

Dialogic® PowerMedia™ HMP for Linux
Release 4.1
Release Notes

December 2023 05-2680-044

 www.dialogic.com

2

Copyright and Legal Notice

Copyright © 2023 Enghouse Systems Limited (“Enghouse”). All Rights Reserved. You may not reproduce this
document in whole or in part without permission in writing from Enghouse at the address provided below.

All contents of this document are furnished for informational use only and are subject to change without notice and
do not represent a commitment on the part of Enghouse and its affiliates or subsidiaries ("Enghouse"). Reasonable
effort is made to ensure the accuracy of the information contained in the document. However, Enghouse does not

warrant the accuracy of this information and cannot accept responsibility for errors, inaccuracies or omissions that
may be contained in this document.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH DIALOGIC® PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. EXCEPT AS PROVIDED IN A SIGNED AGREEMENT BETWEEN YOU AND ENGHOUSE, ENGHOUSE
ASSUMES NO LIABILITY WHATSOEVER, AND ENGHOUSE DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO SALE AND/OR USE OF ENGHOUSE PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY INTELLECTUAL PROPERTY
RIGHT OF A THIRD PARTY.

Enghouse products are not intended for use in certain safety-affecting situations.

Due to differing national regulations and approval requirements, certain Enghouse products may be suitable for use
only in specific countries, and thus may not function properly in other countries. You are responsible for ensuring
that your use of such products occurs only in the countries where such use is suitable. For information on specific
products, contact Enghouse at legal.operations@enghouse.com

It is possible that the use or implementation of any one of the concepts, applications, or ideas described in this
document, in marketing collateral produced by or on web pages maintained by Enghouse may infringe one or more
patents or other intellectual property rights owned by third parties. Enghouse does not provide any intellectual
property licenses with the sale of Enghouse products other than a license to use such product in accordance with
intellectual property owned or validly licensed by Enghouse and no such licenses are provided except pursuant to a
signed agreement with Enghouse. More detailed information about such intellectual property is available from
Enghouse's legal department at 80 Tiverton Court, Suite 800 Markham, Ontario L3R 0G4.

Enghouse encourages all users of its products to procure all necessary intellectual property licenses required to
implement any concepts or applications and does not condone or encourage any intellectual property infringement
and disclaims any responsibility related thereto. These intellectual property licenses may differ from country to
country and it is the responsibility of those who develop the concepts or applications to be aware of and comply with
different national license requirements.

Dialogic, Dialogic Pro, DialogicOne, Dialogic Buzz, Brooktrout, BorderNet, PowerMedia, PowerVille, PowerNova,
ControlSwitch, I-Gate, Veraz, Cantata, TruFax, and NMS Communications, among others as well as related logos,
are either registered trademarks or trademarks of Enghouse and its affiliates or subsidiaries. Enghouse's trademarks
may be used publicly only with permission from Enghouse. Such permission may only be granted by Enghouse legal
department at 80 Tiverton Court, Suite 800 Markham, Ontario L3R 0G4. Any authorized use of Enghouse's
trademarks will be subject to full respect of the trademark guidelines published by Enghouse from time to time and
any use of Enghouse's trademarks requires proper acknowledgement.

The names of actual companies and products mentioned herein are the trademarks of their respective owners.

This document discusses one or more open source products, systems and/or releases. Enghouse is not responsible
for your decision to use open source in connection with Enghouse products (including without limitation those referred
to herein), nor is Enghouse responsible for any present or future effects such usage might have, including without
limitation effects on your products, your business, or your intellectual property rights.

mailto:legal.operations@enghouse.com

3

Table of Contents

1. Revision History .. 4

2. Post Release Developments .. 5
Support for MKV and WebM file formats ... 5
AlmaLinux 8.7 and Oracle Linux 8.7 Support .. 5
Support for SELinux... 5
Secure RTP With First Party Call Control ... 5
File Location Changes in HMP Linux Service Update 420 ... 5
NAT Traversal Support for 1PCC Applications in Cloud Environments 6
Transmit RFC 2833/RFC 4733 Tone Events ... 6
Red Hat Enterprise Linux (RHEL) 8 and Rocky Linux 8.4 Support 6

3. Release Issues .. 7

4. Documentation Updates .. 9
NAT Traversal Feature ... 9
Transmit RFC 2833/RFC 4733 Tone Events ... 11
Secure RTP With First Party Call Control ... 16
Support for MKV and WebM file formats ... 18

4

1. Revision History

This section summarizes the changes made in this and, if applicable, each previously

published version of the Release Notes for PowerMedia HMP for Linux Release 4.1, which is

a document that is planned to be periodically updated throughout the lifetime of the release.

