Dialzgic

Dialogic® Voice API

Library Reference

April 2009

05-2333-006

Copyright and Legal Notice

Copyright © 2004-2009, Dialogic Corporation. All Rights Reserved. You may not reproduce this document in whole or in part without permission in
writing from Dialogic Corporation at the address provided below.

All contents of this document are subject to change without notice and do not represent a commitment on the part of Dialogic Corporation or its
subsidiaries. Reasonable effort is made to ensure the accuracy of the information contained in the document. However, due to ongoing product
improvements and revisions, Dialogic Corporation and its subsidiaries do not warrant the accuracy of this information and cannot accept responsibility
for errors or omissions that may be contained in this document.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH DIALOGIC® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS EXPLICITLY SET
FORTH BELOW OR AS PROVIDED IN A SIGNED AGREEMENT BETWEEN YOU AND DIALOGIC, DIALOGIC ASSUMES NO LIABILITY
WHATSOEVER, AND DIALOGIC DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF DIALOGIC
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT OF A THIRD PARTY.

Dialogic products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Due to differing national regulations and approval requirements, certain Dialogic products may be suitable for use only in specific countries, and thus
may not function properly in other countries. You are responsible for ensuring that your use of such products occurs only in the countries where such
use is suitable. For information on specific products, contact Dialogic Corporation at the address indicated below or on the web at www.dialogic.com.

It is possible that the use or implementation of any one of the concepts, applications, or ideas described in this document, in marketing collateral
produced by or on web pages maintained by Dialogic Corporation or its subsidiaries may infringe one or more patents or other intellectual property
rights owned by third parties. Dialogic Corporation or its subsidiaries do not provide any intellectual property licenses with the sale of Dialogic products
other than a license to use such product in accordance with intellectual property owned or validly licensed by Dialogic Corporation or its subsidiaries.
More detailed information about such intellectual property is available from Dialogic Corporation's legal department at 9800 Cavendish Blvd., 5th
Floor, Montreal, Quebec, Canada H4M 2V9. Dialogic Corporation encourages all users of its products to procure all necessary intellectual
property licenses required to implement any concepts or applications and does not condone or encourage any intellectual property
infringement and disclaims any responsibility related thereto. These intellectual property licenses may differ from country to country and it
is the responsibility of those who develop the concepts or applications to be aware of and comply with different national license
requirements.

Dialogic, Dialogic Pro, Brooktrout, Diva, Cantata, SnowShore, Eicon, Eicon Networks, NMS Communications, NMS (stylized), Eiconcard, SIPcontrol,
Diva ISDN, TruFax, Exnet, EXS, SwitchKit, N20, Making Innovation Thrive, Connecting to Growth, Video is the New Voice, Fusion, Vision,
PacketMedia, NaturalAccess, NaturalCallControl, NaturalConference, NaturalFax and Shiva, among others as well as related logos, are either
registered trademarks or trademarks of Dialogic. Dialogic's trademarks may be used publicly only with permission from Dialogic. Such permission may
only be granted by Dialogic's legal department at 9800 Cavendish Blvd., 5th Floor, Montreal, Quebec, Canada H4M 2V9. Any authorized use of
Dialogic's trademarks will be subject to full respect of the trademark guidelines published by Dialogic from time to time and any use of Dialogic's
trademarks requires proper acknowledgement.

Microsoft, Visual C++, and Windows are registered trademarks of Microsoft Corporation in the United States and/or other countries. Other names of
actual companies and products mentioned herein are the trademarks of their respective owners.

This document discusses one or more open source products, systems and/or releases. Dialogic is not responsible for your decision to use open
source in connection with Dialogic products (including without limitation those referred to herein), nor is Dialogic responsible for any present or future
effects such usage might have, including without limitation effects on your products, your business, or your intellectual property rights.

Publication Date: April 2009
Document Number: 05-2333-006

Dialogic® Voice API Library Reference
Dialogic Corporation

Contents

Revision History 9
About This Publication 13
PUIDOSE . . . 13
Applicability e 13
Intended AUudIiENCE. e 13

How to Use This Publication e 14
Related Information 14

1 Function Summary by Category e 15
1.1 Device Management FUNCLIONS e 15
1.2 Configuration FUNCHiONS. 16
1.3 WO FUNCHONS . . .o e e 16
1.4 /O Convenience FUNCLIONS i e e 18
1.5 StreamingtoBoard Functions. 18
1.6 Transaction Record FuNnCtion. e 19
1.7 Call Status Transition (CST) Event Functions. 19
1.8 TDM Routing FUNCLIONS e 19
1.9 Global Tone Detection (GTD) Functions i e 20
1.10 Global Tone Generation (GTG) Functions. i, 21
1.11 Speedand Volume FUNCtions e e 22
1.12 Call Progress Analysis Functions i 22
1.13 File Manipulation Functions. 23
1.14 Structure Clearance Functions i e 23
1.15 Extended Attribute Functions. 24
2 Function Information e 25
2.1 Function Syntax Conventions i e 25
ATDX_BDNAMEP() — return a pointer to the board devicename. 26
ATDX_BDTYPE() — return the board type forthedevice 28
ATDX_BUFDIGS() — return the number of uncollected digits 30
ATDX_CHNAMES() — retrieve all channel names foraboard 32
ATDX_CHNUM() —return the channelnumber. 34
ATDX_CONNTYPE() — return the connection type for a completedcall................... 36
ATDX_CPERROR() — return the call progress analysiserror., 39
ATDX_CPTERM() — return the last result of call progress analysis termination 42
ATDX_CRTNID() — return the last call progress analysis termination. 45
ATDX_DEVTYPE() —returnthe device type e 49
ATDX_STATE() —return the current state of thechannel 51
ATDX_TERMMSK() — return the reason for the last I/O function termination............... 53
ATDX_TONEID() - return user-defined tone ID that terminated I/O function 56
ATDX_TRCOUNT() — return the byte count forthe last I/O transfer. 59
dx_addspddig() —set a DTMF digitto adjustspeed 61
dx_addtone() —add a user-definedtone 64
Dialogic® Voice API Library Reference 3

Dialogic Corporation

Contents

dx_addvoldig() —set a DTMF digitto adjustvolume 69
dx_adjsv() — adjust speed or volume immediately L. 72
dx_blddt() — define a user-defined dual-frequencytone............ 75
dx_blddtcad() — define a user-defined dual frequency cadencedtone..................... 78
dx_bldstcad() — define a user-defined single-frequency cadencedtone 81
dx_bldst() — define a user-defined single-frequencytone. 84
dx_bldtngen() — define a tone for generation 87
dx_close() —close a channel or board devicehandle 90
dx_CloseStreamBuffer() — delete a circular stream buffer. 92
dx_clrcap() —clear all fieldsina DX_CAP structure. i 94
dx_clrdigbuf() — clear all digits in the firmware digitbuffer 96
dx_clrsvcond() — clear all speed or volume adjustment conditions 98
dx_clrtpt() —clear all fields ina DV_TPT structure. i 100
dx_createtone() — create a new tone definition for a specific call progresstone 102
dx_deletetone() — delete a specific call progresstone. 106
dx_deltones() — delete all user-definedtones. i 109
dx_dial() —dial an ASCIZ string. oo e 111
dx_distone() — disable detection of a user-definedtone. 117
dx_enbtone() — enable detection of a user-definedtoneo L. 120
dx_fileclose() —close afile. e 123
dx_fileerrno() —return the systemerrorvaluet 125
dx_fileopen() —openafile e 128
dx_fileread() —readdatafromafile e 130
dx_fileseek() —move afile pointer 133
dx_filewrite() — write data from a bufferintoafile. L it 136
dx_getctinfo() — get information about a voice device i 139
dx_getcursv() — return the specified current speed and volume settings. 141
dx_getdig() — collect digits from a channel digitbuffer. 144
dx_getevt() — monitor channel events synchronously 150
dx_getfeaturelist() — retrieve feature support information for the device 153
dx_getparm() — get the current parametersettings 157
dx_GetStreaminfo() — retrieve information about the circular stream buffer 160
dx_getsvmt() — return the current speed or volume modificationtable. 162
dx_getxmitslot() — get TDM bus time slot number of voice transmit channel 165
dx_listen() — connect a voice listen channel to TDM bus time slot. 167
dx_listenEx() — connect a voice listen channel to TDM bus timeslot. 170
dx_mreciottdata() — record voice data from two TDM bustimeslots. 174
dx_open() — open a voice device and return a unique devicehandle 182
dx_OpenStreamBuffer() — create and initialize a circular stream buffer. 185
dx_play() —play recorded voice data e 187
dx_playiottdata() — play back recorded voice data from multiple sources 194
dx_playf() —synchronously play voice data i 198
dx_playtone() — play tone defined by TN_GEN structure. 202
dx_playtoneEx() — play the cadenced tone defined by TN_.GENCAD 206
dx_playvox() — play voice data stored in a single VOXfile. 210
dx_playwav() — play voice data stored in a single WAVEfile........................... 213
4 Dialogic® Voice API Library Reference

Dialogic Corporation

Contents

dx_PutStreamData() — place data into a circular stream buffer. 216
dx_querytone() — get tone information for a specific call progresstone 218
dx_rec() — record voice data froma singlechannel. 221
dx_recf() —record voice datatoasinglefile 228
dx_reciottdata() — record voice data to multiple destinations 232
dx_recvox() — record voice data to a single VOXfile. L. 237
dx_recwav() — record voice data to a single WAVE file......... 240
dx_resetch() —resetachannelthatishung 243
dx_ResetStreamBuffer() — reset internal data for a circular stream buffer 246
dx_setchxfercnt() — set the bulk queue buffersize 249
dx_setdevuio() — install and retrieve user-defined I/O functions 251
dx_setdigtyp() — control the types of digits detected by the voice channel 254
dx_setevtmsk() — enable detection of call status transition (CST)events................. 257
dx_setgtdamp() — set up the tone detection amplitudes 262
dx_setparm() — set physical parameters of a channel or board device. 264
dx_setsvcond() — set conditions that adjust speed or volume ofplay 267
dx_setsvmt() — change default values of the speed or volume modification table 271
dx_setuio() — install user-defined I/O functions i 275
dx_SetWaterMark() — set water mark for the circular stream buffer 278
dx_stopch() — force termination of currently active I1/O functions. 280
dx_unlisten() — disconnect voice receive channel from TDMbus 283
dx_unlistenEx() — disconnect voice receive channel from TDMbus..................... 285
nr_scroute() — make a full or half-duplex connection. 288
nr_scunroute() — break a full or half-duplex connection 290
3 EVents e 293
3.1 Overview of Events e 293
3.2 Termination Events 293
3.3 Unsolicited EVents e 295
3.4 Call Status Transition (CST)Events i i 295
4 Data Structures. e e 297
CT_DEVINFO - channel/time slot device information 298
DV_DIGIT —userdigit buffer e 300
DV_TPT — termination parametertable 301
DX_CAP — call progress analysis parameters 307
DX_CST - call status transition (CST) information 310
DX_EBLK — call status transition eventblock. 311
DX_IOTT —input/output transfertable 312
DX_STREAMSTAT —status of stream buffer. 315
DX_SVCB - speed and volume adjustment condition block 317
DX_SVMT - speed and volume modificationtables 321
DX_UIO — user-defined input/output 323
DX_XPB — input/output transfer parameter block. 324
FEATURE_TABLE —feature information i, 327
SC_TSINFO — TDM bus time slotinformation i 330
TN_GEN —tone generationtemplate 331
Dialogic® Voice API Library Reference 5

Dialogic Corporation

Contents

TN_GENCAD — cadenced tone generationtemplate 332
TONE_DATA —toneinformation. e 334
5 Error Codes e 337
6 Supplementary Reference Information. 341
6.1 DTMF and MF Tone Specifications i e 341
6.2 DTMF and MF Detection Errorso e e 342
GlOSSaY e 345
INdeX . . . e 353
6 Dialogic® Voice API Library Reference

Dialogic Corporation

Contents

Tables

1 Valid Dial String Characters. e e 113
2 SyStEM EIMOr Valuesot e e e 125
3 PlayMode Selections 188
4 Record Mode Selections i e e 223
1 Voice Board Parameters e 265
2 Voice Channel Parameters e e 265
3 DV_TPT Field Settings Summary e e e 305
4 G.711 Voice Coder Support Fields e e e e 325
5 Linear PCM Voice Coder SupportFields i 325
6 OKI ADPCM Voice Coder Support Fields e 325
7 G.726 Voice Coder Support Fields 325
8 GSM Voice Coder Support Fields 326
9 DTMF Tone Specifications i et e e e 341
10 MF Tone Specifications (CCITTR1 TonePlan) 342
11 Detecting MF DigitSot e 343
12 Detecting DTMF Digits.ot e e e 343
Dialogic® Voice API Library Reference 7

Dialogic Corporation

Contents

8 Dialogic® Voice API Library Reference
Dialogic Corporation

Revision History

This revision history summarizes the changes made in each published version of this document.

Document No.

Publication Date

Description of Revisions

05-2333-006 April 2009 Function Summary by Category chapter: Added dx_setchxfercnt() in Configuration
Functions and added ATDX_BUFDIGS() in Extended Attribute Functions.
ATDX_BUFDIGS() function: Added.
dx_OpenStreamBuffer() function: Added caution about calling dx_open() before
calling this function. [IPY00045172]
dx_setchxfercnt() function: Added.
dx_setparm() function: Added DXCH_XFERBUFSIZE.
DX_XPB structure: Added GSM 6.10 full-rate coder (Microsoft format and TIPHON
format).
05-2333-005 January 2008 Made global changes to reflect Dialogic brand and changed title to "Dialogic® Voice

API Library Reference”

Function Summary by Category chapter: Added dx_resetch() function to I/0O
Functions section.

dx_getdig() function: Corrected number of digits returned in Synchronous Operation
(IPY00038453)

dx_reciottdata() function: Added RM_VADNOTIFY and RM_ISCR modes.
dx_resetch() function: Added new function.

dx_setparm() function: Added DXCH_SCRFEATURE define.

Events chapter: Added TDX_VAD event.

Dialogic® Voice API Library Reference
Dialogic Corporation

Revision History

Document No.

Publication Date

Description of Revisions

05-2333-004

August 2006

Function Summary by Category chapter: Added support for speed control in Speed
and Volume Functions section. Added note about enabling speed control in
CONFIG file.

dx_addspddig() function: Added support for this function in HMP.
dx_adjsv() function: Added support for speed control.
dx_clrsvcond() function: Added support for speed control.
dx_getcursv() function: Added support for speed control.
dx_getsvmt() function: Added support for speed control.

dx_listenEx() function: Added caution about using this function and dx_unlistenEx()
rather than dx_unlisten() and dx_listen().

dx_mreciottdata() function: Updated values for mode parameter.
dx_setsvcond() function: Added support for speed control.
dx_setsvmt() function: Added support for speed control.

dx_unlistenEx() function: Added caution about using this function and dx_listenEx()
rather than dx_unlisten() and dx_listen().

Events chapter: Removed DE_DIGOFF event from Call Status Transition(CST)
Events section; not supported.

DX_CST data structure: Removed DE_DIGOFF value; not supported.
DX_SVCB data structure: Added support for speed control.
DX_SVMT data structure: Added support for speed control.

Error Codes chapter: Added “speed” to EDX_SPDVOL, EDX_SVADJBLKS,
EDX_SVMTRANGE error code descriptions.

05-2333-003

December 2005

ATDX_CRTNID() function: Added support for this function in HMP.

dx_createtone() function: Added note about SIT sequences not supported for toneid
in the parameter description table. Also added this information in the Cautions
section. Updated example code to show asynchronous mode.

dx_deletetone() function: Added note about SIT sequences not supported for toneid
in the parameter description table. Also added this information in the Cautions
section.

dx_querytone() function: Added note about SIT sequences not supported for toneid
in the parameter description table. Also added this information in the Cautions
section.

dx_reciottdata() function: Added support for MD_NOGAIN for mode parameter
(previously missing).

dx_setparm() function: Removed the following channel parameters:
DXCH_AGC_MAXGAIN, DXCH_AGC_MEMORY_MAXIMUMSIZE,
DXCH_AGC_MEMORY_SILENCERESET, DXCH_AGC_NOISE_THRESHOLD,
DXCH_AGC_SPEECH_THRESHOLD, and
DXCH_AGC_TARGET_OUTPUTLEVEL. These are not supported on HMP.
Added support for the DXCH_EC_ACTIVE channel parameter.

CT_DEVINFO data structure: Added CT_NTT1 and CT_NTE1 as supported values
for ct_nettype field.

Corrected ct_busmode field values: CT_BMH100 (previously CT_H100) and
CT_BMH110 (previously CT_H110).
Added support for ct_ext_devinfo.ct_net_devinfo.ct_prottype field.

DX_XPB data structure: Updated to indicate support for linear PCM 8 kHz 16-bit
(128 Kbps) encoding method. In the Field Descriptions section, wDataFormat
field was updated. In the Examples section, Linear PCM Voice Coder Support
Fields table was updated.

10

Dialogic® Voice API Library Reference
Dialogic Corporation

Revision History

Document No.

Publication Date

Description of Revisions

05-2333-002

April 2005

Function Summary by Category chapter: Added Transaction Record Function
section. Removed dx_GetDIIVersion() and dx_libinit() functions from
Configuration Functions section. Added dx_listenEx() and dx_unlistenEx() to
TDM Routing Functions section.

dx_GetDIIVersion() function: Removed; not supported.
dx_libinit(') function: Removed; not supported.
dx_listen() function: Updated Description section and Example code section.

dx_listen() function: New TDM routing function that extends and enhances the
dx_listen() function.

dx_mreciottdata() function: Transaction record now supported in HMP.

dx_unlistenEx() function: New TDM routing function that extends and enhances the
dx_unlisten() function.

Events chapter: Added TDX_LISTEN, TDX_LISTEN_FAIL, TDX_UNLISTEN,
TDX_UNLISTEN_FAIL events to Termination Events section.

05-2333-001

September 2004

Initial version of document.

Dialogic® Voice API Library Reference 11
Dialogic Corporation

Revision History

12 Dialogic® Voice API Library Reference
Dialogic Corporation

About This Publication

The following topics provide information about this publication:

* Purpose

Applicability

Intended Audience

How to Use This Publication

Related Information

Purpose

This guide provides details about the Dialogic® Voice API that is supplied with the Dialogic® Host
Media Processing (HMP) software product, including function descriptions, data structures, and
error codes supported on the Linux and Windows® operating systems. This document is a
companion guide to the Dialogic® Voice API Programming Guide, which provides instructions for
developing applications using the Dialogic® Voice API.

Dialogic® Host Media Processing (HMP) Software performs media processing tasks on general-
purpose servers based on Dialogic® architecture without the need for specialized hardware. When
installed on a system, Dialogic® HMP Software performs like a virtual Dialogic® DM3 board to
the customer application, but all media processing takes place on the host processor. In this
document, the term “board” represents the virtual Dialogic® DM3 board.

Applicability

This document version (05-2333-006) is published for Dialogic® Host Media Processing Software
Release 3.0WIN and Dialogic® Host Media Processing Software Release 3.1LIN.

This document may also be applicable to other software releases (including service updates) on
Linux or Windows® operating systems. Check the Release Guide for your software release to
determine whether this document is supported.

Intended Audience

This guide is intended for software developers who choose to access the voice software. They may
include any of the following:

¢ Distributors

¢ System Integrators

Dialogic® Voice API Library Reference 13
Dialogic Corporation

About This Publication

14

Toolkit Developers

Independent Software Vendors (ISVs)
Value Added Resellers (VARSs)

Original Equipment Manufacturers (OEMs)

How to Use This Publication

Refer to this publication after you have installed the hardware and the system software which
includes the voice software. This publication assumes that you are familiar with the Linux or
Windows® operating systems and the C programming language.

The information in this guide is organized as follows:

Chapter 1, “Function Summary by Category” introduces the categories of voice functions and
provides a brief description of each function.

Chapter 2, “Function Information” provides an alphabetical reference to all voice functions
supported on Dialogic® HMP Software.

Chapter 3, “Events” provides an alphabetical reference to events that may be returned by the
voice software on Dialogic® HMP Software.

Chapter 4, “Data Structures” provides an alphabetical reference to all voice data structures
supported on Dialogic® HMP Software.

Chapter 5, “Error Codes” provides a listing of all error codes that may be returned by the voice
software on Dialogic® HMP Software.

Chapter 6, “Supplementary Reference Information” provides additional reference information
on topics such as DTMF and MF Tone Specifications.

A glossary and index are provided for your reference.

Related Information

See the following for additional information:

http://www.dialogic.com/manuals/ (for Dialogic® product documentation)
http://www.dialogic.com/support/ (for Dialogic technical support)
http://www.dialogic.com/ (for Dialogic® product information)

Dialogic® Voice API Library Reference
Dialogic Corporation

http://www.dialogic.com/manuals/
http://www.dialogic.com/manuals/
http://www.dialogic.com/support/
http://www.dialogic.com

Function Summary by Category

This chapter describes the categories into which the Dialogic® Voice API library functions can be

logically grouped.
* Device Management Functions i 15
e Configuration FUNCtionst 16
® JJOFUNCHONS. . ..ot e e e e 16
¢ [/O Convenience FUNCHONSottt e 18
e Streaming to Board Functions. 18
¢ Transaction Record Function. i 19
e (all Status Transition (CST) Event Functions 19
e TDM Routing FUNCtions« e 19
e Global Tone Detection (GTD) Functions i, 20
e Global Tone Generation (GTG) Functions i, 21
e Speed and Volume Functions.o . i 22
e Call Progress Analysis Functions 22
¢ File Manipulation Functions i 23
¢ Structure Clearance Functions. i 23
¢ Extended Attribute Functions i 24
1.1 Device Management Functions

Device management functions open and close devices, which include boards and channels.

Before you can call any other library function on a device, that device must be opened using a

device management function. The dx_open() function returns a unique voice device handle. This
handle is the only way the device can be identified once it has been opened. The dx_close()
function closes a device via its handle.

Device management functions do not cause a device to be busy. In addition, these functions will

work on a device whether the device is busy or idle.

For more information about opening and using voice devices, see the Dialogic® Voice API
Programming Guide. Also see this guide for more information about naming conventions for board
and channel devices.

Use Dialogic® Standard Runtime Library device mapper functions to return information about the

structure of the system, such as a list of all boards. This device information is used as input to

Dialogic® Voice API Library Reference

Dialogic Corporation

15

Function Summary by Category

1.2

1.3

16

Note:

device management functions. For more information on device mapper functions, see the
Dialogic® Standard Runtime Library API Library Reference.

These device management functions are separate and distinct from the Dialogic® Device
Management API library, which provides run-time control and management of configurable system
devices.

The device management functions are:

dx_close()
closes a board or channel device handle

dx_open()
opens a board or channel device handle

Configuration Functions

Configuration functions allow you to alter, examine, and control the physical configuration of an
open device. In general, configuration functions operate on an idle device. Configuration functions
cause a device to be busy and return the device to an idle state when the configuration is complete.
See the Dialogic® Voice API Programming Guide for information about busy and idle states.

The configuration functions are:

dx_clrdigbuf()
clears all digits in the firmware digit buffer

dx_getfeaturelist()
returns information about the features supported on the device

dx_getparm()
gets the current parameter settings for an open device

dx_setchxfercnt()
sets the bulk queue buffer size for the channel

dx_setdigtyp()
controls the types of digits detected by the device

dx_setparm()
sets physical parameters for the device

I/O Functions

An I/O function transfers data to and from an open, idle channel. All I/O functions cause a channel
to be busy while data transfer is taking place and return the channel to an idle state when data
transfer is complete.

I/O functions can be run synchronously or asynchronously, with some exceptions (for example,
dx_setuio() can be run synchronously only). When running synchronously, they return after
completing successfully or after an error. When running asynchronously, they return immediately

Dialogic® Voice API Library Reference
Dialogic Corporation

Function Summary by Category

to indicate successful initiation (or an error), and continue processing until a termination condition
is satisfied. See the Dialogic® Standard Runtime Library API Programming Guide for more
information on asynchronous and synchronous operation.

A set of termination conditions can be specified for I/O functions, except for dx_stopch(). These
conditions dictate what events will cause an I/O function to terminate. The termination conditions
are specified just before the I/O function call is made. Obtain termination reasons for I/O functions
by calling the extended attribute function ATDX_TERMMSK(). See the Dialogic® Voice API
Programming Guide for information about I/O terminations.

The I/0 functions are:

dx_dial()
dials an ASCIIZ string of digits

dx_getdig()
collects digits from a channel digit buffer

dx_play()
plays voice data from any combination of data files, memory, or custom devices

dx_playiottdata()
plays voice data from any combination of data files, memory, or custom devices, and lets the
user specify format information

dx_rec()
records voice data to any combination of data files, memory, or custom devices

dx_resetch()
recovers a channel that is “stuck” (busy or hung) and in a recoverable state, and brings it to an
idle and usable state

dx_reciottdata()
records voice data to any combination of data files, memory, or custom devices, and lets the
user specify format information

dx_setdevuio() (Windows® only)
installs and retrieves user-defined I/O functions in your application

dx_setuio()
installs user-defined I/O functions in your application

dx_stopch()
forces termination of currently active I/O functions

Notes: 1. The dx_playtone() function, which is grouped with global tone generation functions, can also
be classified as an I/O function and all I/O characteristics apply.

2. The dx_playvox() and dx_recvox() functions, which are grouped with I/O convenience
functions, can also be classified as I/O functions and all I/O characteristics apply.

Dialogic® Voice API Library Reference 17
Dialogic Corporation

Function Summary by Category

1.4

1.5

18

I/O Convenience Functions

Convenience functions enable you to easily implement certain basic functionality of the library
functions. I/O convenience functions simplify synchronous play and record.

The dx_playf() function performs a playback from a single file by specifying the filename. The
same operation can be done by using dx_play() and supplying a DX_IOTT structure with only one
entry for that file. Using dx_playf() is more convenient for a single file playback because you do
not have to set up a DX_IOTT structure for the one file and the application does not need to open
the file. dx_recf() provides the same single-file convenience for the dx_rec() function.

The dx_playvox() function also plays voice data stored in a single VOX file. This function
internally calls dx_playiottdata(). Similarly, dx_recvox() records VOX files using
dx_reciottdata().

The I/0 convenience functions are:

dx_playf()
plays voice data from a single VOX file without the need to specify DX_IOTT

dx_playvox()
plays voice data from a single VOX file using dx_playiottdata()

dx_playwav()
plays voice data stored in a single WAVE file

dx_recf()
records voice data from a channel to a single VOX file without the need to specify DX_IOTT

dx_recvox()
records voice data from a channel to a single VOX file using dx_reciottdata()

dx_recwav()
records voice data to a single WAVE file

Streaming to Board Functions

The streaming to board feature enables real time data streaming to the board. Streaming to board
functions allow you to create, maintain, and delete a circular stream buffer within the library. These
functions also provide notification when high and low water marks are reached. See the Dialogic®
Voice API Programming Guide for more information about the streaming to board feature.

The streaming to board functions include:

dx_CloseStreamBuffer()
deletes a circular stream buffer

dx_GetStreamlInfo()
retrieves information about the circular stream buffer

dx_OpenStreamBuffer()
creates and initializes a circular stream buffer

Dialogic® Voice API Library Reference
Dialogic Corporation

Function Summary by Category

dx_PutStreamData()
places data into the circular stream buffer

dx_ResetStreamBuffer()
resets internal data for a circular stream buffer

dx_SetWaterMark()
sets high and low water marks for the circular stream buffer

1.6 Transaction Record Function

Transaction record enables the recording of a two-party conversation by allowing data from two
time division multiplexing (TDM) bus time slots from a single channel to be recorded.

dx_mreciottdata()
records voice data from two TDM bus time slots to a data file, memory or custom device

1.7 Call Status Transition (CST) Event Functions

Call status transition (CST) event functions set and monitor CST events that can occur on a device.
CST events indicate changes in the status of the call, such as rings or a tone detected, or the line
going on-hook or off-hook. See the call status transition structure (DX_CST) description for a full
list of CST events.

The dx_getevt() function retrieves CST events in a synchronous environment. To retrieve CST
events in an asynchronous environment, use the Dialogic® Standard Runtime Library event
management functions.

dx_setevtmsk() enables detection of CST event(s). User-defined tones are CST events, but
detection for these events is enabled using dx_addtone() or dx_enbtone(), which are global tone
detection functions.

The call status transition event functions are:

dx_getevt()
gets a CST event in a synchronous environment

dx_setevtmsk()
enables detection of CST events

1.8 TDM Routing Functions

TDM routing functions are used in time division multiplexing (TDM) bus configurations, which
include the CT Bus and SCbus. A TDM bus is a resource sharing bus that allows audio data to be
transmitted and received among resources over multiple time slots. On Dialogic® Host Media
Processing (HMP) Software, no physical TDM bus exists but its functionality is implemented in
the software.

Dialogic® Voice API Library Reference 19
Dialogic Corporation

Function Summary by Category

1.9

20

TDM routing functions enable the application to make or break a connection between voice,
telephone network interface, and other resource channels connected via TDM bus time slots. Each
device connected to the bus has a transmit component that can transmit on a time slot and a receive
component that can listen to a time slot.

The transmit component of each channel of a device is assigned to a time slot at system
initialization and download. To listen to other devices on the bus, the receive component of the
device channel is connected to any one time slot. Any number of device channels can listen to a
time slot.

TDM routing convenience functions, nr_scroute() and nr_scunroute(), are provided to make or
break a half or full-duplex connection between any two channels transmitting on the bus. These
functions are not a part of any library but are provided in a separate C source file called sctools.c.
The functions are defined in sctools.h.

The TDM routing functions are:

dx_getctinfo()
returns information about voice device connected to TDM bus

dx_getxmitslot()
returns the number of the TDM bus time slot connected to the transmit component of a voice
channel

dx_listen()
connects the listen (receive) component of a voice channel to a TDM bus time slot

dx_listenEx()
connects the listen (receive) component of a voice channel to a TDM bus time slot. This
function extends and enhances the dx_listen() function.

dx_unlisten()
disconnects the listen (receive) component of a voice channel from TDM bus time slot

dx_unlistenEx()
disconnects the listen (receive) component of a voice channel from TDM bus time slot. This
function extends and enhances the dx_unlisten() function.

nr_scroute()
makes a half or full-duplex connection between two channels transmitting on the TDM bus

nr_scunroute()
breaks a half or full-duplex connection between two TDM bus devices

Global Tone Detection (GTD) Functions

The global tone detection (GTD) functions define and enable detection of single and dual
frequency tones that fall outside the range of those automatically provided with the voice driver.
They include tones outside the standard DTMF range of 0-9, a-d, *, and #.

The GTD dx_blddt(), dx_blddtcad(), dx_bldst(), and dx_bldstcad() functions define tones
which can then be added to the channel using dx_addtone(). This enables detection of the tone on

Dialogic® Voice API Library Reference
Dialogic Corporation

Function Summary by Category

that channel. See the Dialogic® Voice API Programming Guide for a full description of global tone
detection.

The global tone detection functions are:

dx_addtone()
adds a user-defined tone

dx_blddt()
builds a user-defined dual frequency tone description

dx_blddtcad()
builds a user-defined dual frequency tone cadence description

dx_bldst()
builds a user-defined single frequency tone description

dx_bldstcad()
builds a user-defined single frequency tone cadence description

dx_deltones()
deletes all user-defined tones

dx_distone()
disables detection of user-defined tones

dx_enbtone()
enables detection of user-defined tones

dx_setgtdamp()
sets amplitudes used by global tone detection (GTD)

1.10 Global Tone Generation (GTG) Functions

Global tone generation (GTG) functions define and play single and dual tones that fall outside the
range of those automatically provided with the voice driver.

The dx_bldtngen() function defines a tone template structure, TN_GEN. The dx_playtone()
function can then be used to generate the tone.

See the Dialogic® Voice API Programming Guide for a full description of global tone generation.

The global tone generation functions are:

dx_bldtngen()
builds a user-defined tone template structure, TN_GEN

dx_playtone()
plays a user-defined tone as defined in TN_GEN structure

dx_playtoneEx()
plays the cadenced tone defined by TN_GENCAD structure

Note: The dx_playtone() and dx_playtoneEx() functions can also be classified as an I/O function and
all I/O characteristics apply.

Dialogic® Voice API Library Reference 21
Dialogic Corporation

Function Summary by Category

1.11

1.12

22

Note:

Speed and Volume Functions

Speed and volume functions adjust the speed and volume of the play. A speed modification table
and volume modification table are associated with each channel, and can be used for increasing or
decreasing the speed or volume. These tables have default values which can be changed using the
dx_setsvmt() function.

The dx_addspddig() and dx_addvoldig() functions are convenience functions that specify a digit
and an adjustment to occur on that digit, without having to set any data structures. These functions
use the default settings of the speed and volume modification tables.

See the Dialogic® Voice API Programming Guide for more information about the speed and
volume feature, and speed and volume modification tables.

Before using the speed control feature, you must enable this feature in the [decoder] section of the
CONFIG file. The speed control feature is disabled by default to preserve MIPS usage. For more
information on enabling speed control, see the Configuration Guide associated with this release.

The speed and volume functions are:

dx_adjsv()
adjusts speed or volume immediately

dx_addspddig()
sets a dual tone multi-frequency (DTMF) digit for speed adjustment

dx_addvoldig()
adds a dual tone multi-frequency (DTMF) digit for volume adjustment

dx_clrsvcond()
clears speed or volume conditions

dx_getcursv()
returns current speed and volume settings

dx_getsvmt()
returns current speed or volume modification table

dx_setsvcond()
sets conditions (such as digit) for speed or volume adjustment; also sets conditions for play
(pause and resume)

dx_setsvmt()
changes default values of speed or volume modification table

Call Progress Analysis Functions

Call progress analysis functions are used to change the default definition of call progress analysis
tones. See the Dialogic® Voice API Programming Guide for more information about call progress
analysis.

Dialogic® Voice API Library Reference
Dialogic Corporation

1.13

1.14

Function Summary by Category

The call progress analysis functions are:

dx_createtone()
creates a new tone definition for a specific call progress tone

dx_deletetone()
deletes a specific call progress tone

dx_querytone()
returns tone information for a specific call progress tone

File Manipulation Functions

Supported on Windows® only. These file manipulation functions map to C run-time functions, and
can only be used if the file is opened with the function. The arguments for these Dialogic®
functions are identical to the equivalent Microsoft® Visual C++® run-time functions.

dx_fileclose()
closes the file associated with the handle

dx_fileerrno()
obtains the system error value

dx_fileopen()
opens the file specified by filep

dx_fileread()
reads data from the file associated with the handle

dx_fileseek()
moves a file pointer associated with the handle

dx_filewrite()
writes data from a buffer into a file associated with the handle

Structure Clearance Functions

These functions do not affect a device. The dx_clrcap() and dx_clrtpt() functions provide a
convenient method for clearing the DX_CAP and DV_TPT data structures. These structures are
discussed in Chapter 4, “Data Structures”.

dx_clrcap()
clears all fields in a DX_CAP structure

dx_clrtpt()
clears all fields in a DV_TPT structure

Dialogic® Voice API Library Reference 23
Dialogic Corporation

Function Summary by Category

1.15 Extended Attribute Functions

Dialogic® Voice API library extended attribute functions return information specific to the voice
device specified in the function call.

ATDX_BDNAMEP()
returns a pointer to the board device name string

ATDX_BDTYPE()
returns the board type for the device

ATDX_BUFDIGS()
returns the number of digits in the firmware since the last dx_getdig() for a given channel

ATDX_CHNAMES()
returns a pointer to an array of channel name strings

ATDX_CHNUM()
returns the channel number on board associated with the channel device handle

ATDX_CONNTYPE()
returns the connection type for a completed call

ATDX_CPERROR()
returns call progress analysis error

ATDX_CPTERM()
returns last call progress analysis termination

ATDX_DEVTYPE()
returns device type (board or channel)

ATDX_STATE()
returns the current state of the device

ATDX_TERMMSK()
returns the reason for last I/O function termination in a bitmap

ATDX_TONEID()
returns the tone ID (used in global tone detection)

ATDX_TRCOUNT()
returns the last record or play transfer count

24 Dialogic® Voice API Library Reference
Dialogic Corporation

Function Information

2

2.1

This chapter provides an alphabetical reference to the functions in the Dialogic® Voice API library.

A general description of the function syntax convention is provided before the detailed function
information.

Function Syntax Conventions

The voice functions use the following syntax:

data_type voice_function(device handle, parameterl, ... parameterN)

where:

data type
refers to the data type, such as integer, long or void

voice_function
represents the function name. Typically, voice functions begin with “dx” although there are
exceptions. Extended attribute functions begin with “ATDX.”

device handle
represents the device handle, which is a numerical reference to a device, obtained when a
device is opened. The device handle is used for all operations on that device.

parameterl
represents the first parameter

parameterN
represents the last parameter

Dialogic® Voice API Library Reference
Dialogic Corporation

25

ATDX_BDNAMEP() — return a pointer to the board device name

ATDX_BDNAMEP()

26

Name: char * ATDX BDNAMEP(chdev)
Inputs: int chdev e valid channel device handle
Returns: pointer to board device name string if successful
pointer to ASCIIZ string “Unknown device” if error
Includes: srllib.h
dxxxlib.h
Category: Extended Attribute
Mode: synchronous
B Description

The ATDX_BDNAMEP() function returns a pointer to the board device name on which the
channel accessed by chdev resides.

As illustrated in the example, this may be used to open the board device that corresponds to a
particular channel device prior to setting board parameters.

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

Cautions
None.
Errors

This function will fail and return a pointer to “Unknown device” if an invalid channel device handle
is specified in chdeyv.

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main ()

{
int chdev, bddev;
char *bdnamep;

/* Open the channel device */
if ((chdev = dx_open("dxxxB1Cl", NULL)) == -1) {
/* Process error */

}

Dialogic® Voice API Library Reference
Dialogic Corporation

return a pointer to the board device name — ATDX_BDNAMEP()

/* Display board name */
bdnamep = ATDX_BDNAMEP (chdev) ;
printf ("The board device is: %s\n", bdnamep) ;

/* Open the board device */
if ((bddev = dx_open (bdnamep, NULL)) == -1) {

/* Process error */

}

B See Also

None.

Dialogic® Voice API Library Reference 27
Dialogic Corporation

ATDX_BDTYPE() — return the board type for the device

ATDX_BDTYPE()

Name: long ATDX_BDTYPE(dev)
Inputs: int dev e valid board or channel device handle

Returns: board or channel device type if successful
AT _FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute
Mode: synchronous

B Description
The ATDX_BDTYPE() function returns the board type for the device specified in dev.

A typical use would be to determine whether or not the device can support particular features, such
as call progress analysis.

Parameter Description

dev specifies the valid device handle obtained when a board or channel was opened
using dx_open()

Possible return values are the following:

DI_D41BD
D/41 Board Device. This value represents the “dxxxBn type” devices (virtual boards).

DI_D41CH
D/41 Channel Device. This value represents the “dxxxBnCm” type devices (channel device).

The values DI_D41BD and DI_D41CH will be returned for any Dialogic® D/41 board, and any
board which emulates the voice resources of multiple Dialogic® D/41 boards.

B Cautions
None.
H Errors

This function will fail and return AT_FAILURE if an invalid board or channel device handle is
specified in dev.

28 Dialogic® Voice API Library Reference
Dialogic Corporation

B Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

#define ON 1

main ()
{
int bddev;
long bdtype;
int call analysis=0;

/* Open the board device */

return the board type for the device — ATDX_BDTYPE()

if ((bddev = dx_open ("dxxxB1",NULL)) == -1) {

/* Process error */

}

if ((bdtype = ATDX_BDTYPE (bddev)) == AT_FAILURE) {

/* Process error */

}

if (bdtype == DI_D41BD) {

printf ("Device is a D/41 Board\n");

call _analysis = ON;

B See Also

None.

Dialogic® Voice API Library Reference
Dialogic Corporation

29

ATDX_BUFDIGS() — return the number of uncollected digits

ATDX_BUFDIGS()

Name: long ATDX_BUFDIGS(chdev)
Inputs: int chdev e valid channel device handle
Returns: number of uncollected digits in the firmware buffer if successful
AT _FAILURE if error
Includes: srllib.h
dxxxlib.h
Category: Extended Attribute
Mode: synchronous
B Description

Note:

30

The ATDX_BUFDIGS() function returns the number of uncollected digits in the firmware buffer
for channel chdev. This is the number of digits that have arrived since the last call to dx_getdig()
or the last time the buffer was cleared using dx_clrdigbuf(). The digit buffer contains a number of
digits and a null terminator. The maximum size of the digit buffer varies with the board type and
technology.

This function is supported on DM3 boards but must be manually enabled. You must enable the
function before the application is loaded in memory.

On Linux, to enable this function, add SupportForSignalCounting = 1 in
/usr/dialogic/cfg/cheetah.cfg. To subsequently disable this function, remove this line from the .cfg
file.

On Windows, to enable this function, set parameter SupportForSignalCounting to 1 in Key
HKEY_LOCAL_MACHINE\SOFTWARE\Dialogic\Cheetah\CC. To subsequently disable this
function, set this parameter to 0.

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

Cautions
Digits that adjust speed and volume (see dx_setsvcond()) will not be passed to the digit buffer.
Errors

This function will fail and return AT_FAILURE if an invalid channel device handle is specified in
chdev.

Dialogic® Voice API Library Reference
Dialogic Corporation

return the number of uncollected digits — ATDX_BUFDIGS()

B Example

#include <fcntl.h>
#include <srllib.h>
#include <dxxxlib.h>

main ()

{
int chdev;
long bufdigs;
DX_IOTT iott;
DV_TPT tpt[2];

/* Open the device using dx_open(). Get channel device descriptor in
* chdev. */
if ((chdev = dx_open ("dxxxB1C1",NULL)) == -1) {

/* process error */

/* set up DX_IOTT */

iott.io type = IO_DEV|IO EOT;

iott.io bufp = 0;

iott.io offset = 0;

iott.io_length = -1; /* play till end of file */

/* On Linux only, use open function */
if ((iott.io_fhandle = open ("prompt.vox", O RDONLY)) == -1) {
/* process error */

/* On Windows only, use dx fileopen function */
if ((iott.io_fhandle = dx_fileopen ("prompt.vox", O RDONLY)) == -1) {
/* process error */

/* set up DV_TPT */
dx _clrtpt (tpt,2);

tpt [0].tp_type = IO _CONT;

tpt[0].tp_termno = DX_MAXDTMF; /* Maximum digits */
tpt[0].tp_length = 4; /* terminate on 4 digits */
tpt[0].tp_flags = TF_MAXDTMF; /* Use the default flags */
tpt[1l].tp_type = IO_EOT;

tpt[l].tp_termno = DX DIGMASK; /* Digit termination */
tpt[1l].tp_length = DM 5; /* terminate on the digit "5" */
tpt[l].tp_flags = TF_DIGMASK; /* Use the default flags */

/* Play a voice file. Terminate on receiving 4 digits, the digit "5" or
* at end of file.*/

if (dx play(chdev,&iott,tpt,EV_SYNC) == -1) {
/* process error */

}

/* Check # of digits collected and continue processing. */

if ((bufdigs=ATDX_ BUFDIGS (chdev))==AT FAILURE) {
/* process error */

B See Also

e dx_getdig()
e dx_clrdigbuf()

Dialogic® Voice API Library Reference 31
Dialogic Corporation

ATDX_CHNAMES() — retrieve all channel names for a board

ATDX_CHNAMES()

Name: char ** ATDX_CHNAMES(bddev)
Inputs: int bddev e valid board device handle

Returns: pointer to array of channel names if successful
pointer to array of pointers that point to “Unknown device” if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute
Mode: synchronous

B Description

The ATDX_CHNAMES() function returns a pointer to an array of channel names associated with
the specified board device handle, bddev.

A possible use for this attribute is to display the names of the channel devices associated with a
particular board device.

Parameter Description

bddev specifies the valid board device handle obtained when the board was opened
using dx_open()

B Cautions
None.
H Errors

This function will fail and return the address of a pointer to “Unknown device” if an invalid board
device handle is specified in bddev.

B Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main ()

{
int bddev, cnt;
char **chnames;
long subdevs;

/* Open the board device */
if ((bddev = dx_open ("dxxxB1",NULL)) == -1) {
/* Process error */

32 Dialogic® Voice API Library Reference
Dialogic Corporation

retrieve all channel nhames for a board — ATDX_CHNAMES()

/* Display channels on board */
chnames = ATDX_CHNAMES (bddev) ;

subdevs = ATDV_SUBDEVS (bddev); /* number of sub-devices on board */

printf ("Channels on this board are:\n");
for (cnt=0; cnt<subdevs; cnt++) {
printf ("$s\n", * (chnames + cnt));

}

/* Call dx_open() to open each of the
* channels and store the device descriptors
*/
}
B See Also
None.

Dialogic® Voice API Library Reference
Dialogic Corporation

33

ATDX_CHNUM() — return the channel number

ATDX_CHNUM()

Name: long ATDX_CHNUM(chdev)
Inputs: int chdev e valid channel device handle

Returns: channel number if successful
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute
Mode: synchronous

B Description

The ATDX_CHNUM() function returns the channel number associated with the channel device
chdev. Channel numbering starts at 1.

For example, use the channel as an index into an array of channel-specific information.

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

B Cautions
None.
H Errors

This function will fail and return AT_FAILURE if an invalid channel device handle is specified in
chdev.

B Example

#include <srllib.h>
#include <dxxxlib.h>

main ()

{
int chdev;
long chno;

/* Open the channel device */

if ((chdev = dx_open ("dxxxB1C1l", NULL)) == -1) {
/* Process error */

}

/* Get Channel number */

if ((chno = ATDX_CHNUM(chdev)) == AT FAILURE) {
/* Process error */

34 Dialogic® Voice API Library Reference
Dialogic Corporation

return the channel number — ATDX_CHNUM()

}

/* Use chno for application-specific purposes */

}

B See Also

None.

Dialogic® Voice API Library Reference 35
Dialogic Corporation

ATDX_CONNTYPE() — return the connection type for a completed call

ATDX_CONNTYPE()

Name: long ATDX_CONNTYPE(chdev)
Inputs: int chdev e valid channel device handle

Returns: connection type if success
AT _FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute
Mode: synchronous

B Description

The ATDX_CONNTYPE() function returns the connection type for a completed call on the
channel device chdev. Use this function when a CR_CNCT (called line connected) is returned by
ATDX_CPTERMY() after termination of dx_dial() with call progress analysis enabled.

See the Dialogic® Voice API Programming Guide for more information about call progress
analysis.

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

Possible return values are the following:

CON_CAD
Connection due to cadence break

CON_LPC (not supported on Dialogic® DM3 boards)
Connection due to loop current

CON_PAMD
Connection due to positive answering machine detection

CON_PVD
Connection due to positive voice detection

B Cautions
None.
H Errors

This function will fail and return AT_FAILURE if an invalid channel device handle is specified in
chdev.

36 Dialogic® Voice API Library Reference
Dialogic Corporation

return the connection type for a completed call — ATDX_CONNTYPE()

B Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main ()

{
int dxxxdev;
int cares;

/*
* Open the Voice Channel Device and Enable a Handler
*/
if ((dxxxdev = dx _open("dxxxB1Cl", NULL)) == -1) {
perror ("dxxxB1Cl");
exit(1);

/*
* Delete any previous tones
*/
if (dx deltones(dxxxdev) < 0) {
/* handle error */

/‘k
* Now enable call progress analysis with above changed settings.
*/
if (dx_initcallp(dxxxdev)) {
/* handle error */

/*
* Take the phone off-hook
*/
if (dx_sethook(dxxxdev, DX OFFHOOK, EV_SYNC) == -1) {

printf ("Unable to set the phone off-hook\n");

printf("Lasterror = $d Err Msg = %$s\n",
ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP (dxxxdev));

dx_close (dxxxdev);

exit(1);

/‘k
* Perform an outbound dial with call progress analysis, using
* the default call progress analysis parameters.

*/
if ((cares=dx dial(dxxxdev, ",84", (DX CAP *)NULL, DX CALLP)) == -1) {
printf("Outbound dial failed - reason = %d\n",
ATDX CPERROR(dxxxdev));
dx_close (dxxxdev);
exit(1);

printf("call progress analysis returned %d\n", cares);
if (cares == CR _CNCT) {
switch (ATDX_CONNTYPE(dxxxdev)) {
case CON_CAD:
printf ("Cadence Break\n");
break;
case CON_LPC:
printf("Loop Current Drop\n");
break;

Dialogic® Voice API Library Reference 37
Dialogic Corporation

ATDX_CONNTYPE() — return the connection type for a completed call

case CON_PVD:
printf("Positive Voice Detection\n");
break;

case CON_PAMD:

printf("Positive Answering Machine Detection\n");
break;
default:
printf("Unknown connection type\n");
break;

}

/*

* Continue Processing
*

*

*

*/
/*
* Close the opened Voice Channel Device
*/
if (dx_close(dxxxdev) != 0) {
perror("close");

}
/* Terminate the Program */
exit(0);

B See Also

o dx_dial()
e ATDX_CPTERM()
e DX _ CAP data structure

38 Dialogic® Voice API Library Reference
Dialogic Corporation

return the call progress analysis error — ATDX_CPERROR()

ATDX_CPERROR()

Name: long ATDX_CPERROR(chdev)
Inputs: int chdev e valid channel device handle

Returns: call progress analysis error if success
AT _FAILURE if function fails

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute
Mode: synchronous

B Description

The ATDX_CPERROR() function returns the call progress analysis error that caused dx_dial()
to terminate when checking for operator intercept Special Information Tone (SIT) sequences. See
the Dialogic® Voice API Programming Guide for more information about call progress analysis.

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

B Cautions
None.
H Errors

When dx_dial() terminates due to a call progress analysis error, CR_ERROR is returned by
ATDX_CPTERM().

If CR_ERROR is returned, use ATDX_CPERROR() to determine the call progress analysis error.
One of the following values will be returned:

CR_LGTUERR
lower frequency greater than upper frequency

CR_MEMERR
out of memory trying to create temporary Special Information Tone (SIT) tone templates
(exceeds maximum number of templates)

CR_MXFRQERR
invalid ca_maxtimefrq field in DX_CAP. If the ca_mxtimefrq parameter for each SIT is
nonzero, it must have a value greater than or equal to the ca_timefrq parameter for the same
SIT.

Dialogic® Voice API Library Reference 39
Dialogic Corporation

ATDX_CPERROR() — return the call progress analysis error

40

CR_OVRLPERR
overlap in selected SIT tones

CR_TMOUTOFF
timeout waiting for SIT tone to terminate (exceeds a ca_mxtimefrq parameter)

CR_TMOUTON
timeout waiting for SIT tone to commence

CR_UNEXPTN
unexpected SIT tone (the sequence of detected tones did not correspond to the SIT sequence)

CR_UPFRQERR
invalid upper frequency selection. This value must be nonzero for detection of any SIT.

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main ()

{
int dxxxdev;
int cares;

/*
* Open the Voice Channel Device and Enable a Handler
*/
if ((dxxxdev = dx open("dxxxB1Cl", NULL)) == -1) {
perror ("dxxxB1Cl");
exit(1);
}
/*
* Take the phone off-hook
*/
if (dx_sethook(dxxxdev, DX OFFHOOK, EV_SYNC) == -1) {

printf ("Unable to set the phone off-hook\n");
printf("Lasterror = $d Err Msg = %$s\n",
ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP (dxxxdev));
dx close(dxxxdev);
exit(1);
}

/ *
* Perform an outbound dial with call progress analysis, using
* the default call progress analysis parameters.
*/
if ((cares = dx dial(dxxxdev,",84", (DX CAP *) NULL, DX CALLP)) == -1) {
printf ("Outbound dial failed - reason = %d\n",
ATDX_CPERROR(dxxxdev));
dx_close(dxxxdev);
exit(1);

/*
* Continue Processing
*/

Dialogic® Voice API Library Reference
Dialogic Corporation

return the call progress analysis error — ATDX_CPERROR()

/k

* Close the opened Voice Channel Device
*/

if (dx close(dxxxdev) != 0) {

perror ("close");

}

/* Terminate the Program */
exit(0);
}

B See Also

e dx_dial()
e ATDX_CPTERM()
e DX_CAP data structure

Dialogic® Voice API Library Reference 4

Dialogic Corporation

ATDX_CPTERM() — return the last result of call progress analysis termination

ATDX_CPTERM()

Name: long ATDX_CPTERM(chdev)
Inputs: int chdev e valid channel device handle
Returns: last call progress analysis termination if successful
AT _FAILURE if error
Includes: srllib.h
dxxxlib.h
Category: Extended Attribute
Mode: synchronous
B Description

42

The ATDX_CPTERMY() function returns the last result of call progress analysis termination on
the channel chdev. Call this function to determine the call status after dialing out with call progress
analysis enabled.

See the Dialogic® Voice API Programming Guide for more information about call progress
analysis.

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

Possible return values are the following:

CR_BUSY
Called line was busy.

CR_CEPT
Called line received Operator Intercept (SIT). Extended attribute functions provide
information on detected frequencies and duration.

CR_CNCT
Called line was connected.

CR_FAXTONE
Called line was answered by fax machine or modem.

CR_NOANS
Called line did not answer.

CR_NORB
No ringback on called line.

CR_STOPD
Call progress analysis stopped due to dx_stopch().

Dialogic® Voice API Library Reference
Dialogic Corporation

return the last result of call progress analysis termination — ATDX_CPTERM()

CR_ERROR
Call progress analysis error occurred. Use ATDX_CPERROR() to return the type of error.

B Cautions
None.
®m Errors

This function will fail and return AT_FAILURE if an invalid channel device handle is specified in
chdev.

B Example

/* Call progress analysis with user-specified parameters */
#include <srllib.h>
#include <dxxxlib.h>

main ()

{
int chdev;
DX_CAP capp;

/* open the channel using dx open(). Obtain channel device descriptor

* in chdev
*/
if ((chdev = dx_open ("dxxxB1C1",NULL)) == -1) {

/* process error */

/* take the phone off-hook */

if (dx_sethook(chdev,DX OFFHOOK,EV_SYNC) == -1) {
/* process error */

} else {

/* Clear DX CAP structure */
dx_clrcap (&capp) ;

/* Set the DX CAP structure as needed for call progress analysis.
* Allow 3 rings before no answer.
*/

capp.ca nbrdna = 3;

/* Perform the outbound dial with call progress analysis enabled. */
if (dx_dial(chdev,"5551212", &capp, DX_CALLP|EV_SYNC) == -1) {
/* perform error routine */

}

/* Examine last call progress termination on the device */
switch (ATDX_ CPTERM(chdev)) {

case CR _CNCT: /* Call Connected, get some additional info */
break;
case CR CEPT: /* Operator Intercept detected */
break;
Dialogic® Voice API Library Reference 43

Dialogic Corporation

ATDX_CPTERM() — return the last result of call progress analysis termination

case AT FAILURE: /* Error */

}
}

B See Also

e dx_dial()
e DX_CAP data structure

44 Dialogic® Voice API Library Reference
Dialogic Corporation

return the last call progress analysis termination — ATDX_CRTNID()

ATDX_CRTNID()

Name: long ATDX_CRTNID(chdev)
Inputs: int chdev e valid channel device handle
Returns: identifier of the tone that caused the most recent call progress analysis termination, if successful
AT _FAILURE if error
Includes: srllib.h
dxxxlib.h
Category: Extended Attribute
Mode: synchronous
B Description

The ATDX_CRTNID() function returns the last call progress analysis termination of the tone that
caused the most recent call progress analysis termination of the channel device. See the Dialogic®
Voice API Programming Guide for a description of call progress analysis.

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

Possible return values are the following:

TID_BUSY1
First signal busy

TID_BUSY2
Second signal busy

TID_DIAL_INTL
International dial tone

TID_DIAL_LCL
Local dial tone

TID_DISCONNECT
Disconnect tone (post-connect)

TID_FAX1
First fax or modem tone

TID_FAX?2
Second fax or modem tone

TID_RNGBK1
Ringback (detected as single tone)

TID_RNGBK?2
Ringback (detected as dual tone)

Dialogic® Voice API Library Reference 45
Dialogic Corporation

ATDX_CRTNID() — return the last call progress analysis termination

TID_SIT_ANY
Catch all (returned for a Special Information Tone sequence or SIT sequence that falls outside
the range of known default SIT sequences)

TID_SIT_INEFFECTIVE_OTHER or
TID_SIT_IO
Ineffective other SIT sequence

TID_SIT_NO_CIRCUIT or
TID_SIT_NC
No circuit found SIT sequence

TID_SIT_NO_CIRCUIT_INTERLATA or
TID_SIT_NC_INTERLATA
InterLATA no circuit found SIT sequence

TID_SIT_OPERATOR_INTERCEPT or
TID_SIT_IC
Operator intercept SIT sequence

TID_SIT_REORDER_TONE or
TID_SIT_RO
Reorder (system busy) SIT sequence

TID_SIT_REORDER_TONE_INTERLATA or
TID_SIT_RO_INTERLATA
InterLATA reorder (system busy) SIT sequence

TID_SIT_VACANT_CIRCUIT or
TID_SIT_VC
Vacant circuit SIT sequence

B Cautions
None.
B Errors
This function fails and returns AT_FAILURE if an invalid device handle is specified.

B Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main ()
{
DX CAP cap_s;

int ddd, car;
char *chnam, *dialstrg;
long tone_id;
chnam = "dxxxB1C1l";
dialstrg = "L1234";
/ *

* Open channel

*/
if ((ddd = dx_open(chnam, NULL)) == -1) {

46 Dialogic® Voice API Library Reference

Dialogic Corporation

return the last call progress analysis termination — ATDX_CRTNID()

/* handle error */

/‘k
* Dial
*/
printf ("Dialing %s\n", dialstrg);
car = dx dial(ddd,dialstrg, (DX CAP *)&cap_ s,DX CALLP|EV_SYNC);
if (car == -1) {
/* handle error */

switch(car) {
case CR_NODIALTONE:
switch(ATDX DTNFAIL(ddd)) {
case 'L':
printf (" Unable to get Local dial tone\n");
break;
case 'I':

printf (" Unable to get International dial tone\n");
break;

case 'X':
printf (" Unable to get special eXtra dial tone\n");
break;

}

break;

case CR_BUSY:
printf (" %s engaged - %s detected\n", dialstrg,
(ATDX_CRTNID (ddd) == TID_BUSY1l ? "Busy 1" : "Busy 2"));
break;
case CR_CNCT:
printf (" Successful connection to %s\n", dialstrg);
break;
case CR_CEPT:
printf (" Special tone received at %s\n", dialstrg);
tone_id = ATDX CRTNID (ddd); //ddd is handle that is returned by dx open()

switch (tone_id) {

case TID SIT_NC:
printf ("No circuit found special information tone received\n");
break;

case TID SIT IC:
printf ("Operator intercept special information tone received\n");
break;

case TID SIT_VC:
printf ("Vacant circuit special information tone received\n");
break;

case TID SIT RO:
printf ("Reorder special information tone received\n");
break;

case TID SIT NC INTERLATA:
printf ("InterLATA no circuit found special information tone received\n");
break;

case TID SIT RO INTERLATA:
printf ("InterLATA reorder special information tone received\n");
break;

case TID SIT_IO:
printf ("Ineffective other special information tone received\n");
break;

case TID SIT ANY:
printf ("Catch all special information tone received\n");
break;
}
break;

default:

Dialogic® Voice API Library Reference
Dialogic Corporation

47

ATDX_CRTNID() — return the last call progress analysis termination

break;

}

/*
* Set channel on hook
*/
if ((dx_sethook(ddd, DX_ONHOOK, EV_SYNC)) == -1) {
/* handle error */

}
dx_close(ddd);
H See Also

None.

Dialogic® Voice API Library Reference

48
Dialogic Corporation

return the device type — ATDX_DEVTYPE()

ATDX_DEVTYPE()

Name: long ATDX_DEVTYPE(dev)
Inputs: int dev e valid board or channel device handle
Returns: device type if successful
AT _FAILURE if error
Includes: srllib.h
dxxxlib.h
Category: Extended Attribute
Mode: synchronous
B Description

The ATDX_DEVTYPE() function returns the device type of the board or channel dev.

Parameter Description

dev specifies the valid device handle obtained when a board or channel was opened
using dx_open()

Possible return values are the following:

DT_DXBD
Board device (indicates virtual board)

DT _DXCH
Channel device

Cautions

None.

Errors

This function will fail and return AT_FAILURE if an invalid board or channel device handle is
specified in deyv.

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main ()

{
int bddev;
long devtype;

Dialogic® Voice API Library Reference 49
Dialogic Corporation

ATDX_DEVTYPE() — return the device type

50

/* Open the board device */
if ((bddev = dx open ("dxxxB1",NULL)) == -1) {
/* Process error */

}

if ((devtype = ATDX_DEVTYPE (bddev)) == AT FAILURE)
/* Process error */

}

if (devtype == DT DXBD) {
printf ("Device is a Board\n");

}

/* Continue processing */

B See Also

None.

{

Dialogic® Voice API Library Reference
Dialogic Corporation

return the current state of the channel — ATDX_STATE()

ATDX_STATE()

Name: long ATDX_STATE(chdev)
Inputs: int chdev e valid channel device handle

Returns: current state of channel if successful
AT _FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute
Mode: synchronous

B Description

The ATDX_STATE() function returns the current state of the channel chdev.

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

Possible return values are the following:

CS_DIAL
Dial state

CS_CALL
Call state

CS_GTDIG
Get Digit state

CS_HOOK
Hook state

CS_IDLE
Idle state

CS_PLAY
Play state

CS_RECD
Record state

CS_STOPD
Stopped state

CS_TONE
Playing tone state

Note: A device is idle if there is no I/O function active on it.

Dialogic® Voice API Library Reference 51
Dialogic Corporation

ATDX_STATE() — return the current state of the channel

B Cautions

This function extracts the current state from the driver and requires the same processing resources
as many other functions. For this reason, applications should not base their state machines on this
function.

H Errors

This function will fail and return AT_FAILURE if an invalid channel device handle is specified in
chdev.

B Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main ()

{
int chdev;
long chstate;

/* Open the channel device */
if ((chdev = dx open ("dxxxB1C1l",NULL)) == -1) {
/* Process error */

}

/* Examine state of the channel. Perform application specific action based
* on state of the channel

*/
if ((chstate = ATDX STATE (chdev)) == AT_FAILURE) ({

/* Process error */

}

printf ("current state of channel %s = %1d\n", ATDX NAMEP (chdev), chstate);

B See Also

None.

52 Dialogic® Voice API Library Reference
Dialogic Corporation

return the reason for the last I/O function termination — ATDX_TERMMSK()

ATDX_TERMMSK()

Name: long ATDX_TERMMSK(chdev)
Inputs: int chdev e valid channel device handle

Returns: channel’s last termination bitmap if successful
AT _FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute
Mode: synchronous

B Description

The ATDX_TERMMSK() function returns a bitmap containing the reason for the last I/O
function termination on the channel chdev. The bitmap is set when an I/O function terminates.

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

Possible return values are the following:

TM_DIGIT
Specific digit received

TM_EOD
End of data reached (on playback, receive)

TM_ERROR
1/0O device error

TM_IDDTIME
Inter-digit delay

TM_MAXDTMF
Maximum DTMF count

TM_MAXSIL
Maximum period of silence

TM_MAXTIME
Maximum function time exceeded

TM_NORMTERM
Normal termination (for dx_dial())

TM_TONE
Tone-on/off event

Dialogic® Voice API Library Reference 53
Dialogic Corporation

ATDX_TERMMSK() — return the reason for the last I/O function termination

54

TM_USRSTOP
Function stopped by user

Cautions

e [f several termination conditions are met at the same time, several bits will be set in the
termination bitmap.

e When both DX_MAXDTMF and DX_DIGMASK termination conditions are specified in the
DV_TPT structure, and both conditions are satisfied, the ATDX_TERMMSK() function will
return the TM_MAXDTMF termination event only.

