® Multimedia API function returns EMM_ERROR to indicate a failure, use the
mm_ErrorInfo() function to retrieve the reason for the error. If the function generates a failure
event, use the mm_GetMetaEvent() function to obtain the error information. See Chapter 12,
“Error Codes” for the function error codes and event information error return codes.
98 Dialogic® Multimedia API Programming Guide and Library Reference

play a media object — mm_Play()
 Example

1: Audio play scenario

#include <mmlib.h>

void add_rtc_item(PMM_RUNTIME_CONTROL RTCList, int *RTCItemCountp, eMM_TERMINATION_REASON
reason, int value, eMM_TERMINATION_ACTION action)
{

 int index = *RTCItemCountp;
 if (index >= 1)
 {
 RTCList[index-1].next = &(RTCList[index]);
 }

 INIT_MM_RUNTIME_CONTROL(&(RTCList[index]));
 RTCList[index].Reason = reason;
 RTCList[index].unValue = value;
 RTCList[index].Action = action;
 RTCList[index].next = NULL;
 *RTCItemCountp)++;
}
int main(int argc, char* argv[])
{
 /* . . . */
 /*
 * ASSUMPTION: A valid nDeviceHandle was obtained from prior call to mm_Open().
 */
 MM_PLAY_INFO play_info;
 INIT_MM_PLAY_INFO(&play_info);
 MM_PLAY_RECORD_LIST playlist[2];
 MM_MEDIA_ITEM_LIST mediaitemlist1[1];
 MM_MEDIA_ITEM_LIST mediaitemlist2[1];
 MM_VIDEO_CODEC VideoCodecType1;
 INIT_MM_VIDEO_CODEC(&VideoCodecType1);

 VideoCodecType1.Coding = VIDEO_CODING_H263;
 VideoCodecType1.Profile = VIDEO_PROFILE_0_H263;
 VideoCodecType1.Level = VIDEO_LEVEL_10_H263;
 VideoCodecType1.ImageWidth = VIDEO_IMAGE_WIDTH_176;
 VideoCodecType1.ImageHeight = VIDEO_IMAGE_HEIGHT_144;
 VideoCodecType1.BitRate = (eVIDEO_BITRATE)0;
 VideoCodecType1.FramesPerSec = VIDEO_FRAMESPERSEC_15;
 VideoCodecType1.SamplingRate = VIDEO_SAMPLING_RATE_90000;
 VideoCodecType1.VisualConfigSize = 0;
 VideoCodecType1.VisualConfiguration = NULL;

 MM_AUDIO_CODEC AudioCodecType1;
 INIT_MM_AUDIO_CODEC(&AudioCodecType1);
 AudioCodecType1.unCoding = MM_DATA_FORMAT_PCM;
 AudioCodecType1.unSampleRate = MM_DRT_8KHZ;
 AudioCodecType1.unBitsPerSample = 16;
 const char VideoFileName1[] = "/dir/file1.vid";
 const char AudioFileName1[] = "/dir/file3.aud";
 int cc;
 int xx;
 cc = 0;
 // Build Video Item 1

 INIT_MM_MEDIA_ITEM_LIST(&mediaitemlist1[cc]);
 INIT_MM_MEDIA_VIDEO(&mediaitemlist1[cc].item.video);
 mediaitemlist1[cc].ItemChain = EMM_ITEM_EOT;
 mediaitemlist1[cc].item.video.eFileFormat = EMM_FILE_FORMAT_PROPRIETARY;
 mediaitemlist1[cc].item.video.codec = VideoCodecType1;
 mediaitemlist1[cc].item.video.unMode = 0;
Dialogic® Multimedia API Programming Guide and Library Reference 99

mm_Play() — play a media object
 mediaitemlist1[cc].item.audio.unOffset = 0;
 mediaitemlist1[cc].item.video.szFileName = VideoFileName1;
 mediaitemlist1[cc].item.video.unAccessMode = MM_MEDIA_ACCESS_MODE_FILE;
 cc++;
 xx = 0;
 // Add Video Items to the PlayList
 INIT_MM_PLAY_RECORD_LIST(&playlist[xx]);
 playlist[xx].ItemChain = EMM_ITEM_CONT;
 playlist[xx].ItemType = EMM_MEDIA_TYPE_VIDEO;
 playlist[xx].list = mediaitemlist1;
 xx++;
 cc = 0;
 // Build Audio Item 1

 INIT_MM_MEDIA_ITEM_LIST(&mediaitemlist2[cc]);
 INIT_MM_MEDIA_AUDIO(&mediaitemlist2[cc].item.audio);
 mediaitemlist2[cc].ItemChain = EMM_ITEM_EOT;
 mediaitemlist2[cc].item.audio.eFileFormat = EMM_AUD_FILEFORMAT_VOX;
 mediaitemlist2[cc].item.audio.codec = AudioCodecType1;
 mediaitemlist2[cc].item.audio.unMode = 0;
 mediaitemlist2[cc].item.audio.unOffset = 0;
 mediaitemlist2[cc].item.audio.szFileName = AudioFileName1;
 mediaitemlist2[cc].item.audio.unAccessMode = MM_MEDIA_ACCESS_MODE_FILE;
 cc++;
 // Add Audio Items to the PlayList
 INIT_MM_PLAY_RECORD_LIST(&playlist[xx]);
 playlist[xx].ItemChain = EMM_ITEM_EOT;
 playlist[xx].list = mediaitemlist2;

 // Form Play Info
 INIT_MM_PLAY_RECORD_INFO(&play_info);
 play_info.list = playlist;
 play_info.eFileFormat=EMM_FILE_FORMAT_UNDEFINED;

 MM_RUNTIME_CONTROL RTCList[3];
 int RTCItemCount = 0;

 //stop playing both audio and video 20 seconds after the MMEV_PLAY_ACK event
 add_rtc_item(RTCList, &RTCItemCount, EMM_TERM_MAXTIME, 20000, EMM_TA_AUDIO_VIDEO_STOP);

 // Initiate Play
 if (mm_Play(nDeviceHandle, &play_info, RTCList, NULL) == EMM_ERROR)
 {
 /* process error */
 }
}

2: Simple image play from file scenario

int main(int argc, char* argv[])
{

 .
 .
 .
 /*
 * ASSUMPTION: A valid nDeviceHandle was obtained from prior call to mm_Open().
 */
 MM_PLAY_INFO play_info;
 MM_PLAY_RECORD_LIST playList[1];
 MM_MEDIA_ITEM_LIST imageMediaItemList[1];
 MM_RUNTIME_CONTROL mmRtc;

 enum {IMAGE_INDEX};

 const char imageFileName[] = "./overlay1.yuv";
100 Dialogic® Multimedia API Programming Guide and Library Reference

play a media object — mm_Play()
 /* Build the mm image item */
 INIT_MM_MEDIA_ITEM_LIST(&(imageMediaItemList[0]));}
 imageMediaItemList[0].ItemChain = EMM_ITEM_EOT;
 INIT_MM_MEDIA_IMAGE(&imageMediaItemList[0].item.image);
 imageMediaItemList[0].item.image.unAccessMode = MM_MEDIA_ACCESS_MODE_FILE;
 imageMediaItemList[0].item.image.szFileName = imageFileName;
 imageMediaItemList[0].item.image.eFormat = eMTK_IMAGE_FORMAT_YUV;
 imageMediaItemList[0].item.image.format.yuv.eFormat = eMTK_YUV_IMAGE_FORMAT_420;
 imageMediaItemList[0].item.image.format.yuv.unWidth = 352;
 imageMediaItemList[0].item.image.format.yuv.unHeight = 288;
 INIT_MM_PLAY_RECORD_LIST(&(playList[IMAGE_INDEX]));
 /* Add Image Item to the PlayList */
 playList[IMAGE_INDEX].ItemChain = EMM_ITEM_EOT;
 playList[IMAGE_INDEX].ItemType = EMM_MEDIA_TYPE_IMAGE;
 playList[IMAGE_INDEX].list = imageMediaItemList;
 /* Form Play Info */
 INIT_MM_PLAY_INFO(&play_info)
 play_info.eFileFormat = EMM_FILE_FORMAT_PROPRIETARY;
 play_info.list = playList;
 /* Form RTC */
 INIT_MM_RUNTIME_CONTROL(&mmRtc);
 mmRtc.Reason = EMM_TERM_MAXTIME;
 mmRtc.Action = EMM_TA_VIDEO_STOP;
 mmRtc.unValue = 5000; // 5 seconds
 /* Initiate Play */
 if (mm_Play(nDeviceHandle, &play_info, &mmRtc, NULL) == EMM_ERROR)
 {
 /*process error */
 exit(1);
 }
 exit(0);
}

 See Also

• mm_Record()

• mm_Reset()

• mm_Stop()
Dialogic® Multimedia API Programming Guide and Library Reference 101

mm_Record() — record a synchronized media object
mm_Record()

record a synchronized media object

 Description

The mm_Record() function records synchronized audio and video data to multimedia files. It can
also record only the audio portion or video portion.

Multimedia files consist of a Dialogic® Multimedia API audio file and video file as specified in the
MM_MEDIA_AUDIO and MM_MEDIA_VIDEO structures. When performing multimedia
recording or playback, the video data is synchronized with the audio data.

Note: Incoming RFC2833 DTMFs will not be received by the mm_Record() function. Use a voice
device to capture and detect these DTMFs.

This function can transmit a start-of-recording tone or “beep” to notify the party being recorded.
See MM_MEDIA_AUDIO and MM_MEDIA_VIDEO for more information.

Use the INIT_MM_RECORD_INFO() inline function to initialize the MM_RECORD_INFO
structure. Also initialize all structures nested within MM_RECORD_INFO with their
corresponding INIT inline functions.

Name: int mm_Record(nDeviceHandle, pRecordInfo, pRuntimeControl, pUserInfo)

Inputs: int nDeviceHandle • valid SRL handle representing a multimedia device

CPMM_RECORD_INFO
pRecordInfo

• pointer to record information structure

CPMM_RUNTIME_CONTROL
pRuntimeControl

• pointer to runtime control information structure

void* pUserInfo • pointer to user-defined buffer

Returns: EMM_SUCCESS if successful
EMM_ERROR if failure

Includes: mmlib.h

Category: Input/Output

Mode: Asynchronous

Platform: Dialogic® PowerMedia™ HMP software

Parameter Description

nDeviceHandle specifies a valid multimedia device handle obtained from a previous open.

pRecordInfo points to MM_RECORD_INFO (MM_PLAY_RECORD_INFO)
structure.

pRuntimeControl points to MM_RUNTIME_CONTROL structure.

pUserInfo points to user-defined buffer. See MM_METAEVENT evtUserInfo field.
102 Dialogic® Multimedia API Programming Guide and Library Reference

record a synchronized media object — mm_Record()
Detection of an I-frame (complete video frame) can be used to trigger recording. The API controls
I-frame detection and its responses through the following:

Video Record Beep
On I-frame detection, transmit a beep to the party being recorded (start-of-recording
notification tone). The video record beep is enabled by default and is transmitted upon
detection of an I-frame or upon time-out waiting for an I-frame. The beep can be disabled by
specifying the MM_MODE_VID_NOIFRMBEEPINITIATED bit in the
MM_MEDIA_VIDEO unMode field.

I-Frame Time-Out Parameter
The EMM_REC_IFRAME_TIMEOUT parameter controls the time to wait for an I-frame.
Video recording, or multimedia (audio and video) recording, starts when an I-frame is detected
or when the time-out is reached. The default time-out is 5000 ms (5 seconds). To change this,
specify the EMM_REC_IFRAME_TIMEOUT parameter in the MM_SET_PARM eParm
field, specify a value in the unParmValue field, and call mm_SetParm() to set it. A setting of
0 (zero) causes an immediate time-out and starts recording immediately.

To get the current setting of the I-frame time-out parameter, specify
EMM_REC_IFRAME_TIMEOUT in the MM_GET_PARM eParm field and call
mm_GetParm(). When the function generates an MMEV_GETPARM event, the associated
event data provides the current setting in the MM_GET_PARM_RESULT unParmValue field.

MMEV_VIDEO_RECORD_STARTED event
This optional intermediate (non-terminating) notification event is enabled by default and
indicates the actual start of video recording (I-frame received or time-out waiting for an I-
frame). This event can be disabled by mm_DisableEvents() and enabled by
mm_EnableEvents() by specifying the MMR_EVENT_VIDEO_RECORD_STARTED bit
in the MM_EVENTS unMask field.

The event data associated with the event indicates the status in the
MM_VIDEO_RECORD_STARTED unStatus field. The field indicates
EMM_VIDEO_RCRD_IFRAME_DETECTED for recording started due to I-frame detection,
and EMM_VIDEO_RCRD_IFRAME_TIMEOUT for recording started due to I-frame time-
out.

 Asynchronous Mode Events

Use the Dialogic® Standard Runtime Library (SRL) functions to process the events. Use the
Dialogic® Multimedia API mm_GetMetaEvent() Event Information function to retrieve the event
information. Event data is indicated for the following events where applicable and can be obtained
through the MM_METAEVENT structure evtdatap field after calling the mm_GetMetaEvent()
function. The event data is valid only until the next mm_GetMetaEvent() is called. For more
information on these events, see Chapter 9, “Events”.

If the function returns EMM_SUCCESS, it can generate any of the following events:

MMEV_RECORD_ACK
Initiation event reported upon successful start of the record operation.

Event Data: MM_RECORD_ACK structure (MM_RET_CODE)
Dialogic® Multimedia API Programming Guide and Library Reference 103

mm_Record() — record a synchronized media object
MMEV_RECORD_ACK_FAIL
Initiation failure termination event reported upon encountering an error before the record
operation begins.

Event Data: MM_RECORD_ACK structure (MM_RET_CODE)

MMEV_VIDEO_RECORD_STARTED
Optional intermediate (non-terminating) notification event (enabled by default), indicating
actual start of recording (complete video frame, or I-frame, received, or time-out waiting for
an I-frame). This event can be disabled by mm_DisableEvents() and enabled by
mm_EnableEvents().

Event Data: MM_VIDEO_RECORD_STARTED structure

MMEV_VIDEO_RECORD_STARTED_FAIL (reserved for future use)
Optional intermediate (non-terminating) failure notification event that is reserved for
future use (there are no conditions that generate it).

MMEV_RECORD
Termination event reported upon successful completion or successful termination of the record
operation.

Event Data: MM_RECORD_CMPLT structure (MM_PLAY_RECORD_CMPLT)

After a record operation has begun, an MMEV_RECORD event is reported to the application
program when one of the following conditions occurs:

• the application program issues a stop operation with mm_Stop(). See the mm_Stop()
function for conditions that generate no completion events or multiple completion events.

• the application program issues a reset operation with mm_Reset()

• one of the runtime control conditions specified in the pRuntimeControl parameter has
been met

MMEV_RECORD_FAIL
Operation failure termination event indicating operation errors reported upon completion or
termination of the record operation. The errors that can cause this failure event are
intermediate (non-terminating) errors.

Event Data: MM_RECORD_CMPLT structure (MM_PLAY_RECORD_CMPLT)

MMEV_ERROR
Unsolicited event reported upon encountering an unexpected failure of the record operation.

Event Data: MM_ERROR_RESULT structure

Note: For more information on these events, see Chapter 9, “Events”. See also Section 12.5,
“Terminating and Non-Terminating Play/Record Errors”, on page 239 for useful information.

 Cautions

• See the MMEV_RECORD event above for conditions under which you can receive more than
one MMEV_RECORD event.

• Multimedia native wideband record operations require that the data storage format are in
Dialogic's proprietary media format. Thus, for a native operation, the MM_MEDIA_AUDIO
structure should have the eFileFormat field set to
EMM_AUD_FILEFORMAT_PROPRIETARY when specifying the audio media attributes.
For wideband transcoding operations, the MM_MEDIA_AUDIO structure should have the
eFileFormat field set to EMM_AUD_FILEFORMAT_WAVE, as well as the
104 Dialogic® Multimedia API Programming Guide and Library Reference

record a synchronized media object — mm_Record()
MM_AUDIO_CODEC structure fields unCoding set to MM_DATA_FORMAT_PCM and
unSampleRate set to MM_DRT_16KHZ. This implies that target media file for the operation
is 16k linear PCM Wave format for the record target file.

 Errors

If a Dialogic® Multimedia API function returns EMM_ERROR to indicate a failure, use the
mm_ErrorInfo() function to retrieve the reason for the error. If the function generates a failure
event, use the mm_GetMetaEvent() function to obtain the error information. See Chapter 12,
“Error Codes” for the function error codes and event information error return codes.

 Example

#include <mmlib.h>

void add_rtc_item(PMM_RUNTIME_CONTROL RTCList, int *RTCItemCountp, eMM_TERMINATION_REASON
reason, int value, eMM_TERMINATION_ACTION action)
{

 int index = *RTCItemCountp;

 if (index >= 1)
 {
 RTCList[index-1].next = &(RTCList[index]);
 }

 INIT_MM_RUNTIME_CONTROL(&(RTCList[index]));
 RTCList[index].Reason = reason;
 RTCList[index].unValue = value;
 RTCList[index].Action = action;
 RTCList[index].next = NULL;

 (*RTCItemCountp)++;

}

int main(int argc, char* argv[])
{

 /* . . . */
 /*
 * ASSUMPTION: A valid nDeviceHandle was obtained from prior call to mm_Open().
 */
 MM_RECORD_INFO record_info;
 INIT_MM_RECORD_INFO(&record_info);
 MM_PLAY_RECORD_LIST recordlist[2];
 MM_MEDIA_ITEM_LIST mediaitemlist1[1];
 MM_MEDIA_ITEM_LIST mediaitemlist2[1];
 MM_VIDEO_CODEC VideoCodecType1;
 INIT_MM_VIDEO_CODEC(&VideoCodecType1);

 VideoCodecType1.Coding = VIDEO_CODING_H263;
 VideoCodecType1.Profile = VIDEO_PROFILE_0_H263;
 VideoCodecType1.Level = VIDEO_LEVEL_10_H263;
 VideoCodecType1.ImageWidth = VIDEO_IMAGE_WIDTH_176;
 VideoCodecType1.ImageHeight = VIDEO_IMAGE_HEIGHT_144;
 VideoCodecType1.BitRate = (eVIDEO_BITRATE)0;
 VideoCodecType1.FramesPerSec = VIDEO_FRAMESPERSEC_15;
 VideoCodecType1.SamplingRate = VIDEO_SAMPLING_RATE_90000;
 VideoCodecType1.VisualConfigSize = 0;
 VideoCodecType1.VisualConfiguration = NULL;
Dialogic® Multimedia API Programming Guide and Library Reference 105

mm_Record() — record a synchronized media object
 MM_AUDIO_CODEC AudioCodecType1;
 INIT_MM_AUDIO_CODEC(&AudioCodecType1);
 AudioCodecType1.unCoding = MM_DATA_FORMAT_PCM;
 AudioCodecType1.unSampleRate = MM_DRT_8KHZ;
 AudioCodecType1.unBitsPerSample = 16;
 const char VideoFileName1[] = "/dir/file1.vid";
 const char AudioFileName1[] = "/dir/file3.aud";
 int cc;
 int xx;
 cc = 0;
 // Build Video Item 1

 INIT_MM_MEDIA_ITEM_LIST(&mediaitemlist1[cc]);

 INIT_MM_MEDIA_VIDEO(&mediaitemlist1[cc].item.video);
 mediaitemlist1[cc].ItemChain = EMM_ITEM_EOT;
 mediaitemlist2[cc].item.video.eFileFormat = EMM_FILE_FORMAT_PROPRIETARY;
 mediaitemlist1[cc].item.video.codec = VideoCodecType1;
 mediaitemlist1[cc].item.video.unMode = 0;
 mediaitemlist2[cc].item.audio.unOffset = 0;
 mediaitemlist1[cc].item.video.szFileName = VideoFileName1;

 mediaitemlist1[cc].item.video.unAccessMode=MM_MEDIA_ACCESS_MODE_FILE;
 cc++;
 xx = 0;
 // Add Video Items to the RecordList
 INIT_MM_PLAY_RECORD_LIST(&recordlist[xx]);
 recordlist[xx].ItemChain = EMM_ITEM_CONT;
 recordlist[xx].ItemType = EMM_MEDIA_TYPE_VIDEO;
 recordlist[xx].list = mediaitemlist1;
 xx++;
 cc = 0;
 // Build Audio Item 1

 INIT_MM_MEDIA_ITEM_LIST(&mediaitemlist2[cc]);

 INIT_MM_MEDIA_AUDIO(&mediaitemlist2[cc].item.audio);
 mediaitemlist2[cc].ItemChain = EMM_ITEM_EOT;
 mediaitemlist2[cc].item.audio.eFileFormat = EMM_AUD_FILEFORMAT_VOX;
 mediaitemlist2[cc].item.audio.codec = AudioCodecType1;
 mediaitemlist2[cc].item.audio.unMode = 0;
 mediaitemlist2[cc].item.audio.unOffset = 0;
 mediaitemlist2[cc].item.audio.szFileName = AudioFileName1;
 mediaitemlist2[cc].item.audio.unAccessMode-MM_MEDIA_ACCESS_MODE_FILE;
 cc++;
 // Add Audio Items to the PlayList
 INIT_MM_PLAY_RECORD_LIST(&recordlist[xx]);
 recordlist[xx].ItemChain = EMM_ITEM_EOT;
 recordlist[xx].ItemType = EMM_MEDIA_TYPE_AUDIO;
 recordlist[xx].list = mediaitemlist2;
 xx++;
 // Form Record Info
 INIT_MM_PLAY_RECORD_INFO(&record_info);
 record_info.list = recordlist;
 record_info.eFileFormat=EMM_FILE_FORMAT_UNDEFINED;

 MM_RUNTIME_CONTROL RTCList[3];
 int RTCItemCount = 0;

 //stop both audio and video recording 20 seconds after audio recording has started
 add_rtc_item(RTCList, &RTCItemCount, EMM_TERM_TIME_FROM_AUDIO_RECORD_STARTED, 20000,
 EMM_TA_AUDIO_VIDEO_STOP);

 //as a backup termination condition: stop both audio and video recording 30 seconds after
 the MMEV_RECORD_ACK event
 add_rtc_item(RTCList, &RTCItemCount, EMM_TERM_MAXTIME, 30000, EMM_TA_AUDIO_VIDEO_STOP);
106 Dialogic® Multimedia API Programming Guide and Library Reference

record a synchronized media object — mm_Record()
 // Initiate Record
 if (mm_Record(nDeviceHandle, &record_info, RTCList, NULL) == EMM_ERROR)
 {
 /* process error */
 }
}

See Also

• mm_Play()

• mm_Reset()

• mm_Stop()
Dialogic® Multimedia API Programming Guide and Library Reference 107

mm_Reset() — reset an open multimedia device
mm_Reset()

reset an open multimedia device

 Description

This function terminates all active media on the device and resets the device state to idle. All
previously set parameters are removed and the defaults are applied. The state of the device is
equivalent to the state after the device was first opened, except that mm_Reset() does not reset
any device connections made through the Dialogic® Device Management API.

If this function stops an operation that is in progress (i.e., busy), it generates a termination event
corresponding to the operation (e.g., MMEV_PLAY or MMEV_PLAY_FAIL) in addition to any
reset-specific events (MMEV_RESET_ACK, MMEV_RESET_ACK_FAIL, MMEV_RESET,
MMEV_RESET_FAIL). See Asynchronous Mode Events below.

 Asynchronous Mode Events

Use the Dialogic® Standard Runtime Library (SRL) functions to process the events. Use the
Dialogic® Multimedia API mm_GetMetaEvent() Event Information function to retrieve the event
information. Event data is indicated for the following events where applicable and can be obtained
through the MM_METAEVENT structure evtdatap field after calling the mm_GetMetaEvent()
function. The event data is valid only until the next mm_GetMetaEvent() is called. For more
information on these events, see Chapter 9, “Events”.

Name: int mm_Reset(nDeviceHandle, pReset, pUserInfo)

Inputs: int nDeviceHandle • valid SRL handle representing a multimedia device

CPMM_RESET pReset • set to NULL

void* pUserInfo • pointer to user-defined buffer

Returns: EMM_SUCCESS if successful
EMM_ERROR if failure

Includes: mmlib.h

Category: Input/Output

Mode: Asynchronous

Platform: Dialogic® PowerMedia™ HMP software

Parameter Description

nDeviceHandle specifies a valid multimedia device handle obtained from a previous open

pReset set to NULL; reserved for future use

pUserInfo points to user-defined buffer. See MM_METAEVENT evtUserInfo field.
108 Dialogic® Multimedia API Programming Guide and Library Reference

reset an open multimedia device — mm_Reset()
If the function returns EMM_SUCCESS, it can generate any of the following events:

MMEV_RESET_ACK
Initiation event reported upon successful start of the reset operation.

Event Data: MM_RESET_ACK structure (MM_RET_CODE)

MMEV_RESET_ACK_FAIL
Initiation failure termination event reported upon encountering an error before the reset
operation begins.

Event Data: MM_RESET_ACK structure (MM_RET_CODE)

MMEV_RESET
Termination event reported upon successful completion or successful termination of the reset
operation.

Event Data: MM_RESET_RESULT structure (MM_RET_CODE)

MMEV_RESET_FAIL
Operation failure termination event reported upon encountering an error during the reset
operation.

Event Data: MM_RESET_RESULT structure (MM_RET_CODE)

MMEV_PLAY
Termination event reported upon successful completion or successful termination of the play
operation.

Event Data: MM_PLAY_CMPLT structure (MM_PLAY_RECORD_CMPLT)

MMEV_PLAY_FAIL
Operation failure termination event reported upon encountering an error during the play
operation.

Event Data: MM_PLAY_CMPLT structure (MM_PLAY_RECORD_CMPLT)

Note: See Section 12.5, “Terminating and Non-Terminating Play/Record Errors”, on
page 239 for related information.

MMEV_RECORD
Termination event reported upon successful completion or successful termination of the record
operation.

Event Data: MM_RECORD_CMPLT structure (MM_PLAY_RECORD_CMPLT)

MMEV_RECORD_FAIL
Operation failure termination event indicating operation errors reported upon completion or
termination of the record operation. The record operation errors that can cause this failure
event are intermediate (non-terminating) errors.

Event Data: MM_RECORD_CMPLT structure (MM_PLAY_RECORD_CMPLT)

MMEV_ERROR
Unsolicited event reported upon encountering an unexpected failure.

Event Data: MM_ERROR_RESULT structure
Dialogic® Multimedia API Programming Guide and Library Reference 109

mm_Reset() — reset an open multimedia device
 Cautions

• If user information is passed in the mm_Reset() pUserInfo parameter, it only gets passed to
the metaevent data for the reset-specific events and not the media operation events, which can
have their own user information associated with them.

 Errors

If a Dialogic® Multimedia API function returns EMM_ERROR to indicate a failure, use the
mm_ErrorInfo() function to retrieve the reason for the error. If the function generates a failure
event, use the mm_GetMetaEvent() function to obtain the error information. See Chapter 12,
“Error Codes” for the function error codes and event information error return codes.

 Example

#include <mmlib.h>
int main(int argc, char* argv[])
{
 int nDeviceHandle; /* multimedia device handle */
 /*
 .
 .
 Main Processing
 .
 .
 */

 /*
 * Application is shutting down.
 * Need to close MM device handle.
 * ASSUMPTION: A valid nDeviceHandle was obtained from prior call to mm_Open().
 */
 if (mm_Reset(nDeviceHandle, NULL, NULL) == EMM_ERROR)
 {
 /* process error */
 }
}

 See Also

• mm_Open()

• mm_Close()
110 Dialogic® Multimedia API Programming Guide and Library Reference

retrieve current event information for multimedia events — mm_ResultInfo()
mm_ResultInfo()

retrieve current event information for multimedia events

 Description

This function retrieves error information for certain Dialogic® Multimedia API events. This
function uses a metaevent from the mm_GetMetaEvent() function as input and outputs the error
information in an MM_INFO structure.

The mmValue field of the MM_INFO structure provides an error code obtained internally by the
Standard Runtime Library (SRL) ATDV_LASTERR() function for the event to which the
pMetaEvent parameter points, and the mmMsg field provides a descriptive error message
obtained internally by the SRL ATDV_ERRMSGP() function. The additionalInfo field is not set.
For information on the SRL API, see the Standard Runtime Library API Library Reference.

To retrieve the correct information, the application must call mm_GetMetaEvent() and
mm_ResultInfo() immediately after the failure event arrives and before the next Dialogic®
Multimedia API event is requested, otherwise, the metaevent data may be outdated or invalid. For
a list of the error codes and messages returned in the MM_INFO structure, see Section 12.2,
“Dialogic® Multimedia API Function Error Codes”, on page 235.

 Cautions

• The lifetime of the strings pointed to by the MM_INFO data structure is from the time the
mm_ResultInfo() function returns to the time the next event is requested.

Name: int mm_ResultInfo(pMetaEvent, pInfo)

Inputs: MM_METAEVENT pMetaEvent • pointer to the MM_METAEVENT structure containing the
metaevent data used as input

PMM_INFO pInfo • pointer to the MM_INFO data structure where error
information about the event is output

Returns: EMM_SUCCESS if successful
EMM_ERROR if failure

Includes: mmlib.h

Category: Event Information

Mode: Synchronous

Platform: Dialogic® HMP software

Parameter Description

pMetaEvent points to the MM_METAEVENT structure containing the metaevent data
used as input which was acquired by mm_GetMetaEvent() for the event

pInfo points to the MM_INFO structure where error information about the event
is output
Dialogic® Multimedia API Programming Guide and Library Reference 111

mm_ResultInfo() — retrieve current event information for multimedia events
 Errors

If the mm_ResultInfo() function fails, error analysis should not be done by calling the
mm_ErrorInfo() function. A failure return generally indicates invalid parameters or that pInfo is
NULL.

 Example

MM_METAEVENT metaevent;
INIT_MM_METAEVENT(&metaevent);
if (sr_waitevt(timeout) != -1)
{
 if (mm_GetMetaEvent(&metaevent) == EMM_ERROR)
 {
 /* get and process the error */
 }

 switch(metaevent.evttype)
 {
 /* Process Error Events */
 case MMEV_PLAY_FAIL:
 case MMEV_RECORD_FAIL:

 /* Get error associated with failure events */
 mm_ResultInfo(&mmMetaEvent, &mmInfo);
 printf("ERROR: 0x%X, ERROR MESSAGE: %s\n", mmInfo.mmValue, mmInfo.mmMsg);

 break;
 }
}

 See Also

• None.
112 Dialogic® Multimedia API Programming Guide and Library Reference

resume current presentation — mm_Resume()
mm_Resume()

resume current presentation

 Description

The mm_Resume() function resumes playing a multimedia stream that was previously paused.