Revision Release Date Notes

05-2680-044

(updated)

October 2023 Updates to support PowerMedia HMP 4.1 Linux SU

422.

Post Release Developments:

Support for MKV and WebM file formats

Release Issues:

HMP-1716, HMP-1715, HMP-1695, HMP-1694,

HMP-1676, HMP-1664

05-2680-043 June 2023 Updates to support PowerMedia HMP 4.1 Linux SU

421.

Post Release Developments:

Added new feature support for Linux distributions, SE

Linux support, and first party call control with SRTP.

Release Issues:

HMP-1625, HMP-1596, HMP-1500

05-2680-042 December

2022

Updates to support PowerMedia HMP 4.1 Linux SU

420.

Added NAT Traversal feature description to Section 4.

Release Issues:

HMP-1559, HMP-1547, HMP-1527, HMP-1512

05-2680-040 October 2021 Archived previous revision of the document.

Updates to support PowerMedia HMP 4.1 Linux SU

413.

Release Issues:

Added the following resolved defects:

HMP-1331, HMP-1311, HMP-1294, HMP-1223.

5

2. Post Release Developments

This section describes significant changes after the general availability release.

Support for MKV and WebM file formats

With Service Update 422, HMP for Linux now supports MKV and WebM file formats through

mm_Play() and mm_Record() APIs.

For more information, refer to the Documentation Updates section later in this document.

AlmaLinux 8.7 and Oracle Linux 8.7 Support

With Service Update 421, HMP for Linux now supports AlmaLinux 8.7 (and later) and Oracle

Linux 8.7.

Support for SELinux

Service Update 421 adds support for SELinux in IP only configurations. The SELinux

targeted policy can now be enabled on systems running HMP 4.1 SU421 or later.

Care should be taken when enabling SELinux from a disabled state since improper

configuration may prevent the system from starting. It is recommended setting the

SELinux policy to targeted and the mode to permissive before enforcing the policy.

Changing the mode to enforcing should only be done after resolving any issues logged while

in permissive mode. Please refer to the RedHat documentation on the proper steps for

enabling SELinux and enforcing the targeted policy.

Once SELinux is enabled and enforcing the targeted policy on the host operating system,

the HMP 4.1 software can be installed and configured as normal.

Configurations using DNI boards are currently not supported. The SELinux Multi-Level

Security policy is not supported.

Secure RTP With First Party Call Control

With Service Update 421, HMP for Linux adds functionality to support Secure RTP calls when

using the first party call control (1PCC) model.

For more information, refer to the Documentation Updates section later in this document.

File Location Changes in HMP Linux Service Update 420

With Service Update 420, the locations of temporary and internal files used for

communication between HMP components have been consolidated. Internal files created by

RTF (excluding log files), device management, OA&M, and host runtime libraries have been

relocated under the “/run/dialogic” directory. Files under this directory are removed when

HMP services are stopped or the HMP Linux build is uninstalled. The HMP Linux installation

directory, configuration, and log file locations remain unchanged. No changes are required

to existing customer applications.

6

NAT Traversal Support for 1PCC Applications in Cloud
Environments

With Service Update 420, HMP for Linux adds NAT Traversal functionality that enables SIP

and RTP access to the public network in cloud environments where a media server only has

access to a network interface with a local IP address.

For more information, refer to the Documentation Updates section later in this document.

Transmit RFC 2833/RFC 4733 Tone Events

With Service Update 417, HMP for Linux adds support for sending RFC 2833/RFC 4733

telephony events. This feature allows an application to transmit a sequence of both DTMF

and non-DTMF telephony events, including hookflash, over an IP network.

For more information, refer to the Documentation Updates section later in this document.

Red Hat Enterprise Linux (RHEL) 8 and Rocky Linux 8.4
Support

With Service Update 413, Dialogic® PowerMedia™ HMP for Linux Release 4.1 now supports

Red Hat Enterprise Linux (RHEL) 8.1 or later and Rocky Linux 8.4 or later.

