
www.dialogic.com

Dialogic® Brooktrout® Bfv APIs

Reference Manual

March 2017 931-133-11

page 2

Copyright and Legal Notice
Copyright © 1998-2017 Dialogic Corporation. All Rights Reserved. You may not reproduce this document in whole or in
part without permission in writing from Dialogic Corporation at the address provided below.
All contents of this document are furnished for informational use only and are subject to change without notice and do
not represent a commitment on the part of Dialogic Corporation and its affiliates or subsidiaries ("Dialogic"). Reasonable
effort is made to ensure the accuracy of the information contained in the document. However, Dialogic does not warrant
the accuracy of this information and cannot accept responsibility for errors, inaccuracies or omissions that may be
contained in this document.
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH DIALOGIC® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN A SIGNED AGREEMENT BETWEEN
YOU AND DIALOGIC, DIALOGIC ASSUMES NO LIABILITY WHATSOEVER, AND DIALOGIC DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF DIALOGIC PRODUCTS INCLUDING
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT OF A THIRD PARTY.
Dialogic products are not intended for use in certain safety-affecting situations. Please see
http://www.dialogic.com/company/terms-of-use.aspx for more details.
Due to differing national regulations and approval requirements, certain Dialogic products may be suitable for use only
in specific countries, and thus may not function properly in other countries. You are responsible for ensuring that your
use of such products occurs only in the countries where such use is suitable. For information on specific products, contact
Dialogic Corporation at the address indicated below or on the web at www.dialogic.com.
It is possible that the use or implementation of any one of the concepts, applications, or ideas described in this document,
in marketing collateral produced by or on web pages maintained by Dialogic may infringe one or more patents or other
intellectual property rights owned by third parties. Dialogic does not provide any intellectual property licenses with the
sale of Dialogic products other than a license to use such product in accordance with intellectual property owned or
validly licensed by Dialogic and no such licenses are provided except pursuant to a signed agreement with Dialogic. More
detailed information about such intellectual property is available from Dialogic's legal department at 3300 Boulevard de
la Côte-Vertu, Suite 112, Montreal, Quebec, Canada H4R 1P8. Dialogic encourages all users of its products to
procure all necessary intellectual property licenses required to implement any concepts or applications
and does not condone or encourage any intellectual property infringement and disclaims any responsibility
related thereto. These intellectual property licenses may differ from country to country and it is the
responsibility of those who develop the concepts or applications to be aware of and comply with different
national license requirements.
Dialogic, Dialogic Pro, Veraz, Brooktrout, Diva, BorderNet, PowerMedia, PowerVille, PowerNova, MSaaS,
ControlSwitch, I-Gate, Cantata, TruFax, SwitchKit, Eiconcard, NMS Communications, SIPcontrol, Exnet, EXS, Vision,
inCloud9, and NaturalAccess, among others as well as related logos, are either registered trademarks or trademarks of
Dialogic Corporation and its affiliates or subsidiaries. Dialogic's trademarks may be used publicly only with permission
from Dialogic. Such permission may only be granted by Dialogic's legal department at 3300 Boulevard de la Côte-Vertu,
Suite 112, Montreal, Quebec, Canada H4R 1P8. Any authorized use of Dialogic's trademarks will be subject to full
respect of the trademark guidelines published by Dialogic from time to time and any use of Dialogic's trademarks
requires proper acknowledgement.
The names of actual companies and products mentioned herein are the trademarks of their respective owners.

http://www.dialogic.com/company/terms-of-use.aspx
http://www.dialogic.com/company/terms-of-use.aspx
http://www.dialogic.com
http://www.dialogic.com

page 3

Hardware Limited Warranty

Refer to the following Dialogic web site for information on hardware warranty information, which applies unless different
terms have been agreed to in a signed agreement between yourself and Dialogic Corporation or its subsidiaries. The listed
hardware warranty periods and terms are subject to change without notice. For purchases not made directly from Dialogic
please contact your direct vendor in connection with the warranty period and terms that they offer.

http://www.dialogic.com/warranties

http://www.dialogic.com/warranties

March 2017 4

About this Publication .21
Related Documents . 23
Operating System Support and Testing .23
Manual Conventions .23
Terminology . 25

Updated Terminology . 25
Getting Technical Support . 27

Volume 1 – Administration, Management, and Configuration. .28
About this Volume .28

Chapter 1 – Bfv API Overview .29
Using Structure Packing . 31
Using Bfv API Function Argument Structures . 31
Supported Arguments . 32
Configuring Call Control . 33
Bfv API Function Locator . 34

Chapter 2 – Administration and Initialization46
The BTLINE Structure . 47
Function Summary . 49
BfvCheckAddress . 50

Contents

March 2017 5

BfvCheckFacility . 52
BfvLineAttach . 54
BfvLineConfig . 57
BfvLineDetach . 60
BfvLineInfo . 61
BfvLineReset . 63
BfvLinesAvail . 67
BfvModuleDeactivate . 69
BfvModuleInfo . 71
BfvSessionAttach . 78
BfvSessionDetach . 81
Macros . 82

Low-Level Macros . 90
Handling Alerts . 92

Chapter 3 – Firmware .93
Function Summary . 94
BfvFeatureSetDownload . 95
BfvFeatureSetDownloadData . 97
BfvFeatureSetQuery . 99
BfvFirmwareDownload . 101
BfvFirmwareDownloadData . 105
BfvModuleConfigSpecsGet . 109
Macros . 111

Chapter 4 – Configuration .116
Configuration Files .117
Function Summary .118
BfvCallSWClearConns .119
BfvCallSWConnect . 121
BFVCallSWConnectIP . 127
BfvCallSWGetConns . 142
BfvCallSWGetInfo . 146
BfvNetworkConfigGet . 149
BfvNetworkConfigSet . 153
BfvNetworkQuery . 158

March 2017 6

BfvTelephGetInfo . 163
BfvTelephReset . 165
BfvTelephSave . 167

Chapter 5 – Status and Monitoring .169
Function Summary . 170
BfvBoardNotify . 171
BfvBoardStateGet . 178
BfvBoardStateSet . 180
BfvBoardTemperatureGet . 182
BfvBoardTemperatureThreshSet . 184
BfvBoardTest . 186
BfvIPCallControlNotify . 190
BfvRtpEventControl . 195
BfvRtpEventGet . 198
BfvRtcpReportSend . 206

Chapter 6 – Miscellaneous Functions .209
Function Summary . 210
dll... .211
BfvGetVar . 212
BfvLineAlert . 215
BfvMemAllocFuncsSet . 218
BfvRcvProcessPkt . 221
BfvSetSingleVar . 224
getopt . 228

Chapter 7 – Debugging, Error Handling and Return Values230
Structures and Return Values . 232
Function Summary . 233
BfvDebugFuncSet . 234
BfvDebugInitData . 236
BfvDebugModeSet . 237
BfvDebugModeSetAdv . 239
BfvErrorMessage . 244
BfvHistoryClear . 246

March 2017 7

BfvHistoryClearModChan . 248
BfvHistoryClearUnit . 250
BfvHistoryDump . 252
BfvHistoryDumpModChan . 255
BfvHistoryDumpUnit . 258
BfvLineDumpStructure . 261
Macros . 263
RES Structure Parameters . 265

Volume 2 – Bfv-Level Call Control and Call Switching266
About this Volume .266

Chapter 8 – Call Control Overview. .267
Bfv-Level Call Control . 268

BSMI-Level Call Control . 270

Chapter 9 – Bfv-Level Call Control .271
About Bfv API-Level Call Control . 272
Bfv API High-Level Call Control Summary . 273
Bfv API Low-Level Call Control Summary . 274
Bfv API Protocol-Specific Call Control Function Summary . 276
ISDN Services Call Control Summary . 277
Call Control Configuration File . 279
BfvCallAccept . 280
BfvCallCtrlClose . 283
BfvCallCtrlInit . 284
BfvCallDisconnect . 287
BfvCallHold . 289
BfvCallReconfigureHostModule . 291
BfvCallReject . 293
BfvCallRetrieve . 295
BfvCallRingDetect . 297
BfvCallSendAlerting . 301
BfvCallSetup . 303
BfvCallSignalingStateMonitor . 317
BfvCallSignalingStateSet . 321

March 2017 8

BfvCallStatus . 324
BfvCallTransferComplete . 327
BfvCallWaitForAccept . 329
BfvCallWaitForAlerting . 332
BfvCallWaitForComplete . 335
BfvCallWaitForHold . 340
BfvCallWaitForRelease . 342
BfvCallWaitForRetrieve . 345
BfvCallWaitForSetup . 347
BfvCallWaitTransferComplete . 354
BfvLineAnswer . 357
BfvLineCCProtocolGet . 360
BfvLineDialString . 363
BfvLineOriginateCall . 369
BfvLineTerminateCall . 384
BfvLineTransfer . 388
BfvLineTransferCancel . 394
BfvLineTransferCapabilityQuery . 396
BfvLineTransferComplete . 398
BfvLineWaitForCall . 400
BfvLoopCurrentDetectDisable . 407
BfvLoopCurrentDetectEnable . 409

Chapter 10 – Dialing Database Functions.411
Dialing Database Function Call Summary . 413
BfvDialDBCheck . 414
BfvDialDBList . 416
BfvDialDBUpdate . 419
BfvLineOrigCallDB . 422

Chapter 11 – Data Structures .429
Low-Level Call Control (args_cc) . 430
Functions Using the args_cc Structure . 449
High-Level Call Control (args_telephone) . 458
Macros . 477

March 2017 9

Volume 3 – Media Processing .478
About This Volume .478

Chapter 12 – Signal Generation and Detection 479
Signal Generation/Detection Function Summary . 481
BfvCPGen . 482
BfvCPGenAdv . 484
BfvDataCP . 488
BfvLineCallProgressDisable . 492
BfvLineCallProgressEnable . 494
BfvLineCallProgressProgram . 499
BfvToneDetectDisable . 503
BfvToneDetectEnable . 505
BfvToneFlush . 508
BfvToneGet . 509
BfvTonePeek .511
BfvTonePlay . 513
BfvTonePlayBeep . 515
BfvToneUnget . 518

Chapter 13 – Voice Play and Record .519
Voice Play and Record Function Summary . 520
BfvPromptPlay . 521
BfvSpeechEchoCancelControl . 525
BfvSpeechModify . 528
BfvSpeechPlay . 531
BfvSpeechPlayData . 534
BfvSpeechPlayFile . 541
BfvSpeechPlayWave . 547
BfvSpeechRecord . 551
BfvSpeechRecordData . 564
BfvSpeechRecordFile . 574
BfvSpeechRecordWave . 583
Macros . 592

March 2017 10

Chapter 14 – Infopkt File Functions. .593
InfoPkt Function Summary . 594
BfvInfopktClose . 595
BfvInfopktFseek . 597
BfvInfopktFtell . 599
BfvInfopktGet . 601
BfvInfopktOpen . 603
BfvInfopktOpenMem . 605
BfvInfopktPut . 609
BfvInfopktUnget .611
BfvInfopktUser . 613
BfvPromptClose . 616
BfvPromptOpen . 618

Volume 4 – Fax Processing .621
About this Volume .621

Chapter 15 – Fax Overview. .622

Chapter 16 – Fax Functions .624
Fax Function Summary . 625
BfvDataFSK . 628
BfvFaxAbort . 632
BfvFaxBegin . 634
BfvFaxBeginRaw . 639
BfvFaxBeginReceive . 644
BfvFaxBeginSend . 648
BfvFaxBeginSendRaw . 651
BfvFaxBeginSendTiff . 656
BfvFaxBeginTiff . 659
BfvFaxDownloadFont . 664
BfvFaxDownloadFontData . 668
BfvFaxEndOfDocument . 671
BfvFaxEndReception . 673
BfvFaxGetRemoteInfo . 675

March 2017 11

BfvFaxHeader . 677
BfvFaxNextPage . 681
BfvFaxNextPageDCX . 684
BfvFaxNextPageRaw . 687
BfvFaxNextPageTiff . 690
BfvFaxPageParams . 693
BfvFaxPoll . 695
BfvFaxRcvPageDCX . 700
BfvFaxRcvPageTiff . 702
BfvFaxReceive . 705
BfvFaxReceiveData . 709
BfvFaxReceiveFile . 713
BfvFaxReceivePage . 716
BfvFaxReceivePages . 718
BfvFaxSend . 720
BfvFaxSendData . 724
BfvFaxSendFile . 726
BfvFaxSendPage . 729
BfvFaxSendPageDCX . 732
BfvFaxSendPageTiff . 734
BfvFaxSetLocalId . 736
BfvFaxSetNSF . 738
BfvFaxSetReceiveFmt . 741
BfvFaxSetSubPwdSep . 744
BfvFaxStripParams . 747
BfvFaxT30Holdup . 751
BfvFaxT30Params . 757
BfvFaxT4TimerParams . 761
BfvFaxWaitForTraining . 764
Macros . 766

Chapter 17 – TIFF-F Files Functions .769
TIFF-F Files Function Summary . 770
BfvTiffClose . 771
BfvTiffOpen . 773
BfvTiffReadIFD . 775
BfvTiffReadImage . 778

March 2017 12

BfvTiffReadRes . 780
BfvTiffWriteIFD . 782
BfvTiffWriteImage . 785
BfvTiffWriteRes . 787
Macros . 789

Volume 5 – BSMI-Level Call Control and Call Switching791
About this Volume .791

Chapter 18 – BOSTON Simple Message Interface (BSMI)792
BSMI Installation . 794
BSMI Function Summary . 795
BsmiClearVtty . 796
BsmiCloseAdapter . 797
BsmiControlRead . 798
BsmiControlWrite . 800
BsmiLineAlert . 801
BsmiModuleList . 803
BsmiOpenAdapter . 805
BsmiResetAdapter . 807
BsmiSetVtty . 809
BsmiVttyRead . 810
BsmiVttyWrite .811
Error Return Values . 812
Firmware Download . 814
BSMI Use Examples . 815

Initialization and BSMI Message Sequence . 815
BRI Protocol Stack Initialization . 818

Chapter 19 – BSMI General Message Structure819
BSMI Message Naming Convention . 820
BSMI Control Messages by Category . 821

Management Messages . 821
Call Control Messages . 824
ISDN Supplemental and Miscellaneous Messages . 829

L4L3 Message Common Header . 830

March 2017 13

L3L4 Message Common Header . 832
L4 Reference and Call Reference . 834

L4 Reference Value . 834
Call Reference Value . 835
Relationship between L4 Reference and Call Reference . 836
Logical Link ID or DLCI . 837

Common Structures . 838
Alerting and Connecting Data Message (IISDN_AL_CON_DATA) 839
Call ID (IISDN_CALL_ID) . 842
Called Party (IISDN_CALLED_PARTY) . 843
Calling Party (IISDN_CALLING_PARTY) . 845
Cause Data (IISDN_CAUSE) . 848
Connected Address (IISDN_CONNECTED_ADDRESS) . 851
Information Element (IISDN_IE_STRUCT) . 853
Progress Indication (IISDN_PROGRESS) . 855
Q.933 DLCI Negotiation (IISDN_Q922_DLCI) . 858
Redirecting Number (IISDN_REDIRECT_NUM) . 859
User Info (IISDN_USER_INFO) . 863

Chapter 20 – R2 Signaling Protocol with BSMI 864
Application to Stack (Host to Module) Messages . 865

Numbering Conventions . 866
Arguments . 866

R2 Signaling L4L3 Messages . 868
L4L3mALERTING_REQUEST . 869
L4L3mCALL_PROCEEDING_REQUEST . 871
L4L3mCALL_REQUEST . 873
L4L3mCAS_CHAN_BLOCK . 876
L4L3mCAS_CHAN_UNBLOCK . 878
L4L3mCLEAR_REQUEST . 880
L4L3mCOLLECT_DIGITS . 882
L4L3mCONNECT_REQUEST . 884
L4L3mDISABLE_CAS . 886
L4L3mENABLE_CAS . 888
L4L3mINFO_REQUEST . 891
L4L3mREQ_ABCD_DATA . 893
L4L3mSET_CAS_SIGNALING_BITS . 894