 Asynchronous Mode Events

Use the Dialogic® Standard Runtime Library (SRL) functions to process the events. Use the
Dialogic® Multimedia API mm_GetMetaEvent() Event Information function to retrieve the event
information. Event data is indicated for the following events where applicable and can be obtained
through the MM_METAEVENT structure evtdatap field after calling the mm_GetMetaEvent()
function. The event data is valid only until the next mm_GetMetaEvent() is called. For more
information on these events, see Chapter 9, “Events”.

If the function returns EMM_SUCCESS, it can generate any of the following events:

MMEV_RESUME
Termination event reported upon successfully resuming play.

Event Data: MM_RESUME_PLAY_CMPLT structure

MMEV_RESUME_FAIL
Termination event reported upon encountering an error while attempting to resume play.

Event Data: MM_RESUME_PLAY_CMPLT structure

Name: int mm_Resume(nDeviceHandle,pResumeInfo,* pUserInfo)

Inputs: int nDeviceHandle • Multimedia device handle

CPMM_RESUME_INFO
pResumeInfo

• pointer to details of the resume request

void* pUserInfo • pointer to user-defined data

Returns: EMM_SUCCESS if successful
EMM_ERROR if failure

Includes: mmlib.h

Category: DVR Control

Mode: Asynchronous

Platform: Dialogic® PowerMedia™ HMP software

Parameter Description

nDeviceHandle valid SRL handle representing a multimedia device

pResumeInfo specifies a pointer to the MM_RESUME_INFO structure that contains the
details of the resume request

 pUserInfo points to user-defined buffer. See MM_METAEVENT evtUserInfo field.
Dialogic® Multimedia API Programming Guide and Library Reference 113

mm_Resume() — resume current presentation
 Cautions

• This function should only be called on multimedia streams that are currently paused.
Otherwise, an error will occur.

• mm_Resume() is only valid during the period of time between the MMEV_PLAY_ACK
event and the MMEV_PLAY event for the requested stream type. See MM_RESUME_INFO
for more information.

• mm_Resume() is only supported for multimedia that is playing in file I/O mode (when
unAccessMode is set to MM_MEDIA_ACCESS_MODE_FILE in mm_Play()) and not in
memory I/O or stream I/O mode.

• mm_Resume() is only supported for files in the Dialogic® proprietary file format – when
eFileFormat is set to EMM_FILE_FORMAT_PROPRIETARY or
EMM_AUD_FILEFORMAT_PROPRIETARY in mm_Play().

• In an audiovideo playback, if the playback is synchronous (both audio and video play is
initiated by a single mm_Play() function call), BOTH the audio and video streams will be
resumed, regardless of the unStreamType setting in MM_RESUME_INFO. This allows
synchronization to be maintained.

 Errors

If a Dialogic® Multimedia API function returns EMM_ERROR to indicate a failure, use the
mm_ErrorInfo() function to retrieve the reason for the error. If the function generates a failure
event, use the mm_GetMetaEvent() function to obtain the error information. See Chapter 12,
“Error Codes” for the function error codes and event information error return codes.

 Example

For an example of using the mm_Resume() function, refer to the Example section for
mm_Pause().

 See Also

None.
114 Dialogic® Multimedia API Programming Guide and Library Reference

place current presentation at the specified position — mm_Seek()
mm_Seek()

place current presentation at the specified position

 Description

The mm_Seek() function sets the play position in a multimedia stream that is currently playing.
For a video stream, the play position will be moved to the I-frame nearest (before or after) the
indicated location.

 Asynchronous Mode Events

Use the Dialogic® Standard Runtime Library (SRL) functions to process the events. Use the
Dialogic® Multimedia API mm_GetMetaEvent() Event Information function to retrieve the event
information. Event data is indicated for the following events where applicable and can be obtained
through the MM_METAEVENT structure evtdatap field after calling the mm_GetMetaEvent()
function. The event data is valid only until the next mm_GetMetaEvent() is called. For more
information on these events, see Chapter 9, “Events”.

If the function returns EMM_SUCCESS, it can generate any of the following events:

MMEV_SEEK
Termination event reported upon successfully setting the requested seek position.

Event Data: MM_SEEK_CMPLT structure

Name: int mm_Seek(nDeviceHandle, pSeekInfo, * pUserInfo)

Inputs: int nDeviceHandle • Multimedia device handle

CPMM_SEEK_INFO pSeekInfo • pointer to details of the seek request

void* pUserInfo • pointer to user-defined data

Returns: EMM_SUCCESS if successful
EMM_ERROR if failure

Includes: mmlib.h

Category: DVR Control

Mode: Asynchronous

Platform: Dialogic® PowerMedia™ HMP software

Parameter Description

nDeviceHandle valid SRL handle representing a multimedia device

pSeekInfo pointer to the MM_SEEK_INFO structure that contains the details of the
request

 pUserInfo points to user-defined buffer. See MM_METAEVENT evtUserInfo field.
Dialogic® Multimedia API Programming Guide and Library Reference 115

mm_Seek() — place current presentation at the specified position
MMEV_SEEK_FAIL
Termination event reported upon encountering an error while attempting to set the requested
seek position.

Event Data: MM_SEEK_CMPLT structure

 Cautions

• If the video being played has significant time gaps between I-frames, the play position may be
moved to a location that is significantly different from the requested position since the nearest
I-frame could potentially be far from the requested position.

• Ensure that the unOffset field in MM_SEEK_INFO is set to a value that will not cause the seek
position to go beyond the bounds of the file. Otherwise, an error will occur. For example, for a
four second file if the application requests a seek position five seconds from the beginning of
the file (unOrigin= EMM_SEEK_SET and nOffset=5000), an error will occur since it would
be one second beyond the end of the file. Similarly, if we are currently two seconds from the
beginning of the file and the application requests a seek position minus seven seconds from the
current location (unOrigin= EMM_SEEK_CUR and nOffset=-7000), an error will occur since
that would place the seek position five seconds before the start of the file.

• If mm_Seek() is called on a stream that is currently paused, the multimedia will begin playing
from the requested seek position only upon resuming the play.

• mm_Seek() will only be valid during the period of time between the MMEV_PLAY_ACK
event and the MMEV_PLAY event for the requested stream type. See MM_SEEK_INFO for
more information.

• mm_Seek() is only supported for multimedia that is playing in file I/O mode (when
unAccessMode is set to MM_MEDIA_ACCESS_MODE_FILE in mm_Play()) and not in
memory I/O or stream I/O mode.

• mm_Seek() is only supported for files in the Dialogic® proprietary file format – when
eFileFormat is set to EMM_FILE_FORMAT_PROPRIETARY or
EMM_AUD_FILEFORMAT_PROPRIETARY in mm_Play().

• In an audiovideo playback, if the playback is synchronous (both audio and video play is
initiated by a single mm_Play() function call), BOTH the audio and video stream play
positions will be moved, regardless of the unStreamType setting in MM_SEEK_INFO. This
allows synchronization to be maintained.

 Errors

If a Dialogic® Multimedia API function returns EMM_ERROR to indicate a failure, use the
mm_ErrorInfo() function to retrieve the reason for the error. If the function generates a failure
event, use the mm_GetMetaEvent() function to obtain the error information. See Chapter 12,
“Error Codes” for the function error codes and event information error return codes.

 Example

For an example of using the mm_Seek() function, refer to the Example section for mm_Pause().

 See Also

None.
116 Dialogic® Multimedia API Programming Guide and Library Reference

set the configuration parameters — mm_SetParm()
mm_SetParm()

set the configuration parameters

 Description

This function sets the value of the specified configuration parameters. Parameters that are set
remain in effect even after an mm_Close(). However, an mm_Reset() will reset all parameters to
their default values.

Use the INIT_MM_SET_PARM() function to initialize the MM_SET_PARM structure.

 Asynchronous Mode Events

Use the Dialogic® Standard Runtime Library (SRL) functions to process the events. Use the
Dialogic® Multimedia API mm_GetMetaEvent() Event Information function to retrieve the event
information. Event data is indicated for the following events where applicable and can be obtained
through the MM_METAEVENT structure evtdatap field after calling the mm_GetMetaEvent()
function. The event data is valid only until the next mm_GetMetaEvent() is called. For more
information on these events, see Chapter 9, “Events”.

If the function returns EMM_SUCCESS, it can generate any of the following events:

MMEV_SETPARM
Termination event reported upon successful completion of the function.

Event Data: MM_SET_PARM_RESULT structure (MM_RET_CODE)

Name: int mm_SetParm(nDeviceHandle, pSetParm, pUserInfo)

Inputs: int nDeviceHandle • valid SRL handle representing a multimedia device

CPMM_SET_PARM pSetParm • pointer to set parameters information structure

void* pUserInfo • pointer to user-defined buffer

Returns: EMM_SUCCESS if successful
EMM_ERROR if failure

Includes: mmlib.h

Category: Configuration

Mode: Asynchronous

Platform: Dialogic® PowerMedia™ HMP software

Parameter Description

nDeviceHandle specifies a valid multimedia device handle obtained from a previous open

pSetParm points to MM_SET_PARM structure

pUserInfo points to user-defined buffer. See MM_METAEVENT evtUserInfo field.
Dialogic® Multimedia API Programming Guide and Library Reference 117

mm_SetParm() — set the configuration parameters
MMEV_SETPARM_FAIL
Operation failure termination event reported upon encountering an error during the operation.

Event Data: MM_SET_PARM_RESULT structure (MM_RET_CODE)

MMEV_ERROR
Unsolicited event reported upon encountering an unexpected failure.

Event Data: MM_ERROR_RESULT structure

 Cautions

None.

 Errors

If a Dialogic® Multimedia API function returns EMM_ERROR to indicate a failure, use the
mm_ErrorInfo() function to retrieve the reason for the error. If the function generates a failure
event, use the mm_GetMetaEvent() function to obtain the error information. See Chapter 12,
“Error Codes” for the function error codes and event information error return codes.

 Example

#include <mmlib.h>
int main(int argc, char* argv[])
{
 /* . . . */
 /*
 * ASSUMPTION: A valid nDeviceHandle was obtained from prior call to mm_Open().
 */
 MM_SET_PARM parm;
 INIT_MM_SET_PARM(&parm);
 parm.eParm = MM_PARM_REC_IFRAME_TIMEOUT;
 parm.unParmValue = 2222;
 if (mm_SetParm(nDeviceHandle, &parm, NULL) == EMM_ERROR)
 {
 /* process error */}
 }
}

 See Also

• mm_GetParm()

• mm_Reset()
118 Dialogic® Multimedia API Programming Guide and Library Reference

stop the device operations — mm_Stop()
mm_Stop()

stop the device operations

 Description

This function forces termination of specified multimedia I/O functions or operations on a channel.
For example, this function can stop selected mm_Play() or mm_Record() operations (items)
such as a video play, video record, audio play, and audio record. The operation or item type is
specified in the MM_STOP structure. To stop all types of multimedia I/O operations on the
channel, you must specify each item.

Use the INIT_MM_STOP() function to initialize the MM_STOP structure.

If a specified operation (item) is not currently active on the channel, the function completes
successfully for that operation but has no effect. If all possible operations are successfully stopped
on a channel that is busy, it forces the channel to become idle. If the channel is already idle, it
completes successfully but has no effect.

Regardless of whether the function stops an operation that is idle or in progress (i.e., busy), it
generates an MM_STOP_ACK event to indicate successful initiation. If there are no busy
operations, this is the only event generated. However, if a busy operation is stopped, it generates a
corresponding event (e.g., MMEV_PLAY or MMEV_PLAY_FAIL) in addition to any stop-
specific events (MMEV_STOP_ACK or MMEV_STOP_ACK_FAIL). See Asynchronous Mode
Events below.

If the application program stops a selected media type (e.g., ItemType
EMM_STOP_VIDEO_PLAY), it will receive an MMEV_PLAY event upon completion of the
stop and the rest of the media types (if any; e.g., audio play) will continue to play until termination

Name: int mm_Stop(nDeviceHandle, pStop, pUserInfo)

Inputs: int nDeviceHandle • valid SRL handle representing a multimedia device

CPMM_STOP pStop • pointer to stop information structure

void* pUserInfo • pointer to user-defined buffer

Returns: EMM_SUCCESS if successful
EMM_ERROR if failure

Includes: mmlib.h

Category: Input/Output

Mode: Asynchronous

Platform: Dialogic® PowerMedia™ HMP software

Parameter Description

nDeviceHandle specifies a valid multimedia device handle obtained from a previous open

pStop points to MM_STOP structure

pUserInfo points to user-defined buffer. See MM_METAEVENT evtUserInfo field.
Dialogic® Multimedia API Programming Guide and Library Reference 119

mm_Stop() — stop the device operations
or completion of the play, at which time, it will generate another MMEV_PLAY event. Therefore,
it is possible to receive multiple MMEV_PLAY events resulting from one mm_Play() function.

Similarly, if the program stops a selected recording media type (e.g., ItemType
EMM_STOP_VIDEO_RECORD), it will receive an MMEV_RECORD event upon completion of
the stop, and the rest of the media types (if any; e.g., audio record) will continue to record until
termination or completion, at which time, it will generate another MMEV_RECORD event.
Therefore, it is possible to receive multiple MMEV_RECORD events resulting from one
mm_Record() function.

If an error is encountered for any of the selected stop items, none of the operations will be stopped
(no matter where in the list the error occurred). To identify which item caused the error, use the
MM_STOP_ACK and MM_STOP_ACK_DETAILS event information structures associated with
the MMEV_STOP_ACK_FAIL event. The MM_STOP_ACK_DETAILS structure gives the item
type and the error return code for each item specified in MM_STOP. An EMMRC_OK error return
code indicates that no error occurred for that particular operation.

 Asynchronous Mode Events

Use the Dialogic® Standard Runtime Library (SRL) functions to process the events. Use the
Dialogic® Multimedia API mm_GetMetaEvent() Event Information function to retrieve the event
information. Event data is indicated for the following events where applicable and can be obtained
through the MM_METAEVENT structure evtdatap field after calling the mm_GetMetaEvent()
function. The event data is valid only until the next mm_GetMetaEvent() is called. For more
information on these events, see Chapter 9, “Events”.

If the function returns EMM_SUCCESS, it can generate any of the following events:

MMEV_STOP_ACK
Initiation event reported upon successful start of the stop operation.

Event Data: MM_STOP_ACK structure

MMEV_STOP_ACK_FAIL
Initiation failure termination event reported upon encountering an error before the stop
operation begins.

Event Data: MM_STOP_ACK structure

MMEV_PLAY
Termination event reported upon successful completion or successful termination of the play
operation.

Event Data: MM_PLAY_CMPLT structure (MM_PLAY_RECORD_CMPLT)

MMEV_PLAY_FAIL
Operation failure termination event reported upon encountering an error during the play
operation.

Event Data: MM_PLAY_CMPLT structure (MM_PLAY_RECORD_CMPLT)

Note: See Section 12.5, “Terminating and Non-Terminating Play/Record Errors”, on
page 239 for related information.
120 Dialogic® Multimedia API Programming Guide and Library Reference

stop the device operations — mm_Stop()
MMEV_RECORD
Termination event reported upon successful completion or successful termination of the record
operation.

Event Data: MM_RECORD_CMPLT structure (MM_PLAY_RECORD_CMPLT)

MMEV_RECORD_FAIL
Operation failure termination event indicating operation errors reported upon completion or
termination of the record operation. The record operation errors that can cause this failure
event are intermediate (non-terminating) errors.

Event Data: MM_RECORD_CMPLT structure (MM_PLAY_RECORD_CMPLT)

MMEV_ERROR
Unsolicited event reported upon encountering an unexpected failure.

Event Data: MM_ERROR_RESULT structure

 Cautions

• If there are no busy operations, the MM_STOP_ACK event (indicating successful initiation) is
the only event generated.

• If user information is passed in the mm_Stop() pUserInfo parameter, it only gets passed to
the metaevent data for the stop-specific events. It does not get passed to the media operation
events, which can have their own user information associated with them.

 Errors

If a Dialogic® Multimedia API function returns EMM_ERROR to indicate a failure, use the
mm_ErrorInfo() function to retrieve the reason for the error. If the function generates a failure
event, use the mm_GetMetaEvent() function to obtain the error information. See Chapter 12,
“Error Codes” for the function error codes and event information error return codes.

 Example

#include <mmlib.h>
 int main(int argc, char* argv[])
{
 /* . . . */
 /*
 * ASSUMPTION: A valid nDeviceHandle was obtained from prior call to mm_Open().
 */
 MM_STOP stop_info[4];
 INIT_MM_STOP(&stop_info[0]);
 stop_info[0].ItemChain = EMM_ITEM_CONT;
 stop_info[0].ItemType = EMM_STOP_VIDEO_PLAY;
 INIT_MM_STOP(&stop_info[1]);
 stop_info[1].ItemChain = EMM_ITEM_CONT;
 stop_info[1].ItemType = EMM_STOP_VIDEO_RECORD;
 INIT_MM_STOP(&stop_info[2]);
 stop_info[2].ItemChain = EMM_ITEM_CONT;
 stop_info[2].ItemType = EMM_STOP_AUDIO_PLAY;
 INIT_MM_STOP(&stop_info[3]);
 stop_info[3].ItemChain = EMM_ITEM_EOT;
 stop_info[3].ItemType = EMM_STOP_AUDIO_RECORD;
 if (mm_Stop(nDeviceHandle, stop_info, NULL) == EMM_ERROR)
 {
 /* process error */
 }
}

Dialogic® Multimedia API Programming Guide and Library Reference 121

mm_Stop() — stop the device operations
 See Also

• mm_Play()

• mm_Record()

• mm_Reset()
122 Dialogic® Multimedia API Programming Guide and Library Reference

close a media stream — mm_StreamClose()
mm_StreamClose()

close a media stream

 Description

The mm_StreamClose() function closes a previously opened media stream.

 Cautions

None.

 Errors

If a Dialogic® Multimedia API function returns EMM_ERROR to indicate a failure, use the
mm_ErrorInfo() function to retrieve the reason for the error. If the function generates a failure
event, use the mm_GetMetaEvent() function to obtain the error information. See Chapter 12,
“Error Codes” for the function error codes and event information error return codes.

 Example

#include <stdio.h>
#include <mmlib.h>

#define DATASIZE 100

int recStreamHandle;
int playStreamHandle;
int nDeviceHandle; /* Multimedia device handle */

int main(void)
{
 MM_STREAM_OPEN_INFO streamOpenInfo;
 MM_STREAM_WATERMARK_INFO streamWaterMarkInfo;
 MM_RUNTIME_CONTROL runtimeControl;
 MM_MEDIA_ITEM_LIST mediaitemlist[1];
 MM_PLAY_INFO playInfo;
 MM_RECORD_INFO recordInfo;

Name: int mm_StreamClose (unStreamHandle)

Inputs: int nStreamHandle • stream device handle

Returns: EMM_SUCCESS if successful
EMM_ERROR if failure

Includes: mmlib.h

Category: Media Streaming

Mode: Synchronous

Platform: Dialogic® PowerMedia™ HMP Software

Parameter Description

nStreamHandle the stream device handle returned by mm_StreamOpen()
Dialogic® Multimedia API Programming Guide and Library Reference 123

mm_StreamClose() — close a media stream
 /* Main Processing
 .
 .
 .
 */

 //Open stream for video play
 INIT_MM_STREAM_OPEN_INFO(&streamOpenInfo);
 streamOpenInfo.unBufferSize = 1024;
 streamOpenInfo.BufferMode = EMM_SM_WRITE;

 playStreamHandle = mm_StreamOpen (&streamOpenInfo, NULL);
 if(playStreamHandle < 0)
 {
 /* process error */
 }

 //Open stream for video record
 streamOpenInfo.BufferMode = EMM_SM_READ;
 recStreamHandle = mm_StreamOpen (&streamOpenInfo, NULL);
 if(recStreamHandle < 0)
 {
 /* process error */
 }

 //Reset stream stats
 if (mm_StreamReset(playStreamHandle) == EMM_ERROR)
 {
 /* process error */
 }
 if (mm_StreamReset(recStreamHandle) == EMM_ERROR)
 {
 /* process error */
 }

 MM_STREAM_STAT recStreamStat;
 MM_STREAM_STAT playStreamStat;

 INIT_MM_STREAM_STAT(&recStreamStat);
 INIT_MM_STREAM_STAT(&playStreamStat);
 if (mm_StreamGetStat(playStreamHandle, &playStreamStat) == EMM_ERROR)
 {
 /* process error */
 }
 if (mm_StreamGetStat(recStreamHandle, &recStreamStat) == EMM_ERROR)
 {
 /* process error */
 }

 //Set low watermark level for video play stream to at least 20%
 if (playStreamStat.unLowWaterMark < (0.2 * playStreamStat.unBufferSize))
 {

 INIT_MM_STREAM_WATERMARK_INFO(&streamWaterMarkInfo);
 streamWaterMarkInfo.Level = EMM_WM_LOW;
 streamWaterMarkInfo.unValue = (unsigned int) (0.2 *
 playStreamStat.unBufferSize);

 if (mm_StreamSetWaterMark (playStreamHandle, &streamWaterMarkInfo) ==
 EMM_ERROR)
 {
 /* process error */
 }

 }
 //Set high watermark level for video record stream no higher than 80%
124 Dialogic® Multimedia API Programming Guide and Library Reference

close a media stream — mm_StreamClose()
 if (recStreamStat.unHighWaterMark > (0.8 * recStreamStat.unBufferSize))
 {
 INIT_MM_STREAM_WATERMARK_INFO(&streamWaterMarkInfo);
 streamWaterMarkInfo.Level = EMM_WM_HIGH;
 streamWaterMarkInfo.unValue = (unsigned int) (0.8 * recStreamStat.unBufferSize);
 if (mm_StreamSetWaterMark (recStreamHandle, &streamWaterMarkInfo) == EMM_ERROR)
 {
 /* process error */
 }
 }

 // Open multimedia device handle
 nDeviceHandle = mm_Open("mmB1C1", NULL, NULL);

 INIT_MM_MEDIA_VIDEO(&mediaitemlist[0].item.video);
 mediaitemlist[0].item.video.unAccessMode = MM_MEDIA_ACCESS_MODE_STREAM;
 mediaitemlist[0].item.video.stream.nStreamHandle = playStreamHandle;

 /* Setting up the rest of playInfo
 .
 .
 .
 */

 //Play video stream
 if (mm_Play(nDeviceHandle, &playInfo, NULL, NULL) == EMM_ERROR)
 {
 /* process error */
 }

 INIT_MM_MEDIA_VIDEO(&mediaitemlist[0].item.video);
 mediaitemlist[0].item.video.unAccessMode = MM_MEDIA_ACCESS_MODE_STREAM;
 mediaitemlist[0].item.video.stream.nStreamHandle = recStreamHandle;

 /* Setting up the rest of recordInfo
 .
 .
 .
 */

 INIT_MM_RUNTIME_CONTROL(&runtimeControl);
 runtimeControl.Reason = EMM_TERM_MAXTIME;
 runtimeControl.unValue = 100;
 runtimeControl.Action = EMM_TA_VIDEO_STOP;
 runtimeControl.next = NULL;

 //Record video stream
 if (mm_Record(nDeviceHandle, &recordInfo, &runtimeControl, NULL) == EMM_ERROR)
 {
 /* process error */
 }

 /* Application shutdown
 .
 .
 .
 */
 //Close video play & record streams
 mm_StreamClose (playStreamHandle);
 mm_StreamClose (recStreamHandle);

 //Close multimedia device
 mm_Close (nDeviceHandle, NULL);
 }

 int SRL_EventHandler(...)
Dialogic® Multimedia API Programming Guide and Library Reference 125

mm_StreamClose() — close a media stream
{
 int rc;
 int eventType;
 unsigned char *pData;
 unsigned int dataSize;
 unsigned char recordData[DATASIZE];
 unsigned int EndFlag = MM_FLAG_STREAM_CONT;
 /* Retrieve SRL event information
 .
 .
 .
 */

 switch(eventType)
 {
 /* Process other events
 .
 .
 .
 */

 //Take action (write more data to stream) if video play stream hits low watermark
 case MMEV_PLAY_VIDEO_LOWWATER:
 rc = EMM_SUCCESS;
 while ((rc != EMM_STREAM_FULL) && (rc != EMM_ERROR))
 {
 /* Get dataSize bytes from storage
 .
 .
 .
 */
 /* Set EndFlag to MM_FLAG_STREAM_EOD if last block of data
 .
 .
 .
 */
 rc = mm_StreamWrite(playStreamHandle, pData, dataSize, EndFlag);
 if (rc == EMM_ERROR)
 {
 /* process error */
 }
 } /* end while */
 break;

 case MMEV_RECORD_VIDEO_HIGHWATER:
 //Take action (read data out of stream) if video record stream
 //hits high watermark
 rc = EMM_SUCCESS;
 while ((EndFlag != MM_FLAG_STREAM_EOD) && (rc != EMM_ERROR)){
 dataSize = DATASIZE;
 rc = mm_StreamRead(recStreamHandle, recordData, &dataSize, &EndFlag);
 if (rc == EMM_ERROR){
 /* process error */
 }
 else if (rc != EMM_STREAM_EMPTY) {
 /* Save dataSize bytes to storage
 .
 .
 .
 */
 }
 /* If rc == EMM_STREAM_EMPTY then the application has two options:
 *
 * Option 1: Ignore EMM_STREAM_EMPTY status and continue polling the
 * stream for data until then continue polling the stream for the data
 * until EndFlag is set to MM_FLAG_STREAM_EOD.
 *
126 Dialogic® Multimedia API Programming Guide and Library Reference

close a media stream — mm_StreamClose()
 * Option 2: Exit this loop logic and wait until MMEV_RECORD_VIDEO_HIGHWATER
 * or MMEV_RECORD_VIDEO_EOD event is received. Once one of these events is
 * the application should start reading the stream again.
 *
 * Using the combination of MMEV_RECORD_VIDEO_HIGHWATER and MMEV_RECORD_VIDEO_EOD
 * events allows the application to be written to be completely event driven
 * and eliminate the need for stream polling.
 */
 } /* end while */
 break;

 case MMEV_RECORD_VIDEO_EOD:
 //Take action (read data out of stream) if video record stream indicates
 //end of data (EOD)
 /* When EOD event is received it is guaranteed that the mm_StreamRead()
 * will not return EMM_STREAM_EMPTY status until EndFlag is set to
 * MM_FLAG_STREAM_EOD.
 */

 rc = EMM_SUCCESS;
 while ((EndFlag != MM_FLAG_STREAM_EOD) && (rc != EMM_ERROR)) {
 dataSize = DATASIZE;
 rc = mm_StreamRead(recStreamHandle, recordData, &dataSize, &EndFlag);
 if (rc == EMM_ERROR) {
 /* process error */
 }
 /* Save dataSize bytes to storage
 .
 .
 .
 */
 } /* end while */
 break;

 } /* end switch */

} /* end SRL_EventHandler */

 See Also

• mm_StreamOpen()

• mm_StreamSetWaterMark()
Dialogic® Multimedia API Programming Guide and Library Reference 127

128 Dialogic® Multimedia API Programming Guide and Library Reference

mm_StreamGetStat() — get media stream statistics

mm_StreamGetStat()

get media stream statistics

 Description

The mm_StreamGetStat() function allows to retrieve internal stream statistics.

Use the INIT_MM_STREAM_STAT() inline function to initialize the MM_STREAM_STAT
structure.

 Cautions

None.

 Errors

If a Dialogic® Multimedia API function returns EMM_ERROR to indicate a failure, use the
mm_ErrorInfo() function to retrieve the reason for the error. If the function generates a failure
event, use the mm_GetMetaEvent() function to obtain the error information. See Chapter 12,
“Error Codes” for the function error codes and event information error return codes.

 Example

Refer to the Example section for mm_StreamClose().

 See Also

None.

Name: int mm_StreamGetStat (unStreamHandle, pStreamStat)

Inputs: int nStreamHandle • stream device handle

PMM_STREAM_STAT
pStreamStat

• internal stream buffer statistics

Returns: EMM_SUCCESS if successful
EMM_ERROR if failure

Includes: mmlib.h

Category: Media Streaming

Mode: Synchronous

Platform: Dialogic® PowerMedia™ HMP software

Parameter Description

nStreamHandle the stream device handle returned by mm_StreamOpen()

pStreamStat points to the MM_STREAM_STAT structure, which displays the internal
stream buffer statistics

open a media stream — mm_StreamOpen()
mm_StreamOpen()

open a media stream

 Description

The mm_StreamOpen() function creates a media stream to use with the mm_Play() and
mm_Record() functions.

Use the INIT_MM_STREAM_OPEN_INFO() function to initialize the
MM_STREAM_OPEN_INFO structure.

 Cautions

The stream device handle returned by mm_StreamOpen() is not an SRL handle and cannot be
used in sr_setparm. Thus, the SR_USERCONTEXT (if any) associated with events such as
MMEV_RECORD_VIDEO_HIGHWATER will be the one associated with the device that is
playing or recording, rather than the stream itself.

 Errors

If a Dialogic® Multimedia API function returns EMM_ERROR to indicate a failure, use the
mm_ErrorInfo() function to retrieve the reason for the error. If the function generates a failure
event, use the mm_GetMetaEvent() function to obtain the error information. See Chapter 12,
“Error Codes” for the function error codes and event information error return codes.

 Example

Refer to the Example section for mm_StreamClose().

Name: int mm_StreamOpen (pStreamOpenInfo, pUserInfo)

Inputs: CPMM_STREAM_OPEN_INFO
pStreamOpenInfo

• pointer to stream open parameter structure

void *pUserInfo • set to NULL

Returns: Stream device handle if successful
EMM_ERROR if failure

Includes: mmlib.h

Category: Media Streaming

Mode: Synchronous; streaming flow control is performed asynchronously

Platform: Dialogic® PowerMedia™ HMP software

Parameter Description

pStreamOpenInfo points to MM_STREAM_OPEN_INFO structure

pUserInfo set to NULL; reserved for future use
Dialogic® Multimedia API Programming Guide and Library Reference 129

mm_StreamOpen() — open a media stream
 See Also

• mm_StreamClose()

• mm_StreamSetWaterMark()
130 Dialogic® Multimedia API Programming Guide and Library Reference

read from a media stream — mm_StreamRead()
mm_StreamRead()

read from a media stream

 Description

The mm_StreamRead() function reads data from the selected media stream. This function is used
to stream data for a multimedia record operation.