Before you proceed with installing PowerMedia HMP Linux, ensure that you install the

following Red Hat packages:

• Development Tools packages

• libstdc++.i686

• glibc.i686

• libxcrypt.i686

• libnsl.i686

• libnsl.x86_64

• nss-util.i686

• elfutils-devel.x86_64 (required when installing Dialogic® HMP Interface

Boards)

• compat-openssl.10.1686 (required if running 32 bit application)

• libuuid.i686

7

3. Release Issues

Issue

Type

Defect

No.

SU

No.

Product

or Com-

ponent

Description

Resolved HMP-1716 422 SSP An update was made to address a

memory leak when using NbUP

protocol.

Resolved HMP-1715 422 IPHOST An issue introduced in SU421 that

impacted SIP call rates/density has

been addressed.

Resolved HMP-1695 422 IPHOST An update was made to prevent

additional characters from being

included in the 200 OK SDP a=crypto

line.

Resolved HMP-1694 422 IPHOST An update was made to address an

IPHOST library exception when

accepting a ReINVITE during a 1PCC

SRTP call.

Resolved HMP-1676 422 Install An update was made to dlservices to

resolve an issue when configuring

ports.

Resolved HMP-1664 422 IPHOST An issue that caused SIP TLS

connections to fail has been addressed.

Resolved HMP-1625 421 IPHOST An issue was addressed that prevented

use of Elliptic Curve Diffie-Hellman

ciphers for SIP TLS.

Resolved HMP-1596 421 DIAG An issue that caused corruption in RTF

logs when the process id was larger

than 6 digits has been addressed.

Resolved HMP-1500 421 IPHOST An update was made to ensure that

SIP INVITE messages sent after a

CANCEL contain the proper SDP.

Resolved HMP-1559 420 SSP An update was made to relocate

internal files used for communication

between HMP components from

/tmp/dialogic to /run/dialogic to

resolve SSP errors caused by the

systemd-tmpfiles service.

Resolved HMP-1547 420 IPHOST An issue that caused a SIP INVITE to

be sent without SDP after a CANCEL

has been addressed.

8

Issue

Type

Defect

No.

SU

No.

Product

or Com-

ponent

Description

Resolved HMP-1527 420 SSP An issue that caused a memory leak in

the SSP process has been addressed.

Resolved HMP-1512 420 Driver An update was made to resolve a

driver build issue during installation on

RedHat 8.6 and Rocky 8.5.

Resolved HMP-1495 417 SSP An issue was addressed that caused

lost audio between DX or thinblade

timeslot devices and MCX conference

party devices.

Resolved HMP-1480 417 SSP An update was made to reduce

error/warning messages when

processing RTCP packets.

Resolved HMP-1479 417 SSP An issue was addressed that prevented

setting AMR codec options when calling

ipm_ModifyMedia().

Resolved HMP-1478 417 SSP An update was made to allow codec

updates and IP address and port

changes when calling

ipm_ModifyMedia().

Resolved HMP-1466 417 IPHOST An issue that caused a crash during

SIP stack initialization has been

addressed.

Resolved HMP-1459 417 OAM An issue that caused PDKManager to

fail has been addressed.

Resolved HMP-1331 413 SSP A memory leak in the SSP component

when using the NbUP with AMR codec

was addressed.

Resolved HMP-1311 413 IPHOST An issue that caused SIP INVITE to be

rejected with 400 “Sip Parser Error” for

certain SIP “Identity” header formats

was addressed.

Resolved HMP-1294 413 Driver The issue that caused the Linux kernel

to crash while starting HMP thinblade

Services was addressed.

Resolved HMP-1223 413 IPHOST The issue that caused incorrect

handling of the SIP REINVITE message

when multiple RFC2833 lines are

present in the SDP was fixed.

9

4. Documentation Updates

NAT Traversal Feature

NAT Traversal functionality enables SIP and RTP access to the public network in cloud

environments where a media server only has access to a network interface with a local IP

address.

SIP and SDP address translation is configured on gc_Start() by setting the

"nat_external_sip_address" and "nat_external_rtp_address" fields in the IP_VIRTBOARD

structure.

The SIP external address is used to replace the host part of the addresses in the "From"

header and the top "Via" header in outbound SIP request messages. The host part of the

address is replaced in the "Contact" header in outbound SIP request messages and

outbound SIP response messages. The SIP external address is used in 1PCC and 3PCC

operating modes.