For example, with a DX_MAXDTMF condition of 2 digits maximum and a DX_DIGMASK
condition of digit “1”, if the digit string “21” is received, both conditions are satisfied but only
TM_MAXDTMEF will be reported by ATDX_TERMMSK().

This behavior differs from Dialogic® Springware products, where both TM_MAXDTMEF and
TM_DIGIT will be returned when both DX_MAXDTMF and DX_DIGMASK termination
conditions are specified in the DV_TPT structure and both are satisfied by the user input.

Errors

This function will fail and return AT_FAILURE if an invalid channel device handle is specified in
chdev.

Example

#include <stdio.h>
#include <fcntl.h>
#include <srllib.h>
#include <dxxxlib.h>

main ()

{
int chdev;
long term;
DX_IOTT iott;
DV_TPT tpt[4];

/* Open the channel device */
if ((chdev = dx_open ("dxxxB1C1",NULL)) == -1) {
/* Process error */

}

/* Record a voice file. Terminate on receiving a digit, silence, loop
* current drop, max time, or reaching a byte count of 50000 bytes.
*/

/* set up DX IOTT */

iott.io_type = IO_DEV|IO_EOT;

iott.io bufp = 0;

iott.io_offset = 0;

iott.io length = 50000;

if ((iott.io fhandle = dx fileopen("file.vox", O RDWR)) == -1) {
/* process error */

}

Dialogic® Voice API Library Reference
Dialogic Corporation

return the reason for the last I/O function termination — ATDX_TERMMSK()

/* set up DV_TPTs for the required terminating conditions */
dx clrtpt (tpt,4);

tpt[0].tp_type = IO_CONT;

tpt[0].tp_termno = DX MAXDTMF; /* Maximum digits */
tpt[0].tp_length = 1; * terminate on the first digit */
tpt[0].tp flags = TF MAXDIMF; /* Use the default flags */
tpt[l].tp_type = IO_CONT;

tpt[l].tp_termno = DX MAXTIME; /* Maximum time */
tpt[1].tp_length = 100; /* terminate after 10 secs */
tpt[l].tp flags = TF MAXTIME; /* Use the default flags */
tpt[2].tp_type = IO_CONT;

tpt[2].tp_termno = DX MAXSIL; /* Maximum Silence */
tpt[2].tp_length = 30; /* terminate on 3 sec silence */
tpt[2].tp flags = TF MAXSIL; /* Use the default flags */
tpt[3].tp_type = IO_EOT; /* last entry in the table */
tpt[3].tp_termno = DX LCOFF; /* terminate on loop current drop */
tpt[3].tp_length = 10; /* terminate on 1 sec silence */
tpt[3].tp flags = TF LCOFF; /* Use the default flags */

/* Now record to the file */
if (dx_rec(chdev, &iott, tpt,EV_SYNC) == -1) {
/* process error */

}

/* Examine bitmap to determine if digits caused termination */
if ((term = ATDX TERMMSK(chdev)) == AT_FAILURE) {
/* Process error */

if (term & TM MAXDTMF) {
printf ("Terminated on digits\n");

B See Also

e DV _TPT data structure to set termination conditions

* Event Management functions to retrieve termination events asynchronously (in the Dialogic®
Standard Runtime Library API Programming Guide and Dialogic® Standard Runtime Library

API Library Reference)
e ATEC_TERMMSK() in the Dialogic® Continuous Speech Processing API Library
Reference
Dialogic® Voice API Library Reference 55

Dialogic Corporation

ATDX_TONEID() — return user-defined tone ID that terminated I/O function

ATDX_TONEID()

Name: long ATDX_TONEID(chdev)
Inputs: int chdev e valid channel device handle
Returns: user-defined tone ID if successful
AT _FAILURE if error
Includes: srllib.h
dxxxlib.h
Category: Extended Attribute
Mode: synchronous
B Description
The ATDX_TONEID() function returns the user-defined tone ID that terminated an I/O function.
This termination is indicated by ATDX_TERMMSK() returning TM_TONE.
Parameter Description
chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()
B Cautions
None.
B Errors
This function will fail and return AT_FAILURE if an invalid channel device handle is specified in
chdev.
B Example

56

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

#define TID_1 101

main ()

{
TN_GEN tngen;
DV_TPT tpt[5];
int chdev;

Dialogic® Voice API Library Reference
Dialogic Corporation

return user-defined tone ID that terminated I/O function — ATDX_TONEID()

/*
* Open the D/xxx Channel Device and Enable a Handler
*/
if ((chdev = dx_open("dxxxB1Cl", NULL)) == -1) {
perror ("dxxxB1Cl");
exit(1);
}
/*

* Describe a Simple Dual Tone Frequency Tone of 950-
* 1050 Hz and 475-525 Hz using leading edge detection.
*/
if (dx_blddt(TID_1, 1000, 50, 500, 25, TN_LEADING)== -1) {
printf("Unable to build a Dual Tone Template\n");

/*
* Add the Tone to the Channel
*/
if (dx addtone(chdev, NULL, 0) == -1) {

printf ("Unable to Add the Tone %d\n", TID_1);

printf("Lasterror = $d Err Msg = %$s\n",
ATDV_LASTERR(chdev), ATDV_ERRMSGP(chdev));

dx_close(chdev);

exit(1);

* Build a Tone Generation Template.
* This template has Frequencyl = 1140,
* Frequency?2 = 1020, amplitute at -10dB for
* both frequencies and duration of 100 * 10 msecs.
*/
dx bldtngen(&tngen, 1140, 1020, -10, -10, 100);

/‘k
* Set up the Terminating Conditions
*/
tpt[0].tp_type = IO_CONT;
tpt[0].tp termno = DX TONE;
tpt[0].tp_length = TID_ 1;
tpt[0].tp flags = TF_TONE;
tpt[0].tp_data = DX_TONEON;
tpt[l].tp_type = IO_CONT;
tpt[l].tp_termno = DX_TONE;
tpt[l].tp_length = TID 1;
tpt[l].tp_flags = TF_TONE;
tpt[l].tp _data = DX TONEOFF;
tpt[2].tp_type = IO_EOT;
tpt[2].tp_termno = DX MAXTIME;
tpt[2].tp_length = 6000;

[2]

.tp_flags = TF MAXTIME;

if (dx playtone(chdev, &tngen, tpt, EV_SYNC) == -1){
printf ("Unable to Play the Tone\n");
printf("Lasterror = $d Err Msg = %$s\n",
ATDV_LASTERR(chdev), ATDV_ERRMSGP(chdev));
dx_close(chdev);
exit(1);

if (ATDX TERMMSK(chdev) & TM TONE) {
printf ("Terminated by Tone Id = %d\n", ATDX_TONEID(chdev));

Dialogic® Voice API Library Reference 57
Dialogic Corporation

ATDX_TONEID() — return user-defined tone ID that terminated I/O function

* Continue Processing

*/
/*
* Close the opened D/xxx Channel Device
*/
if (dx_close(chdev) !=0) {
perror("close");

}

/* Terminate the Program */
exit(0);

B See Also

None.

58 Dialogic® Voice API Library Reference
Dialogic Corporation

return the byte count for the last I/O transfer — ATDX_TRCOUNT()

ATDX_TRCOUNT()

Name: long ATDX_TRCOUNT(chdev)
Inputs: int chdev e valid channel device handle

Returns: last play/record transfer count if successful
AT _FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute
Mode: synchronous

B Description

The ATDX_TRCOUNT() function returns the number of bytes transferred during the last play or
record on the channel chdev.

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

B Cautions
None.
H Errors

This function will fail and return AT_FAILURE if an invalid channel device handle is specified in
chdeyv.

B Example

#include <stdio.h>
#include <fcntl.h>
#include <srllib.h>
#include <dxxxlib.h>

main ()

{
int chdev;
long trcount;
DX_IOTT iott;
DV_TPT tpt[2];

/* Open the channel device */
if ((chdev = dx_open ("dxxxB1C1",NULL)) == -1) {
/* Process error */

}

Dialogic® Voice API Library Reference 59
Dialogic Corporation

ATDX_TRCOUNT() — return the byte count for the last I/O transfer

/* Record a voice file. Terminate on receiving a digit, max time,
* or reaching a byte count of 50000 bytes.
*/

/* set up DX IOTT */

iott.io_type = IO_DEV|IO_EOT;

iott.io bufp = 0;

iott.io_offset = OL;

iott.io length = 50000L;

if ((iott.io_fhandle = dx_fileopen("file.vox", O_RDWR)) == -1) {
/* process error */

/* set up DV_TPTs for the required terminating conditions */
dx clrtpt (tpt,2);

tpt[0].tp_type = IO_CONT;

tpt[0].tp_termno = DX MAXDTMF; /* Maximum digits */

tpt[0].tp length = 1; /* terminate on the first digit */
tpt[0].tp flags = TF MAXDIMF; /* Use the default flags */
tpt[l].tp_type = IO_EOT;

tpt[1l].tp_termno = DX MAXTIME; /* Maximum time */
tpt[1l].tp_length = 100; /* terminate after 10 secs */
tpt[1l].tp flags = TF MAXTIME; /* Use the default flags */

/* Now record to the file */
if (dx_rec(chdev,&iott, tpt,EV_SYNC) == -1) {
/* process error */

/* Examine transfer count */
if ((trcount = ATDX_TRCOUNT(chdeV)) == AT FAILURE) {
/* Process error */

printf ("$1d bytes recorded\n", trcount);

B See Also

None.

60 Dialogic® Voice API Library Reference
Dialogic Corporation

set a DTMF digit to adjust speed — dx_addspddig()

dx_addspddig()

Name: int dx_addspddig(chdev, digit, adjval)

Inputs: int chdev e valid channel device handle
char digit e DTMF digit
short adjval * speed adjustment value

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Speed and Volume

Mode: synchronous

B Description

The dx_addspddig() function is a convenience function that sets a DTMF digit to adjust speed by
a specified amount, immediately and for all subsequent plays on the specified channel (until
changed or cancelled).

This function assumes that the speed modification table has not been modified using the
dx_setsvmt() function.

Note: Before using the speed control feature, you must enable this feature in the [decoder] section of the
CONFIG file. For more information, see the Configuration Guide applicable to your release.

For more information about speed and volume control as well as speed and volume modification
tables, see the Dialogic® Voice API Programming Guide. For information about speed and volume
data structures, see the DX_SVMT and the DX_SVCB data structures.

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

digit specifies a DTMF digit (0-9, *.#) that will modify speed by the amount

specified in adjval
adjval specifies a speed adjustment value to take effect whenever the digit specified
in digit occurs:
The following are valid values:
e SV_ADDIOPCT - increase play speed by 10%
e SV_NORMAL - set play speed to origin (regular speed) when the play

begins. digit must be set to NULL.
e SV_SUBIOPCT - decrease play speed by 10%

Dialogic® Voice API Library Reference 61
Dialogic Corporation

dx_addspddig() — set a DTMF digit to adjust speed

62

To start play speed at the origin, set digit to NULL and set adjval to SV_NORMAL.

Cautions

Speed control is not supported for all voice coders. For more information on supported coders,
see the speed control topic in the Dialogic® Voice API Programming Guide.

Digits that are used for play adjustment may also be used as a terminating condition. If a digit
is defined as both, then both actions are applied upon detection of that digit.

Calls to this function are cumulative. To reset or remove any condition, you should clear all
adjustment conditions with dx_clrsveond(), and reset if required. For example, if DTMF digit
“1” has already been set to increase play speed by one step, a second call that attempts to
redefine digit “1” to the origin will have no effect on speed or volume, but will be added to the
array of conditions; the digit will retain its original setting.

The digit that causes the play adjustment will not be passed to the digit buffer, so it cannot be
retrieved using dx_getdig().

Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADPARM

Invalid parameter

EDX_BADPROD

Function not supported on this board

EDX_SVADJBLK

Invalid number of play adjustment blocks

EDX_SYSTEM

Error from operating system

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

/*
* Global Variables
*/

main ()
{

int dxxxdev;

/*

* Open the Voice Channel Device and Enable a Handler
*/
if ((dxxxdev = dx_open("dxxxB1Cl", NULL) {

perror ("dxxxBIC1");
exit(1);

Dialogic® Voice API Library Reference
Dialogic Corporation

set a DTMF digit to adjust speed — dx_addspddig()

/k
* Add a Speed Adjustment Condition - increase the
* playback speed by 30% whenever DTMF key 1 is pressed.
*/
if (dx_addspddig(dxxxdev, 'l',6 SV_ADD30PCT = -1) {
printf ("Unable to Add a Speed Adjustment Condition\n");
printf("Lasterror = %d Err Msg = %s\n",
ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
dx_close (dxxxdev);
exit(1);

* Continue Processing

*/
/‘k
* Close the opened Voice Channel Device
*/
if (dx_close(dxxxdev) != 0) {
perror ("close");

}

/* Terminate the Program */
exit(0);

B See Also

e dx_addvoldig()

e dx_adjsv()

e dx_clrsvcond()

e dx_getcursv()

e dx_getsvmt()

e dx_setsvcond()

e dx_setsvmt()

e speed and volume modification tables in the Dialogic® Voice API Programming Guide
e DX_SVMT data structure

e DX SVCB data structure

Dialogic® Voice API Library Reference 63
Dialogic Corporation

dx_addtone() — add a user-defined tone

dx_addtone()

Name: int dx_addtone(chdev, digit, digtype)

Inputs: int chdev e valid channel device handle
unsigned char digit * optional digit associated with the bound tone
unsigned char digtype e digit type

Returns: O if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Global Tone Detection

Mode: synchronous

B Description

The dx_addtone() function adds a user-defined tone that was defined by the most recent
dx_blddt() (or other global tone detection build-tone) function call, to the specified channel.
Adding a user-defined tone to a channel downloads it to the board and enables detection of tone-on
and tone-off events for that tone by default.

Use dx_distone() to disable detection of the tone, without removing the tone from the channel.
Detection can be enabled again using dx_enbtone(). For example, if you only want to be notified
of tone-on events, you should call dx_distone() to disable detection of tone-off events.

For more information on user-defined tones and global tone detection (GTD), see the Dialogic®
Voice API Programming Guide.

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

digit specifies an optional digit to associate with the tone. When the tone is
detected, the digit will be placed in the DV_DIGIT digit buffer. These digits
can be retrieved using dx_getdig() (they can be used in the same way as
DTMF digits, for example).

If you do not specify a digit, the tone will be indicated by a DE_TONEON
event or DE_TONEOFF event.

64 Dialogic® Voice API Library Reference
Dialogic Corporation

add a user-defined tone — dx_addtone()

Parameter Description

digtype specifies the type of digit the channel will detect
The valid value is:
e DG_USERI
Up to twenty digits can be associated with each of these digit types.

Note: These types can be specified in addition to the digit types already
defined for the voice library (DTMF, MF) which are specified using
dx_setdigtyp().

B Cautions

e Ensure that dx_blddt() (or another appropriate “build tone” function) has been called to
define a tone prior to adding it to the channel using dx_addtone(), otherwise an error will
occur.

e Do not use dx_addtone() to change a tone that has previously been added.

e There are limitations to the number of tones or tone templates that can be added to a channel,
depending on the type of board and other factors. See the global tone detection topic in the
Dialogic® Voice API Programming Guide for details.

* When using this function in a multi-threaded application, use critical sections or a semaphore
around the function call to ensure a thread-safe application. Failure to do so will result in “Bad
Tone Template ID” errors.

B Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_ASCII
Invalid ASCII value in tone template description

EDX_BADPARM
Invalid parameter

EDX_BADPROD
Function not supported on this board

EDX_CADENCE
Invalid cadence component value

EDX_DIGTYPE
Invalid dg_type value in tone template description

EDX_FREQDET
Invalid tone frequency

EDX_INVSUBCMD
Invalid sub-command

EDX_MAXTMPLT
Maximum number of user-defined tones for the board

Dialogic® Voice API Library Reference 65
Dialogic Corporation

dx_addtone() — add a user-defined tone

66

EDX_SYSTEM

Error from operating system

EDX_TONEID
Invalid tone template ID

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

#define TID 1 101
#define TID 2 102
#define TID 3 103
#define TID 4 104

main ()
{

int dxxxdev;

/*
* Open the Voice Channel
*/
if ((dxxxdev = dx_open (
perror ("dxxxB1Cl");
exit(1);

/*

* Describe a Simple Dual
* 1050 Hz and 475-525 Hz
*/

Device and Enable a Handler

"dxxxB1C1l", NULL)) == -1) {

Tone Frequency Tone of 950-
using leading edge detection.

if (dx_blddt(TID_1, 1000, 50, 500, 25, TN_LEADING) ==
printf("Unable to build a Dual Tone Template\n");

/*
* Bind the Tone to the Channel
*/
if (dx_addtone(dxxxdev, NULL, 0) == -1) {

printf("Unable to Bind the Tone %d\n", TID 1);
printf("Lasterror = $d Err Msg = %$s\n",

ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));

dx close(dxxxdev);
exit(1);

/*

* Describe a Dual Tone Frequency Tone of 950-1050 Hz
* and 475-525 Hz. On between 190-210 msecs and off
* 990-1010 msecs and a cadence of 3.

*/
if (dx_blddtcad(TID 2,

/*

1000, 50, 500, 25, 20, 1, 100,
printf ("Unable to build a Dual Tone Cadence Template\n");

* Bind the Tone to the Channel

*/
if (dx_addtone(dxxxdev,

'A', DG USERL) == -1) {

printf("Unable to Bind the Tone %d\n", TID 2);

-1

1,

Dialogic® Voice API Library Reference

Dialogic Corporation

add a user-defined tone — dx_addtone()

printf("Lasterror = %d Err Msg = %s\n",
ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP (dxxxdev));

dx_close (dxxxdev);

exit(1);

/*
* Describe a Simple Single Tone Frequency Tone of
* 950-1050 Hz using trailing edge detection.
*/
if (dx_bldst(TID_3, 1000, 50, TN_TRAILING) == -1) {
printf("Unable to build a Single Tone Template\n");

/*
* Bind the Tone to the Channel
*/
if (dx_addtone(dxxxdev, 'D', DG USER2) == -1) {

printf("Unable to Bind the Tone %d\n", TID 3);
printf("Lasterror = $d Err Msg = %$s\n",

ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP (dxxxdev));
dx_close (dxxxdev);
exit(1);

/‘k
* Describe a Single Tone Frequency Tone of 950-1050 Hz.
* On between 190-210 msecs and off 990-1010 msecs and
* a cadence of 3.
*/
if (dx_bldstcad(TID_ 4, 1000, 50, 20, 1, 100, 1, 3) == -1) {
printf ("Unable to build a Single Tone Cadence Template\n");

/*
* Bind the Tone to the Channel
*/
if (dx addtone(dxxxdev, NULL, 0) == -1) {

printf ("Unable to Bind the Tone %d\n", TID 4);
printf("Lasterror = $d Err Msg = %$s\n",

ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP (dxxxdev));
dx_close (dxxxdev);
exit(1);

* Continue Processing

*/

/*

* Close the opened Voice Channel Device
*/

if (dx close(dxxxdev) != 0) {

perror ("close");

/* Terminate the Program */
exit(0);

B See Also

e dx_blddt(), dx_bldst(), dx_blddtcad(), dx_bldstcad()

Dialogic® Voice API Library Reference 67
Dialogic Corporation

dx_addtone() — add a user-defined tone

e dx_distone()

e dx_enbtone()

e global tone detection in the Dialogic® Voice API Programming Guide

e dx_getevt()

e DX _CST data structure

e sr_getevtdatap() in the Dialogic® Standard Runtime Library API Library Reference
e dx_getdig()

e dx_setdigtyp()

e DV_DIGIT data structure

68 Dialogic® Voice API Library Reference
Dialogic Corporation

dx_addvoldig()

set a DTMF digit to adjust volume — dx_addvoldig()

Name: int dx_addvoldig(chdev, digit, adjval)

Inputs: int chdev e valid channel device handle
char digit e DTMF digit
short adjval ¢ volume adjustment value

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Speed and Volume

Mode: synchronous

B Description

The dx_addvoldig() function is a convenience function that sets a DTMF digit to adjust volume
by a specified amount, immediately and for all subsequent plays on the specified channel (until

changed or cancelled).

This function assumes that the volume modification table has not been modified using the

dx_setsvmt() function.

For more information about speed and volume control, see the Dialogic® Voice API Programming
Guide. For information about speed and volume data structures, see the DX_SVMT and the

DX_SVCB data structures.

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

digit specifies a DTMF digit (0-9, *, #) that will modify volume by the amount

specified in adjval

adjval specifies a volume adjustment value to take effect whenever the digit specified

in digit occurs

The following are valid values:

e SV_ADD2DB - increase play volume by 2 dB

e SV_SUB2DB - decrease play volume by 2 dB

¢ SV_NORMAL - set play volume to origin when the play begins (digit must
be set to NULL)

To start play volume at the origin, set digit to NULL and set adjval to SV_NORMAL.

Dialogic® Voice API Library Reference
Dialogic Corporation

69

dx_addvoldig() — set a DTMF digit to adjust volume

70

B Cautions

e Calls to this function are cumulative. To reset or remove any condition, you should clear all
adjustment conditions and reset if required. For example, if DTMF digit “1” has already been
set to increase play volume by one step, a second call that attempts to redefine digit “1” to the
origin will have no effect on the volume, but will be added to the array of conditions; the digit
will retain its original setting.

e The digit that causes the play adjustment will not be passed to the digit buffer, so it cannot be
retrieved using dx_getdig().

¢ Digits that are used for play adjustment may also be used as a terminating condition. If a digit
is defined as both, then both actions are applied upon detection of that digit.

B Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_BADPROD
Function not supported on this board

EDX_SVADJBLKS
Invalid number of play adjustment blocks

EDX_SYSTEM
Error from operating system

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

/*

* Global Variables
*/

main ()

{

int dxxxdev;

/*
* Open the Voice Channel Device and Enable a Handler
*/
if ((dxxxdev = dx_open("dxxxB1Cl", NULL)) == -1) {
perror ("dxxxBIC1l");
exit(1);
}
/*
* Add a Speed Adjustment Condition - decrease the
* playback volume by 2dB whenever DTMF key 2 is pressed. */
if (dx_addvoldig(dxxxdev, '2', SV_SUB2DB) == -1) {
printf("Unable to Add a Volume Adjustment");
printf(" Condition\n");

Dialogic® Voice API Library Reference
Dialogic Corporation

set a DTMF digit to adjust volume — dx_addvoldig()

printf("Lasterror = %d Err Msg = %s\n",
ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));

dx_close (dxxxdev);

exit(1);

* Continue Processing

*/
/‘k
* Close the opened Voice Channel Device
*/
if (dx_close(dxxxdev) != 0) {
perror ("close");

}

/* Terminate the Program */
exit(0);

B See Also

e dx_addspddig()
e dx_adjsv()

e dx_clrsvcond()

e dx_getcursv()

e dx_getsvmt()

e dx_setsvcond()

e dx_setsvmt()

Dialogic® Voice API Library Reference 71
Dialogic Corporation

dx_adjsv() — adjust speed or volume immediately

dx_adjsv()

Name:
Inputs:

int dx_adjsv(chdeyv, tabletype, action, adjsize)

int chdev e valid channel device handle

unsigned short tabletype e type of table to set (speed or volume)

unsigned short action * how to adjust (absolute position, relative change, or toggle)

unsigned short adjsize * adjustment size

72

Returns: 0 if successful
-1 if failure
Includes: srllib.h
dxxxlib.h
Category: Speed and Volume
Mode: synchronous
B Description
The dx_adjsv() function adjusts speed or volume immediately, and for all subsequent plays on a
specified channel (until changed or cancelled). The speed or the volume can be set to a specific
value, adjusted incrementally, or can be set to toggle. See the action parameter description for
information.
Note: Before using the speed control feature, you must enable this feature in the [decoder] section of the

CONFIG file. For more information, see the Configuration Guide applicable to your release.

The dx_adjsv() function uses the speed and volume modification tables to make adjustments to
play speed or play volume. These tables have 21 entries that represent different levels of speed or
volume. There are up to ten levels above and below the regular speed or volume. These tables can
be set with explicit values using dx_setsvmt() or default values can be used. See the Dialogic®
Voice API Programming Guide for detailed information about these tables.

Notes: 1. This function is similar to dx_setsvcond(). Use dx_adjsv() to explicitly adjust the play

immediately, and use dx_setsvcond() to adjust the play in response to specified conditions. See
the description of dx_setsvcond() for more information.

Whenever a play is started, its speed and volume are based on the most recent modification.
Parameter Description
chdev specifies the valid channel device handle obtained when the channel was

opened using dx_open()

tabletype specifies whether to modify the playback using a value from the speed or the
volume modification table
e SV_SPEEDTBL - use the speed modification table
e SV_VOLUMETBL - use the volume modification table

Dialogic® Voice API Library Reference
Dialogic Corporation

adjust speed or volume immediately — dx_adjsv()

Parameter Description

action specifies the type of adjustment to make. Set to one of the following:
e SV_ABSPOS - set speed or volume to a specified position in the
appropriate table. (The position is set using the adjsize parameter.)
e SV_RELCURPOS - adjust speed or volume by the number of steps
specified using the adjsize parameter
¢ SV_TOGGLE - toggle between values specified using the adjsize
parameter

adjsize specifies the size of the adjustment. The adjsize parameter has a different
value depending on how the adjustment type is set using the action parameter.

e If action is SV_ABSPOS, adjsize specifies the position between -10 to +10
in the Speed or Volume Modification Table that contains the required speed
or volume adjustment. The origin (regular speed or volume) has a value of 0
in the table.

e If action is SV_RELCURPOS, adjsize specifies the number of positive or
negative steps in the Speed or Volume Modification Table by which to adjust
the speed or volume. For example, specify -2 to lower the speed or volume
by 2 steps in the Speed or Volume Modification Table.

e Ifaction is SV_TOGGLE, adjsize specifies the values between which speed
or volume will toggle.
SV_CURLASTMOD sets the current speed/volume to the last modified
speed volume level.
SV_CURORIGIN resets the current speed/volume level to the origin (that is,
regular speed/volume).
SV_RESETORIG resets the current speed/volume to the origin and the last
modified speed/volume to the origin.
SV_TOGORIGIN sets the speed/volume to toggle between the origin and
the last modified level of speed/volume.

B Cautions
None.
B Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_BADPROD
Function not supported on this board

EDX_SYSTEM
Error from operating system

Dialogic® Voice API Library Reference 73
Dialogic Corporation

dx_adjsv() — adjust speed or volume immediately

74

B Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main ()

{

int dxxxdev;

/*
* Open the Voice Channel Device and Enable a Handler
*/
if ((dxxxdev = dx_open("dxxxBlCl", 0)) == -1) {
perror ("dxxxBIC1");
exit(1);
}

/*

* Modify the Volume of the playback so that it is 4dB

* higher than normal.

*/

if (dx_adjsv(dxxxdev, SV_VOLUMETBL, SV_ABSPOS, SV_ADD4DB) == -1) {

printf("Unable to Increase Volume by 4dB\n");

printf("Lasterror = $d Err Msg = %$s\n",
ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP (dxxxdev

dx close(dxxxdev);

exit(1);

* Continue Processing

*/

/*

* Close the opened Voice Channel Device
*/
if (dx close(dxxxdev) != 0) {

perror ("close");

}

/* Terminate the Program */
exit(0);

B See Also

dx_setsvcond()

dx_clrsvcond()

dx_getcursv()

dx_getsvmt()

speed and volume modification tables in the Dialogic
DX_SVMT data structure

))i

® Voice API Programming Guide

Dialogic® Voice API Library Reference
Dialogic Corporation

dx_blddt(

define a user-defined dual-frequency tone — dx_blddi()

)

Name: int dx_blddt(tid, freql, fqldev, freq2, fq2dev, mode)
Inputs: unsigned int tid e tone ID to assign
unsigned int freql e frequency 1 in Hz
unsigned int fqldev e frequency 1 deviation in Hz
unsigned int freq2 e frequency 2 in Hz
unsigned int fq2dev e frequency 2 deviation in Hz
unsigned int mode ¢ leading or trailing edge
Returns: 0 if success
-1 if failure
Includes: srllib.h
dxxxlib.h
Category: Global Tone Detection
Mode: synchronous
B Description

The dx_blddt() function defines a user-defined dual-frequency tone. Subsequent calls to
dx_addtone() will enable detection of this tone, until another tone is defined.

Issuing dx_blddt() defines a new tone. You must use dx_addtone() to add the tone to the channel

and enable its detection.

For more information about global tone detection, see the Dialogic® Voice API Programming

Guide.
Parameter Description
tid specifies a unique identifier for the tone. See Cautions for more information
about the tone ID.
freql specifies the first frequency (in Hz) for the tone
frqldev specifies the allowable deviation (in Hz) for the first frequency
freq2 specifies the second frequency (in Hz) for the tone
frq2dev specifies the allowable deviation (in Hz) for the second frequency
mode specifies whether tone detection notification will occur on the leading or

trailing edge of the tone. Set to one of the following:
e TN_LEADING
e TN_TRAILING

Dialogic® Voice API Library Reference
Dialogic Corporation

75

dx_blddt() — define a user-defined dual-frequency tone

76

B Cautions

e Only one tone per process can be defined at any time. Ensure that dx_blddt() is called for
each dx_addtone(). The tone is not created until dx_addtone() is called, and a second
consecutive call to dx_blddt() will replace the previous tone definition for the channel. If you
call dx_addtone() without calling dx_blddt() an error will occur.

e On Windows®, do not use tone IDs 261, 262 and 263; they are reserved for library use.

* When using this function in a multi-threaded application, use critical sections or a semaphore
around the function call to ensure a thread-safe application. Failure to do so will result in “Bad
Tone Template ID” errors.

B Errors

If this function returns -1 to indicate failure, call the Dialogic® Standard Runtime Library (SRL)
Standard Attribute function ATDV_LASTERR() to obtain the error code, or use
ATDV_ERRMSGP() to obtain a descriptive error message. For a list of error codes returned by
ATDV_LASTERR(), see the Error Codes chapter.

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#define TID 1 101
main ()

{

int dxxxdev;

/*

* Open the Voice Channel Device and Enable a Handler

*/

if ((dxxxdev = dx open("dxxxB1C1l", 0)) == -1) {
perror ("dxxxB1Cl");
exit(1);

}

/*

* Describe a Simple Dual Tone Frequency Tone of 950-
* 1050 Hz and 475-525 Hz using leading edge detection.
*/
if (dx_blddt(TID_1, 1000, 50, 500, 25, TN_LEADING = -1) {
printf("Unable to build a Dual Tone Template\n");
}

* Continue Processing

*/
/*
* Close the opened Voice Channel Device
*/
if (dx_close(dxxxdev) != 0) {
perror("close");

}

Dialogic® Voice API Library Reference
Dialogic Corporation

define a user-defined dual-frequency tone — dx_blddi()

/* Terminate the Program */
exit(0);

}

B See Also

global tone detection topic in Voice API Programming Guide
dx_bldst()

dx_blddtcad()

dx_bldstcad()

dx_addtone()

dx_distone()

dx_enbtone()

Dialogic® Voice API Library Reference 77

Dialogic Corporation

dx_blddtcad() — define a user-defined dual frequency cadenced tone

dx_blddtcad()

Name: int dx_blddtcad(tid, freql, fqldeyv, freq2, fq2dev, ontime, ontdev, offtime, offtdev, repcnt)

Inputs: unsigned int tid e tone ID to assign
unsigned int freql e frequency 1 in Hz
unsigned int fqldev e frequency 1 deviation in Hz
unsigned int freq2 e frequency 2 in Hz
unsigned int fq2dev * frequency 2 deviation in Hz
unsigned int ontime * tone-on time in 10 msec
unsigned int ontdev e tone-on time deviation in 10 msec
unsigned int offtime * tone-off time in 10 msec
unsigned int offtdev * tone-off time deviation in 10 msec
unsigned int repcnt * number of repetitions if cadence

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Global Tone Detection

Mode: synchronous

B Description
The dx_blddtcad() function defines a user-defined dual frequency cadenced tone. Subsequent
calls to dx_addtone() will use this tone, until another tone is defined. A dual frequency cadence

tone has dual frequency signals with specific on/off characteristics.

Issuing dx_blddtcad() defines a new tone. You must use dx_addtone() to add the tone to the
channel and enable its detection.

For more information about global tone detection, see the Dialogic® Voice API Programming

Guide.

Parameter Description

tid specifies a unique identifier for the tone. See Cautions for more information on
the tone ID.

freql specifies the first frequency (in Hz) for the tone

frqldev specifies the allowable deviation (in Hz) for the first frequency

freq2 specifies the second frequency (in Hz) for the tone

frq2dev specifies the allowable deviation (in Hz) for the second frequency

78 Dialogic® Voice API Library Reference

Dialogic Corporation

define a user-defined dual frequency cadenced tone — dx_blddtcad()

Parameter Description

ontime specifies the length of time for which the cadence is on (in 10 msec units)
ontdev specifies the allowable deviation for on time (in 10 msec units)

offtime specifies the length of time for which the cadence is off (in 10 msec units)
offtdev specifies the allowable deviation for off time (in 10 msec units)

repent specifies the number of repetitions for the cadence (that is, the number of times

that an on/off signal is repeated)

B Cautions

* Only one user-defined tone per process can be defined at any time. dx_blddtcad() will
replace the previous user-defined tone definition.

e On Windows®, do not use tone IDs 261, 262 and 263; they are reserved for library use.

* When using this function in a multi-threaded application, use critical sections or a semaphore
around the function call to ensure a thread-safe application. Failure to do so will result in “Bad
Tone Template ID” errors.

®m Errors

If this function returns -1 to indicate failure, call the Dialogic® Standard Runtime Library (SRL)
Standard Attribute function ATDV_LASTERR() to obtain the error code, or use
ATDV_ERRMSGP() to obtain a descriptive error message. For a list of error codes returned by
ATDV_LASTERR(), see the Error Codes chapter.

B Example
#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#define TID 2 102
main ()

{

int dxxxdev;

/‘k

* Open the Voice Channel Device and Enable a Handler
*/

if ((dxxxdev = dx_open("dxxxBlCl", 0)) == -1) {

perror ("dxxxB1C1");
exit(1);
}

/‘k
* Describe a Dual Tone Frequency Tone of 950-1050 Hz
* and 475-525 Hz. On between 190-210 msecs and off
* 990-1010 msecs and a cadence of 3.
*/
if (dx_blddtcad(TID_2, 1000, 50, 500, 25, 20, 1,
100, 1, 3) == -1) {
printf ("Unable to build a Dual Tone Cadence");
printf(" Template\n");

Dialogic® Voice API Library Reference 79
Dialogic Corporation

dx_blddtcad() — define a user-defined dual frequency cadenced tone

* Continue Processing

*/
/*

* Close the opened Voice Channel Device
*/
if (dx close(dxxxdev) != 0) {

perror ("close");

}

/* Terminate the Program */
exit(0);
}

B See Also

e global tone detection topic in Dialogic® Voice API Programming Guide
e dx_bldst()

e dx_blddt()

e dx_bldstcad()

e dx_addtone()

e dx_distone()

e dx_enbtone()

80 Dialogic® Voice API Library Reference
Dialogic Corporation

define a user-defined single-frequency cadenced tone — dx_bldstcad()

dx_bldstcad()

Name: int dx_bldstcad(tid, freq, fqdev, ontime, ontdev, offtime, offtdev, repcnt)

Inputs: unsigned int tid e tone ID to assign
unsigned int freq e frequency in Hz
unsigned int fqdev * frequency deviation in Hz
unsigned int ontime * tone on time in 10 msec
unsigned int ontdev * on time deviation in 10 msec
unsigned int offtime e tone off time in 10 msec
unsigned int offtdev e off time deviation in 10 msec
unsigned int repcnt e repetitions if cadence

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Global Tone Detection
Mode: synchronous

B Description
The dx_bldstcad() function defines a user-defined, single-frequency, cadenced tone. Subsequent
calls to dx_addtone() will use this tone, until another tone is defined. A single-frequency cadence

tone has single-frequency signals with specific on/off characteristics.

Issuing a dx_bldstcad() defines a new tone. You must use dx_addtone() to add the tone to the
channel and enable its detection.

For more information about global tone detection, see the Dialogic® Voice API Programming

Guide.
Parameter Description
tid specifies a unique identifier for the tone. See Cautions for more information
about the tone ID.
freq specifies the frequency (in Hz) for the tone
frqdev specifies the allowable deviation (in Hz) for the frequency
ontime specifies the length of time for which the cadence is on (in 10 msec units)
ontdev specifies the allowable deviation for on time (in 10 msec units)
offtime specifies the length of time for which the cadence is off (in 10 msec units)
Dialogic® Voice API Library Reference 81

Dialogic Corporation

dx_bldstcad() — define a user-defined single-frequency cadenced tone

82

Parameter Description
offtdev specifies the allowable deviation for off time (in 10 msec units)
repent specifies the number of repetitions for the cadence (i.e., the number of times

that an on/off signal is repeated)
B Cautions

* Only one tone per application may be defined at any time. dx_bldstcad() will replace the
previous user-defined tone definition.

e On Windows®, do not use tone IDs 261, 262 and 263; they are reserved for library use.

* When using this function in a multi-threaded application, use critical sections or a semaphore
around the function call to ensure a thread-safe application. Failure to do so will result in “Bad
Tone Template ID” errors.

H Errors

If this function returns -1 to indicate failure, call the Dialogic® Standard Runtime Library (SRL)
Standard Attribute function ATDV_LASTERR() to obtain the error code, or use
ATDV_ERRMSGP() to obtain a descriptive error message. For a list of error codes returned by
ATDV_LASTERR(), see the Error Codes chapter.

B Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

#define TID 4 104
main ()

{

int dxxxdev;

/*
* Open the Voice Channel Device and Enable a Handler
*/
if ((dxxxdev = dx_open("dxxxBlCl", 0)) == -1) {
perror ("dxxxBIC1");
exit(1);
}
/*

* Describe a Single Tone Frequency Tone of 950-1050 Hz.
* On between 190-210 msecs and off 990-1010 msecs and
* a cadence of 3.

*/
if (dx_bldstcad(TID_ 4, 1000, 50, 20, 1, 100, 1, 3) == -1) {
printf("Unable to build a Single Tone Cadence");
printf(" Template\n");
}
/*

* Continue Processing

Dialogic® Voice API Library Reference
Dialogic Corporation

define a user-defined single-frequency cadenced tone — dx_bldstcad()

/k

* Close the opened Voice Channel Device
*/
if (dx close(dxxxdev) != 0) {

perror ("close");

}

/* Terminate the Program */
exit(0);
}

B See Also

e global tone detection topic in Dialogic® Voice API Programming Guide
e dx_blddtcad()

e dx_blddt()

e dx_bldst()

e dx_addtone()

e dx_distone()

e dx_enbtone()

Dialogic® Voice API Library Reference
Dialogic Corporation

83

dx_bldst() — define a user-defined single-frequency tone

dx_bldst(

)

Name: int dx_bldst(tid, freq, fqdev, mode)
Inputs: unsigned int tid e tone ID to assign
unsigned int freq e frequency in Hz
unsigned int fqdev * frequency deviation in Hz
unsigned int mode e leading or trailing edge
Returns: 0 if success
-1 if failure
Includes: srllib.h
dxxxlib.h
Category: Global Tone Detection
Mode: synchronous
B Description
The dx_bldst() function defines a user-defined single-frequency tone. Subsequent calls to
dx_addtone() will use this tone, until another tone is defined.
Issuing a dx_bldst() defines a new tone. You must use dx_addtone() to add the tone to the
channel and enable its detection.
For more information about global tone detection, see the Dialogic® Voice API Programming
Guide.
Parameter Description
tid specifies a unique identifier for the tone. See Cautions for more information
about the tone ID.
freq specifies the frequency (in Hz) for the tone
frqdev specifies the allowable deviation (in Hz) for the frequency
mode specifies whether detection is on the leading or trailing edge of the tone. Set to
one of the following:
e TN_LEADING
¢ TN_TRAILING
B Cautions

84

e Only one tone per application may be defined at any time. dx_bldst() will replace the
previous user-defined tone definition.

e On Windows®, do not use tone IDs 261, 262 and 263; they are reserved for library use.

Dialogic® Voice API Library Reference
Dialogic Corporation

define a user-defined single-frequency tone — dx_bldst()

* When using this function in a multi-threaded application, use critical sections or a semaphore
around the function call to ensure a thread-safe application. Failure to do so will result in “Bad
Tone Template ID” errors.

®m Errors

If this function returns -1 to indicate failure, call the Dialogic® Standard Runtime Library (SRL)
Standard Attribute function ATDV_LASTERR() to obtain the error code, or use
ATDV_ERRMSGP() to obtain a descriptive error message. For a list of error codes returned by
ATDV_LASTERR(), see the Error Codes chapter.

B Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

#define TID 3 103
main ()

{

int dxxxdev;

/‘k
* Open the Voice Channel Device and Enable a Handler
*/
if ((dxxxdev = dx_open("dxxxBlCl", 0)) == -1) {
perror ("dxxxB1C1");
exit(1);
}
/‘k

* Describe a Simple Single Tone Frequency Tone of
* 950-1050 Hz using trailing edge detection.
*/
if (dx_bldst(TID_3, 1000, 50, TN_TRAILING) == -1) {
printf("Unable to build a Single Tone Template\n");
}

* Continue Processing

*/

/k

* Close the opened Voice Channel Device
*/

if (dx close(dxxxdev) != 0) {

perror ("close");

}

/* Terminate the Program */
exit(0);

B See Also

e global tone detection topic in Dialogic® Voice API Programming Guide
e dx_blddtcad()

Dialogic® Voice API Library Reference 85
Dialogic Corporation

dx_bldst() — define a user-defined single-frequency tone

86

dx_blddt()
dx_bldstcad()
dx_addtone()
dx_distone()
dx_enbtone()

Dialogic® Voice API Library Reference
Dialogic Corporation

define a tone for generation — dx_bldtngen()

dx_bldtngen()

Name: void dx_bldtngen(tngenp, freql, freq2, ampll, ampl2, duration)

Inputs: TN_GEN *tngenp e pointer to tone generation structure
unsigned short freq1 e frequency of tone 1 in Hz
unsigned short freq2 e frequency of tone 2 in Hz
short ampl1 e amplitude of tone 1 in dB
short ampl2 e amplitude of tone 2 in dB
short duration e duration of tone in 10 msec units

Returns: none

Includes: srllib.h
dxxxlib.h

Category: Global Tone Generation

Mode: synchronous

B Description

The dx_bldtngen() function is a convenience function that defines a tone for generation by setting
up the tone generation template (TN_GEN) and assigning specified values to the appropriate fields.
The tone generation template is placed in the user’s return buffer and can then be used by the
dx_playtone() function to generate the tone.

For more information about Global Tone Generation, see the Dialogic® Voice API Programming

Guide.

Parameter Description

tngenp points to the TN_GEN data structure where the tone generation template is
output

freql specifies the frequency of tone 1 in Hz. Valid range is 200 to 3000 Hz.

freq2 specifies the frequency of tone 2 in Hz. Valid range is 200 to 3000 Hz. To
define a single tone, set freq1l to the desired frequency and set freq2 to 0.

ampl1 specifies the amplitude of tone 1 in dB. Valid range is O to -40 dB. Calling this
function with ampl1 set to R2_DEFAMPL will set the amplitude to -10 dB.

ampl2 specifies the amplitude of tone 2 in dB. Valid range is O to -40 dB. Calling this
function with ampl2 set to R2_DEFAMPL will set the amplitude to -10 dB.

duration specifies the duration of the tone in 10 msec units. A value of -1 specifies
infinite duration (the tone will only terminate upon an external terminating
condition).

Dialogic® Voice API Library Reference 87

Dialogic Corporation

dx_bldtngen() — define a tone for generation

Generating a tone with a high frequency component (approximately 700 Hz or higher) will cause
the amplitude of the tone to increase. The increase will be approximately 1 dB at 1000 Hz. Also,
the amplitude of the tone will increase by 2 dB if an analog (loop start) device is used.

B Cautions

None.

®m Errors

None.

B Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main ()

{

TN_GEN tngen;
int dxxxdev;

/*
* Open the Voice Channel Device and Enable a Handler
*/
if ((dxxxdev = dx open("dxxxB1C1l", 0)) == -1) {
perror ("dxxxB1Cl");
exit(1);
}

/*
* Build a Tone Generation Template.
* This template has Frequencyl = 1140,
* Frequency2 = 1020, amplitute at -10dB for
* both frequencies and duration of 100 * 10 msecs.
*/
dx_bldtngen(&tngen, 1140, 1020, -10, -10, 100);

* Continue Processing

*/
/*
* Close the opened Voice Channel Device
*/
if (dx_close(dxxxdev) != 0) {
perror("close");

}

/* Terminate the Program */
exit(0);

B See Also

88

TN_GEN structure
dx_playtone()

Dialogic® Voice API Library Reference

Dialogic Corporation

define a tone for generation — dx_bldtngen()

* global tone generation topic in Dialogic® Voice API Programming Guide

Dialogic® Voice API Library Reference 89
Dialogic Corporation

dx_close() — close a channel or board device handie

dx_close()

Name:
Inputs:
Returns:

Includes:

Category:
Mode:

int dx_close(dev)
int dev e valid channel or board device handle

0 if successful
-1 if error

srllib.h
dxxxlib.h

Device Management

synchronous

90

Note:

Description

The dx_close() function closes a channel device handle or board device handle that was previously
opened using dx_open().

This function does not affect any action occurring on a device. It does not affect the hook state or
any of the parameters that have been set for the device. It releases the handle and breaks the link
between the calling process and the device, regardless of whether the device is busy or idle.

The dx_close() function disables the generation of all events.

Parameter Description

dev specifies the valid device handle obtained when a board or channel was opened
using dx_open()

Cautions

* Once a device is closed, a process can no longer act on that device using that device handle.

e Other handles for that device that exist in the same process or other processes will still be
valid.

e The only process affected by dx_close() is the process that called the function.

e Do not use the operating system close() command to close a voice device; unpredictable
results will occur.

e The dx_close() function discards any outstanding events on that handle.

e Ifyouclose adevice via dx_close() after modifying volume table values using dx_getsvmt(),
the dx_getcursv() function may return incorrect volume settings for the device. This is
because the next dx_open() resets the volume tables to their default values.

Errors
In Windows®, if this function returns -1 to indicate failure, a system error has occurred; use

dx_fileerrno() to obtain the system error value. Refer to the dx_fileerrno() function for a list of
the possible system error values.

Dialogic® Voice API Library Reference
Dialogic Corporation

close a channel or board device handle — dx_close()

In Linux, if this function returns -1 to indicate failure, check errno for one of the following
reasons:

EBADF
Invalid file descriptor

EINTR
A signal was caught

EINVAL
Invalid argument

B Example

This example illustrates how to close a channel device handle.

#include <srllib.h>
#include <dxxxlib.h>

main ()
{

int chdev; /* channel descriptor */

/* Open Channel */
if ((chdev = dx_open ("dxxxB1C1",NULL)) == -1) {
/* process error */

}

/* Close channel */
if (dx_close(chdev) == -1) {
/* process error */

}

B See Also

e dx_open()

Dialogic® Voice API Library Reference 91
Dialogic Corporation

dx_CloseStreamBuffer() — delete a circular stream buffer

dx_CloseStreamBuffer()

92

Name: int dx_CloseStreamBuffer(hBuffer)
Inputs: int hBuffer e stream buffer handle
Returns: 0 if successful
-1 if failure
Includes: srllib.h
dxxxlib.h
Category: streaming to board
Mode: synchronous
B Description
The dx_CloseStreamBuffer() function deletes the circular stream buffer identified by the stream
buffer handle. If the stream buffer is currently in use (playing), this function returns -1 as an error.
Parameter Description
hBuffer specifies the stream buffer handle obtained from
dx_OpenStreamBuffer()
B Cautions
You cannot delete a circular stream buffer while it is in use by a play operation. If you try to delete
the buffer in this situation, the dx_CloseStreamBuffer() function will return -1 as an error.
B Errors
This function returns -1 on error. The error can occur if you passed the wrong buffer handle to the
function call or if the buffer is in use by an active play.
To see if the buffer is in use by an active play, call dx_GetStreamInfo() and check the item
“currentState” in the DX_STREAMSTAT structure. A value of ASSIGNED_STREAM_BUFFER
for this item means that the buffer is currently in use in a play. A value of
UNASSIGNED_STREAM_BUFFER means that the buffer is not being used currently in any play.
Unlike other Dialogic® Voice API library functions, the streaming to board functions do not use
SRL device handles. Therefore, ATDV_LASTERR() and ATDV_ERRMSGP() cannot be used
to retrieve error codes and error descriptions.
B Example

#include <srllib.h>
#include <dxxxlib.h>

Dialogic® Voice API Library Reference
Dialogic Corporation

delete a circular stream buffer — dx_CloseStreamBuffer()

main ()
{
int nBuffSize = 32768, vDev = 0;
int hBuffer = -1;
char pData[1024];
DX_IOTT iott;
DV_TPT ptpt;

if ((hBuffer = dx_OpenStreamBuffer (nBuffSize)) < 0)
{
printf ("Error opening stream buffer \n");
exit (1) ;
}
if ((vDev = dx open ("dxxxB1Cl1l", 0)) < 0)
{
printf ("Error opening voice device\n");
exit (2);

iott.io type = IO_STREAM|IO EOT;

iott.io bufp = 0;

iott.io offset = 0;

iott.io_length = -1; /* play until STREAM EOD */
iott.io fhandle = hBuffer;

dx_clrtpt(&tpt,1);
tpt.tp_type = I0_EOT;
tpt.tp_termno = DX MAXDTME;
tpt.tp_length = 1;

tpt.tp flags = TF_MAXDTMF;

if (dx play(vDev, &iott, &tpt, EV_ASYNC) < 0)
{
printf ("Error in dx play() %d\n", ATDV_LASTERR(vDev));
}
/* Repeat the following until all data is streamed */

if (dx PutStreamData (hBuffer, pData, 1024, STREAM CONT) < 0)
{
printf ("Error in dx PutStreamData \n");
exit (3);
}
/* Wait for TDX PLAY event and other events as appropriate */

if (dx_CloseStreamBuffer (hBuffer) < 0)

{

printf ("Error closing stream buffer \n");

B See Also

e dx_OpenStreamBuffer()
e dx_GetStreamInfo()

Dialogic® Voice API Library Reference 93
Dialogic Corporation

dx_clrcap() — clear all fields in a DX_CAP structure

dx_clrcap()

Name: void dx_clrcap(capp)
Inputs: DX_CAP *capp e pointer to call progress analysis parameter data structure
Returns: none

Includes: srllib.h
dxxxlib.h

Category: Structure Clearance

Mode: synchronous

B Description

The dx_clrcap() function clears all fields in a DX_CAP structure by setting them to zero.
dx_clrcap() is a VOID function that returns no value. It is provided as a convenient way of
clearing a DX_CAP structure.

Parameter Description

capp pointer to call progress analysis parameter data structure, DX_CAP. For more
information on this structure, see DX_CAP, on page 307.

B Cautions

Clear the DX_CAP structure using dx_clrcap() before the structure is used as an argument in a
dx_dial() function call. This will prevent parameters from being set unintentionally.

H Errors
None.

B Example

#include <srllib.h>
#include <dxxxlib.h>

main ()

{
DX_CAP cap;
int chdev;

/* open the channel using dx_open */
if ((chdev = dx_open ("dxxxB1C1",NULL)) == -1) {
/* process error */

}

/* set call progress analysis parameters before doing call progress analysis */
dx_clrcap (&cap) ;
cap.ca_nbrdna = 5; /* 5 rings before no answer */

94 Dialogic® Voice API Library Reference
Dialogic Corporation

clear all fields in a DX_CAP structure — dx_clrcap()

/* continue with call progress analysis */

}
B See Also

e dx_dial()
e DX_CAP data structure
e call progress analysis topic in the Dialogic® Voice API Programming Guide

Dialogic® Voice API Library Reference
Dialogic Corporation

95

dx_clrdigbuf() — clear all digits in the firmware digit buffer

dx_clrdigbuf()

Name: int dx_clrdigbuf(chdev)
Inputs: int chdev e valid channel device handle
Returns: 0 if success
-1 if failure
Includes: srllib.h
dxxxlib.h
Category: Configuration
Mode: synchronous
B Description
The dx_clrdigbuf() function clears all digits in the firmware digit buffer of the channel specified
by chdev.
Parameter Description
chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()
B Cautions

e The function will fail and return -1 if the channel device handle is invalid or the channel is
busy.

e Digits will not always be cleared by the time this function returns, because processing may
continue on the board even after the function returns. For this reason, careful consideration
should be given when using this function before or during a section where digit detection or
digit termination is required; the digit may be cleared only after the function has returned and
possibly during the next function call.

B Errors

96

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERRC() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_SYSTEM
Error from operating system

Dialogic® Voice API Library Reference
Dialogic Corporation

clear all digits in the firmware digit buffer — dx_clrdigbuf()

B Example

See the Example code in the function descriptions for dx_getdig(), dx_play(), and dx_rec() for
more examples of how to use dx_clrdigbuf().

#include <srllib.h>
#include <dxxxlib.h>

main ()
{

int chdev; /* channel descriptor */

/* Open Channel */
if ((chdev = dx_open ("dxxxB1C1l",NULL)) == -1) {
/* process error */

}
/* Clear digit buffer */
if (dx_clrdigbuf (chdev) == -1) {

/* process error*/

}

B See Also

None.

Dialogic® Voice API Library Reference 97
Dialogic Corporation

dx_clrsvecond() — clear all speed or volume adjustment conditions

dx_clrsvcond()

Name: int dx_clrsvcond(chdev)
Inputs: int chdev e valid channel device handle

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Speed and Volume
Mode: synchronous

B Description

The dx_clrsveond() function clears all speed or volume adjustment conditions that have been
previously set using dx_setsveond() or the convenience functions dx_addspddig() and
dx_addvoldig().

Before resetting an adjustment condition, you must first clear all current conditions by using this
function, and then reset conditions using dx_setsvcond(), dx_addspddig(), or dx_addvoldig().

Note: Before using the speed control feature, you must enable this feature in the [decoder] section of the
CONFIG file. For more information, see the Configuration Guide applicable to your release.

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

B Cautions
None.
B Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERRC() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_BADPROD
Function not supported on this board

EDX_SYSTEM
Error from operating system

98 Dialogic® Voice API Library Reference
Dialogic Corporation

clear all speed or volume adjustment conditions — dx_clrsvcond()

B Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main ()
{

int dxxxdev;

/‘k
* Open the Voice Channel Device and Enable a Handler
*/
if ((dxxxdev = dx_open("dxxxBlCl", 0)) == -1) {
perror ("dxxxB1C1");
exit(1);
}
/‘k
* Clear all Speed and Volume Conditions
*/
if (dx_clrsvcond(dxxxdev = -1) {
printf ("Unable to Clear the Speed/Volume");
printf(" Conditions\n");
printf("Lasterror = %d Err Msg = %$s\n",
ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP (dxxxdev));
dx_close (dxxxdev);
exit(1);
}
/‘k

* Continue Processing

*/

/9:

* Close the opened Voice Channel Device
*/

if (dx close(dxxxdev) != 0) {

perror ("close");

}

/* Terminate the Program */
exit(0);

B See Also

e dx_setsvcond()

e dx_addspddig()

e dx_addvoldig()

e speed and volume modification tables in Dialogic® Voice API Programming Guide
e DX SVCB data structure

Dialogic® Voice API Library Reference 99
Dialogic Corporation

dx_clrtpt() — clear all fields in a DV_TPT structure

dx_clrtpt()

Name:
Inputs:

Returns:

Includes:

Category:
Mode:

int dx_clrtpt(tptp, size)
DV_TPT *tptp e pointer to Termination Parameter Table structure
int size ¢ number of entries to clear

0 if success
-1 if failure

srllib.h
dxxxlib.h

Structure Clearance

synchronous

Description

The dx_clrtpt() function clears all fields except tp_type and tp_nextp in the specified number of
DV_TPT structures. This function is provided as a convenient way of clearing a DV_TPT
structure, before reinitializing it for a new set of termination conditions.

Parameter Description
tptp points to the first DV_TPT structure to be cleared
size indicates the number of DV_TPT structures to clear. If size is set to 0, the

function will return a O to indicate success. For more information on this
structure, see DV_TPT, on page 301.

Notes: 1. The DV_TPT is defined in srilib.h rather than dxxxlib.h since it can be used by other non-voice

100

devices.

Before calling dx_clrtpt(), you must set the tp_type field of DV_TPT as follows:
IO_CONT if the next DV_TPT is contiguous

IO_LINK if the next DV_TPT is linked

10_EOT for the last DV_TPT

Cautions

If tp_type in the DV_TPT structure is set to [O_LINK, you must set tp_nextp to point to the next
DV_TPT in the chain. The last DV_TPT in the chain must have its tp_type field set to [O_EOT. By
setting the tp_type and tp_nextp fields appropriately, dx_clrtpt() can be used to clear a
combination of contiguous and linked DV_TPT structures.

To reinitialize DV_TPT structures with a new set of conditions, call dx_clrtpt() only after the
links have been set up properly, as illustrated in the Example.

Dialogic® Voice API Library Reference
Dialogic Corporation

clear all fields in a DV_TPT structure — dx_clrtpt()

H Errors

The function will fail and return -1 if IO_EOT is encountered in the tp_type field before the
number of DV_TPT structures specified in size have been cleared.

B Example

#include <srllib.h>
#include <dxxxlib.h>

main ()

{
DV_TPT tptl[2];
DV_TPT tpt2[2];

/* Set up the links in the DV _TPTs */

tpt1[0].tp_type = IO _CONT;

tptl[1l].tp_type = IO_LINK;

tptl[l].tp_nextp = &tpt2[0];

tpt2[0].tp_type = IO_CONT;

tpt2[1l].tp_type = IO_EOT;

/* set up the other DV TPT fields as required for termination */

/* play a voice file, get digits, etc. */

/* clear out the DV_TPT structures if required */
dx_clrtpt(&tptl[0],4);
/* now set up the DV_TPT structures for the next play */

B See Also

e DV_TPT data structure

Dialogic® Voice API Library Reference 101
Dialogic Corporation

dx_createtone() — create a new tone definition for a specific call progress tone

dx_createtone()

Name:
Inputs:

Returns:

Includes:

Category:
Mode:

int dx_createtone(brdhdl, toneid, *tonedata, mode)

int brdhdl e a valid board device handle

int toneid e tone ID of the call progress tone
TONE_DATA *tonedata e pointer to the TONE_DATA structure
unsigned short mode * mode

0 if successful
-1 if failure

srllib.h
dxxxlib.h

Call Progress Analysis

Asynchronous or synchronous

102

Description

The dx_createtone() function creates a new tone definition for a specific call progress tone. On
successful completion of the function, the TONE_DATA structure is used to create a tone definition
for the specified call progress tone.

Before creating a new tone definition with dx_createtone(), first use dx_querytone() to get tone
information for the tone ID, then use dx_deletetone() to delete that same tone ID. Only tones
listed in the toneid parameter description are supported for this function. For more information on
modifying call progress analysis tone definitions, see the Dialogic® Voice API Programming
Guide.

When running in asynchronous mode, this function returns O to indicate that it initiated
successfully and generates the TDX_CREATETONE event to indicate completion or the
TDX_CREATETONE_FAIL event to indicate failure. The TONE_DATA structure should remain
in scope until the application receives these events.

By default, this function runs in synchronous mode and returns O to indicate completion.

Parameter Description

brdhdl specifies a valid board device handle (not a virtual board device) of the
format brdBn obtained by a call to dx_open().

To get the board name, use the SRLGetPhysicalBoardName() function.
This function and other device mapper functions return information about
the structure of the system. For more information, see the Dialogic®
Standard Runtime Library API Library Reference.

Dialogic® Voice API Library Reference
Dialogic Corporation

create a new tone definition for a specific call progress tone — dx_createtone()

Parameter Description

toneid specifies the tone ID of the call progress tone whose definition needs to be
modified. Valid values are:
e TID_BUSY1
e TID_BUSY2

TID_DIAL_INTL
TID_DIAL_LCL
TID_DISCONNECT
TID_FAX1
TID_FAX2
TID_RNGBK1
TID_RNGBK2
TID_SIT_NC
TID_SIT_IC
TID_SIT_VC

TID_SIT_RO

Note: The following tone IDs are not supported by this function:
TID_SIT_ANY, TID_SIT_NO_CIRCUIT_INTERLATA,
TID_SIT_REORDER_TONE_INTERLATA, and
TID_SIT_INEFFECTIVE_OTHER.

tonedata specifies a pointer to the TONE_DATA data structure which contains the
tone information to be created for the call progress tone identified by
toneid

mode specifies the mode in which the function will run. Valid values are:

e EV_ASYNC - asynchronous mode
e EV_SYNC - synchronous mode (default)

B Cautions

* Only the default call progress tones listed in the toneid parameter description are supported for
this function. The following tone IDs are not supported by this function: TID_SIT_ANY,
TID_SIT_NO_CIRCUIT_INTERLATA, TID_SIT_REORDER_TONE_INTERLATA, and
TID_SIT_INEFFECTIVE_OTHER.

e If you call dx_createtone() prior to calling dx_deletetone(), then dx_createtone() will fail
with an error EDX_TNQUERYDELETE.

¢ To modify a default tone definition, use the three functions dx_querytone(),
dx_deletetone(), and dx_createtone() in this order, for one tone at a time.

* When dx_createtone() is issued on a board device in asynchronous mode, and the function is
immediately followed by another similar call prior to completion of the previous call on the
same device, the subsequent call will fail with device busy.

Dialogic® Voice API Library Reference 103
Dialogic Corporation

dx_createtone() — create a new tone definition for a specific call progress tone

H Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADPARM
invalid parameter

EDX_SYSTEM
error from operating system

EDX_TNPARM
invalid tone template parameter

EDX_TNQUERYDELETE
tone not queried or deleted prior to create

B Example

#include "srllib.h"
#include "dxxxlib.h"

main ()
{
int brdhdl; /* board handle */

/* Open board */

if ((brdhdl = dx_open("brdBl",0)) == -1) {
printf ("Cannot open board\n");
/* Perform system error processing */
exit (1) ;

}

/* Get the Tone Information for the TID BUSYl tone*/

int result;

TONE_DATA tonedata;

if ((result = dx querytone(brdhdl, TID BUSY1l, &tonedata, EV_ASYNC)) == -1) {
printf ("Cannot obtain tone information for TID_BUSY1 \n") ;
/* Perform system error processing */
exit (1);

while (1) {
if (sr_waitevt(2000) < 0)

break;
long evttype = sr_getevttype (0);
if (evttype == TDX_QUERYTONE)

printf ("TDX QUERYTONE Event received \n");
elseif (evttype == TDX_QUERYTONE_FATIL)

printf ("TDX QUERYTONE FAIL event received \n");
else

printf (" Unknown event received 0x%x \n", evttype);
break;

}

/* Delete the current TID BUSYl call progress tone before creating a new definition*/
if ((result = dx_deletetone (brdhdl, TID BUSYl, EV_ASYNC)) == -1) {
printf ("Cannot delete the TID BUSY1l tone\n");

104 Dialogic® Voice API Library Reference
Dialogic Corporation

create a new tone definition for a specific call progress tone — dx_createtone()

/* Perform system error processing */
exit (1);

while (1) {
if (sr_waitevt (2000) < 0)

break;
long evttype = sr_getevttype (0);
if (evttype == TDX_ DELETETONE)

printf ("TDX DELETETONE Event received \n") ;
elseif (evttype == TDX_ DELETETONE_FAIL)

printf ("TDX DELETETONE_FAIL event received \n") ;
else

printf (" Unknown event received 0x%x \n", evttype);
break;

/* Change call progress default Busy tone */

tonedata.toneseg[0] .structver = 0;
tonedata.toneseg[0] .numofseg = 1; /* Single segment tone */
tonedata.toneseg[0].tn_rep_cnt = 4;

toneinfo.toneseg[0].structver = 0;
toneinfo.toneseg[0].tn dflag = 1; /* Dual tone */
toneinfo.toneseg[0].tnl min = 0; /* Min. Frequency for Tone 1 (in Hz) */
toneinfo.toneseg[0].tnl max = 450; /* Max. Frequency for Tone 1 (in Hz) */
toneinfo.toneseg[0].tn2 min = 0; /* Min. Frequency for Tone 2 (in Hz) */
toneinfo.toneseg[0].tn2 max = 150; /* Max. Frequency for Tone 2 (in Hz) */
toneinfo.toneseg[0].tn_twinmin = 0;
toneinfo.toneseg[0].tn twinmax = 0;
toneinfo.toneseg[0].tnon min = 400; /* Debounce Min. ON Time */
toneinfo.toneseg[0].tnon_max = 550; /* Debounce Max. ON Time */
toneinfo.toneseg[0].tnoff min = 400; /* Debounce Min. OFF Time */
toneinfo.toneseg[0].tnoff max = 550; /* Debounce Max. OFF Time */
if ((result = dx_createtone(brdhdl, TID_BUSY1l, &tonedata, EV_ASYNC)) == -1) {
printf ("create tone for TID BUSYl failed\n");
/* Perform system error processing */
exit (1);
}
while (1) {
if (sr_waitevt (2000) < 0)
break;
long evttype = sr_getevttype (0);
if (evttype == TDX_CREATETONE)
printf ("TDX_ CREATETONE Event received \n") ;
elseif (evttype == TDX_CREATETONE_FAIL)
printf ("TDX CREATETONE_FAIL event received \n") ;
else
printf (" Unknown event received 0x%x \n", evttype);
break;
}
}
B See Also
e dx_deletetone()
e dx_querytone()
Dialogic® Voice API Library Reference 105

Dialogic Corporation

dx_deletetone() — delete a specific call progress tone

dx_deletetone()

Name:
Inputs:

Returns:

Includes:

Category:
Mode:

int dx_deletetone(brdhdl, toneid, mode)

int brdhdl e a valid board device handle

int toneid e tone ID of the call progress tone
unsigned short mode * mode

0 if successful
-1 if failure

srllib.h
dxxxlib.h

Call Progress Analysis

asynchronous or synchronous

106

Description
The dx_deletetone() function deletes the specified call progress tone.