 Events

If the function returns EMM_SUCCESS, it can generate any of the following events:

MMEV_RECORD_AUDIO_EOD
Optional notification event (disabled by default). Indicates that the last data byte was inserted
into the video streaming buffer. The data can be read, using mm_StreamRead(), until a
returned *pEndFlag value is set to MM_FLAG_STREAM_EOD.

MMEV_RECORD_AUDIO_LOWWATER
Audio streaming buffer reached its low watermark. Data can be read until the return code is
EMM_STREAM_EMPTY or returned *pEndFlag value is set to
MM_FLAG_STREAM_EOD .

Name: int mm_StreamRead (unStreamHandle, pData, pDataSize, pEndFlag)

Inputs: int nStreamHandle • stream device handle

unsigned char *pData • pointer to a block of data

unsigned int *pDataSize • pointer to size of data block

unsigned int *pEndFlag • pointer to end flag

Returns: EMM_SUCCESS if successful
EMM_ERROR if failure
EMM_STREAM_EMPTY if stream is empty

Includes: mmlib.h

Category: Media Streaming

Mode: Synchronous only

Platform: Dialogic® PowerMedia™ HMP software

Parameter Description

nStreamHandle the stream device handle returned by mm_StreamOpen()

pData points to a block of data allocated by the application. Data that is read
from the stream will be placed into this block.

pDataSize this is an input/output parameter. The application sets this parameter to
indicate the number of bytes to read from the media stream. When the
function returns, this parameter will be modified to indicate the actual
number of bytes read from the media stream.

pEndFlag points to end flag. When the function returns, *pEndFlag will be set to
either MM_FLAG_STREAM_EOD for last block of data or
MM_FLAG_STREAM_CONT otherwise.
Dialogic® Multimedia API Programming Guide and Library Reference 131

mm_StreamRead() — read from a media stream
MMEV_RECORD_AUDIO_HIGHWATER
Audio streaming buffer reached its high watermark; data must be read as soon as possible from
the specified stream to avoid an overrun condition. Data can be read until the return code is
EMM_STREAM_EMPTY or returned *pEndFlag value is set to
MM_FLAG_STREAM_EOD.

MMEV_RECORD_VIDEO_EOD
Optional notification event (disabled by default). Indicates that the last data byte was inserted
into the video streaming buffer. The data can be read, using mm_StreamRead(), until a
returned *pEndFlag value is set to MM_FLAG_STREAM_EOD.

MMEV_RECORD_VIDEO_LOWWATER
Video streaming buffer reached its low watermark. Data can be read until the return code is
EMM_STREAM_EMPTY or returned *pEndFlag value is set to
MM_FLAG_STREAM_EOD.

MMEV_RECORD_VIDEO_HIGHWATER
Video streaming buffer reached its high watermark; data must be read as soon as possible from
the specified stream to avoid an overrun condition. Data can be read until the return code is
EMM_STREAM_EMPTY or returned *pEndFlag value is set to
MM_FLAG_STREAM_EOD.

 Cautions

• The specified media stream has to be opened for read access mode (EMM_SM_READ).

• The events for this function can arrive in any order.

• To flush the stream buffer after mm_Record() completes, check the pEndFlag parameter or
the return value of the function.

• The application must ensure that the amount of data requested, pDataSize, does not exceed the
size of the data block pointed to by pData.

 Errors

If a Dialogic® Multimedia API function returns EMM_ERROR to indicate a failure, use the
mm_ErrorInfo() function to retrieve the reason for the error. If the function generates a failure
event, use the mm_GetMetaEvent() function to obtain the error information. See Chapter 12,
“Error Codes” for the function error codes and event information error return codes.

 Example

Refer to the Example section for mm_StreamClose().

 See Also

None.
132 Dialogic® Multimedia API Programming Guide and Library Reference

Dialogic® Multimedia API Programming Guide and Library Reference 133

reset a media stream — mm_StreamReset()

mm_StreamReset()

reset a media stream

 Description

The mm_StreamReset() function resets a previously opened media stream. As a result of calling
this function, the read/write pointers are set to the beginning of the buffer. Also, the buffer content
and the collected metrics are reset to zero.

Note: The mm_StreamReset() function does not reset the stream watermark.

 Cautions

None.

 Errors

If a Dialogic® Multimedia API function returns EMM_ERROR to indicate a failure, use the
mm_ErrorInfo() function to retrieve the reason for the error. If the function generates a failure
event, use the mm_GetMetaEvent() function to obtain the error information. See Chapter 12,
“Error Codes” for the function error codes and event information error return codes.

 Example

Refer to the Example section for mm_StreamClose().

 See Also

None.

Name: int mm_StreamReset (unStreamHandle)

Inputs: int nStreamHandle • stream device handle

Returns: EMM_SUCCESS if successful
EMM_ERROR if failure

Includes: mmlib.h

Category: Media Streaming

Mode: Synchronous

Platform: Dialogic® PowerMedia™ HMP software

Parameter Description

nStreamHandle the stream device handle returned by mm_StreamOpen()

mm_StreamSetWaterMark() — set high or low watermark
mm_StreamSetWaterMark()

set high or low watermark

 Description

The mm_StreamSetWaterMark() function allows the application to set a high or low watermark
for media streaming flow control purposes.

Use the INIT_MM_STREAM_WATERMARK_INFO() function to initialize the
MM_STREAM_WATERMARK_INFO structure.

 Notes

The mm_StreamSetWaterMark() function is an optional function for media streaming. The
default high and low watermarks are respectively 90 percent and 10 percent of the stream buffer
size.

 Cautions

None.

 Errors

If a Dialogic® Multimedia API function returns EMM_ERROR to indicate a failure, use the
mm_ErrorInfo() function to retrieve the reason for the error. If the function generates a failure
event, use the mm_GetMetaEvent() function to obtain the error information. See Chapter 12,
“Error Codes” for the function error codes and event information error return codes.

Name: int mm_StreamSetWaterMark (unStreamHandle, pStreamStat)

Inputs: int nStreamHandle • stream device handle

CPMM_STREAM_WATERMA
RK_INFO
pStreamWaterMarkInfo

• parameter structure for setting a specific watermark level

Returns: EMM_SUCCESS if successful
EMM_ERROR if failure

Includes: mmlib.h

Category: Media Streaming

Mode: Synchronous

Platform: Dialogic® PowerMedia™ HMP software

Parameter Description

nStreamHandle the stream device handle returned by mm_StreamOpen()

pStreamWaterMarkInfo points to MM_STREAM_WATERMARK_INFO, which sets
specific watermark levels
134 Dialogic® Multimedia API Programming Guide and Library Reference

set high or low watermark — mm_StreamSetWaterMark()
 Example

Refer to the Example section for mm_StreamClose().

 See Also

None.
Dialogic® Multimedia API Programming Guide and Library Reference 135

mm_StreamWrite() — write to media stream
mm_StreamWrite()

write to media stream

 Description

The mm_StreamWrite() function allows the application to write data in the selected media
stream. This function can be used to stream data for a multimedia play operation.

 Synchronous Mode Events

If the function returns EMM_SUCCESS, it can generate any of the following events:

MMEV_PLAY_AUDIO_LOWWATER
Audio streaming buffer reached its low watermark. Data must be written immediately to the
specified stream to avoid an underrun condition. Data can be written until the return code is
EMM_STREAM_FULL.

MMEV_PLAY_AUDIO_HIGHWATER
Audio streaming buffer reached its high watermark. Data can be written until the return code is
EMM_STREAM_FULL.

Name: int mm_StreamWrite (unStreamHandle, pData, unDataSize, unEndFlag)

Inputs: int nStreamHandle • stream device handle

unsigned char *pData • pointer to a block of data

unsigned int unDataSize • size of data block in bytes

unsigned int unEndFlag • end of a block of data

Returns: EMM_SUCCESS if successful
EMM_ERROR if failure
EMM_STREAM_FULL if the end of the streaming buffer has been reached

Includes: mmlib.h

Category: Media Streaming

Mode: Synchronous

Platform: Dialogic® PowerMedia™ HMP software

Parameter Description

nStreamHandle the stream device handle returned by mm_StreamOpen()

pData points to a block of data

unDataSize specifies the size. in bytes, of data block pointed to by pData

unEndFlag flag used to indicate end of data. Set to either:
MM_FLAG_STREAM_EOD for last block of data
MM_FLAG_STREAM_CONT otherwise
136 Dialogic® Multimedia API Programming Guide and Library Reference

write to media stream — mm_StreamWrite()
MMEV_PLAY_VIDEO_LOWWATER
Video streaming buffer reached its low watermark. Data must be written immediately to the
specified stream to avoid an underrun condition. Data can be written until the return code is
EMM_STREAM_FULL.

MMEV_PLAY_VIDEO_HIGHWATER
Video streaming buffer reached its high watermark. Data can be written until the return code is
EMM_STREAM_FULL.

 Cautions

The specified media stream has to be opened for write access mode (EMM_SM_WRITE).

 Errors

If a Dialogic® Multimedia API function returns EMM_ERROR to indicate a failure, use the
mm_ErrorInfo() function to retrieve the reason for the error. If the function generates a failure
event, use the mm_GetMetaEvent() function to obtain the error information. See Chapter 12,
“Error Codes” for the function error codes and event information error return codes.

 Example

Refer to the Example section for mm_StreamClose().

 See Also

None.
Dialogic® Multimedia API Programming Guide and Library Reference 137

mm_StreamWrite() — write to media stream
138 Dialogic® Multimedia API Programming Guide and Library Reference

99. Events

This chapter provides information about the events that are generated by the Dialogic®
Multimedia API functions.

• Overview of Dialogic® Multimedia API Events . 139

• Dialogic® Multimedia API Event Types . 140

• Dialogic® Multimedia API Event Types by Function Type . 141

• Dialogic® Multimedia API Events . 141

9.1 Overview of Dialogic® Multimedia API Events

An event indicates that a specific activity has occurred on a channel. The Dialogic® Multimedia
API reports channel activity to the application program in the form of events, which allows the
program to identify and respond to a specific occurrence on a channel. Events provide feedback on
the progress and completion of functions and indicate the occurrence of other channel activities.
Events are sometimes referred to according to the type of event, such as initiation event,
intermediate event, notification event, termination or completion event, unsolicited event, success
event, and failure event. These types are not always mutually exclusive. The most common type of
event is one that reports on the result of function operations. Typically, each function generates
different events, and the functions documented in Chapter 8, “Function Information” describe the
events applicable to them.

To collect an event code, use sr_waitevt(), sr_enbhdlr() or other Standard Runtime Library
(SRL) function, depending upon the programming model in use. For detailed information on event
handling and management, see the Dialogic® Standard Runtime Library API Library Reference
and the Dialogic® Standard Runtime Library API Programming Guide.

The Dialogic® Multimedia API Event Information functions are listed in Section 7.7, “Event
Information Functions”, on page 68. The mm_GetMetaEvent() function maps the current SRL
event into an MM_METAEVENT data structure, which contains explicit data describing the event.
This data mechanism helps to provide uniform information retrieval among libraries.

For Dialogic® Multimedia API events, see the mm_GetMetaEvent() function and the
MM_METAEVENT structure for the specific multimedia information provided. This mechanism
can also be used for non-Multimedia API events, for which the MM_METAEVENT structure
provides the device descriptor, the event type, a pointer to variable length event data, and the length
of the event data. No additional SRL calls are required to access event data, because all the data
associated with any type of event are accessible via the MM_METAEVENT structure.

The mm_EnableEvents() and mm_DisableEvents() functions allow you to enable and disable
optional notification events, such as the MMEV_VIDEO_RECORD_STARTED event, which
indicates the actual start of recording. See Table 7, “Optional Notification Events”, on page 141 for
the list of optional notification events that can be enabled or disabled.
Dialogic® Multimedia API Programming Guide and Library Reference 139

Events
9.2 Dialogic® Multimedia API Event Types

The Dialogic® Multimedia API can generate the following types of events:

Initiation Events
Format: MMEV_xxxx_ACK (where “xxxx” is the name of the function or operation)

These intermediate events are generated upon successful start of a function. For example,
MMEV_PLAY_ACK indicates the successful start of the mm_Play() function. The event
data provides information on the reason for the event.

Initiation Failure Termination Events
Format: MMEV_xxxx_ACK_FAIL (where “xxxx” is the name of the function or operation)

These termination events are generated upon encountering an error before the main operation
of a function begins. For example, MMEV_PLAY_ACK_FAIL indicates that a failure
occurred before starting the mm_Play() playback operation. The event data provides error
information on the reason for the failure.

Completion or Successful Termination Events
Format: MMEV_xxxx (where “xxxx” is the name of the function or operation)

These termination events are generated upon the successful completion or successful
termination of a function operation. For example, MMEV_PLAY indicates successful
completion of the playback operation being performed by mm_Play(); e.g., the end of file
was reached. The deliberate termination of an I/O function operation by mm_Stop() or
mm_Reset() can also produce this type of event; for example, MMEV_PLAY can indicate the
successful termination of an mm_Play() playback operation by mm_Stop(). The event data
provides result information on the reason for the completion or termination event.

Operation Failure Termination Events
Format: MMEV_xxxx_FAIL (where “xxxx” is the name of the function or operation)

These termination events are generated upon encountering an error during the main operation
of a function. (Or, in the in the case of MMEV_RECORD_FAIL, upon completion or
termination of the operation.) For example, MMEV_PLAY_FAIL indicates failure of the
playback operation being performed by mm_Play(). The deliberate termination of an I/O
function operation by mm_Stop() or mm_Reset() can also produce this type of event; for
example, MMEV_PLAY_FAIL can indicate termination of an mm_Play() playback operation
by mm_Stop(). The event data provides result information on the reason for the completion or
termination event.

Optional Notification Events

These events are enabled by default and are enabled and disabled by the mm_EnableEvents()
and mm_DisableEvents() functions. These events are generated upon encountering the
condition specified by the event; for example, the MMEV_VIDEO_RECORD_STARTED
optional intermediate notification event reports the the actual start of recording (detection of
an I-frame or a time-out waiting for an I-frame). The
MMEV_VIDEO_RECORD_STARTED_FAIL failure event that is associated with this
operation is reserved for future use (there are no conditions that generate it). See Table 7,
“Optional Notification Events”, on page 141 for the list of the optional events and their default
enable/disable status.
140 Dialogic® Multimedia API Programming Guide and Library Reference

Events
Unsolicited Events
These events are not requested by the application. They are triggered by, and provide
information about, internal or external events. For example, MMEV_ERROR indicates an
unexpected failure. The event data provides error result information.

Note: For more information on failure events, see Chapter 12, “Error Codes”.

9.3 Dialogic® Multimedia API Event Types by Function
Type

To identify the specific events that a particular function can generate, see the “Asynchronous Mode
Events” section of that function under Chapter 8, “Function Information”.

The following summarizes the type of events that different types of functions can generate:

• All asynchronous functions are subject to unsolicited events (e.g., MMEV_ERROR).

• All asynchronous functions can generate a successful termination/completion event or a
failure termination event corresponding to the function operation (e.g., MMEV_PLAY and
MMEV_PLAY_FAIL).

Note: One exception is the mm_Stop() function. Successful termination or completion is
reported by MMEV_PLAY or MMEV_RECORD events, and failure is reported by
MMEV_PLAY_FAIL or MMEV_RECORD_FAIL.

• All functions that initiate or terminate I/O, including mm_Play(), mm_Record(),
mm_Stop(), and mm_Reset(), can generate a successful initiation event (which is an
intermediate event) or a corresponding initiation failure termination event (e.g.,
MMEV_PLAY_ACK and MMEV_PLAY_ACK_FAIL).

• Only specific functions or operations generate optional notification events (e.g.,
MMEV_VIDEO_RECORD_STARTED applies only to mm_Record() operation).

9.4 Dialogic® Multimedia API Events

The Dialogic® Multimedia API can generate the following events (listed in alphabetical order):

MMEV_CAPTURE
Termination event reported upon successful completion of a capture still image operation.

Event Data: MM_CAPTURE_CMPLT_DETAILS structure

Table 7. Optional Notification Events

Event Default Event mask name inside MM_EVENTS

MMEV_VIDEO_RECORD_STARTED Enabled MMR_EVENT_VIDEO_RECORD_STARTED

MMEV_RECORD_VIDEO_EOD Disabled MMR_EVENT_RECORD_VIDEO_EOD

MMEV_RECORD_AUDIO_EOD Disabled MMR_EVENT_RECORD_AUDIO_EOD
Dialogic® Multimedia API Programming Guide and Library Reference 141

Events
MMEV_CAPTURE_FAIL
Operation failure termination event reported upon encountering an error during the operation.

Event Data: MM_CAPTURE_CMPLT_DETAILS structure

MMEV_DISABLEEVENTS
Termination event reported upon successful completion of the function.

Event Data: MM_DISABLE_EVENTS_RESULT structure (MM_RET_CODE)

MMEV_DISABLEEVENTS_FAIL
Operation failure termination event reported upon encountering an error during the operation.

Event Data: MM_DISABLE_EVENTS_RESULT structure (MM_RET_CODE)

MMEV_ENABLEEVENTS
Termination event reported upon successful completion of the function.

Event Data: MM_ENABLE_EVENTS_RESULT structure (MM_RET_CODE)

MMEV_ENABLEEVENTS_FAIL
Operation failure termination event reported upon encountering an error during the operation.

Event Data: MM_ENABLE_EVENTS_RESULT structure (MM_RET_CODE)

MMEV_ERROR
Unsolicited failure event reported upon encountering an unexpected failure.

Event Data: MM_ERROR_RESULT structure

MMEV_GETDURATION
Termination event reported upon successfully getting the requested duration.

Event Data: MM_GETDURATION_CMPLT structure

MMEV_GETDURATION_FAIL
Termination event reported upon encountering an error while getting the requested duration.

Event Data: MM_GETDURATION_CMPLT structure

MMEV_GETELAPSEDTIME
Termination event reported upon successfully getting the requested elapsed time.

Event Data: MM_GETELAPSEDTIME_CMPLT structure

MMEV_GETELAPSEDTIME_FAIL
Termination event reported upon encountering an error while getting the requested elapsed
time.

Event Data: MM_GETELAPSEDTIME_CMPLT structure

MMEV_GETPARM
Termination event reported upon successful completion of the function.

Event Data: MM_GET_PARM_RESULT structure

MMEV_GETPARM_FAIL
Operation failure termination event reported upon encountering an error during the operation.

Event Data: MM_GET_PARM_RESULT structure

MMEV_OPEN
Termination event reported upon successful completion of the function.

Event Data: MM_OPEN_RESULT structure (MM_RET_CODE)
142 Dialogic® Multimedia API Programming Guide and Library Reference

Events
MMEV_OPEN_FAIL
Operation failure termination event reported upon encountering an error during the operation.

Event Data: MM_OPEN_RESULT structure (MM_RET_CODE)

Note: The application program must call mm_Close() to clean up after this failure.

MMEV_PAUSE
Termination event reported upon successfully pausing.

Event Data: MM_PAUSE_PLAY_CMPLT structure

MMEV_PAUSE_FAIL
Termination event reported upon encountering an error while attempting to pause.

Event Data: MM_PAUSE_PLAY_CMPLTstructure

MMEV_PLAY
Termination event reported upon successful completion or successful termination of the
operation.

Event Data: MM_PLAY_CMPLT structure (MM_PLAY_RECORD_CMPLT)

MMEV_PLAY_ACK
Initiation event reported upon successful start of the function.

Event Data: MM_PLAY_ACK structure (MM_RET_CODE)

MMEV_PLAY_ACK_FAIL
Initiation failure termination event reported upon encountering an error before the operation
begins.

Event Data: MM_PLAY_ACK structure (MM_RET_CODE)

MMEV_PLAY_AUDIO_HIGHWATER
Audio streaming buffer reached its high watermark. Data can be written until the return code is
EMM_STREAM_FULL.

MMEV_PLAY_AUDIO_LOWWATER
Audio streaming buffer reached its low watermark. Data must be written immediately to the
specified stream to avoid an underrun condition. Data can be written until the return code is
EMM_STREAM_FULL.

MMEV_PLAY_FAIL
Operation failure termination event reported upon encountering an error during the operation.

Event Data: MM_PLAY_CMPLT structure (MM_PLAY_RECORD_CMPLT)

Note: See Section 12.5, “Terminating and Non-Terminating Play/Record Errors”, on
page 239 for related information.

MMEV_PLAY_VIDEO_HIGHWATER
Video streaming buffer reached its high watermark. Data can be written until the return code is
EMM_STREAM_FULL.

 MMEV_PLAY_VIDEO_LOWWATER
Video streaming buffer reached its low watermark. Data must be written immediately to the
specified stream to avoid an underrun condition. Data can be written until the return code is
EMM_STREAM_FULL.
Dialogic® Multimedia API Programming Guide and Library Reference 143

Events
MMEV_RECORD
Termination event reported upon successful completion or successful termination of the
operation.

Event Data: MM_RECORD_CMPLT structure (MM_PLAY_RECORD_CMPLT)

MMEV_RECORD_ACK
Initiation event reported upon successful start of the function.

Event Data: MM_RECORD_ACK structure (MM_RET_CODE)

MMEV_RECORD_ACK_FAIL
Initiation failure termination event reported upon encountering an error before the operation
begins.

Event Data: MM_RECORD_ACK structure (MM_RET_CODE)

MMEV_RECORD_AUDIO_EOD
Optional notification event (disabled by default). Indicates that the last data byte was inserted
into the video streaming buffer. The data can be read, using mm_StreamRead(), until a
returned *pEndFlag value is set to MM_FLAG_STREAM_EOD.

MMEV_RECORD_AUDIO_HIGHWATER
Audio streaming buffer reached its high watermark; data must be read as soon as possible from
the specified stream to avoid an overrun condition. Data can be read until the return code is
EMM_STREAM_EMPTY or a returned *pEndFlag value is set to
MM_FLAG_STREAM_EOD.

MMEV_RECORD_AUDIO_LOWWATER
Audio streaming buffer reached its low watermark. Data can be read until the return code is
EMM_STREAM_EMPTY.

MMEV_RECORD_FAIL
Operation failure termination event indicating operation errors reported upon completion or
termination of the operation. The operation errors that can cause this failure event are
intermediate (non-terminating) errors.

Event Data: MM_RECORD_CMPLT structure (MM_PLAY_RECORD_CMPLT)

Note: See Section 12.5, “Terminating and Non-Terminating Play/Record Errors”, on
page 239 for related information.

MMEV_RECORD_VIDEO_EOD
Optional notification event (disabled by default). Indicates that the last data byte was inserted
into the video streaming buffer. The data can be read, using mm_StreamRead(), until a
returned *pEndFlag value is set to MM_FLAG_STREAM_EOD.

MMEV_RECORD_VIDEO_HIGHWATER
Video streaming buffer reached its high watermark; data must be read as soon as possible from
the specified stream to avoid an overrun condition. Data can be read until the return code is
EMM_STREAM_EMPTY or a returned *pEndFlag value is set to
MM_FLAG_STREAM_EOD.

MMEV_RECORD_VIDEO_LOWWATER
Video streaming buffer reached its low watermark. Data can be read until the return code is
EMM_STREAM_EMPTY.
144 Dialogic® Multimedia API Programming Guide and Library Reference

Events
MMEV_RESET
Termination event reported upon successful completion or successful termination of the
operation.

Event Data: MM_RESET_RESULT structure (MM_RET_CODE)

MMEV_RESET_ACK
Initiation event reported upon successful start of the function.

Event Data: MM_RESET_ACK structure (MM_RET_CODE)

MMEV_RESET_ACK_FAIL
Initiation failure termination event reported upon encountering an error before the operation
begins.

Event Data: MM_RESET_ACK structure (MM_RET_CODE)

MMEV_RESET_FAIL
Operation failure termination event reported upon encountering an error during the operation.

Event Data: MM_RESET_RESULT structure (MM_RET_CODE)

MMEV_RESUME

Termination event reported upon successfully resuming play.

Event Data: MM_RESUME_PLAY_CMPLT structure

MMEV_RESUME_FAIL
Termination event reported upon encountering an error while attempting to resume play.

Event Data: MM_RESUME_PLAY_CMPLT structure

MMEV_SEEK
Termination event reported upon successfully setting the requested seek position.

Event Data: MM_SEEK_CMPLT structure

MMEV_SEEK_FAIL
Termination event reported upon encountering an error while attempting to set the requested
seek position.

Event Data: MM_SEEK_CMPLT structure

MMEV_SETPARM
Termination event reported upon successful completion of the function.

Event Data: MM_SET_PARM_RESULT structure (MM_RET_CODE)

MMEV_SETPARM_FAIL
Operation failure termination event reported upon encountering an error during the operation.

Event Data: MM_SET_PARM_RESULT structure (MM_RET_CODE)

MMEV_STOP_ACK
Initiation event reported upon successful start of the function.

Event Data: MM_STOP_ACK structure

MMEV_STOP_ACK_FAIL
Initiation failure termination event reported upon encountering an error before the operation
begins.

Event Data: MM_STOP_ACK structure
Dialogic® Multimedia API Programming Guide and Library Reference 145

Events
MMEV_VIDEO_RECORD_STARTED
Optional intermediate (non-terminating) notification event (enabled by default), indicating
actual start of recording (complete video frame, or I-frame, received, or time-out waiting for
an I-frame). This event can be disabled by mm_DisableEvents() and enabled by
mm_EnableEvents().

Event Data: MM_VIDEO_RECORD_STARTED structure

MMEV_VIDEO_RECORD_STARTED_FAIL (reserved for future use)
Optional intermediate (non-terminating) failure notification event that is reserved for
future use (there are no conditions that generate it).
146 Dialogic® Multimedia API Programming Guide and Library Reference

1010.Data Structure Types

This chapter describes the types of data structures supported by the Dialogic® Multimedia API,
including the basic categories, naming convention for specific types, their purpose, hierarchy or
nesting levels, and association with specific functions.

• Overview of Dialogic® Multimedia API Data Structures . 147

• Data Structures for Function I/O . 148

• Data Structures for Analyzing Event Information. 149

• Play/Record Data Structure Levels . 151

• Other Data Structure Levels (_DETAILS) . 151

• Data Structures By Function . 152

Note: For an alphabetical list of data structures followed by a comprehensive reference organized
alphabetically and providing detailed information on the structures, see Chapter 11, “Data
Structures”.

10.1 Overview of Dialogic® Multimedia API Data
Structures

The Dialogic® Multimedia API data structures are defined in the mmlib.h header file. These data
structures are used to control the operation of functions and to obtain information about events.

Note: For each data structure, use the corresponding INIT_ inline function required by the application for
initialization. For example, use the INIT_MM_MEDIA_ACCESS_MEMORY inline function to
initialize the MM_MEDIA_ACCESS_MEMORY data structure.

Dialogic® Multimedia API Data Structure Categories

There are two basic categories relating to how data structures are used in the :

Data Structures for Function I/O
This category of data structure is used directly by the function as either input or output,
depending upon the function. For example, the pStop parameter in the mm_Stop() function
points to an MM_STOP data structure that is used for input to the function.

A data structure may also be nested within the top level function I/O data structure. For
example, the MM_STOP input data structure contains a details field that is a data structure of
type MM_STOP_DETAILS, which is thus a 2nd level in the hierarchy. Additional nesting
levels in data structure hierarchy are possible, as in the mm_Play() and mm_Record()
functions, which reach up to 6 levels (see Section 10.4, “Play/Record Data Structure Levels”,
on page 151). See also Section 10.5, “Other Data Structure Levels (_DETAILS)”, on
page 151.
Dialogic® Multimedia API Programming Guide and Library Reference 147

Data Structure Types
Data Structures for Analyzing Event Information
This category of data structure is used to analyze event data provided by the
mm_GetMetaEvent() function in the MM_METAEVENT data structure evtdatap field. For
example, mm_GetMetaEvent() function gets the event data for the
MMEV_ENABLE_EVENTS or MMEV_ENABLE_EVENTS_FAIL function completion
events through an MM_ENABLE_EVENTS_RESULT (MM_RET_CODE) data structure,
which provides result information on the function termination.

A data structure may also be nested within the top level structure of event data. For example,
the MM_PLAY_RECORD_CMPLT structure for event data from a play or record termination
event contains a details field that is a data structure of type
MM_PLAY_RECORD_CMPLT_DETAILS, which is thus a second level in the hierarchy.
Additional nesting levels in this type of information hierarchy are possible.

10.2 Data Structures for Function I/O

The following information is a guide to understanding the naming convention for, and purpose of,
data structures that are used for function input or output. This information is organized by the type
of data structure, as identified in the name, usually through a suffix. In the following list, a name is
given for a data structure type, where “xxxx” represents the name of the function, operation, or
event which applies to the data structure.

MM_xxxx_INFO (function input/output information)
This type of data structure is used primarily for function input, but in some cases may be used
for function output. For example, the MM_INFO data structure is used for output by the
mm_ErrorInfo() function. The following data structures are included in this type:

• MM_INFO – The pInfo parameter in the mm_ErrorInfo() function points to an
MM_INFO data structure that is used for output by the functions.

• MM_PLAY_INFO – Used as function input for mm_Play(), it is of type
MM_PLAY_RECORD_INFO.

• MM_PLAY_RECORD_INFO – This data structure is used for input by the mm_Play()
and mm_Record() functions, and it contains data structures nested in a multi-level
hierarchy within it. For a description of these nesting levels, see Section 10.4,
“Play/Record Data Structure Levels”, on page 151. It is used as a typedef for the
MM_RECORD_INFO and MM_PLAY_INFO structures.

• MM_RECORD_INFO – Used as function input for mm_Record(), it is of type
MM_PLAY_RECORD_INFO.

MM_xxxx (function input/output)
This type of data structure is used primarily for function input, but in some cases may be used
for function output. For example, the MM_METAEVENT data structure is used for output by
the mm_GetMetaEvent() function. The following data structures are included in this type:

• MM_EVENTS – The pEvents parameter in the mm_EnableEvents() function and the
mm_DisableEvents() function points to an MM_EVENTS data structure that is used for
input by the functions.

• MM_METAEVENT – The pMetaEvent parameter in the mm_GetMetaEvent()
function points to an MM_METAEVENT data structure that is used for output by
mm_GetMetaEvent().

• MM_GET_PARM – Used as function input for mm_GetParm().
• MM_SET_PARM – Used as function input for mm_SetParm().
148 Dialogic® Multimedia API Programming Guide and Library Reference

Data Structure Types
• MM_STOP – Used as function input for mm_Stop(). It contains a second-level
MM_STOP_DETAILS structure that is reserved for future use.