An application can use IPSET_SIP_MSGINFO / IPPARM_SIP_HDR to add SIP headers. The

application must translate addresses for header types that aren't known to GlobalCall.

The RTP external address is used to replace the host part of the addresses on the o= and

c= lines in outbound SDP. The RTP external address is used in 1PCC operating mode only.

The "audio_rtp_base_port" field in the IP_VIRTBOARD structure is used to configure unique

UDP port ranges for the IPM devices in 1PCC operating mode when multiple media servers

share one public IP address.

In a cloud environment where the media server has a local IP address, only the SIP and

SDP external addresses must be configured. The SIP and SDP external addresses are set in

the "nat_external_sip_address" and "nat_external_rtp_address" fields of the IP_VIRTBOARD

structure.

IP_VIRTBOARD Additions for NAT traversal

The following parameters have been added to the IP_VIRTBOARD structure to support

NAT Traversal feature. For more information regarding the IP_VIRBOARD structure,
refer to the Dialogic® Global Call IP Technology Guide.

nat_external_sip_address (structure version >= 0x118 only)
Specifies the host address that will replace the host address in From, Contact and

Via headers in outbound SIP messages. The value can be any string, e.g. an IPv4

address, an IPv6 address or an FQDN. SIP address translation is disabled by

default. This field applies to 1PCC and 3PCC operating modes.

nat_external_rtp_address (structure version >= 0x118 only)
Specifies the host address that will replace the host addresses on the c= and o=

SDP lines in all outbound SDP. The value must be an IPv4 address or an IPv6

address. SDP address translation is disabled by default. This field applies to 1PCC

operating mode only.

audio_rtp_base_port (structure version >= 0x118 only)
Sets the IPM base UDP port. The default value is 0 which means the default IPM

base UDP port will be used. This field applies to 1PCC operating mode only.

10

Configuring Multiple Servers Sharing a Single Public Address

Multiple media servers can also share a single public IP address. Forwarding rules are

configured on the NAT device for each media server. Each media server's UDP and TCP

ports are configured so they don't overlap.

Media server 1 configuration

SIP UDP port 5060

SIP TCP port 5060

RTP / RTP base UDP port 20000

Media server 2 configuration

SIP UDP port 5070

SIP TCP port 5070

RTP / RTP base UDP port 30000

SIP and RTP to media server 1

Public Private

SIP 172.1.1.10:5060 -> 192.168.1.20:5060

RTP 172.1.1.10:20000 -> 192.168.1.20:20000

SIP and RTP to media server 2

Public Private

SIP 172.1.1.10:5070 -> 192.168.1.30:5070

RTP 172.1.1.10:30000 -> 192.168.1.30:30000

The following IP_VIRTBOARD fields are used to configure the network interface IP address,

UDP ports and TCP port for SIP on gc_Start():

localIP

localIPv6

localIPv6_iface_name

sip_signaling_port

audio_rtp_port_base

11

Transmit RFC 2833/RFC 4733 Tone Events

This feature allows an application to transmit a sequence of both DTMF and non-DTMF

telephony events over an IP network by calling ipm_SendTelephonySignals(). This can be

used in generating all RFC 4733 tone event definitions (0-255) beyond the initial set of

DTMF telephony events (0-15) used to represent digits 0-9, A-D, *, #. This can also be

used to generate a non-DTMF telephony event, such as a Hookflash event, and DTMF RFC

2833/RFC 4733 RTP telephony events based on WebRTC signaling events in a WebRTC

Gateway application. The feature also allows an application to support the modem and text

tone event definitions specified in RFC 4734 (https://tools.ietf.org/html/rfc4734), or channel

oriented signaling tone events specified in RFC 5244 (https://tools.ietf.org/html/rfc5244).

The RFC 4733 (https://tools.ietf.org/html/rfc4733) recommendation specifies the "RTP

Payload for DTMF Digits, Telephony Tones and Telephony Signals" and obsoletes the original

RFC 2833 specification. The send/receive RFC 4733 tone event capability is integrated into

the standard DTMF digit generation and detection API when RFC 2833/RFC 4733 mode is

negotiated upon SDP media session establishment.