March 2017 14

Stack to Application (Module to Host) Messages . 896
Normal Event Sequence . 898

Inbound Calls . 898
Outbound Calls . 899

R2 Signaling L3L4 Messages . 900
L3L4mALERTING . 901
L3L4mCAS_CHAN_BLOCKED . 902
L3L4mCAS_CHAN_UNBLOCKED . 904
L3L4mCAS_SIGNALING_BIT_STATUS . 905
L3L4mCAS_STATUS . 907
L3L4mCLEAR_REQUEST . 909
L3L4mCONN_ACK_IND .911
L3L4mCONNECT . 912
L3L4mDISCONNECT . 913
L3L4mERROR . 915
L3L4mPRE_SEIZE . 917
L3L4mSETUP_IND . 918

Chapter 21 – LEC Protocols with BSMI .919
Application to Stack (Host to Module) Messages . 920

Numbering Conventions . 921
Arguments . 922

LEC Signaling L4L3 Messages . 923
L4L3mCALL_REQUEST . 924
L4L3mCLEAR_REQUEST . 927
L4L3mCOLLECT_DIGITS . 929
L4L3mCONNECT_REQUEST . 931
L4L3mDIAL . 933
L4L3mDISABLE_CAS . 936
L4L3mENABLE_CAS . 938
L4L3mEND_DIAL . 941
L4L3mFORCE_CONNECTION_REQUEST . 943
L4L3mREQ_ABCD_DATA . 945
L4L3mREQ_CONFIGURATION . 946
L4L3mSET_CONFIGURATION . 948
L4L3mTX_HOOKFLASH . 950
L4L3mTX_WINK . 952

March 2017 15

Stack to Application (Module to Host) Messages . 954
LEC Signaling L3L4 Messages . 957
L3L4mABCD_SIGNAL_DATA . 958
L3L4mACK_DOWNLOAD . 959
L3L4mACK_UPLOAD . 960
L3L4mALERTING . 961
L3L4mCALLER_ID_DETECTED . 962
L3L4mCAS_SIGNALING_BIT_STATUS . 965
L3L4mCAS_STATUS . 967
L3L4mCLEAR_REQUEST . 968
L3L4mCONFIGURATION_STATUS . 970
L3L4mCONN_ACK_IND . 971
L3L4mCONNECT . 972
L3L4mDISCONNECT . 973
L3L4mEND_DIAL . 975
L3L4mERROR . 976
L3L4mHOOKFLASH . 979
L3L4mLOOP_ON . 980
L3L4mLOOP_REVERSAL . 982
L3L4mPRE_SEIZE . 983
L3L4mPROGRESS . 984
L3L4mRING_STATUS . 985
L3L4mRX_WINK . 987
L3L4mSEIZE_COMP . 988
L3L4mSETUP_IND . 989
L3L4mSTATUS_IND . 990
L3L4mTX_HOOKFLASH_END . 991
L3L4mTXWINK_END . 992

Chapter 22 – Host to Module (L4L3m) Messages.993
L4L3mALERTING_REQUEST . 994
L4L3mCALL_PROCEEDING_REQUEST . 996
L4L3mCALL_REQUEST . 1000
L4L3mCLEAR_REQUEST . 1008
L4L3mCONNECT_REQUEST .1011
L4L3mDISABLE_B_CHANNEL . 1013
L4L3mDISABLE_PROTOCOL . 1017

March 2017 16

L4L3mENABLE_B_CHANNEL . 1018
L4L3mENABLE_PROTOCOL . 1021
L4L3mFACILITY_REQUEST . 1040
L4L3mFEATURE_REQUEST . 1043
L4L3mINFO_REQUEST . 1047
L4L3mJATE_REDIAL . 1049
L4L3mPROGRESS_REQUEST . 1051
L4L3mREQ_BOARD_ID . 1056
L4L3mREQ_LINE_STATUS . 1057
L4L3mREQ_L2_STATS . 1058
L4L3mREQ_PROTOCOL_STATUS . 1060
L4L3mRESTART . 1061
L4L3mSET_HARDWARE . 1065
L4L3mSETUP_ACK_REQUEST . 1066
L4L3mUNIVERSAL . 1069
L4L3mUSER_INFO . 1073

Chapter 23 – Module to Host (L3L4m) Messages.1074
L3L4mALERTING . 1075
L3L4mANI . 1076
L3L4mB_CHANNEL_STATUS . 1078
L3L4mBILLING_STATUS . 1081
L3L4mBOARD_ID . 1082
L3L4mCALL_PROCEEDING . 1084
L3L4mCALL_PROC_SENT . 1085
L3L4mCLEAR_REQUEST . 1086
L3L4mCLEAR_WITH_RESTART_REQUEST . 1088
L3L4mCONNECT . 1090
L3L4mCONN_ACK_IND . 1091
L3L4mDISCONNECT . 1092
L3L4mERROR . 1094
L3L4mINFO_REQUEST . 1099
L3L4mL2_STATS .1101
L3L4mLINE_STATUS .1104
L3L4mPROGRESS .1106
L3L4mPROTOCOL_STATUS .1107
L3L4mRAW_QDATA . 1114

March 2017 17

L3L4mRESTART . 1116
L3L4mSETUP_IND . 1117
L3L4mSTATUS_IND .1122
L3L4mUNIVERSAL .1123
L3L4mUSER_INFO .1125

Chapter 24 – B-Channel and D-Channel Maintenance.1126
B-Channel Maintenance .1127

ISDN Messages for B-Channel Maintenance .1128
BSMI Messages For B-Channel Maintenance .1128
Maintenance Procedures .1130

D-Channel Maintenance .1135
BSMI Messages for D-Channel .1135

Volume 6 – Appendices. .1137
About this Volume .1137

Appendix A – Configuration Files .1138
User-Defined Configuration File .1140
Call Control Configuration File .1158

Call Control Configuration File Format .1159
Global Options .1164
Global Module Parameters .1166
Clock Configuration Parameters .1174
Port Configuration Parameters .1178
Specific Parameters for Port Configuration .1181
Internet Protocol (IP) Call Control Configuration Parameters 1233
Examples of PSTN Call Control (callctrl.cfg) Files . 1280
Examples of IP Call Control Configuration File . 1291
Sample Configuration Files . 1302

Routing Table Configuration File . 1306
Routing Table Configuration File Format . 1307
Routing Rule Parameters . 1309
Examples of Routing Table Configuration Files . 1312

Parameters for Technical Support Purposes . 1315

March 2017 18

Appendix B – Bfv API Structures. .1319
Address Structure . 1320
Result Structures . 1321

RES Structure Parameters . 1325
CALL_RES Structure Parameters . 1329
INFO_RES Structure Parameters . 1333
PAGE_RES Structure Parameters . 1334
FAX_RES Structure Parameters . 1339

DCS and DIS/DTC Info Structures . 1344

Appendix C – Hangup Codes .1348
Call Placement Codes . 1350
Transmit Phase A Codes . 1350
Transmit Phase B Codes . 1351
Transmit Phase D Codes . 1353
Receive Phase B Codes . 1357
Receive Phase D Codes . 1359
Phase C Codes . 1360
Miscellaneous Codes . 1361
Bfv API-Created Codes . 1362

Appendix D – BSMI and ISDN Cause Codes.1363
Defining BSMI Cause Codes . 1363
Defining ISDN Cause Codes . 1367

Appendix E – Infopkt Parameter Values.1375
Voice Infopkt Parameters . 1377

End-of-Speech Parameter Infopkt . 1377
Prompt Map Infopkt . 1378
Speech Parameters Infopkt . 1379

Fax Infopkt Parameters . 1381
ASCII Strip Infopkt . 1381
Document Parameters Infopkt . 1383
Enhanced Fax Format Page Infopkt . 1385
Fax Header Parameters Infopkt . 1386

March 2017 19

G3 Strip Infopkt . 1387
Page Parameters Infopkt . 1389
T.30 Parameters Infopkt . 1391
Beginning of Page Infopkt . 1393

Appendix F – Call Progress Notes. .1394
Processing Call Progress Signals . 1395
Adapting to International Specs . 1396
Reporting Call Progress Results . 1397

Intermediate Results . 1397
Final Results . 1397

Initiating Call Progress . 1399
BfvLineCallProgressEnable . 1399
BfvLineOriginateCall . 1400

Setting the Call Progress Mode . 1401
Voice Mode . 1401
Fax Mode . 1401
Raw Mode . 1401

Special Call Progress Features . 1402
Sending CNG . 1402
Call Progress Analysis During Dialing . 1402

Call Progress Signals . 1403
Special Information Tones . 1410
Custom Call Progress Results . 1412
Final Call Progress Results . 1414

Appendix G – Country-Specific Parameter Files1415
BT_CPARM.CFG Parameter File . 1417
Using Dialing Database Functions and Dialing Parameters . 1424
Country-Specific Dialing Requirements . 1426

Australia . 1426
Canada . 1427
Czech Republic . 1427
Denmark . 1428
European Community (Boards Approved to TBR 4) . 1428
France . 1428

March 2017 20

Germany . 1429
Hong Kong . 1429
Ireland . 1429
Israel . 1430
Italy . 1430
Japan . 1430
Malaysia . 1431
Netherlands . 1431
New Zealand . 1431
Norway . 1432
Singapore . 1432
Spain . 1432
Switzerland . 1433
Turkey . 1433
United Kingdom . 1433
United States . 1434

Examples of R2 Parameter Files . 1435
Argentina R2 Parameter File . 1435
Brazil R2 Parameter File . 1438
China R2 Parameter File . 1445
Korea R2 Parameter File . 1448
Mexico R2 Parameter File . 1451

Appendix H – Deprecated and Unsupported Functionality1454

Index .1459

March 2017 21

About this Publication

This publication is made up of the following volumes:

 Volume 1, Administration, Management, and Configuration, Bfv
API Reference Manual provides information about the following
Dialogic® Brooktrout® Bfv API components:

 Line Administration and Initialization functions

 Firmware, Configuration, and Status functions

 Error Management and Miscellaneous functions

 Volume 2, Bfv-Level Call Control and Call Switching, Bfv API
Reference Manual provides information about the following Bfv
API components:

 Bfv API-level Call Control functions

 Dialing Database functions

 Call Control data structures and macro

 Volume 3, Media Processing, Bfv API Reference Manual provides
information about the following Bfv API components:

 Signal Generation and Detection functions

 Voice Play and Record functions

 Infopkt file functions

 Volume 4, Fax Processing, Bfv API Reference Manual provides
information about the following Bfv API components:

 Fax functions and macros

 TIFF-F files functions and macros

March 2017 22

 Volume 5, BSMI-Level Call Control and Call Switching, Bfv API
Reference Manual provides information about the following
BOSTON Simple Message Interface (BSMI) Bfv API
components:

 BSMI-level Call Control functions

 Message structure

 R2 Signaling Protocol messages

 Local Exchange Carrier (LEC) Protocol messages

 Host to Module and Module to Host messages

 B-Channel and D-Channel Maintenance procedures

 Volume 6, Appendices, Bfv API Reference Manual is a grouping
of appendices that relate to the reference material in Volumes 1
through 5, including:

 Configuration files

 Bfv API structures

 Hangup codes, Cause codes, Infopkt parameters

 Call Progress notes

 Country-specific dialing requirements

 Deprecated and unsupported functionality

Related Documents

March 2017 23

Related Documents

 The Dialogic® Brooktrout® Fax Products SDK Installation and
Configuration Guide explains how to install the software
(firmware, Bfv API, and driver for the Dialogic® Brooktrout®
TR1034/TruFax® and Dialogic® Brooktrout® SR140 Fax
Software) on your host system. It also describes how to configure
the driver, configure call control, and download the firmware to a
module.

 The Dialogic® Brooktrout® Fax Products SDK Developer Guide
describes the Bfv API and gives information about Call Transfer,
Automatic Speech Recognition, BSMI, and how to package
Dialogic® Brooktrout® fax software for your customers.

Operating System Support and Testing
For the latest list of operating systems supported on your product
see the applicable Release Notes.

Manual Conventions
This manual uses the following conventions:

 Italics denote the names of variables in the prototype of a
function and file names, directory names, and program names
within the general text.

 The Courier font in bold indicates a command sequence entered
by the user at the system prompt, for example:

cd /Brooktrout/boston/bfv.api

 The Courier font not bolded indicates system output, for
example:

C:>Files installed.

 The Courier font also denotes programming code, such as C,
C++, Visual Basic, and TSL. Programming code appears in
program examples.

Related Documents

March 2017 24

 Bold indicates the data type of the prototype of a function,
Bfv API functions, dialog boxes, dialog box controls, windows,
and menu items.

 Square brackets [] indicate that the information to be typed is
optional.

 Angle brackets < > indicate that you must supply a value with
the parameter.

The Caution icon is used to indicate an action that could cause harm to
the software or hardware.

The Warning icon is used to indicate an action that could cause harm to
the user.

Terminology

March 2017 25

Terminology

Updated Terminology
The current version of this document includes terminology that
differs from previous versions. Please note the changes below:

Former Terminology Replaced with...

Host-based fax Dialogic® Brooktrout® SR140 Fax Software

or

Brooktrout SR140 Fax Software

or

SR140 Software

or

SR140

Virtual modules

Virtual boards

Software modules

VoIP modules

SR140 virtual modules

TR1000 Series SDK Dialogic® Brooktrout® SDK

TR1000 Series Product Dialogic® Brooktrout® Fax Board

or

Brooktrout fax board

or

board

TR1000 Series Module

TR1000 Series Board

Brooktrout System Software Dialogic® Brooktrout® Runtime Software

Terminology

March 2017 26

Dialogic® Brooktrout® TR1034 Fax Board Terminology
The Dialogic® Brooktrout® TR1034 Fax Board is also referred to
herein by one or more of the following terms, or like terms including
“TR1034”:

 Brooktrout TR1034 Fax Board

 Brooktrout TR1034 Board

 TR1034 Fax Board

 TR1034 Board

Getting Technical Support

March 2017 27

Getting Technical Support

Dialogic provides technical services and support for customers who
have purchased hardware or software products from Dialogic. If you
purchased products from a reseller, please contact that reseller for
technical support.

To obtain technical support, please use the web site below:

www.dialogic.com/support

March 2017 28

Volume 1 - Administration,
Management, and

Configuration
About this Volume

 Volume 1, Administration, Management, and Configuration,
provides information about the following Dialogic® Brooktrout®
Bfv API components:

 Line Administration and Initialization functions
 Firmware, Configuration, and Status functions
 Error Management and Miscellaneous functions

March 2017 29

1 - Bfv API Overview

This chapter provides an introduction to the Bfv API, briefly
describing the interface and the functions.

The functions described in this manual define the interface between
a developer application code and the available features provided by
the Dialogic® Brooktrout® hardware, driver, and firmware
components. This interface enables an application programmer to
develop broad applications with voice, fax, DTMF, and call control
elements with relative simplicity.

Note: To find Bfv API function descriptions within the Bfv API
Volume Set, see the Bfv API Function Locator on page 34.

The Dialogic® Brooktrout® products in the Brooktrout SDK store
their include files in several directories below the directory
<install_root>/boston. For example, the core Bfv API files are stored
in boston/bfv.api/inc. See your Bfv API SDK Installation and
Configuration Guide for the directory locations and contents.

Note: The install_root for Unix and Linux systems is
/usr/sys/brooktrout and the root for Windows operating
systems is C:\brooktrout.

March 2017 30

The following table shows the libraries and driver version locations
for the software products.

When writing applications for DLL environments, see the
BT_API_SET_VER macro described in Volume 1, Chapter 2 for
information about drop-in replacement of future DLL API libraries.