10.3 Data Structures for Analyzing Event Information

Note: See Chapter 9, “Events” for additional information on events and event data.

The following information is a guide to understanding the naming convention for, and purpose of,
data structures that are used for analyzing event information. This information is organized by the
type of data structure, as identified in the name, usually through a suffix. In the following list, a
name is given for a data structure type, where “xxxx” represents the name of the function,
operation, or event which applies to the data structure.

MM_xxxx_ACK (function initiation event data)
This type of data structure is used for analyzing the results of a function initiation event. For
example, the MM_PLAY_ACK data structure is used to analyze the result of an mm_Play()
function initiation as reported by the MMEV_PLAY_ACK or MMEV_PLAY_ACK_FAIL
event. The following data structures are included in this type:

• MM_PLAY_ACK (MM_RET_CODE)*

• MM_RECORD_ACK (MM_RET_CODE)*

• MM_RESET_ACK (MM_RET_CODE)*

• MM_STOP_ACK

• MM_STOP_ACK_DETAILS

Note: The MM_STOP_ACK_DETAILS data structure is a second-level event data
structure under the MM_STOP_ACK structure.

*These structures are of type MM_RET_CODE.

MM_xxxx_CMPLT (media function termination event data)
This type of data structure is used for analyzing the results of a media function termination or
completion event. For example, the MM_PLAY_CMPLT data structure is used to analyze the
result of an mm_Play() function as reported by the MMEV_PLAY or MMEV_PLAY_FAIL
event. The following data structures are included in this type:

• MM_PLAY_CMPLT (MM_PLAY_RECORD_CMPLT)*

• MM_PLAY_RECORD_CMPLT

• MM_RECORD_CMPLT (MM_PLAY_RECORD_CMPLT)*

• MM_PLAY_RECORD_CMPLT_DETAILS

Note: The MM_PLAY_RECORD_CMPLT_DETAILS data structure is a second-level
event data structure under the MM_PLAY_RECORD_CMPLT structure.

*These structures are of type MM_PLAY_RECORD_CMPLT.

MM_xxxx_DETAILS (additional event data details)
This type of data structure is used for analyzing additional details of event information. For
example, the MM_PLAY_RECORD_CMPLT_DETAILS data structure is used to analyze the
result of an mm_Play() or mm_Record() function as reported by the MMEV_PLAY,
MMEV_PLAY_FAIL, MMEV_RECORD, or MMEV_RECORD_FAIL event. The following
data structures are included in this type (these data structures encompass a sub-type because
Dialogic® Multimedia API Programming Guide and Library Reference 149

Data Structure Types
they provide details for a higher-level structure; see also Section 10.5, “Other Data Structure
Levels (_DETAILS)”, on page 151):

• MM_STOP_ACK_DETAILS

Note: The MM_STOP_ACK_DETAILS data structure is a second-level event data
structure under the MM_STOP_ACK structure.

• MM_PLAY_RECORD_CMPLT_DETAILS

Note: The MM_PLAY_RECORD_CMPLT_DETAILS data structure is a second-level
event data structure under the MM_PLAY_RECORD_CMPLT structure.

MM_xxxx_RESULT (results of a termination or completion event)
This type of data structure is used for analyzing the results of a termination or completion
event, primarily non-media function operation events. For example, the
MM_ENABLE_EVENTS_RESULT data structure is used to analyze the result of an
mm_EnableEvents() function as reported by the MMEV_ENABLEEVENTS or
MMEV_ENABLEEVENTS_FAIL event. The following data structures are included in this
type:

• MM_DISABLE_EVENTS_RESULT (MM_RET_CODE)*

• MM_ENABLE_EVENTS_RESULT (MM_RET_CODE)*

• MM_ERROR_RESULT

Note: The MM_ERROR_RESULT data structure is used to analyze the causes of an
MMEV_ERROR unsolicited failure event.

• MM_GET_PARM_RESULT

• MM_OPEN_RESULT (MM_RET_CODE)*

• MM_RESET_RESULT (MM_RET_CODE)*

• MM_SET_PARM_RESULT (MM_RET_CODE)*
*These structures are of type MM_RET_CODE

MM_RET_CODE (error information event data structure)
The MM_RET_CODE event information data structure describes error return code
information related to an event. (See Section 12.3, “Multimedia API Event Information Error
Return Codes”, on page 236 for a list of the error return codes and related information.) This
structure is used as a typedef for the following event information data structures.

ACK event information structures:

1. MM_PLAY_ACK

2. MM_RECORD_ACK

3. MM_RESET_ACK

RESULT event information structures:

4. MM_DISABLE_EVENTS_RESULT

5. MM_ENABLE_EVENTS_RESULT

6. MM_OPEN_RESULT

7. MM_RESET_RESULT

8. MM_SET_PARM_RESULT

Note: Error codes are also returned in the MM_STOP_ACK_DETAILS unRetCode field,
which is used to provide details on the MM_STOP_ACK event data associated with
the MMEV_STOP_ACK and MMEV_STOP_ACK_FAIL events.
150 Dialogic® Multimedia API Programming Guide and Library Reference

Data Structure Types
10.4 Play/Record Data Structure Levels

The following hierarchy (starting at the function parameter level) illustrates the nesting levels for
the function input data structures used by the mm_Play() and mm_Record() functions. The
hierarchy is shown here by indenting the nested data structures and indicating the nesting level with
a level number.

mm_Play()(nDeviceHandle, pPlayInfo, pRuntimeControl, pUserInfo)
mm_Record()(nDeviceHandle, pRecordInfo, pRuntimeControl, pUserInfo)

The pPlayInfo and pRecordInfo parameters point to the first level data structure.

1. MM_PLAY_RECORD_INFO (MM_PLAY_INFO, MM_RECORD_INFO)*

 2. MM_PLAY_RECORD_LIST list

 3. MM_MEDIA_ITEM_LIST list

 4. MM_MEDIA_ITEM item

 5. MM_MEDIA_VIDEO video

 6. MM_VIDEO_CODEC codec

 5. MM_MEDIA_AUDIO audio

 6. MM_AUDIO_CODEC codec

 5. MM_MEDIA_IMAGE image

 6. MM_IMAGE_FORMAT image format

 5. MM_MEDIA_TERM term [reserved for future use]

*The MM_PLAY_INFO structure pointed to by pPlayInfo, and the MM_RECORD_INFO structure pointed to
by pRecordInfo, are both of typedef MM_PLAY_RECORD_INFO.

10.5 Other Data Structure Levels (_DETAILS)

The following data structures also contain a hierarchy, or nesting levels, but they are limited to a
more simple, two-level hierarchy:

• The MM_PLAY_RECORD_CMPLT_DETAILS data structure is a second-level event
information data structure under the MM_PLAY_RECORD_CMPLT (MM_PLAY_CMPLT,
MM_RECORD_CMPLT) structure. These event information data structures are used for
analyzing the results of a media function termination or completion event (MMEV_PLAY,
MMEV_PLAY_FAIL, MMEV_RECORD, and MMEV_RECORD_FAIL). Both
MM_PLAY_CMPLT and MM_RECORD_CMPLT are of typedef
MM_PLAY_RECORD_CMPLT.

• The MM_STOP_ACK_DETAILS data structure is a second-level event information data
structure under the MM_STOP_ACK structure. These event information data structures are
used for analyzing the results of the MMEV_STOP_ACK or MMEV_STOP_ACK_FAIL
function initiation events produced by the mm_Stop() function.
Dialogic® Multimedia API Programming Guide and Library Reference 151

Data Structure Types
• The MM_STOP_DETAILS data structure (reserved for future use) is a second-level function
input data structure under the MM_STOP structure. These data structures provide input for the
mm_Stop() function.

10.6 Data Structures By Function

The following list identifies the data structures associated with specific functions, either as input or
through event information. Some of the data structures are associated with more than one function.

Note: For an alphabetical list of data structures followed by a comprehensive reference organized
alphabetically and providing detailed information on the structures, see Chapter 11, “Data
Structures”.

The parenthetical codes in the following list represent the type of structure: E for event
information, FI for function input, FO for function output, and # (a number) for nesting level when
the structure occurs in a hierarchy. For example, FI2 indicates a second-level function input
structure.

The parenthetical codes in the following list represent the type of structure:

• FI for function input,

• FO for function output,

• E for event information,

• L# for nesting level number (when the structure occurs in a hierarchy)

For example, FI L2 indicates a function input second-level structure.

All Asynchronous Functions

• MM_ERROR_RESULT (E)

mm_DisableEvents()

• MM_EVENTS (FI)

• MM_DISABLE_EVENTS_RESULT (MM_RET_CODE) (E)

mm_EnableEvents()

• MM_EVENTS (FI)

• MM_ENABLE_EVENTS_RESULT (MM_RET_CODE) (E)

mm_ErrorInfo()

• MM_INFO (FO)

mm_GetMetaEvent()

• MM_METAEVENT (FO)

mm_GetParm()

• MM_GET_PARM (FI)
152 Dialogic® Multimedia API Programming Guide and Library Reference

Data Structure Types
• MM_GET_PARM_RESULT (E)

mm_Open()

• MM_OPEN_RESULT (MM_RET_CODE) (E)

mm_Play()

• MM_PLAY_INFO (MM_PLAY_RECORD_INFO) (FI L1)

• MM_PLAY_RECORD_LIST (FI L2)

• MM_MEDIA_ITEM_LIST (FI L3)

• MM_MEDIA_ITEM (FI L4)

• MM_MEDIA_VIDEO (FI L5)

• MM_VIDEO_CODEC (FI L6)

• MM_MEDIA_AUDIO (FI L5)

• MM_AUDIO_CODEC (FI L6)

• MM_AUDIO_CODEC_OPTION_LIST

• MM_MEDIA_TERM (FI L5) (reserved for future use)

• MM_PLAY_ACK (MM_RET_CODE) (E)

• MM_PLAY_CMPLT (MM_PLAY_RECORD_CMPLT) (E L1)

• MM_PLAY_RECORD_CMPLT_DETAILS (E L2)

mm_Record()

• MM_RECORD_INFO (MM_PLAY_RECORD_INFO) (FI L1)

• MM_PLAY_RECORD_LIST (FI L2)

• MM_MEDIA_ITEM_LIST (FI L3)

• MM_MEDIA_ITEM (FI L4)

• MM_MEDIA_VIDEO (FI L5)

• MM_VIDEO_CODEC (FI L6)

• MM_MEDIA_AUDIO (FI L5)

• MM_AUDIO_CODEC (FI L6)

• MM_AUDIO_CODEC_OPTION_LIST

• MM_MEDIA_TERM (FI L5) (reserved for future use)

• MM_RECORD_ACK (MM_RET_CODE) (E)

• MM_RECORD_CMPLT (MM_PLAY_RECORD_CMPLT) (E L1)

• MM_PLAY_RECORD_CMPLT_DETAILS (E L2)

• MM_VIDEO_RECORD_STARTED (E)

mm_Reset()

• MM_RESET_ACK (MM_RET_CODE) (E)

• MM_RESET_RESULT (MM_RET_CODE) (E)
Dialogic® Multimedia API Programming Guide and Library Reference 153

Data Structure Types
• MM_PLAY_RECORD_CMPLT) (E L1)

• MM_PLAY_RECORD_CMPLT_DETAILS (E L2)

mm_SetParm()

• MM_SET_PARM (FI)

• MM_SET_PARM_RESULT (MM_RET_CODE) (E)

mm_Stop()

• MM_STOP (FI)

• MM_STOP_DETAILS (FI L2) (reserved for future use)

• MM_STOP_ACK (E L1)

• MM_STOP_ACK_DETAILS (E L2)

• MM_PLAY_RECORD_CMPLT) (E L1)

• MM_PLAY_RECORD_CMPLT_DETAILS (E L2)
154 Dialogic® Multimedia API Programming Guide and Library Reference

Data Structure Types
Dialogic® Multimedia API Programming Guide and Library Reference 155

1111.Data Structures

This chapter provides a list of data structures followed by a comprehensive data structure reference
organized alphabetically and providing detailed information on structures.

Note: See Chapter 10, “Data Structure Types” for a description of the types of data structures supported
by the Multimedia API, including the basic categories, naming convention for specific types, their
purpose, hierarchy or nesting levels, and association with specific functions.

• MM_AUDIO_CODEC . 159

• MM_AUDIO_CODEC_OPTION_LIST. 161

• MM_CAPTURE_CMPLT_DETAILS. 165

• MM_ERROR_RESULT . 166

• MM_EVENTS. 167

• MM_GET_PARM . 168

• MM_GET_PARM_RESULT. 169

• MM_GETDURATION_CMPLT. 171

• MM_GETDURATION_CMPLT_DETAILS. 170

• MM_GETDURATION_INFO. 172

• MM_GETELAPSEDTIME_CMPLT . 173

• MM_GETELAPSEDTIME_CMPLT_DETAILS . 174

• MM_GETELAPSEDTIME_INFO . 175

• MM_IMAGE_FORMAT. 176

• MM_INFO. 177

• MM_MEDIA_ACCESS_MEMORY . 178

• MM_MEDIA_ACCESS_STREAM . 179

• MM_MEDIA_AUDIO . 180

• MM_MEDIA_ITEM . 184

• MM_MEDIA_ITEM_LIST. 185

• MM_MEDIA_TERM . 186

• MM_MEDIA_VIDEO. 187

• MM_METAEVENT . 189

• MM_PAUSE_INFO. 191

• MM_PAUSE_PLAY_CMPLT . 192

• MM_PAUSE_PLAY_CMPLT_DETAILS. 193
Dialogic® Multimedia API Programming Guide and Library Reference 156

Dialogic Corporation

 —
• MM_PLAY_RECORD_CMPLT. 194

• MM_PLAY_RECORD_CMPLT_DETAILS. 195

• MM_PLAY_RECORD_INFO. 198

• MM_PLAY_RECORD_LIST . 199

• MM_RECORD_CMPLT_DATA_BLOCK . 201

• MM_RECORD_CMPLT_INFO_DATA_BLOCKS . 203

• MM_RESUME_INFO. 204

• MM_RESUME_PLAY_CMPLT. 205

• MM_RESUME_PLAY_CMPLT_DETAILS. 206

• MM_RET_CODE . 207

• MM_RUNTIME_CONTROL . 209

• MM_SEEK_CMPLT . 211

• MM_SEEK_CMPLT_DETAILS. 212

• MM_SEEK_INFO. 216

• MM_SET_PARM . 213

• MM_STOP . 214

• MM_STOP_ACK . 218

• MM_STOP_ACK_DETAILS . 219

• MM_STOP_DETAILS . 220

• MM_STREAM_OPEN_INFO . 221

• MM_STREAM_STAT. 222

• MM_STREAM_WATERMARK_INFO . 224

• MM_VIDEO_CODEC . 225

• MM_VIDEO_RECORD_STARTED . 230

• MM_YUV . 231

Note: The following data structures are not listed under their own name but under the name of their
typedef structure. The following list shows the type followed by a list of structure names that are of
that type:

MM_PLAY_RECORD_INFO
MM_PLAY_INFO
MM_RECORD_INFO

MM_PLAY_RECORD_CMPLT
MM_PLAY_CMPLT
MM_RECORD_CMPLT
Dialogic® Multimedia API Programming Guide and Library Reference 157

 —
MM_RET_CODE
MM_PLAY_ACK
MM_RECORD_ACK
MM_RESET_ACK

MM_RET_CODE
MM_DISABLE_EVENTS_RESULT
MM_ENABLE_EVENTS_RESULT
MM_OPEN_RESULT
MM_RESET_RESULT
MM_SET_PARM_RESULT
158 Dialogic® Multimedia API Programming Guide and Library Reference

audio codec specification — MM_AUDIO_CODEC
MM_AUDIO_CODEC

audio codec specification
typedef struct tagMM_AUDIO_CODEC
{
 unsigned int unVersion;
 unsigned int unCoding;
 unsigned int unSampleRate;
 unsigned int unBitsPerSample;
 CPMM_AUDIO_CODEC_OPTION_LIST options;
} MM_AUDIO_CODEC, *PMM_AUDIO_CODEC;
typedef const MM_AUDIO_CODEC* CPMM_AUDIO_CODEC

 Description

The MM_AUDIO_CODEC structure specifies the characteristics of the audio coder. This structure
is a nested function input structure for the mm_Play() or mm_Record() function. It is nested
directly under the MM_MEDIA_AUDIO structure, and it is a sixth-level structure under the
MM_PLAY_RECORD_INFO (MM_PLAY_INFO, MM_RECORD_INFO) structure. (For a
description of these nesting levels, see Section 10.4, “Play/Record Data Structure Levels”, on
page 151.)

The INIT_MM_AUDIO_CODEC inline function is provided to initialize the structure.

 Field Descriptions

The fields of the structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

unCoding
Specifies the type of audio coding. A comprehensive list of values is provided below.

Note: Support for coders varies by Dialogic® Platform software release. Refer to
Section 2.3, “Dialogic® Multimedia API Audio Formats by Platform”, on page 31 for
more information.

• MM_DATA_FORMAT_PCM (or Voice API: DATA_FORMAT_PCM) –
Linear PCM, mono, LSB-MSB (“little endian”)

• MM_DATA_FORMAT_ALAW – Alaw PCM
• MM_DATA_FORMAT_MULAW – µ-Law PCM
• MM_DATA_FORMAT_AMR_NB_4_75K – GSM AMR-NB, 4.75 kbps
• MM_DATA_FORMAT_AMR_NB_5_15K – GSM AMR-NB, 5.15 kbps
• MM_DATA_FORMAT_AMR_NB_5_90K – GSM AMR-NB, 5.9 kbps
• MM_DATA_FORMAT_AMR_NB_6_70K – GSM AMR-NB, 6.7 kbps
• MM_DATA_FORMAT_AMR_NB_7_40K – GSM AMR-NB, 7.4 kbps
• MM_DATA_FORMAT_AMR_NB_7_95K – GSM AMR-NB, 7.95 kbps
• MM_DATA_FORMAT_AMR_NB_10_20K – GSM AMR-NB, 10.2 kbps
• MM_DATA_FORMAT_AMR_NB_12_20K – GSM AMR-NB, 12.2 kbps
• MM_DATA_FORMAT_G723_1_5_30K – G.723.1, 5.3 kbps
• MM_DATA_FORMAT_G723_1_6_30K – G.723.1, 6.3 kbps
• MM_DATA_FORMAT_G726 – G726 Coder
Dialogic® Multimedia API Programming Guide and Library Reference 159

MM_AUDIO_CODEC — audio codec specification
• MM_DATA_FORMAT_G729A – G729a Coder
• MM_DATA_FORMAT_AMR_WB_6_6K – 6.6 kbps
• MM_DATA_FORMAT_AMR_WB_8_85K – AMR-WB, 8.85 kbps
• MM_DATA_FORMAT_AMR_WB_12_65K – AMR-WB, 12.65 kbps
• MM_DATA_FORMAT_AMR_WB_14_25K – AMR-WB, 14.25 kbps
• MM_DATA_FORMAT_AMR_WB_15_85K – AMR-WB, 15.85 kbps
• MM_DATA_FORMAT_AMR_WB_18_25K – AMR-WB, 18.25 kbps
• MM_DATA_FORMAT_AMR_WB_19_85K – AMR-WB, 19.85 kbps
• MM_DATA_FORMAT_AMR_WB_23_05K – AMR-WB, 23.05 kbps
• MM_DATA_FORMAT_AMR_WB_23_85K – AMR-WB, 23.85 kbps

Note: Field validation is performed on the unCoding field. Setting an unsupported value
results in an MMEV_PLAY_ACK_FAIL event in mm_Play() and mm_Record().

 unSampleRate
Specifies the audio sampling rate in samples per second. Defined value is:

• MM_DRT_8KHZ (or Voice API: DRT_8KHZ) – 8000 samples per second
• MM_DRT_16KHZ – 16000 samples per second

unBitsPerSample
Specifies the number of bits per audio sample. Defined values are:

• 16
• 8
• 4

options
Points to the list of audio coder options. These definitions are found in the
MM_AUDIO_CODEC_OPTION_LIST structure. Set to NULL if no options need to be
specified.

Note: The Multimedia API supports the Linear PCM (128 kbps) audio file format. This audio file format
can also be used in the Voice API by setting the DX_XPB structure fields to the following values:

• wFileFormat = FILE_FORMAT_VOX
• wDataFormat = DATA_FORMAT_PCM
• nSamplesPerSecond = DRT_8KHZ
• wBitsPerSample = 16
160 Dialogic® Multimedia API Programming Guide and Library Reference

list of codec options — MM_AUDIO_CODEC_OPTION_LIST
MM_AUDIO_CODEC_OPTION_LIST

list of codec options
typedef struct tag MM_AUDIO_CODEC_OPTION_LIST
{
 unsigned int unVersion
 eMM_ITEM ItemChain;
 eMM_AUDIO_CODEC_OPTION eParm;
 int nValue;
 struct tag MM_AUDIO_CODEC_OPTION_LIST* next;
 struct tagMM_AUDIO_CODEC_OPTION_LIST* prev; /* optional */
}MM_AUDIO_CODEC_OPTION_LIST, *PMM_AUDIO_CODEC_OPTION_LIST;
typedef const MM_AUDIO_CODEC_OPTION_LIST* CPMM_AUDIO_CODEC_OPTION_LIST;

 Description

The MM_AUDIO_CODEC_OPTION_LIST structure is pointed to from the
MM_AUDIO_CODEC structure. This structure provides additional coder options for the specified
coder. If no options need to be specified, set the value to NULL; otherwise use the address of a
valid MM_AUDIO_CODEC_OPTION_LIST list.

The INIT_MM_AUDIO_CODEC_OPTION_LIST inline function is provided to initialize the
structure.

 Field Descriptions

The fields of this data structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

ItemChain
Specifies the next list element for iteration. Defined valid values include:

• EMM_ITEM_CONT – Indicates that the next list element immediately follows the
current list

• EMM_ITEM_LINK – Indicates that the next and previous list elements link to the
current list via pointers

• EMM_ITEM_EOT – Indicates that the current list element is the last in the list

eParm
Identifies the option that needs to be set. Defined valid values include:

• EMM_AUDIO_CODEC_OPTION_UNDEFINED – No option will be set.
• EMM_AUDIO_CODEC_OPTION_INTERLEAVE_LENGTH – Used to set interleave

length for EVRC coders.
• EMM_AUDIO_CODEC_OPTION_CDMA_RATE_REDUC – Used to set rate reduction

for EVRC and QCELP coders.
• EMM_AUDIO_CODEC_OPTION_PAYLOAD_FORMAT – Used to set payload format

for AMR coders.
Dialogic® Multimedia API Programming Guide and Library Reference 161

MM_AUDIO_CODEC_OPTION_LIST — list of codec options
nValue
Value for the option specified in eParm. This set of valid values depends on the coder and the
option specified in eParm for that coder.
For AMR:
where eParm= EMM_AUDIO_CODEC_OPTION_PAYLOAD_FORMAT, possible values
are:

• EMM_AUDIO_PAYLOAD_FORMAT_OCTET_ALIGNED – octet aligned frame
format

• EMM_AUDIO_PAYLOAD_FORMAT_BANDWIDTH_EFFICIENT – –bandwidth
efficient frame format

For EVCR:

• where eParm= EMM_AUDIO_CODEC_OPTION_INTERLEAVE_LENGTH, possible
values are in the range 0 to 7. Default value is 0.

• where eParm= EMM_AUDIO_CODEC_OPTION_CDMA_RATE_REDUC, possible
values are 0 and 4. Default value is 0.

For QCELP 8 kbps:

• where eParm = EMM_AUDIO_CODEC_OPTION_CDMA_RATE_REDUC, possible
values are 0 and 4. Default value is 0.

For QCELP 13 kbps:

• where eParm = EMM_AUDIO_CODEC_OPTION_CDMA_RATE_REDUC, possible
values are 0, 1, 2, 3 and 4. Default value is 0.

next
Points to the next MM_AUDIO_CODEC_OPTION_LIST item. Needed only when ItemChain
specifies a linked list element. NULL value indicates last item.

prev
Points to the previous MM_AUDIO_CODEC_OPTION_LIST item (optional). Needed only
when ItemChain specifies a linked list element. NULL value indicates first item.

 Example

The following code illustrates the use of multiple audio options passed in as a linked list.

/**/
void destroy_audio_options(PMM_AUDIO_CODEC_OPTION_LIST optionList)
{

 PMM_AUDIO_CODEC_OPTION_LIST curOption = optionList;
 PMM_AUDIO_CODEC_OPTION_LIST nextOption = 0;

 while (curOption)
 {
 nextOption = curOption->next;
 delete(curOption);
 curOption = nextOption;
 }
}
/***/
void add_audio_option(PMM_AUDIO_CODEC_OPTION_LIST &firstOption, PMM_AUDIO_CODEC_OPTION_LIST
&curOption,
 eMM_AUDIO_CODEC_OPTION option, int optionValue)
{
 PMM_AUDIO_CODEC_OPTION_LIST prevOption = curOption;
 PMM_AUDIO_CODEC_OPTION_LIST newOption = new(MM_AUDIO_CODEC_OPTION_LIST);
 INIT_MM_AUDIO_CODEC_OPTION_LIST(newOption);
162 Dialogic® Multimedia API Programming Guide and Library Reference

list of codec options — MM_AUDIO_CODEC_OPTION_LIST
 INIT_MM_AUDIO_CODEC_OPTION_LIST(newOption);
 newOption->eParm = option;
 newOption->nValue = optionValue;
 if (!curOption)
 {
 firstOption = curOption = newOption;
 }
 else
 {
 curOption->ItemChain = EMM_ITEM_LINK;
 curOption = curOption->next = newOption;
 }

}
/***/
void add_audio_item(PMM_MEDIA_ITEM_LIST AudioItemList, int *AudioItemCountp, MM_AUDIO_CODEC
AudioCodec, char *AudioFileName)
{
 int index = *AudioItemCountp;

 INIT_MM_MEDIA_ITEM_LIST (&AudioItemList[index]);
 INIT_MM_MEDIA_AUDIO(&(AudioItemList[index].item.audio));

 if (index >= 1)
 {
 AudioItemList[index-1].ItemChain = EMM_ITEM_CONT;
 }
 AudioItemList[index].ItemChain = EMM_ITEM_EOT;
 AudioItemList[index].item.audio.codec = AudioCodec;
 AudioItemList[index].item.audio.unMode = 0;
 AudioItemList[index].item.audio.unOffset = 0;
 AudioItemList[index].item.audio.szFileName = AudioFileName;
 AudioItemList[index].item.audio.eFileFormat = EMM_AUD_FILEFORMAT_VOX;
 AudioItemList[index].item.audio.unAccessMode = MM_MEDIA_ACCESS_MODE_FILE;

 (*AudioItemCountp)++;
}
/**/
void add_playrecordlist_item(PMM_PLAY_RECORD_LIST PlayRecordList, int *PlayRecordListItemCount,
CPMM_MEDIA_ITEM_LIST PlayRecordListItem, eMM_MEDIA_TYPE MediaType)
{
 int index = *PlayRecordListItemCount;
 INIT_MM_PLAY_RECORD_LIST(&(PlayRecordList[index]));

 if (index >= 1)
 {
 PlayRecordList[index-1].ItemChain = EMM_ITEM_CONT;
 }

 PlayRecordList[index].ItemChain = EMM_ITEM_EOT;
 PlayRecordList[index].ItemType = MediaType;
 PlayRecordList[index].list = PlayRecordListItem;

 (*PlayRecordListItemCount)++;
}
/***/
int main(int argc, char *argv[])
{
 MM_PLAY_RECORD_INFO PlayRecordInfo;
 MM_PLAY_RECORD_LIST PlayRecordList[2];
 MM_MEDIA_ITEM_LIST AudioItemList[1];

 MM_AUDIO_CODEC AudioCodec;

 INIT_MM_AUDIO_CODEC (&AudioCodec);
Dialogic® Multimedia API Programming Guide and Library Reference 163

MM_AUDIO_CODEC_OPTION_LIST — list of codec options
 AudioCodec.unCoding = MM_DATA_FORMAT_EVRC;

 PMM_AUDIO_CODEC_OPTION_LIST curOption, firstOption;
 curOption = firstOption = (PMM_AUDIO_CODEC_OPTION_LIST)AudioCodec.options;

 add_audio_option(firstOption, curOption, EMM_AUDIO_CODEC_OPTION_INTERLEAVE_LENGTH, 2);
 add_audio_option(firstOption, curOption, EMM_AUDIO_CODEC_OPTION_CDMA_RATE_REDUC, 4);

 AudioCodec.options = firstOption;

 char AudioFileName[] = "clip1a.pcm";

 int AudioItemCount = 0;
 int PlayRecordListItemCount = 0;

 add_audio_item(AudioItemList, &AudioItemCount, AudioCodec, AudioFileName);
 add_playrecordlist_item(PlayRecordList, &PlayRecordListItemCount, AudioItemList,
EMM_MEDIA_TYPE_AUDIO);
 PlayRecordInfo.list = PlayRecordList;

 rc = mm_Record(mmdevh, &PlayRecordInfo, NULL, NULL);
 /*.
 .
 .

 wait for MMEV_RECORD event
 */

 destroy_audio_options((PMM_AUDIO_CODEC_OPTION_LIST)AudioCodec.options);
 return 0;
}

164 Dialogic® Multimedia API Programming Guide and Library Reference

Dialogic® Multimedia API Programming Guide and Library Reference 165

event data for capture still image — MM_CAPTURE_CMPLT_DETAILS

MM_CAPTURE_CMPLT_DETAILS

event data for capture still image
typedef struct tagMM_CAPTURE_CMPLT_DETAILS
{
 unsigned int unVersion;
 unsigned int unRetCode;
 unsigned int unNumberOfBytes;
 eMTK_IMAGE_FORMAT eFormat;
 eMTK_YUV_IMAGE_FORMAT eYuvFormat;
 unsigned int unWidth;
 unsigned int unHeight;

} MM_CAPTURE_CMPLT_DETAILS, *PMM_CAPTURE_CMPLT_DETAILS;
typedef const MM_CAPTURE_CMPLT_DETAILS* CPMM_CAPTURE_CMPLT_DETAILS;typedef struct

 Description

The MM_CAPTURE_CMPLT_DETAILS event information data structure is used for analyzing
the results of the mm_Capture() function termination or completion as reported by an
MMEV_CAPTURE or MMEV_CAPTURE_FAIL event.