Before creating a new tone definition with dx_createtone(), first use dx_querytone() to get tone
information for the tone ID, then use dx_deletetone() to delete that same tone ID. Only tones
listed in the toneid parameter description are supported for this function. For more information on
modifying call progress analysis tone definitions, see the Dialogic® Voice API Programming
Guide.

When running in asynchronous mode, the function returns O to indicate that it initiated successfully
and generates the TDX_DELETETONE event to indicate completion or the
TDX_DELETETONE_FAIL event to indicate failure.

By default, this function runs in synchronous mode and returns O to indicate completion.

Parameter Description

brdhdl specifies a valid board device handle (not a virtual board device) of the
format brdBn obtained by a call to dx_open().

To get the board name, use the SRLGetPhysicalBoardName() function.
This function and other device mapper functions return information about
the structure of the system. For more information, see the Dialogic®
Standard Runtime Library API Library Reference.

Dialogic® Voice API Library Reference
Dialogic Corporation

delete a specific call progress tone — dx_deletetone()

Parameter Description

toneid specifies the tone ID of the call progress tone. Valid values are:
e TID_BUSY1
e TID_BUSY2

TID_DIAL_INTL
TID_DIAL_LCL
TID_DISCONNECT
TID_FAX1
TID_FAX2
TID_RNGBK1
TID_RNGBK2
TID_SIT_NC
TID_SIT_IC

e TID_SIT_VC

e TID_SIT_RO

Note: The following tone IDs are not supported by this function:
TID_SIT_ANY, TID_SIT_NO_CIRCUIT_INTERLATA,
TID_SIT_REORDER_TONE_INTERLATA, and
TID_SIT_INEFFECTIVE_OTHER.

mode specifies the mode in which the function will run. Valid values are:
e EV_ASYNC - asynchronous mode
e EV_SYNC - synchronous mode (default)

B Cautions

* Only the default call progress tones as listed in the toneid parameter description are supported
for this function. The following tone IDs are not supported by this function: TID_SIT_ANY,
TID_SIT_NO_CIRCUIT_INTERLATA, TID_SIT_REORDER_TONE_INTERLATA, and
TID_SIT_INEFFECTIVE_OTHER.

* When dx_deletetone() is issued on a board device in asynchronous mode, and the function is
immediately followed by another similar call prior to completion of the previous call on the
same device, the subsequent call will fail with device busy.

B Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADPARM
invalid parameter

EDX_SYSTEM
error from operating system

Dialogic® Voice API Library Reference 107
Dialogic Corporation

dx_deletetone() — delete a specific call progress tone

EDX_TONEID
bad tone template ID

B Example

#include "srllib.h"
#include "dxxxlib.h"

main ()
{
int brdhdl; /* board handle */

/* Open board */

if ((brdhdl = dx open("brdBl",0)) == -1)

{
printf ("Cannot open board\n");
/* Perform system error processing */
exit(1);

}

/* Delete the current TID BUSY1l call progress tone*/
int result;
if ((result = dx_deletetone(brdhdl, TID_BUSY1l, &tonedata, EV_SYNC)) == -1)

{
printf ("Cannot delete the TID_BUSY1l tone \n") ;
/* Perform system error processing */
exit (1);

B See Also

e dx_createtone()
e dx_querytone()

108 Dialogic® Voice API Library Reference
Dialogic Corporation

delete all user-defined tones — dx_deltones()

dx_deltones()

Name: int dx_deltones(chdev)
Inputs: int chdev e valid channel device handle

Returns: 0 if successful
-1 if error

Includes: srllib.h
dxxxlib.h

Category: Global Tone Detection
Mode: synchronous

B Description

The dx_deltones() function deletes all user-defined tones previously added to a channel with
dx_addtone(). If no user-defined tones were previously enabled for this channel, this function has
no effect.

Note: Calling this function deletes ALL user-defined tones set by dx_blddt(), dx_bldst(),
dx_bldstcad(), or dx_blddtcad().

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

B Cautions

When using this function in a multi-threaded application, use critical sections or a semaphore
around the function call to ensure a thread-safe application. Failure to do so will result in “Bad
Tone Template ID” errors.

H Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_BADPROD
Function not supported on this board

EDX_SYSTEM
Error from operating system

Dialogic® Voice API Library Reference 109
Dialogic Corporation

dx_deltones() — delete all user-defined tones

B Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main ()
{

int dxxxdev;

/*
* Open the Voice Channel Device and Enable a Handler
*/
if ((dxxxdev = dx_open("dxxxBlCl", 0)) == -1) {
perror ("dxxxBIC1l");
exit(1);

/*

* Delete all Tone Templates

*/

if (dx_deltones(dxxxdev == -1) {
printf("Unable to Delete all the Tone Templates\n");
printf("Lasterror = %d Err Msg = %s\n",

ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));

dx_close(dxxxdev);
exit(1);

* Continue Processing

*/

/*

* Close the opened Voice Channel Device

*/

if (dx_close(dxxxdev) != 0) {
perror("close");

}

/* Terminate the Program */
exit(0);

B See Also

Adding and Enabling User-defined Tones:
e dx_addtone()

e dx_enbtone()

Building Tones:
e dx_blddt()
e dx_bldst()
e dx_bldstcad()
e dx_blddtcad()

110 Dialogic® Voice API Library Reference
Dialogic Corporation

dx_dial()

Name:
Inputs:

Returns:

Includes:

Category:
Mode:

dial an ASCIIZ string — dx_dial()

int dx_dial(chdev, dialstrp, capp, mode)

int chdev e valid channel device handle

char *dialstrp * pointer to the ASCIIZ dial string

DX_CAP *capp * pointer to call progress analysis parameter structure

unsigned short mode * asynchronous/synchronous setting and call progress analysis flag
0 to indicate successful initiation (asynchronous)

>0 to indicate call progress analysis result if successful (synchronous)
-1 if failure

srllib.h
dxxxlib.h

/0

asynchronous or synchronous

Description

The dx_dial() function dials an ASCIIZ string on an open, idle channel and optionally enables call
progress analysis to provide information about the call. For detailed information on call progress
analysis, see the Dialogic® Voice API Programming Guide. See also the Dialogic® Global Call
API Programming Guide for information on call progress analysis.

To determine the state of the channel during a dial and/or call progress analysis, use
ATDX_STATEC().

Notes: 1. dx_dial() doesn’t affect the hook state.

2. dx_dial() doesn’t wait for dial tone before dialing.

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

dialstrp points to the ASCII dial string. dialstrp must contain a null-terminated
string of ASCII characters. For a list of valid dialing and control
characters, see Table 1.

The maximum dial string size (number of digits) is 275.

Dialogic® Voice API Library Reference 111
Dialogic Corporation

dx_dial() — dial an ASCIIZ string

112

Parameter Description

capp points to the call progress analysis parameter structure, DX_CAP.

To use the default call progress analysis parameters, specify NULL in
capp and DX_CALLP in mode.

mode specifies whether the ASCIIZ string will be dialed with or without call

progress analysis enabled, and whether the function will run

asynchronously or synchronously. This parameter is a bit mask that can be

set to a combination of the following values:

¢ DX _CALLP - enables call progress analysis

¢ DX _CNGTONE - generates fax CNG tone after dialing to indicate to
the remote side that a fax call is coming. Some fax machines expect a
CNG tone before receiving a fax call. Use with DX_CALLP.

e EV_ASYNC - runs dx_dial() asynchronously

e EV_SYNC - runs dx_dial() synchronously (default)

If dx_dial() with call progress analysis is performed on a channel that is
onhook, the function will only dial digits. Call progress analysis will not
occur.

B Asynchronous Operation

For asynchronous operation, set the mode field to EV_ASYNC, using a bitwise OR. The function
returns O to indicate it has initiated successfully, and generates one of the following termination
events to indicate completion:

TDX_CALLP
termination of dialing (with call progress analysis)

TDX_DIAL
termination of dialing (without call progress analysis)

Use SRL Event Management functions to handle the termination event.

If asynchronous dx_dial() terminates with a TDX_DIAL event, use ATDX_TERMMSK() to
determine the reason for termination. If dx_dial() terminates with a TDX_CALLP event, use
ATDX_CPTERM() to determine the reason for termination.

Synchronous Operation

By default, this function runs synchronously, and returns a O to indicate that it has completed
successfully.

When synchronous dialing terminates, the function returns the call progress result (if call progress
analysis is enabled) or O to indicate success (if call progress analysis isn’t enabled).

Valid Dial String Characters

The following is a list of valid dialing and control characters.

Dialogic® Voice API Library Reference
Dialogic Corporation

dial an ASCIIZ string — dx_dial()

Table 1. Valid Dial String Characters

Characters Description Valid in Dial Mode
DTMF MF
On Keypad
0123456789 digits Yes Yes
* asterisk or star Yes Yes (KP)
pound, hash, number, or octothorpe Yes Yes (ST)
Not on Keypad
a Yes Yes
(ST1) (Windows®)
(PST) (Linux)
b Yes Yes (ST2)
c Yes Yes (ST3)
d Yes
Special Control
pause for 2.5 seconds (comma) Yes Yes
T Dial Mode: Tone (DTMF) (default) Yes Yes
Dial Mode: MF Yes Yes

When using dx_dial(), be aware of the following considerations:

Dialogic® Voice API Library Reference

Dialogic Corporation

Dial string characters are case-sensitive.
The default dialing mode is “T” (DTMF tone dialing).

When you change the dialing mode by specifying the M or T control characters, the dialing
mode remains in effect for that dx_dial() invocation only. The dialing mode is reset to the
default of T (DTMF) for the next invocation, unless you specify otherwise.

The dx_dial() function does not support dial tone detection.

Dialing parameter default values can be set or retrieved using dx_getparm() and
dx_setparm(); see board and channel parameter defines in these function descriptions.

Invalid characters that are part of a dial string are ignored and an error will not be generated.
For instance, a dial string of “(123) 456-7890” is equivalent to “1234567890”.

Cautions

If you attempt to dial a channel in MF mode and do not have MF capabilities on that channel,
DTMEF tone dialing is used.

Issuing a dx_stopch() on a channel that is dialing with call progress analysis disabled has no
effect on the dial, and will return 0. The digits specified in the dialstrp parameter will still be
dialed.

Issuing a dx_stopch() on a channel that is dialing with call progress analysis enabled will
cause the dialing to complete, but call progress analysis will not be executed. The digits

113

dx_dial() — dial an ASCIIZ string

114

specified in the dialstrp parameter will be dialed. Any call progress analysis information
collected prior to the stop will be returned by extended attribute functions.

e Issue this function when the channel is idle.

® (Clear the DX_CAP structure using dx_clrcap() before the structure is used as an argument in
a dx_dial() function call. This will prevent parameters from being set unintentionally.

H Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_BUSY
Channel is busy

EDX_SYSTEM
Error from operating system

Example

This example demonstrates how to use dx_dial() and call progress analysis (synchronous mode)
on Dialogic® Springware boards. On Dialogic® Host Media Processing (HMP) Software,
dx_dial() supports call progress analysis directly; you do not use dx_initcallp() to initialize call
progress analysis.

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main ()
{
DX_CAP cap_s;

int ddd, car;
char *chnam, *dialstrg;
chnam = "dxxxB1C1l";

dialstrg = "L1234";

/*

* Open channel

*/
if ((ddd = dx_open(chnam, NULL)) == -1) {

/* handle error */

}

/*
* Delete any previous tones
*/
if (dx deltones(ddd) < 0) {
/* handle error */

}

Dialogic® Voice API Library Reference
Dialogic Corporation

dial an ASCIIZ string — dx_dial()

/*
* Change call progress analysis default local dial tone
*/
if (dx_chgfreqg(TID DIAL LCL, 425, 150, 0, 0) < 0) {
/* handle error */
}
/‘k
* Change call progress analysis default busy cadence
*/
if (dx_chgdur(TID_BUSY1l, 550, 400, 550, 400) < 0) {
/* handle error */
}
if (dx_chgrepcnt(TID BUSY1l, 4) < 0) {

/* handle error */

/‘k

* Now enable call progress analysis with above changed settings.
*/

if (dx_initcallp(ddd)) {

/* handle error */

/*
* Set off Hook
*/
if ((dx_sethook(ddd, DX OFFHOOK, EV_SYNC)) == -1) {
/* handle error */
}
/‘k
* Dial
*/
if ((car = dx_dial(ddd, dialstrg, (DX_CAP *)&cap_s, DX CALLP|EV_SYNC))==-1) {
/* handle error */
}
switch(car) {
case CR_NODIALTONE:
printf (" Unable to get dial tone\n");
break;
case CR_BUSY:
printf (" $%$s engaged\n", dialstrg);
break;
case CR_CNCT:
printf (" Successful connection to %s\n", dialstrg);
break;
default:
break;
}
/*
* Set on Hook
*/
if ((dx_sethook(ddd, DX ONHOOK, EV_SYNC)) == -1) {

/* handle error */

dx close(ddd);

B See Also

e dx_stopch()

Dialogic® Voice API Library Reference
Dialogic Corporation

115

dx_dial() — dial an ASCIIZ string

e event management functions in the Dialogic® Standard Runtime Library API Library
Reference

e ATDX_CPTERM() (to retrieve termination reason and events for dx_dial() with call
progress analysis)

e ATDX_TERMMSK() (to retrieve termination reason for dx_dial() without call progress
analysis)

e DX _ CAP data structure

e call progress analysis topic in the Dialugic® Voice API Programming Guide

e ATDX_CONNTYPE()

e ATDX_CPERROR()

116 Dialogic® Voice API Library Reference
Dialogic Corporation

dx_distone()

disable detection of a user-defined tone — dx_distone()

Name: int dx_distone(chdev, toneid, evt_mask)

Inputs: int chdev e valid channel device handle
int toneid * tone template identification
int evt_mask e event mask

Returns: 0 if success
-1 if error

Includes: srllib.h
dxxxlib.h

Category: Global Tone Detection

Mode: synchronous

B Description

The dx_distone() function disables detection of a user-defined tone on a channel, as well as the
tone-on and tone-off events for that tone. Detection capability for user-defined tones is enabled on
a channel by default when dx_addtone() is called.

Parameter Description

chdev specifies the

valid channel device handle obtained when the channel was

opened using dx_open()

toneid specifies the user-defined tone identifier for which detection is being disabled
To disable detection of all user-defined tones on the channel, set toneid to
TONEALL.

evt_mask specifies whether to disable detection of the user-defined tone going on or

going off. Set to one or both of the following using a bitwise-OR (|) operator.
e DM_TONEON - disable TONE ON detection
e DM_TONEOQOFF - disable TONE OFF detection

evt_mask affects the enabled/disabled status of the tone template and remains
in effect until dx_distone() or dx_enbtone() is called again to reset it.

B Cautions

When using this function in a multi-threaded application, use critical sections or a semaphore
around the function call to ensure a thread-safe application. Failure to do so will result in “Bad

Tone Template ID” errors.

Dialogic® Voice API Library Reference
Dialogic Corporation

117

dx_distone() — disable detection of a user-defined tone

H Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_BADPROD
Function not supported on this board

EDX_SYSTEM
Error from operating system

EDX_TNMSGSTATUS
Invalid message status setting

EDX_TONEID
Bad tone ID

H Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

#define TID 1 101
main ()

{

int dxxxdev;

/*

* Open the Voice Channel Device and Enable a Handler

*/

if ((dxxxdev = dx_open("dxxxBlCl", 0)) == -1) {
perror ("dxxxBIC1l");
exit(1);

}

/*

* Describe a Simple Dual Tone Frequency Tone of 950-
* 1050 Hz and 475-525 Hz using leading edge detection.
*/
if (dx blddt(TID 1, 1000, 50, 500, 25, TN LEADING) == -1) {
printf("Unable to build a Dual Tone Template\n");
}

/ *

* Bind the Tone to the Channel

*/

if | dx_addtone (dxxxdev, NULL, 0) == -1) {
printf("Unable to Bind the Tone %d\n", TID 1);
printf("Lasterror = %d Err Msg = %s\n",

ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));

dx_close(dxxxdev);
exit(1);

}

118 Dialogic® Voice API Library Reference

Dialogic Corporation

disable detection of a user-defined tone — dx_distone()

/k
* Disable Detection of TonelId TID 1
*/
if (dx_distone(dxxxdev, TID 1, DM TONEON | DM _TONEOFF) == -1) {
printf("Unable to Disable Detection of Tone %d\n", TID 1);
printf("Lasterror = %d Err Msg = %$s\n",
ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP (dxxxdev));
dx_close (dxxxdev);
exit(1);
}
/‘k

* Continue Processing

*/

/k

* Close the opened Voice Channel Device
*/

if (dx close(dxxxdev) != 0) {

perror ("close");

}

/* Terminate the Program */
exit(0);

B See Also

e dx_addtone()

e dx_blddt(), dx_bldst(), dx_blddtcad(), dx_bldstcad()

e dx_enbtone()

e global tone detection topic in the Dialogic® Voice API Programming Guide

e dx_getevt()

e DX_CST data structure

e sr_getevtdatap() in the Dialogic® Standard Runtime Library API Library Reference

Dialogic® Voice API Library Reference
Dialogic Corporation

119

dx_enbtone() — enable detection of a user-defined tone

dx_enbtone()

Name:
Inputs:

int dx_enbtone(chdev, toneid, evt_mask)
int chdev e valid channel device handle
int toneid * tone template identification

int evt_mask * event mask

Returns: 0 if success
-1 if failure
Includes: srllib.h
dxxxlib.h
Category: Global Tone Detection
Mode: synchronous
B Description
The dx_enbtone() function enables detection of a user-defined tone on a channel, including the
tone-on and tone-off events for that tone. Detection capability for tones is enabled on a channel by
default when dx_addtone() is called.
See the dx_addtone() function description for information about retrieving call status transition
(CST) tone-on and tone-off events.
Use dx_enbtone() to enable a tone that was previously disabled using dx_distone().
Parameter Description
chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()
toneid specifies the user-defined tone identifier for which detection is being enabled
To enable detection of all user-defined tones on the channel, set toneid to
TONEALL.
evt_mask specifies whether to enable detection of the user-defined tone going on or
going off. Set to one or both of the following using a bitwise-OR (|) operator.
e DM_TONEON - enable TONE ON detection
e DM_TONEOFF - enable TONE OFF detection
evt_mask affects the enabled/disabled status of the tone template and will
remain in effect until dx_enbtone() or dx_distone() is called again to reset it.
B Cautions
When using this function in a multi-threaded application, use critical sections or a semaphore
around the function call to ensure a thread-safe application. Failure to do so will result in “Bad
Tone Template ID” errors.
120 Dialogic® Voice API Library Reference

Dialogic Corporation

enable detection of a user-defined tone — dx_enbtone()

B Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_BADPROD
Function not supported on this board

EDX_SYSTEM
Error from operating system

EDX_TONEID
Bad tone ID

EDX_TNMSGSTATUS

Invalid message status setting

B Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

#define TID 1 101
main ()

{

int dxxxdev;

/‘k
* Open the Voice Channel Device and Enable a Handler
*/
if ((dxxxdev = dx_open("dxxxBlCl", 0)) == -1) {
perror ("dxxxB1C1");
exit(1);
}
/‘k

* Describe a Simple Dual Tone Frequency Tone of 950-
* 1050 Hz and 475-525 Hz using leading edge detection.
*/
if (dx blddt(TID 1, 1000, 50, 500, 25, TN LEADING) == -1) {
printf("Unable to build a Dual Tone Template\n");
}

/‘k
* Bind the Tone to the Channel
*/
if (dx_addtone (dxxxdev, NULL, 0) == -1) {
printf("Unable to Bind the Tone %d\n", TID 1);
printf("Lasterror = %d Err Msg = %s\n",
ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP (dxxxdev
dx_close (dxxxdev);
exit(1);

Dialogic® Voice API Library Reference 121
Dialogic Corporation

dx_enbtone() — enable detection of a user-defined tone

/*

* Enable Detection of TonelId TID 1

*/

if (dx_enbtone(dxxxdev, TID 1, DM TONEON | DM _TONEOFF) == -1) ({
printf("Unable to Enable Detection of Tone %d\n", TID 1);
printf("Lasterror = $d Err Msg = %$s\n",

ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP (dxxxdev));

dx close(dxxxdev);
exit(1);

}

/*

* Continue Processing

*/
/*

* Close the opened Voice Channel Device
*/
if (dx close(dxxxdev) != 0) {

perror ("close");

}

/* Terminate the Program */
exit(0);

B See Also

e dx_addtone()

e dx_blddt(), dx_bldst(), dx_blddtcad(), dx_bldstcad()

e dx_distone()

e global tone detection in Dialogic® Voice API Programming Guide

e dx_getevt()

e DX _CST data structure

e sr_getevtdatap() in Dialogic® Standard Runtime Library API Library Reference

122 Dialogic® Voice API Library Reference
Dialogic Corporation

close a file — dx_fileclose()

dx_fileclose()

Name:
Inputs:
Returns:

Includes:

Category:
Mode:

int dx_fileclose(handle)
int handle e handle returned from dx_fileopen()

0 if success
-1 if failure

srllib.h
dxxxlib.h

File Manipulation

synchronous

Description

Supported on Windows® only. The dx_fileclose() function closes a file associated with the device
handle returned by the dx_fileopen() function. See the _close function in the Microsoft® Visual
C++ Run-Time Library Reference for more information.

Use dx_fileclose() instead of _close to ensure the compatibility of applications with the libraries
across various versions of Visual C++.

Cautions

None.

Errors

If this function returns -1 to indicate failure, a system error has occurred.

Example

/*
* Play a voice file. Terminate on receiving 4 digits or at end of file

*/

#include <fcntl.h>

#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main ()

{
int chdev;
DX_IOTT iott;
DV_TPT tpt;
DV_DIGIT dig;

Dialogic® Voice API Library Reference 123
Dialogic Corporation

dx_fileclose() — close a file

/* Open the device using dx_open(). Get channel device descriptor in
* chdev.

*/
if ((chdev = dx open("dxxxB1C1",NULL)) == -1) {

/* process error */

/* set up DX IOTT */
iott.io_type = IO_DEV|IO_EOT;
iott.io bufp = 0;
iott.io_offset = 0;

iott.io length = -1; /* play till end of file */
if ((iott.io_handle = dx_fileopen ("prompt.vox",
O _RDONLY |0 BINARY)) == -1) {

/* process error */

/* set up DV_TPT */
dx_clrtpt (&tpt,1);

tpt.tp_type = I0_EOT; /* only entry in the table */
tpt.tp_termno = DX_MAXDTMF; /* Maximum digits */

tpt.tp length = 4; /* terminate on four digits */
tpt.tp_flags = TF_MAXDTMF; /* Use the default flags */

/* clear previously entered digits */
if (dx_clrdigbuf (chdev) == -1) {
/* process error */

/* Now play the file */
if (dx_play(chdev, &iott, &tpt,EV_SYNC) == -1) {
/* process error */

/* get digit using dx_getdig() and continue processing. */

if (dx_fileclose(iott.io_handle) == -1) {
/* process error */

}

B See Also

e dx_fileopen()
e dx_fileseek()
e dx_fileread()
e dx_filewrite()

124 Dialogic® Voice API Library Reference
Dialogic Corporation

return the system error value — dx_fileerrno()

dx_fileerrno()

Name: int dx_fileerrno(void)
Inputs: none
Returns: system error value

Includes: srllib.h
dxxxlib.h

Category: File Manipulation
Mode: synchronous

B Description

Supported on Windows® only. The dx_fileerrno() function returns the global system error value
from the operating system.

Call dx_fileerrno() to obtain the correct system error value, which provides the reason for the
error. For example, if dx_fileopen() fails, the error supplied by the operating system can only be
obtained by calling dx_fileerrno().

Note: Unpredictable results can occur if you use the global variable errno directly to obtain the system
error value. Earlier versions of Visual C++ use different Visual C++ runtime library names. The
application and Dialogic® libraries may then be using separate C++ runtime libraries with separate
errno values for each.

See the Microsoﬁ® Visual C++ Run-Time Library Reference or MSDN documentation for more
information on system error values and their meanings. All error values, which are defined as
manifest constants in errno.h, are UNIX-compatible. The values valid for 32-bit Windows®
applications are a subset of these UNIX values.

Table 2 lists the system error values that may be returned by dx_fileerrno().

Table 2. System Error Values

Value Description
E2BIG Argument list too long.
EACCES Permission denied; indicates a locking or sharing violation. The file’s permission setting or

sharing mode does not allow the specified access. This error signifies that an attempt was
made to access a file (or, in some cases, a directory) in a way that is incompatible with the
file’s attributes. For example, the error can occur when an attempt is made to read from a
file that is not open, to open an existing read-only file for writing, or to open a directory
instead of a file. The error can also occur in an attempt to rename a file or directory or to
remove an existing directory.

EAGAIN No more processes. An attempt to create a new process failed because there are no more
process slots, or there is not enough memory, or the maximum nesting level has been
reached.

Dialogic® Voice API Library Reference 125

Dialogic Corporation

dx_fileerrno() — return the system error value

Table 2. System Error Values

Value Description

EBADF Bad file number; invalid file descriptor (file is not opened for writing). Possible causes: 1)
The specified file handle is not a valid file-handle value or does not refer to an open file. 2)
An attempt was made to write to a file or device opened for read-only access or a locked
file.

EDOM Math argument.

EEXIST Files exist. An attempt has been made to create a file that already exists. For example, the
_O_CREAT and _O_EXCL flags are specified in an _open call, but the named file already
exists.

EINTR A signal was caught.

EINVAL Invalid argument. An invalid value was given for one of the arguments to a function. For
example, the value given for the origin or the position specified by offset when positioning a
file pointer (by means of a call to fseek) is before the beginning of the file. Other possibilities
are as follows: The dev/evt/handler triplet was not registered or has already been
registered. Invalid timeout value. Invalid flags or pmode argument.

EIO Error during a Windows open.

EMFILE Too many open files. No more file handles are available, so no more files can be opened.

ENOENT No such file or directory; invalid device name; file or path not found. The specified file or
directory does not exist or cannot be found. This message can occur whenever a specified
file does not exist or a component of a path does not specify an existing directory.

ENOMEM Not enough memory. Not enough memory is available for the attempted operation. The
library has run out of space when allocating memory for internal data structures.

ENOSPC Not enough space left on the device for the operation. No more space for writing is available
on the device (for example, when the disk is full).

ERANGE Result too large. An argument to a math function is too large, resulting in partial or total loss
of significance in the result. This error can also occur in other functions when an argument
is larger than expected.

ESR_TMOUT | Timed out waiting for event.

EXDEV Cross-device link. An attempt was made to move a file to a different device (using the
rename function).

B Cautions
None.
Errors
None.
Example

rc=dx_fileopen (FileName, O_RDONLY) ;

if (rc == -1)

printf ('Error opening %s, system error:

}

%d\n", FileName, dx_fileerrno());

Dialogic® Voice API Library Reference
Dialogic Corporation

return the system error value — dx_fileerrno()

B See Also

None.

Dialogic® Voice API Library Reference 127
Dialogic Corporation

dx_fileopen() — open a file

dx_fileopen()

Name:
Inputs:

Returns:

Includes:

Category:
Mode:

int dx_fileopen(filep, flags, pmode)

const char *filep e filename

int flags * type of operations allowed
int pmode * permission mode

file handle if success
-1 if failure

srllib.h
dxxxlib.h

File Manipulation

synchronous

128

Description

Supported on Windows® only. The dx_fileopen() function opens a file specified by filep, and
prepares the file for reading and writing, as specified by flags. See the _open function in the
Microsoft® Visual C++® Run-Time Library Reference for more information.

Use dx_fileopen() instead of _open to ensure the compatibility of applications with the libraries
across various versions of Microsoft® Visual C++®.

Cautions

When using dx_reciottdata() to record WAVE files, you cannot use the O_APPEND mode with
dx_fileopen(), because for each record, a WAVE file header will be created.

Errors
If this function returns -1 to indicate failure, a system error has occurred.

Example

/* Play a voice file. Terminate on receiving 4 digits or at end of file*/
#include <fcntl.h>

#include <srllib.h>

#include <dxxxlib.h>

#include <windows.h>

main ()

{
int chdev;
DX_IOTT iott;
DV_TPT tpt;
DV_DIGIT dig;

Dialogic® Voice API Library Reference
Dialogic Corporation

open a file — dx_fileopen()

/* Open the device using dx_open(). Get channel device descriptor in
* chdev.

*/

if ((chdev = dx_open ("dxxxB1C1l",NULL)) == -1) {

/* process error */

/* set up DX IOTT */

iott.io_type = IO_DEV|IO_EOT;

iott.io bufp = 0;

iott.io offset = 0;

iott.io length = -1; /* play till end of file */

if ((iott.io_handle = dx fileopen ("prompt.vox", O _RDONLY|O_BINARY)) == -1) {
/* process error */

/* set up DV_TPT */
dx clrtpt (&tpt,1);

tpt.tp_type = IO_EOT; /* only entry in the table */
tpt.tp termno = DX MAXDTMF; /* Maximum digits */
tpt.tp_length = 4; /* terminate on four digits */
tpt.tp flags = TF MAXDTMF; /* Use the default flags */

/* clear previously entered digits */
if (dx_clrdigbuf (chdev) == -1) {
/* process error */

/* Now play the file */
if (dx play(chdev,&iott, &tpt,EV_SYNC) == -1) {
/* process error */

/* get digit using dx getdig() and continue processing. */

if (dx_fileclose(iott.io_handle) == -1) {
/* process error */

B See Also

e dx_fileclose()
e dx_fileseek()
e dx_fileread()
e dx_filewrite()

Dialogic® Voice API Library Reference 129
Dialogic Corporation

dx_fileread() — read data from a file

dx_fileread()

130

Name: int dx_fileread(handle, buffer, count)
Inputs: int handle e handle returned from dx_fileopen()
void *buffer * storage location for data
unsigned int count * maximum number of bytes
Returns: number of bytes if success
-1 if failure
Includes: srllib.h
dxxxlib.h
Category: File Manipulation
Mode: synchronous
B Description
Supported on Windows® only. The dx_fileread() function reads data from a file associated with
the file handle. The function will read the number of bytes from the file associated with the handle
into the buffer. The number of bytes read may be less than the value of count if there are fewer than
count bytes left in the file or if the file was opened in text mode. See the _read function in the
Microsoft® Visual C++® Run-Time Library Reference for more information.
Use dx_fileread() instead of _read to ensure the compatibility of applications with the libraries
across various versions of Microsoft® Visual C++®.
B Cautions
None.
B Errors
If this function returns -1 to indicate failure, a system error has occurred.
H Example

#include <stdio.h>

#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main ()
{

int cd; /* channel device descriptor */
DX_UIO myio; /* user definable I/O structure */

Dialogic® Voice API Library Reference
Dialogic Corporation

read data from a file — dx_fileread()

/*
* User defined I/0O functions
*/
int my read(fd,ptr,cnt)
int fd;

char * ptr;
unsigned cnt;

printf ("My read\n");
return (dx_fileread(fd,ptr,cnt));

/*

* my write function

*/
int my write (fd,ptr,cnt)
int fd;

char * ptr;

unsigned cnt;

{

printf ("My write \n");
return(dx_filewrite (fd,ptr,cnt));

/*
* my seek function
*/
long my_seek (fd,offset,whence)
int fd;
long offset;
int whence;
{
printf ("My seek\n");
return(dx_fileseek(fd,offset,whence));
}
void main (argc,argv)
int argc;
char *argv([];

{
/* Other initialization */
DX UIO uioblk;

/* Initialize the UIO structure */
uioblk.u read=my_ read;

uioblk.u write=my write;
uioblk.u_seek=my seek;

/* Install my I/0 routines */
dx setuio(uioblk);
vodat_fd = dx_fileopen("JUNK.VOX",O_RDWR\O_BINARY);

/*This block uses standard I/O functions */
iott->io type = IO_DEV|IO_CONT
iott->io_fhandle = vodat_ fd;

iott->io offset = 0;

iott->io_length = 20000;

/*This block uses my I/0 functions */
iottp++;

iottp->io_type = IO DEV|IO UIO|IO_CONT
iottp->io fhandle = vodat fd;
iott->io_offset = 20001;

iott->io length = 20000;

Dialogic® Voice API Library Reference 131
Dialogic Corporation

dx_fileread() — read data from a file

/*This block uses standard I/O functions */
iottp++

iott->io_type = IO _DEV|IO_CONT

iott->io fhandle = vodat fd;
iott->io_offset = 20002;

iott->io length = 20000;

/*This block uses my I/O functions */
iott->io type = IO DEV|IO UIO|IO EOT
iott->io fhandle = vodat fd;
iott->io_offset = 10003;

iott->io length = 20000;

devhandle = dx_open ("dxxxB1C1l", 0);
dx_sethook (devhandle, DX-ONHOOK,EV SYNC)
dx_wtring(devhandle,1,DX_OFFHOOK,EV_SYNC);
dx_clrdigbuf;

if (dx_rec(devhandle, iott, (DX_TPT*)NULL,RM TONE|EV_SYNC) == -1) {
perror ("");
exit (1);

}
dx_clrdigbuf (devhandle) ;
if (dx_play(devhandle,iott, (DX TPT*)EV_SYNC) == -1 {
perror ("");
exit (1) ;
}

dx_close (devhandle) ;

}
B See Also

e dx_fileopen()
e dx_fileclose()
e dx_fileseek()

e dx_filewrite()

132 Dialogic® Voice API Library Reference
Dialogic Corporation

move a file pointer — dx_fileseek()

dx_fileseek()

Name: long dx_fileseek(handle, offset, origin)

Inputs: int handle ¢ handle returned from dx_fileopen()
long offset * number of bytes from the origin
int origin * initial position

Returns: number of bytes read if success
-1 if failure
Includes: srllib.h
dxxxlib.h
Category: File Manipulation
Mode: synchronous
B Description

Supported on Windows® only. The dx_fileseek() function moves a file pointer associated with the
file handle to a new location that is offset bytes from origin. The function returns the offset, in
bytes, of the new position from the beginning of the file. See the _lseek function in the Microsoft®
Visual C++® Run-Time Library Reference for more information.

Use dx_fileseek() instead of _lIseek to ensure the compatibility of applications with the libraries
across various versions of Microsoft® Visual C++®.

Cautions

Do not use dx_fileseek() against files that utilize encoding formats with headers (such as GSM).
The dx_fileseek() function is not designed to make adjustments for the various header sizes that
some encoding formats use.

Errors
If this function returns -1 to indicate failure, a system error has occurred.

Example

#include <stdio.h>

#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main ()

{

int cd; /* channel device descriptor */
DX _UIO myio; /* user definable I/O structure */

Dialogic® Voice API Library Reference 133
Dialogic Corporation

dx_fileseek() — move a file pointer

/‘k

* User defined I/0 functions
*/

int my read(fd,ptr,cnt)

int fd;

char * ptr;

unsigned cnt;

{
printf ("My read\n");
return(dx_fileread(fd,ptr,cnt));

/*

* my write function

*/
int my write(fd,ptr,cnt)
int fd;

char * ptr;

unsigned cnt;

{

printf ("My write \n");
return(dx_filewrite (fd,ptr,cnt));

/*
* my seek function
*/
long my seek (fd,offset,whence)
int fd;
long offset;
int whence;
{
printf ("My seek\n");
return (dx_fileseek (fd,offset,whence)) ;
}
void main (argc,argv)
int argc;
char *argv[];

{
/* Other initialization */
DX _UIO uioblk;

/* Initialize the UIO structure */
uioblk.u read=my read;

uioblk.u write=my write;

uioblk.u seek=my seek;

/* Install my I/0 routines */
dx_setuio(uioblk) ;
VOdatifd = dxifileopen ("JUNK.VOX",0_RDWR|O_ BINARY) ;

/*This block uses standard I/O functions */
iott->io type = IO DEV|IO CONT

iott->io fhandle = vodat fd;
iott->io_offset = 0;

iott->io length = 20000;

/*This block uses my I/O functions */
iottp++;

iottp->io_type = IO DEV|IO UIO|IO CONT
iottp->io_fhandle = vodat_ fd;

iott->io _offset = 20001;
iott->io_length = 20000;

134 Dialogic® Voice API Library Reference
Dialogic Corporation

/*This block uses standard I/O functions */

iottp++

iott->io type = IO DEV|IO CONT
iott->io fhandle = vodat fd;
iott->io_offset = 20002;
iott->io length = 20000;

/*This block uses my I/0 functions */
iott->io type = IO DEV|IO UIO|IO EOT

iott->io fhandle = vodat fd;
iott->io_offset = 10003;
iott->io length = 20000;

devhandle = dx_open ("dxxxB1C1", NULL);
dx sethook (devhandle, DX-ONHOOK,EV_ SYNC)
dx_wtring(devhandle,l,DX_OFFHOOK,EV_SYNC);

dx clrdigbuf;

move a file pointer — dx_fileseek()

if (dx_rec(devhandle,iott, (DX_TPT*)NULL,RM TONE|EV_SYNC) == -1) {

perror ("");
exit (1);
}
dx_clrdigbuf (devhandle) ;

if (dx_play(devhandle, iott, (DX TPT*)EV_SYNC)

perror ("");
exit (1) ;
}

dx close (devhandle) ;

}
B See Also

e dx_fileopen()
e dx_fileclose()
e dx_fileread()
e dx_filewrite()

Dialogic® Voice API Library Reference
Dialogic Corporation

135

dx_filewrite() — write data from a buffer into a file

dx_filewrite()

Name:
Inputs:

Returns:

Includes:

Category:
Mode:

int dx_filewrite(handle, buffer, count)

int handle e handle returned from dx_fileopen()
void *buffer e data to be written

unsigned int count e number of bytes

number of bytes if success
-1 if failure

srllib.h
dxxxlib.h

File Manipulation

synchronous

136

Description

Supported on Windows® only. The dx_filewrite() function writes data from a buffer into a file
associated with file handle. The write operation begins at the current position of the file pointer (if
any) associated with the given file. If the file was opened for appending, the operation begins at the
current end of the file. After the write operation, the file pointer is increased by the number of bytes
actually written. See the _write function in the Microsoft® Visual C++® Run-Time Library
Reference for more information.

Use dx_filewrite() instead of _write to ensure the compatibility of applications with the libraries
across various versions of Microsoft® Visual C++®.

Cautions

None.

Errors

If this function returns -1 to indicate failure, a system error has occurred.

Example

#include <stdio.h>

#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main ()

{

int cd; /* channel device descriptor */
DX_UIO myio; /* user definable I/O structure */

Dialogic® Voice API Library Reference
Dialogic Corporation

write data from a buffer into a file — dx_filewrite()

/*
* User defined I/0O functions
*/
int my read(fd,ptr,cnt)
int fd;

char * ptr;
unsigned cnt;
{
printf ("My read\n");
return(dx fileread(fd,ptr,cnt));

/*

* my write function

*/
int my write (fd,ptr,cnt)
int fd;

char * ptr;
unsigned cnt;
{
printf ("My write \n");
return (dx_filewrite (fd,ptr,cnt));

/*
* my seek function
*/
long my seek(fd,offset,whence)
int fd;
long offset;
int whence;
{
printf ("My seek\n");
return(dx fileseek(fd, offset,whence));
}
void main (argc,argv)
int argc;
char *argvl[];

{
/* Other initialization */
DX_UIO uioblk;

/* Initialize the UIO structure */

uioblk.u read=my read;

uioblk.u write=my write;

uioblk.u seek=my seek;

/* Install my I/0 routines */

dx setuio(uioblk);

vodat_fd = dx_fileopen("JUNK.VOX",O_RDWR\O_BINARY);

/*This block uses standard I/O functions */
iott->io type = IO_DEV|IO_CONT
iott->io_fhandle = vodat_ fd;

iott->io offset = 0;

iott->io_length = 20000;

/*This block uses my I/0 functions */
iottp++;

iottp->io_type = IO DEV|IO UIO|IO_CONT
iottp->io fhandle = vodat fd;
iott->io_offset = 20001;

iott->io length = 20000;

Dialogic® Voice API Library Reference 137
Dialogic Corporation

dx_filewrite() — write data from a buffer into a file

/*This block uses standard I/O functions */
iottp++

iott->io_type = IO _DEV|IO_CONT

iott->io fhandle = vodat fd;
iott->io_offset = 20002;

iott->io length = 20000;

/*This block uses my I/O functions */
iott->io type = IO DEV|IO UIO|IO EOT
iott->io fhandle = vodat fd;
iott->io_offset = 10003;

iott->io length = 20000;

devhandle = dx_open ("dxxxB1C1l", NULL);
dx_sethook (devhandle, DX-ONHOOK,EV SYNC)
dx_wtring(devhandle,1,DX_OFFHOOK,EV_SYNC);
dx_clrdigbuf;

if (dx_rec(devhandle, iott, (DX_TPT*)NULL,RM TONE|EV_SYNC) == -1) {
perror ("");
exit (1);

}
dx_clrdigbuf (devhandle) ;
if (dx_play(devhandle,iott, (DX TPT*)EV_SYNC) == -1 {
perror ("");
exit (1) ;
}

dx_close (devhandle) ;

}
B See Also

e dx_fileopen()
e dx_fileclose()
e dx_fileseek()
e dx_fileread()

138 Dialogic® Voice API Library Reference
Dialogic Corporation

get information about a voice device — dx_getctinfo()

dx_getctinfo()

Name: int dx_getctinfo(chdev, ct_devinfop)
Inputs: int chdev e valid channel device handle
CT_DEVINFO *ct_devinfop e pointer to device information structure

Returns: 0 on success
-1 on error

Includes: srllib.h
dxxxlib.h

Category: TDM Routing
Mode: synchronous

B Description

The dx_getctinfo() function returns information about a voice channel of a voice device. The
information includes the device family, device mode, type of network interface, bus architecture,
and PCM encoding. The information is returned in the CT_DEVINFO structure.

Parameter Description

chdev specifies the valid voice channel handle obtained when the channel was
opened using dx_open()

ct_devinfop specifies a pointer to the CT_DEVINFO structure that will contain the
voice channel device information

B Cautions
This function will fail if an invalid voice channel handle is specified.
B Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADPARM
Parameter error

EDX_SH_BADEXTTS
TDM bus time slot is not supported at current clock rate

EDX_SH_BADINDX
Invalid Switch Handler index number

EDX_SH BADTYPE
Invalid local time slot channel type (voice, analog, etc.)

Dialogic® Voice API Library Reference 139
Dialogic Corporation

dx_getctinfo() — get information about a voice device

EDX_SH_CMDBLOCK
Blocking command is in progress

EDX_SH_LIBBSY
Switch Handler library is busy

EDX_SH_LIBNOTINIT
Switch Handler library is uninitialized

EDX_SH_MISSING
Switch Handler is not present

EDX_SH_NOCLK
Switch Handler clock fallback failed

EDX_SYSTEM
Error from operating system
B Example

#include <srllib.h>
#include <dxxxlib.h>

main ()

{

int chdev; /* Channel device handle */

CT _DEVINFO ct_devinfo;

/* Open board 1 channel 1 devices */
if ((chdev = dx_open ("dxxxB1C1l", 0)) == -1)
/* process error */

}

/* Get Device Information */
if (dx_getctinfo(chdev, &ct_devinfo) == -1)

printf ("Error message = %s", ATDV_ERRMSGP (chdev)) ;

exit (1) ;
}

printf ("%s Product Id = 0x%x, Family = %d, Mode

/* Device information structure */

%d, Network = %d, Bus

...mode = %d, Encoding = %d", ATDV_NAMEP (chdev), ct devinfo.ct prodid,
...ct_devinfo.ct_devfamily, ct_devinfo.ct devmode, ct_devinfo.ct nettype,

...ct_devinfo.ct busmode, ct devinfo.ct busencoding);

B See Also

e gc_GetCTInfo()in the Dialogic® Global Call API Library Reference
e ipm_GetCTInfo() in the Dialogic® IP Media Library API Library Reference

140

Dialogic® Voice API Library Reference
Dialogic Corporation

return the specified current speed and volume settings — dx_getcursv()

dx_getcursv()

Name:
Inputs:

int dx_getcursv(chdev, curvolp, curspeedp)
int chdev e valid channel device handle
int * curvolp * pointer to current absolute volume setting

int * curspeedp ® pointer to current absolute speed setting

Returns: 0 if success
-1 if failure
Includes: srllib.h
dxxxlib.h
Category: Speed and Volume
Mode: synchronous
B Description

The dx_getcursv() function returns the specified current speed and volume settings on a channel.
For example, use dx_getcursv() to determine the speed and volume level set interactively by a
listener using DTMF digits during a play. DTMF digits are set as play adjustment conditions using
the dx_setsvcond() function, or by one of the convenience functions, dx_addspddig() or
dx_addvoldig().

Note: Before using the speed control feature, you must enable this feature in the [decoder] section of the
CONFIG file. For more information, see the Configuration Guide applicable to your release.
Parameter Description
chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()
curvolp points to an integer that represents the current absolute volume setting for the
channel. This value will be between -30 dB and +10 dB.
curspeedp points to an integer that represents the current absolute speed setting for the
channel. This value will be between -50% and +50%.
B Cautions
If you close a device via dx_close() after modifying speed and volume table values using
dx_setsvmt(), the dx_getcursv() function may return incorrect speed and volume settings for the
device. This is because the next dx_open() resets the speed and volume tables to their default
values.
Dialogic® Voice API Library Reference 141

Dialogic Corporation

dx_getcursv() — return the specified current speed and volume settings

H Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_BADPROD
Function not supported on this board

EDX_SYSTEM
Error from operating system; use dx_fileerrno() to obtain error value

H Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

/*
* Global Variables
*/

main ()
{
int dxxxdev;
int curspeed, curvolume;

/*
* Open the Voice Channel Device and Enable a Handler
*/
if ((dxxxdev = dx open("dxxxB1C1l", 0)) == -1) {
perror ("dxxxB1Cl");
exit(1);
}
/*
* Get the Current Volume and Speed Settings
*/
if (dx_getcursv(dxxxdev, &curvolume, &curspeed) == -1) {
printf ("Unable to Get the Current Speed and");
printf(" Volume Settings\n");
printf("Lasterror = %d Err Msg = %s\n",
ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
dx_close(dxxxdev);
exit(1);
} else {
printf("Volume = %d Speed = %d\n", curvolume, curspeed);

}

* Continue Processing

142 Dialogic® Voice API Library Reference
Dialogic Corporation

i

}

/

return the specified current speed and volume settings — dx_getcursv()

/*

* Close the opened Voice Channel Device

*/
f (dx close(dxxxdev) !=
perror ("close");

* Terminate the Program */

exit(0);

}

B See Also

dx_adjsv()
dx_addspddig()
dx_addvoldig()
dx_setsvmt()
dx_getsvmt()
dx_setsvcond()

dx_clrsvecond()

speed and volume modification tables in the Voice API Programming Guide

DX_SVMT data structure

Dialogic® Voice API Library Reference

Dialogic Corporation

0

)

{

143

dx_getdig() — collect digits from a channel digit buffer

dx_getdig()

Name:
Inputs:

Returns:

int dx_getdig(chdev, tptp, digitp, mode)

int chdev e valid channel device handle

DV_TPT *tptp * pointer to Termination Parameter Table structure
DV_DIGIT *digitp * pointer to User Digit Buffer structure

unsigned short mode * asynchronous/synchronous setting

0 to indicate successful initiation (asynchronous)

number of digits if successful (synchronous)
-1 if failure

Includes: srllib.h
dxxxlib.h
Category: 1/0
Mode: asynchronous or synchronous
B Description
The dx_getdig() function initiates the collection of digits from an open channel’s digit buffer.
Upon termination of the function, the collected digits are written in ASCIIZ format into the local
buffer, which is arranged as a DV_DIGIT structure.
The type of digits collected depends on the digit detection mode set by the dx_setdigtyp()
function (for standard voice board digits) or by the dx_addtone() function (for user-defined
digits).
Note: The channel must be idle, or the function will return an EDX_BUSY error.
Parameter Description
chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()
tptp points to the Termination Parameter Table structure, DV_TPT, which specifies
termination conditions for this function. For a list of possible termination
conditions, see DV_TPT, on page 301.
digitp points to the User Digit Buffer structure, DV_DIGIT, where collected digits
and their types are stored in arrays. For a list of digit types, see DV_DIGIT, on
page 300.
For more information about creating user-defined digits, see dx_addtone().
mode specifies whether to run dx_getdig() asynchronously or synchronously.
Specify one of the following:
e EV_ASYNC - run asynchronously
e EV_SYNC - run synchronously (default)
144 Dialogic® Voice API Library Reference

Dialogic Corporation

collect digits from a channel digit buffer — dx_getdig()

The channel’s digit buffer contains 31 or more digits, collected on a First-In First-Out (FIFO) basis.
Since the digits remain in the channel’s digit buffer until they are overwritten or cleared using
dx_clrdigbuf(), the digits in the channel’s buffer may have been received prior to this function
call. The DG_MAXDIGS define in dxxxlib.h specifies the maximum number of digits that can be
returned by a single call to dx_getdig().

Notes: 1. The maximum size of the digit buffer varies with the board type and technology. Multiple calls to
dx_getdig() may be required to retrieve all digits in the digit buffer.

2. By default, after the maximum number of digits is received, all subsequent digits will be
discarded.

3. Instead of getting digits from the DV_DIGIT structure using dx_getdig(), an alternative method
is to enable the DE_DIGITS call status transition event using dx_setevtmsk() and get them from
the DX_EBLK event queue data (ev_data) using dx_getevt() or from the DX_CST call status
transition data (cst_data) using sr_getevtdatap().

B Asynchronous Operation

To run this function asynchronously, set the mode parameter to EV_ASYNC. In asynchronous
mode, this function returns O to indicate success, and generates a TDX_GETDIG termination event
to indicate completion. Use the Dialogic® Standard Runtime Library (SRL) Event Management
functions to handle the termination event. For more information, see the Dialogic® Standard
Runtime Library API Library Reference.

When operating asynchronously, ensure that the digit buffer stays in scope for the duration of the
function.

After dx_getdig() terminates, use the ATDX_TERMMSK() function to determine the reason for
termination.

B Synchronous Operation

By default, this function runs synchronously. Termination of synchronous digit collection is
indicated by a return value greater than O that represents the number of digits received. Use
ATDX_TERMMSK() to determine the reason for termination.

If the function is operating synchronously and there are no digits in the buffer, the return value from
this function will be 0.

B Cautions

e Global DPD is not supported (DG_DPD_ASCII is not available).

e Some MF digits use approximately the same frequencies as DTMF digits (see Section 6.1,
“DTMEF and MF Tone Specifications”, on page 341). Because there is a frequency overlap, if
you have the incorrect kind of detection enabled, MF digits may be mistaken for DTMF digits,
and vice versa. To ensure that digits are correctly detected, only one kind of detection should
be enabled at any time. To set MF digit detection, use the dx_setdigtyp() function.

e A digit that is set to adjust play speed or play volume (using dx_setsvcond()) will not be
passed to dx_getdig(), and will not be used as a terminating condition. If a digit is defined
both to adjust play and to terminate play, then the play adjustment will take priority.

Dialogic® Voice API Library Reference 145
Dialogic Corporation

dx_getdig() — collect digits from a channel digit buffer

e The dx_getdig() does not support terminating on a user-defined tone (GTD). Specifying
DX_TONE in the DV_TPT tp_termno field has no effect on dx_getdig() termination and will
be ignored.

e In aTDM bus configuration, when a caller on one voice board is routed in a conversation on an
analog line with a caller on another voice board (analog inbound/outbound configuration) and
either caller sends a DTMF digit, both voice channels will detect the DTMF digit if the
corresponding voice channels are listening. This occurs because the network functionality of
the voice board cannot be separated from the voice functionality in an analog connection
between two callers. In this situation, you are not able to determine which caller sent the
DTMF digit.

B Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_BADTPT
Invalid DV_TPT entry

EDX _BUSY
Channel busy

EDX_SYSTEM
Error from operating system

B Example 1

This example illustrates how to use dx_getdig() in synchronous mode.

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main ()
{
DV_TPT tpt([3];
DV_DIGIT digp;
int chdev, numdigs, cnt;

/* open the channel with dx _open(). Obtain channel device descriptor
* in chdev

*/
if ((chdev = dx open ("dxxxB1C1l",NULL)) == -1) {

/* process error */

}

/* initiate the call */

/* Set up the DV _TPT and get the digits */
dx_clrtpt (tpt, 3);

tpt[0].tp_type = IO_CONT;
tpt[0].tp_termno = DX MAXDTMF; /* Maximum number of digits */
tpt[0].tp_length = 4; /* terminate on 4 digits */
146 Dialogic® Voice API Library Reference

Dialogic Corporation

tpt[0].tp_flags = TF_MAXDTMF;
tpt[l].tp_type = IO_CONT;
tpt[l].tp_termno = DX LCOFF;
tpt[l].tp_length = 3;
tpt[l].tp flags =
tpt[2].tp_type = I0_EOT;
tpt[2].tp_termno = DX_MAXTIME;
tpt[2].tp length = 100;
tpt[2].tp_flags = TF_MAXTIME;

TF _LCOFF|TF 10MS; /*

collect digits from a channel digit buffer — dx_getdig()

/* terminate if already in buf. */

/* LC off termination */
/* Use 30 msec (10 msec resolution
level triggered,

timer) */
clear history,
* 10 msec resolution */

/* Function Time */
/* 10 seconds
/* Edge-triggered */

(100 msec resolution timer) */

/* clear previously entered digits */

if (dx_clrdigbuf (chdev)
/* process error */

}

if ((numdigs =
/* process error */

for (cnt=0; cnt < numdigs;

== -1)

dx_getdig(chdev, tpt, &digp, EV_SYNC)) ==

{

cnt++) |
printf ("\nDigit received =

o oqn
>C, d",

digit type =

digp.dg _value[cnt], digp.dg typelcnt]);

/* go to next state */

H Example 2

This example illustrates how to use dx_getdig() in asynchronous mode.

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

#define MAXCHAN 24

int digit_handler();
DV_TPT stpt[3];
DV_DIGIT digp([256];

main ()

{
int i, chdev[MAXCHAN];
char *chnamep;
int srlmode;

/* Set SRL to run in polled mode. */

srlmode = SR_POLLMODE;
if (sr_setparm(SRL_DEVICE,
/* process error */

for (i=0; 1i<MAXCHAN; i++) {

/* Set chnamep to the channel name - e.g.,
/* open the channel with dx open().

* descriptor in chdev[i]

*/

SR_MODEID,

(void *)&srlmode) ==

dxxxB1C1l */
Obtain channel device

if ((chdev[i] = dx_ open(chnamep,NULL)) == -1) {
/* process error */
}
/* Using sr enbhdlr(), set up handler function to handle dx getdig()

Dialogic® Voice API Library Reference
Dialogic Corporation

147

dx_getdig() — collect digits from a channel digit buffer

* completion events on this channel.

*/

if (sr_enbhdlr (chdev[i], TDX GETDIG, digit_handler) == -1) {

/* process error */
}
/* initiate the call */

/* Set up the DV _TPT and get the digits */
dx_clrtpt (tpt,3);

tpt[0].tp_type = IO_CONT;
tpt[0].tp termno = DX MAXDTMF; /* Maximum number of digits */
tpt[0].tp_length = 4; /* terminate on 4 digits */
tpt[0].tp flags = TF MAXDTMF; /* terminate if already in buf*/
tpt[l].tp_type = IO0_CONT;
tpt[1l].tp_termno = DX LCOFF; /* LC off termination */
tpt[l].tp_length = 3; /* Use 30 msec (10 msec resolution timer) */
tpt[1l].tp flags = TF_LCOFF|TF_10MS; /* level triggered, clear

* history, 10 msec resolution */
tpt[2].tp_type = I0_EOT;
tpt[2].tp_termno = DX MAXTIME; /* Function Time */
tpt[2].tp_length = 100; /* 10 seconds (100 msec resolution timer) */
tpt[2].tp_flags = TF MAXTIME; /* Edge triggered */

/* clear previously entered digits */
if (dx_clrdigbuf (chdev[i]) == -1) {
/* process error */

}

if (dx_getdig(chdev[i], tpt, &digpl[chdev[i]], EV_ASYNC) == -1) {

/* process error */

/* Use sr waitevt() to wait for the completion of dx getdig().

* On receiving the completion event, TDX GETDIG,

control is transferred

* to the handler function previously established using sr_enbhdlr().

*/

int digit_handler ()
{
int chfd;
int cnt, numdigs;
chfd = sr_getevtdev();
numdigs = strlen(digp[chfd].dg value);
for (cnt=0; cnt < numdigs; cnt++) {

printf ("\nDigit received = %c, digit type =

sd",

digp[chfd].dg value[cnt], digplchfd].dg typelcnt]);

/* Kick off next function in the state machine model. */

return 0;

B See Also

e dx_addtone()

148

Dialogic® Voice API Library Reference
Dialogic Corporation

collect digits from a channel digit buffer — dx_getdig()

e dx_setdigtyp()
e DV_DIGIT data structure

Dialogic® Voice API Library Reference 149
Dialogic Corporation

dx_getevt() — monitor channel events synchronously

dx_getevt()

Name: int dx_getevt(chdev, eblkp, timeout)

Inputs: int chdev e valid channel device handle
DX_EBLK *eblkp e pointer to Event Block structure
int timeout e timeout value in seconds

Returns: O if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Call Status Transition Event

Mode: synchronous

B Description

The dx_getevt() function monitors channel events synchronously for possible call status transition
events in conjunction with dx_setevtmsk(). The dx_getevt() function blocks and returns control
to the program after one of the events set by dx_setevtmsk() occurs on the channel specified in the
chdev parameter. The DX_EBLK structure contains the event that ended the blocking.

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

eblkp points to the Event Block structure DX_EBLK, which contains the event that
ended the blocking

timeout specifies the maximum amount of time in seconds to wait for an event to

occur. timeout can have one of the following values:

¢ number of seconds — maximum length of time dx_getevt() will wait for an
event. When the time specified has elapsed, the function will terminate
and return an error.

e -1 —dx_getevt() will block until an event occurs; it will not time out.

® (0 — The function will return -1 immediately if no event is present.

Notes: 1. When the time specified in timeout expires, dx_getevt() will terminate and return an error. Use
the Standard Attribute function ATDV_LASTERR() to determine the cause of the error, which
in this case is EDX_TIMEOUT.

2. On Linux, an application can stop the dx_getevt() function from within a process or from
another process.

From within a process, a signal handler may issue a dx_stopch() with the handle for the device
waiting in dx_getevt(). The mode parameter to dx_stopch() should be OR’ed with the

EV_STOPGETEVT flag to stop dx_getevt(). In this case dx_getevt() will successfully return
with the event DE_STOPGETEVT. The EV_STOPGETEVT flag influences dx_getevt() only.

150 Dialogic® Voice API Library Reference
Dialogic Corporation

monitor channel events synchronously — dx_getevt()

It does not affect the existing functionality of dx_stopch(). Specifically, if a different function
besides dx_getevt() is in progress when dx_stopch() is called with the EV_STOPGETEVT
mode, that function will be stopped as usual. EV_STOPGETEVT will be ignored if dx_getevt()
is not in progress.

From another process, the dx_getevt() function may be stopped using the Inter-Process Event
Communication mechanism. A process can receive an event from another process on the handle
for the device waiting in dx_getevt(). The event-sending process needs to open the same device
and call the new function dx_sendevt() with its device handle. The dx_getevt() function in this
case will return with the event specified in dx_sendevt().

B Cautions

It is recommended that you enable only one process per channel. The event that dx_getevt() is
waiting for may change if another process sets a different event for that channel. See
dx_setevtmsk() for more information.

H Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_SYSTEM
Error from operating system

EDX_TIMEOUT
Timeout time limit is reached

B Example
#include <stdio.h>
#include <srllib.h>

#include <dxxxlib.h>

main ()

{

int chdev; /* channel descriptor */
int timeout; /* timeout for function */
DX EBLK eblk; /* Event Block Structure */

/* Open Channel */
if ((chdev = dx open ("dxxxB1C1l",NULL)) == -1) {
/* process error */

}

/* Set RINGS or WINK as events to wait on */
if (dx_setevtmsk(chdev,DM_RINGS|DM WINK) == -1) {
/* process error */

}

Dialogic® Voice API Library Reference 151
Dialogic Corporation

dx_getevt() — monitor channel events synchronously

152

/* Set timeout to 5 seconds */

timeout = 5;

if (dx_getevt(chdev, &eblk, timeout) == -1){
/* process error */
if (ATDV_LASTERR (chdev) == EDX_TIMEOUT) ({

printf ("Timed out waiting for event.\n");

}
else {
/* further error processing */

}

switch (eblk.ev_event) {

case DE_RINGS:
printf ("Ring event occurred.\n");
break;

case DE_WINK:
printf ("Wink event occurred.\n");
break;

B See Also

dx_setevtmsk()
DX_EBLK data structure

/* check if timed out */

Dialogic® Voice API Library Reference
Dialogic Corporation

retrieve feature support information for the device — dx_getfeaturelist()

dx_getfeaturelist()

Name:
Inputs:

Returns:

Includes:

Category:
Mode:

int dx_getfeaturelist(dev, feature_tablep)

int dev

FEATURE_TABLE *feature_tablep

0 on success
-1 on error

srllib.h
dxxxlib.h

Configuration

synchronous

¢ valid board or channel device handle

e pointer to features information structure

B Description

The dx_getfeaturelist() function returns information about the features supported on the device.
This information is contained in the FEATURE_TABLE data structure.

Parameter Description

dev specifies the valid device handle obtained when a board (in the format

dxxxBn) or channel (dxxxBnCm) was opened using dx_open().

Note: Retrieving information for a channel device can be time-consuming as
each channel is opened one by one. You can retrieve information for the
board device instead. All channel devices belonging to the specific board
device have the same features as the parent board.

feature_tablep specifies a pointer to the FEATURE_TABLE data structure which contains the

bitmasks of various features supported such as data format for play/record, fax
features, and more. For more information on this structure, see
FEATURE_TABLE, on page 327.