Some platforms support the use of multiple threads. In such an
environment, it is never permissible to access the same line pointer
from more than one thread simultaneously. Doing so might cause
unpredictable behavior.

Defining the BCONST symbol (on the compiler command line or
before including btlib.h) causes the compiler to apply the ANSI const
modifier to some of the pointer arguments of Bfv API function
prototypes or argument structure fields. Using this optional feature
enables applications to use the const modifier without generating
pseudoconflicts when they call Bfv API functions.

To use the Bfv API with C++ applications, change the inclusion of
btlib.h to use the extern "C" construct as follows:

extern "C"
{
#include "btlib.h"
}

Bfv API library boston/bfv.api/inc/btlib.h

Bfv API library version boston/bfv.api/inc/apiver.h

Audio Conferencing API (ACC)
library

boston/acc.api/inc/acclib.h

BOSTON Simple Message Interface
(BSMI) library

boston/bsmi.api/inc/bsmilib.h,
boston/bsmi.api/inc/iisdn.h

Call Control library boston/bfv.api/inc/ecclib.h

Driver version boston/driver/inc/millver.h

Using Structure Packing

March 2017 31

Using Structure Packing
Many compilers allow users to specify structure packing, either on
the compiler command line or within a source file using #pragma
pack.

You should verify that the default packing level be in effect when
Dialogic® Brooktrout® header files are included to help ensure that
there are no conflicts between applications being compiled and the
Bfv API libraries.

The recommendation also holds true for any system-supplied header
files.

Using Bfv API Function Argument Structures
Most Bfv API functions use an argument structure. The argument
structure is declared in an application, and a pointer to it is passed
to the function. The argument structure type is named args_...; for
example, struct args_fax. The same argument structure type is
used for functions that are related or in the same category.

Structure fields contained within the argument structure are used
for input and/or output. Each function that uses an argument
structure has marked the fields that are used for each purpose. Not
all fields are used by all functions taking any particular argument
structure type.

Note: You must clear each argument structure (fill with 0s) before its
first use. This can be accomplished using the memset function
or the supplied BT_ZERO macro.

Use of memset may require inclusion of an appropriate header file
such as <string.h>. Once you clear an argument structure, it can be
used for multiple calls to Bfv API functions that accept this
argument structure type. Be sure that any argument structure fields
that might have been modified by a previous call (listed as Modified
fields) are set to appropriate values, usually 0, before the next call. It
is always safe to clear an argument structure before using it.

The Bfv API and driver for the Brooktrout SDK are written
assuming ANSI compilers and 32-bit integers/addressing. Non-ANSI
compilers or 16-bit platforms are not supported.

Supported Arguments

March 2017 32

Supported Arguments
Not all members of the argument structures that are used to pass
arguments to the Bfv API function calls are supported. An argument
in the header file is only supported if the documentation defines the
argument. Similarly, the enums or defines in a header file are only
supported if the documentation defines the values. The reasons
include:

 The Bfv API often defines the interface in advance of the
existence of certain functionality.

 The same structure can be used for many Bfv API functions.

 Items were used in the past but are no longer in use or remain
only to maintain compatibility.

Configuring Call Control

March 2017 33

Configuring Call Control
To use the call control functionality provided in the Brooktrout SDK,
create a call control configuration file (callctrl.cfg) and use applicable
call control functions as follows:

 For Bfv API-level call control functions, use Volume 2, Bfv-Level
Call Control and Call Switching

 For BSMI-level call control functions, use Volume 5, BSMI-Level
Call Control and Call Switching

The call control configuration file is an ASCII file that contains
general configuration parameters for all telephony hardware
modules and static telephony connections to be formed for all
modules. This file replaces the teleph.cfg and ecc.cfg files that
Dialogic no longer supports.

Removing support for teleph.cfg and ecc.cfg files also affects the
following:

 The teleph parameter in the user-defined configuration file

Delete this parameter and set the location of your call control
configuration file as the value for the call_control parameter.

 The symbol NO_ECC as a compiling option

The Bfv API ignores this compiling option.

 The header files and libraries

The BfvTelephConfig and BfvTelephConfigData functions
and the callctrl.h file are deleted from the Bfv header files and
libraries.

For all supported operating systems, create a call control
configuration file or edit one of the sample files supplied with the
Brooktrout SDK. Dialogic also provides the Dialogic® Brooktrout®
Configuration Tool, a graphical user interface (GUI) program, as an
option for Windows users to create or modify a configuration file for
the call control software.

See Volume 6, Appendix A and your installation and configuration
guide for more information about the new call control and associated
parameters.

Bfv API Function Locator

March 2017 34

Bfv API Function Locator
The table below provides the location and a high-level description of
each function within the Bfv API Reference Volume set.

Function Location Purpose
dll... Vol 1: 211 Calls the standard C library function that

matches the _dll_...function with the
arguments provided by using the runtime
library linked with the dll.

BfvGetVar Vol 1: 212 Waits for notification of async activity on
another line pointer.

BfvBoardNotify Vol 1: 171 Turns module level notification on or off
and sets up an optional callback function.

BfvBoardStateGet Vol 1: 178 Retrieves the current state of a module
(Board Status LED).

BfvBoardStateSet Vol 1: 180 Sets the current state of a module (Board
Status LED).

BfvBoardTemperatureGet Vol 1: 182 Retrieves the current temperature of a
module.

BfvBoardTemperatureThreshSet Vol 1: 184 Sets the temperature threshold of a module
for the purpose of module event
notification.

BfvBoardTest Vol 1: 186 Initiates a series of self-tests on the module
and reports the results as they occur
through an optional callback function.

BfvCallAccept Vol 2: 280 Starts answering an incoming telephone
call.

BfvCallCtrlClose Vol 2: 283 Disables signaling on all the ISDN spans in
the system and shuts down the call control
library.

BfvCallCtrlInit Vol 2: 284 Initializes the call control runtime
environment.

BfvCallDisconnect Vol 2: 287 Starts the process of terminating a
telephone call.

BfvCallHold Vol 2: 289 Places the Bfv API in the hold state.

BfvCallReconfigureHostModule Vol 2: 291 Forces the specified third party call control
stack (host module) to reread its call
control configuration file while the system
is running.

Bfv API Function Locator

March 2017 35

BfvCallReject Vol 2: 293 Rejects an incoming telephone call on line
types or protocols that allow call rejection.

BfvCallRetrieve Vol 2: 295 Takes the Bfv API out of the hold state.

BfvCallRingDetect Vol 2: 297 Turns detection of ring signals on or off and
determines the type of detection for
notification of incoming calls.

BfvCallSendAlerting Vol 2: 301 Sends an ALERTING message to the
remote end after detecting an incoming
call.

BfvCallSetup Vol 2: 303 Starts the process of dialing an outgoing
telephone call or transferring a call.

BfvCallSignalingStateMonitor Vol 2: 317 Turns inbound call signaling state
monitoring on or off and sets up an optional
callback function.

BfvCallSignalingStateSet Vol 2: 321 Sets the outbound call signaling state to
one value for a specified time and then to a
second value.

BfvCallStatus Vol 2: 324 Retrieves the channel’s current call state.

BfvCallSWClearConns Vol 1: 119 Clears all call switching connections on the
current module.

BfvCallSWConnect Vol 1: 121 Forms a connection between specified
source and destination telephony
resources.

BfvCallSWGetConns Vol 1: 142 Retrieves and returns information about
established call switching connections on
the current module.

BfvCallSWGetInfo Vol 1: 146 Retrieves and returns information about
the connectable port classes and units.

BfvCallTransferComplete Vol 2: 327 Completes a call transfer without waiting
for the transfer process to complete.

BfvCallWaitForAccept Vol 2: 329 Finishes the process of answering an
incoming telephone call.

BfvCallWaitForAlerting Vol 2: 332 Waits for an outgoing call to finish
establishing or dialing.

BfvCallWaitForComplete Vol 2: 335 Waits for the outgoing telephone call to
finish.

BfvCallWaitForHold Vol 2: 340 Finishes the process of diverting an
incoming call on a digital port using the
QSIG protocol.

Function Location Purpose

Bfv API Function Locator

March 2017 36

BfvCallWaitForHold Vol 2: 340 Waits for the Bfv API to finish
transitioning to the hold state.

BfvCallWaitForRelease Vol 2: 342 Waits for the termination of a telephone
call to finish.

BfvCallWaitForRetrieve Vol 2: 345 Waits for the Bfv API to finish
transitioning out of the hold state.

BfvCallWaitForSetup Vol 2: 347 Waits for an incoming call, and returns all
available information about the call to the
application.

BfvCallWaitTransferComplete Vol 2: 354 Waits for the line to complete the call
transfer command.

BfvCheckAddress Vol 1: 50 Checks for the existence of an address.

BfvCheckFacility Vol 1: 52 Checks for the existence of the specified
facility on the destination module and
channel.

BfvConferenceAdminGetById Vol 3: 615 Determines if the conference ID is in use or
reserves it.

BfvConferenceAdminInitialize Vol 3: 617 Initializes a system-wide conference
administrator.

BfvConferenceAdminModify Vol 3: 620 Modifies system-wide conference
parameters for the conference
administrator.

BfvConferenceAdminQuery Vol 3: 622 Collects the current parameters and state
values for the system-wide conference,
including all conference IDs.

BfvConferenceAdminTerminate Vol 3: 625 Terminates the conference administrator in
the system and frees all administrative
resources.

BfvConferenceBegin Vol 3: 627 Initializes a new conference and creates a
new conference object.

BfvConferenceDebugFuncSet Vol 3: 632 Sets up a printing function to use with ACC
debug mode output.

BfvConferenceDebugModeSet Vol 3: 634 Enables ACC debug mode that prints
commands, data, responses, and other
status messages to the standard output or
another location.

BfvConferenceDspRole Vol 3: 636 Sets the role and other parameters for a
conference DSP channel.

BfvConferenceEnd Vol 3: 640 Ends one conferences in the system and
frees all conference-related resources.

Function Location Purpose

Bfv API Function Locator

March 2017 37

BfvConferenceModify Vol 3: 642 Changes conference parameters.

BfvConferencePartyAdd Vol 3: 647 Adds a new party to an existing conference.

BfvConferencePartyDrop Vol 3: 653 Removes a party from an existing
conference.

BfvConferencePartyModify Vol 3: 655 Changes the properties of an existing
conference member.

BfvConferencePartyQuery Vol 3: 659 Retrieves the properties of a conference
member.

BfvConferenceQuery Vol 3: 663 Provides information about the conference
and its participants in a dynamically
allocated array of conference party data
structures.

BfvConferenceQueryFree Vol 3: 668 Frees the array of internally allocated
structures used to provide information
about the conference and its members.

BfvCPGen Vol 3: 482 Generates call progress signals.

BfvCPGenAdv Vol 3: 484 Generates call progress signals and other
tone patterns.

BfvDataCP Vol 3: 488 Retrieves the next call progress code.

BfvDataFSK Vol 4: 628 Fills an FSK buffer with FSK data for
debugging aid.

BfvDebugFuncSet Vol 1: 234 Sets up a function to use with Bfv API
debug mode that directs debug output to an
alternate destination.

BfvDebugInitData Vol 1: 236 Recreates name tables used for Bfv API
debug mode and the dh program, based on
command set header files found in a
specified directory.

BfvDebugModeSet Vol 1: 237 Enables debug mode, so the Bfv API prints
commands, data, interrupts, and status
messages to the standard output or
alternate device.

BfvDebugModeSetAdv Vol 1: 239 Allows the application to configure Bfv API
debugging features within the application,
enabling the user to control debugging in a
remote application.

BfvDialDBCheck Vol 2: 414 Checks the specified dialing database for
the specified telephone number, and
returns the amount of time the application
must wait before dialing the telephone
number.

Function Location Purpose

Bfv API Function Locator

March 2017 38

BfvDialDBList Vol 2: 416 Enables the application to read the
contents of the specified dialing database.

BfvDialDBUpdate Vol 2: 419 Updates the specified dialing database
with the results of the most recent call to
the specified telephone number.

BfvErrorMessage Vol 1: 244 Returns error message strings
corresponding to Bfv API errors returned in
RES structures.

BfvFaxAbort Vol 4: 632 Aborts a fax transmission or reception
cleanly when possible.

BfvFaxBegin Vol 4: 634 Initiates fax transmit or receive for infopkt
streams. Handles all variations of polling.

BfvFaxBeginRaw Vol 4: 639 Initiates fax transmit or receive for raw fax
data. Handles all variations of polling.

BfvFaxBeginReceive Vol 4: 644 Sets parameters and instructs the channel
to receive.

BfvFaxBeginSend Vol 4: 648 Begins fax transmission using an infopkt
stream.

BfvFaxBeginSendRaw Vol 4: 651 Initiates fax transmit for raw fax data.

BfvFaxBeginSendTiff Vol 4: 656 Begins transmission using a TIFF-F file.

BfvFaxBeginTiff Vol 4: 659 Initiates fax transmit or receive for TIFF-F
files. Handles all variations of polling.

BfvFaxDownloadFont Vol 4: 664 Loads a .fz8 font file to the channel as the
specified font.

BfvFaxDownloadFontData Vol 4: 621 Downloads a supplied font from the buffer
to the channel as the specified numbered
font.

BfvFaxEndOfDocument Vol 4: 671 Sends an end-of-page with no more pages
to follow.

BfvFaxEndReception Vol 4: 673 Waits for completion of the T.30
confirmation handshaking sequence.

BfvFaxGetRemoteInfo Vol 4: 675 Waits for and reports ID, DIS/DCS and
NSF/NSS data.

BfvFaxHeader Vol 4: 677 Sets up headers or footers on all
subsequent pages in a fax transmission.

BfvFaxNextPage Vol 4: 681 Sends an end-of-page and new page setup,
if appropriate, for use with infopkt streams.

BfvFaxNextPageDCX Vol 4: 684 Sends an end-of-page and new page setup,
if appropriate, for use with DCX pages.

Function Location Purpose

Bfv API Function Locator

March 2017 39

BfvFaxNextPageRaw Vol 4: 687 Sends an end-of-page and new page setup,
if appropriate, for raw
(noninfopkt-formatted) fax data.

BfvFaxNextPageTiff Vol 4: 690 Sends an end-of-page and new page setup,
if appropriate, for use with TIFF-F files.

BfvFaxPageParams Vol 4: 693 Sets the page parameters for subsequent
pages of data.

BfvFaxPoll Vol 4: 695 High-level function that sends and/or
receives faxes using infopkt streams.

BfvFaxRcvPageDCX Vol 4: 700 Receives a fax page to a DCX file.

BfvFaxRcvPageTiff Vol 4: 702 Receives a fax page to a TIFF-F file.

BfvFaxReceive Vol 4: 705 High-level function that receives faxes
using infopkt streams.

BfvFaxReceiveData Vol 4: 709 Receives raw fax data into a user-supplied
buffer.

BfvFaxReceiveFile Vol 4: 713 Receives a raw fax page to a file.

BfvFaxReceivePage Vol 4: 716 Receives a fax page to an infopkt stream.

BfvFaxReceivePages Vol 4: 718 Receives multiple pages of fax data to an
infopkt stream.

BfvFaxSend Vol 4: 720 High-level function that sends faxes using
infopkt streams.

BfvFaxSendData Vol 4: 724 Sends raw fax data from a user-supplied
buffer.

BfvFaxSendFile Vol 4: 726 Sends a noninfopkt-formatted fax page
from a file.

BfvFaxSendPage Vol 4: 729 Sends an entire page from the infopkt
stream to the driver buffer. Looks for an
EOF or new page type infopkt before
returning.

BfvFaxSendPageDCX Vol 4: 732 Sends a fax page from a DCX file.

BfvFaxSendPageTiff Vol 4: 734 Sends a fax page from a TIFF-F file.

BfvFaxSetLocalId Vol 4: 736 Sets the local ID to a specified string.

BfvFaxSetNSF Vol 4: 738 Sets up NSF, NSC, and NSS messages for
transmission to the remote host.