 Field Descriptions

The fields of the data structure are described as follows:

unVersion
Specifies the version of the data structure.

unRetCode
Provides an error return code. EMMRC_OK indicates success. All other values indicate an
error or failure condition. Refer to Section 12.3, “Multimedia API Event Information Error
Return Codes”, on page 236 for related information.

unNumberOfBytes
Specifies the total number of bytes captured.

eFormat
Specifies the image format. Valid value is eMTK_IMAGE_FORMAT_YUV.

eYuvFormat
Specifies the YUV specific format if the image format is YUV. Valid value is
eMTK_YUV_IMAGE_FORMAT_420.

unWidth
Specifies the width of the image captured in pixels per line.

unHeight
Specifies the height of the image captured in number of lines.

166 Dialogic® Multimedia API Programming Guide and Library Reference

MM_ERROR_RESULT — error event information

MM_ERROR_RESULT

error event information
typedef struct tag MM_ERROR_RESULT
{
 unsigned int unVersion;
 unsigned int unErrorCode;
 unsigned int unErrorMsg;
 unsigned int unData[4];
} MM_ERROR_RESULT, *PMM_ERROR_RESULT;
typedef const MM_ERROR_RESULT* CPMM_ERROR_RESULT;

 Description

The MM_ERROR_RESULT event information data structure is used for analyzing the
MMEV_ERROR unsolicited failure event.

If the MMEV_ERROR unsolicited failure event occurs, use the mm_GetMetaEvent() function to
retrieve the reason for the error. The mm_GetMetaEvent() function outputs the
MM_ERROR_RESULT event data associated with the metaevent in the MM_METAEVENT data
structure.

The INIT_MM_ERROR_RESULT inline function is provided to initialize the structure.

For a list of the error codes and messages returned in the MM_INFO structure, see Section 12.2,
“Dialogic® Multimedia API Function Error Codes”, on page 235.

 Field Descriptions

The fields of the structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

unErrorCode
Specifies an error code. See Section 12.2, “Dialogic® Multimedia API Function Error Codes”,
on page 235 for the possible values.

unErrorMsg
Specifies an error message associated with the code. See Section 12.2, “Dialogic® Multimedia
API Function Error Codes”, on page 235 for the values.

unData
Specifies an internal block of firmware data for debugging information related to the error;
application program can record it in an error log along with the other fields.

Dialogic® Multimedia API Programming Guide and Library Reference 167

information for optional notification event functions — MM_EVENTS

MM_EVENTS

information for optional notification event functions
typedef struct tagMM_EVENTS
{
 unsigned int unVersion;
 unsigned int unMask;
} MM_EVENTS, *PMM_EVENTS;
typedef const MM_EVENTS* CPMM_EVENTS;

 Description

The MM_EVENTS structure specifies the details of an enable or disable events request. This
structure is used as function input for the mm_EnableEvents() and mm_DisableEvents()
functions.

The INIT_MM_EVENTS inline function is provided to initialize the structure.

 Field Descriptions

The fields of the structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

unMask
Specifies event mask to enable or disable. The mask is formed by ORing the masks shown in
Table 7, “Optional Notification Events”, on page 141.

Note: See mm_SetParm() and the MM_SET_PARM structure for information on the
related EMM_REC_IFRAME_TIMEOUT parameter. See also the mm_Record()
function.

168 Dialogic® Multimedia API Programming Guide and Library Reference

MM_GET_PARM — information for get parameter function

MM_GET_PARM

information for get parameter function
typedef struct tagMM_GET_PARM
{
 unsigned int unVersion;
 eMM_PARM eParm;
} MM_GET_PARM, *PMM_GET_PARM;
typedef const MM_GET_PARM* CPMM_GET_PARM;

 Description

The MM_GET_PARM structure specifies the details of a get parameter request. This structure is
used as function input for the mm_GetParm() function.

The INIT_MM_GET_PARM inline function is provided to initialize the structure.

 Field Descriptions

The fields of the structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

eParm
Specifies the parameter to get. Defined values include the following channel-level parameter:

• EMM_REC_IFRAME_TIMEOUT – Specifies the time to wait for an I-frame. Video
recording, or multimedia (audio and video) recording, starts when an I-frame is detected
or when the time-out is reached.

• EMM_TONE_DETECTION – Indicates whether tone detection is enabled or disabled.
This parameter is only supported in mm_GetParm() if the active license contains video
transcoding resources; otherwise it is invalid.

Dialogic® Multimedia API Programming Guide and Library Reference 169

retrieved parameter event information — MM_GET_PARM_RESULT

MM_GET_PARM_RESULT

retrieved parameter event information
typedef struct tagMM_GET_PARM_RESULT
{
 unsigned int unVersion;
 eMM_PARM eParm;
 unsigned int unParmValue;
} MM_GET_PARM_RESULT, *PMM_GET_PARM_RESULT;
typedef const MM_GET_PARM_RESULT* CPMM_GET_PARM_RESULT;

 Description

The MM_GET_PARM_RESULT event information data structure is used for analyzing the results
of the mm_GetParm() function termination or completion, as reported by the
MMEV_GET_PARM or MMEV_GET_PARM_FAIL event.

The INIT_MM_GET_PARM_RESULT inline function is provided to initialize the structure.

 Field Descriptions

The fields of the structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

eParm
Specifies parameter requested. Defined values include the following channel-level parameter:

• EMM_REC_IFRAME_TIMEOUT – Specifies the time to wait for an I-frame. Video
recording, or multimedia (audio and video) recording, starts when an I-frame is detected
or when the time-out is reached.

• EMM_TONE_DETECTION – Indicates whether tone detection is enabled or disabled.

unParmValue
Parameter value. See MM_SET_PARM, on page 213 for the values.

170 Dialogic® Multimedia API Programming Guide and Library Reference

MM_GETDURATION_CMPLT_DETAILS — request reply message details

MM_GETDURATION_CMPLT_DETAILS

request reply message details
typedef struct tagMM_GETDURATION_CMPLT_DETAILS
{
unsigned int unVersion;
unsigned int unStreamType;
unsigned int unRetCode;
unsigned int unDuration;
} MM_GETDURATION_CMPLT_DETAILS, *PMM_GETDURATION_CMPLT_DETAILS;
typedef const MM_GETDURATION_CMPLT_DETAILS* CPMM_GETDURATION_CMPLT_DETAILS;

 Description

The MM_GETDURATION_CMPLT_DETAILS structure is a second-level event information data
structure under the MM_GETDURATION_CMPLT structure. (See Section 10.5, “Other Data
Structure Levels (_DETAILS)”, on page 151.)

The INIT_MM_GETDURATION_CMPLT_DETAILS inline function is provided to initialize the
structure.

 Field Descriptions

The fields of the structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

un StreamType
Indicates which stream type (audio, video or both) the information in this structure applies to.
Value can be ONE of the following:

• EMM_GETDURATION_VIDEO_AUDIO – information applies to BOTH video and
audio.

• EMM_GETDURATION_VIDEO_ONLY – information applies to video ONLY.
• EMM_GETDURATION_AUDIO_ONLY – information applies to audio ONLY.

unRetCode
Contains the firmware return code. A non-zero value indicates an error has occurred.

unDuration
Specifies duration in milliseconds.

Dialogic® Multimedia API Programming Guide and Library Reference 171

get event data payload — MM_GETDURATION_CMPLT

MM_GETDURATION_CMPLT

get event data payload
typedef struct tagMM_GETDURATION_CMPLT
{
unsigned int unVersion;
unsigned int unCount;
MM_GETDURATION_CMPLT_DETAILS details[MAX_GETDURATION_CMPLT];
} MM_GETDURATION_CMPLT, *PMM_GETDURATION_CMPLT;

 Description

The MM_GETDURATION_CMPLT event information data structure is used for analyzing the
results of the mm_GetDuration() function termination or completion as reported by an
MMEV_GETDURATION or MMEV_GETDURATION_FAIL event.

The INIT_MM_GETDURATION_CMPLT inline function is provided to initialize the structure.

 Field Descriptions

The fields of this data structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

unCount
Indicates the number of MM_GETDURATION_CMPLT_DETAILS elements that follow.

details
Provides the details of completion. See the MM_GETDURATION_CMPLT_DETAILS
structure definition for details.

172 Dialogic® Multimedia API Programming Guide and Library Reference

MM_GETDURATION_INFO — get duration information

MM_GETDURATION_INFO

get duration information
typedef struct tagMM_GETDURATION_INFO
 {
unsigned int unVersion;
unsigned int unStreamType;
} MM_GETDURATION_INFO, *PMM_GETDURATION_INFO;
typedef const MM_GETDURATION_INFO* CPMM_GETDURATION_INFO;

 Description

The MM_GETDURATION_INFO data structure is a function input structure for the
mm_GetDuration() function.

 The INIT_MM_GETDURATION_INFO inline function is provided to initialize the structure.

 Field Descriptions

The fields of this data structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

unStreamType
Indicates which stream type (audio, video or both) the information is being requested for.
Value can be ONE of the following:

• EMM_GETDURATION_VIDEO_AUDIO – Get duration of BOTH video and audio.
In this case, two values will be returned - the duration of the video and the duration of the
audio. If either stream is in the idle state (the play operation has not been initiated or has
ended), an error will be returned for that stream type but a valid duration will be retuned
for the non-idle stream.

• EMM_GETDURATION_VIDEO_ONLY – Get duration of video ONLY.
• EMM_GETDURATION_AUDIO_ONLY – Get duration of audio ONLY.

Note: The stream type for which duration is being requested must not be idle (the play operation must
have been initiated and it must not have ended). This means that the mm_GetDuration() function
will only be valid during the period of time between the MMEV_PLAY_ACK event and the
MMEV_PLAY event for the requested stream type. The mm_GetDuration() function is valid for
paused streams.

Dialogic® Multimedia API Programming Guide and Library Reference 173

event data payload count — MM_GETELAPSEDTIME_CMPLT

MM_GETELAPSEDTIME_CMPLT

event data payload count
typedef struct tagMM_GETELAPSEDTIME_CMPLT
{
unsigned int unVersion;
unsigned int unCount;
MM_GETELAPSEDTIME_CMPLT_DETAILS details[MAX_GETELAPSEDTIME_CMPLT];
} MM_GETELAPSEDTIME_CMPLT, *PMM_GETELAPSEDTIME_CMPLT;

 Description

The MM_GETELAPSEDTIME_CMPLT event information data structure is used for analyzing
the results of the mm_GetElapsedTime() function termination or completion as reported by an
MMEV_GETELAPSEDTIME or MMEV_GETELAPSEDTIME_FAIL event.

The INIT_MM_GETELAPSEDTIME_CMPLT inline function is provided to initialize the
structure.

 Field Descriptions

The fields of the structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

unCount
Indicates the number of MM_GETELAPSEDTIME_CMPLT_DETAILS elements that follow.

details
Provides the details of completion. See the MM_GETELAPSEDTIME_CMPLT_DETAILS
structure definition for details.

174 Dialogic® Multimedia API Programming Guide and Library Reference

MM_GETELAPSEDTIME_CMPLT_DETAILS — request reply message details

MM_GETELAPSEDTIME_CMPLT_DETAILS

request reply message details
typedef struct tagMM_GETELAPSEDTIME_CMPLT_DETAILS
{
unsigned int unVersion;
unsigned int unStreamType;
unsigned int unRetCode;
unsigned int unElapsedTime;
} MM_GETELAPSEDTIME_CMPLT_DETAILS, *PMM_GETELAPSEDTIME_CMPLT_DETAILS;
typedef const MM_GETELAPSEDTIME_CMPLT_DETAILS* CPMM_GETELAPSEDTIME_CMPLT_DETAILS;

 Description

The MM_GETELAPSEDTIME_CMPLT_DETAILS structure is a second-level event information
data structure under the MM_GETELAPSEDTIME_CMPLT structure. (See Section 10.5, “Other
Data Structure Levels (_DETAILS)”, on page 151.)

The INIT_MM_GETELAPSEDTIME_CMPLT_DETAILS inline function is provided to initialize
the structure.

 Field Descriptions

The fields of the structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

un StreamType
Indicates which stream type (audio, video or both) the information in this structure applies to.
Value can be ONE of the following:

• EMM_GETELAPSEDTIME_VIDEO_AUDIO – information applies to BOTH video
and audio.

• EMM_GETELAPSEDTIME_VIDEO_ONLY – information applies to video ONLY.
• EMM_GETELAPSEDTIME_AUDIO_ONLY – information applies to audio ONLY.

unRetCode
Contains the firmware return code. A non-zero value indicates an error has occurred and what
the firmware error code is.

unElapsedTime
Indicates elapsed time in milli-seconds.

Dialogic® Multimedia API Programming Guide and Library Reference 175

get stream type details — MM_GETELAPSEDTIME_INFO

MM_GETELAPSEDTIME_INFO

get stream type details
typedef struct tagMM_GETELAPSEDTIME_INFO
{
 unsigned int unVersion;
 unsigned int unStreamType;
} MM_GETELAPSEDTIME_INFO, *PMM_GETELAPSEDTIME_INFO;
typedef const MM_GETELAPSEDTIME_INFO* CPMM_GETELAPSEDTIME_INFO;

 Description

The MM_GETELAPSEDTIME_INFO data structure is a function input structure for the
mm_GetElapsedTime() function.

The INIT_MM_GETELAPSEDTIME_INFO inline function is provided to initialize the structure.

 Field Descriptions

The fields of this data structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

un StreamType
Indicates the stream type (audio, video or both) for which the information is being requested.
Value can be ONE of the following:

• EMM_GETELAPSEDTIME_VIDEO_AUDIO – Get elapsed time of video and audio.
In this case two values will be returned - the elapsed time of the video and the elapsed
time of the audio. If either stream is in the idle state (i.e. the play operation has not been
initiated or has ended), an error will be returned for that stream type but a valid elapsed
time value will be returned for the non-idle stream.

• EMM_GETELAPSEDTIME_VIDEO_ONLY – Get elapsed time of video ONLY.
• EMM_GETELAPSEDTIME_AUDIO_ONLY – Get elapsed time of audio ONLY.

Note: The stream type for which elapsed time is being requested must not be idle (the play
operation must have been initiated and it must not have ended). This means that the
mm_GetElapsedTime() function will only be valid during the period of time
between the MMEV_PLAY_ACK event and the MMEV_PLAY event for the
requested stream type. The mm_GetElapsedTime() is valid for paused streams.

176 Dialogic® Multimedia API Programming Guide and Library Reference

MM_IMAGE_FORMAT — specifies data contents of image format

MM_IMAGE_FORMAT

specifies data contents of image format
typedef union tagMM_IMAGE_FORMAT
{
 MM_YUV yuv;

} MM_IMAGE_FORMAT, *PMM_IMAGE_FORMAT;

 Description

The MM_IMAGE_FORMAT union is used to provide additional characteristics of the specified
image format. This union is a nested function input structure for the mm_Play() function or
mm_Capture() function. It is nested directly under the MM_MEDIA_IMAGE structure, and it is
a sixth-level structure under the MM_PLAY_INFO structure (For a description of these nesting
levels, see Section 10.4, “Play/Record Data Structure Levels”, on page 151.)

The INIT_MM_IMAGE_FORMAT inline function is provided to initialize the structure.

 Field Descriptions

The fields of the data structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

yuv
Specifies the characteristics of a YUV image. Refer to the MM_YUV data structure for
details.

Dialogic® Multimedia API Programming Guide and Library Reference 177

error or result information — MM_INFO

MM_INFO

error or result information
typedef struct tagMM_INFO
{
 unsigned int unVersion;
 int mmValue;
 const char* mmMsg;
 const char* additionalInfo;
} MM_INFO, *PMM_INFO;
typedef const MM_INFO* CPMM_INFO;

 Description

The MM_INFO structure is used as function output for the mm_ErrorInfo() function and
contains error or result information.

The INIT_MM_INFO inline function is provided to initialize the structure.

 Field Descriptions

The fields of MM_INFO are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

mmValue
Specifies a Multimedia API error or result value. See Section 12.2, “Dialogic® Multimedia
API Function Error Codes”, on page 235.

mmMsg
Specifies a pointer to a null-terminated string containing a message associated with the
Multimedia API error or result value. See Section 12.2, “Dialogic® Multimedia API Function
Error Codes”, on page 235.

additionalInfo
Specifies a pointer to a null-terminated string containing additional information associated
with this error or result value. This additional information is optional and may be used as a
diagnostic aid. .

178 Dialogic® Multimedia API Programming Guide and Library Reference

MM_MEDIA_ACCESS_MEMORY — access the media buffer

MM_MEDIA_ACCESS_MEMORY

access the media buffer
typedef struct tagMM_MEDIA_ACCESS_MEMORY
{
 unsigned int unVersion;
 unsigned char *pBuffer;
 unsigned int unBufferSize;
} MM_MEDIA_ACCESS_MEMORY, *PMM_MEDIA_ACCESS_MEMORY;

typedef const MM_MEDIA_ACCESS_MEMORY *CPMM_MEDIA_ACCESS_MEMORY;

 Description

This structure is used by the mm_Play() and mm_Record() functions to access the media buffer.

The INIT_MM_MEDIA_ACCESS_MEMORY inline function is provided to initialize the
structure.

 Field Descriptions

The fields of the structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

pBuffer
Specifies the pointer to the memory location in memory I/O mode. The application is
responsible for allocating the memory to which the pBuffer points.

unBufferSize
Specifies the size in bytes of the memory buffer pointed to by pBuffer. Valid value is >0.

Dialogic® Multimedia API Programming Guide and Library Reference 179

access media stream — MM_MEDIA_ACCESS_STREAM

MM_MEDIA_ACCESS_STREAM

access media stream
typedef struct tagMM_MEDIA_ACCESS_STREAM
{
 unsigned int unVersion;
 int nStreamHandle;
} MM_MEDIA_ACCESS_STREAM, *PMM_MEDIA_ACCESS_STREAM;
typedef const MM_MEDIA_ACCESS_STREAM *CPMM_MEDIA_ACCESS_STREAM;

 Description

This structure is used by the mm_Play() and mm_Record() functions to access the media stream.

The INIT_MM_MEDIA_ACCESS_STREAM inline function is provided to initialize the
structure.

 Field Descriptions

The fields of the structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

nStreamHandle
Specifies the stream handle in stream I/O mode. The stream handle is the handle returned by
mm_StreamOpen().

MM_MEDIA_AUDIO — audio media item specification
MM_MEDIA_AUDIO

audio media item specification
typedef struct tagMM_MEDIA_AUDIO
{
 unsigned int unVersion;
 MM_AUDIO_CODEC codec;
 unsigned int unMode;
 unsigned int unOffset;
 union {
 const char* szFileName;
 MM_MEDIA_ACCESS_STREAM stream;
 MM_MEDIA_ACCESS_MEMORY memory;
 };
 unsigned int unAccessMode;
 eMM_FILE_FORMAT eFileFormat;
} MM_MEDIA_AUDIO, *PMM_MEDIA_AUDIO;
typedef const MM_MEDIA_AUDIO* CPMM_MEDIA_AUDIO;

 Description

The MM_MEDIA_AUDIO structure specifies the audio media item. This structure is a nested
function input structure for the mm_Play() or mm_Record() function. It is nested directly under
the MM_MEDIA_ITEM structure, and it is a fifth-level structure under the
MM_PLAY_RECORD_INFO (MM_PLAY_INFO, MM_RECORD_INFO) structure. (For a
description of these nesting levels, see Section 10.4, “Play/Record Data Structure Levels”, on
page 151.)

The INIT_MM_MEDIA_AUDIO inline function is provided to initialize the structure.

 Field Descriptions

The fields of the structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

codec
Specifies the audio codec. See definition of MM_AUDIO_CODEC structure.

unMode
Specifies the mask for the mode of operation. The mask is formed from one or more of the
following:

• MM_MODE_AUD_PAUSED – Bitnask to specify pause.
• MM_MODE_AUD_BEEPINITIATED – Bitmask to enable notification tone (or

“beep”) at start of audio play or record.

Note: If doing a multimedia playback or record with synchronized audio and video, only a
single beep is generated even if the corresponding MM_MEDIA_VIDEO beep is
enabled.

• MM_MODE_AUD_OFFSET_IN_BYTES – If set, specifies unit of the unOffset field is
in bytes instead of time.

• MM_MODE_AUD_AGC_ON – Specifies AGC mode.
180 Dialogic® Multimedia API Programming Guide and Library Reference

audio media item specification — MM_MEDIA_AUDIO
unOffset
Specifies data offset in milliseconds. To specify a byte offset, set the
MM_MODE_AUD_OFFSET_IN_BYTES bit in the unMode field. Non-zero offsets are only
supported when playing WAVE files. For all other cases, this field must be set to 0.

szFileName
In file I/O mode (when unAccessMode is set to MM_MEDIA_ACCESS_MODE_FILE),
specifies the file name of the audio media item.

stream
In stream I/O mode (when unAccessMode is set to
MM_MEDIA_ACCESS_MODE_STREAM), specifies additional information about the audio
stream. Refer to the MM_MEDIA_ACCESS_STREAM structure for more information.

memory
In memory I/O mode (when unAccessMode is set to
MM_MEDIA_ACCESS_MODE_MEMORY), specifies additional information about the
memory buffer. Refer to the MM_MEDIA_ACCESS_MEMORY structure for more
information.

unAccessMode
Indicates the I/O mode to be used in accessing the audio item. It also identifies the field in the
union to be used. Defines include:

• MM_MEDIA_ACCESS_MODE_FILE

• MM_MEDIA_ACCESS_MODE_MEMORY

• MM_MEDIA_ACCESS_MODE_STREAM

eFileFormat
Specifies format of the audio file. Valid values include:

• EMM_AUD_FILEFORMAT_3GP – 3GP format
• EMM_AUD_FILEFORMAT_PROPRIETARY – HMP proprietary format.
• EMM_AUD_FILEFORMAT_VOX – linear PCM (VOX) format.
• EMM_AUD_FILEFORMAT_WAVE – WAVE format.
Dialogic® Multimedia API Programming Guide and Library Reference 181

MM_MEDIA_IMAGE — still image for play or capture
MM_MEDIA_IMAGE

 still image for play or capture
typedef struct tagMM_MEDIA_IMAGE
{
 unsigned int unVersion;
 eMTK_IMAGE_FORMAT eFormat;
 MM_IMAGE_FORMAT format;
 unsigned int unAccessMode;
 union
 {
 const char* szFileName;
 MM_MEDIA_ACCESS_STREAM stream;
 MM_MEDIA_ACCESS_MEMORY memory;
 };
}MM_MEDIA_IMAGE, *PMM_MEDIA_IMAGE;
typedef const MM_MEDIA_IMAGE* CPMM_MEDIA_IMAGE;

 Description

The MM_MEDIA_IMAGE structure specifies the image media item to be played or captured.
This structure is a nested function input structure for the mm_Play() or mm_Capture() function.
It is nested directly under the MM_MEDIA_ITEM structure, and it is a fifth-level structure under
the MM_PLAY_INFO structure. (For a description of these nesting levels, see Section 10.4,
“Play/Record Data Structure Levels”, on page 151.)

The INIT_MM_MEDIA_IMAGE inline function is provided to initialize the structure.

 Field Descriptions

The fields of the data structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

eFormat
Specifies the image format. Valid values include:
eMTK_IMAGE_FORMAT_YUV
eMTK_IMAGE_FORMAT_JPEG

Note: Both YUV 4:2:0 and JPEG formats are supported for still image play in this release.
Only YUV 4:2:0 format is supported for image capture in this release.

format
Specifies the characteristics of the image format specified by the eFormat field. Since JPEG
headers already contain format specific information, this field is ignored when eFormat is set
to eMTK_IMAGE_FORMAT_JPEG. Refer to the definition of MM_IMAGE_FORMAT
structure for more information.
182 Dialogic® Multimedia API Programming Guide and Library Reference

still image for play or capture — MM_MEDIA_IMAGE
unAccessMode
Indicates the I/O mode to be used in accessing the image item. It also identifies the field in the
union to be used.
Defines include:
MM_MEDIA_ACCESS_MODE_FILE
MM_MEDIA_ACCESS_MODE_MEMORY
MM_MEDIA_ACCESS_MODE_STREAM

Note: MM_MEDIA_ACCESS_MODE_MEMORY (memory I/O) and
MM_MEDIA_ACCESS_MODE_STREAM (stream I/O) are not currently supported
for image play or capture.

szFileName
In file I/O mode (when unAccessMode is set to MM_MEDIA_ACCESS_MODE_FILE),
specifies the name of the file in which the image data resides or, in the case of an image
capture, the name of the file in which image data will be stored.

stream
Not currently supported.

memory
Not currently supported.
Dialogic® Multimedia API Programming Guide and Library Reference 183

184 Dialogic® Multimedia API Programming Guide and Library Reference

MM_MEDIA_ITEM — media item information

MM_MEDIA_ITEM

media item information
typedef union tagMM_MEDIA_ITEM
{
 MM_MEDIA_VIDEO video;
 MM_MEDIA_AUDIO audio;
 MM_MEDIA_TERM term;
 MM_MEDIA_IMAGE image;
} MM_MEDIA_ITEM, *PMM_MEDIA_ITEM;
typedef const MM_MEDIA_ITEM* CPMM_MEDIA_ITEM;

 Description

The MM_MEDIA_ITEM union specifies the media item. This union is a nested function input
structure for the mm_Play() or mm_Record() function. It is nested directly under the
MM_MEDIA_ITEM_LIST structure, and it is a fourth-level structure under the
MM_PLAY_RECORD_INFO (MM_PLAY_INFO, MM_RECORD_INFO) structure. (For a
description of these nesting levels, see Section 10.4, “Play/Record Data Structure Levels”, on
page 151.)

Since this structure is a union, only one of the INIT inline functions should be used to initialize the
fields in this structure. For example, if the item is a video item (i.e., ItemType in
MM_PLAY_RECORD_LIST is MM_MEDIA_TYPE_VIDEO), then only the
INIT_MM_MEDIA_VIDEO inline function should be called, not the
INIT_MM_MEDIA_AUDIO, INIT_MM_MEDIA_TERM or INIT_MM_MEDIA_IMAGE inline
functions.

 Field Descriptions

The ItemType field in the MM_PLAY_RECORD_LIST structure identifies which field in the
MM_MEDIA_ITEM union is to be used. The elements of the union are described as follows:

video
Specifies information about a video item. See the definition of the MM_MEDIA_VIDEO
structure.

audio
Specifies information about an audio item. See the definition of the MM_MEDIA_AUDIO
structure.

term
Reserved for future use.

image
Specifies information about an image item. See the definition of the MM_MEDIA_IMAGE
structure.

Dialogic® Multimedia API Programming Guide and Library Reference 185

media item list information — MM_MEDIA_ITEM_LIST

MM_MEDIA_ITEM_LIST

media item list information
typedef struct tagMM_MEDIA_ITEM_LIST
{
 unsigned int unVersion;
 eMM_ITEM ItemChain;
 MM_MEDIA_ITEM item;
 struct tagMM_MEDIA_ITEM_LIST* next;
 struct tagMM_MEDIA_ITEM_LIST* prev; /* optional */
} MM_MEDIA_ITEM_LIST, *PMM_MEDIA_ITEM_LIST;
typedef const MM_MEDIA_ITEM_LIST* CPMM_MEDIA_ITEM_LIST;

 Description

The MM_MEDIA_ITEM_LIST structure specifies the media item list. This structure is a nested
function input structure for the mm_Play() or mm_Record() function. It is nested directly under
the MM_PLAY_RECORD_LIST structure, and it is a third-level structure under the
MM_PLAY_RECORD_INFO (MM_PLAY_INFO, MM_RECORD_INFO) structure. (For a
description of these nesting levels, see Section 10.4, “Play/Record Data Structure Levels”, on
page 151.)

The INIT_MM_MEDIA_ITEM_ LIST inline function is provided to initialize the structure.

 Field Descriptions

The fields of the structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

ItemChain
Specifies the next list element for iteration. Defined values include:

• EMM_ITEM_CONT – Indicates that the next list element immediately follows the
current.

• EMM_ITEM_LINK – Indicates that the next and previous list elements linked to the
current via pointers.

• EMM_ITEM_EOT – Indicates that the current list element is the last in the list.

item
Specifies additional information about the media item. See the definition of the
MM_MEDIA_ITEM structure.

next
Points to the next MM_MEDIA_ITEM_LIST item. This field is required only when
ItemChain is set to EMM_ITEM_LINK. Set to NULL for the last item.

prev
Points to the previous MM_MEDIA_ITEM_LIST item (optional). This field is applicable
only when ItemChain is set to EMM_ITEM_LINK. Set to NULL for the first item.

186 Dialogic® Multimedia API Programming Guide and Library Reference

MM_MEDIA_TERM — media termination information

MM_MEDIA_TERM

media termination information
typedef struct tagMM_MEDIA_TERM
{
 unsigned int unVersion;
 unsigned int unRfu;
} MM_MEDIA_TERM, *PMM_MEDIA_TERM;
typedef const MM_MEDIA_TERM* CPMM_MEDIA_TERM;

 Description

The MM_MEDIA_TERM structure specifies termination details. It is a nested function input
structure for the mm_Play() or mm_Record() function. It is nested directly under the
MM_MEDIA_ITEM union, and it is a fifth-level structure under the MM_PLAY_RECORD_INFO
(MM_PLAY_INFO, MM_RECORD_INFO) structure. (For a description of these nesting levels,
see Section 10.4, “Play/Record Data Structure Levels”, on page 151.)

This structure is reserved for future use.

video media item specification — MM_MEDIA_VIDEO
MM_MEDIA_VIDEO

video media item specification
typedef struct tagMM_MEDIA_VIDEO
{
 unsigned int unVersion;
 MM_VIDEO_CODEC codec;
 unsigned int unMode;
 union {
 const char* szFileName;
 MM_MEDIA_ACCESS_STREAM stream;
 MM_MEDIA_ACCESS_MEMORY memory;
 };
 unsigned int unAccessMode;
 unsigned int unOffset;
 eMM_FILE_FORMAT eFileFormat;
} MM_MEDIA_VIDEO, *PMM_MEDIA_VIDEO;

 Description

The MM_MEDIA_VIDEO structure specifies the video media item. This structure is a nested
function input structure for the mm_Play() or mm_Record() function. It is nested directly under
the MM_MEDIA_ITEM structure, and it is a fifth-level structure under the
MM_PLAY_RECORD_INFO (MM_PLAY_INFO, MM_RECORD_INFO) structure. (For a
description of these nesting levels, see Section 10.4, “Play/Record Data Structure Levels”, on
page 151.)

The INIT_MM_MEDIA_VIDEO inline function is provided to initialize the structure.