Note: ipm_SendTelephonySignals() is only available when audio is encoded. It’s not

available for native audio.

New DTMF Transfer Mode

The Dialogic® IP Media Library API can be used to configure which DTMF transfer mode (in-

band, RFC 2833, or out-of-band) is used by the application. The mode is set on a per-

channel basis using ipm_SetParm() and the IPM_PARM_INFO data structure.

DTMFXFERMODE_RFC2833_APP

This transfer mode is the same as DTMFXERMODE_RFC2833 except that inband tones are

not converted into RFC 2833 DTMF events by the IPM transmitter. The tones are still

clamped. In this mode, telephony events are generated exclusively by the application when

ipm_SendTelephonySignals() is called.

Function Information

Name: int ipm_SendTelephonySignals (nDeviceHandle, *pDigitInfo, usMode)

Inputs:

int nDeviceHandle • IP Media device handle IPM_TELEPHONY_SEQUENCE_INFO

*pInfo • pointer to information structure

unsigned short usMode • async or sync mode setting

Returns:

0 on success

-1 on failure

Includes:

srllib.h, ipmlib.h

Category:

Media Session

Mode: asynchronous or synchronous

Description

https://datatracker.ietf.org/doc/html/rfc4734
https://datatracker.ietf.org/doc/html/rfc5244
https://datatracker.ietf.org/doc/html/rfc4733

12

The ipm_SendTelephonySignals() function instructs the IPM device to generate a sequence

of RFC 2833/RFC 4733 telephony events over an IP network. The on/off time and volume of

each telephony event is configurable.

The transfer mode must be set to DTMFXERMODE_RFC2833 or

DTMFXERMODE_RFC2833_APP for the telephony events to be transmitted on the network.

Refer to the ipm_SetParm() for more information.

Parameter Description

nDeviceHandle handle of the IP Media device

pInfo pointer to the IPM_TELEPHONY_SEQUENCE_INFO structure

usMode operation mode. Set to EV_ASYNC for asynchronous execution or to

EV_SYNC for synchronous execution

Termination Events

IPMEV_SEND_TELEPHONY_SIGNALS

Indicates successful completion. The given telephony event sequence has been transmitted

to the remote endpoint. If ipm_Stop() is called while a sequence is being generated,

generation is stopped immediately and the IPMEV_SEND_TELEPHONY_SIGNALS termination

event is generated, followed by the IPMEV_STOP termination event.

IPMEV_SEND_TELEPHONY_SIGNALS_FAIL

Indicates that the function failed. See the "Errors" section below for a list of error codes.

Cautions

ipm_SendTelephonySignals() is only available when audio is encoded. It’s not available for

native audio.

When the transfer mode is set to DTMFXFERMODE_RFC2833, inband tones that are

converted to telephony events will conflict with telephony events that are generated by the

application at the same time.

The DTMFXFERMODE_RFC2833_APP mode disables telephony event generation from inband

tones on the transmit side. While in DTMFXFERMODE_RFC2833_APP mode, an application

can detect inbound tones or telephony events using a DX device or detect inbound

telephony events using IPM telephony event reporting. The detected tones/events can be

regenerated using ipm_SendTelephonySignals().

13

Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()

to return one of the following errors:

EIPM_BUSY

Channel is busy.

EIPM_INTERNAL

Internal error.

EIPM_INV_MODE

Invalid mode.

EIPM_INV_STATE

Invalid state. Initial command did not complete before another function call was made.

EIPM_SYSTEM

System error.

If the IPMEV_SEND_TELEPHONY_SIGNALS_FAIL termination event is received, call

ATDV_LASTERR() and ATDV_ERRMSGP() to return one of the following errors:

EIPM_INVALID_EVENT_ID

The event ID is not in the range 0 through 255.

EIPM_INVALID_VOLUME

The volume is not in the range 0 through 63.

EIPM_INVALID_OPTIONS

Options value is wrong.

EIPM_INVALID_SIGNAL_TYPE

Unrecognized signal type. The signal type must be "event".

EIPM_PAYLOAD_TYPE_NOT_IMPLEMENTED

Per sequence/per event RTP payload type is not implemented. The telephony event

payload type must be set by the PARMCH_RFC2833EVT_TX_PLT to ipm_SetParm().

EIPM_PTIME_NOT_IMPLEMENTED

Per sequence/per event ptime is not implemented. The frame time of the codec selected

in ipm_StartMedia() is always used.