BfvFaxSetReceiveFmt Vol 4: 741 Sets the format of the received data.

BfvFaxSetSubPwdSep Vol 4: 744 Sets up a SUB, PWD, or SEP FSK message
to send to the remote host.

Function Location Purpose

Bfv API Function Locator

March 2017 40

BfvFaxStripParams Vol 4: 747 Separates different strips of data and sets
the strip parameters.

BfvFaxT30Holdup Vol 4: 751 Causes the channel to wait during T.30
negotiations and calls a user-supplied
function.

BfvFaxT30Params Vol 4: 757 Sets the T.30 parameters for transmission.

BfvFaxWaitForTraining Vol 4: 764 Reports when training is complete or
turn_around is indicated.

BfvFeatureSetDownload Vol 1: 95 Downloads feature set data supplied in a
specified file.

BfvFeatureSetDownloadData Vol 1: 97 Downloads feature set data supplied in a
specified user buffer.

BfvFeatureSetQuery Vol 1: 99 Queries the feature data currently stored
in the module’s feature set hardware.

BfvFirmwareDownload Vol 1: 101 Downloads firmware to a module from a
file.

BfvFirmwareDownloadData Vol 1: 105 Downloads firmware to a module from a
buffer.

BfvGetVar Vol 1: 212 Requests the value of a specified facility
firmware variable.

BfvHistoryClear Vol 1: 246 Clears the driver’s history buffer.

BfvHistoryClearModChan Vol 1: 248 Clears the contents of the driver’s history
buffers for the specified module and
channel number.

BfvHistoryClearUnit Vol 1: 250 Clears the contents of the driver’s history
buffers on the channel specified by the
channel number.

BfvHistoryDump Vol 1: 252 Dumps the driver’s history buffer to the
specified open file.

BfvHistoryDumpModChan Vol 1: 255 Dumps the contents of the driver’s history
buffer for the specified module and channel
number to the specified open file.

BfvHistoryDumpUnit Vol 1: 258 Dumps the contents of the driver’s history
buffer specified by the channel number to
the specified open file.

BfvInfopktClose Vol 3: 595 Closes the current infopkt file and frees all
associated structure memory.

BfvInfopktFseek Vol 3: 597 Searches to a specified offset in a file
relative to a specified origin.

Function Location Purpose

Bfv API Function Locator

March 2017 41

BfvInfopktFtell Vol 3: 599 Retrieves the position of the pointer within
the specified infopkt stream file.

BfvInfopktGet Vol 3: 601 Reads one infopkt from the stream. Can
follow indirect infopkts if specified.

BfvInfopktOpen Vol 3: 603 Opens the infopkt stream-formatted disk
file.

BfvInfopktOpenMem Vol 3: 605 Opens an infopkt stream associated with a
user-supplied memory buffer instead of a
file.

BfvInfopktPut Vol 3: 609 Writes one infopkt to the infopkt stream
file.

BfvInfopktUnget Vol 3: 611 Replaces last infopkt in the infopkt stream
so it is available for the next request.

BfvInfopktUser Vol 3: 613 Sets up a user-supplied function to handle
user-defined infopkts.

BfvLineAlert Vol 1: 215 Interrupts an active channel for another
use by suspending, but not killing, the
interrupted process or thread.

BfvLineAnswer Vol 2: 357 Answers an incoming call and sets the line
state to CONNECTED.

BfvLineAttach Vol 1: 54 Opens the given channel.

BfvLineCallProgressDisable Vol 3: 492 Turns call progress off.

BfvLineCallProgressEnable Vol 3: 494 Turns call progress on in one of three
modes.

BfvLineCallProgressProgram Vol 3: 499 Programs frequency and cadence analysis
parameters for use during call progress
monitoring.

BfvLineCCProtocolGet Vol 2: 360 Retrieves the protocol assigned to the
module.

BfvLineConfig Vol 1: 57 Permits channel configuration via data
buffers instead of a configuration file.

BfvLineDetach Vol 1: 60 Closes, hangs up, and resets the line.

BfvLineDialString Vol 2: 363 Places the line in an OFF_HOOK state,
dials the digits specified, and returns after
dialing the last digit.

BfvLineOriginateCall Vol 2: 369 Starts to divert an incoming call and waits
for the process to complete on a digital line
using the QSIG protocol.

Function Location Purpose

Bfv API Function Locator

March 2017 42

BfvLineDumpStructure Vol 1: 261 Dumps the contents of the BTLINE
structure and configuration structures to
the specified open file.

BfvLineInfo Vol 1: 61 Returns the module type and channel
address for a given channel from the driver.

BfvLineOrigCallDB Vol 2: 422 Combines the functionality of
BfvDialDBCheck,
BfvLineOriginateCall, and
BfvDialDBUpdate.

BfvLineOriginateCall Vol 2: 369 Places a phone call on an outgoing line.

BfvLineReset Vol 1: 63 Resets the channel and the state of the
BTLINE structure.

BfvLinesAvail Vol 1: 67 Returns the number of enabled channels.

BfvLineTerminateCall Vol 2: 384 Hangs up a call and completes the
disconnect process.

BfvLineTransfer Vol 2: 388 Automatically transfers an incoming call
from the called party to the dialed transfer
number, or returns control to the
application so that it can determine
whether to complete or cancel the transfer.

BfvLineTransferCancel Vol 2: 394 Ends a previously initiated call transfer
and retrieves the original calling party.

BfvLineTransferCapabilityQuery Vol 2: 396 Queries a channel’s transfer capability and
provides the application with information
about pairs of lines available to perform a
two B-channel call transfer.

BfvLineTransferComplete Vol 2: 398 Completes the call transfer connection for a
previously initiated call transfer.

BfvLineWaitForCall Vol 2: 400 Waits for an incoming call.

BfvLoopCurrentDetectDisable Vol 2: 407 Turns off loop current detection.

BfvLoopCurrentDetectEnable Vol 2: 409 Turns on loop current detection on.

BfvMemAllocFuncsSet Vol 1: 218 Replaces Bfv API functions that
dynamically allocate and free memory with
functions the application provides to do the
same.

BfvModuleConfigSpecsGet Vol 1: 109 Gets information about a module's possible
firmware configuration options, as reported
by the firmware.

BfvModuleDeactivate Vol 1: 69 Deactivates a hardware module, marking it
as dead.

Function Location Purpose

Bfv API Function Locator

March 2017 43

BfvModuleInfo Vol 1: 71 Gets information about a module.

BfvNetworkConfigGet Vol 1: 149 Returns network configuration information
about a single specified interface or trunk.

args.unit Vol 1: 154 Performs network configuration on a
collection of interfaces and trunks.

BfvNetworkQuery Vol 1: 158 Retrieves statistics about the specified
Ethernet unit.

BfvPromptClose Vol 3: 616 Closes the current prompt file and frees its
associated memory.

BfvPromptOpen Vol 3: 618 Opens a prompt file, a specialized infopkt
file.

BfvPromptPlay Vol 3: 521 Plays phrases from a prompt file.

BfvRcvProcessPkt Vol 1: 221 Receives a packet, and performs internal
Bfv API processing of all commands
contained within the packet.

BfvSessionAttach Vol 1: 78 Creates a session for communicating with
any facilities on a specified channel located
on a specified module and machine.

BfvSessionDetach Vol 1: 81 Closes a specified channel and frees the
BTLINE structure.

BfvSetSingleVar Vol 1: 224 Attempts to send a SET command to set a
single variable.

BfvSpeechEchoCancelControl Vol 3: 525 Allows enabling, disabling, or resetting
echo cancellation.

BfvSpeechModify Vol 3: 528 Enables an application to modify the
volume (gain) and rate of a speech playback
while it is in progress.

BfvSpeechPlay Vol 3: 531 Plays speech from an infopkt stream.

BfvSpeechPlayData Vol 3: 534 Plays raw speech data from a data buffer.

BfvSpeechPlayFile Vol 3: 541 Plays raw speech data from a file.

BfvSpeechPlayWave Vol 3: 547 Plays speech from a wave file.

BfvSpeechRecord Vol 3: 551 Retrieves the summation group number
assigned to a channel.

BfvSpeechRecord Vol 3: 551 Records speech in infopkt format.

BfvSpeechRecordData Vol 3: 564 Records raw speech data into the specified
buffer using the specified speech
parameters.

Function Location Purpose

Bfv API Function Locator

March 2017 44

BfvSpeechRecordFile Vol 3: 574 Records raw speech data into the specified
file using the specified speech parameters.

BfvSpeechRecordWave Vol 3: 583 Records speech into the specified wave
(.wav) file using the specified speech
parameters.

BfvTelephConfig Vol 6:
Appendix H

Reads a telephony configuration file,
configures all telephony hardware units for
the current module, and sets up telephony
connections.
(No longer supported)

BfvTelephConfigData Vol 6:
Appendix H

Configures a specific telephony hardware
unit with specified parameters.
(No longer supported)

BfvTelephGetInfo Vol 1: 163 Retrieves and returns information about
the telephony hardware units on the
current module and their available port
types.

BfvTelephReset Vol 1: 165 Modifies the telephony state on the current
module to permit performing high level
configuration again using
BfvCallCtrlInit.

BfvTelephSave Vol 1: 167 Saves already configured telephony
parameters to non-volatile memory
(NVRAM) on the current module.

BfvTiffClose Vol 4: 771 Closes an opened TIFF-F file.

BfvTiffOpen Vol 4: 773 Opens a TIFF-F file.

BfvTiffReadIFD Vol 4: 775 Reads the IFD of the current page in a
TIFF-F file.

BfvTiffReadImage Vol 4: 778 Reads image data of current page, one
buffer at a time.

BfvTiffReadRes Vol 4: 780 Interprets the IFD entry that contains the
Y resolution tag; returns vertical resolution
of current page.

BfvTiffWriteIFD Vol 4: 782 Writes the IFD of the current page in a
TIFF-F file.

BfvTiffWriteImage Vol 4: 785 Writes image data of the current page to a
TIFF-F file.

BfvTiffWriteRes Vol 4: 787 Writes the page resolution specifications
data to a TIFF-F file; returns the offset of
the location where this data is written.

BfvToneDetectDisable Vol 3: 503 Turns DTMF detection off.

Function Location Purpose

Bfv API Function Locator

March 2017 45

BfvToneDetectEnable Vol 3: 505 Turns DTMF detection on.

BfvToneFlush Vol 3: 508 Discards all tones currently stored in the
buffer.

BfvToneGet Vol 3: 509 Retrieves the next tone from the tone buffer
and removes it from the buffer.

BfvTonePeek Vol 3: 511 Retrieves the next tone from the tone buffer
without disturbing the buffer.

BfvTonePlay Vol 3: 513 Plays the tone for the specified time.

BfvTonePlayBeep Vol 3: 515 Plays a single frequency tone.

BfvToneUnget Vol 3: 518 Puts a tone at the top of the tone buffer, so
it is available for the next request to
retrieve a tone.

BsmiCloseAdapter Vol 5: 797 Closes and releases an open handle.

BsmiControlRead Vol 5: 798 Reads a control message from the module.

BsmiControlWrite Vol 5: 800 Writes a control message to the module.

BsmiLineAlert Vol 5: 801 Aborts a blocking ControlRead or
ControlWrite function.

BsmiModuleList Vol 5: 803 Returns a list of hardware modules in the
current system.

BsmiOpenAdapter Vol 5: 805 Returns a handle to the specific hardware
module.

BsmiResetAdapter Vol 5: 807 Resets the ISDN component of the module
associated with a handle.

getopt Vol 1: 228 Parses command line options.

resourceHandler Vol 3: 669 Allows the Bfv API to ask the application to
manage the resource allocation for
resources required for a conference
(user-defined function).

Function Location Purpose

March 2017 46

2 - Administration and Initialization

This chapter describes functions which allow you to attach, initialize
and configure channels, and functions to query channel and system
version information.

The line administration and initialization functions allow you to:

 Attach and detach from a line or a session.

 Configure a channel using a user-defined configuration file such
as btcall.cfg.

 Reset the specified channel.

 Get information about the module and channel address for the
specified channel.

 Get the number of available channels.

The line administration and initialization macros allow you to:

 Get information about the current version of the Bfv API or
driver, and some information about the operating system
environment.

 Get information about a line.

The BTLINE Structure

March 2017 47

The BTLINE Structure
A separate BTLINE structure is created for a channel, and the Bfv
API returns a pointer to the line structure when the application calls
the BfvLineAttach or BfvSessionAttach function to open and
attach a specified channel. All information about the channel is
stored in its BTLINE structure, but only the line state, the line type,
and channel number are actually relevant to the user. A BTLINE
structure is deallocated by the BfvLineDetach or
BfvSessionDetach function.

Applications do not directly access the internal fields of the BTLINE
structure, but instead use the Bfv API functions. This also includes
the following macros, described in detail in Macros on page 82:

LINE_HAS_CAP(lp, cap)
Confirms whether or not the line has the specified capability cap.

LINE_STATE(lp)
Returns the line state of the specified line.

LINE_TYPE(lp)
Returns the line type of the specified line.

LINE_UNIT_NUM(lp)
Returns the channel number of the specified line.

A line is always in one of the following states:

LINE_STATE_AWAIT_TRAINING
LINE_STATE_CONNECTED
LINE_STATE_FAX_MODE
LINE_STATE_HOLDUP
LINE_STATE_IDLE
LINE_STATE_NOLOOP
LINE_STATE_OFF_HOOK
LINE_STATE_RCV_INFO
LINE_STATE_RESETTING
LINE_STATE_RETAIN
LINE_STATE_RINGING
LINE_STATE_TURNAROUND

Each of the line states will be referred to by the descriptive part of its
name only (for example, LINE_STATE_IDLE is referred to as IDLE).

The current state of the line is stored in the BTLINE structure. A
pointer to this structure is passed as an argument to nearly all Bfv
API entry points and is provided to the application by the
BfvLineAttach or BfvSessionAttach function.

The BTLINE Structure

March 2017 48

A number of functions serve as inputs to the BTLINE structure and
affect the transition to different line states. Other functions check
the current line state: some conditionally branch to other points in
the code and some prevent inappropriate action (for example,
frequent checking for CONNECTED before attempting to transmit
data) from occurring.

The following provides a partial list of the functions and events and
the line state they set:

FUNCTION LINE STATE
BfvLineAnswer Sets the state to CONNECTED.

BfvLineAttach Initializes the state to IDLE.

BfvLineOriginateCall Sets the state to CONNECTED or OFF_HOOK
depending on the results from call progress
monitoring.

BfvLineReset Resets the state to IDLE.

BfvLineTerminateCall Sets the state to IDLE.

EVENTS LINE STATE
Answer tone detect Sets the state to CONNECTED.

Direction change Sets the state to TURNAROUND.

Disconnect Sets the state to IDLE.

Received FSK data Sets the state to AWAIT_TRAINING.

Ring detect Sets the state to RINGING.

Training Sets the state to FAX_MODE.

Function Summary

March 2017 49

Function Summary
Table 1 provides a brief summary of the functions used for line
administration and initialization.

Table 1. Line Administration and Initialization Function Summary

Function Purpose Page

BfvCheckAddress Checks for the existence of an address. 50

BfvCheckFacility Checks for the existence of the specified facility on
the destination module and channel.

52

BfvLineAttach Opens the given channel. 54

BfvLineConfig Permits channel configuration via data buffers
instead of a configuration file.

57

BfvLineDetach Closes, hangs up, and resets the line. 60

BfvLineInfo Returns the module type and channel address for a
given channel from the driver.

61

BfvLineReset Resets the channel and the state of the BTLINE
structure.

63

BfvLinesAvail Returns the number of enabled channels. 67

BfvModuleDeactivate Deactivates a hardware module, marking it as dead. 69

BfvModuleInfo Gets information about a module. 71

BfvSessionAttach Creates a session for communicating with any
facilities on a specified channel located on a specified
module and machine.

78

BfvSessionDetach Closes a specified channel and frees the BTLINE
structure.