 Field Descriptions

The fields of the structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

codec
Specifies the video codec. See definition of MM_VIDEO_CODEC structure.

unMode
Specifies the mask for the mode of operation. The mask is formed from one or more of the
following:

• MM_MODE_VID_PAUSED – Bitnask to specify pause.
• MM_MODE_VID_BEEPINITIATED – Bitmask to enable notification tone (or “beep”)

at start of video play.
• MM_MODE_VID_NOIFRMBEEPINITIATED – Bitmask to disable notification tone at

start of video record. (The record beep is enabled by default and is transmitted upon
detection of an I-frame or upon time-out waiting for an I-frame.)

Note: If doing a multimedia playback or record with synchronized audio and video, only a
single beep is generated even if the corresponding MM_MEDIA_AUDIO beep is
enabled.
Dialogic® Multimedia API Programming Guide and Library Reference 187

MM_MEDIA_VIDEO — video media item specification
szFileName
In file I/O mode (when unAccessMode is set to MM_MEDIA_ACCESS_MODE_FILE),
specifies the file name of the video media item.

stream
In stream I/O mode (when unAccessMode is set to
MM_MEDIA_ACCESS_MODE_STREAM), specifies additional information about the video
stream. Refer to the MM_MEDIA_ACCESS_STREAM structure for more information.

memory
In memory I/O mode (when unAccessMode is set to
MM_MEDIA_ACCESS_MODE_MEMORY), specifies additional information about the
memory buffer. Refer to the MM_MEDIA_ACCESS_MEMORY structure for more
information.

unAccessMode
Indicates I/O mode that is to be used in accessing the video item. It also identifies the field in
the union to be used. Defines include:

• MM_MEDIA_ACCESS_MODE_FILE

• MM_MEDIA_ACCESS_MODE_MEMORY

• MM_MEDIA_ACCESS_MODE_STREAM

unOffset
Reserved for future use. Set to 0.

eFileFormat
Specifies format of the video file. Valid values:

• EMM_FILE_FORMAT_3GP – 3GP format
• EMM_FILE_FORMAT_PROPRIETARY – HMP proprietary format
188 Dialogic® Multimedia API Programming Guide and Library Reference

event descriptor for a metaevent — MM_METAEVENT
MM_METAEVENT

event descriptor for a metaevent
typedef struct tag MM_METAEVENT
{
 unsigned int unVersion;
 unsigned long flags;
 void* evtdatap;
 long evtlen;
 long evtdev;
 long evttype;
 void* evtUserInfo;
 int rfu1;
} MM_METAEVENT, *PMM_METAEVENT;
typedef const MM_METAEVENT* CPMM_METAEVENT;

 Description

The MM_METAEVENT structure is used as function output for the mm_GetMetaEvent()
function.

The MM_METAEVENT structure contains the event descriptor for a metaevent. The Field
Descriptions section below describes each element used in the metaevent data structure, and where
applicable, indicates the Dialogic® Standard Runtime Library (SRL) API function that is used to
retrieve the information stored in the associated field. This data structure eliminates the need for
the application to issue the equivalent Dialogic® SRL functions listed below. For information on
the Dialogic® SRL API, see the Dialogic® Standard Runtime Library API Library Reference.

 Field Descriptions

The fields of MM_METAEVENT are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

flags
Specifies any flags for the information in the structure. If the metaevent is a Multimedia API
event, the MMME_MM_EVENT bit in the flags field will be set. The MM_METAEVENT
fields contain valid Multimedia API-related data only when the MMME_MM_EVENT bit is
set. Do not use these fields for obtaining multimedia information if the bit is not set.

evtdatap
Specifies a pointer to the data associated with the event. Function equivalent:
sr_getevtdatap()

evtlen
Specifies the length of the data associated with the event. Function equivalent: sr_getevtlen()

evtdev
Specifies the event device handle. Function equivalent: sr_getevtdev()

evttype
Specifies the event type. Function equivalent: sr_getevttype()
Dialogic® Multimedia API Programming Guide and Library Reference 189

MM_METAEVENT — event descriptor for a metaevent
evtUserInfo
Points to the user information associated with the event. This is the data passed by a
pUserInfo parameter in an asynchronous Multimedia API function call. If no data was passed,
it points to NULL. Function equivalent: sr_getUserContext()

rfu1
Reserved for future use. Must be set to 0.
190 Dialogic® Multimedia API Programming Guide and Library Reference

Dialogic® Multimedia API Programming Guide and Library Reference 191

pause request details — MM_PAUSE_INFO

MM_PAUSE_INFO

pause request details
typedef struct tagMM_PAUSE_INFO
 {
 unsigned int unVersion;
 unsigned int unStreamType;
 unsigned int unAttribute;
} MM_PAUSE_INFO, *PMM_PAUSE_INFO;
typedef const MM_PAUSE_INFO* CPMM_PAUSE_INFO;

 Description

The MM_PAUSE_INFO data structure is a function input structure for the mm_Pause() function.

The INIT_MM_PAUSE_INFO inline function is provided to initialize the structure.

 Field Descriptions

The fields of this data structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

un StreamType
Indicates which stream type (audio, video or both) is to be paused. Value can be ONE of the
following:

• EMM_PAUSE_VIDEO_AUDIO – Pause both video and audio. If either stream is in the
idle state (the play operation has not been initiated or has ended), an error will be returned
for that stream type but the non-idle stream will be paused.

• EMM_PAUSE_VIDEO_ONLY – Pause video ONLY.
• EMM_PAUSE_AUDIO_ONLY – Pause audio ONLY.

Note: The stream type which is to be paused must not be idle (the play operation must have
been initiated and it must not have ended). This means that the mm_Pause()
function will only be valid during the period of time between the
MMEV_PLAY_ACK event and the MMEV_PLAY event for the requested stream
type.

Note: In an audiovideo playback, if the playback is synchronous (both audio and video play
are initiated by a single mm_Play() function call), mm_Pause() will cause BOTH
the audio and video streams to be paused, regardless of the unStreamType setting in
MM_PAUSE_INFO. This allows synchronization to be maintained.

unAttribute
This field is used for various attributes of the mm_Pause() function. Defined values include:

• EMM_PAUSE_AUDIO_SILENCE – When audio transmission is paused transmit audio
silence (DEFAULT).

• EMM_PAUSE_AUDIO_CNG – When audio transmission is paused transmit audio
comfort noise. This value is not currently supported.

192 Dialogic® Multimedia API Programming Guide and Library Reference

MM_PAUSE_PLAY_CMPLT — event data count

MM_PAUSE_PLAY_CMPLT

event data count
typedef struct tagMM_PAUSE_PLAY_CMPLT
{
unsigned int unVersion;
unsigned int unCount;
MM_PAUSE_PLAY_CMPLT_DETAILS details[MAX_PAUSE_PLAY_CMPLT];
} MM_PAUSE_PLAY_CMPLT, *PMM_PAUSE_PLAY_CMPLT;

 Description

The MM_PAUSE_PLAY_CMPLT event information data structure is used for analyzing the
results of the mm_Pause() function termination or completion as reported by an MMEV_PAUSE
or MMEV_PAUSE_FAIL event.

The INIT_MM_PAUSE_PLAY_CMPLT inline function is provided to initialize the structure.

 Field Descriptions

The fields of this data structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

unCount
Indicates the number of MM_PAUSE_PLAY_CMPLT_DETAILS elements that follow.

details
Provides the details of completion. See the MM_PAUSE_PLAY_CMPLT_DETAILS structure
definition for details.

Dialogic® Multimedia API Programming Guide and Library Reference 193

stream type details — MM_PAUSE_PLAY_CMPLT_DETAILS

MM_PAUSE_PLAY_CMPLT_DETAILS

stream type details
typedef struct tagMM_PAUSE_PLAY_CMPLT_DETAILS
{
unsigned int unVersion;
unsigned int unStreamType;
unsigned int unRetCode;
} MM_PAUSE_PLAY_CMPLT_DETAILS, *PMM_PAUSE_PLAY_CMPLT_DETAILS;
typedef const MM_PAUSE_PLAY_CMPLT_DETAILS* CPMM_PAUSE_PLAY_CMPLT_DETAILS;

 Description

The MM_PAUSE_PLAY_CMPLT_DETAILS structure is a second-level event information data
structure under the MM_PAUSE_PLAY_CMPLT structure. (See Section 10.5, “Other Data
Structure Levels (_DETAILS)”, on page 151.)

The INIT_MM_PAUSE_PLAY_CMPLT_DETAILS inline function is provided to initialize the
structure.

 Field Descriptions

The fields of the data structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

un StreamType
Indicates which stream type (audio, video or both) the information in this structure applies to.
Value can be ONE of the following:

• EMM_PAUSE_PLAY_VIDEO_AUDIO – information applies to BOTH video and
audio.

• EMM_PAUSE_PLAY_VIDEO_ONLY – information applies to video ONLY.
• EMM_PAUSE_PLAY_AUDIO_ONLY – information applies to audio ONLY.

unRetCode
Contains the firmware return code. A non-zero value indicates an error has occurred.

194 Dialogic® Multimedia API Programming Guide and Library Reference

MM_PLAY_RECORD_CMPLT — play/record completion event information

MM_PLAY_RECORD_CMPLT

play/record completion event information
typedef struct tagMM_PLAY_RECORD_CMPLT
{
 unsigned int unVersion;
 unsigned int unCount;
 MM_PLAY_RECORD_CMPLT_DETAILS details[MAX_PLAY_RECORD_CMPLT];
} MM_PLAY_RECORD_CMPLT, *PMM_PLAY_RECORD_CMPLT;
typedef const MM_PLAY_RECORD_CMPLT* CPMM_PLAY_RECORD_CMPLT;

typedef MM_PLAY_RECORD_CMPLT MM_PLAY_CMPLT, *PMM_PLAY_CMPLT;
typedef CPMM_PLAY_RECORD_CMPLT CPMM_PLAY_CMPLT;

typedef MM_PLAY_RECORD_CMPLT MM_RECORD_CMPLT, *PMM_RECORD_CMPLT;
typedef CPMM_PLAY_RECORD_CMPLT CPMM_RECORD_CMPLT;

 Description

The MM_PLAY_RECORD_CMPLT event information data structure is used for analyzing the
results of the mm_Play() or mm_Record() function termination or completion as reported by
an MMEV_PLAY, MMEV_PLAY_FAIL, MMEV_RECORD, or MMEV_RECORD_FAIL event.

Note: This structure is used as a typedef for the MM_PLAY_CMPLT and MM_RECORD_CMPLT
event information structures, which are defined as a convenience.

Extra information may be contained at the end of this structure when the application records to
stream or memory. When extra information is present, the application is required to write it to the
data that it recorded. This is also required if the record fails and the extra information is present at
the end of the structure.

Refer to the MM_PLAY_RECORD_CMPLT_DETAILS data structure for information about the
EMM_CMPLT_AUDIO_RECORD_WITH_UPDATE and
EMM_CMPLT_VIDEO_RECORD_WITH_UPDATE “Complete” values.

 Field Descriptions

The fields of the structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

unCount
Specifies the number of MM_PLAY_RECORD_CMPLT_DETAILS elements that follow.

details
Specifies the details of completion. See MM_PLAY_RECORD_CMPLT_DETAILS structure
definition for details.

Note: See Section 12.5, “Terminating and Non-Terminating Play/Record Errors”, on
page 239 for related information.

play/record completion details — MM_PLAY_RECORD_CMPLT_DETAILS
MM_PLAY_RECORD_CMPLT_DETAILS

play/record completion details
typedef struct tagMM_PLAY_RECORD_CMPLT_DETAILS
{
 unsigned int unVersion;
 eMM_CMPLT_PLAY_RECORD Complete;
 eMM_CMPLT_PLAY_RECORD_REASON Reason;
 unsigned int unDuration;
 unsigned int unNumberOfBytes;
 eMM_CMPLT_PLAY_RECORD_STATUS Status;
} MM_PLAY_RECORD_CMPLT_DETAILS, *PMM_PLAY_RECORD_CMPLT_DETAILS;
typedef const MM_PLAY_RECORD_CMPLT_DETAILS* CPMM_PLAY_RECORD_CMPLT_DETAILS;

 Description

The MM_PLAY_RECORD_CMPLT_DETAILS structure specifies the elements of details of
MMEV_PLAY, MMEV_PLAY_FAIL, MMEV_RECORD, or MMEV_RECORD_FAIL events.
This structure is a second-level event information data structure under the
MM_PLAY_RECORD_CMPLT structure. (See Section 10.5, “Other Data Structure Levels
(_DETAILS)”, on page 151.)

The INIT_MM__PLAY_RECORD_CMPLT_DETAILS inline function is provided to initialize
the structure.

Note: If the “Complete” field value is EMM_CMPLT_AUDIO_RECORD_WITH_UPDATE or
EMM_CMPLT_VIDEO_RECORD_WITH_UPDATE, then the
MM_RECORD_CMPLT_INFO_DATA_BLOCKS structure follows the last
MM_PLAY_RECORD_CMPLT_DETAILS structure. The number of
MM_PLAY_RECORD_CMPLT_DETAILS structures is contained in the unCount field of the
MM_PLAY_RECORD_CMPLT structure.

 Field Descriptions

The fields of the structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

Complete
Specifies the type of terminated or completed operation. Defined values include:

• EMM_CMPLT_AUDIO_PLAY – Audio playback operation.
• EMM_CMPLT_AUDIO_RECORD – Audio recording operation.
• EMM_CMPLT_IMAGE_PLAY – Image playback operation.
• EMM_CMPLT_VIDEO_PLAY – Video playback operation.
• EMM_CMPLT_VIDEO_RECORD – Video recording operation.
• EMM_CMPLT_AUDIO_RECORD_WITH_UPDATE – Audio recording operation plus

update information.
Dialogic® Multimedia API Programming Guide and Library Reference 195

MM_PLAY_RECORD_CMPLT_DETAILS — play/record completion details
• EMM_CMPLT_VIDEO_RECORD_WITH_UPDATE – Video recording operation plus
update information.

Note: Refer to the Macros section of this data structure when the “Complete” value is either
EMM_CMPLT_AUDIO_RECORD_WITH_UPDATE or
EMM_CMPLT_VIDEO_RECORD_WITH_UPDATE.

Reason
Specifies the reason for the termination. Defined values include:

• EMM_TR_DIGMASK – Termination occurred because the EMM_TERM_DIGMASK
runtime control (RTC) condition specified in mm_Play() or mm_Record() was met.

• EMM_TR_DIGTYPE – Termination occurred because the EMM_TERM_DIGTYPE
RTC condition specified in mm_Play() or mm_Record() was met.

• EMM_TR_EOF – mm_Play() terminated because end of file was reached.
• EMM_TR_ERROR – mm_Play() or mm_Record() terminated because an error

occurred. See Status field for details. See also Section 12.5, “Terminating and Non-
Terminating Play/Record Errors”, on page 239.

• EMM_TR_MAX_DTMF_DIGIT – Termination occurred because the
EMM_TERM_MAXDTMF RTC condition specified in mm_Play() or mm_Record()
was met.

• EMM_TR_MAXTIME – Termination occurred because the EMM_TERM_MAXTIME
RTC condition specified in mm_Play() or mm_Record() was met.

• EMM_TR_TIME__FROM_AUDIO_RECORD_STARTED – Termination occurred
because the EMM_TERM_TIME_FROM_AUDIO_RECORD_STARTED RTC
condition specified in mm_Record() was met.

• EMM_TR_USERSTOP – mm_Play() or mm_Record() terminated by the mm_Stop()
function.

unDuration
Specifies the duration of play or record in milliseconds.

unNumberOfBytes
Specifies the number of bytes played or recorded. For image play, the unNumberOf Bytes will
be the total byte count of the image data. For JPEG, this number does not include the header
data size.

Status
Specifies any error during play or record. (See also Section 12.5, “Terminating and Non-
Terminating Play/Record Errors”, on page 239.) Defined values include:

• EMM_STATUS_PLAY_A_FILEREAD_ERROR – Audio file read error.
• EMM_STATUS_PLAY_I_FILEREAD_ERROR – Image file read error.
• EMM_STATUS_PLAY_I_NULLDATA_ERROR – Image bitmap data pointer is null.
• EMM_STATUS_PLAY_V_ERROR_FS_GT_MFS – Video frame size greater than

maximum frame size of internal buffer.
• EMM_STATUS_PLAY_V_FILEREAD_ERROR – Video file read error.
• EMM_STATUS_PLAY_BAD_PACKET – File/stream being played contains invalid

values.
• EMM_STATUS_PLAY_CODING_ERROR – Data format specified in the "unCoding"

field of the MM_AUDIO_CODEC structure is either not supported or does not match the
format of the data contained in the played file.

• EMM_STATUS_RCRD_CODING_ERROR – Encoding to the data format specified in
the "unCoding" field of the MM_AUDIO_CODEC structure is not supported.
196 Dialogic® Multimedia API Programming Guide and Library Reference

play/record completion details — MM_PLAY_RECORD_CMPLT_DETAILS
• EMM_STATUS_RCRD_A_DRPD_FRAME_FULL_ERROR – Full audio frame
dropped error.

• EMM_STATUS_RCRD_V_DRPD_FRAME_FULL_ERROR – Full video frame
dropped error.

• EMM_STATUS_RCRD_V_MISSING_MPEG4_VISUALCONFIG_ERROR – Visual
configuration data (either MPEG-4 or H.264) is not present in the incoming video stream
and it has not been specified by the application in mm_Record().

• EMM_STATUS_RCRD_V_PKTS_DROPD_FS_GT_MFS – Video packets dropped
frame size greater than maximum frame size of internal buffer.

• EMM_STATUS_SUCCESS – Successful completion or successful termination (no
error).

 Macros

The following macros simplify the retrieval of record update information, and need only to be
called when the “Complete” value is either EMM_CMPLT_AUDIO_RECORD_WITH_UPDATE
or EMM_CMPLT_VIDEO_RECORD_WITH_UPDATE.

Note: The following macros only apply to memory and stream records.

MM_RECORD_CMPLT_INIT(recCmplt, tempPtr)

• recCmplt – the event data pointer returned by the sr_getevtdatap() function.

• tempPtr – caller supplied variable of type “unsigned char *” that is used internally by these
macros. The caller must not read or modify this variable.

This macro sets “tempPtr” to point to the first
MM_RECORD_CMPLT_INFO_DATA_BLOCKS structure. This macro must be called
immediately after the event data is retrieved, using the sr_getevtdatap() function, for stream
and memory records.

MM_RECORD_CMPLT_INFO_DATA_BLOCKS_GET(dbInfo, tempPtr)

• dbInfo – caller supplied variable of type PMM_RECORD_CMPLT_INFO_DATA_BLOCKS.

• tempPtr – same variable passed to the MM_RECORD_CMPLT_INIT() macro.

This macro sets "dbInfo" to point to the next
MM_RECORD_CMPLT_INFO_DATA_BLOCKS structure. “tempPtr” is set to point to the
first MM_RECORD_CMPLT_DATA_BLOCK following this
MM_RECORD_CMPLT_INFO_DATA_BLOCKS structure.

MM_RECORD_CMPLT_DATA_BLOCK_GET(dataBlock, tempPtr)

• dataBlock – caller supplied variable of type PMM_RECORD_CMPLT_DATA_BLOCK.

• tempPtr – same variable passed to the MM_RECORD_CMPLT_INIT() macro.

This macro sets "dataBlock" to point to the next MM_RECORD_CMPLT_DATA_BLOCK
structure. “tempPtr” is set to the next MM_RECORD_CMPLT_DATA_BLOCK.
Dialogic® Multimedia API Programming Guide and Library Reference 197

198 Dialogic® Multimedia API Programming Guide and Library Reference

MM_PLAY_RECORD_INFO — information for play and record functions

MM_PLAY_RECORD_INFO

information for play and record functions
typedef struct tagMM_PLAY_RECORD_INFO
{
 unsigned int unVersion;
 eMM_FILE_FORMAT eFileFormat;
 CPMM_PLAY_RECORD_LIST list;
} MM_PLAY_RECORD_INFO, *PMM_PLAY_RECORD_INFO;
typedef const MM_PLAY_RECORD_INFO* CPMM_PLAY_RECORD_INFO;

typedef MM_PLAY_RECORD_INFO MM_PLAY_INFO, *PMM_PLAY_INFO;
typedef CPMM_PLAY_RECORD_INFO CPMM_PLAY_INFO;

 Description

This structure is a function input structure for the mm_Play() or mm_Record() function. It is a
first-level structure that contains a nested hierarchy of structures under it. For a description of these
nesting levels, see Section 10.4, “Play/Record Data Structure Levels”, on page 151.)

The INIT_MM_PLAY_RECORD_INFO inline function is provided to initialize the structure.

Note: This structure is used as a typedef for the MM_PLAY_INFO and MM_RECORD_INFO function
input structures, which are defined as a convenience for use by the mm_Play() and mm_Record()
functions.

 Field Descriptions

The fields of this data structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

eFileFormat
This field is ignored. Use the eFileFormat field within the MM_MEDIA_AUDIO and
MM_MEDIA_VIDEO structures to specify file format.

list
Points to the list of items to process. See definition of MM_PLAY_RECORD_LIST structure.

list of items to play or record — MM_PLAY_RECORD_LIST
MM_PLAY_RECORD_LIST

list of items to play or record
typedef struct tagMM_PLAY_RECORD_LIST
{
 unsigned int unVersion;
 eMM_ITEM ItemChain;
 eMM_MEDIA_TYPE ItemType;
 CPMM_MEDIA_ITEM_LIST list;
 unsigned int unRFU;
 struct tagMM_PLAY_RECORD_LIST* next;
 struct tagMM_PLAY_RECORD_LIST* prev; /* optional */
} MM_PLAY_RECORD_LIST, *PMM_PLAY_RECORD_LIST;
typedef const MM_PLAY_RECORD_LIST* CPMM_PLAY_RECORD_LIST;

 Description

The MM_PLAY_RECORD_LIST structure specifies the list of items to play or record. This
structure is a nested function input structure for the mm_Play() or mm_Record() function. It is a
second-level structure nested directly under the MM_PLAY_RECORD_INFO
(MM_PLAY_INFO, MM_RECORD_INFO) structure. (For a description of nesting levels, see
Section 10.4, “Play/Record Data Structure Levels”, on page 151.)

The INIT_MM_PLAY_RECORD_LIST inline function is provided to initialize the structure.

 Field Descriptions

The fields of this data structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

ItemChain
Specifies the next list element for iteration. Defined values include:

• EMM_ITEM_CONT – Indicates that the next list element immediately follows the
current.

• EMM_ITEM_LINK – Indicates that the next and previous list elements linked to the
current via pointers.

• EMM_ITEM_EOT – Indicates that the current list element is the last in the list.

ItemType
Specifies the type of items in the list field. Defined values include:

• EMM_MEDIA_TYPE_VIDEO – Indicates that the list field points to a list of video items
• EMM_MEDIA_TYPE_AUDIO – Indicates that the list field points to a list of audio items
• EMM_MEDIA_TYPE_IMAGE – Indicates that the list field points to a list of image

items.

list
Points to the list of media items. See definition of MM_MEDIA_ITEM_LIST structure.

unRFU
Reserved for future use. Must be set to 0.
Dialogic® Multimedia API Programming Guide and Library Reference 199

MM_PLAY_RECORD_LIST — list of items to play or record
next
Points to the next MM_PLAY_RECORD_LIST item. Needed only when ItemChain specifies
a linked list element. NULL value indicates last item.

prev
Points to the previous MM_PLAY_RECORD_LIST item (optional). Needed only when
ItemChain specifies a linked list element. NULL value indicates first item.
200 Dialogic® Multimedia API Programming Guide and Library Reference

specifies data block — MM_RECORD_CMPLT_DATA_BLOCK
MM_RECORD_CMPLT_DATA_BLOCK

specifies data block
typedef struct tagMM_RECORD_CMPLT_DATA_BLOCK
{

 unsigned int unOffset;
 unsigned int unSize;
 unsigned char data[1];
} MM_RECORD_CMPLT_DATA_BLOCK, *PMM_RECORD_CMPLT_DATA_BLOCK;

 Description

This structure only applies to memory and stream records. The unNumDataBlocks field in the
RECORD_CMPLT_INFO_DATA_BLOCKS structure indicates how many of these structures are
present. Call the MM_RECORD_CMPLT_DATA_BLOCK_GET() macro unNumDataBlocks
times to retrieve a pointer to the each structure.

 Field Descriptions

The fields of this structure are described as follows:

unOffset
Specifies a zero-based offset (in bytes) in the application recorded data where the following
data block is written. Byte 0 is the first byte recorded by the application.

unSize
Specifies the size of the following data block in bytes (as in the amount of data that must be
written to the application recorded data).

data
Points to the first byte of the data block to be written to the application recorded data. The
remaining bytes in the data block follow this structure.

 Example

Note: This procedure ensures compatibility with future releases.

void handle_event (unsigned int chan)
{
 MM_PLAY_RECORD_CMPLT *edata;
 MM_RECORD_CMPLT_INFO_DATA_BLOCKS *dbInfo;
 MM_RECORD_CMPLT_DATA_BLOCK *dataBlock;
 unsigned char *tempptr = NULL;
 int detailsIndex, blockIndex;

 edata = (MM_PLAY_RECORD_CMPLT *)sr_getevtdatap(); // get event data

 MM_RECORD_CMPLT_INIT(edata, tempptr);

 for (detailsIndex=0; detailsIndex<edata->unCount; detailsIndex++)
 {
 switch (edata->details[detailsIndex]).Complete)
 {
 case EMM_CMPLT_VIDEO_RECORD_WITH_UPDATE:
 case EMM_CMPLT_AUDIO_RECORD_WITH_UPDATE:

 // get a pointer to the record update information
Dialogic® Multimedia API Programming Guide and Library Reference 201

MM_RECORD_CMPLT_DATA_BLOCK — specifies data block
 MM_RECORD_CMPLT_INFO_DATA_BLOCKS_GET(dbInfo, tempptr);

 for(blockIndex = 0; blockIndex < dbInfo->unNumDataBlocks; blockIndex++)
 {
 MM_RECORD_CMPLT_DATA_BLOCK_GET(dataBlock, tempptr);

 // seek to offset in recorded audio or video data
 UserSeek(filep[chan], dataBlock->unOffset, SEEK_SET);

 // update the recorded data
 UserWrite(dataBlock->data, 1, dataBlock->unSize, filep[chan]);
 }
 ...

 break;
 }
 }
}

202 Dialogic® Multimedia API Programming Guide and Library Reference

Dialogic® Multimedia API Programming Guide and Library Reference 203

contains data block info — MM_RECORD_CMPLT_INFO_DATA_BLOCKS

MM_RECORD_CMPLT_INFO_DATA_BLOCKS

contains data block info
typedef struct tagMM_RECORD_CMPLT_INFO_DATA_BLOCKS
{
 unsigned int unNumDataBlocks; /* number of "data blocks" that follow this structure */
 unsigned int unNumBytes; /* size of all "data blocks" in bytes */
}
MM_RECORD_CMPLT_INFO_DATA_BLOCKS, *PMM_RECORD_CMPLT_INFO_DATA_BLOCKS;

 Description

This structure only applies to memory record and stream record. Each
MM_RECORD_CMPLT_INFO_DATA_BLOCKS section may contain one or more
MM_RECORD_CMPLT_INFO_DATA_BLOCK structures. Call the
MM_RECORD_CMPLT_INFO_DATA_BLOCKS_GET() macro to retrieve a pointer to this
structure when processing details. Refer to the MM_PLAY_RECORD_CMPLT_DETAILS data
structure for macro instructions.

 Field Descriptions

The field of this structure is described as follows:

unNumDataBlocks
Specifies the number of MM_RECORD_CMPLT_DATA_BLOCK structures that follow this
structure. The application processes that number of MM_RECORD_CMPLT_DATA_BLOCK
structures in a loop.

unNumBytes
Specifies the size of all "data blocks" in bytes.

204 Dialogic® Multimedia API Programming Guide and Library Reference

MM_RESUME_INFO — resume play infomation

MM_RESUME_INFO

resume play infomation
typedef struct tagMM_RESUME_INFO {
 unsigned int unVersion;
 unsigned int unStreamType;
 unsigned int unAttribute;
} MM_RESUME_INFO, *PMM_RESUME_INFO;
typedef const MM_RESUME_INFO* CPMM_RESUME_INFO;

 Description

The MM_RESUME_INFO data structure is a function input structure for the mm_Resume()
function.

The INIT_MM_RESUME_INFO inline function is provided to initialize the structure.

 Field Descriptions

The fields of this data structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

unStreamType
Indicates which stream type (audio, video or both) is to be resumed. Value can be ONE of the
following:

• EMM_RESUME_VIDEO_AUDIO – Resume both video and audio. If either stream is in
the idle state (the play operation has not been initiated or has ended), an error will be
returned for that stream type but the non-idle stream will be resumed.

• EMM_RESUME_VIDEO_ONLY – Resume video ONLY.
• EMM_RESUME_AUDIO_ONLY – Resume audio ONLY.

Note: The stream type which is to be resumed must not be idle (the play operation must
have been initiated and it must not have ended). This means that the mm_Resume()
function will only be valid during the period of time between the
MMEV_PLAY_ACK event and the MMEV_PLAY event for the requested stream
type.

Note: In an audiovideo playback, if the playback is synchronous (both audio and video play
are initiated by a single mm_Play() function call), mm_Resume() will cause BOTH
the audio and video streams to be resumed, regardless of the unStreamType setting in
MM_RESUME_INFO. This allows synchronization to be maintained.

unAttribute
Specifies the attributes of the mm_Resume() function. Possible values include:

• EMM_RESUME_VIDEO_NEXT_FRAME – Resume video transmission from next
frame following the frame at which it was paused. This is the default option when video
play is resumed.

• EMM_RESUME_VIDEO_IFRAME – Retransmits from most recent video keyframe (I-
frame).

Dialogic® Multimedia API Programming Guide and Library Reference 205

resume/play completion event information — MM_RESUME_PLAY_CMPLT

MM_RESUME_PLAY_CMPLT

resume/play completion event information
typedef struct tagMM_RESUME_PLAY_CMPLT
{
unsigned int unVersion;
unsigned int unCount;
MM_RESUME_PLAY_CMPLT_DETAILS details[MAX_RESUME_PLAY_CMPLT];
} MM_RESUME_PLAY_CMPLT, *PMM_RESUME_PLAY_CMPLT;

 Description

The MM_RESUME_PLAY_CMPLT event information data structure is used for analyzing the
results of the mm_Resume() function termination or completion as reported by an
MMEV_RESUME or MMEV_RESUME_FAIL event.