B Cautions

e This function fails if an invalid device handle is specified.
B Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADPARM
Parameter error

EDX_SH_BADEXTTS
TDM bus time slot is not supported at current clock rate

Dialogic® Voice API Library Reference 153

Dialogic Corporation

dx_getfeaturelist() — retrieve feature support information for the device

EDX_SH_BADINDX
Invalid Switch Handler index number

EDX_SH_BADTYPE
Invalid local time slot channel type (voice, analog, etc.)

EDX_SH_CMDBLOCK
Blocking command is in progress

EDX_SH_LIBBSY
Switch Handler library is busy

EDX_SH_LIBNOTINIT
Switch Handler library is uninitialized

EDX_SH_MISSING
Switch Handler is not present

EDX_SH_NOCLK
Switch Handler clock fallback failed

EDX_SYSTEM
Error from operating system

B Example

#include <stdio.h>
#include "srllib.h"
#include “dxxxlib.h”

void main(int argc, char ** argv)
{
char chname [32] = "dxxxB1C1";
int dev;
FEATURE_TABLE featureitable;

if ((dev = dx open(chname, 0)) == -1) {
printf ("Error opening \"%s\"\n", chname);
exit (1) ;
}
if (dx_getfeaturelist(dev, &feature table) == -1) {
printf ("$s: Error %d getting featurelist\n", chname, ATDV LASTERR(dev));
exit (2);

}

printf ("\n%s: Play Features:-\n", chname);

if (feature_table.ft play & FT_ADPCM) {
printf ("ADPCM ") ;

}

if (feature_ table.ft play & FT_PCM) {
printf ("PCM ");
}

if (feature_ table.ft play & FT_ALAW) {
printf ("ALAW ") ;
}

if (feature_ table.ft play & FT_ULAW) {
printf ("ULAW ") ;
}

154 Dialogic® Voice API Library Reference
Dialogic Corporation

retrieve feature support information for the device — dx_getfeaturelist()

if (feature_table.ft play & FT_LINEAR) {
printf ("LINEAR ") ;

if (feature_table.ft play & FT_ADSI) {
printf ("ADSI ");

if (feature_table.ft play & FT_DRT6KHZ) {
printf ("DRT6KHZ ") ;

if (feature_table.ft play & FT_DRT8KHZ) {
printf ("DRT8KHZ ") ;

if (feature_table.ft play & FT_DRT11KHZ) {
printf ("DRT11KHZ") ;

printf ("\n\n%s: Record Features:-\n", chname);
if (feature table.ft record & FT ADPCM) ({
printf ("ADPCM ") ;

if (feature table.ft record & FT PCM) {
printf ("PCM ") ;

if (feature table.ft record & FT ALAW) {
printf ("ALAW ") ;

if (feature table.ft record & FT ULAW) {
printf ("ULAW ") ;

if (feature table.ft record & FT LINEAR) ({
printf ("LINEAR ") ;

if (feature table.ft record & FT ADSI) ({
printf ("ADSI ");

if (feature table.ft record & FT DRT6KHZ) {
printf ("DRT6KHZ ") ;

if (feature table.ft record & FT DRT8KHZ) ({
printf ("DRT8KHZ ") ;

if (feature table.ft record & FT DRT11KHZ) {
printf ("DRT11KHZ") ;

printf ("\n\n%s: Tone Features:-\n", chname);
if (feature_table.ft tone & FT_GTDENABLED) ({
printf ("GTDENABLED ") ;

if (feature_table.ft tone & FT_GTGENABLED) ({
printf ("GTGENABLED ") ;

Dialogic® Voice API Library Reference 155
Dialogic Corporation

dx_getfeaturelist() — retrieve feature support information for the device

if (feature_table.ft_tone & FT_CADENCE_TONE) ({

printf ("CADENCE TONE") ;
printf ("\n\n%s: E2P Board Configuration Features:-\n", chname);
if (feature_ table.ft e2p brd cfg & FT_DPD) {

printf ("DPD ") ;

if (feature_table.ft _e2p brd cfg & FT_SYNTELLECT) {
printf ("SYNTELLECT") ;

printf ("\n\n%s: FAX Features:-\n", chname);
if (feature table.ft fax & FT_FAX) {
printf ("FAX ");

if (feature table.ft fax & FT_VFX40) {
printf ("VFX40 ");

if (feature table.ft fax & FT_VFX40E) {
printf ("VFX40E ") ;

if (feature table.ft fax & FT_VFX40E PLUS) {
printf ("VFX40E_PLUS") ;

if ((feature table.ft fax & FT_FAX EXT TBL)

&& ! (feature_table.ft send & FT_SENDFAX TXFILE ASCII))
printf ("SOFTFAX !\n");

printf ("\n\n%s: FrontEnd Features:-\n", chname);

if (feature_ table.ft front_end & FT_ANALOG) {

printf ("ANALOG ") ;

if (feature_table.ft front_end & FT_EARTH RECALL) {
printf ("EARTH RECALL");

printf ("\n\n%s: Miscellaneous Features:-\n", chname);

if (feature table.ft misc & FT_CALLERID) {
printf ("CALLERID") ;

printf ("\n") ;

dx_close(dev);

B See Also

e dx_getctinfo()

156 Dialogic® Voice API Library Reference
Dialogic Corporation

get the current parameter settings — dx_getparm()

dx_getparm()

Name:
Inputs:

Returns:

Includes:

Category:
Mode:

int dx_getparm(dev, parm, valuep)

int dev e valid channel or board device handle

unsigned long parm ® parameter type to get value of

void *valuep * pointer to variable for returning parameter value

0 if success
-1 if failure

srllib.h
dxxxlib.h

Configuration

synchronous

Description

The dx_getparm() function returns the current parameter settings for an open device. This
function returns the value of one parameter at a time.

A different set of parameters is available for board and channel devices. Board parameters affect all
channels on the board. Channel parameters affect the specified channel only.

The channel must be idle (that is, no I/O function running) when calling dx_getparm().

Parameter Description

dev specifies the valid device handle obtained when a board or channel was
opened using dx_open()

Dialogic® Voice API Library Reference 157
Dialogic Corporation

dx_getparm() — get the current parameter settings

158

Parameter Description

parm Specifies the define for the parameter type whose value is to be returned in the
variable pointed to by valuep.

The voice device parameters allow you to query and control device-level
information and settings related to the voice functionality. These parameters
are described in the dx_setparm() function description.

Board parameter defines are described in Table 1, “Voice Board Parameters”,
on page 265 and channel parameter defines are described in Table 2, “Voice
Channel Parameters”, on page 265.

valuep Points to the variable where the value of the parameter specified in parm
should be returned.

Note: You must use a void* cast on the returned parameter value, as
demonstrated in the Example section code for this function.

Note: valuep should point to a variable large enough to hold the value of the
parameter. The size of a parameter is encoded in the define for the
parameter. The defines for parameter sizes are PM_SHORT, PM_BYTE,
PM_INT, PM_LONG, PM_FLSTR (fixed length string), and PM_VLSTR
(variable length string). Most parameters are of type short.

B Cautions

Clear the variable in which the parameter value is returned prior to calling dx_getparm(), as
illustrated in the Example section. The variable whose address is passed to should be of a size
sufficient to hold the value of the parameter.

B Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX _BUSY
Channel is busy (when channel device handle is specified) or first channel is busy (when board
device handle is specified)

EDX_SYSTEM
Error from operating system

H Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main ()
{
int bddev;
unsigned short parmval;

Dialogic® Voice API Library Reference
Dialogic Corporation

/* open the board using dx_open().

get the current parameter settings — dx_getparm()

Obtain board device descriptor in

* bddev
*/
if ((bddev = dx_open ("dxxxBl",NULL)) == -1) {

/* process error */

parmval = 0; /* CLEAR parmval */

/* get the number of channels on the board. DXBD CHNUM is of type

* unsigned short as specified by the PM SHORT define in the definition
* for DXBD CHNUM in dxxxlib.h. The size of the variable parmval is

* sufficient to hold the value of DXBD_CHNUM.

*/

if (dx_getparm(bddev, DXBD_CHNUM,

/* process error */

}

(void *)g&parmval) == -1) {

printf ("\nNumber of channels on board = %d",parmval) ;

B See Also

e dx_setparm()

Dialogic® Voice API Library Reference
Dialogic Corporation

159

dx_GetStreaminfo() — retrieve information about the circular stream buffer

dx_GetStreaminfo()

Name: int dx_GetStreamInfo(hBuffer, &StreamStatStruct)

Inputs: int hBuffer e stream buffer handle
DX_STREAMSTAT * pointer to stream status structure
StreamStatStruct

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: streaming to board
Mode: synchronous

B Description

The dx_GetStreamInfo() function populates the stream status structure with the current status
information about the circular stream buffer handle passed into it. The data returned is a snapshot
of the status at the time dx_GetStreamlInfo() is called.

Parameter Description

hBuffer specifies the circular stream buffer handle

StreamStatStruct specifies a pointer to the DX_STREAMSTAT data structure. For more
information on this structure, see DX_STREAMSTAT, on page 315.

B Cautions
None.
B Errors

Unlike other Dialogic® Voice API library functions, the streaming to board functions do not use
SRL device handles. Therefore, ATDV_LASTERR() and ATDV_ERRMSGP() cannot be used
to retrieve error codes and error descriptions.

H Example

#include <srllib.h>
#include <dxxxlib.h>

main ()

{
int nBuffSize = 32768;
int hBuffer = -1;
DX_STREAMSTAT streamStat;

if ((hBuffer = dx_OpenStreamBuffer (nBuffSize)) < 0)
{

160 Dialogic® Voice API Library Reference
Dialogic Corporation

retrieve information about the circular stream buffer — dx_GetStreaminfo()

printf ("Error opening stream buffer \n");
}
if (dx_GetStreamInfo (hBuffer, &streamStat) < 0)
{
printf ("Error getting stream buffer info \n");
}
else
{
printf ("version=%d,
bytesIn=%d,
bytesOut=%d,
headPointer=%d,
tailPointer=%d,
currentState=%d,
numberOfBufferUnderruns=%d,
numberOfBufferOverruns=%d,
BufferSize=%d,
spaceAvailable=%d,
highWaterMark=%d,
lowWaterMark=%d \n";
streamStat.
streamStat.
streamStat.

version,streamStat.bytesIn, streamStat.bytesOut, streamStat.headPointer,
tailPointer, streamStat.currentState, streamStat.numberOfBufferUnderruns,
numberOfBufferOverruns, streamStat.BufferSize, streamStat.spaceAvailable,
streamStat.highWaterMark, streamStat.lowWaterMark) ;

if (dx CloseStreamBuffer (hBuffer) < 0)

printf ("Error closing stream buffer \n");

B See Also

e dx_OpenStreamBuffer()

Dialogic® Voice API Library Reference

161
Dialogic Corporation

dx_getsvmi() — return the current speed or volume modification table

dx_getsvmt()

Name:
Inputs:

Returns:

Includes:

Category:
Mode:

int dx_getsvmt(chdeyv, tabletype, svmtp)

int chdev e valid channel device handle

unsigned short tabletype e type of table to retrieve (speed or volume)

DX_SVMT * svmtp * pointer to speed or volume modification table structure to retrieve

0 if success
-1 if failure

srllib.h
dxxxlib.h

Speed and Volume

synchronous

162

Note:

Description

The dx_getsvmt() function returns the current speed or volume modification table to the
DX_SVMT structure.

Before using the speed control feature, you must enable this feature in the [decoder] section of the
CONFIG file. For more information, see the Configuration Guide applicable to your release.

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

tabletype specifies whether to retrieve the speed or the volume modification table:
e SV_SPEEDTBL - retrieve the speed modification table values
¢ SV_VOLUMETBL - retrieve the volume modification table values

svmtp points to the DX_SVMT structure that contains the speed and volume
modification table entries

Cautions
None.
Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERRC() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

Dialogic® Voice API Library Reference
Dialogic Corporation

return the current speed or volume modification table — dx_getsvmti()

EDX_BADPROD
Function not supported on this board

EDX_SPDVOL
Must specify either SV_SPEEDTBL or SV_VOLUMETBL

EDX_SYSTEM
Error from operating system

B Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

/*
* Global Variables
*/

main ()
{
DX_SVMT svmt;

int dxxxdev, index;
/9:
* Open the Voice Channel Device and Enable a Handler
*/
if ((dxxxdev = dx _open("dxxxB1C1", 0)) == -1) {
perror ("dxxxB1Cl");
exit(1);
}
/9:
* Get the Current Volume Modification Table
*/
memset (&svmt, 0, sizeof(DX _SVMT));
if (dx_getsvmt(dxxxdev, SV_VOLUMETBL, &svmt == -1){
printf ("Unable to Get the Current Volume");
printf(" Modification Table\n");

printf("Lasterror = $d Err Msg = %$s\n",
ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP (dxxxdev));
dx_close (dxxxdev);
exit(1);
} else {
printf("Volume Modification Table is:\n");
for (index = 0; index < 10; index++) {
printf("decrease[%d] = %d\n", index, svmt.decrease[index]);

}

printf("origin = %d\n", svmt.origin);
for (index = 0; index < 10; index++) {
printf("increase[%d] = %d\n", index, svmt.increase[index]);

/*

* Continue Processing

*/

Dialogic® Voice API Library Reference 163
Dialogic Corporation

dx_getsvmi() — return the current speed or volume modification table

164

}

/*

* Close the opened Voice Channel Device
*/
if (dx close(dxxxdev) != 0) {

perror ("close");

}

/* Terminate the Program */
exit(0);

See Also

dx_addspddig()
dx_addvoldig()
dx_adjsv()
dx_clrsvcond()
dx_getcursv()
dx_setsvcond()

dx_setsvmt()

speed and volume modification tables in Dialogic® Voice API Programming Guide

DX_SVMT data structure

Dialogic® Voice API Library Reference

Dialogic Corporation

get TDM bus time slot number of voice transmit channel — dx_getxmitslot()

dx_getxmitsilot()

Name:

Inputs:

Returns:

Includes:

Category:
Mode:

int dx_getxmitslot(chdev, sc_tsinfop)
int chdev ¢ valid channel device handle
SC_TSINFO *sc_tsinfop e pointer to TDM bus time slot information structure

0 on success
-1 on error

srllib.h
dxxxlib.h

TDM routing

synchronous

Note:

Description

The dx_getxmitslot() function returns the time division multiplexing (TDM) bus time slot number
of the voice transmit channel. The TDM bus time slot information is contained in an SC_TSINFO
structure that includes the number of the TDM bus time slot connected to the voice transmit
channel. For more information on this structure, see SC_TSINFO, on page 330.

TDM bus convenience function nr_scroute() includes dx_getxmitslot() functionality.

Parameter Description

chdev specifies the voice channel device handle obtained when the channel was
opened using dx_open()

sc_tsinfop specifies a pointer to the data structure SC_TSINFO

A voice channel on a TDM bus-based board can transmit on only one TDM bus time slot.

Cautions

® This function fails when an invalid channel device handle is specified.
Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADPARM
Parameter error

EDX_SH_BADCMD
Command is not supported in current bus configuration

EDX_SH_BADINDX
Invalid Switch Handler index number

Dialogic® Voice API Library Reference 165
Dialogic Corporation

dx_getxmitslot() — get TDM bus time slot number of voice transmit channel

EDX_SH_BADLCLTS
Invalid channel number

EDX_SH_BADMODE
Function is not supported in current bus configuration

EDX_SH_BADTYPE
Invalid channel type (voice, analog, etc.)

EDX_SH_CMDBLOCK
Blocking command is in progress

EDX_SH_LCLDSCNCT
Channel is already disconnected from TDM bus

EDX_SH_LIBBSY
Switch Handler library is busy

EDX_SH_LIBNOTINIT
Switch Handler library is uninitialized

EDX_SH_MISSING
Switch Handler is not present

EDX_SH_NOCLK
Switch Handler clock fallback failed

EDX_SYSTEM

Error from operating system

B Example

#include <windows.h>
#include <srllib.h>

main ()

{
int chdev; /* Channel device handle */
SC_TSINFO sc_ tsinfo; /* Time slot information structure */
long scts; /* TDM bus time slot */

/* Open board 1 channel 1 devices */
if ((chdev = dx open ("dxxxB1Cl", 0)) == -1) {
/* process error */

}

/* Fill in the TDM bus time slot information */
sc_tsinfo.sc_numts = 1;
sc_tsinfo.sc tsarrayp = é&scts;

/* Get TDM bus time slot connected to transmit of voice channel 1 on board ...1 */

if (dx_getxmitslot(chdev, &sc_tsinfo) == -1) {
printf ("Error message = %s", ATDV_ERRMSGP (chdev)) ;
exit(1);

}

printf ("%s transmitting on TDM bus time slot %d", ATDV_NAMEP (chdev),scts);

return (0) ;

B See Also

e dx_listen()

166 Dialogic® Voice API Library Reference

Dialogic Corporation

connect a voice listen channel to TDM bus time slot — dx_listen()

dx_listen()

Name: int dx_listen(chdev, sc_tsinfop)
Inputs: int chdev e valid channel device handle
SC_TSINFO *sc_tsinfop e pointer to TDM bus time slot information structure

Returns: 0 on success
-1 on error

Includes: srllib.h
dxxxlib.h

Category: TDM Routing
Mode: synchronous

B Description

The dx_listen() function connects a voice receive channel to a TDM bus time slot, using
information stored in the SC_TSINFO data structure. The function sets up a half-duplex
connection. For a full-duplex connection, the receive channel of the other device must be connected
to the voice transmit channel.

The dx_listen() function returns immediately with success before the operation is completed.
After the operation is completed, the voice receive channel is connected to the TDM bus time slot.

Although multiple voice channels may listen (be connected) to the same TDM bus time slot, the
receive of a voice channel can connect to only one TDM bus time slot.

Note: The dx_listenEx() function extends and enhances the dx_listen() function. See the
dx_listenEx() function reference for more information.

Note: 'TDM bus convenience function nr_scroute() includes dx_listen() functionality.

Parameter Description
chdev specifies the voice channel device handle obtained when the channel was
opened using dx_open()
sc_tsinfop specifies a pointer to the SC_TSINFO structure
B Cautions

¢ This function fails when an invalid channel device handle is specified or when an invalid TDM
bus time slot number is specified.

Dialogic® Voice API Library Reference 167
Dialogic Corporation

dx_listen() — connect a voice listen channel to TDM bus time slot

H Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADPARM
Parameter error

EDX_SH_BADCMD
Command is not supported in current bus configuration

EDX_SH_BADEXTTS
TDM bus time slot is not supported at current clock rate

EDX_SH_BADINDX
Invalid Switch Handler index number

EDX_SH_BADLCLTS
Invalid channel number

EDX_SH_BADMODE
Function not supported in current bus configuration

EDX_SH_CMDBLOCK
Blocking command is in progress

EDX_SH_LCLTSCNCT
Channel is already connected to TDM bus

EDX_SH_LIBBSY
Switch Handler library busy

EDX_SH_LIBNOTINIT
Switch Handler library uninitialized

EDX_SH_MISSING
Switch Handler is not present

EDX_SH_NOCLK
Switch Handler clock fallback failed

EDX_SYSTEM
Error from operating system

168 Dialogic® Voice API Library Reference
Dialogic Corporation

B Example

#include <stdio.h>

#include <srllib.h>
#include <dxxxlib.h>
#include <ipmlib.h>

main ()

{
int dxdev, ipdev;
SC_TSINFO sc_tsi
long scts;

/* Open IP channe

if ((ipdev = ipm O
/* process e

}

/* Open voice cha

if ((dxdev = dx o
/* process e

}

connect a voice listen channel to TDM bus time slot — dx_listen()

/* Channel device handles */
nfo; /* Time slot information structure */
/* TDM bus time slot */

1 ipmB1C1 */
pen ("ipmB1C1", NULL, EV_SYNC)) == -1) {
rror */

nnel dxxxB1Cl */
pen ("dxxxB1C1l", 0)) == -1) {
rror */

/* Fill in the TDM bus time slot information */

sc_tsinfo.sc_numt
sc_tsinfo.sc_tsar

/* Get transmit t
if (ipm_GetXmitSl
/* process e

/* Connect the re
...0of IP chann

s =1;
rayp = &scts;

ime slot of IP channel ipmB1Cl */
ot (ipdev, &sc_tsinfo, EV_SYNC) == -1) {
rror */

ceive timeslot of voice channel dxxxB1Cl to the transmit time slot
el ipmB1Cl */

if (dx_listen(dxdev, &sc_tsinfo) == -1) {

printf ("Error
exit (1) ;

B See Also

message = %s", ATDV_ERRMSGP (dxdev)) ;

e dx_getxmitslot()

e dx_unlisten()
e dx_listenEx()

e dx_unlistenEx()
e ipm_Open() in IP Media Library API Library Reference
e ipm_GetXmitSlot() in /P Media Library API Library Reference

Dialogic® Voice API Library Reference 169

Dialogic Corporation

dx_listenEx() — connect a voice listen channel to TDM bus time slot

dx_listenEx()

Name:

Inputs:

Returns:

Includes:

Category:
Mode:

int dx_listenEx(chdev, sc_tsinfop, mode)

int chdev e valid channel device handle

SC_TSINFO *sc_tsinfop ¢ pointer to TDM bus time slot information structure
unsigned short mode * mode flag

0 on success
-1 on error

srllib.h
dxxxlib.h

TDM Routing

asynchronous or synchronous

170

Description

The dx_listenEx() function connects a voice receive channel to a TDM bus time slot, using
information stored in the SC_TSINFO data structure. The function sets up a half-duplex
connection. For a full-duplex connection, the receive channel of the other device must be connected
to the voice transmit channel.

The dx_listenEx() function extends and enhances the dx_listen() function in two ways. First, it
adds support for the asynchronous mode of operation and provides event notification upon
successful completion or failure of the routing. Second, it enhances the synchronous functionality
by blocking the call until the listen action is completed.

Although multiple voice channels may listen (be connected) to the same TDM bus time slot, the
receive of a voice channel can connect to only one TDM bus time slot.

Parameter Description

chdev specifies the voice channel device handle obtained when the channel was
opened using dx_open()

sc_tsinfop specifies a pointer to the SC_TSINFO structure

mode specifies the mode of operation:

e EV_SYNC - synchronous mode (default)
e EV_ASYNC - asynchronous mode

In synchronous mode, the voice channel is connected to the TDM bus time slot upon return from
the dx_listenEx() function. By default, this function runs in synchronous mode and returns a O to
indicate that it has completed successfully. If a failure occurs, this function returns -1.

In asynchronous mode, a TDX_LISTEN event is queued upon successful completion of the
routing. If a failure occurs during routing, a TDX_LISTEN_FAIL event is queued. In some limited

Dialogic® Voice API Library Reference
Dialogic Corporation

connect a voice listen channel to TDM bus time slot — dx_listenEx()

cases, such as when invalid arguments are passed to the library, the function may fail before routing
is attempted. In such cases, the function returns -1 immediately to indicate failure and no event is
queued.

B Cautions

e This function fails when an invalid channel device handle is specified or when an invalid TDM
bus time slot number is specified.

* When using this function in asynchronous mode, do not issue another listen operation on the
same channel using either dx_listen() or dx_listenEx() until the TDX_LISTEN event is
received. If you attempt to do this, the listen function will return failure.

e Itis recommended that you use dx_listenEx() and dx_unlistenEx() in your application,
rather than dx_listen() and dx_unlisten(). In particular, do not use both pairs of functions on
the same channel. Doing so may result in unpredictable behavior.

B Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Parameter error

EDX_SH_BADCMD
Command is not supported in current bus configuration

EDX_SH_BADEXTTS
TDM bus time slot is not supported at current clock rate

EDX_SH_BADINDX
Invalid Switch Handler index number

EDX_SH_BADLCLTS
Invalid channel number

EDX_SH BADMODE
Function not supported in current bus configuration

EDX_SH_CMDBLOCK
Blocking command is in progress

EDX_SH_LCLTSCNCT
Channel is already connected to TDM bus

EDX_SH_LIBBSY
Switch Handler library busy

EDX_SH_LIBNOTINIT
Switch Handler library uninitialized

EDX_SH_MISSING
Switch Handler is not present

EDX_SH_NOCLK
Switch Handler clock fallback failed

Dialogic® Voice API Library Reference 171
Dialogic Corporation

dx_listenEx() — connect a voice listen channel to TDM bus time slot

172

EDX_SYSTEM
Error from operating system

B Example 1: Synchronous Mode

This example code for dx_listenEx() illustrates the synchronous mode of operation.

#include <stdio.h>

#include <srllib.h>
#include <dxxxlib.h>
#include <ipmlib.h>

main ()

{

int dxdev,
SC_
long scts;

/*

TSINFO sc_tsinfo;
/* TDM bus time slot */

Open IP channel ipmB1Cl */

if ((ipdev = ipm Open("ipmB1C1", NULL, EV_SYNC)) ==

/*
if

/*

sc_
sc_

/*
if

/* process error */

Open voice channel dxxxB1Cl */
((dxdev = dx_open ("dxxxB1Cl", 0)) == -1) {
/* process error */

Fill in the TDM bus time slot information */
tsinfo.sc_numts = 1;
tsinfo.sc_tsarrayp = &scts;

Get transmit time slot of IP channel ipmB1C1l*/
(ipm GetXmitSlot (ipdev, &sc_tsinfo, EV_SYNC)

/* process error */

ipdev; /* Channel device handles */

-1)

== -1)

/* Time slot information structure */

{

{

Connect the receive time slot of voice channel dxxxB1Cl to the transmit time slot

.of IP channel ipmB1C1l */

(dx_listenEx (dxdev, &sc_tsinfo, EV_SYNC) == -1)

printf ("Error message = %s", ATDV_ERRMSGP (dxdev)) ;

exit (1) ;

B Example 2: Asynchronous Mode

{

This example code for dx_listenEx() illustrates the asynchronous mode of operation.

#include <stdio.h>

#include <srllib.h>
#include <dxxxlib.h>
#include <ipmlib.h>

main ()

{

int dxdev,
SC_
long scts;

ipdev; /* Channel device handles */
TSINFO sc_tsinfo;
/* TDM bus time slot */

int srlmode;

/*

Set SRL to run in polled mode. */

srlmode = SR_POLLMODE;

if

(sr_setparm(SRL_DEVICE, SR_MODEID,

/* Time slot information structure */

(void *)&srlmode) == -1) {

Dialogic® Voice API Library Reference
Dialogic Corporation

connect a voice listen channel to TDM bus time slot — dx_listenEx()

/* process error */

}

/* Open IP channel ipmB1Cl */
if ((ipdev = ipm Open ("ipmB1C1l", NULL, EV_SYNC)) == -1) {
/* process error */

}

/* Open voice channel dxxxB1Cl */
if ((dxdev = dx_open ("dxxxB1Cl", 0)) == -1) {
/* process error */

}

/* Fill in the TDM bus time slot information */
sc_tsinfo.sc_numts = 1;
sc_tsinfo.sc _tsarrayp = é&scts;

/* Get transmit time slot of IP channel ipmB1Cl */
if (ipm_GetXmitSlot (ipdev, &sc_tsinfo, EV_SYNC) == -1) {
/* process error */

}

/* Connect the receive time slot of voice channel dxxxB1lCl to the transmit time slot
...of IP channel ipmB1Cl */

if (dx_listenEx(dxdev, &sc_tsinfo, EV_ASYNC) == -1) {
printf ("Error message = %s", ATDV_ERRMSGP (dxdev)) ;
exit(1);

}

/* Use sr waitevt to wait for the TDX LISTEN event */

B See Also

e dx_unlistenEx()

e dx_unlisten()

e dx_listen()

e ipm_Open()in Dialogic® IP Media Library API Library Reference

e ipm_GetXmitSlot() in Dialogic® IP Media Library API Library Reference

Dialogic® Voice API Library Reference 173
Dialogic Corporation

dx_mreciottdata() — record voice data from two TDM bus time slots

dx_mreciottdata()

Name: dx_mreciottdata (devd, iotp, tptp, xpb, mode, sc_tsinfop)

Inputs: int devd e valid channel device handle
DX_IOTT *iotp * pointer to I/O transfer table
DV_TPT *tptp * pointer to termination control block
DX_XPB *xpb * pointer to I/O transfer parameter block
unsigned short mode e switch to set audible tone, or DTMF termination

SC_TSINFO *sc_tsinfop ® pointer to time slot information structure

Returns: 0 success
-1 error return code

Includes: srllib.h
dxxxlib.h

Category: /O

Mode: asynchronous or synchronous

B Description

The dx_mreciottdata() function records voice data from two TDM bus time slots. The data may
be recorded to a combination of data files, memory or custom devices.

This function is used for the transaction record feature, which allows you to record two TDM bus
time slots from a single channel. Voice activity on two channels can be summed and stored in a
single file, device, and/or memory.

174 Dialogic® Voice API Library Reference
Dialogic Corporation

Parameter

record voice data from two TDM bus time slots — dx_mreciottdata()

Description

devd

iotp

tptp

xpb

mode

sc_tsinfop

specifies the valid channel device handle on which the recording is to occur.
The channel descriptor may be that associated with either of the two TDM bus
transmit time slots or a third device also connected to the TDM bus.

points to the I/O Transfer Table Structure, DX_IOTT, which specifies the
order of recording and the location of voice data. For more information on this
structure, see DX_IOTT, on page 312.

points to the Termination Parameter Table Structure, DV_TPT, which
specifies the termination conditions for recording. For more information on
this structure, see DV_TPT, on page 301.

points to a DX_XPB structure, which specifies the file format, data format,
sampling rate, and resolution for I/O data transfer. For more information on
this structure, see DX_XPB, on page 324.

specifies the attributes of the recording mode. One or more of the following
values listed below may be selected in the bitmask using bitwise OR:

Choose one only:
e EV_ASYNC - asynchronous mode
¢ EV_SYNC - synchronous mode

Choose one or more:

e (- standard record mode

e MD_NOGAIN - record without automatic gain control (AGC). AGC is on
by default.

¢ RM_NOTIFY — (Windows® only) generate record notification beep tone.

* RM_TONE - transmit a 200 msec tone before initiating record.

points to the SC_TSINFO structure and specifies the TDM bus transmit time
slot values of the two time slots being recorded.

In the SC_TSINFO structure, sc_numts should be set to 2 for channel
recording and sc_tsarrayp should point to an array of two long integers,
specifying the two TDM bus transmit time slots from which to record.

Note: When using RM_TONE bit for tone-initiated record, each time slot must be “listening” to the
transmit time slot of the recording channel; the alert tone can only be transmitted on the recording
channel’s transmit time slot.

After dx_mreciottdata() is called, recording continues until one of the following occurs:

e dx_stopch() is called on the channel whose device handle is specified in the devd parameter

e the data requirements specified in the DX_IOTT structure are fulfilled

e one of the conditions for termination specified in the DV_TPT structure is satisfied

B Cautions

* Allfiles specified in the DX_IOTT structure are of the file format specified in DX_XPB.
e All files recorded will have the same data encoding and rate as DX_XPB.

e When recording VOX files, the data format is specified in DX_XPB rather than through the
dx_setparm() function.

Dialogic® Voice API Library Reference 175

Dialogic Corporation

dx_mreciottdata() — record voice data from two TDM bus time slots

176

Voice data files that are specified in the DX_IOTT structure must be opened with the
O_BINARY flag.

If both time slots transmit a DTMF digit at the same time, the recording will contain an
unintelligible result.

Since this function uses dx_listen() to connect the channel to the first specified time slot, any
error returned from dx_listen() will terminate the function with the error indicated.

This function connects the channel to the time slot specified in the SC_TSINFO data structure
sc_tsarrayp[0] field and remains connected after the function has completed. Both
sc_tsarrayp[0] and sc_tsarrayp[1] must be within the range allowed in SC_TSINFO. No
checking is done to verify that sc_tsarrayp[0] or sc_tsarrayp[1] has been connected to a valid
channel.

Upon termination of the dx_mreciottdata() function, the recording channel continues to
listen to the first time slot (pointed to by sc_tsarray[0]).

The application should check for a TDX_RECORD event with T_STOP event data after
executing a dx_stopch() function during normal and transaction recording. This will ensure
that all data is written to the disk.

When using dx_mreciottdata() and a dial tone is present on one of the time slots, digits will
not be detected until dial tone is no longer present. This is because the DSP cannot determine
the difference between dial tone and DTMF tones.

Tone termination conditions such as DTMF and TONE apply only to the primary input of the
function; that is, the TDM time slot specified in the SC_TSINFO data structure
sc_tsarraypl[0] field.

Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADDEV

Invalid device handle

EDX_BADIOTT

Invalid DX_IOTT entry

EDX_BADPARM

Invalid parameter passed

EDX_BADTPT

Invalid DV_TPT entry

EDX_BUSY

Busy executing I/O function

EDX_SYSTEM

Error from operating system

Example 1

The following example is for Linux applications.

Dialogic® Voice API Library Reference
Dialogic Corporation

record voice data from two TDM bus time slots — dx_mreciottdata()

#include <fcntl.h>
#include <srllib.h>
#include <dxxxlib.h>

#include <stdio.h>
#include <stdlib.h>

#define MAXLEN 100000

/* Define logging macro */

#define log rc(B, F) \
printf (" %-60.60s: ", #B); \
fflush (stdout); \
retval = B; \
printf ("RC=%d\n", retval); \
if (retval F) { printf ("Fatal error!\n"); exit (1); }

main(int argc, char *argv([])
{

int playerOne, playerTwo, recorder;

DX_IOTT playOneiott={0}, playTwoiott={0}, recordiott={0};
DV_TPT playOnetpt={0}, playTwotpt={0}, recordtpt ={0};
DX _XPB recordxpb={0}, playOnexpb={0}, playTwoxpb={0};

SC_TSINFO playOnetsinfo, playTwotsinfo, recordtsinfo;

long playOnescts, playTwoscts;
long mRectslots[32];

/* open two play channels and one record channel */

if ((playerOne = dx open(argv([3], NULL)) == -1)
printf ("Could not open %$s\n", argv[3]);
exit (1);

}

if ((playerTwo = dx_open(argv([4], NULL)) == -1)
printf ("Could not open %s\n", argv([4]);
exit (1);

}

if ((recorder = dx open(argv[5], NULL)) == -1) {

printf ("Could not open %s\n", argv[5]);
exit (1);

dx_clrtpt (&playOnetpt, 1);
dx_clrtpt (&playTwotpt, 1);
dx_clrtpt (&recordtpt, 1);

log_rc (playTwoiott.io fhandle = open (argv[2],
open (argv[l],

log rc (playOneiott.io fhandle

playOneiott.io type = IO _DEV | IO EOT;
playOneiott.io_offset = 0;
playOneiott.io length = -1;

playOnexpb.wFileFormat = FILE FORMAT VOX;
playOnexpb.wDataFormat = DATA_ FORMAT MULAW;
playOnexpb.nSamplesPerSec = DRT 8KHZ;
playOnexpb.wBitsPerSample = 8;

playTwoiott.io_type = IO_DEV | IO_EOT;
playTwoiott.io offset =
playTwoiott.io_length

playTwoxpb.wFileFormat = FILE_FORMAT_VOX;
playTwoxpb.wDataFormat = DATA FORMAT MULAW;
playTwoxpb.nSamplesPerSec = DRT_8KHZ;

Dialogic® Voice API Library Reference
Dialogic Corporation

{

O _RDONLY), == -1)
0 RDONLY), == -1)

177

dx_mreciottdata() — record voice data from two TDM bus time slots

playTwoxpb.wBitsPerSample = 8;

/* Get channels' external time slots and fill in mRectslots[] array */

playOnetsinfo.sc numts = 1;
playOnetsinfo.sc_tsarrayp = &playOnescts;
if (dx getxmitslot (playerOne, &playOnetsinfo) == -1){

/* Handle error */

playTwotsinfo.sc numts = 1;
playTwotsinfo.sc_tsarrayp = &playTwoscts;
if (dx getxmitslot (playerTwo, &playTwotsinfo) == -1) {

/* Handle error */

mRectslots[1l] = playTwoscts;
mRectslots[0] = playOnescts;

/* Set up SC_TSINFO structure */
recordtsinfo.sc _numts = 2;
recordtsinfo.sc_tsarrayp = &mRectslots[0];

log_rc (recordiott.io_fhandle = open(argv[6], O_CREAT | O RDWR, 0666), == -1);
recordiott.io type = IO _EOT|IO DEV;

recordiott.io offset = 0;

recordiott.io length = MAXLEN;

recordiott.io bufp = 0;

recordiott.io nextp = NULL;

recordxpb.wFileFormat = FILE FORMAT VOX;
recordxpb.wbDataFormat = DATA FORMAT MULAW;
recordxpb.nSamplesPerSec = DRT_8KHZ;
recordxpb.wBitsPerSample = 8;

/* Play user-supplied files */
log rc (dx playiottdata(playerOne, &playOneiott, NULL, &playOnexpb, EV_ASYNC), ==-1)
log_rc (dx_playiottdata(playerTwo, &playTwoiott, NULL, &playTwoxpb, EV_ASYNC), ==-1)

/* And record from both play channels */
printf ("\n Starting dx mreciottdata");
if (dx_mreciottdata(recorder, &recordiott, NULL, &recordxpb, EV_SYNC|RM TONE,
&recordtsinfo) == -1) {
printf ("Error recording from dxxxB1Cl and dxxxB1C2\n");
printf ("error = %$s\n", ATDV_ERRMSGP (recorder)) ;
exit (2);
}

printf ("\n Finished dx mreciottdata\n");

/* Display termination condition value */
printf ("The termination value = %d\n", ATDX TERMMSK (playerOne));

/* Close two play channels and one record channel */
if (dx_close(recorder) == -1){

printf ("Error closing recorder \n");

printf ("errno = %d\n", errno);

exit (3);
}
if (dx close(playerTwo) == -1){
printf ("Error closing playerTwo\n");
printf ("errno = %d\n", errno);
exit (3);
}
if (dx_close(playerOne) == -1) {

printf ("Error closing playerOne\n");
printf ("errno = %d\n", errno);
exit (3);

178 Dialogic® Voice API Library Reference
Dialogic Corporation

record voice data from two TDM bus time slots — dx_mreciottdata()

if (close(recordiott.io_fhandle) == -1)({
printf ("File close error \n");

exit (1);

}

if (close(playOneiott.io_fhandle) == -1){
printf ("File close error \n");
exit (1);

}

if (close(playTwoiott.io_fhandle) == -1){

printf ("File close error \n");
exit (1);

}

/* And finish */

return 1;

H Example 2

The following example is for Windows® applications.
#include <fcntl.h>

#include <srllib.h>

#include <dxxxlib.h>

#include <windows.h>

#include <stdio.h>
#include <stdlib.h>

#define MAXLEN 100000

/* Define logging macro */

#define log rc(B, F) \
printf (" %-60.60s: ", #B); \
fflush (stdout); \
retval = B; \
printf ("RC=%d\n", retval); \
if (retval F) { printf ("Fatal error!\n"); exit (1);

main(int argc, char *argv([])
{

int playerOne, playerTwo, recorder;

DX IOTT playOneiott={0}, playTwoiott={0}, recordiott={0};

DV_TPT playOnetpt={0}, playTwotpt={0}, recordtpt ={0};
DX XPB recordxpb={0}, playOnexpb={0}, playTwoxpb={0};

SC_TSINFO playOnetsinfo, playTwotsinfo, recordtsinfo;
long playOnescts, playTwoscts;
long mRectslots[32];

/* open two play channels and one record channel */
if ((playerOne = dx open(argv[3], NULL)) == -1) {
printf ("Could not open %$s\n", argv[3]);

exit (1);

}

if ((playerTwo = dx_open(argv([4], NULL)) == -1) {
printf ("Could not open %s\n", argv[4]);
exit (1);

}

if ((recorder = dx_open(argv([5], NULL)) == -1) {

printf ("Could not open $%$s\n", argv[5]);
exit (1);

Dialogic® Voice API Library Reference
Dialogic Corporation

179

dx_mreciottdata() — record voice data from two TDM bus time slots

180

dx_clrtpt (&playOnetpt, 1);
dx clrtpt (&playTwotpt, 1);
dx_clrtpt (&recordtpt, 1);

log_rc (playTwoiott.io_ fhandle = dx_ fileopen (argv[2], O RDONLY|O_ BINARY), == -1)
log rc (playOneiott.io fhandle = dx fileopen (argv[1l], O RDONLY|O BINARY), -1)
playOneiott.io type = IO _DEV | IO _EOT;
playOneiott.io_offset = 0;
playOneiott.io length = -1;
playOnexpb.wFileFormat = FILE FORMAT VOX;
playOnexpb.wDataFormat = DATA_ FORMAT MULAW;
playOnexpb.nSamplesPerSec = DRT_8KHZ;
playOnexpb.wBitsPerSample = 8;
playTwoiott.io_type = IO_DEV | IO EOT;
playTwoiott.io offset = 0;
playTwoiott.io_length = -1;
playTwoxpb.wFileFormat = FILE_ FORMAT_ VOX;
playTwoxpb.wDataFormat = DATA FORMAT MULAW;
playTwoxpb.nSamplesPerSec = DRT_8KHZ;
playTwoxpb.wBitsPerSample = 8;
/*
* Get channels' external time slots and fill in mRectslots[] array
*/
playOnetsinfo.sc_numts = 1;
playOnetsinfo.sc tsarrayp = &playOnescts;
if (dx_getxmitslot (playerOne, &playOnetsinfo) == -1){
/* Handle error */
}
playTwotsinfo.sc_numts = 1;
playTwotsinfo.sc tsarrayp = &playTwoscts;
if (dx_getxmitslot (playerTwo, &playTwotsinfo) == -1) {
/* Handle error */
}
mRectslots[1l] = playTwoscts;
mRectslots[0] = playOnescts;
/* Set up SC_TSINFO structure */
recordtsinfo.sc_numts = 2;
recordtsinfo.sc_tsarrayp = &mRectslots[0];
log rc (recordiott.io fhandle = dx fileopen(argv[6], O_RDWR|O BINARY|O CREAT), == -1);
recordiott.io type = IO_EOT|IO_DEV;
recordiott.io offset = 0;
recordiott.io_length = MAXLEN;
recordiott.io bufp = 0;
recordiott.io nextp = NULL;
recordxpb.wFileFormat = FILE_FORMAT_ VOX;
recordxpb.wbDataFormat = DATA FORMAT MULAW;
recordxpb.nSamplesPerSec = DRT_8KHZ;
recordxpb.wBitsPerSample = 8;
/* Play user-supplied files */
log_rc (dx_playiottdata(playerOne, &playOneiott, NULL, &playOnexpb, EV_ASYNC), ==-1)
log rc (dx playiottdata(playerTwo, &playTwoiott, NULL, &playTwoxpb, EV_ASYNC), ==-1)

/* And record from both play channels */

printf ("\n Starting dx_mreciottdata");

if (dx_mreciottdata(recorder, &recordiott, NULL, &recordxpb, EV_SYNC|RM TONE,
&recordtsinfo) == -1) {

Dialogic® Voice API Library Reference
Dialogic Corporation

record voice data from two TDM bus time slots — dx_mreciottdata()

printf ("Error recording from dxxxB1Cl and dxxxB1C2\n");
printf ("error = %s\n", ATDV_ERRMSGP (recorder));
exit (2);

}

printf ("\n Finished dx mreciottdata\n");

/* Display termination condition value */
printf ("The termination value = %d\n", ATDX TERMMSK (playerOne));

/* Close two play channels and one record channel */

if (dx_close(recorder) == -1){
printf ("Error closing recorder \n");
printf ("errno = %d\n", errno);
exit (3);

}

if (dx close(playerTwo) == -1){
printf ("Error closing playerTwo\n") ;
printf ("errno = %d\n", errno);
exit (3);

}

if (dx_close(playerOne) == -1) {
printf ("Error closing playerOne\n");
printf ("errno = %d\n", errno);
exit (3);

}

if (dx fileclose(recordiott.io fhandle) == -1){
printf ("File close error \n");
exit (1) ;

}

if (dx fileclose(playOneiott.io fhandle) == -1){
printf ("File close error \n");
exit (1) ;

}

if (dx fileclose(playTwoiott.io fhandle) == -1){
printf ("File close error \n");
exit (1) ;

}
/* And finish */
return 1;

B See Also

e dx_rec()
e dx_play()
e dx_reciottdata()

e dx_playiottdata()

Dialogic® Voice API Library Reference 181
Dialogic Corporation

dx_open() — open a voice device and return a unique device handie

dx_open()

Name:
Inputs:

Returns:

Includes:

Category:
Mode:

int dx_open(namep, oflags)
char *namep e pointer to device name to open

>0 to indicate valid device handle if successful
-1 if failure

srllib.h
dxxxlib.h

Device Management

synchronous

182

Description

The dx_open() function opens a voice board device or channel device, and returns a unique device
handle to identify the device. All subsequent references to the opened device must be made using
the handle until the device is closed.

The device handle returned by this function is defined by Dialogic. It is not a standard operating
system file descriptor. Any attempts to use operating system commands such as read(), write(),
or ioctl() will produce unexpected results.

On Windows®, by default, the maximum number of times you can simultaneously open the same
channel in your application is set to 30 in the Windows® Registry.

Use Dialogic® Standard Runtime Library device mapper functions to return information about the
structure of the system. This device information is used as input in the dx_open() function. For
more information on these functions, see the Dialogic® Standard Runtime Library API Library
Reference.

Parameter Description

namep points to an ASCIIZ string that contains the name of the valid device. These
valid devices can be either boards or channels.

The standard board device naming convention for voice devices is: dxxxB1,
dxxxB2, and so on.

The standard channel device naming convention for voice devices is:
dxxxB1Cl1, dxxxB1C2, and so on.

oflags reserved for future use. Set this parameter to 0.

Cautions

* Do not use the operating system open() function to open a voice device. Unpredictable results
will occur.

Dialogic® Voice API Library Reference
Dialogic Corporation

open a voice device and return a unique device handle — dx_open()

* In applications that spawn child processes from a parent process, the device handle is not
inheritable by the child process. Make sure devices are opened in the child process.

* Two processes cannot open and access the same device.

¢ InLinux, If STDOUT has been closed and a Dialogic® device is then opened, the device may
get the same handle as STDOUT. Subsequent calls to printf() (which goes to STDOUT) may
cause a kernel panic.

¢ On Dialogic® Springware boards in Linux, when developing an application for a large system
(more than 350 devices), the application should open all the voice devices (board and/or
channel) first, and then open all other devices.

B Errors

In Windows®, if this function returns -1 to indicate failure, a system error has occurred; use
dx_fileerrno() to obtain the system error value. Refer to the dx_fileerrno() function for a list of
the possible system error values.

In Linux, if this function returns -1 to indicate failure, check errno for one of the following reasons:

EBADF
Invalid file descriptor

EINTR
A signal was caught

EINVAL
Invalid argument

EIO
Error during a Linux STREAMS open

This function will fail and return -1 if:
e The device name is invalid.

e A hardware error on the board or channel is discovered.
H Example

This example illustrates how to open a channel device.

#include "srllib.h>"
#include "dxxxlib.h>"

main ()
{

int chdev; /* channel descriptor */

/* Open Channel */
if ((chdev = dx_open("dxxxBlCl”,O)) = -1) {
/* process error */

}

Dialogic® Voice API Library Reference 183
Dialogic Corporation

dx_open() — open a voice device and return a unique device handie

B See Also

e dx_close()

184 Dialogic® Voice API Library Reference
Dialogic Corporation

create and initialize a circular stream buffer — dx_OpenStreamBuffer()

dx_OpenStreamBuffer()

Name: int dx_OpenStreamBuffer(BuffSize)
Inputs: int BuffSize * size in bytes of circular stream buffer

Returns: stream buffer handle if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: streaming to board

Mode: synchronous

B Description

The dx_OpenStreamBuffer() function allocates and initializes a circular stream buffer for
streaming to a voice device.

Parameter Description

BuffSize specifies the size in bytes of the circular stream buffer to allocate

You can create as many stream buffers as needed on a channel; however, you are limited by the
amount of memory on the system. You can use more than one stream buffer per play via the
DX_IOTT structure. In this case, specify that the data ends in one buffer using the STREAM_EOD
flag so that the play can process the next DX_IOTT structure in the chain. For more information
about using the streaming to board feature, see the Dialogic® Voice API Programming Guide.

This function initializes the circular stream buffer to the same initial state as
dx_ResetStreamBuffer().

B Cautions

e The buffer identified by the circular stream buffer handle cannot be used by multiple channels
for the play operation.

e Before calling dx_OpenStreamBuffer(), you must call dx_open() on a board, channel, or
physical board. Failure to do so would prevent the DM3 library from loading and the
dx_OpenStreamBuffer() would fail.

B Errors

This function fails with -1 error if there is not enough system memory available to process this
request.

Unlike other Dialogic® Voice API library functions, the streaming to board functions do not use
SRL device handles. Therefore, ATDV_LASTERR() and ATDV_ERRMSGP() cannot be used
to retrieve error codes and error descriptions.

Dialogic® Voice API Library Reference 185
Dialogic Corporation

dx_OpenStreamBuffer() — create and initialize a circular stream buffer

B Example

#include <srllib.h>
#include <dxxxlib.h>

main ()
{
int nBuffSize = 32768, vDev = 0;
int hBuffer = -1;
char pData[1024];
DX_IOTT iott;
DV_TPT ptpt;

if ((hBuffer = dx_OpenStreamBuffer (nBuffSize)) < 0)
{
printf ("Error opening stream buffer \n");
exit(1);

if ((vDev = dx open ("dxxxB1Cl", 0)) < 0)

printf ("Error opening voice device\n");
exit (2);

iott.io type = IO_STREAM|IO EOT;

iott.io_bufp = 0;

iott.io offset = 0;

iott.io_length = -1; /* play until STREAM EOD */
iott.io fhandle = hBuffer;

dx clrtpt(&tpt,1);
tpt.tp_type = I0_EOT;
tpt.tp_termno = DX MAXDTMF;
tpt.tp_length = 1;
tpt.tp_flags = TF MAXDTMF;

if (dx play(vDev, &iott, &tpt, EV_ASYNC) < 0)
{
printf ("Error in dx play() %d\n", ATDV_LASTERR (vDev)) ;
}
/* Repeat the following until all data is streamed */

if (dx_PutStreambData (hBuffer, pData, 1024, STREAM CONT) < 0)
{
printf ("Error in dx PutStreamData \n");
exit (3);
}
/* Wait for TDX PLAY event and other events as appropriate */

if (dx_CloseStreamBuffer (hBuffer) < 0)

{

printf ("Error closing stream buffer \n");

B See Also

¢ dx_CloseStreamBuffer()
e dx_SetWaterMark()

186 Dialogic® Voice API Library Reference
Dialogic Corporation

dx_play()

Name:
Inputs:

Returns:

Includes:

Category:
Mode:

play recorded voice data — dx_play()

int dx_play(chdev, iottp, tptp, mode)

int chdev e valid channel device handle
DX_IOTT *iottp e pointer to I/O Transfer Table structure
DV_TPT *tptp e pointer to Termination Parameter Table structure

unsigned short mode ® asynchronous/synchronous playing mode bit mask for this play session

0 if success
-1 if failure

srllib.h
dxxxlib.h

/0

asynchronous or synchronous

B Description
The dx_play() function plays recorded voice data, which may come from any combination of data
files, memory, or custom devices.
For a single file synchronous play, dx_playf() is more convenient because you do not have to set
up a DX_IOTT structure. See the dx_playf() function description for more information.
To specify format information about the data to be played, including file format, data encoding,
sampling rate, and bits per sample, use dx_playiottdata().
Parameter Description
chdev Specifies the valid channel device handle obtained when the channel was
opened using dx_open().
iottp Points to the I/O Transfer Table Structure, DX_IOTT, which specifies the
order of playback and the location of voice data. See DX_IOTT, on page 312,
for information about the data structure.
tptp Points to the Termination Parameter Table structure, DV_TPT, which
specifies termination conditions for playing. For more information on this
structure, see DV_TPT, on page 301.
Note: In addition to DV_TPT terminations, the function can fail due to
maximum byte count, dx_stopch(), or end of file. See
ATDX_TERMMSK() for a full list of termination reasons.
Dialogic® Voice API Library Reference 187

Dialogic Corporation

dx_play() — play recorded voice data

Parameter Description

mode Defines the play mode and asynchronous/synchronous mode. One or more of
the play mode parameters listed below may be selected in the bit mask for

play mode combinations (see Table 3).

Choose one only:
e EV_ASYNC - run asynchronously
e EV_SYNC - run synchronously (default)

Choose one or more of the following:

¢ MD_ADPCM - play using Adaptive Differential Pulse Code Modulation
encoding algorithm (4 bits per sample). Playing with ADPCM is the
default setting.

e MD_PCM - play using Pulse Code Modulation encoding algorithm

PM_ALAW - play using A-law

e PM_SR6 - play using 6 kHz sampling rate (6000 samples per second)

e PM_SR8 - play using 8 kHz sampling rate (8000 samples per second)

PM_TONE - transmit a 200 msec tone before initiating play

Notes: 1. The rate specified in the last play function applies to the next play function, unless the rate was

changed in the parameter DXCH_PLAYDRATE using dx_setparm().

. Specifying PM_SR6 or PM_SRS8 changes the setting of the parameter DXCH_PLAYDRATE.
DXCH_PLAYDRATE can also be set and queried using dx_setparm() and dx_getparm(). The
default setting for DXCH_PLAYDRATE is 6 kHz.

. Make sure data is played using the same encoding algorithm and sampling rate used when the
data was recorded.

Table 3 shows play mode selections when transmitting or not transmitting a tone before initiating
play. The first column of the table lists the two play features (tone or no tone), and the first row lists
each type of encoding algorithm (ADPCM or PCM) and data storage rate for each
algorithm/sampling rate combination in parenthesis (24 kbps, 32 kbps, 48 kbps, or 64 kbps).

Select the desired play feature in the first column of the table and look across that row until the
column containing the desired encoding algorithm and data-storage rate is reached. The play
modes that must be entered in the mode bit mask are provided where the feature row and encoding
algorithm/data-storage rate column intersect. Parameters listed in braces, { }, are default settings
and do not have to be specified.

Table 3. Play Mode Selections

Feature(s) ADPCM (24 kbps) ADPCM (32 kbps) PCM (48 kbps) PCM (64 kbps)

Tone PM_TONE PM_TONE PM_TONE PM_TONE
PM_SR6 PM_SR8 PM_ALAW* PM_ALAW*
{MD_ADPCM} {MD_ADPCM} PM_SR6 PM_SR8

MD_PCM MD_PCM

No Tone PM_SR6 PM_SR8 PM_SR6 PM_SR8
{MD_ADPCM} {MD_ADPCM} MD_PCM MD_PCM

{ } = Default modes.

* = Select if file was encoded using A-law

188

Dialogic® Voice API Library Reference

Dialogic Corporation

play recorded voice data — dx_play()

B Asynchronous Operation

To run this function asynchronously, set the mode field to EV_ASYNC. When running
asynchronously, this function returns O to indicate it has initiated successfully, and generates a
TDX_PLAY termination event to indicate completion.

Termination conditions for play are set using the DV_TPT structure. Play continues until all data
specified in DX_IOTT has been played, or until one of the conditions specified in DV_TPT is
satisfied.

Termination of asynchronous play is indicated by a TDX_PLAY event. Use the Dialogic® Standard
Runtime Library (SRL) Event Management functions to handle the termination event.

After dx_play() terminates, the current channel’s status information, including the reason for
termination, can be accessed using extended attribute functions. Use the ATDX_TERMMSK()
function to determine the reason for termination.

Note: The DX_IOTT structure must remain in scope for the duration of the function if running
asynchronously.

B Synchronous Operation

By default, this function runs synchronously, and returns a 0 to indicate that it has completed
successfully.

Termination conditions for play are set using the DV_TPT structure. Play continues until all data
specified in DX_IOTT has been played, or until one of the conditions specified in DV_TPT is
satisfied.

Termination of synchronous play is indicated by a return value of 0. After dx_play() terminates,
use the ATDX_TERMMSK() function to determine the reason for termination.

B Cautions

* Whenever dx_play() is called, its speed and volume is based on the most recent adjustment
made using dx_adjsv() or dx_setsvcond().

e If A-law encoding is selected (PM_ALAW), the A-law parameter must be passed each time the
play function is called or the setting will return to mu-law (the default).

* When playing a file that contains DTMFs, the same voice device might detect the DTMFs as
incoming ones and process the DTMFs as a termination condition. The louder the recorded
DTMFs in the file being played out, the more likely the chances of those DTMFs to be
detected as incoming ones. It's been observed that the problem can be avoided if the amplitude
of the DTMFs being played is below -6.5 dB; but this should only be taken as a guideline since
environment conditions are also a factor.

Dialogic® Voice API Library Reference 189
Dialogic Corporation

dx_play() — play recorded voice data

190

H Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADPARM

Invalid parameter

EDX_BADIOTT

Invalid DX_IOTT entry

EDX_BADTPT

Invalid DV_TPT entry

EDX_BUSY

Busy executing I/0O function

EDX_SYSTEM

Error from operating system

B Example 1

This example illustrates how to use dx_play() in synchronous mode.

/* Play a voice file.

#include <fcntl.h>
#include <srllib.h>
#include <dxxxlib.h>

main ()

{
int chdev;
DX_IOTT iott;

DV_TPT tpt;
DV _DIGIT dig;

/* Open the device using dx open().
* chdev.

*/

if ((chdev = dx_open ("dxxxB1C1", NULL) ==
/* process error */

}

/* set up DX_IOTT */
iott.io type = IO_DEV|IO EOT;
iott.io_bufp = 0;
iott.io offset = 0;
iott.io_length = -1; /* play till end of
if ((iott.io fhandle = dx fileopen ("prompt
== -1) {
/* process error */

}

/* set up DV_TPT */
dx clrtpt (&tpt,1);

file */

Terminate on receiving 4 digits or at end of file */

Get channel device descriptor in

.vox", O RDONLY|O BINARY))

tpt.tp_type = IO_EOT; /* only entry in the table */
tpt.tp_termno = DX MAXDTMF; /* Maximum digits */
tpt.tp_length = 4; /* terminate on four digits */
tpt.tp flags = TF MAXDTMF; /* Use the default flags */

Dialogic® Voice API Library Reference
Dialogic Corporation

play recorded voice data — dx_play()

/* clear previously entered digits */
if (dx _clrdigbuf (chdev) == -1) {
/* process error */

/* Now play the file */

if (dx_play(chdev,&iott,&tpt,EV_SYNC) == -1) {
/* process error */

}

/* get digit using dx getdig() and continue processing. */

H Example 2

This example illustrates how to use dx_play() in asynchronous mode.

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

#define MAXCHAN 24

int play handler();

DX IOTT prompt [MAXCHAN];
DV_TPT tpt;

DV_DIGIT dig;

main ()

{
int chdev[MAXCHAN], index, indexl;
char *chname;
int i, srlmode, voxfd;

/* Set SRL to run in polled mode. */

srlmode = SR_POLLMODE;

if (sr_setparm(SRL_DEVICE, SR MODEID, (void *)&srlmode) == -1) {
/* process error */

/* initialize all the DX IOTT structures for each individual prompt */

/* For Windows applications: open the vox file to play; the file descriptor will be used
* by all channels.
*/
if ((voxfd = dx_fileopen ("prompt.vox", O_RDONLY|O BINARY)) == -1) {
/* process error */

/* For Linux applications, open the vox file to play; the file descriptor will be used
* by all channels.
*/
if ((voxfd = open("prompt.vox", O RDONLY)) == -1) {
/* process error */

/* For each channel, open the device using dx open(), set up a DX IOTT
* structure for each channel, and issue dx play() in asynchronous mode. */
for (i=0; i<MAXCHAN; i++) {

Dialogic® Voice API Library Reference 191
Dialogic Corporation

dx_play() — play recorded voice data

/* Set chname to the channel name, e.g., dxxxB1Cl, dxxxB1C2,... */
/* Open the device using dx open(). chdev[i] has channel device
* descriptor.

*/

if ((chdev[i] = dx_open (chname,NULL)) == -1) {

/* process error */

/* Use sr_enbhdlr() to set up handler function to handle play
* completion events on this channel.
*/
if (sr_enbhdlr(chdev[i], TDX PLAY, play handler) == -1) {
/* process error */

/* Set the DV _TPT structures up for MAXDTMF. Play until one digit is
* pressed or the file is played

*/
dx_clrtpt (&tpt,1);
tpt.tp_type = I0_EOT; /* only entry in the table */
tpt.tp_termno = DX MAXDTMF; /* Maximum digits */
tpt.tp_length = 1; /* terminate on the first digit */
tpt.tp_flags = TF_MAXDTMF; /* Use the default flags */
prompt [i].io type = IO DEV|IO EOT; /* play from file */
prompt[i].io bufp = 0;
prompt [i].io offset = 0;
prompt [i].io_length = -1; /* play till end of file */
prompt[i].io nextp = NULL;
prompt [i].io_fhandle = voxfd;

/* play the data */
if (dx_play(chdev[i], &prompt[i], &tpt,EV_ASYNC) == -1) {
/* process error */

/* Use sr_waitevt to wait for the completion of dx_play().
* On receiving the completion event, TDX PLAY, control is transferred
* to the handler function previously established using sr_enbhdlr().
*/

int play handler ()
{
long term;
/* Use ATDX TERMMSK() to get the reason for termination. */
term = ATDX_TERMMSK (sr_getevtdev());
if (term & TM MAXDTMF) {
printf ("play terminated on receiving DIMF digit(s)\n");
} else if (term & TM EOD) {
printf ("play terminated on reaching end of data\n");
} else {
printf ("Unknown termination reason: %x\n", term);

/* Kick off next function in the state machine model. */

return 0;

B See Also

e dx_playf()

192 Dialogic® Voice API Library Reference
Dialogic Corporation

play recorded voice data — dx_play()

e dx_playiottdata()

e dx_playvox()

e dx_setparm(), dx_getparm()

e dx_adjsv()

e dx_setsvcond()

e DX_IOTT data structure (to identify source or destination of the voice data)

e event management functions in Dialogic® Standard Runtime Library API Library Reference
e ATDX_TERMMSK()

e DV_TPT data structure (to specify a termination condition)

e dx_setuio()

Dialogic® Voice API Library Reference 193
Dialogic Corporation

dx_playiottdata() — play back recorded voice data from multiple sources

dx_playiottdata()

Name: short dx_playiottdata(chdev, iottp, tptp, xpbp, mode)

Inputs: int chdev e valid channel device handle
DX_IOTT *iottp e pointer to I/O Transfer Table
DV_TPT *tptp e pointer to Termination Parameter Block
DX_XPB *xpbp ¢ pointer to I/O Transfer Parameter Block
unsigned short mode e play mode

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: 1I/O

Mode: asynchronous or synchronous

B Description

The dx_playiottdata() function plays back recorded voice data, which may come from any
combination of data files, memory, or custom devices.

The file format for the files to be played is specified in the wFileFormat field of the DX_XPB.
Other fields in the DX_XPB describe the data format. For files that include data format information
(for example, WAVE files), these other fields are ignored.

The dx_playiottdata() function is similar to dx_play(), but takes an extra parameter, xpbp,
which allows you to specify format information about the data to be played. This includes file
format, data encoding, sampling rate, and bits per sample.

194 Dialogic® Voice API Library Reference
Dialogic Corporation

play back recorded voice data from multiple sources — dx_playiottdata()

Parameter Description

chdev Specifies the valid channel device handle obtained when the channel was

opened using dx_open().

iottp Points to the I/O Transfer Table structure, DX_IOTT, which specifies the order

of playback and the location of voice data. See DX_IOTT, on page 312, for
information about the data structure.

The order of playback and the location of the voice data is specified in an array
of DX_IOTT structures pointed to by iottp.

tptp Points to the Termination Parameter Table structure, DV_TPT, which specifies

termination conditions for this function. For more information on termination
conditions, see DV_TPT, on page 301.

xpbp Points to the I/O Transfer Parameter Block, DX_XPB. The file format for the

files to be played is specified in the wFileFormat field of the DX_XPB. Other
fields in the DX_XPB describe the data format.