81

BfvCheckAddress

March 2017 50

BfvCheckAddress

Purpose Checks for the existence of the specified Millennium address.

Syntax void
BfvCheckAddress (lp, args)

BTLINE *lp;
struct args_addr_info *args;

The structure contains the following fields.

Input Fields MILL_ADDR m_addr;

Output Fields unsigned exists;
RES res;

Input lp

Pointer to the BTLINE structure. Can be NULL. Uses fewer
resources if a valid lp is supplied.

args

Pointer to an argument structure containing input and output
fields.

args.m_addr

Millennium address to check (see page 51).

Output Return value: None.

args.exists

If nonzero, address exists.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvCheckAddress

March 2017 51

Details Wild cards (M_ADDR_WILDCARD) can be used for any address
components.

Example struct args_addr_info args;

/* Check for the address representing the speech facility
 on module 2, channel 2, machine 1. */
BT_ZERO(args);
args.m_addr.mm_bFacility = MILL_FACILITY_SPEECH;
args.m_addr.mm_bModule = 2;
args.m_addr.mm_bChannel = 2;
args.m_addr.mm_bMachine = 1;

BfvCheckAddress(NULL,&args);
if (args.exists)
 printf("Address does exist.\n");
else
 printf("Address does not exist.\n");

BfvCheckFacility

March 2017 52

BfvCheckFacility

Purpose Checks for the existence of the specified facility on the destination
module and channel.

Syntax void
BfvCheckFacility (lp, args)

BTLINE *lp;
struct args_addr_info *args;

The structure contains the following fields.

Input Fields unsigned facility;

Output Fields unsigned exists;
RES res;

Input lp

Pointer to the BTLINE structure of the channel to check.

args

Pointer to an argument structure containing input and output
fields.

args.facility

The facility to check.

Output Return value: None.

args.exists

If nonzero, the facility exists.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvCheckFacility

March 2017 53

Example BTLINE *lp;
struct args_addr_info args;

/* Check for the speech facility on the attached
 channel. */
BT_ZERO(args);
args.facility = MILL_FACILITY_SPEECH;
BfvCheckFacility(lp,&args);
if (args.exists)
 printf("Facility does exist.\n");
else
 printf("Facility does not exist.\n");

BfvLineAttach

March 2017 54

BfvLineAttach

Purpose Opens the specified channel and initializes the BTLINE structure.

Syntax BTLINE *
BfvLineAttach (args)

struct args_line_admin *args;

The structure contains the following fields.

Input Fields int unit;

Output Fields RES res;

Modified Fields unit, dest_addr, local_addr, present, unique,
reset_on_close.

Input args

Pointer to an argument structure containing input and output
fields.

args.unit

The unit number range is 0...N –1, where N = the number of
channels in the system. This value is also referred to as the
ordinal channel number. If unit = –1, the next available line is
attached.

Output Return value:

A pointer to the BTLINE structure is returned if the attach is
successful.
NULL is returned if the attach fails due to error. This condition can
occur if the unit number is invalid, the line is already attached, or
a system error occurs.

args.res

BfvLineAttach

March 2017 55

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvLineAttach

March 2017 56

Details When the function returns, check the LINE_TYPE macro to make
sure the board is the type you want (BOARD_TYPE_BOSTON).
BOARD_TYPE_TR114 is provided for compatibility.

A single process can open more than one channel. The
BfvLineReset function normally follows BfvLineAttach to ensure
the channel is properly initialized.

Note: Do not use line pointer sharing, which causes the same line
pointer to be used by two threads at the same time. Attempting
to do so will cause anomalous application behavior.

See Also BfvLineReset, BfvLineDetach, BfvLineConfig,
BfvSessionAttach

Example BTLINE *lp;
int unit;
struct args_line_admin args;

BT_ZERO(args);
args.unit = unit;
if ((lp = BfvLineAttach(&args)) == NULL)
{
 fprintf(stderr, “Can’t attach to channel\n”);
}

BfvLineConfig

March 2017 57

BfvLineConfig

Purpose Permits configuration of the channel in the same manner as the
user-defined configuration file, but uses data buffers instead of a file.

Syntax int
BfvLineConfig (lp, args)

BTLINE *lp;
struct args_line_admin *args;

The structure contains the following fields.

Input Fields char *config_file_line;
int no_fonts;
int skip_teleph;
int no_init;

Output Fields long reset_status;
RES res;

Input lp

Pointer to the BTLINE structure of the channel to configure.

args

Pointer to an argument structure containing input and output
fields.

args.config_file_line

A null-terminated ASCII string, containing a line of configuration
information in the same format as the user-defined configuration
file used with BfvLineReset.
This format is described in Volume 6, Appendix A, Configuration
Files.

args.no_fonts

If set to 1, the Bfv API will not automatically attempt to download
any fonts to the channel. The value must be the same for each call
to this function and for the preceding call to BfvLineReset.

BfvLineConfig

March 2017 58

args.skip_teleph

If nonzero, indicates that the function should not attempt
telephony/digital configuration. The value must be the same for
each call to this function and for the preceding call to
BfvLineReset.

args.no_init

If nonzero, instructs the function to not reset the channel and
limit any other interaction with it. The value must be the same
for each call to this function and for the preceding call to
BfvLineReset.

Output Return value:

0 Normal return.

–1 An error occurred. Check args.reset_status for more
information.

args.reset_status

A value containing status information about this call. Bits in the
value indicate particular conditions that have occurred. The
value is valid only upon completion of the set of calls to
BfvLineConfig (when called with NULL).

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details To use the BfvLineConfig function, call BfvLineReset with the
args.use_config_lines input field set to 1. When BfvLineReset is
called in this manner, BfvLineConfig must be called.

The application must call this function repeatedly with configuration
lines, until the entire set of configuration information is processed.
After all configuration lines are processed, this function must be
called once with a NULL args.config_file_line value.

This function cannot be used with the call_control configuration
option. To configure the telephony on a module, use the
BfvCallCtrlInit function before calling this function and
BfvLineReset.

See Also BfvLineReset, BfvCallCtrlInit

BfvLineConfig

March 2017 59

Example BTLINE *lp;
struct args_line_admin args;

BT_ZERO(args);
args.unit = 0;
lp = BfvLineAttach(&args);

args.config_file_name = "btcall.cfg";
args.use_config_lines = 1;
BfvLineReset(lp,&args);

args.config_file_line = "id_string my local id";
BfvLineConfig(lp,&args);

args.config_file_line = "font_file ibmpcps.fz8";
BfvLineConfig(lp,&args);
...
args.config_file_line = NULL;
BfvLineConfig(lp,&args);

BfvLineDetach

March 2017 60

BfvLineDetach

Purpose Closes the specified channel and frees the BTLINE structure.

Syntax void
BfvLineDetach (lp, args)

BTLINE *lp;
struct args_line_admin *args;

The structure contains the following fields.

Output Field RES res;

Input lp

Pointer to the BTLINE structure of the channel to detach.

args

Pointer to an argument structure containing input and output
fields.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details The BfvLineDetach function is exactly the same as the
BfvSessionDetach function.

See Also BfvLineAttach

Example BTLINE *lp;
struct args_line_admin args;

BT_ZERO(args);
BfvLineDetach(lp, &args);

BfvLineInfo

March 2017 61

BfvLineInfo

Purpose For a given channel, retrieves and returns the board type and I/O
port address from the driver.

Syntax int
BfvLineInfo (args)

struct args_line_admin *args;

The structure contains the following fields.

Input Fields int unit;

Output Fields int type;
unsigned port;
unsigned base;
RES res;

Input args

Pointer to an argument structure containing input and output
fields.

args.unit

The ordinal channel number. Unit numbering starts at 0 and
continues from board to board.

Output Return value:

0 The type and port arguments were successfully updated.

nonzeroAn error occurred while attempting to query the driver.
The driver is probably installed incorrectly.

BfvLineInfo

March 2017 62

args.type

Type of the specified channel. The possible values are:

args.port

The port address of the specified channel. Currently always 0.

args.base

The board base address for the specified channel. Currently
always 0.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details This function checks whether a particular ordinal channel exists.

See Also BfvLinesAvail

Example struct args_line_admin args;

BT_ZERO(args);
args.unit = 0;
BfvLineInfo(&args);
printf("Channel 0 has type %d, port %x, base %x\n",
 args.type, args.port, args.base);

BOARD_TYPE_UNKNOWN

No board or malfunctioning board.
0

BOARD_TYPE_BOSTON

Brooktrout board.
3

BOARD_TYPE_TR114

For compatibility only.
3

BfvLineReset

March 2017 63

BfvLineReset

Purpose Resets the channel and the state of the BTLINE structure.

Syntax int
BfvLineReset (lp, args)

BTLINE lp;
struct args_line_admin *args;

The structure contains the following fields.

Input Fields char *config_file_name;
int use_config_lines;
int mill_load_fonts;
int skip_teleph;
int no_init;

Output Fields long reset_status;
RES res;

Modified Fields config_file_line

Input lp

Pointer to the BTLINE structure of the channel to reset.

args

Pointer to an argument structure containing input and output
fields.

args.config_file_name

An ASCII string that contains the name of the user-defined
configuration file for that line. The configuration files contain
setup and telephony parameters and are constructed using the
configuration file formats described in Volume 6, Appendix A,
Configuration Files. If the value is NULL, no configuration file is
used.

BfvLineReset

March 2017 64

args.use_config_lines

If set to 1, indicates that configuration is performed using the
BfvLineConfig function, either in addition to or instead of a
supplied configuration file.

args.mill_load_fonts

Indicates that font downloads are to be performed according to
the user configuration file information. This value is only valid for
line pointers attached to logical channel 1 using
BfvSessionAttach.

args.skip_teleph

If nonzero, indicates that telephony initialization should not be
attempted.

args.no_init

If set to 1, instructs the function to not reset the channel nor
initialize the channel by sending parameter settings to it. This
value will only allow capability settings to be put into place so
that future calls will have proper information. If set to 2, no
interaction with the destination channel or address will be
performed at all, not even to determine capabilities. This input
field is only intended to be used when a channel already in use by
one line pointer is about to be used by another line pointer
obtained from a new BfvLineAttach or BfvSessionAttach call.

Output Return value:

0 Channel successfully reset.

<0 Error condition, channel reset unsuccessful.

–1 Check args.reset_status for more information.

args.reset_status

A value containing status information about this call. Bits in the
value indicate particular conditions that have occurred.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvLineReset

March 2017 65

Details This function performs the following:

 Resets the channel.

 Initializes both the state of the BTLINE structure and the driver
data structures for the specified channel.

 Reloads the configuration parameters from the specified
user-defined configuration file (often called btcall.cfg) and the
country telephony configuration file (default BT_CPARM.CFG).

 Downloads the fonts specified by the font_file parameter in the
user-defined configuration file if the args.mill_load_fonts option
is specified.

BT_CPARM.CFG contains the country-specific parameters and is
provided by Dialogic. The location of BT_CPARM.CFG must be
specified in the user-defined configuration file (see the bt_cparm
keyword in Volume 6, Appendix A, User-defined Configuration File)
or BT_CPARM.CFG must reside in the current directory. For
information about the parameters in BT_CPARM.CFG, see Volume
6, Appendix G, Country-Specific Parameter Files.

The channel is completely reset and re-initialized (includes going
on-hook), and all previous channel information is cleared.

Call this function after the BfvLineAttach function, but before
using the channel between fax and voice connections, or at any other
time that channel re-initialization is appropriate.

Note: You should call this function at the end of every phone call,
whether or not an error occurred.

When args.mill_load_fonts is nonzero, all fonts indicated in the user
configuration file will be downloaded. If none are specified, then font
0 will be loaded using the default font name (“ibmpcps.fz8”). In
addition, font number 255 serves as a default font and will be loaded
regardless of whether any other font numbers are specified. This font
is used if a font number referenced for ASCII conversion has not
been loaded. It has the same default filename as font 0 if not
specified. See the BfvFaxDownloadFont function in Volume 4, Fax
Processing, for more details about font downloading. See the
LINE_FONT_DOWNLOADED macro (Volume 4) to determine if a font
was successfully downloaded.

Configuration can be performed with either an ASCII configuration
file, individual configuration lines via the BfvLineConfig function,
both, or none. These are controlled by the args.config_file_name and
args.use_config_lines input fields.

BfvLineReset

March 2017 66

 The order of configuration steps is:

1. Set all parameters to default values.

2. Process parameters specified by the configuration file.

3. Process parameters specified by individual configuration lines
(BfvLineConfig).

When a parameter is processed, the new value specified overrides
the old value.

This function's return value indicates only severe errors during
reset. Other conditions, which might or might not be considered
errors, can occur. These conditions include:

 Failure to open the font file specified in the user-defined
configuration file.

 Failure to open the BT_CPARM.CFG file.
 Telephony configuration errors.

These and other conditions can be determined by examining the
args.reset_status output field. If BfvLineConfig is used, the
args.reset_status value supplied by that function should be examined
as well. The bits in the value indicate particular conditions that have
occurred and are defined by the RST_... values in the mill_api.h
header files.

See Also BfvLineAttach, BfvLineDetach, BfvLineConfig,
LINE_CPU_TYPE, LINE_FIRM_DOWNLOADED,
LINE_FONT_DOWNLOADED, LINE_HAS_CAP

Example BTLINE *lp;
struct args_line_admin args;

BT_ZERO(args);
args.config_file_name = "btcall.cfg";
BfvLineReset(lp, &args);

BfvLinesAvail

March 2017 67

BfvLinesAvail

Purpose Checks the driver and returns a dynamically allocated array that
contains the types of all the channels.

Syntax char *
BfvLinesAvail (args)

struct args_line_admin *args;

The structure contains the following fields.

Output Fields unsigned base;
RES res;

Modified Fields unit, type, port.

Input args

Pointer to an argument structure containing input and output
fields.

Output Return value:

Pointer to a char * array containing one byte per channel. The
byte for each channel contains one of the following values.

args.base

The board base address for the specified channel. Currently
always 0.

BOARD_TYPE_UNKNOWN

No board or malfunctioning board.

0

BOARD_TYPE_BOSTON

Brooktrout board.

3

BOARD_TYPE_TR114

For compatibility only.

3

BfvLinesAvail

March 2017 68

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details This function checks whether a particular ordinal channel exists.

The returned array is dynamically allocated. The application is
responsible for freeing this memory when finished with it.

Enough memory is allocated for the maximum number of channels
supported by the driver. In practice, the application needs to
examine only as many channels as are in the system.

See Also BfvLineInfo

Example char *chan_info;
struct args_line_admin args;

BT_ZERO(args);
chan_info = BfvLinesAvail(&args);
printf("channel 0 has type %d.\n", chan_info[0]);
free(chan_info);

BfvModuleDeactivate

March 2017 69

BfvModuleDeactivate

Purpose Deactivates a hardware module, marking it as dead.

Syntax void
BfvModuleDeactivate (args)

struct args_addr_info *args;

The structure contains the following fields.

Input Fields unsigned mod_num;
int deact_mode;
unsigned slot_num;

Output Fields RES res;

Input args

Pointer to an argument structure containing input and output
fields.

args.mod_num

If nonzero, specifies the module number to deactivate. Only one of
args.mod_num or args.slot_num can be specified.

args.deact_mode

Used with args.mod_num. If the value is DEACT_MODE_SINGLE
(the default), only the specified module number is deactivated. If
it is DEACT_MODE_ALL, all modules on the board containing the
specified module number are deactivated. Valid values are:

args.slot_num

If nonzero, specifies the cPCI slot number of the board containing
the module(s) to deactivate. Specify only one value for either
args.mod_num or args.slot_num.

DEACT_MODE_SINGLE 0

DEACT_MODE_ALL 1

BfvModuleDeactivate

March 2017 70

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details The SR140 does not support this function.

After using this function to deactivate a module, no further
communication with the module is possible until it is reactivated.
Reactivation can be done using BfvFirmwareDownload or
BfvFirmwareDownloadData.