The INIT_MM_RESUME_PLAY_CMPLT inline function is provided to initialize the structure.

 Field Descriptions

The fields of the examplestructure data structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

unCount
Indicates the number of MM_RESUME_PLAY_CMPLT_DETAILS elements that follow.

details
Provides the details of completion. See the MM_RESUME_PLAY_CMPLT_DETAILS
structure definition for details.

206 Dialogic® Multimedia API Programming Guide and Library Reference

MM_RESUME_PLAY_CMPLT_DETAILS — pause request reply message details

MM_RESUME_PLAY_CMPLT_DETAILS

pause request reply message details
typedef struct tagMM_RESUME_PLAY_CMPLT_DETAILS
{
unsigned int unVersion;
unsigned int unStreamType;
unsigned int unRetCode;
} MM_RESUME_PLAY_CMPLT_DETAILS, *PMM_RESUME_PLAY_CMPLT_DETAILS;
typedef const MM_RESUME_PLAY_CMPLT_DETAILS* CPMM_RESUME_PLAY_CMPLT_DETAILS;

 Description

The MM_RESUME_PLAY_CMPLT_DETAILS structure is a second-level event information data
structure under the MM_RESUME_PLAY_CMPLT structure. (See Section 10.5, “Other Data
Structure Levels (_DETAILS)”, on page 151.)

The INIT_MM_RESUME_PLAY_CMPLT_DETAILS inline function is provided to initialize the
structure.

 Field Descriptions

The fields of this data structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

un StreamType
Indicates which stream type (audio, video or both) the information in this structure applies to.
Value can be ONE of the following:

• EMM_RESUME_PLAY_VIDEO_AUDIO – information applies to BOTH video and
audio.

• EMM_RESUME_PLAY_VIDEO_ONLY – information applies to video ONLY.
• EMM_RESUME_PLAY_AUDIO_ONLY – information applies to audio ONLY.

unRetCode
Contains the firmware return code. A non-zero value indicates an error has occurred.

error return code information — MM_RET_CODE
MM_RET_CODE

error return code information
typedef struct tagMM_RET_CODE
{
 unsigned int unVersion;
 unsigned int unRetCode;
} MM_RET_CODE, *PMM_RET_CODE;
typedef const MM_RET_CODE* CPMM_RET_CODE;

 Description

The MM_RET_CODE event information data structure is used for analyzing the results of certain
functions’ initiation failure events (reported by their MMEV_xxxx_ACK_FAIL event) and certain
functions’ termination or completion failure events. Collectively, they are non-media I/O
operation failure termination events. The event data for these metaevents contains an
MM_RET_CODE structure with an error return code in the unRetCode field. These event
information error return codes apply to any metaevent (provided by mm_GetMetaEvent()) for
which the event data is of type MM_RET_CODE.

The INIT_MM_RET_CODE inline function is provided to initialize the structure.

Note: The MM_RET_CODE structure is used as a typedef for the following event information data
structures.

ACK event information structures (and associated events):

MM_PLAY_ACK
(MMEV_PLAY_ACK, MMEV_PLAY_ACK_FAIL)

MM_RECORD_ACK
(MMEV_RECORD_ACK, MMEV_RECORD_ACK_FAIL)

MM_RESET_ACK
(MMEV_RESET_ACK, MMEV_RESET_ACK_FAIL)

RESULT event information structures (and associated events):

MM_DISABLE_EVENTS_RESULT
(MMEV_DISABLE_EVENTS, MMEV_DISABLE_EVENTS_FAIL)

MM_ENABLE_EVENTS_RESULT
(MMEV_ENABLE_EVENTS, MMEV_ENABLEEVENTS_FAIL)

MM_OPEN_RESULT
(MMEV_OPEN, MMEV_OPEN_FAIL)

MM_RESET_RESULT
(MMEV_RESET, MMEV_RESET_FAIL)

MM_SET_PARM_RESULT
(MMEV_SETPARM, MMEV_SETPARM_FAIL)
Dialogic® Multimedia API Programming Guide and Library Reference 207

MM_RET_CODE — error return code information
Event information error return codes are also returned in the MM_STOP_ACK_DETAILS
unRetCode field, which is used to provide details on the MM_STOP_ACK event data associated
with the MMEV_STOP_ACK and MMEV_STOP_ACK_FAIL events.

Note: If the function generates a successful initiation event (e.g., MMEV_PLAY_ACK) or a successful
completion or termination event (e.g., MM_ENABLE_EVENTS), the unRetCode field returns an
EMMRC_OK.

 Field Descriptions

The fields of the structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

unRetCode
Provides an error return code. EMMRC_OK indicates success; all other values indicate an
error or failure condition. (See Section 12.3, “Multimedia API Event Information Error Return
Codes”, on page 236 for related information.)
208 Dialogic® Multimedia API Programming Guide and Library Reference

set runtime control — MM_RUNTIME_CONTROL
MM_RUNTIME_CONTROL

set runtime control
typedef struct tagMM_RUNTIME_CONTROL
{
 unsigned int unVersion;
 eMM_TERMINATION_REASON Reason;
 unsigned int unValue;
 eMM_TERMINATION_ACTION Action;
 struct tagMM_RUNTIME_CONTROL *next;
} MM_RUNTIME_CONTROL, *PMM_RUNTIME_CONTROL;
typedef const MM_RUNTIME_CONTROL* CPMM_RUNTIME_CONTROL;

 Description

This structure is used by the mm_Play() and mm_Record()functions to set runtime control
conditions.

The INIT_MM_RUNTIME_CONTROL inline function is provided to initialize the structure.

 Field Descriptions

The fields of the example structure data structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

Reason
Specifies the runtime control condition. Defined values include:

• EMM_TERM_NORTC - No termination condition. Valid only as a return code.

• EMM_TERM_DIGMASK - Digit termination for a bit mask of digits received.

• EMM_TERM_DIGTYPE - Digit termination occurs upon receipt when the digit is
provided as an ASCII value (for example, 0-9, a-d, *, #).

• EMM_TERM_MAXDTMF - Maximum number of digits received.

• EMM_TERM_MAXTIME- Maximum execution time for operation.
• EMM_TERM_TIME_FROM_AUDIO_RECORD_STARTED – Termination occurs T

milliseconds from when audio record starts. where T is the value specified in the unValue
field of this data structure.

Notes: 1. The RTC condition, EMM_TERM_TIME_FROM_AUDIO_RECORD_STARTED, is not
applicable to mm_Play() or to video-only mm_Record(). This RTC condition is triggered by
the start of audio record and not by any of the MMEV events that may coincide with the trigger.
Therefore, it may be used to terminate record, even if the
MMEV_VIDEO_RECORD_STARTED is not enabled.

2. The following RTC conditions are not supported when using the linear PCM coder:
EMM_TERM_DIGMASK, EMM_TERM_DIGTYPE, and EMM_TERM_MAXDTMF.

unValue
Sets the value of the termination condition.
Dialogic® Multimedia API Programming Guide and Library Reference 209

MM_RUNTIME_CONTROL — set runtime control
Action
Specifies the action to take upon receipt of a termination condition. Defined values include:

• EMM_TA_AUDIO_STOP - Stop current operation for audio track only.

• EMM_TA_VIDEO_STOP - Stop current operation for video track only.

• EMM_TA_AUDIO_VIDEO_STOP - Stop current operation for both audio and video
tracks.
210 Dialogic® Multimedia API Programming Guide and Library Reference

Dialogic® Multimedia API Programming Guide and Library Reference 211

count of event data payload — MM_SEEK_CMPLT

MM_SEEK_CMPLT

count of event data payload
typedef struct tagMM_SEEK_CMPLT
{
unsigned int unVersion;
unsigned int unCount;
MM_SEEK_CMPLT_DETAILS details[MAX_SEEK_CMPLT];
} MM_SEEK_CMPLT, *PMM_SEEK_CMPLT;

 Description

The MM_SEEK_CMPLT event information data structure is used for analyzing the results of the
mm_Seek() function termination or completion as reported by an MMEV_SEEK or
MMEV_SEEK_FAIL event.

The INIT_MM_SEEK_CMPLT inline function is provided to initialize the structure.

 Field Descriptions

The fields of the structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

unCount
Indicates the number of MM_SEEK_CMPLT_DETAILS elements that follow.

details
Provides the details of completion. See the MM_SEEK_CMPLT_DETAILS structure
definition for details.

212 Dialogic® Multimedia API Programming Guide and Library Reference

MM_SEEK_CMPLT_DETAILS — seek request reply details

MM_SEEK_CMPLT_DETAILS

 seek request reply details
typedef struct tagMM_SEEK_CMPLT_DETAILS
{
unsigned int unVersion;
unsigned int unStreamType;
unsigned int unRetCode;
} MM_SEEK_CMPLT_DETAILS, *PMM_SEEK_CMPLT_DETAILS;
typedef const MM_SEEK_CMPLT_DETAILS* CPMM_SEEK_CMPLT_DETAILS;

 Description

The MM_SEEK_CMPLT_DETAILS structure is a second-level event information data structure
under the MM_SEEK_CMPLT structure. (See Section 10.5, “Other Data Structure Levels
(_DETAILS)”, on page 151.)

The INIT_MM_SEEK_CMPLT_DETAILS inline function is provided to initialize the structure.

 Field Descriptions

The fields of this data structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

un StreamType
Indicates which stream type (audio, video or both) the information in this structure applies to.
Value can be ONE of the following:

• EMM_SEEK_VIDEO_AUDIO – information applies to BOTH video and audio.
• EMM_SEEK_VIDEO_ONLY – information applies to video ONLY.
• EMM_SEEK_AUDIO_ONLY – information applies to audio ONLY.

unRetCode
Specifies the firmware return code. A non-zero value indicates an error has occurred.

Dialogic® Multimedia API Programming Guide and Library Reference 213

information for set parameter function — MM_SET_PARM

MM_SET_PARM

information for set parameter function
typedef struct tagMM_SET_PARM
{
 unsigned int unVersion;
 eMM_PARM eParm;
 unsigned int unParmValue;
} MM_SET_PARM, *PMM_SET_PARM;
typedef const MM_SET_PARM* CPMM_SET_PARM;

 Description

The MM_SET_PARM structure specifies the details of a set parameter request. This structure is
used as function input for the mm_SetParm() function.

The INIT_MM_SET_PARM inline function is provided to initialize the structure.

 Field Descriptions

The fields of the structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

eParm
Specifies parameter to set. Defined values include the following channel-level parameter:

• EMM_REC_IFRAME_TIMEOUT – Specifies the time to wait for an I-frame. Video
recording, or multimedia (audio and video) recording, starts when an I-frame is detected
or when the time-out is reached.

Note: See mm_EnableEvents() and the MM_VIDEO_RECORD_STARTED structure for
information on the related MMEV_VIDEO_RECORD_STARTED optional
intermediate (non-terminating) notification event. See also the mm_Record()
function.

• EMM_TONE_DETECTION – Indicates whether tone detection is enabled or disabled.
This parameter may not be used and is considered invalid in the mm_SetParm() function
if the active license does not contain video transcoding resources.

unParmValue
Specifies the value assigned to the parameter. Valid values are indicated for the following
parameters:

• EMM_REC_IFRAME_TIMEOUT – Range: 0 - 0x7FFFFFFF. Units: ms. Default: 5000
(5 seconds). Example: Set to 9000 to specify 9 seconds. Zero (0) causes an immediate
time-out and starts recording immediately.

• EMM_TONE_DETECTION – Possible values are:

• EMM_TONE_DETECTION_RX_DISABLE - Disables detection of DTMF tones in
the incoming audio stream on the given device (default).

• EMM_TONE_DETECTION_RX_ENABLE - Enables detection of DTMF tones in
the incoming audio stream on the given device.

MM_STOP — information for stop device operations function
MM_STOP

information for stop device operations function
typedef struct tagMM_STOP
{
 unsigned int unVersion;
 eMM_ITEM ItemChain;
 eMM_STOP ItemType;
 MM_STOP_DETAILS details;
 struct tagMM_STOP* next;
 struct tagMM_STOP* prev; /* optional */
} MM_STOP, *PMM_STOP;
typedef const MM_STOP* CPMM_STOP;

 Description

The MM_STOP structure specifies the details of a stop device operations request. This structure is
used as function input for the mm_Stop() function.

The INIT_MM_STOP inline function is provided to initialize the structure.

 Field Descriptions

The fields of the structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

ItemChain
Specifies the next list element for iteration. Defined values include:

• EMM_ITEM_CONT – Indicates that the next list element immediately follows the
current.

• EMM_ITEM_LINK – Indicates that the next and previous list elements linked to the
current via pointers.

• EMM_ITEM_EOT – Indicates that the current list element is the last in the list.

ItemType
Specifies the type of the stop element. Defined values include:

• EMM_STOP_AUDIO_PLAY – Indicates that the current item specifies stop audio play
element.

• EMM_STOP_AUDIO_RECORD – Indicates that the current item specifies stop audio
record element.

• EMM_STOP_IMAGE_PLAY – Indicates that the current item specifies stop image play
element.

• EMM_STOP_VIDEO_PLAY – Indicates that the current item specifies stop video play
element.

• EMM_STOP_VIDEO_RECORD – Indicates that the current item specifies stop video
record element.
214 Dialogic® Multimedia API Programming Guide and Library Reference

information for stop device operations function — MM_STOP
details
Specifies the details of the stop element. See definition of MM_STOP_DETAILS structure.

Note: Although this structure is reserved for future use, you must pass the structure and
set the unRFU field to 0.

next
Points to the next MM_STOP item. Needed only when ItemChain specifies a linked list
element. NULL value indicates last item.

prev
Points to the previous MM_STOP item (optional). Needed only when ItemChain specifies a
linked list element. NULL value indicates first item.
Dialogic® Multimedia API Programming Guide and Library Reference 215

MM_SEEK_INFO — seek operation position
MM_SEEK_INFO

 seek operation position
typedef struct tagMM_SEEK_INFO {
 unsigned int unVersion;
 unsigned int unStreamType;
 unsigned int unOrigin;
 int nOffset;
} MM_SEEK_INFO, *PMM_SEEK_INFO;
typedef const MM_SEEK_INFO* CPMM_SEEK_INFO

 Description

The MM_SEEK_INFO data structure is a function input structure of the mm_Seek() function.

The INIT_MM_SEEK_INFO inline function is provided to initialize the structure.

 Field Descriptions

The fields of this data structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

unStreamType
Indicates which stream type (audio, video or both) to seek. Value can be ONE of the
following:

• EMM_SEEK_VIDEO_AUDIO – Sets the play position for both video and audio. If either
stream is in the idle state (the play operation has not been initiated or has ended), an error
will be returned for that stream type but the play position of the non-idle stream will be
set.

• EMM_SEEK_VIDEO_ONLY – Sets play position for video ONLY.
• EMM_SEEK_AUDIO_ONLY – Sets play position for audio ONLY.

Note: The stream type whose play position is to be set must not be idle (the play operation
must have been initiated and it must not have ended). This means that the
mm_Seek() function will only be valid during the period of time between the
MMEV_PLAY_ACK event and the MMEV_PLAY event for the requested stream
type.

Note: In an audiovideo playback, if the playback is synchronous (both audio and video play
are initiated by a single mm_Play() function call), mm_Seek() will cause BOTH the
audio and video streams to be sought, regardless of the unStreamType setting in
MM_SEEK_INFO. This allows synchronization to be maintained.

unOrigin
Specifies the starting point for the seek operation. Valid values include:

• EMM_SEEK_SET – Start seek operation from beginning of file.
• EMM_SEEK_CUR – Start seek operation from current position in file.

If unOrigin is set to EMM_SEEK_SET, the value of unOffset must be a positive value and
will be interpreted as relative to the start of the file. If it is set to EMM_SEEK_CUR, the value
of unOffset will be interpreted as a signed value relative to the current play position. A
216 Dialogic® Multimedia API Programming Guide and Library Reference

seek operation position — MM_SEEK_INFO
negative value in this case, will result in the the play position moving backwards and a
positive value will cause it to move forward.

nOffset
Specifies an offset, in milliseconds.
Dialogic® Multimedia API Programming Guide and Library Reference 217

218 Dialogic® Multimedia API Programming Guide and Library Reference

MM_STOP_ACK — stop ACK event information

MM_STOP_ACK

stop ACK event information
typedef struct tagMM_STOP_ACK
{
 unsigned int unVersion;
 unsigned int unCount;
 MM_STOP_ACK_DETAILS details[MAX_STOP_ACK];
} MM_STOP_ACK, *PMM_STOP_ACK;

 Description

The MM_STOP_ACK structure is an event information data structure is used for analyzing the
results of the mm_Stop() function initiation as reported by the MMEV_STOP_ACK or
MMEV_STOP_ACK_FAIL event.

 Field Descriptions

The fields of the structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

unCount
Specifies the number of MM_STOP_ACK_DETAILS elements that follow. Maximum value
is 16.

details
Specifies the details of completion. See definition of MM_STOP_ACK_DETAILS structure.

Dialogic® Multimedia API Programming Guide and Library Reference 219

stop ACK detail information — MM_STOP_ACK_DETAILS

MM_STOP_ACK_DETAILS

stop ACK detail information
typedef struct tagMM_STOP_ACK_DETAILS
{
 unsigned int unVersion;
 eMM_STOP ItemType;
 unsigned int unRetCode;
} MM_STOP_ACK_DETAILS, *PMM_STOP_ACK_DETAILS;

 Description

The STOP_ACK_DETAILS structure is a second-level event information data structure under the
MM_STOP_ACK structure. (See Section 10.5, “Other Data Structure Levels (_DETAILS)”, on
page 151.)

The INIT_MM_STOP_ACK_DETAILS inline function is provided to initialize the structure.

 Field Descriptions

The fields of the structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

ItemType
Specifies the stopped item. Defined values include:

• EMM_STOP_AUDIO_PLAY – Indicates that the current item specifies stop audio play
element.

• EMM_STOP_AUDIO_RECORD – Indicates that the current item specifies stop audio
record element.

• EMM_STOP_IMAGE_PLAY – Indicates that the current item specifies stop image play
element.

• EMM_STOP_VIDEO_PLAY – Indicates that the current item specifies stop video play
element.

• EMM_STOP_VIDEO_RECORD – Indicates that the current item specifies stop video
record element.

unRetCode
Provides an error return code for the stopped item. EMMRC_OK indicates success; all other
values indicate an error or failure condition. (See Section 12.3, “Multimedia API Event
Information Error Return Codes”, on page 236 for related information.) Defined values
applicable to this operation include:

• EMMRC_A_INVALID_STATE – Invalid state (audio).
• EMMRC_ALREADYSTOPPED – Device operations are already stopped.
• EMMRC_I_INVALID_STATE – Invalid state (image).
• EMMRC_INVALIDARG – Invalid argument.
• EMMRC_V_INVALID_STATE – Invalid state (video).

220 Dialogic® Multimedia API Programming Guide and Library Reference

MM_STOP_DETAILS — detailed stop request information

MM_STOP_DETAILS

detailed stop request information
typedef struct tagMM_STOP_DETAILS
{
 unsigned int unVersion;
 unsigned int unRfu;
} MM_STOP_DETAILS, *PMM_STOP_DETAILS;
typedef const MM_STOP_DETAILS* CPMM_STOP_DETAILS;

 Description

Note: Although this structure is reserved for future use, you must pass the structure and set the unRFU
field to 0.

This structure is a second-level function input data structure under the MM_STOP structure, which
is used as function input for the mm_Stop() function. (See Section 10.5, “Other Data Structure
Levels (_DETAILS)”, on page 151.)

The INIT_MM_STOP_DETAILS inline function is provided to initialize the structure.

 Field Descriptions

The fields of the structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

unRFU
Reserved for future use. Must be set to 0.

Dialogic® Multimedia API Programming Guide and Library Reference 221

retrieve information on open stream — MM_STREAM_OPEN_INFO

MM_STREAM_OPEN_INFO

retrieve information on open stream
typedef struct tagMM_STREAM_OPEN_INFO
{
 unsigned int unVersion;
 unsigned int unBufferSize;
 eMM_STREAM_MODE BufferMode;
} MM_STREAM_OPEN_INFO, *PMM_STREAM_OPEN_INFO;
typedef const MM_STREAM_OPEN_INFO *CPMM_STREAM_OPEN_INFO

 Description

The MM_STREAM_OPEN_INFO structure specifies the details of the stream open request. This
structure is a function input structure for the mm_StreamOpen() function.

The INIT_MM_STREAM_OPEN_INFO inline function is provided to initialize the structure.

 Field Descriptions

The fields of the structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

unBufferSize
Specifies the buffer size in bytes. Valid value is >1024.

BufferMode
Specifies the stream access mode. Defined values include:

• EMM_SM_READ - Streaming from board; read operation permitted only.

• EMM_SM_WRITE - Streaming to board; write operation permitted only.

MM_STREAM_STAT — retrieve stream statistics
MM_STREAM_STAT

retrieve stream statistics
typedef struct tagMM_STREAM_STAT
{
 unsigned int unVersion;
 unsigned int unBytesIn;
 unsigned int unBytesOut
 unsigned char *pHeadPointer;
 unsigned char *pTailPointer;
 unsigned int unCurrentState;
 unsigned int unNumberOfBufferUnderruns;
 unsigned int unNumberOfBufferOverruns;
 unsigned int unBufferSize;
 unsigned int unBufferMode;
 unsigned int unSpaceAvailable;
 unsigned int unHighWaterMark;
 unsigned int unLowWaterMark;
} MM_STREAM_STAT, *PMM_STREAM_STAT;
typedef const MM_STREAM_STAT *CPMM_STREAM_STAT

 Description

This structure is a function output for the mm_StreamGetStat() function.

The INIT_MM_STREAM_STAT inline function is provided to initialize the structure.

 Field Descriptions

The fields of the structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

unBytesIn
Total number of bytes put into stream. Internal values; read access only.

unBytesOut
Total number of bytes sent to board. Internal values; read access only.

pHeadPointer
Pointer to position in stream. Internal values; read access only.

pTailPointer
Pointer to position in stream buffer. Internal values; read access only.

unCurrentState
Idle, Streaming, etc. Internal values; read access only.

unNumberOfBufferUnderruns
Number of buffer underruns. Internal values; read access only.

unNumberOfBufferOverruns
Number of buffer overruns. Internal values; read access only.

unBufferSize
Size of buffer in bytes. Internal values; read access only.
222 Dialogic® Multimedia API Programming Guide and Library Reference

retrieve stream statistics — MM_STREAM_STAT
unBufferMode
Read or write mode. Internal values; read access only.

unSpaceAvailable
Bytes available in stream buffer. Internal values; read access only.

unHighWaterMark
High water mark for stream buffer. Internal values; read access only.

unLowWaterMark
Low water mark for stream buffer. Internal values; read access only.
Dialogic® Multimedia API Programming Guide and Library Reference 223

224 Dialogic® Multimedia API Programming Guide and Library Reference

MM_STREAM_WATERMARK_INFO — retrieve stream watermark info

MM_STREAM_WATERMARK_INFO

retrieve stream watermark info
typedef struct tagMM_STREAM_WATERMARK_INFO
{
 unsigned int unVersion;
 eMM_STREAM_WATERMARK_LEVEL Level;
 unsigned int unValue;
}MM_STREAM_WATERMARK_INFO, *PMM_STREAM_WATERMARK_INFO;
typedefMM_STREAM_WATERMARK_INFO* CPMM_STREAM_WATERMARK_INFO;

 Description

The MM_STREAM_WATERMARK_INFO structure specifies details for setting watermark
levels. This structure is a function input structure for the mm_StreamSetWaterMark() function.

The INIT_MM_STREAM_WATERMARK_INFO inline function is provided to initialize the
structure.

 Field Descriptions

The fields of the structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

Level
Specifies the watermark level. Defined values include:

• EMM_WM_HIGH - High watermark level.

• EMM_WM_LOW - Low watermark level.

unValue
Specifies the watermark level in bytes from the start of the buffer (stream buffer begins filling
from buffer start). Valid values are between 0 and the size of the buffer in bytes.

characteristics of video coder — MM_VIDEO_CODEC
MM_VIDEO_CODEC

characteristics of video coder
typedef struct tagMM_VIDEO_CODEC
{
 unsigned int unVersion;
 eVIDEO_CODING Coding;
 eVIDEO_PROFILE Profile; /* Profile ID for H.263/H.264, Profile and Level ID for
 MPEG-4 */
 eVIDEO_LEVEL Level; /* Ignored for MPEG-4 */
 eVIDEO_IMAGE_WIDTH ImageWidth;
 eVIDEO_IMAGE_HEIGHT ImageHeight;
 eVIDEO_BITRATE BitRate;
 eVIDEO_FRAMESPERSEC FramesPerSec;
 eVIDEO_SAMPLING_RATE SamplingRate;
 unsigned int VisualConfigSize;
 unsigned char* VisualConfiguration;
 eH264_ACCEPT_REDUNDAND_SLICES H264_AcceptRedundantSlices;
 unsigned int H264_ProfileIOP;
 eH264_PACKETIZATION_MODE H264_PacketizationMode;
 unsigned int H264_MaxNalUnitSize;
} MM_VIDEO_CODEC, *PMM_VIDEO_CODEC;
typedef const MM_VIDEO_CODEC* CPMM_VIDEO_CODEC;

 Description

The MM_VIDEO_CODEC structure specifies the characteristics of the video coder. This structure
is a nested function input structure for the mm_Play() or mm_Record() function. It is nested
directly under the MM_MEDIA_VIDEO structure, and it is a sixth-level structure under the
MM_PLAY_RECORD_INFO (MM_PLAY_INFO, MM_RECORD_INFO) structure. (For a
description of these nesting levels, see Section 10.4, “Play/Record Data Structure Levels”, on
page 151.)

The INIT_MM_VIDEO_CODEC inline function is provided to initialize the structure.

 Field Descriptions

The fields of the structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

Coding
Specifies the type of video coding. Defined values include:

• VIDEO_CODING_H263 – H263
• VIDEO_CODING_H263_1998
• VIDEO_CODING_H264 - H264
• VIDEO_CODING_MP4V_ES – MPEG-4
• VIDEO_CODING_DEFAULT = VIDEO_CODING_H263

 Profile
Specifies the video profile. Defined values include:

• VIDEO_PROFILE_0_H263 – H263 Profile 0
• VIDEO_PROFILE_1_H263 – H263 Profile 1
• VIDEO_PROFILE_2_H263 – H263 Profile 2
Dialogic® Multimedia API Programming Guide and Library Reference 225

MM_VIDEO_CODEC — characteristics of video coder
• VIDEO_PROFILE_3_H263 – H263 Profile 3
• VIDEO_PROFILE_4_H263 – H263 Profile 4
• VIDEO_PROFILE_5_H263 – H263 Profile 5
• VIDEO_PROFILE_6_H263 – H263 Profile 6
• VIDEO_PROFILE_7_H263 – H263 Profile 7
• VIDEO_PROFILE_8_H263 – H263 Profile 8
• VIDEO_PROFILE_9_H263 – H263 Profile 9
• VIDEO_PROFILE_LEVEL_SP0_MPEG-4 – MPEG-4 Simple Profile/Level 0
• VIDEO_PROFILE_LEVEL_SP1_MPEG-4 – MPEG-4 Simple Profile/Level 1
• VIDEO_PROFILE_LEVEL_SP2_MPEG-4 – MPEG-4 Simple Profile/Level 2
• VIDEO_PROFILE_LEVEL_SP3_MPEG-4 – MPEG-4 Simple Profile/Level 3
• VIDEO_PROFILE_DEFAULT = VIDEO_PROFILE_0_H263
• VIDEO_PROFILE_BASELINE_H264 – The only acceptable profile for H.264. The

values are defined by the H.264 specification and have been enumerated as such in the
eVIDEO_PROFILE, eMM_VIDEO_PROFILE enumerations.

Note: A SIP/H.264 application would typically parse the passed SDP to determine the
correct value:
m=video 5108 RTP/AVP 112
a=rtpmap:112 h264/90000
a=fmtp:112 profile-level-id=42E00D; packetization-mode=1

In this case the profile-level-id field specifies the profile of 0x42, which is the
baseline profile.

Level
Specifies the video signal level. The only acceptable level for H.264. The values are defined
by the H.264 specification and have been enumerated as such in the eVIDEO_LEVEL,
eMM_VIDEO_LEVEL enumerations.

Note: Set a video signal level that is appropriate for the frame size and frame rate. No field
validation is performed by the software.

Defined values include:
• VIDEO_LEVEL_10_H263 – H263 Level 10
• VIDEO_LEVEL_20_H263 – H263 Level 20
• VIDEO_LEVEL_30_H263 – H263 Level 30
• VIDEO_LEVEL_40_H263 – H263 Level 40
• VIDEO_LEVEL_45_H263 – H263 Level 45
• VIDEO_LEVEL_50_H263 – H263 Level 50
• VIDEO_LEVEL_60_H263 – H263 Level 60
• VIDEO_LEVEL_70_H263 – H263 Level 70
• VIDEO_LEVEL_DEFAULT = VIDEO_LEVEL_10_H263
• VIDEO_LEVEL_1_H264 – -H.264 level 1
• VIDEO_LEVEL_1_B_H264 – h.264 level 1B
• VIDEO_LEVEL_1_1_H264 – H.264 level 1.1
• VIDEO_LEVEL_1_2_H264 – H.264 level 1.2
• VIDEO_LEVEL_1_3_H264 – H.264 level 1.3

Note: A SIP/H.264 application would typically parse the passed SDP to determine the
correct value:
m=video 5108 RTP/AVP 112
a=rtpmap:112 h264/90000
a=fmtp:112 profile-level-id=42E00D; packetization-mode=1
226 Dialogic® Multimedia API Programming Guide and Library Reference

characteristics of video coder — MM_VIDEO_CODEC
In this case the profile-level-id field specifies the profile of 0x0d, decimal 13, so the
correct value is VIDEO_LEVEL_1_3_H264.