14

EIPM_CLOCK_RATE_NOT_IMPLEMENTED

Per sequence/per event clock rate is not implemented. The RTP clock rate of the codec

selected in ipm_StartMedia() is always used.

EIPM_TONE_NOT_IMPLEMENTED

This function can only generate telephony events. Telephony tones can not be generated

by this function.

EIPM_OUT_OF_RANGE

An event ID in the "telephony event ID string" is too large. The maximum value is 255.

EIPM_TOO_MANY_DIGITS

An event ID in the "telephony event ID string" contains too many digits. The maximum

number of digits is 3.

EIPM_INVALID_CHARACTER

The "telephony event ID string" contains an invalid character. Valid characters are

comma and decimal digits.

Example 1

In this example, the "telephony event ID string" is used to generate the sequence.

void SendTelephonySignalsExample1(int handle)

{

IPM_TELEPHONY_SEQUENCE_INFO seq;

// The second parameter to the INIT function is set to zero since it

doesn't apply

// to strEventIDs. It's only used for the signal array.

INIT_IPM_TELEPHONY_SEQUENCE_INFO(&seq, 0);

// These apply to each event in the event ID string.

seq.sVolume = 7; // dBm0/sign dropped as defined in RFC 4733 seq.usDuration =

200; // milliseconds

// This is the duration of the gap between events in the event ID string.

seq.unInterval = 100; // milliseconds

// The event ID string is a comma separated list of telephony event IDs.

The following

// list includes DTMF 1,2,3 and hook flash.

seq.strEventIDs = "1,2,3,16";

if(ipm_SendTelephonySignals(handle, &seq, EV_ASYNC) == -1)

{

printf("ipm_SendTelephonySignals() failed, %s (%ld)\n", ATDV_ERRMSGP(handle),

ATDV_LASTERR(handle));

15

}

FREE_IPM_TELEPHONY_SEQUENCE_INFO(&seq); // this must be called

}

Example 2

In this example, the “telephony signal array” is used to generate the sequence. The volume

and duration can be configured for each event.

void SendTelephonySignalsExample2(int handle)

{

IPM_TELEPHONY_SEQUENCE_INFO seq;

IPM_TELEPHONY_EVENT_INFO pEventInfo;

// The "count" parameter is set to 3 since there are 3 elements in the

telephony

// event array defined below.

INIT_IPM_TELEPHONY_SEQUENCE_INFO(&seq, 3);

// These are the default values that will be used for the event array

elements.

seq.sVolume = 7;

seq.usDuration = 200;

seq.unInterval = 100;

// The volume and duration aren't set in this element, so the default

values

// above are used.

pEventInfo = INIT_IPM_TELEPHONY_EVENT_INFO(&seq);

pEventInfo->eTelephonyEventID = SIGNAL_ID_EVENT_DTMF_0;

// The volume and duration set on the next two events override the volume,

duration

// and interval values set above.

pEventInfo = INIT_IPM_TELEPHONY_EVENT_INFO(&seq);

pEventInfo->eTelephonyEventID = SIGNAL_ID_OFF; // pseudo event ID to insert a

gap between events

pEventInfo->usDuration = 150;

pEventInfo = INIT_IPM_TELEPHONY_EVENT_INFO(&seq);

pEventInfo->eTelephonyEventID = SIGNAL_ID_EVENT_DTMF_1;

pEventInfo->sVolume = 5;

pEventInfo->usDuration = 185; // this is rounded up to the next frame period,

e.g. 200 milliseconds for 20 millisecond G.711

if(ipm_SendTelephonySignals(handle_, &seq, EV_ASYNC) == -1)

{

16

printf("ipm_SendTelephonySignals() failed, %s (%ld)\n", ATDV_ERRMSGP(handle_),

ATDV_LASTERR(handle_));

}

FREE_IPM_TELEPHONY_SEQUENCE_INFO(&seq); // this must be called

}

For more information on IP Media API functionality, refer to the Dialogic® IP Media Library

API Programming Guide and Library Reference.