For more information about this structure, see the description for DX_XPB, on
page 324. For information about supported data formats, see the Dialogic®
Voice API Programming Guide.

mode Specifies the play mode and synchronous/asynchronous mode. For a list of all

valid values, see the dx_play() function description.

* PM_TONE - transmit a 200 msec tone before initiating play
e EV_SYNC - synchronous mode

e EV_ASYNC - asynchronous mode

B Cautions

All files specified in the DX_IOTT table must be of the same file format type and match the
file format indicated in DX_XPB.

All files specified in the DX_IOTT table must contain data of the type described in DX_XPB.

When playing or recording VOX files, the data format is specified in DX_XPB rather than
through the mode argument of this function.

The DX_IOTT data area must remain in scope for the duration of the function if running
asynchronously.

The DX_XPB data area must remain in scope for the duration of the function if running
asynchronously.

Playing an empty WAVE file results in an invalid offset error. To play a silent WAVE file
successfully, ensure that there is at least one byte of silence data (0xFF) in the payload.

When set to play WAVE files, all other fields in the DX_XPB are ignored.

When set to play WAVE files, this function will fail if an unsupported data format is attempted
to be played. For information about supported data formats, see the description for DX_XPB
and the Dialogic® Voice API Programming Guide.

When playing a file that contains DTMFs, the same voice device might detect the DTMFs as
incoming ones and process the DTMFs as a termination condition. The louder the recorded
DTMFs in the file being played out, the more likely the chances of those DTMFs to be
detected as incoming ones. It's been observed that the problem can be avoided if the amplitude

Dialogic® Voice API Library Reference 195

Dialogic Corporation

dx_playiottdata() — play back recorded voice data from multiple sources

of the DTMFs being played is below -6.5 dB; but this should only be taken as a guideline since
environment conditions are also a factor.

H Errors

In asynchronous mode, the function returns immediately and a TDX_PLAY event is queued upon
completion. Check ATDX_TERMMSK() for the termination reason. If a failure occurs during
playback, then a TDX_ERROR event will be queued. Use ATDV_LASTERR() to determine the
reason for the error. In some limited cases such as when invalid arguments are passed to the library,
the function may fail before starting the play. In such cases, the function returns -1 immediately to
indicate failure and no event is queued.

In synchronous mode, if this function returns -1 to indicate failure, use the Standard Runtime
Library (SRL) Standard Attribute function ATDV_LASTERR() to obtain the error code or use
ATDV_ERRMSGP() to obtain a descriptive error message. One of the following error codes may
be returned:

EDX_BADIOTT
Invalid DX_IOTT setting

EDX_BADWAVFILE
Invalid WAVE file

EDX_BUSY
Channel is busy

EDX_SH_BADCMD
Unsupported command or WAVE file format

EDX_SYSTEM
Error from operating system

EDX_XPBPARM
Invalid DX_XPB setting

B Example

This example illustrates how to play back a VOX file in synchronous mode.

#include <srllib.h>
#include <dxxxlib.h>

main ()

{

int chdev; /* channel descriptor */
int fd; /* file descriptor for file to be played */
DX IOTT iott; /* 1/0 transfer table */
DV_TPT tpt; /* termination parameter table */
DX XPB xpb; /* 1/0 transfer parameter block */
196 Dialogic® Voice API Library Reference

Dialogic Corporation

play back recorded voice data from multiple sources — dx_playiottdata()

/* Open channel */

if ((chdev = dx_open ("dxxxB1C1l",0)) == -1) {
printf ("Cannot open channel\n");
/* perform system error processing */
exit (1);

/* Set to terminate play on 1 digit */
tpt.tp_type = I0_EOT;

tpt.tp_termno = DX MAXDTME;
tpt.tp_length = 1;

tpt.tp flags = TF_MAXDTMF;

/* For Windows applications: open VOX file to play */

if ((fd = dx_fileopen ("HELLO.VOX",O RDONLY|O_ BINARY)) == -1) {
printf ("File open error\n");
exit (2);

/* For Linux applications: Open VOX file to play */
if ((fd = open("HELLO.VOX",O RDONLY)) == -1) {
printf ("File open error\n");
exit (2);

/* Set up DX IOTT */
iott.io_fhandle = fd;

iott.io bufp = 0;
iott.io offset = 0;
iott.io length = -1;

iott.io_type = IO_DEV | IO_EOT;

/*
* Specify VOX file format for ADPCM at 8KHz
*/
xpb.wFileFormat = FILE FORMAT VOX;
xpb.wDataFormat = DATA_FORMAT_DIALOGIC_ADPCM;
xpb.nSamplesPerSec = DRT 8KHZ;
xpb.wBitsPerSample = 4;

/* Wait forever for phone to ring and go offhook */

if (dx wtring(chdev,1,DX OFFHOOK,-1) == -1) {
printf ("Error waiting for ring - %s\n", ATDV_LASTERR (chdev)) ;
exit (3);

/* Start playback */

if (dx_playiottdata(chdev,&iott, &tpt, &xpb,EV_SYNC)==-1) {
printf ("Error playing file - %s\n", ATDV_ERRMSGP (chdev)) ;
exit (4);

See Also

dx_play()
dx_playf()
dx_playwav()
dx_playvox()
dx_setuio()

Dialogic® Voice API Library Reference
Dialogic Corporation

197

dx_playf() — synchronously play voice data

dx_playf()

Name: int dx_playf(chdev, fnamep, tptp, mode)

Inputs: int chdev e valid channel device handle
char *fnamep * pointer to name of file to play
DV_TPT *tptp * pointer to Termination Parameter Table structure
unsigned short mode e playing mode bit mask for this play session

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: 1/0 Convenience

Mode: synchronous

B Description
dx_playf() is a convenience function that synchronously plays voice data from a single file.

Calling dx_playf() is the same as calling dx_play() and specifying a single file entry in the
DX_IOTT structure. Using dx_playf() is more convenient for single file playback, because you do
not have to set up a DX_IOTT structure for one file, and the application does not need to open the
file. The dx_playf() function opens and closes the file specified by fnamep.

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

fnamep points to the file from which voice data will be played

tptp points to the Termination Parameter Table structure, DV_TPT, which specifies

termination conditions for playing. For more information on this structure, see
DV_TPT, on page 301.

mode specifies the mode. This function supports EV_SYNC (synchronous mode)
only.

B Cautions

On Dialogic® DM3 boards, when playing a file that contains DTMFs, the same voice device might
detect the DTMFs as incoming ones and process the DTMFs as a termination condition. The louder
the recorded DTMFs in the file being played out, the more likely the chances of those DTMFs to be
detected as incoming ones. It's been observed that the problem can be avoided if the amplitude of
the DTMFs being played is below -6.5 dB; but this should only be taken as a guideline since
environment conditions are also a factor.

198 Dialogic® Voice API Library Reference
Dialogic Corporation

synchronously play voice data — dx_playf()

When playing a file that contains DTMFs, the same voice device might detect the DTMFs as
incoming ones and process the DTMFs as a termination condition. The louder the recorded DTMFs
in the file being played out, the more likely the chances of those DTMFs to be detected as incoming
ones. It's been observed that the problem can be avoided if the amplitude of the DTMFs being
played is below -6.5 dB; but this should only be taken as a guideline since environment conditions
are also a factor.

®m Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_BADIOTT
Invalid DX_IOTT entry

EDX_BADTPT
Invalid DX_TPT entry

EDX_BUSY
Busy executing I/O function

EDX_SYSTEM
Error from operating system

B Source Code

/***
* NAME: int dx_playf (devd, filep, tptp, mode)
DESCRIPTION: This function opens and plays a
named file.
INPUTS: devd - channel descriptor
tptp - pointer to the termination control block

OUTPUTS: Data is played.

RETURNS: 0 - success -1 - failure
CALLS: open() dx_play() close()

CAUTIONS: none.

*
*
*
*
* filep - pointer to file name
*
*
*
*
kkkk*/
int dx_playf (devd, filep, tptp, mode)
int devd;
char *filep;
DV_TPT *tptp;
USHORT mode;

DX_IOTT iott;
int rval;

Dialogic® Voice API Library Reference 199
Dialogic Corporation

dx_playf() — synchronously play voice data

/*
* If Async then return Error
* Reason: IOTT's must be in scope for the duration of the play
*/
if (mode & EV_ASYNC) {
return(-1);

/* Open the File */
if ((iott.io fhandle = open(filep,O RDONLY)) == -1) {
return -1;

/* Use dx play() to do the Play */
iott.io_type = IO_EOT | IO_DEV;
iott.io offset = (unsigned long)O0;
iott.io_length = -1;

rval = dx_play(devd, &iott, tptp, mode) ;
if (close(iott.io_fhandle) == -1) {

return -1;

return rval;

B Example

#include <srllib.h>
#include <dxxxlib.h>

main ()

{
int chdev;
DV_TPT tpt[2];

/* Open the channel using dx open(). Get channel device descriptor in
* chdev.

*/
if ((chdev = dx_open ("dxxxB1C1",NULL)) == -1) {

/* process error */

/* Set up the DV_TPT structures for MAXDTMF. Play until one digit is
* pressed or the file has completed play

*/
dx clrtpt(tpt,1);
tpt[0].tp_type = IO _EOT; /* only entry in the table */
tpt[0].tp termno = DX MAXDTMF; /* Maximum digits */
tpt[0].tp_length = 1; /* terminate on the first digit */
tpt[0].tp flags = TF MAXDTMF; /* Use the default flags */

if (dx_playf (chdev, "weather.vox", tpt,EV_SYNC) == -1) ({

/* process error */

B See Also

e dx_play()
e dx_playiottdata()
e dx_playvox()

200 Dialogic® Voice API Library Reference
Dialogic Corporation

synchronously play voice data — dx_playf()

e dx_setparm(), dx_getparm()

e dx_adjsv() (for speed or volume control)

e dx_setsvcond() (for speed or volume control)
e ATDX_TERMMSK()

e DV_TPT data structure (to specify a termination condition)

Dialogic® Voice API Library Reference 201
Dialogic Corporation

dx_playtone() — play tone defined by TN_GEN structure

dx_playtone()

Name:
Inputs:

Returns:

Includes:

Category:
Mode:

int dx_playtone(chdev, tngenp, tptp, mode)

int chdev e valid channel device handle

TN_GEN *tngenp e pointer to the Tone Generation template structure
DV_TPT *tptp e pointer to a Termination Parameter Table structure
int mode ¢ asynchronous/synchronous

0 if success
-1 if failure

srllib.h
dxxxlib.h

Global Tone Generation

asynchronous or synchronous

202

Description

The dx_playtone() function plays tones defined by the TN_GEN structure, which defines the
frequency, amplitude, and duration of a single- or dual-frequency tone to be played.

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

tngenp points to the TN_GEN structure, which defines the frequency, amplitude, and
duration of a single- or dual-frequency tone. For more information, see
TN_GEN, on page 331. You can use the dx_bldtngen() function to set up the
structure.

tptp points to the DV_TPT data structure, which specifies a terminating condition
for this function. For more information, see DV_TPT, on page 301.

mode specifies whether to run this function asynchronously or synchronously. Set to
one of the following:
e EV_ASYNC - asynchronous mode
e EV_SYNC - synchronous mode (default)

Asynchronous Operation

To run this function asynchronously, set the mode parameter to EV_ASYNC. This function returns
0 to indicate it has initiated successfully, and generates a TDX_PLAYTONE termination event to
indicate completion. Use the Dialogic® Standard Runtime Library (SRL) Event Management
functions to handle the termination event; see the Dialogic® Standard Runtime Library API
Library Reference for more information.

Dialogic® Voice API Library Reference
Dialogic Corporation

play tone defined by TN_GEN structure — dx_playtone()

Set termination conditions using a DV_TPT structure, which is pointed to by the tptp parameter.
After dx_playtone() terminates, use the ATDX_TERMMSK() function to determine the reason
for termination.

B Synchronous Operation

By default, this function runs synchronously, and returns a 0 to indicate that it has completed
successfully.

Set termination conditions using a DV_TPT structure, which is pointed to by the tptp parameter.
After dx_playtone() terminates, use the ATDX_TERMMSK() function to determine the reason
for termination.

B Cautions

e The channel must be idle when calling this function.

e If the tone generation template contains an invalid tg_dflag, or the specified amplitude or
frequency is outside the valid range, dx_playtone() will generate a TDX_ERROR event if
asynchronous, or -1 if synchronous.

e The DX_MAXTIME termination condition is not supported by tone generation functions,
which include dx_playtone().

B Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_AMPLGEN
Invalid amplitude value in TN_GEN structure

EDX_BADPARM
Invalid parameter

EDX_BADPROD
Function not supported on this board

EDX_BADTPT
Invalid DV_TPT entry

EDX_BUSY
Busy executing I/O function

EDX_FLAGGEN
Invalid tn_dflag field in TN_GEN structure

EDX_FREQGEN
Invalid frequency component in TN_GEN structure

EDX_SYSTEM
Error from operating system

Dialogic® Voice API Library Reference 203
Dialogic Corporation

dx_playtone() — play tone defined by TN_GEN structure

B Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

#define TID 1 101

main ()
{
TN_GEN tngen;
DV_TPT tpt[5 1;
int dxxxdev;
/*
* Open the Voice Channel Device and Enable a Handler
*/
if ((dxxxdev = dx_open("dxxxB1lCl", 0)) == -1) {
perror ("dxxxBIC1");
exit(1);
}
/*

* Describe a Simple Dual Tone Frequency Tone of 950-
* 1050 Hz and 475-525 Hz using leading edge detection.
*/
if (dx blddt(TID 1, 1000, 50, 500, 25, TN LEADING) == -1) {
printf("Unable to build a Dual Tone Template\n");

/*

* Bind the Tone to the Channel

*/
if | dx_addtone (dxxxdev, NULL, 0) == -1) {

printf("Unable to Bind the Tone %d\n", TID 1);
printf("Lasterror = %d Err Msg = %s\n",

ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
dx_close(dxxxdev);

exit(1);
}
/*
* Enable Detection of TonelId TID 1
*/
if (dx_enbtone(dxxxdev, TID 1, DM TONEON | DM TONEOFF) == -1) {

printf("Unable to Enable Detection of Tone %d\n", TID 1);
printf("Lasterror = $d Err Msg = %$s\n",

ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP (dxxxdev));
dx close(dxxxdev);
exit(1);

* Build a Tone Generation Template.
* This template has Frequencyl = 1140,
* Frequency?2 = 1020, amplitute at -10dB for
* both frequencies and duration of 100 * 10 msecs.
*/
dx bldtngen(&tngen, 1140, 1020, -10, -10, 100);

/*
* Set up the Terminating Conditions
*/
tpt[0].tp_type = IO _CONT;
tpt[0].tp_termno = DX TONE;
tpt[0].tp_length = TID 1;
tpt[0].tp_flags = TF TONE;

204 Dialogic® Voice API Library Reference
Dialogic Corporation

play tone defined by TN_GEN structure — dx_playtone()

tpt[0].tp_data = DX_TONEON;

tpt[l].tp_type = IO_CONT;

tpt[l].tp termno = DX TONE;

tpt[l].tp_length = TID_ 1;

tpt[l].tp flags = TF_TONE;

tpt[l].tp_data = DX_TONEOFF;

tpt[2].tp_type = IO_EOT;

tpt[2].tp termno = DX MAXTIME; /* On HMP, DX MAXTIME not supported */
tpt[2].tp_length = 6000;

tpt[2].tp _flags = TF_MAXTIME;

if (dx_playtone(dxxxdev, &tngen, tpt, EV_SYNC) == -1){

printf("Unable to Play the Tone\n");
printf("Lasterror = %d Err Msg = %$s\n",
ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP (dxxxdev));
dx_close (dxxxdev);
exit(1);

* Continue Processing

*/

/k

* Close the opened Voice Channel Device
*/

if (dx close(dxxxdev) != 0) {

perror ("close");

}

/* Terminate the Program */
exit(0);

See Also

dx_bldtngen()
TN_GEN data structure

global tone generation topic in Dialogic® Voice API Programming Guide

event management functions in Dialogic® Standard Runtime Library API Library Reference

DV_TPT data structure (to specify a termination condition)
ATDX_TERMMSK()

Dialogic® Voice API Library Reference
Dialogic Corporation

205

dx_playtoneEx() — play the cadenced tone defined by TN_GENCAD

dx_playtoneEx()

Name: int dx_playtoneEx(chdev, tngencadp, tptp, mode)

Inputs: int chdev e valid channel device handle
TN_GENCAD *tngencadp ¢ pointer to the Cadenced Tone Generation template structure
DV_TPT *tptp e pointer to a Termination Parameter Table structure
int mode ¢ asynchronous/synchronous

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Global Tone Generation

Mode: asynchronous or synchronous

B Description

The dx_playtoneEx() function plays the cadenced tone defined by TN_GENCAD, which
describes a signal by specifying the repeating elements of the signal (the cycle) and the number of
desired repetitions. The cycle can contain up to four segments, each with its own tone definition
and on/off duration, which creates the signal pattern or cadence. Each segment consists of a
TN_GEN single- or dual-tone definition (frequency, amplitude and duration) followed by a
corresponding off-time (silence duration) that is optional. The dx_bldtngen() function can be used
to set up the TN_GEN components of the TN_GENCAD structure. The segments are seamlessly
concatenated in ascending order to generate the signal cycle.

This function returns the same errors, return codes, and termination events as the dx_playtone()
function. Also, the TN_GEN array in the TN_GENCAD data structure has the same requirements
as the TN_GEN used by the dx_playtone() function.

Set termination conditions using the DV_TPT structure. This structure is pointed to by the tptp
parameter. After dx_playtoneEx() terminates, use the ATDX TERMMSK() function to
determine the termination reason.

For signals that specify an infinite repetition of the signal cycle (cycles = 255) or an infinite
duration of a tone (tg_dur = -1), you must specify the appropriate termination conditions in the
DV_TPT structure used by dx_playtoneEx(). Valid values are for the cycles field of
TN_GENCAD is 1 to 40 cycles.

206 Dialogic® Voice API Library Reference
Dialogic Corporation

play the cadenced tone defined by TN_GENCAD — dx_playtoneEXx()

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

tngencadp points to a TN_GENCAD structure (which defines a signal by specifying a
cycle and its number of repetitions)

tptp points to the DV_TPT data structure, which specifies one or more terminating
conditions for this function. For more information on this structure, see
DV_TPT, on page 301.

mode specifies whether to run this function asynchronously or synchronously. Set to
one of the following:
e EV_ASYNC - asynchronous mode
e EV_SYNC - synchronous mode (default)

To run this function asynchronously, set the mode parameter to EV_ASYNC. When running
asynchronously, this function will return O to indicate that it has initiated successfully, and will
generate a TDX_PLAYTONE termination event to indicate successful termination.

By default, this function will run synchronously, and will return a O to indicate successful
termination of synchronous play.

B Cautions

e The channel must be idle when calling this function.

e If a TN_GEN tone generation template contains an invalid tg_dflag, or the specified amplitude
or frequency is outside the valid range, dx_playtoneEx() will generate a TDX_ERROR event
if asynchronous, or -1 if synchronous.

e The DX_MAXTIME termination condition is not supported by tone generation functions,
which include dx_playtoneEx().

B Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_AMPLGEN
Invalid amplitude value in TN_GEN structure

EDX_BADPARM
Invalid parameter

EDX_BADPROD
Function not supported on this board

EDX_BADTPT
Invalid DV_TPT entry

Dialogic® Voice API Library Reference 207
Dialogic Corporation

dx_playtoneEx() — play the cadenced tone defined by TN_GENCAD

EDX_BUSY
Busy executing I/0O function

EDX_FLAGGEN

Invalid tg_dflag field in TN_GEN structure

EDX_FREQGEN

Invalid frequency component in TN_GEN structure

EDX_SYSTEM
Error from operating system

Example
/*$ dx playtoneEx() example $*/
#include <stdio.h>

#include <srllib.h>
#include <dxxxlib.h>

main ()
{
TN_GEN tngen;
TN_GENCAD tngencad;
DV_TPT tptl 2 1;
int dxxxdev;
long term;
/*
* Open the Voice Channel
*/
if ((dxxxdev = dx_open (
perror ("dxxxBIC1l");
exit(1);
}
/*

* Set up the Terminating
* (Play until a digit is

*/
tpt[0].tp_type = IO_CONT;
tpt[0].tp_termno = DX MAXDTMF;
tpt[0].tp_length = 1;
tpt[0].tp flags = TF MAXDTMF;
tpt[l].tp_type = IO EOT;
tpt[l].tp_termno = DX MAXTIME;
tpt[1l].tp length = 450;
tpt[l].tp_flags = TF_MAXTIME;
/*

* Build a custom cadence dial
* Signal cycle has 4 segments
* Note that cycles =

* 1) 350 + 440 Hz at -17dB ON
* 2) 350 + 440 Hz at -17dB ON
* 3) 350 + 440 Hz at -17dB ON
* 4) 350 + 440 Hz at -17dB ON
*/

208

"dxxxB1C1", 0)

Device and Enable a Handler

Conditions.
pressed or until time-out at 45 seconds.)

/* On HMP, DX MAXTIME not supported */

tone to indicate that a priority message is waiting.
& repeats forever (cycles=255) until tpt termination:

255 is not supported on HMP.

125 * 10 msec and OFF for 10 *10 msec
10 * 10 msec and OFF for 10 *10 msec
10 * 10 msec and OFF for 10 *10 msec
10 * 10 msec and OFF for 10 *10 msec

for
for
for
for

Dialogic® Voice API Library Reference
Dialogic Corporation

play the cadenced tone defined by TN_GENCAD — dx_playtoneEXx()

tngencad.cycles = 255;

tngencad.numsegs = 4;

tngencad.offtime[0]
tngencad.offtime[1]
tngencad.offtime[2]
[3]

tngencad.offtime

dx bldtngen
dx_bldtngen

dx_bldtngen

/*

10;
10;
10;
10;

(&tngencad.tone
(&tngencad.tone
dx _bldtngen(&tngencad.tone
(&tngencad.tone

[
l
[
l

0
1
2
3

* Play the custom dial tone.

*/

if (dx_playtoneEx(dxxxdev, &tngencad, tpt, EV_SYNC

]
]
]
]

i

’

i

’

350,
350,
350,
350,

440,
440,
440,
440,

-17,
-17,
-17,
-17,

-17,
-17,
-17,
-17,

printf ("Unable to Play the Cadenced Tone\n");
printf("Lasterror

exit(1);

/*

= %d Err Msg = %s\n",
ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP (dxxxdev)
dx_close (dxxxdev);

/* Examine termination reason in bitmap.

/* If time-out caused termination,

*/

if ((term = ATDX TERMMSK (dxxxdev))

/* Process error */

if (term & TM MAXTIME)

/*

* Play the standard Reorder Tone

{

(fast busy)

== AT FAILURE) {

125);

10
10
10

play reorder tone.

* from the set of standard call progress signals.

*/

if (dx_playtoneEx(dxxxdev, CP_REORDER, tpt, EV_SYNC)

printf("Unable to Play the Cadenced Tone\n");
printf("Lasterror
ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev)

dx_close(dxxxdev);

exit(1);

/* Terminate the Program */
dx_close(dxxxdev);

exit(0);

B See Also

e dx_playtone()
e dx_bldtngen()

e TN_GEN data structure
e TN_GENCAD data structure

Dialogic® Voice API Library Reference

Dialogic Corporation

%d Err Msg =

%s\n",

)7
)i
)7

using the predefined tone

)7

209

dx_playvox() — play voice data stored in a single VOX file

dx_playvox()

Name: int dx_playvox(chdev, filenamep, tptp, xpbp, mode)

Inputs: int chdev
char *filenamep
DV_TPT *tptp
DX_XPB *xpbp

e valid channel device handle
* pointer to name of file to play
e pointer to Termination Parameter Table structure

e pointer to I/O Transfer parameter block structure

unsigned short mode * play mode

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: I/0 Convenience

Mode: synchronous

B Description

The dx_playvox() convenience function plays voice data stored in a single VOX file. This
function calls dx_playiottdata().

Parameter

Description

chdev

filenamep

tptp

xpbp

mode

B Cautions

specifies the valid channel device handle obtained when the channel was
opened using dx_open()

points to name of VOX file to play

points to the Termination Parameter Table structure, DV_TPT, which specifies
termination conditions for this function. For more information on termination
conditions, see DV_TPT, on page 301.

points to the I/O Transfer Parameter Block structure, which specifies the file
format, data format, sampling rate, and resolution of the voice data. For more
information, see DX_XPB, on page 324.

If xpbp is set to NULL, this function interprets the data as 6 kHz linear
ADPCM.

specifies the play mode. The following two values can be used individually or
ORed together:

e PM_TONE - transmit a 200 msec tone before initiating play

e EV_SYNC - synchronous operation (must be specified)

When playing or recording VOX files, the data format is specified in DX_XPB rather than through
the mode parameter of dx_playvox().

210

Dialogic® Voice API Library Reference
Dialogic Corporation

play voice data stored in a single VOX file — dx_playvox()

B Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADIOTT
Invalid DX_IOTT setting

EDX_BADWAVFILE
Invalid WAVE file

EDX_BUSY
Channel is busy

EDX_SH_BADCMD
Unsupported command or WAVE file format

EDX_SYSTEM
Error from operating system

EDX_XPBPARM
Invalid DX_XPB setting

B Example

#include "srllib.h"
#include "dxxxlib.h"

main ()
{
int chdev; /* channel descriptor */
DV_TPT tpt; /* termination parameter table */.

/* Open channel */

if ((chdev = dx open ("dxxxB1C1",0)) == -1) {
printf ("Cannot open channel\n");
/* Perform system error processing */
exit (1);

}

/* Set to terminate play on 1 digit */
tpt.tp_type = I0_EOT;

tpt.tp_termno = DX MAXDTME;
tpt.tp_length = 1;

tpt.tp flags = TF_MAXDTMF;

/* Wait forever for phone to ring and go offhook */

if (dx_wtring(chdev,1,DX_OFFHOOK,-1) == -1) {
printf ("Error waiting for ring - %s\n", ATDV_LASTERR (chdev)) ;
exit (3);

}

/* Start 6KHz ADPCM playback */

if (dx_playvox(chdev, "HELLO.VOX", &tpt,NULL,EV_SYNC) = = -1) {
printf ("Error playing file - $s\n", ATDV_ERRMSGP (chdev)) ;
exit (4);
}
}
Dialogic® Voice API Library Reference 211

Dialogic Corporation

dx_playvox() — play voice data stored in a single VOX file

B See Also

e dx_play()

e dx_playf()

e dx_playiottdata()
e dx_playwav()

212 Dialogic® Voice API Library Reference
Dialogic Corporation

play voice data stored in a single WAVE file — dx_playwav()

dx_playwav()

Name: int dx_playwav(chdeyv, filenamep, tptp, mode)
Inputs: int chdev e valid channel device handle
char *filenamep e pointer to name of file to play
DV_TPT *tptp e pointer to Termination Parameter Table structure
unsigned short mode e play mode
Returns: 0 if successful
-1 if failure
Includes: srllib.h
dxxxlib.h
Category: 1/0 Convenience
Mode: synchronous
B Description
The dx_playwav() convenience function plays voice data stored in a single WAVE file. This
function calls dx_playiottdata().
The function does not specify a DX_XPB structure because the WAVE file contains the necessary
format information.
Parameter Description
chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()
tptp points to the Termination Parameter Table structure, DV_TPT, which specifies
termination conditions for playing. For more information on this function, see
DV_TPT, on page 301.
filenamep points to the name of the file to play
mode specifies the play mode. The following two values can be used individually or
ORed together:
¢ PM_TONE - transmit a 200 msec tone before initiating play
* EV_SYNC - synchronous operation (must be specified)
B Cautions
This function fails when an unsupported WAVE file format is attempted to be played. For
information on supported data formats, see the description for DX_XPB, on page 324 and the Voice
API Programming Guide.
Dialogic® Voice API Library Reference 213

Dialogic Corporation

dx_playwav() — play voice data stored in a single WAVE file

214

H Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADIOTT
Invalid DX_IOTT setting

EDX_BADWAVFILE
Invalid WAVE file

EDX_BUSY
Channel is busy

EDX_SH_BADCMD
Unsupported command or WAVE file format

EDX_SYSTEM
Error from operating system

EDX_XPBPARM
Invalid DX_XPB setting

Example

#include <srllib.h>
#include <dxxxlib.h>

main ()
{
int chdev; /* channel descriptor */
DV_TPT tpt; /* termination parameter table */

/* Open channel */

if ((chdev = dx_open ("dxxxB1C1",0)) == -1) {
printf ("Cannot open channel\n");
/* Perform system error processing */
exit (1) ;

}

/* Set to terminate play on 1 digit */
tpt.tp_type = I0_EOT;

tpt.tp_termno = DX MAXDTMF;
tpt.tp_length 1;

tpt.tp_flags = TF_MAXDTMF;

/* Wait forever for phone to ring and go offhook */

if (dx wtring(chdev,1,DX OFFHOOK,-1) == -1) {
printf ("Error waiting for ring - %s\n", ATDV_LASTERR (chdev)) ;
exit (3);

}

/* Start playback */

if (dx_playwav(chdev,"HELLO.WAV", &tpt,EV_SYNC) == -1) {
printf ("Error playing file - %s\n", ATDV_ERRMSGP (chdev)) ;
exit (4);

Dialogic® Voice API Library Reference
Dialogic Corporation

play voice data stored in a single WAVE file — dx_playwav()

}

B See Also

e dx_playiottdata()
e dx_playvox()

Dialogic® Voice API Library Reference 215

Dialogic Corporation

dx_PutStreamData() — place data into a circular stream buffer

dx_PutStreamData()

Name: int dx_PutStreamData(hBuffer, pNewData, BuffSize, flag)
Inputs: int hBuffer e stream buffer handle
char* pNewData e pointer to user buffer of data to place in the stream buffer
int BuffSize e number of bytes in the user buffer
int flag e flag indicating last block of data
Returns: 0 if successful
-1 if failure
Includes: srllib.h
dxxxlib.h
Category: streaming to board
Mode: synchronous
B Description
The dx_PutStreamData() function puts data into the specified circular stream buffer. If there is
not enough room in the buffer (an overrun condition), an error of -1 is returned and none of the data
will be placed in the stream buffer. Writing 0 bytes of data to the buffer is not considered an error.
The flag field is used to indicate that this is the last block of data. Set this flag to STREAM_CONT
(0) for all buffers except the last one, which should be set to STREAM_EQOD (1). This function can
be called at any time between the opening and closing of the stream buffer.
Parameter Description
hBuffer specifies the circular stream buffer handle obtained from
dx_OpenStreamBuffer()
pNewData a pointer to the user buffer containing data to be placed in the circular
stream buffer
BuffSize specifies the number of bytes in the user buffer
flag a flag indicating whether this is the last block of data in the user buffer.
Valid values are:
¢ STREAM_CONT - for all buffers except the last one
e STREAM_EOD - for the last buffer
B Cautions
None.
B Errors
If there is not enough room in the buffer (an overrun condition), this function returns an error of -1.
216 Dialogic® Voice API Library Reference

Dialogic Corporation

place data into a circular stream buffer — dx_PutStreamData()

Unlike other Dialogic® Voice API library functions, the streaming to board functions do not use
SRL device handles. Therefore, ATDV_LASTERR() and ATDV_ERRMSGP() cannot be used
to retrieve error codes and error descriptions.

B Example

#include <srllib.h>
#include <dxxxlib.h>

main ()
{
int nBuffSize = 32768, vDev = 0;
int hBuffer = -1;
char pData[1024];
DX_IOTT iott;
DV_TPT ptpt;

if ((hBuffer = dx_OpenStreamBuffer (nBuffSize)) < 0)
{
printf ("Error opening stream buffer \n");
exit (1) ;
}
if ((vDev = dx open ("dxxxB1C1l", 0)) < 0)
{
printf ("Error opening voice device\n");
exit (2);

iott.io type = IO_STREAM|IO EOT;

iott.io bufp = 0;

iott.io offset = 0;

iott.io_length = -1; /* play until STREAM EOD */
iott.io fhandle = hBuffer;

dx_clrtpt(&tpt,1);
tpt.tp_type = I0_EOT;
tpt.tp_termno = DX MAXDTME;
tpt.tp_length = 1;

tpt.tp flags = TF_MAXDTMF;

if (dx play(vDev, &iott, &tpt, EV_ASYNC) < 0)
{
printf ("Error in dx play() %d\n", ATDV LASTERR(vDev));
}
/* Repeat the following until all data is streamed */

if (dx_PutStreamData (hBuffer, pData, 1024, STREAM CONT) < 0)
{
printf ("Error in dx PutStreambData \n");
exit (3);
}
/* Wait for TDX PLAY event and other events as appropriate */

if (dx_CloseStreamBuffer (hBuffer) < 0)
{

printf ("Error closing stream buffer \n");

B See Also

e dx_OpenStreamBuffer()

Dialogic® Voice API Library Reference 217
Dialogic Corporation

dx_querytone() — get tone information for a specific call progress tone

dx_querytone()

218

Name: int dx_querytone(brdhdl, toneid, tonedata, mode)
Inputs: int brdhdl e a valid board level device
int toneid e tone ID of the call progress tone
TONE_DATA *tonedata e pointer to the TONE_DATA structure
unsigned short mode * mode
Returns: 0 if successful

-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Call Progress Analysis

Mode: asynchronous or synchronous
B Description

The dx_querytone() function returns tone information for a call progress tone currently available
on the board device. On successful completion of the function, the TONE_DATA structure contains
the relevant tone information.

Before creating a new tone definition with dx_createtone(), first use dx_querytone() to get tone
information for the tone ID, then use dx_deletetone() to delete that same tone ID. Only tones
listed in the toneid parameter description are supported for this function. For more information on
modifying call progress analysis tone definitions, see the Dialogic® Voice API Programming
Guide.

When running in asynchronous mode, this function returns O to indicate that it initiated
successfully and generates the TDX_QUERYTONE event to indicate completion or
TDX_QUERYTONE_FAIL to indicate failure. The TONE_DATA structure should remain in scope

until the application receives these events.

By default, this function runs in synchronous mode and returns O to indicate completion.

Parameter Description

brdhdl specifies a valid board device handle (not a virtual board device) of the
format brdBn obtained by a call to dx_open().

To get the board name, use the SRLGetPhysicalBoardName() function.
This function and other device mapper functions return information about
the structure of the system. For more information, see the Dialogic®
Standard Runtime Library API Library Reference.

Dialogic® Voice API Library Reference
Dialogic Corporation

get tone information for a specific call progress tone — dx_querytone()

Parameter Description

toneid specifies the tone ID of the call progress tone. Valid values are:
e TID_BUSY1
e TID_BUSY2

TID_DIAL_INTL
TID_DIAL_LCL
TID_DISCONNECT
TID_FAX1
TID_FAX2
TID_RNGBK1
TID_RNGBK2
TID_SIT_NC
TID_SIT_IC

e TID_SIT_VC

e TID_SIT_RO

Note: The following tone IDs are not supported by this function:
TID_SIT_ANY, TID_SIT_NO_CIRCUIT_INTERLATA,
TID_SIT_REORDER_TONE_INTERLATA, and
TID_SIT_INEFFECTIVE_OTHER.

tonedata specifies a pointer to the TONE_DATA data structure that contains the
tone information for the call progress tone identified by toneid

mode specifies the mode in which the function will run. Valid values are:
e EV_ASYNC - asynchronous mode
e EV_SYNC - synchronous mode (default)

B Cautions

* Only the default call progress tones as listed in the toneid parameter description are supported
for this function. The following tone IDs are not supported by this function: TID_SIT_ANY,
TID_SIT_NO_CIRCUIT_INTERLATA, TID_SIT_REORDER_TONE_INTERLATA, and
TID_SIT_INEFFECTIVE_OTHER.

e To modify a default tone definition, use the three functions dx_querytone(),
dx_deletetone(), and dx_createtone() in this order, for one tone at a time.

* When dx_querytone() is issued on a board device in asynchronous mode, and the function is
immediately followed by another similar call prior to completion of the previous call on the
same device, the subsequent call will fail with device busy.

B Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADPARM
invalid parameter

Dialogic® Voice API Library Reference 219
Dialogic Corporation

dx_querytone() — get tone information for a specific call progress tone

EDX_SYSTEM
error from operating system

EDX_TONEID
bad tone template ID

B Example

#include "srllib.h"
#include "dxxxlib.h"

main ()
{
int brdhdl; /* board handle */

/* Open board */

if ((brdhdl = dx open("brdBl",0)) == -1)

{
printf ("Cannot open board\n");
/* Perform system error processing */
exit (1) ;

}

/* Get the tone information for the TID BUSY1l Tone*/
int result;
TONE_DATA tonedata;
if ((result = dx_querytone (brdhdl, TID_BUSYl, &tonedata, EV_SYNC)) == -1)
{
printf ("Cannot obtain tone information for TID BUSY1l \n");
/* Perform system error processing */
exit(1);

B See Also

e dx_deletetone()
e dx_createtone()

220 Dialogic® Voice API Library Reference
Dialogic Corporation

record voice data from a single channel — dx_rec()

dx_rec()
Name: int dx_rec(chdev, iottp, tptp, mode)
Inputs: int chdev e valid channel device handle
DX_IOTT *iottp e pointer to I/O Transfer Table structure
DV_TPT *tptp e pointer to Termination Parameter Table structure
unsigned short mode ¢ asynchronous/synchronous setting and recording mode bit mask
Returns: 0 if successful

-1 if failure

Includes: srllib.h
dxxxlib.h

Category: 1/0

Mode: asynchronous or synchronous
B Description

The dx_rec() function records voice data from a single channel. The data may be recorded to a
combination of data files, memory, or custom devices. The order in which voice data is recorded is
specified in the DX_IOTT structure.

After dx_rec() is called, recording continues until dx_stopch() is called, until the data
requirements specified in the DX_IOTT are fulfilled, or until one of the conditions for termination
in the DV_TPT is satisfied. When dx_rec() terminates, the current channel’s status information,
including the reason for termination, can be accessed using extended attribute functions. Use the
ATDX_TERMMSK() function to determine the reason for termination.

Note: For a single file synchronous record, dx_recf() is more convenient because you do not have to set
up a DX_IOTT structure. See the function description of dx_recf() for information.
Parameter Description
chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()
iottp points to the I/O Transfer Table Structure, DX_IOTT, which specifies the order
of recording and the location of voice data. This structure must remain in
scope for the duration of the function if using asynchronously. See DX_IOTT,
on page 312, for more information on this data structure.
Dialogic® Voice API Library Reference 221

Dialogic Corporation

dx_rec() — record voice data from a single channel

222

Parameter Description

Notes: 1.

tptp points to the Termination Parameter Table Structure, DV_TPT, which specifies

termination conditions for recording. For more information on this structure,
see DV_TPT, on page 301.

Note: In addition to DV_TPT terminations, the function can fail due to
maximum byte count, dx_stopch(), or end of file. See
ATDX_TERMMSK() for a full list of termination reasons.

mode defines the recording mode. One or more of the values listed below may be

selected in the bit mask using bitwise OR (see Table 4 for record mode
combinations).

Choose one only:
e EV_ASYNC - run asynchronously
e EV_SYNC - run synchronously (default)

Choose one or more:

e MD_ADPCM - record using Adaptive Differential Pulse Code Modulation
encoding algorithm (4 bits per sample). Recording with ADPCM is the
default setting.

e MD_GAIN - record with Automatic Gain Control (AGC). Recording with
AGC is the default setting.

¢ MD_NOGAIN - record without AGC

e MD_PCM - record using Pulse Code Modulation encoding algorithm (8
bits per sample)

e RM_ALAW - record using A-law

¢ RM_TONE - transmit a 200 msec tone before initiating record

¢ RM_SR6 —record using 6 kHz sampling rate (6000 samples per second).
This is the default setting.

e RM_SRS8 —record using 8 kHz sampling rate (8000 samples per second)

If both MD_ADPCM and MD_PCM are set, MD_PCM will take precedence. If both MD_GAIN
and MD_NOGAIN are set, MD_NOGAIN will take precedence. If both RM_TONE and NULL
are set, RM_TONE takes precedence. If both RM_SR6 and RM_SRS are set, RM_SR6 will take
precedence.

Specifying RM_SR6 or RM_SRS in mode changes the setting of the parameter
DXCH_RECRDRATE. DXCH_RECRDRATE can also be set and queried using dx_setparm()
and dx_getparm(). The default setting for DXCH_RECRDRATE is 6 kHz.

The rate specified in the last record function will apply to the next record function, unless the rate
was changed in the parameter DXCH_RECRDRATE using dx_setparm().

When using the RM_TONE bit for tone-initiated record, each time slot must be “listening” to the
transmit time slot of the recording channel because the alert tone can only be transmitted on the
recording channel transmit time slot.

Table 4 shows recording mode selections. The first column of the table lists all possible
combinations of record features, and the first row lists each type of encoding algorithm (ADPCM
or PCM) and the data-storage rate for each algorithm/sampling rate combination in parenthesis
(24 kbps, 32 kbps, 48 kbps, or 64 kbps).

Dialogic® Voice API Library Reference
Dialogic Corporation

record voice data from a single channel — dx_rec()

Select the desired record feature in the first column of the table and move across that row until the
column containing the desired encoding algorithm and data storage rate is reached. The record
modes that must be entered in dx_rec() are provided where the features row, and encoding
algorithm/data storage rate column intersect. Parameters listed in braces, { }, are default settings
and do not have to be specified.

Table 4. Record Mode Selections

Feature ADPCM (24 kbps) ADPCM (32 kbps) PCM (48 kbps) PCM (64 kbps)
RM_SR6 RM_SR8 RM_SR6 RM_SR8
AGC {MD_ADPCM} {MD_ADPCM} RM_ALAW* RM_ALAW*
No Tone {MD_GAIN} {MD_GAIN} MD_PCM MD_PCM
{MD_GAIN} {MD_GAIN}
No AGC MD_NOGAIN MD_NOGAIN MD_NOGAIN MD_NOGAIN
No Tone RM_SR6 RM_SR8 RM_SR6 RM_SR8
{MD_ADPCM} {MD_ADPCM} MD_PCM MD_PCM
RM_TONE RM_TONE RM_TONE RM_TONE
AGC RM_SR6 RM_SR8 RM_ALAW* RM_ALAW
Tone {MD_ADPCM} {MD_ADPCM} RM_SR6 RM_SR8
{MD_GAIN} {MD_GAIN} MD_PCM MD_PCM
{MD_GAIN} {MD_GAIN}
MD_NOGAIN MD_NOGAIN MD_NOGAIN MD_NOGAIN
No AGC RM_TONE RM_TONE MD_PCM MD_PCM
Tone RM_SR6 RM_SR8 RM_SR6 RM_SR8
{MD_ADPCM} {MD_ADPCM} RM_TONE RM_TONE
RM_ALAW* RM_ALAW*
{ } = Default modes.
* = Select if A-law encoding is required

B Asynchronous Operation

To run this function asynchronously, set the mode parameter to EV_ASYNC. When running
asynchronously, this function returns O to indicate it has initiated successfully, and generates a
TDX_RECORD termination event to indicate completion.

Set termination conditions using the DV_TPT structure, which is pointed to by the tptp parameter.

Termination of asynchronous recording is indicated by a TDX_RECORD event. Use the Dialogic®
Standard Runtime Library (SRL) event management functions to handle the termination event.

After dx_rec() terminates, use the ATDX_TERMMSK() function to determine the reason for
termination.

Note: The DX_IOTT data area must remain in scope for the duration of the function if running
asynchronously.

B Synchronous Operation

By default, this function runs synchronously, and returns a 0 to indicate that it has completed
successfully.

Dialogic® Voice API Library Reference 223
Dialogic Corporation

dx_rec() — record voice data from a single channel

Set termination conditions using the DV_TPT structure, which is pointed to by the tptp parameter.
After dx_rec() terminates, use the ATDX_TERMMSK() function to determine the reason for
termination.

B Cautions

e If A-law data encoding is selected (RM_ALAW), the A-law parameters must be passed each
time the record function is called or the setting will return to mu-law (the default).

* Voice channels must be listening to a TDM bus time slot in order for voice recording
functions, such as dx_rec(), to work. In other words, you must issue a dx_listen() function
call on the device handle before calling a voice recording function for that device handle. If
not, that voice channel will be in a stuck state and can only be cleared by issuing dx_stopch()
or dx_listen(). The actual recording operation will start only after the voice channel is
listening to the proper external time slot.

* The io_fhandle member of the DX_IOTT is normally set to the value of the descriptor
obtained when opening the file used for recording. That file cannot be opened in append mode
since multiple recordings would corrupt the file during playback because of different coders
used, header and other format-related issues. Consequently, when opening a file, the
O_APPEND flag is not supported and will cause TDX_ERROR to be returned if used.

e Itis recommended that you start recording before receiving any incoming data on the channel
so that initial data is not missed in the recording.

®m Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADDEV
Invalid Device Descriptor

EDX_BADIOTT
Invalid DX_IOTT entry

EDX_BADPARM
Invalid parameter

EDX_BADTPT
Invalid DX_TPT entry

EDX_BUSY
Busy executing I/O function

EDX_SYSTEM
Error from operating system

B Example 1

This example illustrates how to using dx_rec() in synchronous mode.

#include <fcntl.h>
#include <srllib.h>
#include <dxxxlib.h>

224 Dialogic® Voice API Library Reference
Dialogic Corporation

record voice data from a single channel — dx_rec()

#define MAXLEN 10000

main ()
{
DV_TPT tpt;
DX_IOTT iott[2];
int chdev;
char basebufp[MAXLEN] ;

/*
* open the channel using dx_open()
*/
if ((chdev = dx_open ("dxxxB1C1",NULL)) == -1) {

/* process error */

/*
* Set up the DV_TPT structures for MAXDTMF
*/

dx clrtpt (&tpt,1);

tpt.tp_type I0_EOT; /* last entry in the table */
tpt.tp termno = DX MAXDTMF; /* Maximum digits */

tpt.tp_length = 1; /* terminate on the first digit */
tpt.tp flags = TF MAXDTMF; /* Use the default flags */

/‘k
* Set up the DX_IOTT. The application records the voice data to memory
* allocated by the user.

*/
iott[0].io_type = IO MEM|IO_ CONT; /* Record to memory */
iott[0].io bufp = basebufp; /* Set up pointer to buffer */
iott[0].io offset = 0; /* Start at beginning of buffer */
iott[0].io length = MAXLEN; /* Record 10,000 bytes of voice data */
iott[1l].io type = IO DEV|IO EOT; /* Record to file, last DX IOTT entry */
iott[1l].io bufp = 0; /* Set up pointer to buffer */
iott[l].io offset = 0; /* Start at beginning of buffer */
iott[l].io_length = MAXLEN; /* Record 10,000 bytes of voice data */

/* For Windows applications */

if ((iott[1l].io_fhandle = dx fileopen("file.vox",
O RDWR|O_CREAT|O TRUNC|O BINARY,0666)) == -1) {
/* process error */

/* For Linux applications */

if ((iott[1l].io_fhandle = open("file.vox", O RDWR|O_CREAT|O TRUNC,
0666)) == -1) {
/* process error */

/* clear previously entered digits */

if (dx_clrdigbuf (chdev) == -1) {
/* process error */

}

if (dx_rec(chdev,&iott[0],&tpt,RM TONE|EV_SYNC) == -1) {
/* process error */

}

/* RAnalyze the data recorded */

Dialogic® Voice API Library Reference 225
Dialogic Corporation

dx_rec() — record voice data from a single channel

B Example 2

This example illustrates how to use dx_rec() in asynchronous mode.

#include <stdio.h>
#include <fcntl.h>
#include <srllib.h>
#include <dxxxlib.h>

#define MAXLEN 10000
#define MAXCHAN 24

int record handler();

DV_TPT tpt;

DX_IOTT iott [MAXCHAN];

int chdev[MAXCHAN] ;

char basebufp[MAXCHAN] [MAXLEN] ;

main ()
{
int i, srlmode;
char *chname;
/* Set SRL to run in polled mode. */
srlmode = SR_POLLMODE;
if (sr_setparm(SRL_DEVICE, SR MODEID, (void *)&srlmode) == -1) {
/* process error */

/* Start asynchronous dx rec() on all the channels. */
for (i=0; i<MAXCHAN; i++) {

/* Set chname to the channel name, e.g., dxxxB1Cl, dxxxB1C2,... */
/*

* open the channel using dx_open()

*/

if ((chdev[i] = dx_open (chname,NULL)) == -1) {

/* process error */

/* Using sr_enbhdlr (), set up handler function to handle record
* completion events on this channel.
*/
if (sr_enbhdlr(chdev[i], TDX RECORD, record handler) == -1) {
/* process error */

/*

* Set up the DV_TPT structures for MAXDTMF

*/

dx_clrtpt (&tpt,1);

tpt.tp_type = IO_EOT; /* last entry in the table */
tpt.tp_termno = DX _MAXDTMF; /* Maximum digits */

tpt.tp length = 1; /* terminate on the first digit */
tpt.tp_flags = TF_MAXDTMF; /* Use the default flags */

/*

* Set up the DX IOTT. The application records the voice data to memory
* allocated by the user.
*/
iott[i].io_type = IO _MEM|IO_EOT; /* Record to memory, last DX_IOTT
* entry */

iott[i].io bufp = basebufpli]; /* Set up pointer to buffer */
iott[i].io offset = 0; /* Start at beginning of buffer */
iott[i].io length = MAXLEN; /* Record 10,000 bytes voice data */
226 Dialogic® Voice API Library Reference

Dialogic Corporation

record voice data from a single channel — dx_rec()

/* clear previously entered digits */
if (dx_clrdigbuf (chdev) == -1) {
/* process error */

}

/* Start asynchronous dx rec() on the channel */
if (dx_rec(chdev[i], &iott[i], &tpt,RM _TONE|EV_ASYNC) == -1) {
/* process error */
}
}

/* Use sr waitevt to wait for the completion of dx rec().
* On receiving the completion event, TDX RECORD, control is transferred
* to a handler function previously established using sr_enbhdlr().

*/

int record handler()
{

long term;

/* Use ATDX TERMMSK() to get the reason for termination. */
term = ATDX_TERMMSK (sr_getevtdev());
if (term & TM MAXDIMF) {

printf ("record terminated on receiving DTMF digit(s)\n");
} else if (term & TM NORMTERM) {

printf ("normal termination of dx rec()\n");
} else {

printf ("Unknown termination reason: %$x\n", term);

}

/* Kick off next function in the state machine model. */

return 0;

B See Also

e dx_recf()

e dx_reciottdata()

e dx_recvox()

e dx_setparm()

e dx_getparm()

e DX_IOTT data structure (to identify source or destination of the voice data)

e event management functions in Dialogic® Standard Runtime Library API Library Reference
e ATDX_TERMMSK()

e DV_TPT data structure (to specify a termination condition)

e dx_setuio()

Dialogic® Voice API Library Reference 227
Dialogic Corporation

dx_recf() — record voice data to a single file

dx_recf()

Name: int dx_recf(chdev, fnamep, tptp, mode)

Inputs: int chdev e valid channel device handle
char *fnamep * pointer to name of file to record to
DV_TPT *tptp * pointer to Termination Parameter Table structure
unsigned short mode ¢ recording mode bit mask for this record session

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: 1/0 Convenience

Mode: synchronous

B Description

The dx_recf() function is a convenience function that records voice data from a channel to a single
file.

Calling dx_recf() is the same as calling dx_rec() and specifying a single file entry in the
DX_IOTT structure. Using dx_recf() is more convenient for recording to one file, because you do
not have to set up a DX_IOTT structure for one file, and the application does not need to open the
file. The dx_recf() function opens and closes the file specified by fnamep.

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

fnamep points to the name of the file where voice data will be recorded

tptp points to the Termination Parameter Table structure, DV_TPT, which specifies

termination conditions for recording. For more information on this structure,
see DV_TPT, on page 301.

mode defines the recording mode. One or more of the values listed in the mode
description of dx_rec() may be selected in the bitmask using bitwise OR (see
Table 4, “Record Mode Selections”, on page 223 for record mode
combinations).

B Cautions

None.

228 Dialogic® Voice API Library Reference
Dialogic Corporation

record voice data to a single file — dx_recf()

H Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a

descriptive error message. One of the following error codes may be returned:

EDX_BADIOTT
Invalid DX_IOTT entry

EDX_BADPARM
Invalid parameter

EDX_BADTPT
Invalid DX_TPT entry

EDX_BUSY
Busy executing I/O function

EDX_SYSTEM
Error from operating system

B Source Code

[K Kk K ok ok ok ok K ok K ok ok K ok K ok ok ok ok K ok ok ok K ok Kk ok K ok K ok ok ok Kk k ok ok Kk ok ok ok Kk Kk ok ok kK k kR k Kk k ok ok Kk ok ok ok Kk K Kk

* NAME: int dx_recf (devd, filep, tptp, mode)

* DESCRIPTION: Record data to a file

* INPUTS: devd - channel descriptor

* tptp - TPT pointer

* filep - ASCIIZ string for name of file to read into

* mode - tone initiation flag

* OUTPUTS: Data stored in file, status in CSB pointed to by csbp

* RETURNS: 0 or -1 on error

* CALLS: open() dx_rec() close()

* CAUTIONS: none.
hhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhhkhkhkhkhkhkhkhkhhkhhkhkhkhkhkhkhkhkhhhhkhkhkhkhkhkrhkhkhkhkhkhkhkhkhkhkhkrhkhkkhkhhkkkhkhxkk*k
*/
int dx recf(devd, filep, tptp, mode)

int devd;
char *filep;

DV_TPT “*tptp;
USHORT mode;

int rval;
DX_IOTT iott;
/9:

* If Async then return Error
* Reason: IOTT's must be in scope for the duration of the record
*/
if (mode & EV_ASYNC) {
return(-1);

}

/* Open the File */
if ((iott.io_fhandle = open(filep, (O_WRONLY|O_ CREAT|O TRUNC),0666)) == -
1) {

return -1;

Dialogic® Voice API Library Reference
Dialogic Corporation

229

dx_recf() — record voice data to a single file

/* Use dx rec() to do the record */
iott.io type = IO_EOT | IO _DEV;
iott.io offset = (long)0;

iott.io length = -1;

rval = dx_rec(devd, &iott, tptp,mode) ;
if (close(iott.io fhandle) == -1) {

return -1;

return rval;

H Example

#include <srllib.h>
#include <dxxxlib.h>

main ()

{
int chdev;
long termtype;
DV_TPT tpt[2];

/* Open the channel using dx open(). Get channel device descriptor in
* chdev

*/

if ((chdev = dx_open ("dxxxB1C1",NULL)) == -1) {

/* process error */

/* Set the DV_TPT structures up for MAXDTMF and MAXSIL */
dx clrtpt (tpt,2);

tpt[0].tp_type = IO_CONT;

tpt [0].tp termno = DX MAXDTMF; /* Maximum digits */
tpt[0].tp_length = 1; /* terminate on the first digit */
tpt[0].tp flags = TF MAXDTMF; /* Use the default flags */

/‘k

* If the initial silence period before the first non-silence period
* exceeds 4 seconds then terminate. If a silence period after the
* first non-silence period exceeds 2 seconds then terminate.

*/

tpt[l].tp_type = IO _EOT; /* last entry in the table */

tpt[1l].tp termno = DX MAXSIL; /* Maximum silence */

tpt[1l].tp_length = 20; /* terminate on 2 seconds of
* continuous silence */

tpt[l].tp_flags = TF _MAXSIL|TF SETINIT; /* Use the default flags and
* initial silence flag */

tpt[l].tp_data = 40; /* Allow 4 seconds of initial
* silence */

if (dx_recf(chdev, "weather.vox", tpt,RM TONE) == -1) {

/* process error */

}

termtype = ATDX TERMMSK (chdev); /* investigate termination reason */

if (termtype & TM_MAXDTMF) {

/* process DTMF termination */
}
}
B See Also
e dx_rec()
230 Dialogic® Voice API Library Reference

Dialogic Corporation

record voice data to a single file — dx_recf()

e dx_reciottdata()

e dx_recvox()

e dx_setparm()

e dx_getparm()

e ATDX_TERMMSK()

e DV_TPT data structure (to specify a termination condition)

Dialogic® Voice API Library Reference 231
Dialogic Corporation

dx_reciottdata() — record voice data to multiple destinations

dx_reciottdata()

Name: int dx_reciottdata(chdev, iottp, tptp, xpbp, mode)

Inputs: int chdev e valid channel device handle
DX_IOTT *iottp ¢ pointer to I/O Transfer Table structure
DV_TPT *tptp e pointer to Termination Parameter Table structure
DX_XPB *xpbp ¢ pointer to I/O Transfer Parameter block
unsigned short mode * play mode

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: 1I/O

Mode: asynchronous or synchronous

B Description

The dx_reciottdata() function records voice data to multiple destinations, a combination of data
files, memory, or custom devices.

dx_reciottdata() is similar to dx_rec(), but takes an extra parameter, xpbp, which allows the user
to specify format information about the data to be recorded. This includes file format, data
encoding, sampling rate, and bits per sample.

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

iottp points to the I/O Transfer Table Structure, DX_IOTT, which specifies the order

of recording and the location of voice data. This structure must remain in
scope for the duration of the function if using asynchronously. See DX_IOTT,
on page 312, for more information on this data structure.

tptp points to the Termination Parameter Table Structure, DV_TPT, which specifies
termination conditions for recording. For more information on this structure,
see DV_TPT, on page 301.

232 Dialogic® Voice API Library Reference
Dialogic Corporation

record voice data to multiple destinations — dx_reciottdata()

Parameter Description

xpbp points to the I/O Transfer Parameter Block, DX_XPB, which specifies the file

format, data format, sampling rate, and resolution for I/O data transfer. For
more information on this structure, see DX_XPB, on page 324.

mode specifies the recording mode. One or more of the values listed below may be

selected in the bit mask using bitwise OR.

Choose one only:
e EV_ASYNC - asynchronous mode
e EV_SYNC - synchronous mode

Choose one or more:
e MD_NOGAIN - record without automatic gain control (AGC). AGC is on
by default.

¢ RM_TONE - transmit a 200 msec tone before initiating record.

¢ RM_VADNOTIFY - generates an event, TDX_VAD, on detection of voice
energy by the voice activity detector (VAD) during the recording
operation. For details on recording with the voice activity detector (VAD),
see the Voice API Programming Guide.
Note that TDX_VAD does not indicate function termination; it is an
unsolicited event. Do not confuse this event with the TEC_VAD event
which is used in the continuous speech processing (CSP) library.

RM_ISCR - adds initial silence compression to the voice activity detector
(VAD) capability. Note that the RM_ISCR mode can only be used in
conjunction with RM_VADNOTIFY. For details on recording with the
voice activity detector (VAD), see the Voice API Programming Guide.

RM_NOTIFY — (Windows® only) generate record notification beep tone.

B Cautions

Voice channels must be listening to a TDM bus time slot in order for voice recording
functions, such as dx_reciottdata(), to work. In other words, you must issue a dx_listen()
function call on the device handle before calling a voice recording function for that device
handle. If not, that voice channel will be in a stuck state and can only be cleared by issuing
dx_stopch() or dx_listen(). The actual recording operation will start only after the voice
channel is listening to the proper external time slot.

All files specified in the DX_IOTT structure will be of the file format described in DX_XPB.
All files recorded to will have the data encoding and sampling rate as described in DX_XPB.

When playing or recording VOX files, the data format is specified in DX_XPB rather than
through the dx_setparm() function.

The DX_IOTT data area must remain in scope for the duration of the function if running
asynchronously.
The DX_XPB data area must remain in scope for the duration of the function if running
asynchronously.

The io_fhandle member of the DX_IOTT is normally set to the value of the descriptor
obtained when opening the file used for recording. That file cannot be opened in append mode
since multiple recordings would corrupt the file during playback because of different coders

Dialogic® Voice API Library Reference 233

Dialogic Corporation

dx_reciottdata() — record voice data to multiple destinations

used, header and other format-related issues. Consequently, when opening a file, the
O_APPEND flag is not supported and will cause TDX_ERROR to be returned if used.

e Itis recommended that you start recording before receiving any incoming data on the channel
so that initial data is not missed in the recording.

B Errors

In asynchronous mode, the function returns immediately and a TDX_RECORD event is queued
upon completion. Check ATDX_TERMMSK() for the termination reason. If a failure occurs
during recording, then a TDX_ERROR event will be queued. Use ATDV_LASTERR() to
determine the reason for error. In some limited cases such as when invalid arguments are passed to
the library, the function may fail before starting the record. In such cases, the function returns -1
immediately to indicate failure and no event is queued.

In synchronous mode, if this function returns -1 to indicate failure, use the Dialogic® Standard
Runtime Library (SRL) Standard Attribute function ATDV_LASTERR() to obtain the error code
or use ATDV_ERRMSGP() to obtain a descriptive error message. One of the following error
codes may be returned:

EDX_BADIOTT
Invalid DX_IOTT setting

EDX_BADWAVFILE
Invalid WAVE file

EDX _BUSY
Channel is busy

EDX_SYSTEM
Error from operating system

EDX_XPBPARM
Invalid DX_XPB setting

EDX_SH_BADCMD
Unsupported command or WAVE file format
H Example

#include <srllib.h>
#include <dxxxlib.h>

main ()

{

int chdev; /* channel descriptor */
int fd; /* file descriptor for file to be played */
DX_IOTT iott; /* I/0 transfer table */
DV_TPT tpt; /* termination parameter table */
DX_XPB xpb; /* I/0 transfer parameter block */
234 Dialogic® Voice API Library Reference

Dialogic Corporation

if (dx_reciottdata(chdev, &iott, &tpt, &xpb,PM TONE|EV_SYNC) == -1)
printf ("Error recording file - %s\n", ATDV_ERRMSGP (chdev)) ;
exit (4);
}
}
B See Also
e dx_rec()
e dx_recf()
.

record voice data to multiple destinations — dx_reciottdata()

/* Open channel */

if ((chdev = dx_open ("dxxxB1C1l",0)) == -1) {
printf ("Cannot open channel\n");
/* Perform system error processing */
exit (1);

/* Set to terminate play on 1 digit */
tpt.tp_type = I0_EOT;

tpt.tp_termno = DX MAXDTME;
tpt.tp_length = 1;

tpt.tp flags = TF_MAXDTMF;

/* For Windows applications: open file */

if ((fd = dx_fileopen ("MESSAGE.VOX",O RDWR|O_ BINARY)) == -1)
printf ("File open error\n");
exit (2);

/* For Linux applications: open file */

if ((fd = open("MESSAGE.VOX",O RDWR)) == -1) {
printf ("File open error\n");
exit (2);

/* Set up DX IOTT */
iott.io_fhandle = fd;

iott.io bufp = 0;
iott.io offset = 0;
iott.io length = -1;

iott.io_type = IO_DEV | IO_EOT;

/*
* Specify VOX file format for PCM at 8KHz.
*/
xpb.wFileFormat = FILE FORMAT VOX;
xpb.wDataFormat = DATA_FORMAT_PCM;
xpb.nSamplesPerSec = DRT 8KHZ;
xpb.wBitsPerSample = 8;

/* Wait forever for phone to ring and go offhook */
if (dx wtring(chdev,1,DX OFFHOOK,-1) == -1) {

printf ("Error waiting for ring - %s\n", ATDV_LASTERR (chdev)) ;

exit (3);

/* Play intro message */

if (dx _playvox(chdev, "HELLO.VOX", &tpt, &xpb,EV_SYNC) == -1) {
printf ("Error playing file - %s\n", ATDV_ERRMSGP (chdev)) ;
exit (4);

/* Start recording */

dx_recvox()

Dialogic® Voice API Library Reference
Dialogic Corporation

235

dx_reciottdata() — record voice data to multiple destinations

e dx_recwav()

e dx_setuio()

236 Dialogic® Voice API Library Reference
Dialogic Corporation

record voice data to a single VOX file — dx_recvox()

dx_recvox()

Name: int dx_recvox(chdev, filenamep, tptp, xpbp, mode)

Inputs: int chdev e valid channel device handle
char *filenamep e pointer to name of file to record to
DV_TPT *tptp e pointer to Termination Parameter Table structure
DX_XPB *xpbp e pointer to I/O Transfer Parameter Block structure
unsigned short mode e record mode

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: 1/0 Convenience

Mode: synchronous

B Description

The dx_recvox() function records voice data from a channel to a single VOX file. This is a
convenience function.