ImageWidth
Specifies the width of the video image in pixels per line. Defined values include:

• VIDEO_IMAGE_WIDTH_128 – Sub-QCIF
• VIDEO_IMAGE_WIDTH_176 – QCIF
• VIDEO_IMAGE_WIDTH_352 – CIF
• VIDEO_IMAGE_WIDTH_704 – 4CIF
• VIDEO_IMAGE_WIDTH_1408 – 16CIF
• VIDEO_IMAGE_WIDTH_DEFAULT = VIDEO_IMAGE_WIDTH_176

ImageHeight
Specifies the height of the video image in number of lines. Defined values include:

• VIDEO_IMAGE_HEIGHT_96 – Sub-QCIF
• VIDEO_IMAGE_HEIGHT_144 – QCIF
• VIDEO_IMAGE_HEIGHT_288 – CIF
• VIDEO_IMAGE_HEIGHT_576 – 4CIF
• VIDEO_IMAGE_HEIGHT_1152 – 16CIF
• VIDEO_IMAGE_HEIGHT_DEFAULT = VIDEO_IMAGE_HEIGHT_144

BitRate
Specifies the output bit rate of the video signal in bits per second. Valid values depend on
whether video transcoding is enabled. (Video transcoding is enabled if the
DMFL_TRANSCODE_ON flag is set for video port connections when dev_PortConnect()
is called.) Suggested values include:

• VIDEO_BITRATE_DEFAULT – 50kbps
• VIDEO_BITRATE_40K – 40kbps
• VIDEO_BITRATE_64K – 64kbps
• VIDEO_BITRATE_128K – 128kbps
• VIDEO_BITRATE_384K – 384kbps

When video transcoding is disabled, valid values include:
• EMM_VIDEO_BITRATE_DEFAULT – Output bit rate will match the input bit rate.

For mm_Play(), this value sets the output bit rate to the file bit rate. For mm_Record(),
this value sets the file bit rate to the input bit rate. No transrating is performed.

When video transcoding is enabled, this field is only applicable to mm_Record() and it sets
the file bit rate. Valid values include:

• EMM_VIDEO_BITRATE_DEFAULT – Default bit rate will be 50, 000 bits per second.
• Greater than zero – Bit rate will be set to specified value.

Note: When the application specifies custom bit rates by using a value greater than zero, the
value may need to be typecast to an eVIDEO_BITRATE data type.

FramesPerSec
Specifies the video frame rate. Defined values include:

• VIDEO_FRAMESPERSEC_6 – frame rate of 6 fps
• VIDEO_FRAMESPERSEC_10 – frame rate of 10 fps
• VIDEO_FRAMESPERSEC_15 – frame rate of 15 fps
• VIDEO_FRAMESPERSEC_30 – frame rate of 30 fps
• VIDEO_FRAMESPERSEC_DEFAULT = frame rate of 15 fps
Dialogic® Multimedia API Programming Guide and Library Reference 227

MM_VIDEO_CODEC — characteristics of video coder
SamplingRate
Specifies the video sampling rate. Defined values include:

• VIDEO_SAMPLING_RATE_DEFAULT – VIDEO_SAMPLING_RATE_90000
• VIDEO_SAMPLING_RATE_90000 – 90KHz

VisualConfigSize
Specifies the size in bytes of the visual configuration data specified in the VisualConfiguration
field. Set to 0 if there is no visual configuration data.

Note: In SIP/H.264, the application would set the VisualConfigSize if that data was passed
on the in the SDP. For example:

m=video 49170 RTP/AVP 98
a=rtpmap:98 H264/90000
a=fmtp:98 profile-level-id=42A01E; sprop-parameter-
sets=Z0IACpZTBYmI,aMljiA==

In this case, VisualConfigSize should be set to 21.

VisualConfiguration
Points to the hexadecimal sequence of bytes that specifies MPEG-4 visual configuration data.
Set to NULL if there is no visual configuration data to be specified.

Note: In SIP/H.264, the application would set VisualConfiguration if that data was passed
on the in the SDP. For example:

m=video 49170 RTP/AVP 98
a=rtpmap:98 H264/90000
a=fmtp:98 profile-level-id=42A01E; sprop-parameter-
sets=Z0IACpZTBYmI,aMljiA==

In this case, szVisualConfiguration should be set to Z0IACpZTBYmI,aMljiA==.

eH264_ACCEPT_REDUNDAND_SLICES
Reserved for future use. Applications should set this value to the default, which is
ACCEPT_REDUNDAND_SLICES_FALSE.

eH264_ProfileIOP
This sets the profile-iop field as defined in RFC3984. An HMP application which uses SIP to
pass H.264 over IP would normally get this value from the SDP passed during the SIP
negotiation. For example:

m=video 5108 RTP/AVP 112
a=rtpmap:112 h264/90000
a=fmtp:112 profile-level-id=42E00D; packetization-mode=1

In this case, the "profile-level-ld" field specifies the profile (0x42) , profile-iop (0xE0), and
level (0x0D). The application should set the value of eH264_ProfileIOP to 0xE0.

eH264_PACKETIZATION_MODE
This sets the encoders output packetization mode. The Packetization modes are defined in
RFC3984. Applications can use the new enumeration defined:
 typedef enum tagH264_PACKETIZATION_MODE

 {
228 Dialogic® Multimedia API Programming Guide and Library Reference

characteristics of video coder — MM_VIDEO_CODEC
 H264_PACKETIZATION_MODE_SINGLE_NAL = 0,

 H264_PACKETIZATION_MODE_NON_INTERLEAVED = 1,

 H264_PACKETIZATION_MODE_INTERLEAVED = 2,

 H264_PACKETIZATION_MODE_DEFAULT =

 H264_PACKETIZATION_MODE_NON_INTERLEAVED

 eH264_PACKETIZATION_MODE;

A SIP/H.264 application would typically parse the passed SDP to determine the correct value:

m=video 5108 RTP/AVP 112
a=rtpmap:112 h264/90000
a=fmtp:112 profile-level-id=42E00D; packetization-mode=1

In this case, the correct value is 1, which has an enumeration value of
H264_PACKETIZATION_MODE_NON_INTERLEAVED.

unH264_MaxNalUnitSize
This sets the maximum NAL unit size generated by the H.264 encoder. The default is 1400
bytes. 1400 bytes allows for the NAL Unit to easily fit within an Ethernet MTU sized RTP
packet without fragmentation.

Note: Video enumerations are defined in the header file, videodefs.h.
Dialogic® Multimedia API Programming Guide and Library Reference 229

230 Dialogic® Multimedia API Programming Guide and Library Reference

MM_VIDEO_RECORD_STARTED — I-Frame detection information

MM_VIDEO_RECORD_STARTED

I-Frame detection information
typedef struct tagMM_VIDEO_RECORD_STARTED
{
 unsigned int unVersion;
 unsigned int unStatus;
} MM_VIDEO_RECORD_STARTED, *PMM_VIDEO_RECORD_STARTED;

 Description

The MM_VIDEO_RECORD_STARTED event information data structure is used for analyzing
the results of an mm_Record() function as reported by the
MMEV_VIDEO_RECORD_STARTED optional intermediate (non-terminating) notification
event (enabled by default or by the mm_EnableEvents() function).

The INIT_MM_VIDEO_RECORD_STARTED inline function is provided to initialize the
structure.

 Field Descriptions

The fields of the structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

unStatus
Specifies the status of I-frame detection. Defined values include:

• EMM_VIDEO_RCRD_IFRAME_DETECTED – IFrame detected.
• EMM_VIDEO_RCRD_IFRAME_TIMEOUT – IFrame detection time-out is reached.

Note: Refer to the MM_SET_PARM data structure for information on the
EMM_REC_IFRAME_TIMEOUT parameter.

content of a YUV bitmap — MM_YUV
MM_YUV

 content of a YUV bitmap
typedef struct tagMM_YUV
{
 unsigned int unVersion;
 eMTK_YUV_IMAGE_FORMAT eFormat;
 unsigned int unWidth;
 unsigned int unHeight;
}MM_YUV, *PMM_YUV;

 Description

This data structure specifies the contents of a YUV bitmap.

The INIT_MM_YUV inline function is provided to initialize the structure.

 Field Descriptions

The fields of this data structure are described as follows:

unVersion
Version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version. Do not modify this field after it has been initialized.

eFormat
Specifies the YUV data format of the image contents. Valid value is
eMTK_YUV_IMAGE_FORMAT_420.

Note: The YUV 4:2:0 format is supported for still image play and capture in this release.

unWidth
Specifies the width of each row in pixels per line.

unHeight
Specifies the height of each column in number of lines.
Dialogic® Multimedia API Programming Guide and Library Reference 231

MM_YUV — content of a YUV bitmap
232 Dialogic® Multimedia API Programming Guide and Library Reference

1212.Error Codes

This chapter describes the errors supported by the Dialogic® Multimedia API and covers the
following topics:

• Overview of Dialogic® Multimedia API Errors . 233

• Dialogic® Multimedia API Function Error Codes . 235

• Multimedia API Event Information Error Return Codes . 236

• Terminating and Non-Terminating Play/Record Errors. 239

12.1 Overview of Dialogic® Multimedia API Errors

The following information describes the basic categories of errors generated in the Dialogic®
Multimedia API:

• Function Error Codes for EMM_FAILURE

• Unsolicited Failure Event (MMEV_ERROR) Error Information

• Failure Termination Events (MMEV_xxxx_FAIL) and Error Information

Function Error Codes for EMM_FAILURE

The Dialogic® Multimedia API functions return a value, which in most cases, is EMM_SUCCESS
(or 0) for a successful result and EMM_ERROR (or -1) for an error or an unsuccessful result.

If a Multimedia API function returns EMM_ERROR to indicate a failure, use the
mm_ErrorInfo() function to retrieve the reason for the error. The mm_ErrorInfo() function
outputs in the MM_INFO data structure an error value and error message specific to the
Multimedia API function. To retrieve the correct information, the application program must call
mm_ErrorInfo() function immediately after the Multimedia API function fails, otherwise, the
MM_INFO data may be outdated or invalid.

Note: Multimedia API function errors are thread-specific (they are only in scope for that thread).

For a list of the function error codes and messages returned in the MM_INFO structure, see
Section 12.2, “Dialogic® Multimedia API Function Error Codes”, on page 235.

Unsolicited Failure Event (MMEV_ERROR) Error Information

If the MMEV_ERROR unsolicited failure event occurs, use mm_GetMetaEvent() to retrieve the
reason for the error. The mm_GetMetaEvent() function outputs the MM_ERROR_RESULT
event data associated with the metaevent in the MM_METAEVENT data structure. To retrieve the
correct information, the application must call mm_GetMetaEvent() immediately after the failure
event arrives and before the next Multimedia API event is requested, otherwise, the metaevent data
Dialogic® Multimedia API Programming Guide and Library Reference 233

Error Codes
may be outdated or invalid. For a list of the error codes and messages returned in the MM_INFO
structure, see Section 12.2, “Dialogic® Multimedia API Function Error Codes”, on page 235.

Failure Termination Events (MMEV_xxxx_FAIL) and Error Information

If an error occurs during execution of an asynchronous function, a failure termination event is sent
to the application. The Multimedia API failure termination events contain an MMEV_ prefix and a
_FAIL suffix (MMEV_xxxx_FAIL); for example, MMEV_RECORD_FAIL.

Note: The application must call the mm_ResultInfo() function to retrieve error information after
receiving a _FAIL event.

If a Multimedia API function generates a failure termination event, use the mm_GetMetaEvent()
function to retrieve the reason for the error. The mm_GetMetaEvent() function outputs metaevent
information in the MM_METAEVENT data structure. If the MMME_MM_EVENT bit is set in the
flags field, it indicates that it is a Multimedia API event, and the evtdatap field points to event data
that contains failure information specific to the Multimedia API function. To retrieve the correct
information, the application must call mm_GetMetaEvent() immediately after the failure event
arrives and before the next Multimedia API event occurs, otherwise, the metaevent data may be
outdated or invalid.

There are two error information types for failure termination events:

MMEV_PLAY_FAIL and MMEV_RECORD_FAIL Termination Event Error Information
If an mm_Play() or mm_Record() function generates a MMEV_PLAY_FAIL or
MMEV_RECORD_FAIL failure termination event, see Section 12.5, “Terminating and Non-
Terminating Play/Record Errors”, on page 239 for information on how to retrieve the error
information.

Event Information Error Return Codes (EMMRC_xxxx)
The metaevent information that is associated with a non-media I/O operation failure
termination event contains an error return code. These event information error return codes
apply to any metaevent (provided by mm_GetMetaEvent()) for which the event data is of
type MM_RET_CODE, which includes the following event information data structures:

ACK event information structures

• MM_PLAY_ACK

• MM_RECORD_ACK

• MM_RESET_ACK

RESULT event information structures

• MM_DISABLE_EVENTS_RESULT

• MM_ENABLE_EVENTS_RESULT

• MM_OPEN_RESULT

• MM_RESET_RESULT
234 Dialogic® Multimedia API Programming Guide and Library Reference

Error Codes
• MM_SET_PARM_RESULT

The MM_RET_CODE event information structure provides in its unRetCode field the error
return code related to an event.

Event information error return codes are also returned in the MM_STOP_ACK_DETAILS
unRetCode field, which is used to provide details on the MM_STOP_ACK event data
associated with the MMEV_STOP_ACK and MMEV_STOP_ACK_FAIL events.

The unRetCode field returns an error return code (see Section 12.3, “Multimedia API Event
Information Error Return Codes”, on page 236).

Note: If the function generates a successful initiation event (e.g., MMEV_PLAY_ACK) or
a successful completion or termination event (e.g., MM_ENABLE_EVENTS), the
unRetCode field returns an EMMRC_OK.

12.2 Dialogic® Multimedia API Function Error Codes

The function error codes are defined in mmerrs.h header file. The Dialogic® Multimedia API can
generate the following function error codes (listed in alphabetical order):

EMM_BADDEV
Invalid device descriptor.

EMM_BADPARM
Invalid parameter in function call.

EMM_BADPROD
Function is not supported on this board.

EMM_BUSY
Device is already busy.

EMM_FWERROR
Firmware error.

EMM_IDLE
Device is idle.

EMM_NOERROR
No errors.

EMM_NOSUPPORT
Data format not supported.

EMM_NOTIMP
Function is not implemented.

EMM_SYSTEM
System error.

EMM_TIMEOUT
Function timed out.
Dialogic® Multimedia API Programming Guide and Library Reference 235

Error Codes
12.3 Multimedia API Event Information Error Return
Codes

The event information error return codes are defined in the mmerrs.h header file. The API can
generate the following event information error return codes (listed in alphabetical order):

EMMRC_A_FILE_OPEN_FAILED
Audio file open failed.

EMMRC_A_INVALID_STATE
Invalid state (audio).

EMMRC_A_NO_HINT_TRACK
Missing hint file in 3GP audio file playback.

EMMRC_A_NO_TRACK
Requested track does not exist in 3GP audio file playback.

EMMRC_A_TOO_MANY_TRACKS
Too many tracks in 3GP audio file playback. Only one track is supported.

EMMRC_A_WAVE_FILE_ERROR
The information inside the Wave file is invalid.

EMMRC_AV_INVALID_STATE
Invalid state (audio/video).

EMMRC_ALREADYSTOPPED
Device operations are already stopped.

EMMRC_EOF
The end of file was detected during the file input.

EMMRC_FAILED
Unspecified failure.

EMMRC_FILE_CORRUPT
 Corrupt file in 3GP file playback.

EMMRC_FILEREAD_FAILED
File read failed.

EMMRC_FILEWRITE_FAILED
An error occurred when writing to a file.

EMMRC_I_FILE_OPEN_FAILED
Image file open failed.

EMMRC_I_INVALID_DATA
Image data not valid.

EMMRC_I_INVALID_STATE
Invalid state (image).

EMMRC_INVALID_FILEFORMAT
Invalid file format.
236 Dialogic® Multimedia API Programming Guide and Library Reference

Error Codes
EMMRC_INVALIDARG
Invalid argument.

EMMRC_INVALIDSTATE_ERROR
Invalid state.

EMMRC_LICENSE_IN_USE
This error code is currently not implemented.

EMMRC_MEMALLOC_ERROR
Memory allocation error.

EMMRC_MEMALLOC_POOLNOTFOUND
Memory allocation pool not found.

EMMRC_NOT_IMAGE_FILE
Image file format is invalid.

EMMRC_NOT_VIDEO_FILE
Video file format is invalid.

EMMRC_OK
Successful (no error).

EMMRC_OUT_OF_VIDEO_LICENSE
Out of the video licenses.

EMMRC_RESOURCE_IN_USE
The coder is already in use on this channel. Currently only one coder is supported per channel.

EMMRC_UNKNOWN_ERROR
Unknown error.

EMMRC_UNSUPPORTED_MODE
Unsupported mode.

EMMRC_UNSUPPORTED_RESOURCE
The specified video coder type is not supported.

EMMRC_V_FILE_OPEN_FAILED
Video file open failed.

EMMRC_V_INVALID_STATE
Invalid state (video).

EMMRC_V_NO_HINT_TRACK
Missing hint file in 3GP video file playback.

EMMRC_V_NO_TRACK
Requested track does not exist in 3GP video file playback.

EMMRC_V_TOO_MANY_TRACKS
Too many tracks in 3GP video file playback. Only one track is supported.

EMMRC_XCODE_FILE_IO_ERROR
An error detected during the file I/O operations.

EMMRC_XCODE_FILE_OPEN_ERROR
The file could not be opened.
Dialogic® Multimedia API Programming Guide and Library Reference 237

Error Codes
EMMRC_XCODE_FILE_SIZE_LARGE
The number of bytes in the file is larger than can be handled by the transcoder.

EMMRC_XCODE_GENERIC_ERROR
A generic error returned by the transcoder.

EMMRC_XCODE_IMAGE_DATA_SIZE_MISMATCH
The number of bytes in the file is different from the expected number for this type of format.
For example, the number of bytes in the input file for YUV frame of a specified size is less
than the number of bytes required to represent that frame.

EMMRC_XCODE_TOO_MANY_OVERLAYS
The number of still image overlays exceeds the maximum supported by the transcoder.

12.4 Media Streaming Event Information Error Return
Codes

The event information error return codes are defined in the mmerrs.h header file. The API can
generate the following event information error return codes associated with media streaming
functionality.

eMM_TERMINATION_REASON
EMM_TERM_NORTC No termination condition. Valid only as a return code.
EMM_TERM_DIGMASK Digit termination for a bit mask of digits received.
EMM_TERM_DIGTYPE Digit termination for user-defined tone.
EMM_TERM_MAXDTMF Maximum number of digits received.
EMM_TERM_MAXTIME Maximum execution time for operation.
EMM_TERM_TIME_FROM_AUDIO_RECORD_STARTED Termination occurs T
milliseconds from when audio record starts, where T is the value specified in the unValue field
of the MM_RUNTIME_CONTROL structure.

Note: The RTC condition, EMM_TERM_TIME_FROM_AUDIO_RECORD_STARTED,
is not applicable to mm_Play() or to video-only mm_Record(). This RTC condition
is triggered by the start of audio record and not by any of the MMEV events that may
coincide with the trigger. Therefore, it may be used to terminate record, even if the
MMEV_VIDEO_RECORD_STARTED is not enabled.

eMM_CMPLT_PLAY_RECORD_REASON
EMM_TR_DIGMASK
mm_Play() or mm_Record() terminated upon reception of one of the digits in the
EMM_TERM_DIGMASK bitmask.

EMM_TR_DIGTYPE
mm_Play() or mm_Record() terminated upon reception of the digit specified by
EMM_TERM_DIGTYPE.

EMM_TR_MAXTIME
mm_Play() or mm_Record() terminated upon reaching the duration specified in
EMM_TERM_MAXTIME.
238 Dialogic® Multimedia API Programming Guide and Library Reference

Error Codes
eMM_TERMINATION_ACTION
EMM_TA_AUDIO_STOP Stop current operation for audio track only.
EMM_TA_VIDEO_STOP Stop current operation for video track only.
EMM_TA_AUDIO_VIDEO_STOP Stop current operation for both audio and video tracks.

eMM_STREAM_MODE
EMM_SM_WRITE Streaming to board; write operation permitted only.
EMM_SM_READ Streaming from board; read operation permitted only.
EMMRC_A_FILE_OPEN_FAILED Audio file open failed.
EMMRC_A_INVALID_STATE Invalid state (audio).

12.5 Terminating and Non-Terminating Play/Record
Errors

The mm_Play() function generates an MMEV_PLAY_FAIL termination event upon encountering
an error during the playback operation. The mm_Record() function generates an
MMEV_RECORD_FAIL termination event upon completion or termination of the record
operation. It indicates that an intermediate (non-terminating) error occurred during the operation.
The following information describes the error information for these failure events, as well as the
corresponding non-failure events:

MMEV_PLAY_FAIL and MMEV_PLAY
The metaevent data associated with these termination events is provided in an
MM_PLAY_CMPLT (MM_PLAY_RECORD_CMPLT) structure. Within this structure,
details on the event termination are provided by the
MM_PLAY_RECORD_CMPLT_DETAILS details second-level data structure.

Upon encountering an error, the playback terminates with an MMEV_PLAY_FAIL. The
Reason field in the details structure indicates an EMM_TR_ERROR, and the Status field in
the details structure indicates the type of error:

• EMM_STATUS_PLAY_A_FILEREAD_ERROR – Audio file read error.
• EMM_STATUS_PLAY_V_FILEREAD_ERROR – Video file read error.
• EMM_STATUS_PLAY_I_FILEREAD_ERROR – Image file read error.
• EMM_STATUS_PLAY_I_NULLDATA_ERROR – Image bitmap data pointer is null.
• EMM_STATUS_PLAY_V_ERROR_FS_GT_MFS – Video frame size greater than

maximum frame size of internal buffer.
• EMM_STATUS_PLAY_BAD_PACKET – File/stream being played contains invalid

values.
• EMM_STATUS_PLAY_CODING_ERROR – Data format specified in the "unCoding"

field of the MM_AUDIO_CODEC structure is either not supported or does not match the
format of the data contained in the played file.

If the playback terminates with an MMEV_PLAY, the Reason field in the details structure
indicates a termination reason, such as MM_TR_EOF, meaning it is a successful completion
(end of file), or EMM_TR_USERSTOP, which means successful termination by the
mm_Stop() function. The Status field in the details structure indicates:

• EMM_STATUS_SUCCESS – Successful completion or successful termination

MMEV_RECORD_FAIL and MMEV_RECORD
The metaevent data associated with these termination events is provided in an
MM_RECORD_CMPLT (MM_PLAY_RECORD_CMPLT) structure. Within this structure,
Dialogic® Multimedia API Programming Guide and Library Reference 239

Error Codes
details on the event termination are provided by the
MM_PLAY_RECORD_CMPLT_DETAILS details second-level data structure.

If the recording terminates with an MMEV_RECORD_FAIL, it indicates that an
intermediate (non-terminating) error occurred during the record operation. The Reason field in
the details structure indicates an EMM_TR_ERROR, and the Status field in the details
structure indicates the type of non-terminating error:

• EMM_STATUS_RCRD_V_DRPD_FRAME_FULL_ERROR – Full video frame
dropped error.

• EMM_STATUS_RCRD_V_PKTS_DROPD_FS_GT_MFS – Video packets dropped
frame size greater than maximum frame size of internal buffer.

• EMM_STATUS_RCRD_A_DRPD_FRAME_FULL_ERROR – Full audio frame
dropped error.

• EMM_STATUS_RCRD_V_MISSING_MPEG-4_VISUALCONFIG_ERROR –
MPEG-4 visual configuration data is not present in the incoming video stream and it has
not been specified by the application in the mm_Record() function.

• EMM_STATUS_RCRD_CODING_ERROR – Encoding to the data format specified in
the "unCoding" field of the MM_AUDIO_CODEC structure is not supported.

If the recording terminates with an MMEV_RECORD, the Reason field in the details
structure indicates a termination reason, such as EMM_TR_USERSTOP, which indicates
successful termination by the mm_Stop() function. The Status field in the details structure
indicates:

• EMM_STATUS_SUCCESS – Successful completion or successful termination (no
error).
240 Dialogic® Multimedia API Programming Guide and Library Reference

	Dialogic® Multimedia API
	Contents
	About This Publication
	Revision History
	1. Product Description
	1.1 Overview of Video Technology
	1.1.1 Video Codec
	1.1.2 Audio Codec
	1.1.3 Video Standards
	1.1.4 Intraframe (I-Frame)

	1.2 IP Media Server
	1.3 Multimedia Capabilities
	1.4 File Formats
	1.5 SIP Call Control Using Global Call
	1.6 SDP Functionality
	1.7 Features
	1.7.1 Digital Video Recorder (DVR) Controls
	1.7.2 Native RTP Hairpinning
	1.7.3 Native RTP Play and Record
	1.7.4 Multimedia User I/O
	1.7.5 Multimedia Buffer I/O
	1.7.6 Multimedia Runtime Control
	1.7.7 Play/Capture Still Image
	1.7.8 Video Transcoding
	1.7.9 3GP File Format Direct Playback

	2. Feature Support by Platform
	2.1 High-Level Feature Support by Platform
	Table 1. High-Level Feature Support by Platform

	2.2 Dialogic® Multimedia API Function Support by Platform
	Table 2. Dialogic® Multimedia API Function Support by Platform

	2.3 Dialogic® Multimedia API Audio Formats by Platform
	Table 3. Audio Format Support by Platform

	3. Event Handling
	4. Error Handling
	5. Application Development Guidelines
	5.1 Developing Multimedia Applications
	5.1.1 Video Mail
	5.1.2 Video Color Ring
	5.1.3 Video Caller ID
	5.1.4 Video Location Based Services

	5.2 Building Blocks for Multimedia Applications
	5.3 Call Flow of Video Mail
	Figure 1. Typical Call Flow of Video Mail
	Figure 2. Incoming SIP Call with Audio and Video SDP
	Figure 3. Incoming SIP Call with Only Audio SDP (video part is sent via re-INVITE)

	5.4 Requesting I-Frame Using SIP INFO
	5.5 Making Connections Using Virtual CT Bus and New Packet Bus
	Figure 4. Connection Scenario 1
	Figure 5. Connection Scenario 2
	Figure 6. Connection Scenario 3

	5.6 Enabling Digit Detection Using DX
	5.7 Enabling and Using Transcoding
	Table 4. Video Coder Parameters for Decode Operation
	Table 5. Video Coder Parameters for Encode Operation

	5.8 Play a Still Image
	5.9 Capture a Still Image
	5.10 3GP File Format Direct Playback
	5.10.1 Feature Highlights
	Table 6. 3GP File Format Direct Playback Feature Table

	5.10.2 Guidelines
	5.10.3 3GP File Compatibility

	6. Building Applications
	6.1 Compiling and Linking
	6.1.1 Include Files
	6.1.2 Required Libraries
	6.1.3 Variables for Compiling and Linking

	7. Function Summary by Category
	7.1 Dialogic® Multimedia API Header File
	7.2 Device Management Functions
	7.3 Configuration Functions
	7.4 Input/Output Functions
	7.5 Media Streaming Functions
	7.6 DVR Control Functions
	7.7 Event Information Functions
	7.8 Error Processing Functions

	8. Function Information
	8.1 Function Syntax Conventions
	mm_Capture()
	mm_Close()
	mm_DisableEvents()
	mm_EnableEvents()
	mm_ErrorInfo()
	mm_GetDuration()
	mm_GetElapsedTime()
	mm_GetMetaEvent()
	mm_GetParm()
	mm_Open()
	mm_Pause()
	mm_Play()
	mm_Record()
	mm_Reset()
	mm_ResultInfo()
	mm_Resume()
	mm_Seek()
	mm_SetParm()
	mm_Stop()
	mm_StreamClose()
	mm_StreamGetStat()
	mm_StreamOpen()
	mm_StreamRead()
	mm_StreamReset()
	mm_StreamSetWaterMark()
	mm_StreamWrite()

	9. Events
	9.1 Overview of Dialogic® Multimedia API Events
	9.2 Dialogic® Multimedia API Event Types
	Table 7. Optional Notification Events

	9.3 Dialogic® Multimedia API Event Types by Function Type
	9.4 Dialogic® Multimedia API Events

	10. Data Structure Types
	10.1 Overview of Dialogic® Multimedia API Data Structures
	10.2 Data Structures for Function I/O
	10.3 Data Structures for Analyzing Event Information
	10.4 Play/Record Data Structure Levels
	10.5 Other Data Structure Levels (_DETAILS)
	10.6 Data Structures By Function

	11. Data Structures
	MM_AUDIO_CODEC
	MM_AUDIO_CODEC_OPTION_LIST
	MM_CAPTURE_CMPLT_DETAILS
	MM_ERROR_RESULT
	MM_EVENTS
	MM_GET_PARM
	MM_GET_PARM_RESULT
	MM_GETDURATION_CMPLT_DETAILS
	MM_GETDURATION_CMPLT
	MM_GETDURATION_INFO
	MM_GETELAPSEDTIME_CMPLT
	MM_GETELAPSEDTIME_CMPLT_DETAILS
	MM_GETELAPSEDTIME_INFO
	MM_IMAGE_FORMAT
	MM_INFO
	MM_MEDIA_ACCESS_MEMORY
	MM_MEDIA_ACCESS_STREAM
	MM_MEDIA_AUDIO
	MM_MEDIA_IMAGE
	MM_MEDIA_ITEM
	MM_MEDIA_ITEM_LIST
	MM_MEDIA_TERM
	MM_MEDIA_VIDEO
	MM_METAEVENT
	MM_PAUSE_INFO
	MM_PAUSE_PLAY_CMPLT
	MM_PAUSE_PLAY_CMPLT_DETAILS
	MM_PLAY_RECORD_CMPLT
	MM_PLAY_RECORD_CMPLT_DETAILS
	MM_PLAY_RECORD_INFO
	MM_PLAY_RECORD_LIST
	MM_RECORD_CMPLT_DATA_BLOCK
	MM_RECORD_CMPLT_INFO_DATA_BLOCKS
	MM_RESUME_INFO
	MM_RESUME_PLAY_CMPLT
	MM_RESUME_PLAY_CMPLT_DETAILS
	MM_RET_CODE
	MM_RUNTIME_CONTROL
	MM_SEEK_CMPLT
	MM_SEEK_CMPLT_DETAILS
	MM_SET_PARM
	MM_STOP
	MM_SEEK_INFO
	MM_STOP_ACK
	MM_STOP_ACK_DETAILS
	MM_STOP_DETAILS
	MM_STREAM_OPEN_INFO
	MM_STREAM_STAT
	MM_STREAM_WATERMARK_INFO
	MM_VIDEO_CODEC
	MM_VIDEO_RECORD_STARTED
	MM_YUV

	12. Error Codes
	12.1 Overview of Dialogic® Multimedia API Errors
	12.2 Dialogic® Multimedia API Function Error Codes
	12.3 Multimedia API Event Information Error Return Codes
	12.4 Media Streaming Event Information Error Return Codes
	12.5 Terminating and Non-Terminating Play/Record Errors

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Updated TIPs settings to fix web compatibility issue. The PDF documents can be opened with Acrobat and Reader 4.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