Deactivation of a hardware module is often done so as to safely
perform a manual hot swap of a board (for bus types that support hot
swap, such as cPCI).

See Also BfvFirmwareDownload, BfvFirmwareDownloadData

Example struct args_addr_info args;

/* Deactivate module 2. */
BT_ZERO(args);
args.mod_num = 2;
BfvModuleDeactivate(&args);

BfvModuleInfo

March 2017 71

BfvModuleInfo

Purpose Retrieves information about a module.

Syntax void
BfvModuleInfo (lp, args)

BTLINE *lp;
struct args_addr_info *args;

The structure contains the following fields.

Input Fields unsigned mod_num;

Output Fields unsigned exists;
unsigned num_channels;
unsigned hardware;
unsigned bus_type;
unsigned hw_type;
unsigned hw_id;
unsigned ordinal_start;
unsigned num_ordinals;
unsigned num_ordinals_init;
unsigned short pci_vend_id;
unsigned short pci_dev_id;
unsigned short pci_sub_vend_id;
unsigned short pci_sub_id;
unsigned char pci_interf_type;
unsigned char pci_runtime_start;
unsigned char pci_runtime_size;
unsigned char pci_mem_start;
unsigned char pci_mem_size;
unsigned char pci_modctrl_start;
unsigned char pci_modctrl_size;
unsigned char pci_io_start;
unsigned char pci_io_size;
unsigned char pci_irq;
unsigned char boot_ver_major;
unsigned char boot_ver_middle;
unsigned char boot_ver_minor;
unsigned char boot_ver_build;
unsigned short boot_ver_auto_num;
char boot_ver_date[20];
char boot_ver_comment[50];
unsigned hw_info;
RES res;

BfvModuleInfo

March 2017 72

Input lp

Pointer to the BTLINE structure. Can be NULL. Uses fewer
resources if a valid lp is supplied.

args

Pointer to an argument structure containing input and output
fields.

args.mod_num

Module number.

Output Return value: None.

args.exists

If nonzero, indicates that the module exists.

args.num_channels

Indicates the number of channels on the module. If this value is
0, then the module is dead.
The value is the total number of channels supported by the
module, including its administrative channel. The total is
normally 1 more than the number of work channels, which are
mapped into ordinal channel numbers.
For example, a hardware module with 48 work channels will be
indicated as having 49 channels, and a hardware module with no
work channels (no firmware downloaded) will be indicated as
having 1 channel.

BfvModuleInfo

March 2017 73

args.hardware

If nonzero, indicates the module is a hardware module.

args.bus_type

If this is a hardware module, indicates the bus type of the module.
Values are:

args.hw_type

If this is a hardware module, indicates a bus-type specific
hardware type value (PCI device ID, ISA data mover).

args.hw_id

If this is a hardware module, indicates the unique board identifier
value, if supported.

args.ordinal_start

If this is a hardware module, indicates the starting ordinal
channel value mapped to this module.

args.num_ordinals

If this is a hardware module, indicates the number of ordinal
channel values mapped to this module.

MILL_BUS_UNKNOWN 0

MILL_BUS_ISA 1

MILL_BUS_PCI 2

MILL_BUS_VIRT_MOD 3

BfvModuleInfo

March 2017 74

args.num_ordinals_init

The number of ordinals that the module was initially configured
with in the driver. If this differs from the number of ordinals
expected for the channels currently present, it may indicate that
firmware reconfiguration took place.

args.pci_vend_id

For PCI boards, indicates the PCI Vendor ID from configuration
space.

args.pci_dev_id

For PCI boards, indicates the PCI Device ID from configuration
space.

args.pci_sub_vend_id

For PCI boards, indicates the PCI Subsystem Vendor ID from
configuration space.

args.pci_sub_id

For PCI boards, indicates the PCI Subsystem ID from
configuration space.

args.pci_interf_type

For PCI boards, indicates the PCI Interface type from
configuration space.

args.pci_runtime_start

For PCI boards, indicates the start of runtime registers.

args.pci_runtime_size

For PCI boards, indicates the size of runtime registers.

args.pci_mem_start

For PCI boards, indicates the start of packet memory.

args.pci_mem_size

For PCI boards, indicates the size of packet memory.

args.pci_modctrl_start

For PCI boards, indicates the start of module ctrl registers.

args.pci_modctrl_size

For PCI boards, indicates the size of module ctrl registers.

BfvModuleInfo

March 2017 75

args.pci_io_start

For PCI boards, indicates the start of IO area.

args.pci_io_size

For PCI boards, indicates the size of IO area.

args.pci_irq

For PCI boards, indicates the interrupt.

args.boot_ver_major

Indicates the major version number of the hardware module’s
boot ROM.

args.boot_ver_middle

Indicates the middle version number of the hardware module’s
boot ROM.

args.boot_ver_minor

Indicates the minor version number of the hardware module’s
boot ROM.

args.boot_ver_build

Indicates the hardware module’s boot ROM build number.

args.boot_ver_auto_num

Indicates the “auto number” of the boot ROM firmware. This
value is used internally, and refers to internal build procedures.

args.boot_ver_date

Indicates the hardware module’s boot ROM date.

BfvModuleInfo

March 2017 76

args.boot_ver_comment

Reports comments about the hardware module’s boot ROM.

args.hw_info

Reports hardware information supplied by the firmware.
Value contains bits defined as follows:

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Gets information about the module specified by args.mod_num. The
output fields indicate whether the module exists, how many
channels it supports (including the administrative channel), and
whether it is a hardware module.

For SR140, the args.hardware will be set to nonzero, the same as a
hardware module.

When the firmware is downloaded to a module for the first time, the
assigned ordinal channel numbers start wherever the assignment
left off on the previous module. As the system initializes the
modules, this numbering process creates a continuous ordering of
the channel assignments across all the modules in the system. On
later downloads, each module’s ordinals begin at the same location,
regardless of any decrease in the channel count of a lower-numbered
module. Therefore, if you decrease the channel count for a lower
numbered module, the process creates gaps in the channel
numbering assignments, possibly affecting your application. If you
attempt to increase the channel count above any module’s initial
channel count, the system ignores the added channels.

For the following situations, restart the driver whenever you want
to:

 Retain a continuous assignment of channel numbers after
decreasing the channel count on any module.

 Increase the number of channels above a module’s initial
channel count.

Low density PCI mezzanine LP01H present 0x1

High density PCI mezzanine HP02e present 0x2

March 2017 77

Chapter 2: BfvModuleInfo

Example See the modinfo.c program located in the bapp.src directory.

BfvSessionAttach

March 2017 78

BfvSessionAttach

Purpose Creates a session for communicating with any facilities on a
specified channel located on a specified module and machine.

Syntax BTLINE *
BfvSessionAttach (args)

struct args_line_admin *args;

The structure contains the following fields.

Input Fields MILL_ADDR dest_addr;
MILL_ADDR local_addr;
int present;
int unique;
int reset_on_close;
int err_on_deact;
unsigned buf_size;

Output Fields RES res;
MILL_ADDR local_addr;

Input args

Pointer to an argument structure containing input and output
fields.

args.dest_addr

Destination Millennium address. Address component values are
normally in the range 0x2 – (M_ADDR_WILDCARD-1), 1 for
administrative purposes, M_ADDR_WILDCARD for wildcard. The
machine component can be specified as 0 for current machine ID.
When specifying a standard destination address, the module
component will be nonzero. In this case the facility component is
not used.
The module component can also be 0 to indicate that an ordinal
channel value will be specified in a list of all non-administrative
channels on all hardware modules (for more information on these
channel numbers see BfvLineAttach). The ordinal value is a

March 2017 79

Chapter 2: BfvSessionAttach

2-byte value with the least significant byte stored in the channel
component and the most significant byte stored in the facility
component.
The MILL_ADDR structure is documented in Volume 6,
Appendix B, Bfv API Structures.

args.local_addr

Requested local Millennium address. Normally set to 0 for driver
assignment.
The MILL_ADDR structure is documented in Volume 6,
Appendix B, Bfv API Structures.

args.present

If nonzero, indicates that the destination address must exist for
this attach to succeed.

args.unique

If nonzero, indicates that the destination address must not
already be attached for this attach to succeed.

args.reset_on_close

If nonzero, indicates that the destination channel, if hardware
and non-administrative, will automatically be reset and its
output buffers cleared when the session is detached. You should
set this option unless multiple line pointers are being used to
attach to the same channel.

args.err_on_deact

If nonzero, the application session will be notified if the attached
address is deactivated. This condition can happen due to an
explicit deactivation, if the destination does not behave properly,
or of its own volition. Set this value to ensure that the application
will terminate, rather than continue to wait for a response that
will never arrive.
You should set this option whenever attaching to a hardware
channel.

args.buf_size

Specifies a driver buffer size to be used when creating the
application session. This will be in effect only if greater than the
default driver buffer size. This feature should be used only in
circumstances where extremely high traffic volume warrants.

BfvSessionAttach

March 2017 80

Output Return value:

A pointer to the BTLINE structure or NULL is returned on error.

args.local_addr

The local assigned Millennium address.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details To provide multiple access to the same channel, attach a second line
pointer with args.unique set to 0 and args.reset_on_close possibly set
to 0 as well. When BfvLineReset is called, often the args.no_init
option will be used.

This function is useful for applications using full duplex speech but
only when it is certain that use of the multiple line pointers will not
interfere.

Note: Do not use line pointer sharing, which causes the same line
pointer to be used by two threads at the same time. Attempting
to do so will cause anomalous application behavior.

The "channel" parameter in the user-defined configuration file
cannot be used with a line pointer from this function, unless it is
attached to an ordinal channel.

See Also BfvLineAttach

Example BTLINE *lp;
struct args_line_admin args;

/* Attempt to attach to the administrative facility on
 module 2, channel 1, using the current machine. If it
 does not exist, the attach will fail. */
BT_ZERO(args);
args.dest_addr.mm_bFacility =
 MILL_FACILITY_ADMINISTRATION;
args.dest_addr.mm_bModule = 2;
args.dest_addr.mm_bChannel = 1;
args.dest_addr.mm_bMachine = 0;
args.present = 1;
if ((lp = BfvSessionAttach(&args)) == NULL
 printf("SessionAttach failed.\n");

March 2017 81

Chapter 2: BfvSessionDetach

BfvSessionDetach

Purpose Closes the specified channel and frees the BTLINE structure.

Syntax void
BfvSessionDetach (lp, args)

BTLINE *lp;
struct args_line_admin *args;

The structure contains the following fields.

Output Field RES res;

Input lp

Pointer to the BTLINE structure of the channel to detach.

args

Pointer to an argument structure containing input and output
fields.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details The BfvSessionDetach function is exactly the same as the
BfvLineDetach function.

See Also BfvSessionAttach

Example BTLINE *lp;
struct args_line_admin args;

BT_ZERO(args);
BfvSessionDetach(lp, &args);

Macros

March 2017 82

Macros
BT_ZERO (item)

This macro is equivalent to calling memset to clear (set contents
to 0) an item of any type. This macro, or equivalent behavior,
must be performed on argument structures before calling Bfv API
functions (see Using Bfv API Function Argument Structures on
page 31).

LINE_STATE (lp)

Accesses the current state of the line specified by lp.
This macro evaluates to an integer. Applications can compare this
value to the enum values defined in the mill_api.h header file to
determine the current line state or set the macro to one of the
enum values. Valid values are:
LINE_STATE_AWAIT_TRAINING
LINE_STATE_CONNECTED
LINE_STATE_FAX_MODE
LINE_STATE_HOLDUP
LINE_STATE_IDLE
LINE_STATE_NOLOOP
LINE_STATE_OFF_HOOK
LINE_STATE_RCV_INFO
LINE_STATE_RESETTING
LINE_STATE_RETAIN
LINE_STATE_RINGING
LINE_STATE_TURNAROUND

When set manually, the LINE_STATE is most often set to
LINE_STATE_CONNECTED.

March 2017 83

Chapter 2: BfvSessionDetach

LINE_TYPE (lp)

Returns a value that identifies the type of channel specified by lp.
Valid return values are:

LINE_UNIT_NUM (lp)

Returns the channel number of the channel specified by lp.
If no ordinal channel number was specified when attaching, then
the value returned will be –1.

LINE_CPU_TYPE (lp)

For compatibility only.
This macro returns 1.

LINE_HAS_CAP (lp, cap)

Determines if a channel has a particular capability. Returns
nonzero if lp has capability cap; returns 0 if lp does not have
capability cap. The caps.h header file contains definitions of the
capabilities. You should use this macro instead of examining the
LINE_TYPE value.

MOD_BOARD_SLOT (mod_num)

For cPCI boards only, returns the cPCI slot number
corresponding to the given module number.

MOD_CPU_NUM (mod_num)

For cPCI boards only, returns the CPU number within the board
corresponding to the given module number.

BOARD_TYPE_UNKNOWN

No board or malfunctioning board

0

BOARD_TYPE_BOSTON

Brooktrout board

3

BOARD_TYPE_TR114

For compatibility only

3

Macros

March 2017 84

LP_BOARD_SLOT (lp)

For cPCI boards only, returns the cPCI slot number
corresponding to the given line pointer.

LP_CPU_NUM (lp)

For cPCI boards only, returns the CPU number within the board
corresponding to the given line pointer.

LINE_ALERT_CTL (lp)

Accesses a value that controls the application’s behavior when a
channel receives an alert.
If the value is 0 (default), the application behaves as described
under BfvLineAlert. Most Bfv API functions return an error
indication as soon as possible, and in this case, the application
should call BfvLineReset.
The application can set the bits within this value to alter this
default behavior. The following bit is defined:
b0 — Causes the speech record and playback functions to attempt
to quit with no loss of data and with continued use of the channel
without a reset after the function returns.

LINE_PRIVATE_USER_DATA (lp)

Accesses a private user data pointer specific to the provided line
structure pointer which can be read or written at any time. This
value is not cleared by BfvLineReset.

BT_ARGS ((arg-list))

Macros

March 2017 85

BT_CBARGS ((arg-list))

Applications use the ARGS macro for the arguments to a function
and the CBARGS (callback args) macro for a function pointer
argument to a function. The Bfv API supplies two macros since
different compilation environments might handle these
conditions differently.
Both macros expand to (arg-list) if the compilation environment
supports function prototypes; otherwise, they expand to ().
Therefore, a function foo, which takes two arguments, bar1 and
bar2, could have a portable prototype of:
int foo ARGS((int bar1, int bar2));

Applications use the following macros to deal with
architecture-dependent, multibyte integer storage formats.

BT_LITTLE_ENDIAN

Defined only when the application is compiled on a system with
little endian integers (low byte first). Almost all PCs use this
format.

BT_BIG_ENDIAN

Defined only when the application is compiled on a system with
big endian integers (high byte first).

BYTE_SWAP_SHORT (v)

This macro reverses the byte order of a short (two-byte) integer
variable. Defined only if BT_BIG_ENDIAN is defined.

BYTE_SWAP_LONG (v)

This macro reverses the byte order of a long (four-byte) integer
variable. Defined only if BT_BIG_ENDIAN is defined.

USES_FAT_FILESYSTEM

Defined only when the application is compiled on a system that uses
the Microsoft FAT or NTFS file system such as Windows.

Macros

March 2017 86

BT_API_SET_VER ()

When called once at the start of a Bfv API application, this macro
informs the Bfv API about the version being used to compile the
program. Use this macro to allow the application to support
binary compatibility, enabling an application written and
compiled with SDK 6.0 or later to work with a later SDK version
without a recompile or relink.
For more information on binary compatibility, refer to the
Compatibility for Compiling section in the Dialogic® Brooktrout®
Fax Products SDK Developer’s Guide.

 BROOKTROUT_MILLENNIAL

Indicates the Bfv API environment. This symbol defines that the
source is being compiled in a Millennial (Dialogic® Brooktrout®
boards) environment.