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

filenamep points to the name of the VOX file to record to

tptp points to the Termination Parameter Table Structure, DV_TPT, which

specifies termination conditions for recording. For more information on this
structure, see DV_TPT, on page 301.

xpbp points to the I/O Transfer Parameter Block structure, which specifies the file
format, data format, sampling rate, and resolution of the voice data. For more
information, see DX_XPB, on page 324.

Note: If xpbp is set to NULL, this function interprets the data as 6 kHz linear
ADPCM.

mode specifies the record mode. The following values may be used individually or
ORed together:
* EV_SYNC - synchronous operation (must be specified)
¢ RM_TONE - transmits a 200 msec tone before initiating record

B Cautions

* Voice channels must be listening to a TDM bus time slot in order for voice recording
functions, such as dx_reciottdata(), to work. In other words, you must issue a dx_listen()

Dialogic® Voice API Library Reference 237
Dialogic Corporation

dx_recvox() — record voice data to a single VOX file

function call on the device handle before calling a voice recording function for that device
handle. If not, that voice channel will be in a stuck state and can only be cleared by issuing
dx_stopch() or dx_listen(). The actual recording operation will start only after the voice

channel is listening to the proper external time slot.

* When playing or recording VOX files, the data format is specified in DX_XPB rather than
through the mode parameter of dx_recvox().

e Itis recommended that you start recording before receiving any incoming data on the channel
so that initial data is not missed in the recording.

®m Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADIOTT
Invalid DX_IOTT setting

EDX_BUSY
Channel is busy

EDX_SH_BADCMD
Unsupported command or VOX file format

EDX_SYSTEM
Error from operating system

EDX_XPBPARM
Invalid DX_XPB setting
H Example

#include "srllib.h"
#include "dxxxlib.h"

main ()

{

int chdev; /* channel descriptor */
DV_TPT tpt; /* termination parameter table */
DX XPB xpb; /* 1/0 transfer parameter block */

/* Open channel */

if ((chdev = dx open ("dxxxB1Cl",0)) == -1) {
printf ("Cannot open channel\n");
/* Perform system error processing */
exit (1);

}

/* Set to terminate play on 1 digit */
tpt.tp_type = I0_EOT;

tpt.tp_termno = DX MAXDTMF;
tpt.tp_length 1;

tpt.tp_flags = TF MAXDTMF;

238 Dialogic® Voice API Library Reference
Dialogic Corporation

record voice data to a single VOX file — dx_recvox()

/* Wait forever for phone to ring and go offhook */
if (dx wtring(chdev,1,DX OFFHOOK,-1) == -1) {

}

printf ("Error waiting for ring - %s\n", ATDV_LASTERR (chdev)) ;
exit(3);

/* Start prompt playback */
if (dx_playvox(chdev, "HELLO.VOX", &tpt,EV_SYNC) == -1) {

}

printf ("Error playing file - %s\n", ATDV_ERRMSGP (chdev)) ;
exit (4);

/* clear digit buffer */
dx_clrdigbuf (chdev) ;

/* Start 6KHz ADPCM recording */
if (dx_recvox(chdev, "MESSAGE.VOX", &tpt,NULL,RM TONE|EV_SYNC) == -1)({

printf ("Error recording file - %s\n", ATDV_ERRMSGP (chdev));
exit (4);

B See Also

dx_rec()
dx_recf()
dx_reciottdata()

dx_recwav()

Dialogic® Voice API Library Reference

Dialogic Corporation

239

dx_recwav() — record voice data to a single WAVE file

dx_recwav()

Name:
Inputs:

int dx_recwav(chdev, filenamep, tptp, xpbp, mode)

int chdev

char *filenamep
DV_TPT *tptp
DX_XPB *xpbp

unsigned short mode

e valid channel device handle

* pointer to name of file to record to

e pointer to Termination Parameter Table structure
e pointer to I/O Transfer Parameter Block

e record mode

Returns: 0 if successful
-1 if failure
Includes: srllib.h
dxxxlib.h
Category: I/0O Convenience
Mode: synchronous
B Description
The dx_recwav() convenience function records voice data to a single WAVE file. This function in
turn calls dx_reciottdata().
Parameter Description
chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()
tptp points to the Termination Parameter Table structure, DV_TPT, which specifies
termination conditions for playing. For more information on this function, see
DV_TPT, on page 301.
filenamep points to the name of the file to record to
xpbp points to the I/O Transfer Parameter Block, DX_XPB, which specifies the file
format, data format, sampling rate, and resolution. For more information on
this structure, see DX_XPB, on page 324.
Note: If xpbp is set to NULL, the function will record in 11 kHz linear 8-bit
PCM.
mode specifies the record mode. The following values may be used individually or
ORed together:
e EV_SYNC - synchronous operation (must be specified)
¢ RM_TONE - transmits a 200 msec tone before initiating record
B Cautions
* Voice channels must be listening to a TDM bus time slot in order for voice recording
functions, such as dx_reciottdata(), to work. In other words, you must issue a dx_listen()
240 Dialogic® Voice API Library Reference

Dialogic Corporation

record voice data to a single WAVE file — dx_recwav()

function call on the device handle before calling a voice recording function for that device
handle. If not, that voice channel will be in a stuck state and can only be cleared by issuing
dx_stopch() or dx_listen(). The actual recording operation will start only after the voice

channel is listening to the proper external time slot.

e Itis recommended that you start recording before receiving any incoming data on the channel
so that initial data is not missed in the recording.

B Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADIOTT
Invalid DX_IOTT setting

EDX_BADWAVFILE
Invalid WAVE file

EDX_BUSY
Channel is busy

EDX_SH_BADCMD
Unsupported command or WAVE file format

EDX_SYSTEM
Error from operating system

EDX_XPBPARM
Invalid DX_XPB setting
H Example

#include <srllib.h>
#include <dxxxlib.h>

main ()

{

int chdev; /* channel device handle */
DV_TPT tpt; /* termination parameter table */
DX_XPB xpb; /* 1/0 transfer parameter block */

/* Open channel */

if ((chdev = dx_open ("dxxxB1C1",0)) == -1) {
printf ("Cannot open channel\n");
/* Perform system error processing */
exit (1);

}

/* Set to terminate play on 1 digit */
tpt.tp_type = IO0_EOT;

tpt.tp_termno = DX MAXDTMF;

tpt.tp length = 1;

tpt.tp_flags = TF_MAXDTMF;

Dialogic® Voice API Library Reference 241
Dialogic Corporation

dx_recwav() — record voice data to a single WAVE file

/* Wait forever for phone to ring and go offhook */

if (dx wtring(chdev,1,DX OFFHOOK,-1) == -1) {
printf ("Error waiting for ring - %s\n", ATDV_LASTERR (chdev)) ;
exit (3);

}

/* Start playback */

if (dx_playwav(chdev, "HELLO.WAV", &tpt,EV_SYNC) == -1) {
printf ("Error playing file - %s\n", ATDV_ERRMSGP (chdev)) ;
exit (4);

}

/* clear digit buffer */
dx_clrdigbuf (chdev) ;

/* Start 11 kHz PCM recording */

if (dx_recwav(chdev, "MESSAGE.WAV", &tpt, (DX_XPB *)NULL, PM _TONE |EV_SYNC) == -1) {
printf ("Error recording file - %s\n", ATDV_ERRMSGP (chdev)) ;
exit (4);
}
}
B See Also

e dx_reciottdata()
e dx_recvox()

242 Dialogic® Voice API Library Reference
Dialogic Corporation

reset a channel that is hung — dx_resetch()

dx_resetch()

Name:
Inputs:

Returns:

Includes:

Category:
Mode:

dx_resetch (chdev, mode)

int chdev ¢ valid channel device handle
int mode * mode of operation
0 if success

-1 if failure

srllib.h
dxxxlib.h

I/0

asynchronous or synchronous

Description

The dx_resetch() function recovers a channel that is “stuck” (busy or hung) and in a recoverable
state, and brings it to an idle and usable state. This function blocks all other functions from
operating on the channel until the function completes. I

Parameter Description

chdev Specifies the valid device handle obtained when the channel was opened
using dx_open()

mode Specifies the mode of operation:
e EV_ASYNC - asynchronous mode. The calling thread returns
immediately so it can process media functionality on other channels.
e EV_SYNC - synchronous mode. The calling thread waits until the
channel is recovered or discovers that the channel is not in a
recoverable state.

In synchronous mode, 0 is returned if the function completes successfully, and -1 is returned in
case of error.

In asynchronous mode, the TDX_RESET event is generated to indicate that the channel was
recovered and is in an idle and usable state. The TDX_RESETERR event is generated to indicate
that the channel is not recoverable. Issuing any other media calls on this channel will result in an
€erTor.

Cautions

e The dx_resetch() function is intended for use on channels that are stuck and not responding.
Do not use it in place of dx_stopch(). Use dx_resetch() only if you do not receive an event
within 30 seconds of when it’s expected. Overuse of this function creates unnecessary
overhead and may affect system performance.

Dialogic® Voice API Library Reference 243
Dialogic Corporation

dx_resetch() — reset a channel that is hung

H Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_FWERROR
Firmware error

EDX_NOERROR
No error

B Example

#include <srllib.h>
#include <dxxxlib.h>

main ()

{
int chdev, srlmode;
/* Set SRL to run in polled mode. */
srlmode = SR_POLLMODE;

if (sr_setparm(SRL_DEVICE, SR _MODEID, (void *)&srlmode) == -1) {
/* process error */

}

/* Open the channel using dx open(). Get channel device descriptor in
* chdev.

*/

if ((chdev = dx_open ("dxxxB1C1",NULL)) == -1) {

/* process error */

/* continue processing */

/* Force the channel to idle state. The I/O function that the channel
* is executing will be terminated, and control passed to the handler
* function previously enabled, using sr_enbhdlr (), for the
* termination event corresponding to that I/O function.

* In asynchronous mode, dx_stopch() returns immediately,
* without waiting for the channel to go idle.

if (dx_stopch(chdev, EV_ASYNC) == -1) {
/* process error */

}

/* Wait for dx_stopch() to stop the channel and return the termination event
* for the present media function.

*/

/* After waiting for 30 secs if the termination event is not returned, issue a
* dx resetch() to reset the channel.

*/

if (dx_resetch(chdev, EV_ASYNC) <0)
{

/*process error */

244 Dialogic® Voice API Library Reference
Dialogic Corporation

reset a channel that is hung — dx_resetch()

}
/* Wait for TDX RESET or TDX RESETERR events */

}
B See Also

e ec_resetch() in the Dialogic® Continuous Speech Processing API Library Reference

Dialogic® Voice API Library Reference 245
Dialogic Corporation

dx_ResetStreamBuffer() — reset internal data for a circular stream buffer

dx_ResetStreamBuffer()

Name:
Inputs:
Returns:

Includes:

Category:
Mode:

int dx_ResetStreamBuffer(hBuffer)
int hBuffer e stream buffer handle

0 if successful
-1 if failure

srllib.h
dxxxlib.h

streaming to board

synchronous

246

Description

The dx_ResetStreamBuffer() function resets the internal data for a circular stream buffer,
including zeroing out internal counters as well as the head and tail pointers. This allows a stream
buffer to be reused without having to close and open the stream buffer. This function will report an
error if the stream buffer is currently in use (playing).

Parameter Description
hBuffer specifies the circular stream buffer handle
Cautions

You cannot reset or delete the buffer while it is in use by a play operation.
Errors
This function returns -1 when the buffer is in use by a play operation.

Unlike other Dialogic® Voice API library functions, the streaming to board functions do not use
SRL device handles. Therefore, ATDV_LASTERR() and ATDV_ERRMSGP() cannot be used
to retrieve error codes and error descriptions.

Example

#include <srllib.h>
#include <dxxxlib.h>

main ()

{
int nBuffSize = 32768;
int hBuffer = -1;

if ((hBuffer = dx_OpenStreamBuffer (nBuffSize)) < 0)
{

printf ("Error opening stream buffer \n");

exit (1) ;

Dialogic® Voice API Library Reference
Dialogic Corporation

reset internal data for a circular stream buffer — dx_ResetStreamBuffer()

if (dx_ResetStreamBuffer (hBuffer) < 0)
{printf ("Error resetting stream buffer \n");
exit (2);

}
if (dx_CloseStreamBuffer (hBuffer) < 0)

{

printf ("Error closing stream buffer \n");

}

B See Also

e dx_OpenStreamBuffer()
e dx_CloseStreamBuffer()

Dialogic® Voice API Library Reference 247
Dialogic Corporation

dx_ResetStreamBuffer() — reset internal data for a circular stream buffer

248 Dialogic® Voice API Library Reference
Dialogic Corporation

set the bulk queue buffer size — dx_setchxfercnt()

dx_setchxfercnt()

Name:
Inputs:

Returns:

Includes:

Category:
Mode:

int dx_setchxfercnt(chdev, bufsize_identifier)
int chdev ¢ valid channel device handle
int bufsize_identifier e equate for a buffer size

0 to indicate successful completion
-1 if failure

srllib.h
dxxxlib.h

Configuration

synchronous

Description

Supported on Windows® only. The dx_setchxfercnt() function sets the bulk queue buffer size for
the channel. This function can change the size of the buffer used to transfer voice data between a
user application and the driver. The minimum buffer size is 1 Kbytes, and the largest is 32 Kbytes.

This function is typically used in conjunction with the user I/O feature or the streaming to board
feature. (For more information on user I/O, see the dx_setuio() function.) This function sets up the
frequency with which the application-registered UIO read or write functions are called by the voice
DLL. For applications requiring more frequent access to voice data in smaller chunks, you can use
dx_setchxfercnt() on a per channel basis to lower the buffer size. For information on streaming to
board functions, see Section 1.5, “Streaming to Board Functions”, on page 18. For streaming to
board programming guidelines, see the Dialogic® Voice API Programming Guide.

Parameter Description

chdev specifies the valid device handle obtained when the device was opened
using xx_open(), where “xx” is the prefix identifying the device to be
opened

bufsize_identifier specifies the bulk queue buffer size for the channel. Use one of the
following values:
* (- sets the buffer size to 4 Kbytes
¢ | —sets the buffer size to 8 Kbytes
e 2 —sets the buffer size to 16 Kbytes (default)
* 3 —sets the buffer size to 32 Kbytes
* 4 —sets the buffer size to 2 Kbytes
* 5 —sets the buffer size to 1 Kbytes
* 6 —sets the buffer size to 1.5 Kbytes

Equates for these values are not available as #define in any header file.

Cautions

* This function fails if an invalid device handle is specified.

Dialogic® Voice API Library Reference 249
Dialogic Corporation

dx_setchxfercnt() — set the bulk queue buffer size

¢ Do not use this function unless it is absolutely necessary to change the bulk queue buffer size
between a user application and the board. Setting the buffer size to a smaller value can degrade
system performance because data is transferred in smaller chunks.

* A wrong buffer size can result in loss of data.
B Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_SYSTEM
Error from operating system

H Example

#include "srllib.h"
#include "dxxxlib.h"

main ()

{
int dev; /* device handle */

/* Open board 1 channel 1 device */

if ((dev = dx open("dxxxB1Cl", 0)) == -1) {
/* Perform system error processing */
exit (1) ;

}

/* Set the bulk data transfer buffer size to 1.5 kilobytes

*/
if (dx_setchxfercnt(dev, 6) == -1) {
printf ("Error message = %s", ATDV_ERRMSGP (dev)) ;
exit (1);
}
}
B See Also

e dx_setuio()

e dx_playiottdata()

e dx_reciottdata()

¢ DXCH_XFERBUFSIZE in dx_setparm()
e dx_OpenStreamBuffer()

e streaming to board topic in the Dialogic® Voice API Programming Guide

250 Dialogic® Voice API Library Reference
Dialogic Corporation

install and retrieve user-defined I/O functions — dx_setdevuio()

dx_setdevuio()

Name: int dx_setdevuio(chdev, devuiop, retuiop)

Inputs: int chdev e valid channel device handle
DX_UIO *devuiop e pointer to user I/O routines structure
DX_UIO **retuiop e pointer to return pointer for user I/O routines structure

Returns: 0 if successful
-1 error return code

Includes: srllib.h
dxxxlib.h

Category: 1/0

Mode: synchronous

B Description

The dx_setdevuio() function installs and retrieves user-defined I/O functions on a per channel
device basis. These user I/O functions are used on all subsequent I/O operations performed on the
channel even if the application installs global user I/O functions for all devices using the
dx_setuio() function. The user I/O functions are installed by installing a pointer to a DX_UIO
structure which contains addresses of the user-defined I/O functions.

For more information on working with user-defined I/O functions, see the Application
Development Guidelines chapter in the Dialogic® Voice API Programming Guide.

Parameter Description
chdev the channel for which the user-defined I/O functions will be installed
devuiop a pointer to an application-defined global DX_UIO structure which

contains the addresses of the user-defined I/O functions. This pointer to
the DX_UIO structure will be stored in the voice DLL for the specified
chdev channel device. The application must not overwrite the DX_UIO
structure until dx_setdevuio() has been called again for this device with
the pointer to another DX_UIO structure.

Dialogic® Voice API Library Reference 251
Dialogic Corporation

dx_setdevuio() — install and retrieve user-defined I/O functions

252

Parameter

Description

retuiop

B Cautions

the address of a pointer to a DX_UIO structure. Any previously installed
I/O functions for the chdev device are returned to the application as a
pointer to DX_UIO structure in retuiop. If this is the first time
dx_setdevuio() is called for a device, then retuiop will be filled with the
pointer to the global DX_UIO structure which may contain addresses of
the user-defined I/O function that apply to all devices.

Either of devuiop or retuiop may be NULL, but not both at the same
time. If retuiop is NULL, the dx_setdevuio() function will only install
the user I/O functions specified via the DX_UIO pointer in devuiop but
will not return the address of the previously installed DX _UIO structure.
If devuiop is NULL, then the previously installed DX_UIO structure
pointer will be returned in retuiop but no new functions will be installed.

e The DX _UIO structure pointed to by devuiop must not be altered until the next call to
dx_setdevuio() with new values for user-defined I/O functions.

e For proper operation, it is the application’s responsibility to properly define the three DX_UIO
user routines: u_read, u_write and u_seek. NULL is not permitted for any function. Refer to
DX_UIO, on page 323 for more information.

e User-defined I/O functions installed by dx_setdevuio() are called in a different thread than the
main application thread. If data is being shared among these threads, the application must
carefully protect access to this data using appropriate synchronization mechanisms (such as
mutex) to ensure data integrity.

H Errors

If the function returns -1 to indicate an error, use the Dialogic® SRL Standard Attribute function
ATDV_LASTERR() to obtain the error code or you can use ATDV_ERRMSGP() to obtain a
descriptive error message. The error codes returned by ATDV_LASTERR() are:

EDX _BADDEV

Invalid device descriptor

EDX_BADPARM
Invalid parameter

B Example

#include "windows.h"
#include "srllib.h"
#include "dxxxlib.h"

int chdev;
DX_UIO devio;
DX UIO *getiop;

/* channel descriptor */
/* User defined I/O functions */
/* Retrieve I/0 functions */

Dialogic® Voice API Library Reference
Dialogic Corporation

install and retrieve user-defined I/O functions — dx_setdevuio()

int appread(fd, ptr, cnt)

int fd;
char *ptr;
unsigned cnt;

printf ("appread: Read request\n");
return (read (fd, ptr, cnt));

int appwrite (fd, ptr, cnt)

int fd;
char *ptr;
unsigned cnt;

printf ("appwrite: Write request\n");
return(write (fd, ptr, cnt));

int appseek(fd, offset, whence)

int fd;
long offset;
int whence;

printf ("appseek: Seek request\n");
return (lseek (fd, offset, whence));

main(argc, argv)
int argc;
char *argvl];

/* Open channel */

if ((chdev = dx_open ("dxxxB1C1",0)) == -1) {
printf ("Cannot open channel\n");
/* Perform system error processing */
exit(1);

/* Other initialization */

/* Initialize the device specific UIO structure */

devio.u_read = appread;
devio.u write = appwrite;
devio.u_seek = appseek;

/* Install the applications I/O routines */
if (dx_setdevuio(chdev, &devio, &getiop) == -1) {
printf ("error registering the UIO routines = %d\n", ATDV_LASTERR (chdev));

B See Also

e dx_setuio()

Dialogic® Voice API Library Reference 253
Dialogic Corporation

dx_setdigtyp() — control the types of digits detected by the voice channel

dx_setdigtyp()

Name: int dx_setdigtyp(chdev, dmask)
Inputs: int chdev e valid channel device handle
unsigned short dmask * type of digit the channel will detect

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Configuration
Mode: synchronous

B Description

The dx_setdigtyp() function controls the types of digits the voice channel detects.

Notes: 1. This function only applies to the standard voice board digits; that is, DTMF, MF. To set user-
defined digits, use the dx_addtone() function.

2. dx_setdigtyp() does not clear the previously detected digits in the digit buffer.

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

dmask sets the type of digits the channel will detect. More than one type of digit
detection can be enabled in a single function call, as shown in the function
example.

The following are valid values:

e DM_DTMF - enable DTMF digit detection
e DM_MF - enable MF digit detection

e NULL - disable digit detection

Notes: 1. MF detection can only be enabled on systems with MF capability.

2. The digit detection type specified in dmask will remain valid after the channel has been closed
and reopened.

3. dx_setdigtyp() overrides digit detection enabled in any previous use of dx_setdigtyp().

For any digit detected, you can determine the digit type by using the DV_DIGIT data structure in
the application. When a dx_getdig() call is performed, the digits are collected and transferred to
the user’s digit buffer. The digits are stored as an array inside the DV_DIGIT structure. For more
information on this structure, see DV_DIGIT, on page 300.

254 Dialogic® Voice API Library Reference
Dialogic Corporation

control the types of digits detected by the voice channel — dx_setdigtyp()

B Cautions

Some MF digits use approximately the same frequencies as DTMF digits (see Chapter 6,
“Supplementary Reference Information”). Because there is a frequency overlap, if you have the
incorrect kind of detection enabled, MF digits may be mistaken for DTMF digits, and vice versa.
To ensure that digits are correctly detected, do NOT enable DTMF and MF detection at the same
time.

®m Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_SYSTEM
Error from operating system

B Example

On Dialogic® Host Media Processing (HMP) Software, dial pulse detection (DPD) is not
supported.

/*$ dx setdigtyp()and dx getdig() example for Global Dial Pulse Detection $*/

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

void main (int argc, char **argv)

{

int dev; /* device handle */
DV_DIGIT dig;

DV_TPT tpt;

/k

* Open device, make or accept call
*/

/* setup TPT to wait for 3 digits and terminate */
dx clrtpt (stpt, 1);

tpt.tp_type = I0_EOT;

tpt.tp_termno = DX MAXDTME;

tpt.tp_length 3;

tpt.tp flags = TF_MAXDTMF;

/* enable DPD and DIMF digits */
dx_setdigtyp (dev, D DPDZ|D DIMF);

/* clear the digit buffer */
dx_clrdigbuf (dev) ;

/* collect 3 digits from the user */
if (dx_getdig(dev, &tpt, &dig, EV_SYNC) == -1) {

/* error, display error message */

printf ("dx_getdig error %d, %s\n", ATDV_LASTERR (dev) , ATDV_ERRMSGP (dev)) ;
} else {

Dialogic® Voice API Library Reference 255
Dialogic Corporation

dx_setdigtyp() — control the types of digits detected by the voice channel

/* display digits received and digit type */
printf ("Received \"%$s\"\n", dig.dg value);
printf ("Digit type is ");

/k
* digit types have 0x30 ORed with them strip it off
* so that we can use the DG_xxx equates from the header files
*/
switch ((dig.dg_type[0] & 0x000f)) {
case DG_DTMF:
printf ("DTMF\n") ;
break;
case DG_DPD:
printf ("DPD\n") ;
break;
default:
printf ("Unknown, %d\n", (dig.dg_type[0] &0x000f));

}
/*

* continue processing call

*/
B See Also

e dx_addtone()

256 Dialogic® Voice API Library Reference
Dialogic Corporation

enable detection of call status transition (CST) events — dx_setevtmsk()

dx_setevtmsk()

Name: int dx_setevtmsk(chdev, mask)
Inputs: int chdev e valid channel device handle
unsigned int mask event mask of events to enable

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Call Status Transition Event
Mode: synchronous

B Description

The dx_setevtmsk() function enables detection of call status transition (CST) event or group of
events. This function can be used by synchronous or asynchronous applications waiting for a CST
event.

When you enable detection of a CST event and the event occurs, it will be placed on the event
queue. You can collect the event by getting it or waiting for it with an event handling function, such
as sr_waitevt(), sr_waitevtEx(), or dx_getevt(). For a list of call status transition events, see
Section 3.4, “Call Status Transition (CST) Events”, on page 295.

Note: This function can enable detection for all CST events except user-defined tone detection. See
dx_addtone() and dx_enbtone() for information.

Dialogic® Voice API Library Reference 257
Dialogic Corporation

dx_setevimsk() — enable detection of call status transition (CST) events

258

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

mask specifies the events to enable. To poll for multiple events, perform an OR
operation on the bit masks of the events you want to enable. The first enabled
CST event to occur will be returned. If an event is not specified in the mask,
the event will be disabled. If an event is enabled, it will remain enabled until it
is disabled through another function call; exceptions are DM_DIGITS and
DM_DIGOFFE.

One or more of the following bits can be set:

e DM_SILOF — wait for non-silence

e DM_SILON - wait for silence

e DM_DIGITS - enable digit reporting on the event queue (each detected
digit is reported as a separate event on the event queue)

¢ DM_DIGOFF - disable digit reporting on the event queue (as enabled by
DM_DIGITS). This is the only way to disable DM_DIGITS.

e DM_UNDERRUN - enables firmware underrun reporting
(TDX_UNDERRUN event) for streaming to board feature. This mask
works like a toggle key. If set once, the next call to the function will unset
this mask.

e DM_VADEVTS - voice activity detector (VAD) event notification (used in
conjunction with the continuous speech processing (CSP) API library
only)

¢ DM_CONVERGED - echo cancellation convergence notification (used in
conjunction with the Dialogic® Continuous Speech Processing (CSP) API
library only)

If DM_DIGITS is specified, a digits flag is set that causes individual digit events to queue until this
flag is turned off by DM_DIGOFF. Setting the event mask for DM_DIGITS and then subsequently
resetting the event mask without DM_DIGITS does not disable the queueing of digit events. Digit
events will remain in the queue until collected by an event handling function such as sr_waitevt(),
sr_waitevtEx(), or dx_getevt(). The event queue is not affected by dx_getdig() calls.

To enable DM_DIGITS:

/* Set event mask to collect digits */
if (dx_setevtmsk(chdev, DM DIGITS) == -1) {

To disable DM_DIGITS (turn off the digits flag and stop queuing digits):

dx_setevtmsk(DM_DIGOFF);
dx clrdigbuf (chdev); /*Clear out queue*/

The following outlines the synchronous or asynchronous handling of CST events:

Synchronous Application Asynchronous Application
Call dx_setevtmsk() to enable CST events. Call dx_setevtmsk() to enable CST events.

Dialogic® Voice API Library Reference
Dialogic Corporation

enable detection of call status transition (CST) events — dx_setevtmsk()

Call dx_getevt() to wait for CST events. Use Dialogic® Standard Runtime Library (SRL)
Events are returned to the DX EBLK to asynchronously wait for TDX_CST events.
structure.

Use sr_getevtdatap() to retrieve DX_CST
structure.

B Cautions

e If you call this function on a busy device, and specify DM_DIGITS as the mask argument, the
function will fail.

* On Linux, events are preserved between dx_getevt() function calls. The event that was set
remains the same until another call to dx_setevtmsk() changes it.

¢ On Linux, in a TDM bus configuration, when a voice resource is not listening to a network
device, it may report spurious silence-off transitions and ring events if the events are enabled.
To eliminate this problem:

* Disable the ring and silence detection on unrouted/unlistened channels using the
dx_setevtmsk() function.

* When you need to change the resource currently connected to your network device, do a
half duplex disconnect of the current resource to disconnect the transmit time slot of the
current resource (since two resources cannot transmit on the same time slot, although they
can both listen), and a full duplex connect on the new resource using the appropriate
listen/unlisten functions or the convenience functions nr_scroute() and nr_scunroute().

®m Errors

This function will fail and return -1 if the channel device handle is invalid or if any of the masks set
for that device are invalid.

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_SYSTEM
Error from operating system
B Example
This example illustrates how to use dx_setevtmsk() to handle call status transition events in an
asynchronous application.
#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

#define MAXCHAN 24

int cst_handler();

Dialogic® Voice API Library Reference 259
Dialogic Corporation

dx_setevimsk() — enable detection of call status transition (CST) events

main ()

{
int chdev [MAXCHAN] ;
char *chname;
int i, srlmode;

/* Set SRL to run in polled mode. */

srlmode = SR_POLLMODE;

if (sr_setparm(SRL_DEVICE, SR _MODEID, (void *)&srlmode) == -1) {
/* process error */

}

for (i1=0; 1<MAXCHAN; i++) {

/* Set chname to the channel name, e.g., dxxxB1Cl, dxxxB1C2,... */
/* Open the device using dx open(). chdev[i] has channel device
* descriptor.

*/

if ((chdev[i] = dx_open (chname,NULL)) == -1) {

/* process error */

/* Use dx_setevtmsk() to enable call status transition events
* on this channel.
*/
if (dx_setevtmsk (chdev[i],
DM_LCOFFIDM_LCONlDNLBINGS|DM_SILOFFIDM_SILONIDM_WINK) == -1) {
/* process error */

/* Using sr_enbhdlr (), set up handler function to handle call status
* transition events on this channel.
*/
if (sr_enbhdlr(chdev([i], TDX CST, cst handler) == -1) {
/* process error */

/* Use sr waitevt to wait for call status transition event.
* On receiving the transition event, TDX CST, control is transferred
* to the handler function previously established using sr_enbhdlr().

*/

int cst_handler()
{
DX_CST *cstp;

/* sr_getevtdatap() points to the event that caused the call status
* transition.
*/
cstp = (DX_CST *)sr getevtdatap();
switch (cstp->cst_event) {
case DE_RINGS:
printf ("Ring event occurred on channel %s\n",
ATDX NAMEP (sr_getevtdev()));
break;
case DE_WINK:
printf ("Wink event occurred on channel %s\n",
ATDX NAMEP (sr_getevtdev()));
break;
case DE_LCON:
printf ("Loop current ON event occurred on channel %$s\n",
ATDX NAMEP (sr_getevtdev()));

260 Dialogic® Voice API Library Reference
Dialogic Corporation

enable detection of call status transition (CST) events — dx_setevtmsk()

break;
case DE_LCOFF:

}

/* Kick off next function in the state machine model. */

return 0;

}

B See Also

e dx_getevt() (to handle call status transition events, synchronous operation)

* sr_getevtdatap() (to handle call status transition events, asynchronous operation)
e DX_CST data structure

e dx_addtone()

Dialogic® Voice API Library Reference 261

Dialogic Corporation

dx_setgtdamp() — set up the tone detection amplitudes

dx_setgtdamp()

Name: void dx_setgtdamp(gtd_minampll, gtd_maxampll, gtd_minampl2, gtd_maxampl2)
Inputs: short int gtd_minampll ® minimum amplitude of the first frequency
short int gtd_maxampll ® maximum amplitude of the first frequency
short int gtd_minampl2 ® minimum amplitude of the second frequency
short int gtd_maxampl2 ¢ maximum amplitude of the second frequency
Returns: void

Includes: srllib.h
dxxxlib.h

Category: Global Tone Detection

Mode: synchronous

B Description

The dx_setgtdamp() function sets up the amplitudes to be used by the general tone detection. This
function must be called before calling dx_blddt(), dx_blddtcad(), dx_bldst(), or dx_bldstcad()
followed by dx_addtone(). Once called, the values set will take effect for all dx_blddt(),
dx_blddtcad(), dx_bldst(), and dx_bldstcad() function calls.

Parameter Description

gtd_minampl1 specifies the minimum amplitude of tone 1, in dB
gtd_maxampll specifies the maximum amplitude of tone 1, in dB
gtd_minampl2 specifies the minimum amplitude of tone 2, in dB
gtd_maxampl2 specifies the maximum amplitude of tone 2, in dB

If this function is not called, then the MINERG firmware parameters that were downloaded remain
at the following settings: -42 dBm for minimum amplitude and 0 dBm for maximum amplitude.

Default Value Description

GT_MIN_DEF Default value in dB for minimum GTD amplitude that can be entered for
gtd_minampl* parameters.

GT_MAX_DEF Default value in dB for maximum GTD amplitude that can be entered for
gtd_maxampl* parameters.

B Cautions

e If this function is called, then the amplitudes set will take effect for all tones added afterwards.
To reset the amplitudes back to the defaults, call this function with the defines GT_MIN_DEF
and GT_MAX_ DEF for minimum and maximum defaults.

262 Dialogic® Voice API Library Reference
Dialogic Corporation

set up the tone detection amplitudes — dx_setgtdamp()

* When using this function in a multi-threaded application, use critical sections or a semaphore
around the function call to ensure a thread-safe application. Failure to do so will result in “Bad
Tone Template ID” errors.

®m Errors
None.

B Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

#define TID 1; /* Tone ID */
/*

* Set amplitude for GTD;

* freql -30dBm to 0 dBm

* freg2 -30dBm to 0 dBm

*/

dx_setgtdamp(-30,0,-30,0);

/*

* Build temporary simple dual tone frequency tone of

* 950-1050 Hz and 475-525 Hz. using trailing edge detection, and
* -30dBm to 0dBm.

if (dx_blddt(TID1, 1000, 50, 500, 25, TN LEADING) ==-1) {
/* Perform system error processing */
exit (3);
}
B See Also
None.
Dialogic® Voice API Library Reference 263

Dialogic Corporation

dx_setparm() — set physical parameters of a channel or board device

dx_setparm()

Name: int dx_setparm(dev, parm, valuep)

Inputs: int dev e valid channel or board device handle
unsigned long parm ® parameter type to set
void *valuep * pointer to parameter value

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Configuration

Mode: synchronous

B Description

The dx_setparm() function sets physical parameters of a channel or board device, such as
off-hook delay, length of a pause, and flash character. You can set only one parameter at a time.

A different set of parameters is available for board and channel devices. Board parameters affect all
channels on the board. Channel parameters affect the specified channel only.

The channel must be idle (that is, no I/O function running) when calling dx_setparm().

Parameter Description

dev Specifies the valid channel or board device handle obtained when the channel
or board was opened using dx_open().

parm Specifies the channel or board parameter to set. The voice device parameters
allow you to query and control device-level information and settings related to
the voice functionality.

See Table 1 for board parameter defines and Table 2 for channel parameter
defines.

Note: The parameters set in parm will remain valid after the device has been
closed and reopened.

valuep Points to the 4-byte variable that specifies the channel or board parameter to
set.

Note: You must use a void * cast on the address of the parameter being sent to
the driver in valuep as shown in the Example section.

The dxxxlib.h file contains defined masks for parameters that can be examined and set using
dx_getparm() and dx_setparm().

The voice device parameters fall into two classes:

264 Dialogic® Voice API Library Reference
Dialogic Corporation

set physical parameters of a channel or board device — dx_setparm()

* Board parameters, which apply to all channels on the board; voice board parameter defines
have a DXBD_ prefix.

¢ Channel parameters, which apply to individual channels on the board; voice channel
parameter defines have a DXCH_ prefix.

B Board Parameter Defines

The supported board parameter defines are shown in Table 1.

Table 1. Voice Board Parameters

. Read/ A
Define Bytes Write Default Description
DXBD_CHNUM 1 R - Channel Number. Number of channels on the board
DXBD_SYSCFG 1 R - System Configuration. On HMP, 1 is always returned.

B Channel Parameter Defines

The supported channel parameter defines are shown in Table 2. All time units are in multiples of 10
msec unless otherwise noted.

Table 2. Voice Channel Parameters

. Read/ .
Define Bytes Write Default Description

DXCH_EC_ACTIVE 2 R/W 0 Echo cancellation. Specifies whether the echo cancellation
feature is enabled or disabled. Valid values are:

e (0 -—disabled

¢ 1 —enabled

DXCH_PLAYDRATE 2 R/W 6000 Play Digitization Rate. Sets the digitization rate of the voice
data that is played on this channel. Voice data must be played
at the same rate at which it was recorded. Valid values are:

* 6000 — 6 kHz sampling rate

¢ 8000 — 8 kHz sampling rate

DXCH_RECRDRATE 2 R/W 6000 Record Digitization Rate. Sets the rate at which the recorded
voice data is digitized. Valid values are:

* 6000 — 6 kHz sampling rate

* 8000 — 8 kHz sampling rate

DXCH_SCRFEATURE 2 R/W - Silence Compressed Record (SCR). Valid values are:
¢ DXCH_SCRDISABLED — SCR feature disabled
¢ DXCH_SCRENABLED - SCR feature enabled

DXCH_XFERBUFSIZE 4 R 16 Transfer buffer size. Returns the bulk queue buffer size as set
kbytes by the dx_setchxfercnt() function.

B Cautions

* A constant cannot be used in place of valuep. The value of the parameter to be set must be
placed in a variable and the address of the variable cast as void * must be passed to the
function.

Dialogic® Voice API Library Reference 265
Dialogic Corporation

dx_setparm() — set physical parameters of a channel or board device

266

e When setting channel parameters, the channel must be open and in the idle state.

* When setting board parameters, all channels on that board must be idle.

B Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_SYSTEM
Error from operating system

Example

#include <srllib.h>
#include <dxxxlib.h>

main ()
{

int bddev, parmval;

/* Open the board using dx open(). Get board device descriptor in
* bddev.

*/
if ((bddev = dx open ("dxxxB1",NULL)) == -1) {

/* process error */

}

/* Set the inter-ring delay to 6 seconds (default = 8) */

parmval = 6;

if (dx_setparm(bddev, DXBD R IRD, (void *)&parmval) == -1) ({
/* process error */

}

/* now wait for an incoming ring */

B See Also

e dx_getparm()

Dialogic® Voice API Library Reference
Dialogic Corporation

set conditions that adjust speed or volume of play — dx_setsvcond()

dx_setsvcond()

Name: int dx_setsvcond(chdev, numblk, svcbp)

Inputs: int chdev e valid channel device handle

Returns:

Includes:

unsigned short numblk e number of DX_SVCB blocks
DX_SVCB * svcbp e pointer to array of DX_SVCB structures

0 if success
-1 if failure

srllib.h
dxxxlib.h

Category: Speed and Volume

Mode: synchronous

Note:

Note:

Notes:

Description

The dx_setsvcond() function sets adjustments and adjustment conditions for all subsequent plays
on the specified channel (until changed or cancelled).

Before using the speed control feature, you must enable this feature in the [decoder] section of the
CONFIG file. For more information, see the Configuration Guide applicable to your release.

An adjustment is a modification to play speed, play volume, or play (pause/resume) due to an
adjustment condition such as start of play, or the occurrence of an incoming digit during play. This
function uses the specified channel’s Speed or Volume Modification Table. For more information
about these tables, see the Dialogic® Voice API Programming Guide.

Calls to dx_setsvcond() are cumulative. If adjustment blocks have been set previously, calling this
function adds more adjustment blocks to the list. To replace existing adjustment blocks, clear the
current set of blocks using dx_clrsveond() before issuing a dx_setsvcond().

The following adjustments and adjustment conditions are defined in the Speed and Volume
Adjustment Condition Blocks structure (DX_SVCB):

e which Speed or Volume Modification Table to use (speed or volume)
e adjustment type (increase/decrease, absolute value, toggle, pause/resume)
¢ adjustment conditions (incoming digit, beginning of play)

* level/edge sensitivity for incoming digits
See DX_SVCB, on page 317, for a full description of the data structure. Up to 20 DX_SVCB
blocks can be specified in the form of an array.

1. For speed and volume adjustment, this function is similar to dx_adjsv(). Use dx_adjsv() to
explicitly adjust the play immediately and use dx_setsvcond() to adjust the play in response to
specified conditions. See the description of dx_adjsv() for more information.

2. Whenever the play is started, its speed and volume is based on the most recent modification.

Dialogic® Voice API Library Reference 267

Dialogic Corpo

ration

dx_setsvecond() — set conditions that adjust speed or volume of play

Parameter Description
chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()
numblk specifies the number of DX_SVCB blocks in the array. Set to a value between
1 and 20.
svebp points to an array of DX_SVCB structures
B Cautions

e Speed control is not supported for all voice coders. For more information on supported coders,
see the speed control topic in the Dialogic® Voice API Programming Guide.

e Digits that are used for play adjustment may also be used as a terminating condition. If a digit
is defined as both, then both actions are applied upon detection of that digit.

* When adjustment is associated with a DTMF digit, speed can be increased or decreased in
increments of 1 (10%) only.

e When adjustment is associated with a DTMF digit, volume can be increased or decreased in
increments of 1 (2 dB) only.

e Condition blocks can only be added to the array (up to a maximum of 20). To reset or remove
any condition, you should clear the whole array, and reset all conditions if required. For
example, if DTMF digit 1 has already been set to increase play speed by one step, a second call
that attempts to redefine digit 1 to the origin will have no effect; the digit will retain its original
setting.

e The digit that causes the play adjustment will not be passed to the digit buffer, so it cannot be
retrieved using dx_getdig().

®m Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_BADPROD
Function not supported on this board

EDX_SVADIJBLKS
Invalid number of speed/volume adjustment blocks

EDX_SYSTEM
Error from operating system

H Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

268 Dialogic® Voice API Library Reference
Dialogic Corporation

set conditions that adjust speed or volume of play — dx_setsvcond()

/*
* Global Variables
*/
DX SVCB svcb[10] = {
/* BitMask AjustmentSize AsciiDigit DigitType */

{ SV_SPEEDTBL | SV _RELCURPOS, 1, '1', 03}, /* 1 %/
{ SV_SPEEDTBL | SV_ABSPOS, -4, '2', 0}, /* 2%/
{ SV_VOLUMETBL | SV _ABSPOS, 1, '3', 01}, /* 3 %/
{ SV_SPEEDTBL | SV_ABSPOS, 1, '4', 0}, /* 4%/
{ SV_SPEEDTBL | SV _ABSPOS, 1, 's', 0}, /* 5 %/
{ SV_VOLUMETBL | SV_ABSPOS, 1, '6', 0}, /* 6%/
{ SV_SPEEDTBL | SV _RELCURPOS, -1, '7', 0 }, /* T */
{ SV_SPEEDTBL | SV_ABSPOS, 6, '8', 0}, /* 8%/
{ SV_VOLUMETBL | SV _RELCURPOS, -1, '9', 0 }, /* 9 */
{ SV_SPEEDTBL | SV_ABSPOS, 10, '0', 0}, /* 10 */ };
main ()
{
int dxxxdev;
/9:
* Open the Voice Channel Device and Enable a Handler
*/
if ((dxxxdev = dx_open("dxxxB1C1", 0)) == -1) {
perror ("dxxxB1Cl");
exit(1);
}
/9:
* Set Speed and Volume Adjustment Conditions
*/
if (dx_setsvcond(dxxxdev, 10, svcb) == -1) {
printf ("Unable to Set Speed and Volume");
printf(" Adjustment Conditions\n");

printf("Lasterror = %d Err Msg = %s\n",
ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));

dx_close (dxxxdev);

exit(1);

* Continue Processing

*/
/‘k
* Close the opened Voice Channel Device
*/
if (dx_close(dxxxdev) != 0) {
perror ("close");

/* Terminate the Program */
exit(0);

B See Also

e dx_clrsvecond()
e DX SVCB structure
e dx_setsvmt()

e dx_getcursv()

Dialogic® Voice API Library Reference 269
Dialogic Corporation

dx_setsvecond() — set conditions that adjust speed or volume of play

e dx_getsvmt()
e dx_adjsv()

e speed and volume modification tables in Dialogic® Voice API Programming Guide

270 Dialogic® Voice API Library Reference
Dialogic Corporation

change default values of the speed or volume modification table — dx_setsvmi()

dx_setsvmt()

Name:
Inputs:

int dx_setsvmt(chdev, tabletype, svmtp, flag)

int chdev e valid channel device handle

unsigned short tabletype e type of table to update (speed or volume)

DX_SVMT * svmtp e pointer to speed or volume modification table to modify

unsigned short flag e optional modification flag

Returns: 0 if success
-1 if failure
Includes: srllib.h
dxxxlib.h
Category: Speed and Volume
Mode: synchronous
B Description

Note:

The dx_setsvmt() function updates the speed or volume modification table for a channel using the
values contained in a specified DX_SVMT structure.

Before using the speed control feature, you must enable this feature in the [decoder] section of the
CONFIG file. For more information, see the Configuration Guide applicable to your release.

This function can modify the speed or volume modification table so that the following occurs:

* When speed or volume adjustments reach their highest or lowest value, wrap the next
adjustment to the extreme opposite value. For example, if volume reaches a maximum level
during a play, the next adjustment would modify the volume to its minimum level.

* Reset the speed or volume modification table to its default values. Defaults are listed in the
Dialogic® Voice API Programming Guide.

For more information on speed and volume modification tables, refer to DX_SVMT, on page 321,
and see also the Dialogic® Voice API Programming Guide.

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

tabletype specifies whether to update the speed modification table or the volume
modification table:
e SV_SPEEDTBL - update the speed modification table values
e SV_VOLUMETBL - update the volume modification table values

Dialogic® Voice API Library Reference 271
Dialogic Corporation

dx_setsvmt() — change default values of the speed or volume modification table

Parameter Description

svmtp points to the DX_SVMT structure whose contents are used to update either
the speed or volume modification table

This structure is not used when SV_SETDEFAULT has been set in the flag
parameter.

flag Specifies one of the following:
e SV_SETDEFAULT - reset the table to its default values. See the Dialogic®
Voice API Programming Guide for a list of default values.
In this case, the DX_SVMT pointed to by svmtp is ignored.
¢ SV_WRAPMOD - wrap around the speed or volume adjustments that
occur at the top or bottom of the speed or volume modification table.

Note: Set flag to O if you do not want to use either SV_WRAPMOD or
SV_SETDEFAULT.

B Cautions

If you close a device via dx_close() after modifying speed and volume table values using
dx_setsvmt(), the dx_getcursv() function may return incorrect speed and volume settings for the
device. This is because the next dx_open() resets the speed and volume tables to their default
values. Therefore, it is recommended that you do not issue a dx_close() during a call where you
have modified speed and volume table values.

B Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_BADPROD
Function not supported on this board

EDX NONZEROSIZE
Reset to default was requested but size was non-zero

EDX_SPDVOL
Neither SV_SPEEDTBL nor SV_VOLUMETBL was specified

EDX_SVMTRANGE
An entry in DX_SVMT was out of range

EDX_SVMTSIZE
Invalid table size specified

EDX SYSTEM
Error from operating system

272 Dialogic® Voice API Library Reference
Dialogic Corporation

change default values of the speed or volume modification table — dx_setsvmi()

B Example

#include <stdio.h>

#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

/*
* Global Variables
*/

main ()
{
DX_SVMT svmt;

int dxxxdev, index;
/‘k
* Open the Voice Channel Device and Enable a Handler
*/
if ((dxxxdev = dx_open("dxxxBlCl", 0)) == -1) {
perror ("dxxxB1C1");
exit(1);
}
/‘k
* Set up the Speed/Volume Modification
*/
memset (&svmt, 0, sizeof (DX _SVMT));
svmt.decrease[0] = -128;
svmt.decrease[1] = -128;
svmt.decrease[2] = -128;
svmt.decrease[3] = -128;
svmt.decrease[4] = -128;
svmt.decrease[5] = -20;
svmt.decrease[6] = -16;
svmt.decrease[7] = -12;
svmt.decrease[8] = -8;
svmt.decrease[9] = -4;
svmt.origin = 0;
svmt.increase[0] = 4;
svmt.increase[1] = 8;
svmt.increase[2] = 10;
svmt.increase[3] = -128;
svmt.increase[4] = -128;
svmt.increase[5] = -128;
svmt.increase[6] = -128;
svmt.increase[7] = -128;
svmt.increase[8] = -128;
svmt.increase[9] = -128;
/‘k
* Update the Volume Modification Table without Wrap Mode.
*/
if (dx_setsvmt(dxxxdev, SV_VOLUMETBL, &svmt, 0) == -1){

printf ("Unable to Set the Volume Modification Table\n");
printf("Lasterror = %d Err Msg = %s\n",

ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
dx_close (dxxxdev);
exit(1);

* Continue Processing

Dialogic® Voice API Library Reference 273
Dialogic Corporation

dx_setsvmt() — change default values of the speed or volume modification table

/*

* Close the opened Voice Channel Device
*/

if (dx close(dxxxdev) != 0) {

perror ("close");

}

/* Terminate the Program */
exit(0);
}

B See Also

e dx_adjsv()
e dx_getcursv()
e dx_getsvmt()

e speed and volume modification tables in Dialogic® Voice API Programming Guide

e DX_SVMT data structure

274 Dialogic® Voice API Library Reference
Dialogic Corporation

install user-defined I/O functions — dx_setuio()

dx_setuio()

Name:
Inputs:
Returns:

Includes:

Category:
Mode:

int dx_setuio(uioblk)
uioblk e DX UIO data structure

0 if success
-1 if failure

srllib.h
dxxxlib.h

I/0

synchronous

Description

The dx_setuio() function installs user-defined read(), write(), and Iseek() functions in your
application. These functions are then used by play and record functions, such as dx_play() and
dx_rec(), to read and/or write to nonstandard storage media.

The application provides the addresses of user-defined read(), write() and Iseek() functions by
initializing the DX_UIO structure. See DX _UIO, on page 323 for more information on this
structure.

You can override the standard I/O functions on a file-by-file basis by setting the IO_UIO flag in the
io_type field of the DX_IOTT structure. You must OR the IO_UIO flag with the IO_DEYV flag for
this feature to function properly. See DX_IOTT, on page 312 for more information.

For more information on working with user-defined I/O functions, see the Application
Development Guidelines chapter in the Dialogic® Voice API Programming Guide.

Parameter Description
uioblk specifies the DX _UIO structure, a user-defined I/O structure
B Cautions
e In order for the application to work properly, the user-provided functions must conform to
standard I/O function semantics.
* A user-defined function must be provided for all three I/O functions. NULL is not permitted.
e User-defined I/O functions installed by dx_setuio() are called in a different thread than the
main application thread. If data is being shared among these threads, the application must
carefully protect access to this data using appropriate synchronization mechanisms (such as
mutex) to ensure data integrity.
B Errors
None.
Dialogic® Voice API Library Reference 275

Dialogic Corporation

dx_setuio() — install user-defined I/O functions

B Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h> /* voice library header file */

int cd; /* channel descriptor */
DX UIO myio; /* user definable I/0 structure */

/*
* User defined I/O functions
*/
int my readS(fd,ptr,cnt)
int fd;
char * ptr;
unsigned cnt;
{
printf ("My read\n");
return (read (fd, ptr,cnt));

/*

* my write function

*/
int my write(fd,ptr,cnt)
int fd;

char * ptr;

unsigned cnt;

{
printf ("My write \n");
return (write (fd, ptr,cnt));

/*
* my seek function
*/
long my seek (fd,offset, whence)
int fd;
long offset;
int whence;
{
printf ("My seek\n");
return (lseek (fd, offset,whence));

void main (argc,argv)
int argc;
char *argv[];

{
/* Other initialization */
DX UIO uioblk;

/* Initialize the UIO structure */
uioblk.u_ read=my_ read;

uioblk.u write=my write;
uioblk.u_seek=my seek;

/* Install my I/0 routines */
dx_setuio (uioblk) ;
vodat_fd = dx_fileopen("JUNK.VOX",O_RDWR\O_BINARY);

276 Dialogic® Voice API Library Reference
Dialogic Corporation

install user-defined I/O functions — dx_setuio()

/*This block uses standard I/O functions */
iott->io type = IO_DEV|IO CONT
iott->io_fhandle = vodat_fd;

iott->io offset = 0;

iott->io_length = 20000;

/*This block uses my I/0O functions */
iottp++;

iottp->io_type = IO DEV|IO UIO|IO_CONT
iottp->io fhandle = vodat fd;
iott->io_offset = 20001;

iott->io length = 20000;

/*This block uses standard I/O functions */
iottp++

iott->io type = IO_DEV|IO CONT
iott->io_fhandle = vodat_fd;

iott->io offset = 20002;

iott->io_length = 20000;

/*This block uses my I/0 functions */
iott->io type = IO_DEV|IO UIO|IO EOT
iott->io_fhandle = vodat_fd;

iott->io offset = 10003;
iott->io_length = 20000;

devhandle = dx_open ("dxxxB1C1l", 0);
dx sethook (devhandle, DX ONHOOK,EV_ SYNC)
dx_wtring(devhandle,l,DX_OFFHOOK,EV_SYNC);
dx clrdigbuf;
if (dx_rec(devhandle,iott, (DX_TPT*)NULL,RM TONE|EV_SYNC) == -1) {
perror ("");
exit (1);

dx clrdigbuf (devhandle) ;

if (dx_play(devhandle,iott, (DX _TPT*)EV_SYNC) == -1 {
perror ("");
exit (1);

}

dx_close (devhandle) ;

B See Also

* dx_play()

e dx_playiottdata()
e dx_rec()

e dx_reciottdata()

Dialogic® Voice API Library Reference 277
Dialogic Corporation

dx_SetWaterMark() — set water mark for the circular stream buffer

dx_SetWaterMark()

Name: int dx_SetWaterMark(hBuffer, parm_id, value)

Inputs: int hBuffer e circular stream buffer handle
int parm_id e LOW_MARK or HIGH_MARK
int value e value of water mark in bytes

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: streaming to board

Mode: synchronous

B Description

The dx_SetWaterMark() function sets the low and high water marks for the specified stream
buffer. If you don’t use this function, default values are in place for the low and high water marks
based on the stream buffer size. See parameter description table for more information.

When setting the low and high water mark values for the stream buffer, do so in conjunction with
the buffer size in dx_OpenStreamBuffer(). For hints and tips on setting water mark values, see
the streaming to board topic in the Dialogic® Voice API Programming Guide.

The application receives TDX_LOWWATER and TDX_HIGHWATER events regardless of
whether or not dx_SetWaterMark() is used in your application. These events are generated when
there is a play operation with this buffer and are reported on the device that is performing the play.
If there is no active play, the application will not receive any of these events.

Parameter Description
hBuffer specifies the circular stream buffer handle
parm_id specifies the type of water mark. Valid values are:

e LOW_MARK - low water mark, which by default is set to 10% of the
stream buffer size

* HIGH_MARK - high water mark, which by default is set to 90% of the
stream buffer size

value specifies the value of the water mark in bytes
B Cautions
None.
278 Dialogic® Voice API Library Reference

Dialogic Corporation

set water mark for the circular stream buffer — dx_SetWaterMark()

B Errors
This function returns -1 in case of error.

Unlike other voice API library functions, the streaming to board functions do not use SRL device
handles. Therefore, ATDV_LASTERR() and ATDV_ERRMSGP() cannot be used to retrieve
error codes and error descriptions.

B Example

#include <srllib.h>
#include <dxxxlib.h>

main ()
{
int nBuffSize = 32768;
int hBuffer = -1;
if ((hBuffer = dx OpenStreamBuffer (nBuffSize)) < 0)
{
printf ("Error opening stream buffer \n");
exit (1);

if (dx_SetWaterMark (hBuffer, LOW_MARK, 1024) < 0)

printf ("Error setting low water mark \n");
exit (2);

if (dx_SetWaterMark (hBuffer, HIGH MARK, 31744) < 0)

printf ("Error getting setting high water mark \n");
exit (3);

if (dx_CloseStreamBuffer (hBuffer) < 0)

printf ("Error closing stream buffer \n");

B See Also

e dx_OpenStreamBuffer()

Dialogic® Voice API Library Reference 279
Dialogic Corporation

dx_stopch() — force termination of currently active I/O functions

dx_stopch()

Name: int dx_stopch(chdev, mode)
Inputs: int chdev e valid channel device handle
unsigned short mode * mode flag

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: 1/0

Mode: asynchronous or synchronous

B Description

The dx_stopch() function forces termination of currently active I/O functions on a channel. It
forces a channel in the busy state to become idle. If the channel specified in chdev already is idle,
dx_stopch() has no effect and will return a success.

Running this function asynchronously will initiate dx_stopch() without affecting processes on
other channels.

Running this function synchronously within a process does not block other processing. Other
processes continue to be serviced.

When you issue dx_stopch() to terminate an I/O function, the termination reason returned by
ATDX_TERMMSK() is TM_USRSTOP. However, if dx_stopch() terminates a dx_dial()
function with call progress analysis, use ATDX_CPTERMY() to determine the reason for call
progress analysis termination, which is CR_STOPD.

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was
opened using dx_open()

mode a bit mask that specifies the mode:

e EV_SYNC - synchronous mode

¢ EV_ASYNC - asynchronous mode. The stop will be issued, but the driver
does not “sleep” and wait for the channel to become idle before
dx_stopch() returns.

e EV_STOPGETEVT - If this bit is set and dx_stopch() is issued during
dx_getevt(), TDX_CST event is generated with reason of
DE_STOPGETEVT.

o IGNORESTATE — (Windows® only) Ignores the busy/idle state of the
channel. Performs a stop on the channel regardless of whether the channel
is busy or idle. If this flag is used, the function will not check for a busy
state on the channel and will issue a stop even if the channel is busy.

280 Dialogic® Voice API Library Reference
Dialogic Corporation

force termination of currently active I/O functions — dx_stopch()

B Cautions

e dx_stopch() has no effect on a channel that has any of the following functions issued:
e dx_dial() without call progress analysis enabled

The functions will continue to run normally, and dx_stopch() will return a success. For
dx_dial(), the digits specified in the dialstrp parameter will still be dialed.

e If dx_stopch() is called on a channel dialing with call progress analysis enabled, the call
progress analysis process will stop but dialing will be completed. Any call progress analysis
information collected prior to the stop will be returned by extended attribute functions.

e If an I/O function terminates (due to another reason) before dx_stopch() is issued, the reason
for termination will not indicate dx_stopch() was called.

* When calling dx_stopch() from a signal handler, mode must be set to EV_ASYNC.

* On Linux, when issued on a channel that is already idle, dx_stopch() will return an event,
TDX_NOSTOP, to specify that no STOP was needed or issued. To use this functionality, “OR”
the mode flag with the EV_NOSTOP flag. This does not affect the existing functionality of
dx_stopch(). If a function is in progress when dx_stopch() is called with the EV_NOSTOP
flag, that function will be stopped as usual and EV_NOSTOP will be ignored.

* On Linux, an application can use dx_stopch() from within a signal handler to stop the

dx_getevt() function. To do so, “OR” the mode flag with the EV_STOPGETEVT flag. The
dx_getevt() function will successfully return with the event DE_STOPGETEVT.

®m Errors

If the function returns -1, use the Standard Runtime Library (SRL) Standard Attribute function
ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a descriptive
error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_SYSTEM
Error from operating system

B Example

#include <srllib.h>
#include <dxxxlib.h>

main ()
{

int chdev, srlmode;

/* Set SRL to run in polled mode. */

srlmode = SR_POLLMODE;

if (sr_setparm(SRL_DEVICE, SR _MODEID, (void *)&srlmode) == -1) {
/* process error */

}

/* Open the channel using dx open(). Get channel device descriptor in
* chdev.

*/

if ((chdev = dx open ("dxxxB1C1l",NULL)) == -1) {

/* process error */

}

Dialogic® Voice API Library Reference 281
Dialogic Corporation

dx_stopch() — force termination of currently active I/O functions

282

if (dx_stopch(chdev, EV_ASYNC) == -1)

}

continue processing */

Force the channel idle.

The I/O function that the channel is

* executing will be terminated, and control passed to the handler

* function previously enabled, using sr_enbhdlr (),

for the

* termination event corresponding to that I/O function.

* In the asynchronous mode, dx stopch() returns immediately,

* without waiting for the channel to go idle.

*/

/* process error */

See Also

dx_dial()
dx_getdig()
dx_play()
dx_playf()
dx_playiottdata()
dx_playtone()
dx_playvox()
dx_rec()
dx_recf()
dx_reciottdata()
dx_recvox()
ATDX_TERMMSK()

ATDX_CPTERM() - dx_dial() with call progress analysis

Dialogic® Voice API Library Reference
Dialogic Corporation

disconnect voice receive channel from TDM bus — dx_unlisten()

dx_unlisten()

Name: int dx_unlisten(chdev)
Inputs: int chdev e voice channel device handle

Returns: 0 on success
-1 on error

Includes: srllib.h
dxxxlib.h

Category: TDM Routing
Mode: synchronous

B Description

The dx_unlisten() function disconnects the voice receive channel from the TDM bus.
Note: The dx_unlistenEx() function is an extension of the dx_unlisten() function. See the

dx_unlistenEx() function reference for more information.

Calling the dx_listen() function to connect to a different TDM bus time slot automatically breaks
an existing connection. Thus, when changing connections, you do not need to call the
dx_unlisten() function first.

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

B Cautions
This function will fail when an invalid channel device handle is specified.
B Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADPARM
Parameter error

EDX_SH_BADCMD
Command is not supported in current bus configuration

EDX_SH_BADEXTTS
TDM bus time slot is not supported at current clock rate

EDX_SH_BADINDX
Invalid Switch Handler index number

Dialogic® Voice API Library Reference 283
Dialogic Corporation

dx_unlisten() — disconnect voice receive channel from TDM bus

EDX_SH_BADLCLTS
Invalid channel number

EDX_SH_BADMODE
Function is not supported in current bus configuration

EDX_SH_BADTYPE
Invalid channel type (voice, analog, etc.)

EDX_SH_CMDBLOCK
Blocking command is in progress

EDX_SH_LCLDSCNCT
Channel is already disconnected from TDM bus

EDX_SH_LIBBSY
Switch Handler library is busy

EDX_SH_LIBNOTINIT
Switch Handler library is uninitialized

EDX_SH_MISSING
Switch Handler is not present

EDX_SH_NOCLK
Switch Handler clock failback failed

EDX_SYSTEM
Error from operating system
B Example

#include <srllib.h>
#include <dxxxlib.h>

main ()

{
int chdev; /* Voice Channel device handle */

/* Open board 1 channel 1 device */
if ((chdev = dx_open ("dxxxB1C1l", 0)) == -1) {
/* process error */

}

/* Disconnect receive of board 1, channel 1 from all TDM bus time slots */

if (dx_unlisten(chdev) == -1) {
printf ("Error message = %s", ATDV_ERRMSGP (chdev)) ;
exit (1) ;
}
}
B See Also

e dx_listen()
e dx_listenEx()

e dx_unlistenEx()

284 Dialogic® Voice API Library Reference

Dialogic Corporation

disconnect voice receive channel from TDM bus — dx_unlistenEx()

dx_unlistenEx()

Name:
Inputs:

Returns:

Includes:

Category:
Mode:

int dx_unlistenEx(chdev, mode)
int chdev e voice channel device handle
unsigned short mode ® mode flag

0 on success
-1 on error

srllib.h
dxxxlib.h

TDM Routing

asynchronous or synchronous

Description

The dx_unlistenEx() function disconnects the voice receive channel from the TDM bus. This
function is an extension of the dx_unlisten() function; it supports asynchronous as well as
synchronous mode.

Calling dx_listenEx() to connect to a different TDM bus time slot automatically breaks an existing
connection. Thus, when changing connections, you do not need to call dx_unlistenEx() first.

Parameter Description

chdev specifies the voice channel device handle obtained when the channel was
opened using dx_open()

mode specifies the mode of operation:
¢ EV_SYNC - synchronous mode (default)
e EV_ASYNC - asynchronous mode

In synchronous mode, the voice receive channel is disconnected from the TDM bus upon return
from the dx_unlistenEx() function. By default, this function runs in synchronous mode and
returns a 0 to indicate that it has completed successfully. If a failure occurs, this function returns -1.