Secure RTP With First Party Call Control

Secure RTP (http://www.ietf.org/rfc/rfc3711.txt) is a method that allows for secure

encrypted transmission of RTP data between endpoints. Secure RTP functionality has been

previously supported with HMP when using third party call control (3PCC) mode. In 3PCC

mode, the application is responsible for selecting the encryption method, key generation,

negotiation, and state transitions between the endpoints. This HMP release adds

functionality for supporting Secure RTP when using first party call control (1PCC)

configuration. In 1PCC mode, these steps are managed within the HMP GlobalCall libraries.

Secure RTP can be used in conjunction with SIP TLS (https://www.rfc-

editor.org/rfc/rfc5246.txt) to provide a secure method for two endpoints using SRTP to

exchange the necessary setup information, including SRTP keys.

Supported crypto suites

HMP supports the following crypto suites through 1PCC:

• AES_CM_128_HMAC_SHA1_80

• AES_CM_128_HMAC_SHA1_32

• AES_CM_256_HMAC_SHA1_80

• AES_CM_256_HMAC_SHA1_32

Enabling 1PCC SRTP

The feature is enabled by including a GC_PARM_BLK with parameter set ID

GCSET_CHAN_CAPABILITY and parameter ID of IPPARM_ENABLE_SRTP_1PCC. Setting the

value to IP_DISABLE disables Secure RTP (default), setting to IP_ENABLE enables Secure

RTP.

The HMP license on the target system must include Encryption (SRTP / TLS) in the license

configuration to enable support for this feature. An “IPERR_BAD_PARAM” is returned when

enabling the feature if Encryption is not included in the HMP license.

Example code

…

/* Enable Secure RTP */

gc_util_insert_parm_val(&gcParmBlk, GCSET_CHAN_CAPABILITY,IPPARM_ENABLE_SRTP_1PCC,

 sizeof(long), IP_ENABLE);

if (gc_SetUserInfo(GCTGT_GCLIB_CHAN, lineDev , gcParmBlk, GC_ALLCALLS) < 0) {

 printf(“Error: gc_SetUserInfo() returned error enabling Secure RTP\n”);

http://www.ietf.org/rfc/rfc3711.txt
https://www.rfc-editor.org/rfc/rfc5246.txt
https://www.rfc-editor.org/rfc/rfc5246.txt

17

}

Outbound calls

When the SRTP feature is enabled, the GlobalCall library will generate a new Master key for

each call. The crypto information is included in the SDP offer provided in the SIP INVITE

message. The remote side responds with its crypto information in its response. If the

negotiation is successful, RTP in both directions will be encrypted. If the remote side does

not provide its crypto information in its response, the call will be rejected per RFC4568,

section 7.1.2 (https://www.ietf.org/rfc/rfc4568.txt)

The table below shows documents HMP behavior during outbound call negotiation.

Local Remote response Results

SRTP Disabled SDP without SRTP Invoke regular RTP call handling

SRTP Enabled SDP with SRTP Invoke Secure RTP call handling

SRTP Disabled SDP with SRTP If remote responds with SRTP crypto, then local

side will CANCEL the call and return

GCEV_DISCONNECTED event sent to application

with reason

IPEC_InternalReasonSRTPCryptoMismatch.

SRTP Enabled SDP without SRTP Per RFC, if the remote does not support SRTP

then it should reject the call. If it accepts

without sending SRTP crypto back then local side

will CANCEL the call and return

GCEV_DISCONNECTED event sent to

application with reason

IPEC_InternalReasonSRTPCryptoMismatch.

Receiving calls

When the SRTP feature is enabled, the GlobalCall library will generate a new Master key for

each call. When a new incoming call is received containing crypto information in the SDP,

GlobalCall will respond with its crypto information in the SDP answer provided in the SIP

response. If a call is received that does not include crypto information, GlobalCall will not

include crypto in its response. The resulting call will not utilize Secure RTP.

The table below shows documents HMP behavior during inbound call negotiation.

Local Remote sends Results

SRTP Disabled Invite without SRTP Invoke regular RTP call handling

SRTP Enabled Invite with SRTP Invoke Secure RTP call handling

SRTP Disabled Invite with SRTP Send 488 “Not Acceptable Here” response to

remote and return GCEV_DISCONNECTED

event sent to application.

SRTP Enabled Invite without SRTP Invoke regular RTP call handling (no SRTP)

https://www.ietf.org/rfc/rfc4568.txt

18

Feature notes

- While HMP IP Media Library implementation supports the ability to specify multiple

encryption keys, 1PCC Secure RTP feature utilizes a single key per call. Multiple key

rotation is not supported.