The following macros are rarely used. They provide direct access to
configuration structures used internally within the Bfv API.

LINE_PHONE_STRUCT (lp)

Returns a pointer to a structure of type country_phone_info
containing country specific telephony parameters. See the
phone.h header file for the structure definition.

LINE_CONFIG_STRUCT (lp)

Returns a pointer to a structure of type user_config_params
containing user supplied configuration parameters. See the line.h
header file for the structure definition.

The following macros return the Bfv API or driver version number
either as a character string or as decimal number. The Bfv API and
driver version numbers should be the same.

API_VER_NUM

Returns the Bfv API version number as a decimal number, for
example, 4900.

Macros

March 2017 87

API_VERSION

Returns the Bfv API version number as a character string, for
example, “4.9.00”.

MILL_API_BUILD_NUM

Returns the build number of the Bfv API.

API_V1

Returns the high, or major, portion of the Bfv API version
number. This value refers to the driver version installed when the
application is compiled. For example, if the version number
is 4.9.00, this macro returns 4.

API_V2

Returns the second highest, or minor, portion of the Bfv API
version number. This value refers to the driver version installed
when the application is compiled. For example, if the version
number is 4.9.00, this macro returns 9.

API_V3

Returns the third highest portion of the Bfv API version number,
which is the upper digit of the revision number. This value refers
to the driver version installed when the application is compiled.
For example, if the version number is 4.9.00, this macro
returns 0.

API_V4

Returns the fourth highest portion of the Bfv API version
number, which is the lower digit of the revision number. This
value refers to the driver version installed when the application
is compiled. For example, if the version number is 4.9.00, this
macro returns 0.

Macros

March 2017 88

LINE_API_VER_LOADED ()

Allows an application to retrieve information about the
linked/loaded Bfv API library version (see API_VER_NUM). The
value returned is the library version number plus 100000 times
the library build number. For example, if the library version is 4.9
build 1, this macro returns 104900.

MILL_VER_NUM

Returns the driver version number as a decimal number, for
example, 4900.
This value refers to the driver version installed when the
application is compiled. See also
LINE_DRIVER_VER_LOADED (lp).

MILL_DRIVER_VERSION

Returns the driver version number as a character string, for
example, “4.9.00”.
This value refers to the driver version installed when the
application is compiled. See also
LINE_DRIVER_VER_LOADED (lp).

MILL_BUILD_NUM

Returns the build number of the driver.
This value refers to the driver version installed when the
application is compiled. See also
LINE_DRIVER_VER_LOADED (lp).

MILL_V1

Returns the high, or major, portion of the driver version number.
For example, if the version number is 4.9.00, this macro
returns 4.
This value refers to the driver version installed when the
application is compiled. See also
LINE_DRIVER_VER_LOADED (lp).

Macros

March 2017 89

MILL_V2

Returns the second highest, or minor, portion of the driver
version number. For example, if the version number is 4.9.00, this
macro returns 9.
This value refers to the driver version installed when the
application is compiled. See also
LINE_DRIVER_VER_LOADED (lp).

MILL_V3

Returns the third highest portion of the driver version number,
which is the upper digit of the revision number. For example, if
the version number is 4.9.00, this macro returns 0.
This value refers to the driver version installed when the
application is compiled. See also
LINE_DRIVER_VER_LOADED (lp).

MILL_V4

Returns the fourth highest portion of the driver version number,
which is the lower digit of the revision number. For example, if
the version number is 4.9.00, this macro returns 0.
This value refers to the driver version installed when the
application is compiled. See also
LINE_DRIVER_VER_LOADED (lp).

LINE_DRIVER_VER_LOADED (lp)

Allows an application to retrieve information about the loaded
driver version (see MILL_VER_NUM). The value returned is the
driver version number multiplied by 10000 plus the driver build
number. For example, if the driver version is 4.9 build 1, this
macro returns 49000001.

Macros

March 2017 90

Low-Level Macros
The following low-level macros are rarely used. If you use them, do
so with care.

LINE_DEST_ADDR (lp)

Returns the attached destination Millennium address, type
MILL_ADDR. This value is either the address implicitly attached
to via BfvLineAttach or the address explicitly attached to via
BfvSessionAttach (see Volume 6, Appendix B, Bfv API
Structures).

LINE_APP_ADDR (lp)

Returns the local application session Millennium address, type
MILL_ADDR. This value is the address assigned to the application
session by the driver when BfvLineAttach or
BfvSessionAttach is done (see Volume 6, Appendix B, Bfv API
Structures).

LINE_SRC_ADDR (lp)

Accesses, for setting or reading, the default source address used
for sending packets from this application. This value is normally
the same value as that returned by LINE_APP_ADDR (lp),
but in rare circumstances an application can choose to set this
address to a different value.

Macros

March 2017 91

LINE_SET_INCOMING_CMD_FUNC (lp, func)

Sets up a user-supplied function that the Bfv API calls for every
incoming command it processes for the current application
session. The Bfv API calls this function after performing its own
internal processing of the command.
If func is set to NULL, this feature is disabled. This setting is not
cleared by BfvLineReset.
The user supplied function is called as:

void (*func)(BTLINE *lp,struct args_packet *args);

The lp argument contains the line pointer, and the args argument
is a pointer to an args_packet structure containing a parsed
command. The structure and its contents must not be modified
except as described in Handling Alerts (see page 92).
Use this macro to check for particular incoming commands or
status changes while a Bfv API function call is in progress.

LINE_INCOMING_CMD_FUNC (lp)

Similar to Handling Alerts. Allows access to the incoming
command function for setting or reading.

Handling Alerts

March 2017 92

Handling Alerts
When an alert is received, the user-supplied function will be called
with a particular command described by args. It will contain
args->facility == MILL_FACILITY_HOST_CTRL,
args->cmd_verb == MILL_VERB_EVENT, and
args->cmd_specifier == HOST_CTRL_ALERT_EVENT. The
args->var_value field will contain the alert value supplied when the
alert was triggered.

If the function takes no action, alert processing will proceed and the
normal outcome of an alert, stopping current activities, will take
place as described under BfvLineAlert. If the function sets
args->facility to 0, the alert will be cancelled, and no further alert
processing will occur.

The alert can be modified to appear to be a different incoming
command. In this case, the Bfv API will process the command, and
the incoming command function will be called again with the new
values, just as if the command had actually been received. The
modification can be done either by modifying args->facility,
args->cmd_verb, args->cmd_specifier, args->bit_len, args->tag_ptr,
and args->total_tag_len, or by modifying args->facility,
args->cmd_buf, and args->cmd_len. The former method is for an
already parsed command (except possibly for tag values), and the
latter is for a command that is unparsed.

March 2017 93

3 - Firmware

This chapter describes the functions used to download firmware and
feature set data, and to get feature data or firmware configuration
options.

With the specialized firmware functions, you can download firmware
to the module from a file or a buffer and get information about a
module’s firmware configuration options.

Firmware macros can provide the version number, build number and
date of the following:

 Control processor firmware

 Boot ROM firmware

 DSP (version and number of DSPs on the module)

Function Summary

March 2017 94

Function Summary
Table 2 provides a brief summary of the functions used to download
firmware and feature set data, get feature data, and get the
firmware’s configuration options.

Table 2. Firmware Function Summary

Function Purpose Page

BfvFeatureSetDownload Downloads feature set data supplied in a
specified file.

95

BfvFeatureSetDownloadData Downloads feature set data supplied in a
specified user buffer.

97

BfvFeatureSetQuery Queries the feature data currently stored in the
module's feature set hardware.

99

BfvFirmwareDownload Downloads firmware to a module from a file. 101

BfvFirmwareDownloadData Downloads firmware to a module from a buffer. 105

BfvModuleConfigSpecsGet Gets information about a module's possible
firmware configuration options, as reported by
the firmware.

109

BfvFeatureSetDownload

March 2017 95

BfvFeatureSetDownload

Purpose Downloads feature set data supplied in a specified file.

Syntax int
BfvFeatureSetDownload (lp, args)

BTLINE *lp;
struct args_feature_set *args;

The structure contains the following fields.

Input Fields char *fname;

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.fname

Name of the file containing feature data to download.

BfvFeatureSetDownload

March 2017 96

Output Return value:

0 Success.

>0 Operational error reported by firmware.

<0 Other error.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details SR140 does not support this function.

This function operates on raw binary feature set data files. Dialogic
commonly supplies license files in ASCII format. These files contain
an ASCII representation of the feature set data, but this function
will not operate directly on the ASCII file format.

Feature set data contains licensing information specific to a given
board. The licensing information contains information about
features the user can access, the number of channels available, and
other pertinent information.

See Also BfvFeatureSetDownloadData, BfvFeatureSetQuery

Example See the feature.c program located in the bapp.src directory.

ADMIN_FTRL_NO_MEMORY_DEF 0x01

ADMIN_FTRL_READ_SSEEPROM_ERR_DEF 0x02

ADMIN_FTRL_WRITE_SSEEPROM_ERR_DEF 0x03

ADMIN_FTRL_SSEEPROM_WRITTEN_DEF 0x04

ADMIN_FTRL_MAGIC_NUM_ERR_DEF 0x05

ADMIN_FTRL_CHKSUM_ERR_DEF 0x06

BfvFeatureSetDownloadData

March 2017 97

BfvFeatureSetDownloadData

Purpose Downloads feature set data supplied in a specified user buffer.

Syntax int
BfvFeatureSetDownloadData (lp, args)

BTLINE *lp;
struct args_feature_set *args;

The structure contains the following fields.

Input Fields unsigned char *buf;
unsigned size;

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.buf

Pointer to the data buffer containing feature data to download.

args.size

Size of the data buffer in bytes.

BfvFeatureSetDownloadData

March 2017 98

Output Return value:

0 Success.

>0 Operational error reported by firmware.

<0 Other error.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details The SR140 does not support this function.

This function operates on raw binary feature set data files. Dialogic
commonly supplies license files in ASCII format. These files contain
an ASCII representation of the feature set data, but this function
will not operate directly on the ASCII file format.

Feature set data contains licensing information specific to a given
board. The licensing information contains information about
features the user can access, the number of channels available, and
other pertinent information.

The application calls the function repeatedly until all data is
supplied, after which the function must be called again with args.buf
set to NULL.

See Also BfvFeatureSetDownload, BfvFeatureSetQuery

Example See the feature.c program located in the bapp.src directory.

ADMIN_FTRL_NO_MEMORY_DEF 0x01

ADMIN_FTRL_READ_SSEEPROM_ERR_DEF 0x02

ADMIN_FTRL_WRITE_SSEEPROM_ERR_DEF 0x03

ADMIN_FTRL_SSEEPROM_WRITTEN_DEF 0x04

ADMIN_FTRL_MAGIC_NUM_ERR_DEF 0x05

ADMIN_FTRL_CHKSUM_ERR_DEF 0x06

BfvFeatureSetQuery

March 2017 99

BfvFeatureSetQuery

Purpose Queries the feature data currently stored in the module's feature set
hardware.

Syntax void
BfvFeatureSetQuery (lp, args)

BTLINE *lp;
struct args_feature_set *args;

The structure contains the following fields.

Input Fields None

Output Fields char key[9];
int type;
int value_int;
char output_value_string[128];
RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

Output Return value: None.

args.key

ASCII feature name, 0-terminated, up to eight characters long.

args.type

Type of the feature, one of:
FEATURE_BOOLEAN

FEATURE_INTEGER

FEATURE_STRING

BfvFeatureSetQuery

March 2017 100

args.value_int

The value of the feature if it is of type FEATURE_BOOLEAN or
FEATURE_INTEGER.

args.output_value_string

The value of the feature if it is of type FEATURE_STRING.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details The application calls the function repeatedly, retrieving one feature
entry with each call, until finally args.key is an empty string.

The value for each feature on an SR140 module reflects the total
value of this feature for all active SR140 licenses, not for the module
itself. It may be higher than a single module can utilize.

See Also BfvFeatureSetDownload, BfvFeatureSetDownloadData

Example See the feature.c program located in the bapp.src directory.

BfvFirmwareDownload

March 2017 101

BfvFirmwareDownload

Purpose Downloads firmware to a module.

Syntax int
BfvFirmwareDownload (lp, args)

BTLINE *lp;
struct args_download *args;

The structure contains the following fields.

Input Fields char *fname;
int specify_type;
unsigned dl_type;
unsigned dl_dest;
unsigned config_spec_value;

Output Fields RES res;

Modified Fields buf, size.

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.fname

Name of the firmware file to download.

args.specify_type

If nonzero, args.dl_type and args.dl_dest will be used.

BfvFirmwareDownload

March 2017 102

args.dl_type

Download type:

args.dl_dest

Indicates the destination DSPs, each bit corresponding to a DSP
unit (usually a single DSP). The value 0xFFFFFFFF is
recommended.

args.config_spec_value

Selects a firmware configuration from among several possible
alternatives. Possible values can be obtained using
BfvModuleConfigSpecsGet. The value 0 represents the
firmware’s default configuration. For use only with args.dl_type
ADMIN_PROC_APP_DEF. The current meaning of the
configuration specification value specifies the number of channels
for firmware configuration.

Output Return value:

0 Success.

>0 Operational error reported by firmware.

ADMIN_DSP_LOADER_DEF

DSP loader code
0

ADMIN_DSP_APP_DEF

DSP application code
1

ADMIN_PROC_APP_DEF

Main processor application code
2

ADMIN_PROC_FLASH_DEF

Main processor flash code (not used on current Brooktrout
modules)

3

ADMIN_FW_DOWNLOAD_BAD_TYPE_DEF 0x01

ADMIN_FW_DOWNLOAD_HEADER_ERR_DEF 0x02

ADMIN_FW_DOWNLOAD_WRONG_VERSION_DEF 0x03

ADMIN_FW_DOWNLOAD_CODE_POINTER_
ERR_DEF

0x04

ADMIN_FW_DOWNLOAD_CRC_ERR_DEF 0x05

ADMIN_FW_DOWNLOAD_FORMAT_ERR_DEF 0x06

ADMIN_FW_DOWNLOAD_INCOMPATIBLE_BSP_DEF 0x07

BfvFirmwareDownload

March 2017 103

<0 Other error.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details The SR140 does not support this function.

The line structure must have been created via BfvSessionAttach
with args.dest_addr set to indicate a hardware module with
channel 1. A filename is specified using args.fname. If
args.specify_type is nonzero, then args.dl_type and args.dl_dest
indicate the type of firmware being downloaded and the download
locations.

If the download type is PROC_APP, the driver attempts to
re-establish communications with the destination module. If the
module was previously marked as dead, it might become usable
again.

The firmware consists of several types, by number, which must be
downloaded in the proper sequence. The firmload utility (see Sample
Applications and Utilities in the Dialogic® Brooktrout® Fax
Products SDK Developer Guide) automatically identifies the proper
files and downloads them in the correct sequence.

The sequence is as follows:

ADMIN_FW_DOWNLOAD_NO_FLASH_IMAGE_DEF 0x08

ADMIN_FW_DOWNLOAD_BAD_DIMENSION_DEF 0x09

ADMIN_FW_DOWNLOAD_FLASH_UPD_ERR_DEF 0x0A

ADMIN_FW_DOWNLOAD_REBOOT_REQUIRED_DEF 0x0C

ADMIN_FW_DOWNLOAD_POWER_CYCLE_
REQUIRED_DEF

0x0D

Type 2 (PROC_APP) = Control processor firmware.

Type 0 (DSP_LOADER) = DSP boot loader (not used for
version 1.4.0 and later).

Type 1 (DSP_APP) = DSP firmware.

BfvFirmwareDownload

March 2017 104

The download type PROC_APP can be used for flash boot ROM
updates. When this, updating is done under some conditions, one of
the following values might be returned that require special handling:

 ADMIN_FW_DOWNLOAD_REBOOT_REQUIRED_DEF indicates that a
system reboot is required.