In asynchronous mode, a TDX_UNLISTEN event is queued upon successful completion of the
unrouting. If a failure occurs during unrouting, a TDX_UNLISTEN_FAIL event is queued. In
some limited cases, such as when invalid arguments are passed to the library, the function may fail
before unrouting is attempted. In such cases, the function returns -1 immediately to indicate failure
and no event is queued.

Cautions

e This function fails when an invalid channel device handle is specified.

Dialogic® Voice API Library Reference 285
Dialogic Corporation

dx_unlistenEx() — disconnect voice receive channel from TDM bus

286

* When using this function in asynchronous mode, do not issue another unlisten operation on the
same channel using either dx_unlisten() or dx_unlistenEx() until the TDX_UNLISTEN
event is received. If you attempt to do this, the unlisten function will return failure.

e Itis recommended that you use dx_listenEx() and dx_unlistenEx() in your application,
rather than dx_listen() and dx_unlisten(). In particular, do not use both pairs of functions on
the same channel. Doing so may result in unpredictable behavior.

B Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADPARM
Parameter error

EDX_SH_BADCMD
Command is not supported in current bus configuration

EDX_SH_BADEXTTS
TDM bus time slot is not supported at current clock rate

EDX_SH_BADINDX
Invalid Switch Handler index number

EDX_SH_BADLCLTS
Invalid channel number

EDX_SH_BADMODE
Function is not supported in current bus configuration

EDX _SH_BADTYPE
Invalid channel type (voice, analog, etc.)

EDX_SH_CMDBLOCK
Blocking command is in progress

EDX _SH_LCLDSCNCT
Channel is already disconnected from TDM bus

EDX_SH_LIBBSY
Switch Handler library is busy

EDX_SH_LIBNOTINIT
Switch Handler library is uninitialized

EDX_SH_MISSING
Switch Handler is not present

EDX_SH_NOCLK
Switch Handler clock failback failed

EDX SYSTEM
Error from operating system

Dialogic® Voice API Library Reference
Dialogic Corporation

disconnect voice receive channel from TDM bus — dx_unlistenEx()

B Example 1: Synchronous Mode

This example code for dx_unlistenEx() illustrates the synchronous mode of operation.

#include <srllib.h>
#include <dxxxlib.h>

main ()

{
int chdev; /* Voice Channel device handle */
/* Open board 1 channel 1 device */
if ((chdev = dx_open ("dxxxB1C1l", 0)) == -1) {
/* process error */

}

/* Disconnect receive of board 1, channel 1 from all TDM bus time slots */

if (dx_unlistenEx(chdev, EV_SYNC) == -1) {
printf ("Error message = %s", ATDV_ERRMSGP (chdev)) ;
exit(1l);

B Example 2: Asynchronous Mode

This example code for dx_unlistenEx() illustrates the asynchronous mode of operation.

#include <srllib.h>
#include <dxxxlib.h>

main ()
{

int srlmode;

/* Set SRL to run in polled mode. */

srlmode = SR_POLLMODE;

if (sr_setparm(SRL_DEVICE, SR _MODEID, (void *)&srlmode) == -1) {
/* process error */

int chdev; /* Voice Channel device handle */

/* Open board 1 channel 1 device */

if ((chdev = dx_open ("dxxxB1Cl", 0)) == -1) {
/* process error */

}

/* Disconnect receive of board 1, channel 1 from all TDM bus time slots */

if (dx_unlistenEx(chdev, EV_ASYNC) == -1) {
printf ("Error message = %s", ATDV_ERRMSGP (chdev)) ;
exit(1);

}

/* Use sr waitevt to wait for the TDX UNLISTEN event */

B See Also

e dx_listenEx()
e dx_listen()
e dx_unlisten()

Dialogic® Voice API Library Reference 287
Dialogic Corporation

nr_scroute() — make a full or half-duplex connection

nr_scroute()

Name:
Inputs:

Returns:

Includes:

Category:
Mode:

int nr_scroute(devhl, devtypel, devh2, devtype2, mode)

int devh1 e valid channel device handle
unsigned short devtypel ¢ type of device for devh1

int devh2 ¢ valid channel device handle
unsigned short devtype2 e type of device for devh2
unsigned char mode e half or full duplex connection

0 on success
-1 on error

stdio.h

varargs.h

srllib.h

dxxxlib.h

faxlib.h (optional)
sctools.h

TDM Routing

synchronous

288

Note:

Description

The nr_scroute() convenience function makes a full or half-duplex connection between two
devices connected to the time division multiplexing (TDM) bus.

This convenience function is not a part of any library and is provided in a separate C source file
called sctools.c in the sctools subdirectory.

The nr_sc prefix to the function signifies network (analog and digital) devices and resource (voice,
and fax) devices accessible via the TDM bus.

Fax functionality may be conditionally compiled in or out of the function using the FAXSC defines
in the makefile provided with the function. For example, to compile in fax functionality, link with
the fax library. Error message printing may also be conditionally compiled in or out by using the
PRINTON define in the makefile.

Parameter Description

devhl specifies the valid channel device handle obtained when the channel was
opened for the first device (the transmitting device for half duplex)

devtypel specifies the type of device for devhl:
e SC_VOX - voice channel device
e SC_FAX - fax channel device

Dialogic® Voice API Library Reference
Dialogic Corporation

make a full or half-duplex connection — nr_scroute()

Parameter Description

devh2 specifies the valid channel device handle obtained when the channel was
opened for the second device (the listening device for half duplex)

devtype2 specifies the type of device for devhl. See devtypel for a list of defines.

mode specifies full or half-duplex connection. This parameter contains one of

the following defines from sctools.h to specify full or half duplex:
e SC_FULLDUP - full-duplex connection (default)
e SC_HALFDUP - half-duplex connection

When SC_HALFDUP is specified, the function returns with the second
device listening to the TDM bus time slot connected to the first device.

B Cautions

e The devtypel and devtype2 parameters must match the types of the device handles in devh1l
and devh2.

e If you have not defined FAXSC when compiling the sctools.c file, you cannot use this function
to route fax channels.

e If you have not defined PRINTON in the makefile, errors will not be displayed.

e Itis recommended that you do not use the nr_scroute() convenience function in high
performance or high density applications because this convenience function performs one or
more xx_getxmitslot invocations that consume CPU cycles unnecessarily.

B Errors

None.

H Example

See source code. The C source code for this function is provided in the sctools.c file located in the
sctools subdirectory.

B See Also

o nr_scunroute()

Dialogic® Voice API Library Reference 289
Dialogic Corporation

nr_scunroute() — break a full or half-duplex connection

nr_scunroute()

Name:
Inputs:

Returns:

Includes:

Category:
Mode:

int nr_scunroute(devhl, devtypel, devh2, devtype2, mode)

int devh1 e valid channel device handle
unsigned short devtypel ¢ type of device for devhl

int devh2 ¢ valid channel device handle
unsigned short devtype2 e type of device for devh2
unsigned char mode e half or full duplex connection

0 on success
-1 on error

stdio.h

varargs.h

srllib.h

dxxxlib.h

faxlib.h (optional)
sctools.h

TDM Routing

synchronous

290

Note:

Description

The nr_scunroute() convenience function breaks a full or half-duplex connection between two
devices connected to the time division multiplexing (TDM) bus.

This convenience function is not a part of any library and is provided in a separate C source file
called sctools.c in the sctools subdirectory.

The nr_sc prefix to the function signifies network (analog and digital) devices and resource (voice,
and fax) devices accessible via the TDM bus.

Fax functionality may be conditionally compiled in or out of the function using the FAXSC defines
in the makefile provided with the function. For example, to compile in fax functionality, link with
the fax library. Error message printing may also be conditionally compiled in or out by using the
PRINTON define in the makefile.

Parameter Description

devhl specifies the valid channel device handle obtained when the channel was
opened for the first device (the transmitting device for half duplex)

devtypel specifies the type of device for devhl:
e SC_VOX - voice channel device
e SC_FAX - fax channel device

Dialogic® Voice API Library Reference
Dialogic Corporation

break a full or half-duplex connection — nr_scunroute()

Parameter Description
devh2 specifies the valid channel device handle obtained when the channel was
opened for the second device (the listening device for half duplex)
devtype2 specifies the type of device for devhl. See devtypel for a list of defines.
mode specifies full or half-duplex connection. This parameter contains one of
the following defines from sctools.h to specify full or half duplex:
e SC_FULLDUP - full-duplex connection (default)
e SC_HALFDUP - half-duplex connection
When SC_HALFDUP is specified, the function returns with the second
device listening to the TDM bus time slot connected to the first device.
B Cautions

e The devtypel and devtype2 parameters must match the types of the device handles in devh1l

and devh2.

e If you have not defined FAXSC when compiling the sctools.c file, you cannot use this function
to route fax channels.

e If you have not defined PRINTON in the makefile, errors will not be displayed.

e Itis recommended that you do not use the nr_scunroute() convenience function in high

performance or high

density applications because this convenience function performs one or

more xx_getxmitslot invocations that consume CPU cycles unnecessarily.

B Errors
None.

H Example

See source code. The C source code for this function is provided in the sctools.c file located in the

sctools subdirectory.

B See Also

e nr_scroute()

Dialogic® Voice API Library Reference
Dialogic Corporation

291

nr_scunroute() — break a full or half-duplex connection

292 Dialogic® Voice API Library Reference
Dialogic Corporation

Events 3

3.1

3.2

This chapter provides information on events that may be returned by the Dialogic® Voice API
software. The following topics are discussed:

e Overview of Events 293
e Termination Events 293
e Unsolicited Events. e 295
e (Call Status Transition (CST)Events 295

Overview of Events

An event indicates that a specific activity has occurred on a channel. The voice host library reports
channel activity to the application program in the form of events, which allows the program to
identify and respond to a specific occurrence on a channel. Events provide feedback on the
progress and completion of functions and indicate the occurrence of other channel activities. Voice
library events are defined in the dxxx/ib.h header file.

Events in the voice library can be categorized as follows:

¢ termination events, which are produced when a function running in asynchronous mode
terminates

* unsolicited events, which are not generated in response to the completion of a function. Rather,
they are either generated in response to a condition of a given function or as a result of a call
status transition (CST) condition that has been met.

¢ call status transition (CST) events, which indicate changes in the status of a call, such as rings
or a tone detected, or the line going on-hook or off-hook. CST events are unsolicited events
that are produced as a consequence of setting a CST mask.

For information on event handling, see the Dialogic® Voice API Programming Guide. For details
on event management and event handling, see the Dialogic® Standard Runtime Library API
Programming Guide.

Termination Events

Termination events are produced when a function running in asynchronous mode terminates. To
collect termination event codes, use Dialogic® Standard Runtime Library (SRL) functions such as
sr_waitevt() and sr_enbhdlr() depending on the programming model in use. For more
information, see the Standard Runtime Library documentation.

Dialogic® Voice API Library Reference 293
Dialogic Corporation

Events

294

The following termination events may be returned by the Dialogic® Voice API library:

TDX_CALLP
Termination event. Returned by dx_dial()to indicate that dialing with call progress analysis
completed. Use ATDX_CPTERM() to determine the reason for termination.

TDX_CST
Termination event. Specifies a call status transition (CST) event. See Section 3.4, “Call Status
Transition (CST) Events”, on page 295 for more information on these events.

TDX_CREATETONE
Termination event. Returned by dx_createtone() to indicate completion of create tone.

TDX_CREATETONE_FAIL
Termination event. Returned by dx_createtone() to indicate failure of create tone.

TDX_DELETETONE
Termination event. Returned by dx_deletetone() to indicate completion of delete tone.

TDX_DELETETONE_FAIL
Termination event. Returned by dx_deletetone() to indicate failure of delete tone.

TDX_DIAL
Termination event. Returned by dx_dial()to indicate that dialing without call progress
analysis completed. Use ATDX_TERMMSK() to determine the reason for termination.

TDX_ERROR
Termination event. Returned by a function running in asynchronous mode to indicate an error.
May also indicate that the TN_GEN tone generation template contains an invalid tg_dflag, or
the specified amplitude or frequency is outside the valid range.

TDX_GETDIG
Termination event. Returned by dx_getdig()to indicate completion of asynchronous digit
collection from a channel digit buffer.

TDX_LISTEN
Termination event. Returned by dx_listenEx() to indicate completion of routing.

TDX_LISTEN_FAIL
Termination event. Returned by dx_listenEx() to indicate failure of routing.

TDX_NOSTOP
Termination event. Returned by dx_stopch(). On Linux, when issued on a channel that is
already idle, dx_stopch() with EV_NOSTOP flag will return this event to indicate that no
STOP was needed or issued.

TDX_PLAY
Termination event. Returned by play functions such as dx_play() to indicate completion of

play.

TDX_PLAYTONE
Termination event. Returned by dx_playtone() and dx_playtoneEx() to indicate completion
of play tone.

TDX_QUERYTONE
Termination event. Returned by dx_querytone() to indicate completion of query tone.

Dialogic® Voice API Library Reference
Dialogic Corporation

3.3

3.4

Events

TDX_QUERYTONE_FAIL
Termination event. Returned by dx_querytone() to indicate failure of query tone.

TDX_RECORD
Termination event. Returned by record functions such as dx_rec() to indicate completion of
record.

TDX_UNLISTEN
Termination event. Returned by dx_unlistenEx() to indicate completion of unrouting.

TDX_UNLISTEN_FAIL
Termination event. Returned by dx_unlistenEx() to indicate failure of unrouting.

Unsolicited Events

Unsolicited events are produced in response to a condition of a given function or as a result of a call
status transition (CST) condition that has been met. They are not generated in response to the
completion of a function. For more information on CST events, see Section 3.4, “Call Status
Transition (CST) Events”, on page 295.

The following unsolicited events may be returned by the Dialogic® Voice API library:

TDX_HIGHWATER
Unsolicited event. Generated when a high water mark is reached during a streaming to board
operation.

TDX_LOWWATER
Unsolicited event. Generated when a low water mark is reached during a streaming to board
operation.

TDX_UNDERRUN
Unsolicited event. Generated when an underrun condition occurs during a streaming to board
operation. This event is generated when the firmware (not the stream buffer) runs out of data.
This event will only be generated when dx_setevtmsk() is set to DM_UNDERRUN. This
works like a toggle key. If set once, the next call to the function will unset this mask.

TDX_VAD
Unsolicited event. Generated when the voice activity detector (VAD) detects voice energy
during a dx_reciottdata() recording operation. This event will only be generated when
dx_reciottdata() is set to RM_VADNOTIFY.

Call Status Transition (CST) Events

Call status transition (CST) events indicate changes in the status of a call, such as rings or a tone
detected, or the line going on-hook or off-hook. A CST event is an unsolicited event that is
produced as a consequence of setting a CST mask.

The dx_setevtmsk() function enables detection of CST events. User-defined tones are CST events,
but detection for these events is enabled using dx_addtone() or dx_enbtone().

Dialogic® Voice API Library Reference 295
Dialogic Corporation

Events

296

The dx_getevt() function retrieves CST events in a synchronous environment. Events are returned
to DX_EBLK, on page 311. To retrieve CST events in an asynchronous environment, use the
Dialogic® Standard Runtime Library (SRL) Event Management functions such as
sr_getevtdatap(). Events are returned to the DX_CST structure.

The following CST events may be returned by the Dialogic® Voice API library:

DE_DIGITS
Call status transition event. Indicates digit received. Returned by dx_getdig().
Instead of getting digits from the DV_DIGIT structure using dx_getdig(), an alternative
method is to enable the DE_DIGITS call status transition event using dx_setevtmsk() and get
them from the DX_EBLK event queue data (ev_data) using dx_getevt() or from the DX_CST
call status transition data (cst_data) using sr_getevtdatap().

DE_SILOFF
Call status transition event. Indicates non-silence detected on the channel.

DE_SILON
Call status transition event. Indicates silence detected on the channel.

DE_STOPGETEVT
Call status transition event. Indicates that the dx_getevt() function which was in progress has
been stopped.

DE_TONEOFF
Call status transition event. Indicates tone off event received.

DE_TONEON
Call status transition event. Indicates tone on event received.

Note: Cadence tone on events are reported differently on Dialogic® Host Media Processing
(HMP) Software versus Dialogic® Springware boards. On Dialogic® HMP Software,
if a cadence tone occurs continuously, a DE_TONEON event is reported for each
on/off cycle. On Dialogic® Springware boards, a DE_TONEON event is reported for
the first on/off cycle only. On Dialogic® HMP Software and on Dialogic®
Springware boards, a DE_TONEOFF event is reported when the tone is no longer
present.

Dialogic® Voice API Library Reference
Dialogic Corporation

Data Structures 4

This chapter provides an alphabetical reference to the data structures used by the Dialogic® Voice
API library functions. The following data structures are discussed:

® CT_DEVINFO. . ..o e e 298
® DV_DIGIT. . ..ottt e 300
® DV _TPT. . oo 301
® DX _CAP o 307
® DX CST ottt 310
® DX EBLK . ..ttt 311
® DX _IOTT. . oottt e e e 312
® DX_STREAMSTAT . . .ottt e e e 315
® DX _SVCB . ..ttt 317
® DX _SVMT ottt 321
® DX _UIO .ottt 323
® DX XPB o 324
e FEATURE_TABLE. e 327
® SC_TSINFO . ..t e 330
® TN _GEN . oo 331
® TN_GENCADot e 332
® TONE_DATA. . . oottt e e 334
Dialogic® Voice API Library Reference 297

Dialogic Corporation

CT_DEVINFO — channel/time slot device information

CT_DEVINFO

typedef struct ct_devinfo {

unsigned long ct prodid; /* product ID */
unsigned char ct_devfamily; /* device family */
unsigned char ct devmode; /* device mode */
unsigned char ct_nettype; /* network interface */
unsigned char ct busmode; /* bus architecture */

unsigned char ct_busencoding; /* bus encoding */
union {
unsigned char ct RFU[7]; /* reserved */
struct {
unsigned char ct_prottype;
} ct_net devinfo;
} ct_ext_devinfo;
} CT_DEVINFO;

B Description

The CT_DEVINFO data structure supplies information about a device. On return from the
dx_getctinfo() function, CT_DEVINFO contains the relevant device and device configuration
information.

The valid values for each field of the CT_DEVINFO structure are defined in ctinfo.h, which is
referenced by dxxxlib.h.

B Field Descriptions

The fields of the CT_DEVINFO data structure are described as follows:

ct_prodid
Contains a valid product identification number for the device.

ct_devfamily
Specifies the device family. Possible values are:
* CT_DFDM3 - DM3 device
e CT_DFHMPDM3 — HMP device (Host Media Processing)

ct_devmode
Specifies the device mode. Possible values are:
* CT_DMRESOURCE - voice device
* CT_DMNETWORK - network device

ct_nettype
Specifies the type of network interface for the device. Possible values are:
e CT_NTIPT - IP connectivity
e CT_NTTI1 —T1 digital network interface
e CT_NTEI - El digital network interface

ct_busmode
Specifies the bus architecture used to communicate with other devices in the system. Possible
values are:
e CT_BMSCBUS - TDM bus architecture
e CT_BMH100 — H.100 bus

298 Dialogic® Voice API Library Reference
Dialogic Corporation

channel/time slot device information — CT_DEVINFO

e CT_BMHI110-H.110 bus

ct_busencoding
Describes the PCM encoding used on the bus. Possible values are:
e CT_BEULAW - mu-law encoding
e CT_BEALAW - A-law encoding
e CT_BELLAW - linear encoding
¢ CT_BEBYPASS - encoding is being bypassed

ct_ext_devinfo.ct_RFU
Not used in HMP.

ct_ext_devinfo.ct_net_devinfo.ct_prottype
Contains information about the protocol used on the specified digital network interface device.
Possible values are:
* CT_CAS - channel associated signaling
¢ CT_CLEAR - clear channel signaling
e CT_ISDN - ISDN
e CT_R2MF - R2MF

B Example

For an example of how to use the CT_DEVINFO structure, see the Example section for
dx_getctinfo().

Dialogic® Voice API Library Reference 299
Dialogic Corporation

DV_DIGIT — user digit buffer

DV_DIGIT

typedef struct DV_DIGIT {

char dg value[DG_MAXDIGS +1]; /* ASCII values of digits */
char dg_type[DG_MAXDIGS +1]; /* Type of digits */
} DV_DIGIT;

B Description

The DV_DIGIT data structure stores an array of digits. When dx_getdig() is called, the digits are
collected from the firmware and transferred to the user’s digit buffer. The digits are stored as an
array inside the DV_DIGIT structure.

The DG_MAXDIGS define in dxxxlib.h indicates the maximum number of digits that can be
returned by a single call to dx_getdig(). The maximum size of the digit buffer varies with the
board type and technology.

B Field Descriptions

The fields of the DV_DIGIT data structure are described as follows:

dg_value
Specifies a null-terminated string of the ASCII values of the digits collected.

dg_type
Specifies an array (terminated by DG_END) of the digit types that correspond to each of the
digits contained in the dg_value string.

Use the following defines to identify the digit type:
* DG_DTMF_ASCII - DTMF
* DG_MF_ASCII - MF
e DG_USER1 — GTD user-defined
e DG_USER?2 — GTD user-defined
e DG_USER3 — GTD user-defined
e DG_USER4 — GTD user-defined
e DG_USERS5 — GTD user-defined
¢ DG_END - Terminator for dg_type array

H Example

For an example of how to use this data structure, see the Example section for dx_getdig().

300 Dialogic® Voice API Library Reference
Dialogic Corporation

DV_TPT

termination parameter table — DV_TPT

typedef struct DV_TPT ({

unsigned short tp_type; /* Flags describing this entry */
unsigned short tp_termno; /* Termination Parameter number */
unsigned short tp length; /* Length of terminator */
unsigned short tp_flags; /* Parameter attribute flag */
unsigned short tp data; /* Optional additional data */
unsigned short rfu; /* Reserved */
DV_TPT *tp nextp; /* Pointer to next termination
* parameter if IO LINK set */
}DV_TPT;
Description

The DV_TPT data structure specifies a termination condition for an I/O function. To specify
multiple termination conditions for a function, use multiple DV_TPT structures configured as a
linked list, an array, or a combined linked list and array, with each DV_TPT specifying a
termination condition. The first termination condition that is met will terminate the I/O function.

For a list of functions in the I/O category, see Chapter 1, “Function Summary by Category”. For
more information on termination conditions, see the I/O terminations topic in the Dialogic® Voice
API Programming Guide.

The DV_TPT structure is defined in the Standard Runtime Library (srllib.h).

Notes: 1. Not all termination conditions are supported by all I/O functions. Exceptions are noted in the

description of the termination condition.

2. Use the dx_clrtpt() function to clear the field values of the DV_TPT structure before using this

structure in a function call. This action prevents possible corruption of data in the allocated
memory space.

B Field Descriptions

The fields of the DV_TPT data structure are described as follows:

tp_type
Describes whether the structure is part of a linked list, part of an array, or the last DV_TPT
entry in the DV_TPT table. Specify one of the following values:
* JO_CONT - next DV_TPT entry is contiguous in an array
e IO_EOT - last DV_TPT in the chain
e JO_LINK - tp_nextp points to next DV_TPT structure in linked list

tp_termno
Specifies a condition that will terminate an I/O function.

The supported termination conditions are:
e DX _DIGMASK - digit termination for a bit mask of digits received
e DX _DIGTYPE - digit termination for user-defined tone. The ASCII value set in the
tp_length field must match a real DTMF tone (0-9, a-d, *, #).
e DX_IDDTIME — maximum delay between digits. This termination condition is only
supported by the dx_getdig() function.
¢ DX _MAXDTMF — maximum number of digits received

Dialogic® Voice API Library Reference 301
Dialogic Corporation

DV_TPT — termination parameter table

¢ DX _MAXSIL — maximum length of silence. The range is 10 msec to 250 sec (25000 in
10 msec units).

e DX_MAXTIME — maximum function time. This termination condition is not supported
by tone generation functions such as dx_playtone() and dx_playtoneEx().

* DX_TONE - tone on or tone off termination for global tone detection (GTD)

Note: If you specify DX_IDDTIME in tp_termno, then you must specify TF_IDDTIME in
tp_flags. Similarly, if you specify DX_MAXTIME in tp_termno, then you must
specify TF_MAXTIME in tp_flags.

Note: 1t is not valid to set both DX_MAXTIME and DX_IDDTIME to 0. If you do so and
no other termination conditions are set, the function will never terminate.

You can call the extended attribute function ATDX_TERMMSK() to determine all the
termination conditions that occurred. This function returns a bitmap of termination conditions.
The “TM_"” defines corresponding to this bitmap of termination conditions are provided in the
function description for ATDX_TERMMSK().

tp_length
Refers to the length or size for each specific termination condition. When tp_length represents
length of time for a termination condition, the maximum value allowed is 60000. This field can
represent the following:

e time in 10 or 100 msec units — Applies to any termination condition that specifies
termination after a specific period of time, up to 60000. Units is specified in tp_flags field.
Default units is 100 msec.

* number of digits — Applies when using DX_MAXDTMEF, which specifies termination
after a certain number of digits is received.

e digit type description — Applies when using DX_DIGTYPE, which specifies termination
on a user-specified digit. Specify the digit type in the high byte and the ASCII digit value
in the low byte. See the global tone detection topic in the Dialogic® Voice API
Programming Guide for information.

¢ digit bit mask — Applies to DX_DIGMASK, which specifies a bit mask of digits to
terminate on. Set the digit bit mask using one or more of the appropriate “Digit Defines”
from the table below:

Digit Digit Define

o

DM_0
DM_1
DM_2
DM_3
DM_4
DM_5
DM_6
DM_7
DM_8
DM_9
DM_S
DM_P
DM_A
DM_B

* © 0 N O O b~ W0 N =

I+

302 Dialogic® Voice API Library Reference
Dialogic Corporation

tp_flags

termination parameter table — DV_TPT

Digit Digit Define

DM_C
DM_D

A bit mask representing various characteristics of the termination condition to use. The defines
for the termination flags are:

TF_10MS — Set units of time for tp_length to 10 msec. If not set, the default unit is 100
msec.

TF_CLRBEG - History of this termination condition is cleared when the function begins.
This bit overrides the TF_LEVEL bit. If both are set, the history will be cleared and no
past history of this terminator will be taken into account.

TF_CLREND - History of this termination condition is cleared when the function
terminates. This bit has special meaning for DX_IDDTIME (interdigit delay). If set, the
terminator will be started after the first digit is received; otherwise, the terminator will be
started as soon as the function is started. This bit has no effect on Dialogic® Host Media
Processing (HMP) Software and will be ignored.

TF_EDGE - Termination condition is edge-sensitive. Edge-sensitive means that the
function will not terminate unless the condition occurs after the function starts. Refer to
the table later in this section to see which termination conditions can be edge-sensitive and
which can be level-sensitive. This bit has no effect on Dialogic® HMP Software and will
be ignored.

TF_FIRST - This bit is only used for DX_IDDTIME termination. If set, start looking for
termination condition (interdigit delay) to be satisfied after first digit is received.
TF_IMMEDIATE - This bit is only used for DX_MAXSIL termination. If set, the silence
timer starts immediately at the onset of ec_stream()or ec_reciottdata() instead of
waiting for dx_play() to finish. For more information on ec_ functions, see the Dialogic®
Continuous Speech Processing API Library Reference.

TF_LEVEL — Termination condition is level-sensitive. Level-sensitive means that if the
condition is satisfied when the function starts, termination will occur immediately.
Termination conditions that can be level-sensitive have a history associated with them
which records the state of the terminator before the function started. Refer to the table
later in this section to see which termination conditions can be edge-sensitive and which
can be level-sensitive. This bit has no effect on Dialogic® HMP Software and will be
ignored.

TF_SETINIT — This bit is only used for DX_MAXSIL termination. If the termination is
edge-sensitive and this bit is set, the tp_data field should contain an initial length of
silence to terminate upon if silence is detected before non-silence. In general, the tp_data
value should be greater than the value in tp_length. If the termination is level-sensitive,
then this bit must be set to 0 and tp_length will be used for the termination.

TF_USE — Terminator used for termination. If this bit is set, the terminator will be used
for termination. If the bit is not set, the history for the terminator will be cleared
(depending on TF_CLRBEG and TF_CLREND bits), but the terminator will still not be
used for termination. This bit is not valid for the following termination conditions:
DX_DIGMASK

DX_IDDTIME

Dialogic® Voice API Library Reference 303

Dialogic Corporation

DV_TPT — termination parameter table

304

DX MAXTIME

A set of default tp_flags values appropriate to the various termination conditions is also
available. These default values are:

Default Define Underlying Flags

TF_DIGMASK (TF_LEVEL)
TF_DIGTYPE (TF_LEVEL)
TF_IDDTIME (TF_EDGE)
TF_MAXDTMF (TF_LEVEL | TF_USE)

TF_MAXSIL (TF_EDGE | TF_USE)
TF_MAXTIME (TF_EDGE)
TF_TONE (TF_LEVEL | TF_USE | TF_CLREND)

If you specify TF_IDDTIME in tp_flags, then you must specify DX_IDDTIME in tp_termno.
Similarly, if you specify TF_MAXTIME in tp_flags, then you must specify DX _MAXTIME in
tp_termno. Other flags may be set at the same time using an OR combination.

The bitmap for the tp_flags field is as follows:

Bit 7 6 5 4 3 2 1 0

Name rfu rfu units ini use beg end level

The following table shows the default sensitivity of a termination condition.

Termination Condition Level-sensitive Edge-sensitive
DX_DIGMASK v
DX_DIGTYPE v
DX_IDDTIME v
DX_MAXDTMF v
DX_MAXSIL v
DX_MAXTIME v
DX_TONE v

tp_data
Specifies optional additional data. This field can be used as follows:
e If tp_termno contains DX_MAXSIL, tp_data can specify the initial length of silence to
terminate on.
e If tp_termno contains DX_TONE, tp_data can specify one of the following values:
DX_TONEOFF (for termination after a tone-off event)
DX_TONEON (for termination after a tone-on event)

tp_nextp
Points to the next DV_TPT structure in a linked list if the tp_type field is set to IO_LINK.

Table 3 indicates how DV_TPT fields should be filled. In the table, the tp_flags column describes
the effect of the field when set to one and not set to one. “*” indicates the default value for each bit.

Dialogic® Voice API Library Reference
Dialogic Corporation

termination parameter table — DV_TPT

The default defines for the tp_flags field are listed in the description of the tp_flags, above. To
override defaults, set the bits in tp_flags individually, as required.

Table 3. DV_TPT Field Settings Summary

tp_termno tp_type tp_length t':‘a?asgef' tp_;l:tgs. tp_data tp_nextp
DX_MAXDTMF | IO_LINK max number | bit O: TF_LEVEL* N/A pointer to
I0_EOT | of digits TF_EDGE TF_CLREND next
I0_CONT bit 1: no clr* TF_CLRBEG DV_TPT
) if linked
bit 2: no clr* TF_USE* list
bit 3: clIr hist
DX_MAXSIL I0_LINK max length | bit O: TF_EDGE* length of pointer to
I0_EOT silence bit 1: no cir* TF_LEVEL init silence | next
I0_CONT bit 2: no cir* TF_CLREND ::r’]"lalzg
bit 3: clr hist TF_CLRBEG list
bit 4: no-setinit TF_USE*
bit 5: 100 msec* | TF_SETINIT
TF_10MS
DX_IDDTIME I0_LINK max length | bit 0: TF_EDGE* | N/A N/A pointer to
I0_EOT interdigit bit 1: start@call* | start@1st next
lo_CoNT | delay bit 2: N/A N/A DV_TPT
bit 3: N/A N/A :ifsllnked
bit 4: N/A N/A
bit 5: 100 msec* | TF_10MS
DX_MAXTIME I0_LINK max length bit 0: TF_EDGE* | N/A N/A pointer to
I0_EOT function time | pit 1: N/A N/A next
I0_CONT bit 2: N/A N/A DV_TPT
) if linked
bit 3: N/A N/A list
bit 4: N/A N/A
bit 5: 100 msec* | TF_10MS
DX_DIGMASK | IO_LINK bit 0: d (set) | bit 0: TF_EDGE TF_LEVEL* N/A pointer to
IO_EOT | bit1: 1 next
IO_CONT | bit2: 2 DV_TPT
. if linked
bit 3: 3 list
bit 4: 4
bit 5: 5
bit 6: 6
bit 7: 7
bit 8: 8
bit 9: 9
bit 10: 0
bit 11: «
bit 12: #
bit 13: a
bit 14: b
bit 15: ¢
Dialogic® Voice API Library Reference 305

Dialogic Corporation

DV_TPT — termination parameter table

306

Table 3. DV_TPT Field Settings Summary (Continued)

tp_flags: tp_flags:
tp_termno tp_type tp_length not set set tp_data tp_nextp
DX_TONE IO_LINK | Tone ID bit 0: TF_EDGE | TF_LEVEL* DX_ pointer to
IO_EOT bit 1: no clr TF_CRLREND* | TONEON | next
I0_CONT bit 2: no cir* TF_CLRBEG | DX_ :?\I{;:;T
bit 3: clr hist TF_USE* TONEOFF |
DX_DIGTYPE | IO_LINK | low byte: bit 0: TF_EDGE | TF_LEVEL N/A pointer to
I0_EOT ASCII val. next
I0_CONT | *hi byte: DV_TPT
digit type if linked
list
Example

See dx_playiottdata() and dx_reciottdata() for an example of how to use the DV_TPT structure.

Dialogic® Voice API Library Reference
Dialogic Corporation

DX _CAP

* DX_CAP
* call progress analysis parameters

*/

typedef struct
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned short
unsigned short
byte ca_pamd_spdval;
byte ca pamd gtemp;
unsigned short ca_noanswer;
unsigned short ca maxintering;

} DX_CAP;

DX _CAP {
short ca nbrdna;
short ca_stdely;
short ca cnosig;
ca_lcdly;

ca lecdlyl;
ca_hedge;
ca_cnosil;
ca_loltola;
ca loltolb;
ca_lo2tola;
ca lo2tolb;
ca_hiltola;
ca_hiltolb;
ca_lolbmax;
ca_lo2bmax;
ca_hilbmax;
ca_nsbusy;
ca_logltch;
ca_higltch;
ca_lolrmax;
ca lo2rmin;
ca_intflg;
ca_intfltr;
rful;

rfu2;

rfu3;

rfu4d;
ca_hisiz;
ca_alowmax;
ca_blowmax;
ca_nbrbeg;
ca_hilceil;
ca lolceil;
ca_lowerfrqg;
ca_upperfrq;
ca_timefrqg;
ca_rejctfrqg;

short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short ca_maxansr;
short ca_ ansrdgl;
ca_mxtimefrqg;
ca_lower2frg;
ca_upper2frqg;
ca_time2frqg;
ca_mxtime2frqg;

ca lower3frqg;
ca_upper3frqg;
ca_time3frqg;
ca_mxtime3frqg;
ca_dtn pres;
ca_dtn_npres;
ca_dtn_deboff;
ca_pamd_failtime;
ca_pamd_minring;

short
short
short
short
short
short
short
short
short
short
short
short

Dialogic® Voice API Library Reference
Dialogic Corporation

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*

call progress analysis parameters — DX_CAP

of rings before no answer. */

Delay after dialing before analysis. */
Duration of no signal time out delay. */
Delay after dial before lc drop connect */
Delay after lc drop con. Before msg. */
Edge of answer to send connect message. */

Initial continuous noise timeout delay. */
% acceptable pos. dev of short low sig. */
% acceptable neg. dev of short low sig. */
% acceptable pos. dev of long low sig. */
% acceptable neg. dev of long low sig. */
% acceptable pos. dev of high signal. */

% acceptable neg. dev of high signal. */
Maximum interval for shrt low for busy. */
Maximum interval for long low for busy. */
Maximum interval for 1lst high for busy */
Num. of highs after nbrdna busy check. */
Silence deglitch duration. */

Non-silence deglitch duration. */

Max. short low dur. of double ring. */
Min. long low dur. of double ring. */
Operator intercept mode. */

Minimum signal to qualify freq. detect. */
use */
use */
use */
use */
Used to determine which lowmax to use. */

reserved for future

reserved for future
reserved for future

reserved for future

Max. low before con. if high >hisize. */
Max. low before con. if high <hisize. */
Number of rings before analysis begins. */

for a retrain. */
for a retrain. */

Maximum 2nd high dur.
Maximum 1lst low dur.
Lower allowable frequency in Hz. */

Upper allowable frequency in Hz. */

Total duration of good signal required. */
Allowable % of bad signal. */

Maximum duration of answer. */

Silence deglitching value for answer. */

max time for 1lst freqg to remain in bounds */
lower bound for second frequency */

upper bound for second frequency */

min time for 2nd freg
max time for 2nd freq
lower bound for third
upper bound for third
min time for 3rd freq
max time for 3rd freq
Length of a valid dial tone
Max time to wait for dial tone
The dialtone off debouncer (def=100msec) */

Wait for PAMD/PVD after cadence break (def=4s)*/
min allowable ring duration (def=1.9sec)*/

Set to 2 selects quick decision (def=1) */

The Qualification template to use for PAMD */
time before no answer after lst ring (def=30s) */
Max inter ring delay before connect (10 sec) */

to remains in bounds */
to remain in bounds */
frequency */

frequency */

to remains in bounds */
to remain in bounds */
(def=1lsec) */
(def=3sec) */

307

DX_CAP — call progress analysis parameters

B Description

Note:

Note:

308

The DX_CAP data structure contains call progress analysis parameters.

The DX_CAP structure modifies parameters that control frequency detection, cadence detection,
loop current, positive voice detection (PVD), and positive answering machine detection (PAMD).
The DX_CAP structure is used by dx_dial().

For more information about call progress analysis as well as how and when to use the DX_CAP
structure, see the Dialogic® Voice API Programming Guide.

Use the dx_clrcap() function to clear the field values of the DX_CAP structure before using this
structure in a function call. This action prevents possible corruption of data in the allocated
memory space.

Field Descriptions

The following fields of the DX _CAP data structure are supported:
By setting a DX_CAP field to 0, the default value for that field will be used.

ca_cnosig
Continuous No Signal. The maximum time of silence (no signal) allowed immediately after
cadence detection begins. If exceeded, a “no ringback” is returned.

Length: 2 Default: 4000 Units: 10 msec

ca_intflg
Intercept Mode Flag. Enables or disables SIT frequency detection, positive voice detection
(PVD), and/or positive answering machine detection (PAMD), and selects the mode of
operation for SIT frequency detection.
¢ DX_OPTDIS - Disable SIT frequency detection, PAMD, and PVD.
This setting provides call progress without SIT frequency detection.
* DX_OPTNOCON - Enable SIT frequency detection and return an “intercept”
immediately after detecting a valid frequency.
This setting provides call progress with SIT frequency detection.
e DX PVDENABLE — Enable PVD and fax tone detection.
This setting provides PVD call analysis only (no call progress).
e DX PVDOPTNOCON - Enable PVD, DX_OPTNOCON, and fax tone detection.
This setting provides call progress with SIT frequency detection and PVD call analysis.
e DX PAMDENABLE — Enable PAMD, PVD, and fax tone detection.
This setting provides PAMD and PVD call analysis only (no call progress).
e DX PAMDOPTEN - Enable PAMD, PVD, DX OPTNOCON, and fax tone detection.
This setting provides full call progress and call analysis.

Length: 1 Default: DX_OPTNOCON

ca_noanswer
No Answer. Length of time to wait after first ringback before deciding that the call is not
answered.

Default: 3000 Units: 10 msec

Dialogic® Voice API Library Reference
Dialogic Corporation

call progress analysis parameters — DX_CAP

ca_pamd_failtime
PAMD Fail Time. Maximum time to wait for positive answering machine detection or positive
voice detection after a cadence break.

Default: 400 Units: 10 msec

ca_pamd_spdval
PAMD Speed Value. Quick or full evaluation for PAMD detection

e PAMD_FULL - Full evaluation of response

¢ PAMD_QUICK - Quick look at connect circumstances

¢ PAMD_ACCU - Recommended setting. Does the most accurate evaluation detecting live
voice as accurately as PAMD_FULL but is more accurate than PAMD_FULL (although
slightly slower) in detecting an answering machine. Use PAMD_ACCU when accuracy is
more important than speed.

Default: PAMD_ACCU
B Example

For an example of DX_CAP, see the Example section for dx_dial().

Dialogic® Voice API Library Reference 309
Dialogic Corporation

DX_CST — call status transition (CST) information

DX_CST

typedef struct DX_CST {
unsigned short cst_event;
unsigned short cst_data;

} DX _CST;

B Description

The DX_CST data structure contains parameters for call status transition.

DX_CST contains call status transition information after an asynchronous TDX_CST termination
event occurs. Use Dialogic® Standard Runtime Library (SRL) Event Management function,
sr_getevtdatap(), to retrieve the structure.

B Field Descriptions

The fields of the DX_CST data structure are described as follows:

cst_event
Contains the event type.

Use the following defines to identify the event type:

cst_data

DE_DIGITS - digit received

DE_SILOFF - non-silence detected
DE_SILON - silence detected
DE_STOPGETEVT — dx_getevt() stopped
DE_TONEOFF - tone off event
DE_TONEON - tone on event

Contains data associated with the CST event.

The data are described for each event type as follows:

DE_DIGITS — ASCII digit (low byte) and the digit type (high byte)

DE_SILOFF - time since previous silence started in 10 msec units

DE_SILON - time since previous silence stopped in 10 msec units
DE_STOPGETEVT — monitoring of channels for call status transition events has been
stopped

DE_TONEOFF - user-specified tone ID

DE_TONEON - user-specified tone ID

H Example

For an example of how to use the DX_CST structure, see the Example section for dx_setevtmsk().

310

Dialogic® Voice API Library Reference
Dialogic Corporation

call status transition event block — DX_EBLK

DX_EBLK

typedef struct DX_EBLK {

unsigned short ev_event; /* Event that occurred */

unsigned short ev_data; /* Event specific data */

unsigned char ev_rfull2]; /* Reserved for future use*/
}DX_EBLK;

B Description

The DX_EBLK data structure contains parameters for the Call Status Event Block. This structure
is returned by dx_getevt() and indicates which call status transition event occurred. dx_getevt() is
a synchronous function which blocks until an event occurs. For information about asynchronously
waiting for CST events, see dx_setevtmsk().

B Field Descriptions

The fields of the DX_EBLK data structure are described as follows:

ev_event
Contains the event type.

Use the following defines to identify the event type:
* DE_DIGITS - digit received
e DE_SILOFF - non-silence detected
e DE_SILON - silence detected
e DE_TONEOFF - tone off event
e DE_TONEON - tone on event

ev_data
Contains data associated with the CST event. All durations of time are in 10 msec units.

The data are described for each event type as follows:
e DE_DIGITS - ASCII digit (low byte) and the digit type (high byte)
e DE_SILOFF — length of time that silence occurred before non-silence (noise or
meaningful sound) was detected
e DE_SILON - length of time that non-silence occurred before silence was detected
e DE_TONEOFF - user-specified tone ID for the tone-off event
e DE_TONEON - user-specified tone ID for the tone-on event

H Example

For an example of how to use the DX_EBLK structure, see the Example section for dx_getevt()
and dx_setevtmsk().

Dialogic® Voice API Library Reference 311
Dialogic Corporation

DX_IOTT — input/output transfer table

DX_IOTT

312

Note:

typedef struct dx_iott {

unsigned short io type; /* Transfer type */

unsigned short rfu; /* Reserved */

int io fhandle; /* File descriptor */

char * io_bufp; /* Pointer to base memory */

unsigned long io offset; /* File/Buffer offset */

long int io_length; /* Length of data */

DX IOTT *io nextp; /* Pointer to next DX IOTT if IO LINK set */

DX_IOTT *io_prevp; /* (Optional) Pointer to previous DX IOTT */
}DX_IOTT;
Description

The DX_IOTT data structure contains parameters for input/output transfer. The DX_IOTT
structure identifies a source or destination for voice data. It is used with various play and record
functions, such as dx_play() and dx_rec(), as well as other categories of functions.

A DX_IOTT structure describes a single data transfer to or from one file, memory block, or custom
device. If the voice data is stored on a custom device, the device must have a standard Linux or
Windows® device interface. The device must support open(), close(), read(), and write() and
Iseek().

To use multiple combinations, each source or destination of I/O is specified as one element in an
array of DX_IOTT structures. The last DX_IOTT entry must have IO_EOT specified in the io_type
field.

The DX_IOTT data area must remain in scope for the duration of the function if running
asynchronously.

Field Descriptions

The fields of the DX_IOTT data structure are described as follows:

10_type
This field is a bitmap that specifies whether the data is stored in a file or in memory. It also
determines if the next DX_IOTT structure is contiguous in memory, linked, or if this is the last
DX_IOTT in the chain. It is also used to enable WAVE data offset I/O. Set the io_type field to
an OR combination of the following defines.

Specify the data transfer type as follows:
e JO_DEV —file data
e [O_MEM - memory data
¢ IO_STREAM - data for streaming to board
¢ IO_UIO - nonstandard storage media data using the dx_setuio() function; must be ORed
with IO_DEV

dx_setuio()Specify the structure linkage as follows:
* JO_CONT - the next DX_IOTT structure is contiguous (default)
e JO_LINK - the next DX_IOTT structure is part of a linked list
e JO_EOT - this is the last DX_IOTT structure in the chain

If no value is specified, IO_CONT is assumed.

Other Types:

Dialogic® Voice API Library Reference
Dialogic Corporation

input/output transfer table — DX_IOTT

e JO_USEOFFSET - enables use of the io_offset and io_length fields for WAVE data

To enable offset I/O for WAVE data, set the DX_IOTT io_type field to IO_USEOFFSET ORed
with the IO_DEYV define (to indicate file data rather than memory buffer).

Note: Wave file formats cannot be recorded to memory buffers or played from memory
buffers.

io_fhandle
In Linux, specifies a unique file descriptor if IO_DEV is set in io_type. If IO_DEYV is not set in
io_type, io_fhandle should be set to O.
In Windows®, specifies a unique file descriptor provided by the dx_fileopen() function if
IO_DEV is set in io_type. If IO_DEYV is not set in io_type, io_fhandle should be set to O.

io_bufp
Specifies a base memory address if IO_MEM is set in io_type.

io_offset
Specifies one of the following:

¢ if IO_DEV is specified in io_type, an offset from the beginning of a file

¢ for WAVE file offset I/O (IO_DEV is ORed with IO_USEOFFSET in io_type), a file
offset value that is calculated from the beginning of the WAVE audio data rather than the
beginning of the file (that is, the first 80 bytes that make up the file header are not
counted).

¢ if [IO_MEM is specified in io_type, an offset from the base buffer address specified in
io_bufp

io_length
Specifies the number of bytes allocated for recording or the byte length of the playback file.
Specify -1 to play until end of data. During dx_play(), a value of -1 causes playback to
continue until an EOF is received or one of the terminating conditions is satisfied. During
dx_rec(), a value of -1 in io_length causes recording to continue until one of the terminating
conditions is satisfied.

io_nextp
Points to the next DX_IOTT structure in the linked list if IO_LINK is set in io_type.

io_prevp
Points to the previous DX_IOTT structure. This field is automatically filled in when dx_rec()
or dx_play() is called. The io_prevp field of the first DX_IOTT structure is set to NULL.

H Example

The following example uses different sources for playback, an array or linked list of DX_IOTT
structures.

#include <srllib.h>
#include <dxxxlib.h>
DX_IOTT iott[3];

/* first iott: voice data in a file with descriptor f£dl*/
iott[0].io fhandle = fdl;

iott[0].io_offset = 0;

iott[0].io length = -1;

iott[0].io_type = IO _DEV;

Dialogic® Voice API Library Reference 313
Dialogic Corporation

DX_IOTT — input/output transfer table

/* second iott: voice data in a file with descriptor fd2 */
iott[1l].io_fhandle = fd2;

iott[1l].io_offset = 0;

iott[1l].io_length = -1;

iott[1l].io_type = IO DEV;

/* third iott: voice data in a file with descriptor £d3 */
iott[2].io fhandle = £d3;

iott[2].io_offset = 0;

iott[2].io_length = -1;

iott[2].io_type = IO DEV|IO_EOT;

/* play all three voice files: pass &iott[0] as argument to dx play()

/* form a linked list of iott[0] and iott[2] */
iott[0].io_nextp=s&iott[2];
iott[0].io_type|=IO_ LINK

/* pass &iott[0] as argument to dx play(). This time only files 1 and 3
* will be played.
*/
314 Dialogic® Voice API Library Reference

Dialogic Corporation

status of stream buffer — DX _STREAMSTAT

DX_STREAMSTAT

typedef struct streamStat
{

unsigned int version; // version of the structure

unsigned int bytesIn; // total number of bytes put into stream buffer
unsigned int bytesOut; // total number of bytes sent to board

unsigned int headPointer; // internal pointer to position in stream buffer
unsigned int tailPointer; // internal pointer to position in stream buffer
unsigned int currentState; // idle, streaming etc.

unsigned int numberOfBufferUnderruns;
unsigned int numberOfBufferOverruns;

unsigned int BufferSize; // buffer size

unsigned int spaceAvailable; // space in bytes available in stream buffer
unsigned int highWaterMark; // high water mark for stream buffer
unsigned int lowWaterMark; // low water mark for stream buffer

} DX_STREAMSTAT;

B Description

The DX_STREAMSTAT data structure contains the current status of the circular stream buffer for
a voice device. This structure is used by the streaming to board feature and returned by the
dx_GetStreamlInfo() function. This structure is defined in dxxxlib.h.

B Field Descriptions

The fields of the DX_STREAMSTAT data structure are described as follows:

version
Contains the version of the data structure. The value is currently hardcoded to 1. This field is
reserved for future use.

bytesIn
Contains the total number of bytes put into the circular stream buffer.

bytesOut
Contains the total number of bytes sent to the board.

headPointer
Contains an internal pointer to the head position in the circular stream buffer.

tailPointer
Contains an internal pointer to the tail position in the circular stream buffer.

currentState
Contains the current state of the circular stream buffer.
¢ ASSIGNED_STREAM_BUFFER - stream buffer is in use by a play operation and
therefore is not available to any other play operation at this time
¢ UNASSIGNED_STREAM_BUFFER - stream buffer is free to be used by a play
operation at this time

numberOfBufferUnderruns
Represents the number of times the host library tries to read from the circular stream buffer
and finds that there is not enough data to satisfy that read request to send the data to the
firmware. The size of the read request for the host library is determined by the transfer buffer
size of the player.

Dialogic® Voice API Library Reference 315
Dialogic Corporation

DX STREAMSTAT — status of stream buffer

numberOfBufferOverruns
Represents the number of times the application tries to write the data into the buffer beyond the
circular stream buffer limit.

BufferSize
Contains the total size of the circular stream buffer.

spaceAvailable
Specifies the space, in bytes, available in the circular stream buffer.

highWaterMark
Specifies the high point in the circular stream buffer used to signal an event.

lowWaterMark
Specifies the low point in the circular stream buffer used to signal an event.

H Example

See dx_GetStreamInfo() for an example of how to use the DX_STREAMSTAT structure.

316 Dialogic® Voice API Library Reference
Dialogic Corporation

DX _SVCB

speed and volume adjustment condition block — DX_SVCB

typedef struct DX_SVCB {
unsigned short type; /* Bit Mask */
short adjsize; /* Adjustment Size */
unsigned char digit; /* ASCII digit value that causes the action */
unsigned char digtype; /* Digit Type (e.g., 0 = DTMF) */
} DX_SVCB;

Description

The DX_SVCB data structure contains parameters for the speed and volume adjustment condition
block.

This structure is used by dx_setsveond() function to specify a play adjustment condition that is
added to the internal speed and volume condition table (SVCT). The play adjustment conditions in
the SVCT are used to adjust speed or volume automatically at the beginning of playback or in
response to digits entered by the user during playback.

The dx_setsveond(), dx_addspddig(), and dx_addvoldig() functions can be used to add play
adjustment conditions to the SVCT. These functions tie a speed or volume adjustment to an
external event, such as a DTMF digit.

You cannot change an existing speed or volume adjustment condition in the SVCT without using
the dx_clrsveond() function to clear the SVCT of all conditions and then adding a new set of
adjustment conditions to the SVCT.

This structure is used to specify the following:

e table type (speed modification table, volume modification table)
¢ adjustment type (step, index, toggle, pause/resume play)

* adjustment size or action

* adjustment condition (incoming digit, beginning of play)

e level/edge sensitivity for incoming digits

For more information on speed and volume modification tables as well as the pause and resume
play feature, see the Dialogic® Voice API Programming Guide.

Field Descriptions

The fields of the DX_SVCB data structure are described as follows:

type
Type of Playback Adjustment: specifies an OR combination of the following:
Adjustment Table Type (required): specifies one adjustment type, either speed or volume
e SV_SPEEDTBL - selects speed table to be modified
e SV_VOLUMETBL - selects volume table to be modified

Adjustment Method (required except for pause/resume play): specifies one adjustment
method (step, index, or toggle), which also determines how the adjsize value is used

Dialogic® Voice API Library Reference 317
Dialogic Corporation

DX_SVCB — speed and volume adjustment condition block

¢ SV_ABSPOS - Index Mode: Sets adjsize field to specify an absolute adjustment position
(index) in the speed or volume modification table. The index value can be from -10 to
+10, based on position 0, the origin, or center, of the table.

Note: In the speed modification table, the default entries for index values -10 to -6 and +6 to
+10 are -128 which represent a null-entry. In the volume modification table, the
default entries for index values +6 to +10 are -128 which represent a null-entry. To
customize the table entries, use the dx_setsvmt() function.

* SV_RELCURPOS - Step Mode: Sets adjsize field to specify a number of steps by which
to adjust the speed or volume relative to the current position in the table. Specify a positive
number of steps to increase the current speed or volume, or a negative number of steps to
decrease it. For example, specify -2 to lower the speed (or volume) by two steps in the
speed (or volume) modification table.

* SV_TOGGLE - Toggle Mode: Sets adjsize field to specify one of the toggle defines,
which control the values for the current and last-modified speed and volume settings and
allow you to toggle the speed or volume between standard (the origin) and any setting
selected by the user. See the description of the adjsize field for the toggle defines.

Options: specifies one or no options from the following:
* SV_LEVEL - Level: Sets the digit adjustment condition to be level-sensitive.

On Linux, at the start of play, adjustments will be made according to adjustment condition
digits contained in the digit buffer. If SV_LEVEL is not specified, the digit adjustment
condition is edge-sensitive, and will wait for a new occurrence of the digit before play
adjusting.

On Windows®, at the start of play, existing digits in the digit buffer will be checked to see
if they are level-sensitive play adjustment digits. If the first digit in the buffer is a level-
sensitive play adjustment digit, it will cause a play adjustment and be removed from the
buffer. Subsequent digits in the buffer will be treated the same way until the first
occurrence of any digit that is not an SV_LEVEL play adjustment digit. If SV_LEVEL is
not specified, the digit adjustment condition is edge-sensitive. Existing edge-sensitive
play adjustment digits in the digit buffer will not cause a play adjustment; but after the
playback starts, edge-sensitive digits will cause a play adjustment.

e SV_BEGINPLAY - Automatic: Sets the play adjustment to occur automatically at the
beginning of the next playback. This sets a speed or volume level without using a digit
condition. The digit and digtype fields are ignored.

* SV_PAUSE - Use with SV_SPEEDTBL to pause the play on detection of the specified

DTMF digit.
* SV_RESUME - Use with SV_SPEEDTBL to resume the play on detection of the
specified DTMF digit.

adjsize
Adjustment Size: Specifies the adjustment size. The valid values follow according to the
adjustment method:
For Index Mode (SV_ABSPOS in type field)
an integer from -10 to +10 representing an absolute position in the SVMT

For Step Mode (SV_RELCURPOS in type field)

318 Dialogic® Voice API Library Reference
Dialogic Corporation

speed and volume adjustment condition block — DX_SVCB

a positive or negative integer representing the number of steps to adjust the level relative
to the current setting in the SVMT

For Toggle Mode (SV_TOGGLE in type field)

On Dialogic® DM3 boards, the following are valid values:
¢ SV_TOGORIGIN - sets the digit to toggle between the origin and the last modified speed
or volume level (for example, between the -5 and 0 levels)
¢ SV_CURORIGIN - resets the current speed or volume level to the origin (same effect as
SV_ABSPOS with adjsize 0)

On Dialogic® Springware boards, the following are valid values:
e SV_TOGORIGIN - sets the digit to toggle between the origin and the last modified
speed or volume level (for example, between the -5 and O levels)
* SV_CURORIGIN - resets the current speed or volume level to the origin (same effect as
SV_ABSPOS with adjsize 0)
* SV_CURLASTMOD - sets the current speed or volume to the last modified speed
volume level (swaps the current and last-modified settings)
e SV_RESETORIG - resets the current speed or volume to the origin and the last modified
speed or volume to the origin
digit
Digit: Specifies an ASCII digit that will adjust the play.
Values: 0,1,2,3,4,5,6,7,8,9,a,b,c,d, #, *
digtype

Digit Type: Specifies the type of digit:
* DG_DTMF - DTMF digits

B Example

This example illustrates how to set a DTMF digit to adjust playback volume. The following
DX_SVCB structure is set to decrease the volume by one step whenever the DTMF digit 1 is

detected:

svcb[0] . type = SV_VOLUMETBL | SV_RELCURPOS;
svcb[0].adjsize = - 1;

svcb[0] .digit ='1"';

svcb[0].digtype = DG_DTMF;

This example illustrates how to set a DTMF digit to adjust playback speed. The following
DX_SVCB structure will set the playback speed to the value in the speed modification table
position 5 whenever the DTMF digit 2 is detected:

svcb[0] . type = SV_SPEEDTBL | SV_ABSPOS;
svcb([0].adjsize = 5;

svcb[0].digit ='2";

svcb[0] .digtype = DG_DTMF;

This example illustrates how to set a DTMF digit to pause and resume play.

svcb[0] . type = SV_SPEEDTBL | SV_PAUSE;
svcb[0].adjsize = 0;
svcb[0] .digit =1'2';
svcb[0].digtype = DG_DTMF;
Dialogic® Voice API Library Reference 319

Dialogic Corporation

DX_SVCB — speed and volume adjustment condition block

320

svcb[0] .
svcb[0] .
svcb[0] .
svcb[0] .

type = SV_SPEEDTBL | SV_RESUME;
adjsize = 0;

digit = '5"';

digtype = DG_DTMF;

dx_setsvcond().

For additional examples of how to use the DX_SVCB structure, see the Example section for

Dialogic® Voice API Library Reference

Dialogic Corporation

speed and volume modification tables — DX_SVMT

DX_SVMT

Note:

typedef struct DX_SVMT({
char decrease[10]; /* Ten Downward Steps */
char origin; /* Regular Speed or Volume */
char increase[10]; /* Ten Upward Steps */

} DX SVMT;

Description

The DX_SVMT data structure contains parameters for the speed modification table and volume
modification table.

You can specify the rate of change for speed or volume adjustments by customizing the speed or
volume modification table (SVMT) per channel. The DX_SVMT structure has 21 entries that
represent different levels of speed or volume. This structure is used to set or retrieve the SVMT
values, using dx_setsvmt() or dx_getsvmt() respectively.

For detailed information on speed and volume modification tables, see the Dialogic® Voice API
Programming Guide.

Although there are 21 entries available in the DX_SVMT structure, all do not have to be utilized
for changing speed or volume; the number of entries can be as small as you require. Ensure that
you insert -128 (80h) in any table entries that do not contain a speed or volume setting.

Field Descriptions

The fields of the DX_SVMT data structure are described as follows:

decrease[10]
Array that provides a maximum of 10 downward steps from the standard (normal) speed or
volume. The size of the steps is specified in this table. Specify the value -128 (80h) in any
entry you are not using. This represents a null-entry and end-of-table marker. Valid values are:
* Speed — Percentage decrease from the origin (which is set to 0). Values must be between -
1 and -50.
* Volume — Decibel decrease from the origin (which is set to 0). Values must be between -1
and -30.
origin
Specifies the standard play speed or volume. This is the original setting or starting point for
speed and volume control. Set the origin to O to assume normal playback speed/volume for the
standard (normal volume is -8 dB).

increase[10]
Array that provides a maximum of 10 upward steps from the standard (normal) speed or
volume. The size of the steps is specified in this table. Specify the value -128 (80h) in any
entry you are not using. This represents a null-entry and end-of-table marker. Valid values are:
* Speed — Percentage increase from the origin (which is set to 0). Values must be between 1
and 50.
¢ Volume — Decibel decrease from the origin (which is set to 0). Values must be between 1
and 10.

Dialogic® Voice API Library Reference 321
Dialogic Corporation

DX_SVMT — speed and volume modification tables

If you use dx_setsvmt() to customize the DX_SVMT, the changes are saved permanently. You can
obtain the manufacturer’s original defaults by specifying SV_SETDEFAULT for the dx_setsvmt()
function.

B Example

For an example of how to use the DX_SVMT structure, see the Example section for dx_setsvmt().

322 Dialogic® Voice API Library Reference
Dialogic Corporation

DX _UIO

user-defined input/output — DX_UIO

typedef struct DX_UIO {
int (*u read) ();
int (*u_write) ()7
int (*u_seek) ();

} DX_UIO;
B Description
The DX_UIO data structure contains parameters for user-defined input/output.
This structure, returned by dx_setuio(), contains pointers to user-defined I/O functions for
accessing non-standard storage devices.
Note: Wave file formats cannot be recorded to memory buffers or played from memory buffers.
B Field Descriptions
The fields of the DX_UIO data structure are described as follows:
u_read
points to the user-defined read() function, which returns an integer equal to the number of
bytes read or -1 for error
u_write
points to the user-defined write() function, which returns an integer equal to the number of
bytes written or -1 for error
u_seek
points to the user-defined Iseek() function, which returns a long equal to the offset into the I/O
device where the read or write is to start or -1 for error
H Example
For an example of how to use the DX_UIO structure, see the Example section for dx_setuio().
Dialogic® Voice API Library Reference 323

Dialogic Corporation

DX_XPB — input/output transfer parameter block

DX_XPB
]
m
324

typedef struct {

USHORT wFileFormat; // file format
USHORT wDataFormat; // audio data format
ULONG nSamplesPerSec; // sampling rate
ULONG wBitsPerSample; // bits per sample

} DX_XPB;

Description

The DX_XPB data structure contains parameters for the input/output transfer parameter block.

Use the I/O transfer parameter block (DX_XPB) data structure to specify the file format, data
format, sampling rate, and resolution for certain play and record functions, such as dx_playvox(),
dx_recvox(), dx_playiottdata(), dx_reciottdata(), and dx_recwav().

The dx_playwav() convenience function does not specify a DX_XPB structure because the WAVE
file header contains the necessary format information.

Field Descriptions

The fields of the DX XPB data structure are described as follows:

wFileFormat
Specifies the audio file format. Note that this field is ignored by the convenience functions
dx_recwav(), dx_recvox(), and dx_playvox().
e FILE FORMAT_VOX - Dialogic VOX file format
e FILE FORMAT_WAV — Microsoft WAVE file format

wDataFormat
Specifies the data format.

Use one of the following data formats:

* DATA_FORMAT_DIALOGIC_ADPCM - 4-bit OKI ADPCM (Dialogic registered
format)

* DATA_FORMAT_MULAW or DATA_FORMAT G711_MULAW - 8-bit mu-law
G.711 PCM

* DATA_FORMAT_ALAW or DATA_FORMAT_G711_ALAW - 8-bit A-law G.711 PCM

* DATA_FORMAT_PCM - 8-bit or 16-bit linear PCM

e DATA_FORMAT_ G726 — G.726 bit-exact coder

* DATA_FORMAT_GSM610_MICROSOFT — GSM 6.10 full-rate coder (Microsoft
Windows compatible format) (Microsoft Windows Media Recorder Audio Compression
Codec: GSM 6.10 Audio CODEC)

* DATA_FORMAT_GSM610_TIPHON - GSM 6.10 VOX full-rate coder (TTPHON
format)

nSamplesPerSec
Specifies one of the following sampling rates:
e DRT_6KHZ - 6 kHz sampling rate
e DRT_8KHZ - 8 kHz sampling rate
e DRT_11KHZ - 11 kHz sampling rate. Note: 11 kHz OKI ADPCM is not supported.