- For more information related to Secure RTP, see Chapter 21 of the “Dialogic® IP Media

Library API Programming Guide and Library Reference” https://www.dialogic.com/-

/media/manuals/docs/ip_media_api_hmp_v16.pdf

- For more information related to SIP TLS, see Chapter 4, Section 29 of the “Dialogic®

Global Call IP Technology Guide“ https://www.dialogic.com/-

/media/manuals/docs/globalcall_for_ip_hmp_v12.pdf

Support for MKV and WebM file formats

The mm_Play() and mm_Record() functions have been updated to support both audio and

video tracks in a single MKV and WebM file.

For recording, the EMM_MEDIA_TYPE_AUDVID media item has been added to indicate

recording both audio and video tracks to a single file. The MM_MEDIA_AUDVID structure

which includes fields to specify both audio and video information has also been added. The

INIT_MM_MEDIA_AUDVID() function must be used to initialize the structure.

For playback, the audio and video tracks are specified separately with both pointing to the

same file.

Example code

…

MM_PLAY_RECORD_LIST sMmRecordList[1];

MM_RUNTIME_CONTROL sRuntimeControl;

INIT_MM_RUNTIME_CONTROL(&sRuntimeControl);

MM_MEDIA_ITEM_LIST sAudioVideoMediaItemList[1];

INIT_MM_MEDIA_ITEM_LIST(&sAudioVideoMediaItemList[0]);

INIT_MM_MEDIA_AUDVID(&(sAudioVideoMediaItemList[0].item.audvid));

sAudioVideoMediaItemList[0].ItemChain = EMM_ITEM_EOT;

sAudioVideoMediaItemList[0].item.audvid.eFileFormat = EMM_FILE_FORMAT_WEBM;

sAudioVideoMediaItemList[0].item.audvid.unOffset = 0;

sAudioVideoMediaItemList[0].item.audvid.unMode = MM_MODE_NOIFRMBEEPINITIATED;

sAudioVideoMediaItemList[0].item.audvid.szFileName = "conf_party_01.webm";

sAudioVideoMediaItemList[0].item.audvid.unAccessMode = MM_MEDIA_ACCESS_MODE_FILE;

sAudioVideoMediaItemList[0].item.audvid.vidCodec.Coding = EMM_VIDEO_CODING_VP8;

sAudioVideoMediaItemList[0].item.audvid.vidCodec.Profile = VIDEO_PROFILE_DEFAULT;

sAudioVideoMediaItemList[0].item.audvid.vidCodec.Level = VIDEO_LEVEL_DEFAULT;

sAudioVideoMediaItemList[0].item.audvid.vidCodec.ImageWidth = (eMM_VIDEO_IMAGE_WIDTH)

1280;

sAudioVideoMediaItemList[0].item.audvid.vidCodec.ImageHeight =

(eMM_VIDEO_IMAGE_HEIGHT) 720;

sAudioVideoMediaItemList[0].item.audvid.vidCodec.BitRate = (eMM_VIDEO_BITRATE)

2000000;

sAudioVideoMediaItemList[0].item.audvid.vidCodec.FramesPerSec = VIDEO_FRAMESPERSEC_15;

sAudioVideoMediaItemList[0].item.audvid.audCodec.unCoding = MM_DATA_FORMAT_OPUS;

sAudioVideoMediaItemList[0].item.audvid.audCodec.unSampleRate = MM_DRT_16KHZ;

sAudioVideoMediaItemList[0].item.audvid.audCodec.unBitsPerSample = 16;

sMmRecordList[0].ItemType = EMM_MEDIA_TYPE_AUDVID;

sMmRecordList[0].list = &(sAudioVideoMediaItemList[0]);

https://www.dialogic.com/-/media/manuals/docs/ip_media_api_hmp_v16.pdf
https://www.dialogic.com/-/media/manuals/docs/ip_media_api_hmp_v16.pdf
https://www.dialogic.com/-/media/manuals/docs/globalcall_for_ip_hmp_v12.pdf
https://www.dialogic.com/-/media/manuals/docs/globalcall_for_ip_hmp_v12.pdf

19

sMmRecordList[0].ItemChain = EMM_ITEM_EOT;

sMmRecordList[0].next = NULL;