Dialogic® Voice API Library Reference
Dialogic Corporation

wBitsPerSample

input/output transfer parameter block — DX_XPB

Specifies the number of bits per sample.

B Examples

The following examples explain how to fill the DX_XPB structure for various voice coders.

Table 4. G.711 Voice Coder Support Fields

DATA_FORMAT_ALAW

DATA_FORMAT_G711_MULAW or
DATA_FORMAT_MULAW

DX_XPB Field DX_XPB Field Value Note
wFileFormat FILE_FORMAT_WAV or
FILE_FORMAT_VOX
wDataFormat DATA_FORMAT_G711_ALAW or

nSamplesPerSec DRT_6KHZ or
DRT_8KHZ
wBitsPerSample 8

48 or 64 kbps

Table 5. Linear PCM Voice Coder Support Fields

DX_XPB Field

DX_XPB Field Value Note
wFileFormat FILE_FORMAT_WAV or
FILE_FORMAT_VOX
wDataFormat DATA_FORMAT_PCM
nSamplesPerSec DRT_8KHZ
DRT_11KHZ
wBitsPerSample 8or16 88, 128 kbps
Table 6. OKI ADPCM Voice Coder Support Fields
DX_XPB Field DX_XPB Field Value Note
wFileFormat FILE_FORMAT_WAV or
FILE_FORMAT_VOX
wDataFormat DATA_FORMAT_DIALOGIC_ADPCM
nSamplesPerSec DRT_6KHZ or
DRT_8KHZ
wBitsPerSample 4

24 or 32 kbps

Table 7. G.726 Voice Coder Support Fields

DX_XPB Field DX_XPB Field Value Note
wFileFormat FILE_FORMAT_WAV or
FILE_FORMAT_VOX
wDataFormat DATA_FORMAT_G726

Dialogic® Voice API Library Reference
Dialogic Corporation

325

DX_XPB — input/output transfer parameter block

Table 7. G.726 Voice Coder Support Fields (Continued)

nSamplesPerSec DRT_8KHZ

wBitsPerSample 2,4 16, 32 kbps

Table 8. GSM Voice Coder Support Fields

DX_XPB Field DX_XPB Field Value Note
wFileFormat FILE_FORMAT_WAV WAVE format
FILE_FORMAT_VOX supported only with

DATA_FORMAT_GSM
610_MICROSOFT

wDataFormat DATA_FORMAT_GSM610_MICROSOFT
DATA_FORMAT_GSM610_TIPHON
nSamplesPerSec DRT_8KHZ
wBitsPerSample 0 13 kbps
326 Dialogic® Voice API Library Reference

Dialogic Corporation

feature information — FEATURE_TABLE

FEATURE_TABLE

typedef struct feature_table {
unsigned short ft play;
unsigned short ft_record;
unsigned short ft tone;
unsigned short ft_e2p brd cfg;
unsigned short ft fax;
unsigned short ft_front_end;
unsigned short ft misc;
unsigned short ft_send;
unsigned short ft receive;
unsigned int ft_play ext;
unsigned int ft _record ext;
unsigned short ft_device;
unsigned short ft rful8];

} FEATURE_TABLE;

Description

The FEATURE_TABLE data structure provides information about the features supported on a

device. This structure is used by the dx_getfeaturelist() function. On return from the function, the

FEATURE_TABLE structure contains the relevant information for the device.

Features reported by each member of the FEATURE_TABLE structure are defined in dxxx/ib.h. To

determine what features are enabled on a device, “bitwise AND” the returned bitmask with the

defines (see the example code for dx_getfeaturelist()).
Field Descriptions

The fields of the FEATURE_TABLE data structure are described as follows:

ft_play
Contains a bitmask of the play features supported on the specified device.
e FT_ADPCM - supports ADPCM encoding
* FT_ALAW - supports A-law encoding
e FT_DRT6KHZ - supports 6 kHz sampling rate
e FT_DRT8KHZ - supports 8 kHz sampling rate
e FT_DRT11KHZ — supports 11 kHz sampling rate
e FT_ITU_G_726 — supports ITU-T G.726 encoding
e FT_LINEAR - supports linear PCM encoding
¢ FT_PCM - supports PCM encoding
e FT_RAWO64KBIT - supports raw 64 Kbps
e FT RESRVDI —reserved
e FT RESRVD2 — reserved
e FT_ULAW - supports mu-law encoding

ft_record

Contains a bitmask of the record features supported on the specified device.

e FT_ADPCM - supports ADPCM encoding

e FT_ALAW - supports A-law encoding

e FT_DRT6KHZ - supports 6 kHz sampling rate

e FT_DRT8KHZ - supports 8 kHz sampling rate

e FT_DRT11KHZ — supports 11 kHz sampling rate

Dialogic® Voice API Library Reference
Dialogic Corporation

327

FEATURE TABLE — feature information

e FT_ITU_G_726 — supports ITU-T G.726 encoding
e FT_LINEAR - supports linear PCM encoding

¢ FT_PCM - supports PCM encoding

e FT_RAWOG4KBIT - supports raw 64 Kbps

e FT_RESRVDI - reserved

e FT_RESRVD2 - reserved

e FT_ULAW - supports mu-law encoding

ft_tone
Contains a bitmask of the tone features supported on the specified device.
e FT_GTDENABLED - supports global tone detection (GTD)
e FT_GTGENABLED - supports global tone generation (GTG)
¢ FT_CADENCE_TONE - supports cadenced tone generation

ft_e2p_brd_cfg
Contains a bitmask of the board configuration features supported on the specified device.
¢ FT_CONFERENCE - supports conferencing
e FT_CSP - supports continuous speech processing

ft_fax
Contains a bitmask of the board type and fax features supported on the specified device.
e FT_FAX - specifies that the device has a fax daughterboard
e FT_VFX40 - specifies that the device is a VFX/40 fax board
e FT_VFXA40E - specifies that the device is a VFX/40E fax board
e FT_VFX40E_PLUS - specifies that the device is a VFX/40ESCplus or VFX/PCI board
e FT_FAX_T38UDP — supports T.38 fax

If the ft_fax field contains the bitmask FT _FAX | FT_VFX40 | FT_VFX40E |
FT_VFX40E_PLUS, then this device supports fax.

ft_front_end
Not used on HMP.

ft_misc
Not used on HMP.

ft_send
Contains a bitmask of send fax features supported on the specified device.

e FT_SENDFAX_TXFILE_ASCII - indicates that ASCII file transfer is supported. If this
bit is turned off and the FT_FAX_EXT_ TBL bit (in ft_fax) is turned on, then the device
supports DSP Fax (also known as Softfax).

e FT_TX14400 — supports fax transmission at 14.4 kbps

e FT_TXASCII - supports ASCII data fax transmission

e FT_TXFILEMR - supports MR encoded file format

e FT_TXFILEMMR - supports MMR encoded file format

e FT_TXLINEMR - supports MR encoded file format over the phone line

e FT_TXLINEMMR - supports MMR encoded file format over the phone line

e FT_TXECM - capable of fax line transmission with error correction mode

e FT_TXCCTFAX - supports the header “CCT FAX” when enabled in a download
parameter file

ft_receive
Contains a bitmask of receive fax features supported on the specified device.
e FT_RX14400 — supports fax reception at 14.4 kbps

328 Dialogic® Voice API Library Reference
Dialogic Corporation

feature information — FEATURE_TABLE

e FT_RX12000 — supports fax reception at 12 kbps

¢ FT_RXASCII - supports ASCII data fax reception

e FT_RXFILEMR - supports MR encoded file format

e FT_RXFILEMMR - supports MMR encoded file format

e FT_RXLINEMR - supports MR encoded file format over the phone line

e FT_RXLINEMMR - supports MMR encoded file format over the phone line
e FT_RXECM - capable of fax line reception with error correction mode

ft_play_ext
Not used on Dialogic® HMP Software.

ft_record_ext
Not used on Dialogic® HMP Software.

ft_device
Reserved for future use.

ft_rfu
Reserved for future use.

B Example

See dx_getfeaturelist() for an example of how to use the FEATURE_TABLE structure.

Dialogic® Voice API Library Reference 329
Dialogic Corporation

SC _TSINFO — TDM bus time slot information

SC_TSINFO

typedef struct {
unsigned long sc_numts;
long *sc_tsarrayp;
} SC_TSINFO;

B Description

The SC_TSINFO data structure contains the number of time division multiplexing (TDM) bus time
slots associated with a particular device and a pointer to an array that holds the actual TDM bus
time slot number(s). The SC_TSINFO structure is used by TDM bus routing functions identified by

the suffix:

e _getxmitslot() to supply TDM bus time slot information about a device and fill the data
structure

e _listen() to use this time slot information to connect two devices.

The prefix for these functions identifies the type of device, such as dx_ (voice) and fx_ (fax).

The TDM bus includes the CT Bus and SCbus. The CT Bus has 4096 bi-directional time slots,
while the SCbus has 1024 bi-directional time slots. On Dialogic® Host Media Processing (HMP)
Software, no physical TDM bus exists but its functionality is implemented in the software; the
number of time slots available is 4096.

This structure is defined in dxxxlib.h.
B Field Descriptions

The fields of the SC_TSINFO structure are described as follows:

SC_numts
initialized with the number of TDM bus time slots associated with a device, typically 1.

sc_tsarrayp
initialized with a pointer to an array of long integers. The first element of this array contains a
valid TDM bus time slot number which is obtained by issuing a call to a _getxmitslot()
function. Valid values are from O up to 4095.

H Example

See dx_getxmitslot() for an example of how to use the SC_TSINFO structure.

330 Dialogic® Voice API Library Reference
Dialogic Corporation

tone generation template — TN_GEN

TN_GEN

typedef struct {
unsigned short tg dflag; /* Dual Tone - 1, Single Tone - 0 */

unsigned short tg freql; /* Frequency for Tone 1 (HZ) */
unsigned short tg freg2; /* Frequency for Tone 2 (HZ) */
short tg_ampll; /* Amplitude for Tone 1 (dB) */
short tg ampl2; /* Amplitude for Tone 2 (dB) */
short tg_dur; /* Duration of the Generated Tone */
/* Units = 10 msec */
} TN GEN;

B Description
The TN_GEN data structure contains parameters for the tone generation template.

The tone generation template defines the frequency, amplitude, and duration of a single- or dual-
frequency tone to be played. You can use the convenience function dx_bldtngen() to set up the
structure for the user-defined tone. Use dx_playtone() to play the tone.

B Field Descriptions

The fields of the TN_GEN data structure are described as follows:

tg_dflag
Tone Generation Dual Tone Flag: Flag indicating single- or dual-tone definition. If single, the
values in tg_freq2 and tg_ampl2 will be ignored.
e TN_SINGLE - single tone
e TN_DUAL — dual tone

tg_freql
specifies the frequency for tone 1 in Hz (range: 200 to 2000 Hz)

tg_freq2
specifies the frequency for tone 2 in Hz (range: 200 to 2000 Hz)

tg_ampll
specifies the amplitude for tone 1 in dB (range: -40 to 0 dB)

tg_ampl2
specifies the amplitude for tone 2 in dB (range: -40 to 0 dB)

tg_dur
specifies the duration of the tone in 10 msec units; -1 = infinite duration

B Example

For an example of how to use the TN_GEN structure, see the Example section for dx_bldtngen().

Dialogic® Voice API Library Reference 331
Dialogic Corporation

TN_GENCAD — cadenced tone generation template

TN_GENCAD

typedef struct {

unsigned char cycles; /* Number of cycles */
unsigned char numsegs; /* Number of tones */
short offtime([4]; /* Array of off-times */
/* one for each tone */
TN _GEN tone[4]; /* Array of tone templates */

} TN_GENCAD;

B Description

The TN_GENCAD data structure contains parameters for the cadenced tone generation template. It
defines a cadenced tone that can be generated by using the dx_playtoneEx() function.

TN_GENCAD defines a signal by specifying the repeating elements of the signal (the cycle) and
the number of desired repetitions. The cycle can contain up to 4 segments, each with its own tone
definition and on/off duration, which creates the signal pattern or cadence. Each segment consists
of a TN_GEN single- or dual-tone definition (frequency, amplitude, & duration) followed by a
corresponding off-time (silence duration) that is optional. The dx_bldtngen() convenience
function can be used to set up the TN_GEN components of the TN_GENCAD structure. The
segments are seamlessly concatenated in ascending order to generate the signal cycle.

TN_GENCAD is defined in dxxxlib.h.
B Field Descriptions

The fields of the TN_GENCAD data structure are described as follows:

cycles
The cycles field specifies the number of times the cycle will be played.

Valid values are 1 to 40 cycles.

numsegs
The numsegs field specifies the number of segments used in the cycle, from 1 to 4. A segment
consists of a tone definition in the tone[] array plus the corresponding off-time in the
offtime[] array. If you specify less than four segments, any data values in the unused segments
will be ignored (if you specify two segments, the data in segments 3 and 4 will be ignored).
The segments are seamlessly concatenated in ascending order to generate the cycle.

offtime[4]
The offtime][] array contains four elements, each specifying an off-time (silence duration) in
10 msec units that corresponds to a tone definition in the tone[] array. The offtime[] element
is ignored if the segment is not specified in numsegs.

The off-times are generated after the tone on-time (TN_GEN tg_dur), and the combination of
tg_dur and offtime produce the cadence for the segment. Set the offtime = 0 to specify no off-
time for the tone.

332 Dialogic® Voice API Library Reference
Dialogic Corporation

cadenced tone generation template — TN_GENCAD

tone[4]
The tone[] array contains four elements that specify TN_GEN single- or dual-tone definitions
(frequency, amplitude, & duration). The tone[] element is ignored if the segment is not
specified in numsegs.

The dx_bldtngen() function can be used to set up the TN_GEN tone[] elements. At least one
tone definition, tone[0], is required for each segment used, and you must specify a valid
frequency (tg_freql); otherwise an EDX_FREQGEN error is produced. See the TN_GEN
structure for more information.

H Example

For examples of TN_GENCAD, see the standard call progress signals used with the
dx_playtoneEx() function.

Dialogic® Voice API Library Reference 333
Dialogic Corporation

TONE_DATA — tone information

TONE_DATA

Note:

334

typedef struct {

unsigned int structver; /* version of TONE_SEG struct */
unsigned short tn dflag; /* Dual Tone - 1, Single Tone - 0 */
unsigned short tnl min; /* Min. Frequency for Tone 1 (in Hz) */
unsigned short tnl max; /* Max. Frequency for Tone 1 (in Hz) */
unsigned short tn2 min; /* Min. Frequency for Tone 2 (in Hz) */
unsigned short tn2 max; /* Max. Frequency for Tone 2 (in Hz) */
unsigned short tn_twinmin; /* Min. Frequency for twin of dual tone (in Hz) */
unsigned short tn twinmax; /* Max. Frequency for twin of dual tone (in Hz) */
unsigned short tnon_minj; /* Debounce Min. ON Time (in 10msec units) */
unsigned short tnon max; /* Debounce Max. ON Time (in 10msec units) */
unsigned short tnoff min; /* Debounce Min. OFF Time (in 10msec units) */
unsigned short tnoff max; /* Debounce Max. OFF Time (in 10msec units) */

} TONE_SEG;

typedef struct {

unsigned int structver; /* version of TONE DATA struct */
unsigned short tn_rep_cnt; /* Debounce Rep Count */
unsigned int numofseg; /* Number of segments for a MultiSegment Tone */

TONE_SEG toneseg[6];
} TONE_DATA

Description

The TONE_DATA data structure contains tone information for a specific call progress tone. This
structure is used by the dx_createtone() function. This structure is defined in dxxx/ib.h. For
information on call progress analysis and default tone definitions, see the Dialogic® Voice API
Programming Guide.

The TONE_DATA structure contains a nested array of TONE_SEG substructures. A maximum of
six TONE_SEG substructures can be specified.

Be sure to set all unused fields in the structure to 0 before using this structure in a function call.
This action prevents possible corruption of data in the allocated memory space.

Field Descriptions

The fields of the TONE_DATA structure are described as follows:

TONE_SEG:.structver
Reserved for future use, to specify the version of the structure. Set to 0.

TONE_SEG.tn_dflag
Specifies whether the tone is dual tone or single tone. Values are 1 for dual tone and O for
single tone.

TONE_SEG.tnl_min
Specifies the minimum frequency in Hz for tone 1.

TONE_SEG.tnl_max
Specifies the maximum frequency in Hz for tone 1.

TONE_SEG.tn2_min
Specifies the minimum frequency in Hz for tone 2.

Dialogic® Voice API Library Reference
Dialogic Corporation

tone information — TONE_DATA

TONE_SEG.tn2_max
Specifies the maximum frequency in Hz for tone 2.

TONE_SEG.tn_twinmin
Specifies the minimum frequency in Hz of the single tone proxy for the dual tone.

TONE_SEG.tn_twinmax
Specifies the maximum frequency in Hz of the single tone proxy for the dual tone.

TONE_SEG.tnon_min
Specifies the debounce minimum ON time in 10 msec units.

TONE_SEG.tnon_max
Specifies the debounce maximum ON time in 10 msec units.

TONE_SEG.tnoff_min
Specifies the debounce minimum OFF time in 10 msec units.

TONE_SEG.tnoff _max
Specifies the debounce maximum OFF time in 10 msec units.

TONE_DATA .structver
Reserved for future use, to specify the version of the structure. Set to 0.

TONE_DATA.tn_rep_cnt
Specifies the debounce repetition count.

TONE_DATA .numofseg
Specifies the number of segments for a multi-segment tone.

B Example

For an example of this structure, see the Example code for dx_createtone().

Dialogic® Voice API Library Reference 335
Dialogic Corporation

TONE_DATA — tone information

336 Dialogic® Voice API Library Reference
Dialogic Corporation

Error Codes 5

This chapter lists the error codes that may be returned for the Dialogic® Voice API library
functions.

If a library function fails, use the standard attribute function ATDV_LASTERRC() to return the
error code and ATDV_ERRMSGP() to return the error description. These functions are described
in the Dialogic® Standard Runtime Library API Library Reference.

The following error codes can be returned by the ATDV_ERRMSGP() function:

EDX_AMPLGEN
Invalid amplitude value in tone generation template

EDX_ASCII
Invalid ASCII value in tone template description

EDX_BADDEV
Device descriptor error

EDX_BADIOTT
DX_IOTT structure error

EDX_BADPARM
Invalid parameter

EDX_BADPROD
Function not supported on this board

EDX_BADREGVALUE
Unable to locate value in registry

EDX_BADTPT
DV_TPT structure error

EDX_BADTSFDATA
Tone Set File (TSF) data was not consolidated

EDX_BADTSFFILE
Filename doesn’t exist, or not valid TSF

EDX_BADWAVEFILE
Bad/unsupported WAVE file

EDX_BUSY
Device or channel is busy; or invalid state

EDX_CADENCE
Invalid cadence component values in tone template description

EDX_CHANNUM
Invalid channel number specified

Dialogic® Voice API Library Reference 337
Dialogic Corporation

Error Codes

338

EDX_DIGTYPE
Invalid dg_type value in user digit buffer, DV_DIGIT data structure

EDX_FEATUREDISABLED
Feature disabled

EDX_FLAGGEN
Invalid tg_dflag field in tone generation template, TN_GEN data structure

EDX_FREQDET
Invalid frequency component values in tone template description

EDX_FREQGEN
Invalid frequency component in tone generation template, TN_GEN data structure

EDX_FWERROR
Firmware error

EDX_IDLE
Device is idle

EDX_INVSUBCMD
Invalid sub-command number

EDX_MAXTMPLT
Maximum number of user-defined tones for the board

EDX_MSGSTATUS
Invalid message status setting

EDX_NOERROR
No error

EDX_NONZEROSIZE
Reset to default was requested but size was non-zero

EDX_NOSUPPORT
Data format is not supported or function parameter is not supported

EDX_NOTENOUGHBRDMEM
Error when downloading a cached prompt from multiple sources: total length of data to be
downloaded exceeds the available on-board memory

EDX_NOTIMP
Function is not implemented

EDX_SH_BADCMD
Command is not supported in current bus configuration

EDX_SH_BADEXTTS
TDM bus time slot is not supported at current clock rate

EDX_SH_BADINDX
Invalid Switch Handler library index number

EDX_SH_BADCLTS
Invalid channel number

EDX_SH_BADMODE
Function is not supported in current bus configuration

Dialogic® Voice API Library Reference
Dialogic Corporation

Error Codes

EDX_SH_BADTYPE
Invalid time slot channel type (voice, analog, etc.)

EDX_SH_CMDBLOCK
Blocking command is in progress

EDX_SH_LCLDSCNCT
Channel is already disconnected from TDM bus

EDX_SH_LCLTSCNCT
Channel is already connected to TDM bus

EDX_SH_LIBBSY
Switch Handler library is busy

EDX_SH_LIBNOTINIT
Switch Handler library is uninitialized

EDX_SH_MISSING
Switch Handler is not present

EDX_SH_NOCLK
Switch Handler clock fallback failed

EDX_SPDVOL
Must specify either SV_SPEEDTBL or SV_VOLUMETBL

EDX_SVADJBLKS
Invalid number of speed/volume adjustment blocks

EDX_SVMTRANGE
Entry out of range in speed/volume modification table, SV_SVMT

EDX_SVMTSIZE
Invalid table size specified

EDX_SYSTEM
Error from operating system. In Windows®, use dx_fileerrno() to obtain error value. In
Linux, check the global variable errno for more information.

EDX_TIMEOUT
1/0 function timed out

EDX_TONEID
Invalid tone template ID

EDX_TNMSGSTATUS
Invalid message status setting

EDX_UNSUPPORTED
Function is not supported

EDX_XBPARM
Bad XPB structure

Dialogic® Voice API Library Reference 339
Dialogic Corporation

Error Codes

340 Dialogic® Voice API Library Reference
Dialogic Corporation

Supplementary Reference

Information

This chapter provides reference information on the following topics:
e DTMF and MF Tone Specifications
¢ DTMF and MF Detection Errors

6.1 DTMF and MF Tone Specifications

Table 9 provides information on DTMF specifications. Table 10 provides information on MF tone

specifications.

Table 9. DTMF Tone Specifications

Code Tone l?air Default Length
Frequencies (Hz) (msec)
1 697, 1209 100
2 697, 1336 100
3 697, 1477 100
4 770, 1209 100
5 770, 1336 100
6 770, 1477 100
7 852, 1209 100
8 852, 1336 100
9 852, 1477 100
0 941, 1336 100
* 941, 1209 100
941, 1477 100
a 697, 1633 100
b 770, 1633 100
c 852, 1633 100
d 941, 1633 100

Dialogic® Voice API Library Reference
Dialogic Corporation

341

Supplementary Reference Information

Table 10. MF Tone Specifications (CCITT R1 Tone Plan)

Code Tone I_’air Default Length Name
Frequencies (Hz) (msec)
1 700, 900 60 1
2 700, 1100 60 2
3 900, 1100 60 3
4 700, 1300 60 4
5 900, 1300 60 5
6 1100, 1300 60 6
7 700, 1500 60 7
8 900, 1500 60 8
9 1100, 1500 60 9
0 1300, 1500 60 0
* 1100, 1700 60 KP
1500, 1700 60 ST
a 900, 1700 60 ST1
b 1300, 1700 60 ST2
c 700, 1700 60 ST3
* The standard length of a KP tone is 100 msec

6.2 DTMF and MF Detection Errors

Some MF digits use approximately the same frequencies as DTMF digits (see Table 9 and

Table 10). Because there is a frequency overlap, if you have the incorrect kind of detection enabled,
MF digits may be mistaken for DTMF digits, and vice versa. To ensure that digits are correctly
detected, only one kind of detection should be enabled at any time. See the dx_setdigtyp()
function description for information on setting the type of digit detection.

Digit detection accuracy depends on two things:

e the digit sent
¢ the kind of detection enabled when the digit is detected

Table 11 and Table 12 show the digits that are detected when each type of detection is enabled.
Table 11 shows which digits are detected when MF digits are sent. Table 12 shows which digits are
detected when DTMF digits are sent.

342 Dialogic® Voice API Library Reference
Dialogic Corporation

Table 11. Detecting MF Digits

Supplementary Reference Information

MF Digit String Received
Sent Only MF Only DTMF MF and DTMF
Detection Enabled Detection Enabled Detection Enabled
1 1 1
2 2 2
3 3 3
4 4 ot 4.0t
5 5 5
6 6 6
7 7 3t 7,37
8 8 8
9 9 9
0 0 0
#
a a a
b b b
c c c
T = detection error
Table 12. Detecting DTMF Digits
DTME String Received
Digit Sent Det:::':ilganrl\nnanled Detecct)ir:r\: II\Enrll:abIed Delt)t;rcl\tnilt:): 'I;c:l:nb':ed
1 1 1
2 2 4t 4,2
3 3 7t 7,37
4 4 4
5 5 4t 4,51
6 6 7t 7,67
7 7 7
8 8 st 5,81
9 9 gt 8,9
0 0 57 5,01
T = detection error

Dialogic® Voice API Library Reference

Dialogic Corporation

343

Supplementary Reference Information

344

Table 12. Detecting DTMF Digits (Continued)

String Received
DTMF
Digit Sent Only DTMF Only MF DTMF and MF
Detection Enabled Detection Enabled Detection Enabled
gt 8,#T
a a ct c,aT
b b ct c,bf
(o} c af a,cT
d d aT a,dT
T - detection error

Dialogic® Voice API Library Reference
Dialogic Corporation

Glossary

A-law: Pulse Code Modulation (PCM) algorithm used in digitizing telephone audio signals in E1 areas. Contrast
with mu-law.

ADPCM (Adaptive Differential Pulse Code Modulation): A sophisticated compression algorithm for
digitizing audio that stores the differences between successive samples rather than the absolute value of each
sample. This method of digitization reduces storage requirements from 64 kilobits/second to as low as 24
kilobits/second.

AGC (Automatic Gain Control): An electronic circuit used to maintain the audio signal volume at a constant
level. AGC maintains nearly constant gain during voice signals, thereby avoiding distortion, and optimizes the
perceptual quality of voice signals by using a new method to process silence intervals (background noise).

analog: 1. A method of telephony transmission in which the signals from the source (for example, speech in a
human conversation) are converted into an electrical signal that varies continuously over a range of amplitude
values analogous to the original signals. 2. Not digital signaling. 3. Used to refer to applications that use loop start
signaling.

ANI (Automatic Number Identification): Identifies the phone number that is calling. Digits may arrive in
analog or digital form.

API (Application Programming Interface): A set of standard software interrupts, calls, and data formats that
application programs use to initiate contact with network services, mainframe communications programs, or other
program-to-program communications.

ASCIIZ string: A null-terminated string of ASCII characters.

asynchronous function: A function that allows program execution to continue without waiting for a task to
complete. To implement an asynchronous function, an application-defined event handler must be enabled to trap
and process the completed event. Contrast with synchronous function.

bit mask: A pattern which selects or ignores specific bits in a bit-mapped control or status field.

bitmap: An entity of data (byte or word) in which individual bits contain independent control or status
information.

board device: On Dialogic® Host Media Processing (HMP) Software, a board-level object that can be
manipulated by a physical library. Dialogic® HMP Software performs like a virtual Dialogic® DM3 board.

buffer: A block of memory or temporary storage device that holds data until it can be processed. It is used to
compensate for the difference in the rate of the flow of information (or time occurrence of events) when

transmitting data from one device to another.

bus: An electronic path that allows communication between multiple points or devices in a system.

Dialogic® Voice API Programming Guide 345
Dialogic Corporation

busy device: A device that has one of the following characteristics: is stopped, being configured, has a
multitasking or non-multitasking function active on it, or I/O function active on it.

cadence: A pattern of tones and silence intervals generated by a given audio signal. The pattern can be classified
as a single ring, a double ring, or a busy signal.

cadence detection: A voice driver feature that analyzes the audio signal on the line to detect a repeating pattern
of sound and silence.

call progress analysis: A process used to automatically determine what happens after an outgoing call is
dialed. A further distinction is made. Call progress refers to activity that occurs before a call is connected (pre-
connect), such as busy or ringback. Call analysis refers to activity that occurs after a call is connected (post-
connect), such as voice detection and answering machine detection. The term call progress analysis is used to
encompass both call progress and call analysis.

call status transition event functions: A class of functions that set and monitor events on devices.
caller ID: calling party identification information.

CCITT (Comite Consultatif Internationale de Telegraphique et Telephonique): One of the four
permanent parts of the International Telecommunications Union, a United Nations agency based in Geneva. The
CCITT is divided into three sections: 1. Study Groups set up standards for telecommunications equipment, systems,
networks, and services. 2. Plan Committees develop general plans for the evolution of networks and services. 3.
Specialized Autonomous Groups produce handbooks, strategies, and case studies to support developing countries.

channel: 1. When used in reference to a Dialogic® analog expansion board, an audio path, or the activity
happening on that audio path (for example, when you say the channel goes off-hook). 2. When used in reference to
an Dialogic® digital expansion board, a data path, or the activity happening on that data path. 3. When used in
reference to a bus, an electrical circuit carrying control information and data.

channel device: A channel-level object that can be manipulated by a physical library, such as an individual
telephone line connection. A channel is also a subdevice of a board. See also subdevice.

CO (Central Office): A local phone network exchange, the telephone company facility where subscriber lines
are linked, through switches, to other subscriber lines (including local and long distance lines). The term “Central
Office” is used in North America. The rest of the world calls it “PTT”, for Post, Telephone, and Telegraph.

computer telephony (CT): The extension of computer-based intelligence and processing over the telephone
network to a telephone. Sometimes called computer-telephony integration (CTI), it lets you interact with computer
databases or applications from a telephone, and enables computer-based applications to access the telephone
network. Computer telephony technology supports applications such as: automatic call processing; automatic
speech recognition; text-to-speech conversion for information-on-demand; call switching and conferencing; unified
messaging, which lets you access or transmit voice, fax, and e-mail messages from a single point; voice mail and
voice messaging; fax systems, including fax broadcasting, fax mailboxes, fax-on-demand, and fax gateways;
transaction processing, such as Audiotex and Pay-Per-Call information systems; and call centers handling a large
number of agents or telephone operators for processing requests for products, services, or information.

configuration file: An unformatted ASCII file that stores device initialization information for an application.

346 Dialogic® Voice API Programming Guide
Dialogic Corporation

convenience function: A class of functions that simplify application writing, sometimes by calling other,
lower-level API functions.

CPE: customer premise equipment.

CT Bus: Computer Telephony bus. A time division multiplexing communications bus that provides 4096 time
slots for transmission of digital information between CT Bus products. See TDM bus.

data structure: Programming term for a data element consisting of fields, where each field may have a different
type definition and length. A group of data structure elements usually share a common purpose or functionality.

DCM: configuration manager. On Windows® only, a utility with a graphical user interface (GUI) that enables you
to add new boards to your system, start and stop system service, and work with board configuration data.

debouncing: Eliminating false signal detection by filtering out rapid signal changes. Any detected signal change
must last for the minimum duration as specified by the debounce parameters before the signal is considered valid.
Also known as deglitching.

deglitching: See debouncing.

device: A computer peripheral or component controlled through a software device driver. A Dialogic® voice
and/or network interface expansion board is considered a physical board containing one or more logical board

devices, and each channel or time slot on the board is a device.

device channel: A Dialogic® voice data path that processes one incoming or outgoing call at a time (equivalent
to the terminal equipment terminating a phone line).

device driver: Software that acts as an interface between an application and hardware devices.

device handle: Numerical reference to a device, obtained when a device is opened using xx_open(), where xx is
the prefix defining the device to be opened. The device handle is used for all operations on that device.

device name: Literal reference to a device, used to gain access to the device via an xx_open() function, where
xx is the prefix defining the device to be opened.

digitize: The process of converting an analog waveform into a digital data set.
DM3: Refers to Dialogic® mediastream processing architecture, which is open, layered, and flexible,
encompassing hardware as well as software components. A whole set of products from Dialogic are built on the

Dialogic® DM3 architecture. Contrast with Springware, which is earlier-generation architecture.

download: The process where board level program instructions and routines are loaded during board
initialization to a reserved section of shared RAM.

driver: A software module which provides a defined interface between an application program and the firmware
interface.

DTMF (Dual-Tone Multi-Frequency): Push-button or touch-tone dialing based on transmitting a high- and a
low-frequency tone to identify each digit on a telephone keypad.

Dialogic® Voice API Programming Guide 347
Dialogic Corporation

echo: The component of an analog device’s receive signal reflected into the analog device’s transmit signal.
echo cancellation: Removal of echo from an echo-carrying signal.

event: An unsolicited or asynchronous message from a hardware device to an operating system, application, or
driver. Events are generally attention-getting messages, allowing a process to know when a task is complete or

when an external event occurs.

event handler: A portion of an application program designed to trap and control processing of device-specific
events.

extended attribute functions: A class of functions that take one input parameter (a valid Dialogic® device
handle) and return device-specific information. For instance, a voice device’s extended attribute function returns
information specific to the voice devices. Extended attribute function names are case-sensitive and must be in
capital letters. See also standard runtime library (SRL).

firmware: A set of program instructions that reside on an expansion board.

firmware load file: The firmware file that is downloaded to a voice board.

flash: A signal generated by a momentary on-hook condition. This signal is used by the voice hardware to alert a
telephone switch that special instructions will follow. It usually initiates a call transfer. See also 1/O.

G.726: An international standard for encoding 8 kHz sampled audio signals for transmission over 16, 24, 32 and
40 kbps channels. The G.726 standard specifies an adaptive differential pulse code modulation (ADPCM) system

for coding and decoding samples.

GSM (Global System for Mobile Communications): A digital cellular phone technology based on time
division multiple access (TDMA) used in Europe, Japan, Australia and elsewhere around the world.

I/O: Input-Output

idle device: A device that has no functions active on it.

in-band: The use of robbed-bit signaling (T1 systems only) on the network. The signaling for a particular channel
or time slot is carried within the voice samples for that time slot, thus within the 64 kbps (kilobits per second) voice
bandwidth.

kernel: A set of programs in an operating system that implement the system’s functions.

mu-law: (1) Pulse Code Modulation (PCM) algorithm used in digitizing telephone audio signals in T1 areas. (2)
The PCM coding and companding standard used in Japan and North America. See also A-law.

PBX: Private Branch Exchange. A small version of the phone company’s larger central switching office. A local
premises or campus switch.

PCM (Pulse Code Modulation): A technique used in DSP voice boards for reducing voice data storage
requirements. Dialogic supports either mu-law PCM, which is used in North America and Japan, or A-law PCM,
which is used in the rest of the world.

348 Dialogic® Voice API Programming Guide
Dialogic Corporation

polling: The process of repeatedly checking the status of a resource to determine when state changes occur.
PSTN (or STN): Public (or Private) Switched Telephony Network

resource: Functionality (for example, voice-store-and-forward) that can be assigned to a call. Resources are
shared when functionality is selectively assigned to a call and may be shared among multiple calls. Resources are
dedicated when functionality is fixed to the one call.

resource board: A Dialogic® expansion board that needs a network or switching interface to provide a
technology for processing telecommunications data in different forms, such as voice store-and-forward, speech
recognition, fax, and text-to-speech.

RFU: reserved for future use

ring detect: The act of sensing that an incoming call is present by determining that the telephone switch is
providing a ringing signal to the voice board.

route: Assign a resource to a time slot.
sampling rate: Frequency at which a digitizer quantizes the analog voice signal.

SCbus (Signal Computing Bus): A hardwired connection between Switch Handlers on SCbus-based
products. SCbus is a third generation TDM (Time Division Multiplexed) resource sharing bus that allows
information to be transmitted and received among resources over 1024 time slots.

signaling insertion: The signaling information (on hook/off hook) associated with each channel is digitized,
inserted into the bit stream of each time slot by the device driver, and transmitted across the bus to another resource
device. The network interface device generates the outgoing signaling information.

silence threshold: The level that sets whether incoming data to the voice board is recognized as silence or non-
silence.

SIT: (1) Standard Information Tones: tones sent out by a central office to indicate that the dialed call has been
answered by the distant phone. (2) Special Information Tones: detection of a SIT sequence indicates an operator
intercept or other problem in completing the call.

solicited event: An expected event. It is specified using one of the device library’s asynchronous functions.

Springware: Software algorithms built into the downloadable firmware that provide the voice processing features
available on older-generation Dialogic® voice boards. The term Springware is also used to refer to a whole set of
boards from Dialogic built using this architecture. Contrast with DM3, which is a newer-generation architecture.

SRL: See Standard Runtime Library.

standard attribute functions: Class of functions that take one input parameter (a valid device handle) and
return generic information about the device. For instance, standard attribute functions return IRQ and error
information for all device types. Standard attribute function names are case-sensitive and must be in capital letters.
Standard attribute functions for Dialogic® devices are contained in the SRL. See standard runtime library (SRL).

Dialogic® Voice API Programming Guide 349
Dialogic Corporation

standard runtime library (SRL): A Dialogic® software resource containing event management and standard
attribute functions and data structures used by Dialogic® devices.

station device: Any analog telephone or telephony device (such as a telephone or headset) that uses a loop-start
interface and connects to a station interface board.

string: An array of ASCII characters.

subdevice: Any device that is a direct child of another device. Since “subdevice” describes a relationship
between devices, a subdevice can be a device that is a direct child of another subdevice, as a channel is a child of a
board.

synchronous function: Blocks program execution until a value is returned by the device. Also called a
blocking function. Contrast with asynchronous function.

system release: The software and user documentation provided by Dialogic that is required to develop
applications.

TDM (Time Division Multiplexing): A technique for transmitting multiple voice, data, or video signals
simultaneously over the same transmission medium. TDM is a digital technique that interleaves groups of bits from
each signal, one after another. Each group is assigned its own time slot and can be identified and extracted at the
receiving end. See also time slot.

TDMA (Time Division Multiple Access): A method of digital wireless communication using time division
multiplexing.

TDM bus: Time division multiplexing bus. A resource sharing bus such as the SCbus or CT Bus that allows
information to be transmitted and received among resources over multiple data lines.

termination condition: An event or condition which, when present, causes a process to stop.

termination event: An event that is generated when an asynchronous function terminates. See also
asynchronous function.

time division multiplexing (TDM): See TDM (Time Division Multiplexing).

time slot: The smallest, switchable data unit on a TDM bus. A time slot consists of 8 consecutive bits of data.
One time slot is equivalent to a data path with a bandwidth of 64 kbps. In a digital telephony environment, a
normally continuous and individual communication (for example, someone speaking on a telephone) is (1)
digitized, (2) broken up into pieces consisting of a fixed number of bits, (3) combined with pieces of other
individual communications in a regularly repeating, timed sequence (multiplexed), and (4) transmitted serially over
a single telephone line. The process happens at such a fast rate that, once the pieces are sorted out and put back
together again at the receiving end, the speech is normal and continuous. Each individual, pieced-together
communication is called a time slot.

time slot assighment: The ability to route the digital information contained in a time slot to a specific analog or
digital channel on an expansion board. See also device channel.

underrun: data is not being delivered to the board quickly enough which can result in loss of data and gaps in the
audio

350 Dialogic® Voice API Programming Guide
Dialogic Corporation

virtual board: In the traditional voice processing board environment, the device driver views a single physical
voice board with more than four channels as multiple emulated D/4x boards. These emulated boards are called
virtual boards. This concept extends to the Dialogic® Host Media Processing (HMP) Software environment. A
system with 44 channels consists of 11 virtual boards.

voice processing: The science of converting human voice into data that can be reconstructed and played back at
a later time.

Dialogic® Voice API Programming Guide 351
Dialogic Corporation

352 Dialogic® Voice API Programming Guide
Dialogic Corporation

Index

A

adjusting speed and volume
explicitly 72
using conditions 267
using digits 267
adjustment conditions
digits 268
maximum number 268
setting 267

ADPCM 188, 222
AGC 222

A-law 188, 324
array 313

asynchronous operation
dialing 112
digit collection 145
playing 189
playing tone 202
recording 223
stopping 1/O functions 280

ATDX_ functions 24
ATDX_BDNAMEP() 26
ATDX_BDTYPE() 28
ATDX_BUFDIGS() 30
ATDX_CHNAMES() 32
ATDX_CHNUM() 34
ATDX_CONNTYPE() 36
ATDX_CPERROR() 39
ATDX_CPTERM() 39, 42
ATDX_CRTNID() 45
ATDX_DEVTYPE() 49
ATDX_STATE() 51
ATDX_TERMMSK() 53, 56
ATDX_TONEID() 56
ATDX_TRCOUNT() 59
automatic gain control 222

B

base memory address 313
bits per sample 325

Dialogic® Voice API Library Reference
Dialogic Corporation

board
device 49, 182
device name 26
parameters 264, 265
setting 26
board device
handle 32

breaking
connection to a time slot 283, 285
buffer
firmware digit 96
buffer size
bulk queue 249
busy channel 243
forcing to idle state 280

C

ca_noanswer 308
ca_pamd_failtime 309
ca_pamd_spdval 309
cached prompts
playing 194
cadence
repetition for user-defined tones 79

cadenced tone
playing 206
call progress analysis 42
data structure 308
enabling 112
errors 39
functions 22
parameter structure 94
results
busy 42
called line answered by 42
connect 42
error 43
no answer 42
no ringback 42
operator intercept 42
stopped 42
stopping 114, 281
termination 42
using dx_dial() 111
call progress tone 103, 107, 219

353

call status transition convenience functions

DX_CST data structure 310 dx_playf() 198
event block structure 311 dx_playvox() 210
event handling 258 dx_recf() 228
synchronously monitoring events 150 dx_recvox() 237
call status transition event functions 19 dx_recwav() 240
dx_getevt() 150 I/0 18
dx_setevtmsk() 257 R2/MF 21

speed and volume 22

call status transition structure 310 '
TDM Routing 20

channel
bulk queue buffer sizing function 249 CR_BUSY 42
current state 51 CR_CEPT 42
device 49, 182 CR_CNCT 36, 42
digit buffer 144 CR_ERROR 39
names 32 CR_FAXTONE 42
number 34

CR_LGTUERR 39

number of processes 151
CR_MEMERR 39

parameters 265

status CR_MXFRQERR 39
dial 51 CR_NOANS 42
get digit 51 CR_NORB 42
Si 5511 CR_OVRLPERR 40
playing tone 51 CR_STOPD 42
record 51 CR_TMOUTOFF 40
stopped 51 CR_TMOUTON 40
channel device information structure 298 CR_UNEXPTN 40
channel parameters 265 CR_UPFRQERR 40
clearing structures 94, 100 CS_CALL 51
close(_) 90 CS_DIAL 51
close(_) function, Windows 90 CS_GTDIG 51
closing devices 90 CS_HOOK 51
cnosig 308 CS_IDLE 51
CON_CAD 36 CS_PLAY 51
CON_LPC 36 CS_RECD 51
CON_PAMD 36 CS_STOPD 51
CON_PVD 36 CS_TONE 51
configuration functions 16 cst_data 310
dx_clrdigbuf() 96 cst_event 310
dx_getparm() 157 CT_DEVINFO data structure 139, 298

dx_setchxfercnt() 249

dx_setdigtyp() 254 current parameter settings 157

dx_setparm() 264 cycles 332
connect
type 36 D

data formats 324

data structure
user digit buffer 300

354 Dialogic® Voice API Library Reference
Dialogic Corporation

data structures
cadenced tone generation template 332
call progress analysis parameters 308
call status transition 310
clearing 23
event block 311
feature information 327
1/0
user-definable 323
I/O transfer table 312
input/output transfer parameter block 324

speed and volume adjustment conditions 317

speed modification table 321

TDM bus time slot information 330
termination parameter table 301
tone generation template 331

DE_DIGITS event 296, 310, 311
DE_SILOFF event 296, 310, 311
DE_SILON event 296, 310, 311
DE_STOPGETEVT event 296
DE_TONEOFF event 296, 310, 311
DE_TONEON event 296, 310, 311
device

opening 182
device handle 15, 28, 182

freeing 90
device information structure 298
device management functions 15

dx_close() 90

dx_open() 182
device names

displaying 32
device type 49

devices
closing 90
multiple processes 90
returning features 327
type 28

DG_DTMF 300
DG_END 300
DG_MAXDIGS 145, 300
DG_MF 300

dg_type 300

dg_value 300
DI_D41BD 28
DI_D41CH 28

Dialogic® Voice API Library Reference
Dialogic Corporation

dialing
ASCIIZ string 111
asynchronous 112
DTMF 113
enabling call progress analysis 112
flash 113
MF 113
pause 113
pulse 113
specifying dial string 111, 113
stopping 113
synchronous 112
synchronous termination 112
termination events
TDX_CALLP 112,294
TDX_DIAL 112, 294
with call progress analysis 112
digit buffer 144, 145
flushing 96
digit buffer, user 300
digit collection 144
asynchronous 145
DTMF digits 144
MF digits 144
synchronous 145
termination 145
user-defined digits 144
digit detection 144
disabling 117
DTMF vs. MF tones 255
errors 342
multiple types 254
setting digit types 254
digits
adjustment conditions 268
collecting 30
detecting 30
disabling detection
user-defined tones 117
disconnecting
voice receive channel 283, 285

DM_DIGITS 258
DM_DIGOFF 258
DM_SILOF 258
DM_SILON 258
DM_UNDERRUN 258
DSP fax 328
DT_DXBD 49
DT_DXCH 49

DTMF 343
detection errors 342
tone specifications 341

355

DTMF digits dx_getsvmt() 162
collection 144 dx_getxmitslot() 165
overlap with MF digits 145 DX_IOTT data structure 312
DV_DIGIT data structure 144, 300 dx_listen() 167

specifying 144 o dx_listenEx() 170
DV_TPT data structure 3 dx_mreciottdata() 174

clearing 100
contiguous 100 dx_open() 182

last entry in 100 dx_OpenStreamBuffer() 185
linked 100 dx_play() 97, 187, 198, 313
dx_addspddig() 61 dx_playf() 198
dx_addtone() 64 dx_playiottdata() 194
dx_addvoldig() 69 dx_playtone() 202
dx_adjsv() 72 dx_playtoneEx() 206
dx_blddt() 75 dx_playvox() 210
dx_blddtcad() 78 dx_playwav() 213
dx_bldst() 84 dx_PutStreamData() 216
dx_bldstcad() 81 dx_query() 218
dx_bldtngen() 87 dx_querytone() 106
DX_CAP data structure 308 dx_rec() 97, 221, 313
clearing 94 dx_recf() 228
dx_close() 90 dx_reciottdata() 232
dx_CloseStream() 92 dx_recvox() 237
dx_clrcap() 94 dx_recwav() 240
dx_clrdigbuf() 30, 96, 145 dx_resetch() 243
dx_clrsveond() 98, 267 dx_ResetStreamBuffer() 246
dx_clrtpt() 100 dx_setchxfercnt() 249
dx_createtone() 102 dx_setdevuio() 251
DX_CST data structure 310 dx_setdigtyp() 144
dx_deltones() 109 dx_setevtmsk() 150, 257
dx_dial() 53, 94, 114, 280 dx_setgtdamp() 262
dx_distone() 64, 117 dx_setparm() 188, 222, 264
DX_EBLK data structure 150, 311 dx_setsvcond() 267
dx_enbtone() 64, 120 dx_setsvmt() 271
dx_fileclose() 123 dx_setuio() 249, 275
dx_fileerrno() 125 dx_SetWaterMark() 278
dx_fileopen() 123 dx_stopch() 113, 221, 280
dx_fileread() 130 DX_STREAMSTAT data structure 315
dx_fileseek() 133 DX_SVCB data structure 267, 317
dx_filewrite() 136 DX_SVMT data structure 271, 321
dx_getctinfo() 139 DX_UIO data structure 323
dx_getcursv() 141 used by dx_setdevuio() 251
dx_getdig() 30, 97, 144, 300 dx_unlisten() 283
dx_getevt() 150, 259, 311 dx_unlistenEx() 285
dx_getfeaturelist() 153 DX_XPB data structure 324
FEATURE_TABLE data structure 327 DXCH_PLAYDRATE 188
dx_getparm() 157, 188, 222, 264 DXCH_RECRDRATE 222

dx_GetStreamInfo() 160

356 Dialogic® Voice API Library Reference
Dialogic Corporation

dxxxlib.h 264

E

echo cancellation 265

enabling detection
user-defined tones 120

enhanced call progress analysis 22
errors
call progress analysis 39
listing (voice library) 337
ev_data 311
ev_event 311

event
mask 258

event block structure 150

events 19
call status transition (CST) 295
categories 293
disabling 90
termination, list 293

extended attribute functions
ATDX_BDNAMEP() 26
ATDX_BDTYPE() 28
ATDX_BUFDIGS() 30
ATDX_CHNAMES() 32
ATDX_CHNUM() 34
ATDX_CONNTYPE() 36
ATDX_CPERROR() 39
ATDX_CPTERM() 42
ATDX_CRTNID() 45
ATDX_DEVTYPE() 49
ATDX_STATE() 51
ATDX_TERMMSK() 53
ATDX_TONEID() 56
ATDX_TRCOUNT() 59

extended attribute functions category 24

F

feature information data structure 328
FEATURE_TABLE data structure 327
file format 324

file manipulation functions 23
dx_fileclose() 123
dx_fileerrno(_) 125
dx_fileopen() 128
dx_fileread() 130
dx_fileseek() 133
dx_filewrite() 136

firmware
buffer 30

Dialogic® Voice API Library Reference
Dialogic Corporation

firmware digit buffer 96
fixed length string 158
flushing digit buffer 96

functions
ATDX_ 24
call progress analysis 22
call status transition Event 19
configuration 16
device management 15
extended attribute 24
global tone detection 20
global tone generation 21
/0 16
I/0 convenience 18
speed and volume 22
speed and volume convenience 22
structure clearance 23
TDM routing 19
Windows
close(_) 90

G

G.711 PCM voice coder 324
G.726 voice coder 324

global tone detection

adding a tone 64

deleting tones 109

disabling 117

dual frequency cadence tones 78

dual frequency tones 75

enabling 120

enabling detection 64

functions 20
dx_addtone() 64
dx_blddt() 75
dx_blddtcad() 78
dx_bldst() 84
dx_bldstcad() 81
dx_deltones() 109
dx_distone() 117
dx_enbtone() 120
dx_setgtdamp() 262

removing tones 109

single frequency cadence tones 81

single frequency tones 84

357

global tone generation

functions 21
dx_bldtngen() 87
dx_playtone() 202
dx_playtoneEx() 206

playing a cadenced tone 206

playing a tone 202

template 331

GSM voice coder 324

GTD Frequency Amplitude
setting 262

H

hook state 90
hung channel 243

1/0
function 53
transfer parameter block structure 324
transfer table 312
user-defined structure for 323

I/O convenience functions 18

I/0O functions 16
dx_dial() 111
dx_getdig() 144
dx_mreciottdata() 174
dx_play() 187
dx_playiottdata() 194
dx_rec() 221
dx_reciottdata() 232
dx_resetch() 243
dx_stopch() 280

intflg 308

io_bufp 313
IO_CONT 100, 312
IO_DEV 312
IO_EOT 100, 312
io_thandle 313
io_length 313
IO_LINK 100, 312
IO_MEM 312
io_nextp 313
io_offset 313
io_prevp 313
IO_STREAM 312
io_type 312
I0_UIO 312

358

IO_USEOFFSET 313

L

leading edge notification
user-defined tones 75

learn mode functions 102, 106, 218
line status 51

loop current
drop 36

MD_ADPCM 188, 222
MD_GAIN 222
MD_NOGAIN 222
MD_PCM 188, 222

MF
detection 343
detection errors 342
digits
collection 144
support 254
tone specifications 341

MF digits

overlap with DTMF digits 145
monitor channels 150
monitoring events 150

mu-law 324

N

names
board device 26

non-standard I/O devices
dx_setdevuio() 251
dx_setuio() 275

numsegs 332

o)

offset 313

offtime 332

OKI ADPCM voice coder 324
open() function 182

opening devices 182

Dialogic® Voice API Library Reference

Dialogic Corporation

P

parameter settings
getting current 157
parameters
board and channel 264, 265
call progress analysis 94
sizes 158
play
asynchronous 189
convenience function 198
default algorithm 188
default rate 188
mode 188
pausing 318
resuming 318
specifying mode 188
specifying number of bytes 313
synchronous 189
termination 189
TDX_PLAY 189
termination events 189
tone
asynchronous 202
asynchronous termination events 202
synchronous operation 203
transmitting tone before 188
voice data 210
play and record functions
dx_mreciottdata() 174
dx_play() 187
dx_playf() 198
dx_playvox() 210
dx_rec() 221
dx_recf() 228
dx_reciottdata() 232
dx_recvox() 237
dx_recwav() 240

playback

bytes transferred 59
playing

see play 189
playing voice data 194
PM_BYTE 158
PM_FLSTR 158
PM_INT 158
PM_LONG 158
PM_SHORT 158
PM_SR6 188
PM_SR8 188
PM_TONE 188
PM_VLSTR 158

Dialogic® Voice API Library Reference
Dialogic Corporation

positive answering machine detection 36
positive voice detection 36

processes per channel 151

Pulse Code Modulation 188, 222

R

recording

algorithm 222

asynchronous 223

asynchronous termination event
TDX_RECORD 223

bytes transferred 59

convenience function 228

default algorithm 222

default gain setting 222

default sampling rate 222

gain control 222

mode 222

sampling rate 222

specifying mode 222

specifying number of bytes 313

stopping 221

synchronous 223

synchronous termination 224

voice data 221, 232, 237

WAVE data 240

with A-law 222

with tone 222

with voice activity detector (VAD) 233

RM_ALAW 222
RM_SR6 222
RM_SR8 222
RM_TONE 222

routing functions
dx_getctinfo() 139
dx_getxmitslot() 165
dx_listen() 167
dx_listenEx() 170
dx_unlisten() 283
dx_unlistenEx() 285

S

sampling rates 324
SC_TSINFO data structure 330
sctools.c 288, 290
SIT sequence

returning 46
Softfax 328

Special Information Tone (SIT) sequence
returning 46

359

speed
adjusting 61
adjustment conditions 267
enabling in CONFIG file 22
explicitly adjusting 72
retrieving current 141
speed and volume
current 73
data structure 317
last modified 73
modification table
setting 321
resetting to origin 73

speed and volume convenience functions

dx_addspddig() 61

dx_addvoldig() 69
speed and volume function

dx_setsvmt() 271

speed and volume functions 22
dx_adjsv() 72
dx_clrsvcond() 98
dx_getcursv() 141
dx_getsvmt() 162
dx_setsvcond() 267

speed and volume modification table
resetting to defaults 271, 272
retrieving contents 162
specifying speed 271
specifying volume 271
updating 271

speed control 321

sr_getevtdatap() 259

stop I/O functions
dial 280
termination reason

TM_USRSTOP 280

stopping call progress analysis 281

stopping I/O functions
synchronous 280
streaming to board
creating stream buffer 185
deleting stream buffer 92

DX_STREAMSTAT data structure 315

function summary 18
getting status info 160
putting data in buffer 216
resetting internal data 246
setting water mark 278

structure clearance functions 23
dx_clrcap() 94
dx_clrtpt() 100

360

structures

clearing 94, 100
digit buffer 144
DV_DIGIT 144
DX_CAP 94

DX_EBLK 150
DX_IOTT 187
event block 150

stuck channel 243
SV_ABSPOS 73
SV_CURLASTMOD 73
SV_CURORIGIN 73
SV_RELCURPOS 73
SV_RESETORIG 73
SV_SPEEDTBL 72
SV_TOGGLE 73
SV_TOGORIGIN 73
SV_VOLUMETBL 72

synchronous operation
dial 112
digit collection 145
play 189
playing tone 203
record 223
stopping I/O functions 280, 281

T

TDM bus

time slot information structure 330

TDM bus routing functions 19
dx_getctinfo() 139
dx_getxmitslot() 165
dx_listen() 167
dx_listenEx() 170
dx_unlisten() 283
dx_unlistenEx() 285

TDX_CALLP event 112, 294
TDX_CREATETONE event 294

TDX_CREATETONE_FAIL event 294

TDX_CST event 294
TDX_DELETETONE event 294
TDX_DELETETONE_FAIL 294
TDX_DIAL event 112, 294
TDX_ERROR event 294
TDX_GETDIG event 294
TDX_HIGHWATER event 295
TDX_LISTEN event 294
TDX_LISTEN_FAIL event 294
TDX_LOWWATER event 295

Dialogic® Voice API Library Reference
Dialogic Corporation

TDX_NOSTOP event 294
TDX_PLAY event 189, 294
TDX_PLAYTONE event 202, 207, 294
TDX_QUERYTONE event 294
TDX_QUERYTONE_FAIL event 295
TDX_RECORD event 223, 295
TDX_RESET event 243
TDX_RESETERR event 243
TDX_UNDERRUN event 295
TDX_UNLISTEN event 295
TDX_UNLISTEN_FAIL event 295
TDX_VAD event 295

termination
call progress analysis 42
stop I/0 function 280
synchronous record 224

termination conditions 17
termination events 293
termination parameter table structure 301

terminations
asynchronous play 189
ATDX_TERMMSK() 53
end of data 53
function stopped 54
1/0 device error 53
1/0 function 53
1/0 functions 280
inter-digit delay 53
maximum DTMF count 53
maximum function time 53
maximum period of silence 53
normal termination 53
specific digit received 53
synchronous play 189
tone-on/off event 53

tg_dflag 331

tg_freql 331
TID_BUSY1 45
TID_BUSY2 45
TID_DIAL_INTL 45
TID_DIAL_LCL 45
TID_DISCONNECT 45
TID_FAX1 45
TID_FAX2 45
TID_RINGBKI1 45
TID_RINGBK2 45
TID_SIT_ANY 46
TID_SIT_IC 46
TID_SIT_INEFFECTIVE_OTHER 46

Dialogic® Voice API Library Reference
Dialogic Corporation

TID_SIT_IO 46

TID_SIT_NC 46
TID_SIT_NC_INTERLATA 46
TID_SIT_NO_CIRCUIT 46
TID_SIT_NO_CIRCUIT_INTERLATA 46
TID_SIT_OPERATOR_INTERCEPT 46
TID_SIT_REORDER_TONE 46

TID_SIT_REORDER_TONE_INTERLATA 46

TID_SIT_RO 46
TID_SIT_RO_INTERLATA 46
TID_SIT_VACANT_CIRCUIT 46
TID_SIT_VC 46
time slot device information structure 298
TM_DIGIT termination 53
TM_EOD termination 53
TM_ERROR termination 53
TM_IDDTIME termination 53
TM_MAXDTMFtermination 53
TM_MAXSIL termination 53
TM_MAXTIME termination 53
TM_NORMTERM termination 53
TM_TONE termination 53
TM_USRSTOP termination 54
TN_GEN data structure 331, 332
TN_GENCAD data structure 332
tone 333

adding 64

enabling detection 64
tone definitions 87
tone generation template 331
tone ID 56, 75, 103, 107, 219
tone identifier 45
TONE_DATA data structure 102, 218

trailing edge notification
user-defined tones 75

transaction record feature 174

U

unsolicited events 295
user digit buffer 300

user-defined
cadence 79

user-defined digits
collection 144

user-defined functions
installing 251, 275

user-defined input/output data structure 323

361

user-defined tone ID 56

user-defined tones 64

cadence repetition 79
disabling detection 117
dual frequency 75
dual frequency cadence 78
enabling detection 120
first frequency 75
first frequency deviation 75
ID 75
leading or trailing edge notification 75
playing 206

also see playing tone 202
removing 109
second frequency 75
second frequency deviation 75
single frequency 84
single frequency cadence 81

\'

variable length string 158
voice activity detector (VAD) 233

volume
adjusting 69
adjustment conditions 267
explicitly adjusting 72
retrieving current 141

volume control 321

w

water mark 278

WAVE files
playing 213

Windows functions
close(_) 90

362 Dialogic® Voice API Library Reference
Dialogic Corporation

	Contents
	Tables
	Revision History
	About This Publication
	Purpose
	Applicability
	Intended Audience
	How to Use This Publication
	Related Information

	1. Function Summary by Category
	1.1 Device Management Functions
	1.2 Configuration Functions
	1.3 I/O Functions
	1.4 I/O Convenience Functions
	1.5 Streaming to Board Functions
	1.6 Transaction Record Function
	1.7 Call Status Transition (CST) Event Functions
	1.8 TDM Routing Functions
	1.9 Global Tone Detection (GTD) Functions
	1.10 Global Tone Generation (GTG) Functions
	1.11 Speed and Volume Functions
	1.12 Call Progress Analysis Functions
	1.13 File Manipulation Functions
	1.14 Structure Clearance Functions
	1.15 Extended Attribute Functions

	2. Function Information
	2.1 Function Syntax Conventions
	ATDX_BDNAMEP()
	ATDX_BDTYPE()
	ATDX_BUFDIGS()
	ATDX_CHNAMES()
	ATDX_CHNUM()
	ATDX_CONNTYPE()
	ATDX_CPERROR()
	ATDX_CPTERM()
	ATDX_CRTNID()
	ATDX_DEVTYPE()
	ATDX_STATE()
	ATDX_TERMMSK()
	ATDX_TONEID()
	ATDX_TRCOUNT()
	dx_addspddig()
	dx_addtone()
	dx_addvoldig()
	dx_adjsv()
	dx_blddt()
	dx_blddtcad()
	dx_bldstcad()
	dx_bldst()
	dx_bldtngen()
	dx_close()
	dx_CloseStreamBuffer()
	dx_clrcap()
	dx_clrdigbuf()
	dx_clrsvcond()
	dx_clrtpt()
	dx_createtone()
	dx_deletetone()
	dx_deltones()
	dx_dial()
	dx_distone()
	dx_enbtone()
	dx_fileclose()
	dx_fileerrno()
	dx_fileopen()
	dx_fileread()
	dx_fileseek()
	dx_filewrite()
	dx_getctinfo()
	dx_getcursv()
	dx_getdig()
	dx_getevt()
	dx_getfeaturelist()
	dx_getparm()
	dx_GetStreamInfo()
	dx_getsvmt()
	dx_getxmitslot()
	dx_listen()
	dx_listenEx()
	dx_mreciottdata()
	dx_open()
	dx_OpenStreamBuffer()
	dx_play()
	dx_playiottdata()
	dx_playf()
	dx_playtone()
	dx_playtoneEx()
	dx_playvox()
	dx_playwav()
	dx_PutStreamData()
	dx_querytone()
	dx_rec()
	dx_recf()
	dx_reciottdata()
	dx_recvox()
	dx_recwav()
	dx_resetch()
	dx_ResetStreamBuffer()
	dx_setchxfercnt()
	dx_setdevuio()
	dx_setdigtyp()
	dx_setevtmsk()
	dx_setgtdamp()
	dx_setparm()
	dx_setsvcond()
	dx_setsvmt()
	dx_setuio()
	dx_SetWaterMark()
	dx_stopch()
	dx_unlisten()
	dx_unlistenEx()
	nr_scroute()
	nr_scunroute()

	3. Events
	3.1 Overview of Events
	3.2 Termination Events
	3.3 Unsolicited Events
	3.4 Call Status Transition (CST) Events

	4. Data Structures
	CT_DEVINFO
	DV_DIGIT
	DV_TPT
	DX_CAP
	DX_CST
	DX_EBLK
	DX_IOTT
	DX_STREAMSTAT
	DX_SVCB
	DX_SVMT
	DX_UIO
	DX_XPB
	FEATURE_TABLE
	SC_TSINFO
	TN_GEN
	TN_GENCAD
	TONE_DATA

	5. Error Codes
	6. Supplementary Reference Information
	6.1 DTMF and MF Tone Specifications
	6.2 DTMF and MF Detection Errors

	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Updated TIPs settings to fix web compatibility issue. The PDF documents can be opened with Acrobat and Reader 4.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