 ADMIN_FW_DOWNLOAD_POWER_CYCLE_REQUIRED_DEF indicates
that a system power cycle is required.

See Also BfvFirmwareDownloadData, BfvModuleConfigSpecsGet

Example See the firm.c program located in the bapp.src directory.

BfvFirmwareDownloadData

March 2017 105

BfvFirmwareDownloadData

Purpose Downloads firmware to a module.

Syntax int
BfvFirmwareDownloadData (lp, args)

BTLINE *lp;
struct args_download *args;

The structure contains the following fields.

Input Fields unsigned char *buf;
unsigned size;
int specify_type;
unsigned dl_type;
unsigned dl_dest;
unsigned config_spec_value;

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.fname

Name of the firmware file to download.

args.specify_type

If nonzero, args.dl_type and args.dl_dest will be used.

BfvFirmwareDownloadData

March 2017 106

args.dl_type

Download type:

args.dl_dest

Indicates the destination DSPs, each bit corresponding to a DSP
unit (usually a single DSP). The value 0xFFFFFFFF is
recommended.

args.config_spec_value

Selects a firmware configuration from among several possible
alternatives. Possible values can be obtained using
BfvModuleConfigSpecsGet. The value 0 represents the
firmware’s default configuration. For use only with args.dl_type
ADMIN_PROC_APP_DEF. The current meaning of the
configuration specification value specifies the number of channels
for firmware configuration.

Output Return value:

0 Success.

>0 Operational error reported by firmware.

ADMIN_DSP_LOADER_DEF

DSP loader code
0

ADMIN_DSP_APP_DEF

DSP application code
1

ADMIN_PROC_APP_DEF

Main processor application code
2

ADMIN_PROC_FLASH_DEF

Main processor flash code (not used on current Brooktrout
modules)

3

ADMIN_FW_DOWNLOAD_BAD_TYPE_DEF 0x01

ADMIN_FW_DOWNLOAD_HEADER_ERR_DEF 0x02

ADMIN_FW_DOWNLOAD_WRONG_VERSION_DEF 0x03

ADMIN_FW_DOWNLOAD_CODE_POINTER_
ERR_DEF

0x04

ADMIN_FW_DOWNLOAD_CRC_ERR_DEF 0x05

ADMIN_FW_DOWNLOAD_FORMAT_ERR_DEF 0x06

ADMIN_FW_DOWNLOAD_INCOMPATIBLE_BSP_DEF 0x07

BfvFirmwareDownloadData

March 2017 107

<0 Other error.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details The SR140 does not support this function.

The line structure must have been created via BfvSessionAttach
with args.dest_addr set to indicate a hardware module with
channel 1. Data is supplied via successive calls with args.buf and
args.size set to appropriate values. To finish, call this function with
args.buf set to NULL and args.size set to 0. If args.specify_type is
nonzero, then args.dl_type and args.dl_dest indicate the type of
firmware being downloaded and the download location.

If the download type is PROC_APP, the driver attempts to
re-establish communications with the destination module. If the
module was previously marked as dead, it might become usable
again.

The firmware consists of several types, by number, which must be
downloaded in the proper sequence. The firmload utility (see Sample
Applications and Utilities in the Dialogic® Brooktrout® Fax
Products SDK Developer Guide) automatically identifies the proper
files and downloads them in the correct sequence.

The sequence is as follows:

ADMIN_FW_DOWNLOAD_NO_FLASH_IMAGE_DEF 0x08

ADMIN_FW_DOWNLOAD_BAD_DIMENSION_DEF 0x09

ADMIN_FW_DOWNLOAD_FLASH_UPD_ERR_DEF 0x0A

ADMIN_FW_DOWNLOAD_REBOOT_REQUIRED_DEF 0x0C

ADMIN_FW_DOWNLOAD_POWER_CYCLE_
REQUIRED_DEF

0x0D

Type 2 (PROC_APP) = Control processor firmware.

Type 0 (DSP_LOADER) = DSP boot loader (not used for
version 1.4.0 and later).

Type 1 (DSP_APP) = DSP firmware.

BfvFirmwareDownloadData

March 2017 108

The download type PROC_APP can be used for flash boot ROM
updates. When this, updating is done under some conditions, one of
the following values might be returned that require special handling:

 ADMIN_FW_DOWNLOAD_REBOOT_REQUIRED_DEF indicates that a
system reboot is required.

 ADMIN_FW_DOWNLOAD_POWER_CYCLE_REQUIRED_DEF indicates
that a system power cycle is required.

See Also BfvFirmwareDownload, BfvModuleConfigSpecsGet

Example BTLINE *lp;
int n;
char *buf;
struct args_download args;

/* Put DSP firmware data into a buffer and download it. */
while ((n = get_data(buf)) > 0)
{
 BT_ZERO(args);
 args.buf = buf;
 args.size = n;
 args.specify_type = 1;
 args.dl_type = ADMIN_DSP_APP_DEF;
 args.dl_dest = 0xffffffff;
 BfvFirmwareDownloadData(lp,&args);
}

BfvModuleConfigSpecsGet

March 2017 109

BfvModuleConfigSpecsGet

Purpose Retrieves information about a module’s possible firmware
configuration options, as reported by the firmware.

Syntax int
BfvModuleConfigSpecsGet (lp, args)

BTLINE *lp;
struct args_addr_info *args;

The structure contains the following fields.

Input Fields unsigned mod_num;
unsigned config_spec_num;

Output Fields unsigned config_spec_value;
char config_spec_desc [51];
RES res;

Input lp

Pointer to the BTLINE structure. Can be NULL. Uses fewer
resources if a valid lp is supplied.

args

Pointer to an argument structure containing input and output
fields.

args.mod_num

Module number.

args.config_spec_num

Index of the configuration specification to be retrieved, starting
from 0.

March 2017 110

Chapter 3: BfvModuleConfigSpecsGet

Output Return value:

0 Configuration returned.

1 No more configurations.

<0 Error.

args.config_spec_value

Configuration specification value.

args.config_spec_desc

Optional configuration specification string.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details To get information about the next configuration, specify a
configuration specification index number, starting from 0, in
args.config_spec_num. The output value args.config_spec_value will
contain the next configuration value and args.config_spec_desc will
contain an optional string description of the configuration.

Call the function repeatedly with increasing values of
args.config_spec_num.

The function will return 0 if a configuration is returned, and will
return 1 when there are no more configurations.

The configuration specification values can be supplied to
BfvFirmwareDownload or BfvFirmwareDownloadData when
downloading type 2 (PROC_APP) firmware.

See Also BfvFirmwareDownload, BfvFirmwareDownloadData

Example See the modinfo.c program located in the bapp.src directory.

Macros

March 2017 111

Macros
LINE_FIRM_BOOT_ROM_MAJOR(lp)

Returns the major portion of the Boot ROM firmware version
number. For example, if the version number is 6.3 or 6.4.3, this
macro returns 6.

LINE_FIRM_BOOT_ROM_MIDDLE (lp)

Returns the middle portion of the Boot ROM firmware version
number. For example, if the version number is 6.4.3, this macro
returns 4.

LINE_FIRM_BOOT_ROM_MINOR (lp)

Returns the minor portion of the Boot ROM firmware version
number. For example, if the version number is 6.3 or 6.4.3, this
macro returns 3.

LINE_FIRM_BOOT_ROM_BUILD (lp)

Returns the build number of the Boot ROM firmware version.

LINE_FIRM_BOOT_ROM_AUTO_NUM (lp)

Returns the boot ROM firmware “auto number”. This value is
used internally and refers to internal build procedures.

LINE_FIRM_BOOT_ROM_DATE (lp)

Returns the date of the Boot ROM firmware version. The date is
a character string in the form M/D/Y (for example 1/31/02).

LINE_FIRM_BOOT_ROM_COMMENT (lp)

Returns the comment of the Boot ROM firmware version.

March 2017 112

Chapter 3: BfvModuleConfigSpecsGet

Note: The LINE_FIRM_CTRL_PROC_* macros that follow are only
available when control processor firmware has been
downloaded to the module, the line pointer has been attached
to a channel other than channel 1, and when BfvLineReset is
used without the no_init option. In all other cases, only the
LINE_FIRM_BOOT_ROM_* macros will be available.

LINE_FIRM_CTRL_PROC_MAJOR (lp)

Returns the major portion of the control processor firmware
version number. This macro is the same as LINE_FIRM_MAJOR.

LINE_FIRM_CTRL_PROC_MIDDLE (lp)

Returns the middle portion of the control processor firmware
version number. This macro is the same as LINE_FIRM_MIDDLE.

LINE_FIRM_CTRL_PROC_MINOR (lp)

Returns the minor portion of the control processor firmware
version number. This macro is the same as LINE_FIRM_MINOR.

LINE_FIRM_CTRL_PROC_BUILD (lp)

Returns the build number of the control processor firmware
version.

LINE_FIRM_CTRL_PROC_AUTO_NUM (lp)

Returns the control processor firmware “auto number”. This
value is used internally and refers to internal build procedures.

LINE_FIRM_CTRL_PROC_DATE (lp)

Returns the date of the control processor firmware version. The
date is a character string in the form M/D/Y (for example,
1/31/02). This macro is the same as LINE_FIRM_DATE.

Macros

March 2017 113

LINE_FIRM_CTRL_PROC_COMMENT (lp)

Returns comments about the control processor firmware version.

Note: The LINE_FIRM_DSP_* macros that follow are only available
when DSP firmware has been downloaded to the module, the
line pointer has been attached to a channel other than
channel 1, and when BfvLineReset is used without the
no_init option. In all other cases, only the
LINE_FIRM_BOOT_ROM_* macros will be available.

LINE_FIRM_NUM_DSPS (lp)

Returns the number of DSPs with version information available.
Each DSP provides its own version information that can be
independently accessed.

LINE_FIRM_DSP_MAJOR (lp,n)

Returns the major portion of the nth DSP firmware version
number.
The value of n ranges from 0 to LINE_FIRM_NUM_DSPS (lp) –1.

LINE_FIRM_DSP_MIDDLE (lp,n)

Returns the middle portion of the nth DSP firmware version
number.
The value of n ranges from 0 to LINE_FIRM_NUM_DSPS (lp) –1.

LINE_FIRM_DSP_MINOR (lp,n)

Returns the minor portion of the nth DSP firmware version
number.
The value of n ranges from 0 to LINE_FIRM_NUM_DSPS (lp) –1.

LINE_FIRM_DSP_BUILD (lp,n)

Returns the build number of the nth DSP firmware version.
The value of n ranges from 0 to LINE_FIRM_NUM_DSPS (lp) –1.

Macros

March 2017 114

LINE_FIRM_DSP_AUTO_NUM (lp,n)

Returns the nth DSP firmware “auto number”. This value is used
internally and refers to internal build procedures.

LINE_FIRM_DSP_DATE (lp,n)

Returns the date of the nth DSP firmware version. The date is a
character string in the form M/D/Y (for example, 1/31/02).
The value of n ranges from 0 to LINE_FIRM_NUM_DSPS (lp) –1.

LINE_FIRM_DSP_COMMENT (lp,n)

Returns comments about the nth DSP firmware version.

LINE_FIRM_MAJOR (lp)

Returns the major portion of the firmware version number.
For example, if the version number is 6.3 or 6.4.3, this macro
returns 6.

LINE_FIRM_MIDDLE (lp)

Returns the middle portion of the firmware version number. For
example, if the version number is 6.4.3, this macro returns 4.

LINE_FIRM_MINOR (lp)

Returns the minor portion of the firmware version number.
For example, if the version number is 6.3 or 6.4.3, this macro
returns 3.

LINE_FIRM_DATE (lp)

Returns the date stored in the firmware that indicates when the
firmware was developed. The date is a character string in the
form M/D/Y (for example, 1/31/02).

LINE_FIRM_CHECKSUM (lp)

Returns an unsigned short that contains the firmware checksum.
This macro returns 0.

Macros

March 2017 115

LINE_FIRM_CHK_OK (lp)

Returns a value generated by the module that indicates whether
or not the computed firmware checksum matches the stored
firmware checksum.

1 Checksums match.

0 Checksums do not match.

This macro returns 1.

LINE_FIRM_DOWNLOADED (lp)

For compatibility only.
Returns a nonzero value if firmware was successfully downloaded
to the module since the last hardware reset (power up).
This macro returns 1.

LINE_FIRM_ID (lp)

Returns a character string that contains the default local ID
stored in the firmware. This ID is often used to verify that
customized firmware is in use.
This macro returns an empty string.

LINE_FIRM_TYPE (lp)

For compatibility only. Returns a number that identifies the
board type stored in the firmware. Values are:

1 TR111MC

2 TR111WG

4 TR112

5 TR112DID

6 TR112T1

7 TruFax®

8 TruFaxAEB

114 TR114 and all other Dialogic® Brooktrout® boards

March 2017 116

4 - Configuration

This chapter describes functions to initialize, configure and query
telephony and network ports and also functions to configure the
interconnections between channels and telephony or network ports.

The Bfv API provides functions that allow you to get the current
information about the telephony configuration, reset the telephony
state, and save telephony parameters to Non-Volatile RAM
(NVRAM).

You can also establish a connection between source and destination
telephony resources; get information about the connections, their
ports and classes; and clear all switching connections for a module.

Configuration Files

March 2017 117

Configuration Files
The Bfv API uses several configuration files that let you configure
the Bfv API and driver, call control, and country-specific parameters.
These files are stored in the directory brooktrout/boston/config and
are described below:

 The user-defined configuration file

A file that contains configuration parameters for the Bfv API and
driver. A sample of this file, called btcall.cfg, is provided with the
software, but you can write your own or modify/rename the
existing one. Many of the sample applications (see Sample
Applications and Utilities in your Developer Guide, or Appendix A
of Volume 6) use btcall.cfg.

 The call control configuration file

A user-supplied file that contains call control configuration
parameters. Several samples of this file are provided with the
software. One sample is called callctrl.cfg, while others have
names that specify the type of telephony interface. See the
directory BrooktroutBoston/config/samples.cfg for the names of
the files, or Appendix A of Volume 6.

 The BT_CPARM.CFG file.

A read-only file that contains country-specific parameters. See
Appendix G, Volume 6 for more information.

Function Summary

March 2017 118

Function Summary
Table 3 provides a brief summary of the functions used for
configuration.

Table 3. Configuration Function Summary

Function Purpose Page

BfvCallSWClearConns Clears all call switching connections on the current
module.

119

BfvCallSWConnect Forms a connection between specified source and
destination telephony resources.

121

BfvCallSWGetConns Retrieves and returns information about established
call switching connections on the current module.

142

BfvCallSWGetInfo Retrieves and returns information about the
connectable port classes and units.

146

BfvNetworkConfigGet Returns network configuration information about a
single specified interface or trunk.

149

args.unit Performs network configuration on a collection of
interfaces and trunks.

154

BfvNetworkQuery Retrieves statistics about the specified Ethernet unit. 158

BfvTelephGetInfo Returns network configuration information about a
single specified interface or trunk.

163

BfvTelephReset Modifies the telephony state of the current module to
permit performing high level configuration again
using BfvCallCtrlInit.

165

BfvTelephSave Saves already configured telephony parameters to
NVRAM. This enables boards to power up and
initialize with legal configurations for the
environment.

167

BfvCallSWClearConns

March 2017 119

BfvCallSWClearConns

Purpose Clears all call switching connections on the current module.

This function does not support hardware without an H.100
connector. The SR140 also does not support this function.

Syntax
int
BfvCallSWClearConns(lp, args)

BTLINE lp;
struct args_tel_ctrl_call_sw*args;

The structure contains the following fields.

Input Fields None

Output Fields
RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

Output Return value:

0 Success.

<0 Error.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvCallSWClearConns

March 2017 120

Details This function clears all switching connections between source and
destination resources on the current module.

See Also
BfvCallSWConnect, BfvCallSWGetInfo

Example BTLINE *lp;
struct args_tel_ctrl_call_sw args;

/* Clear all connections on module */
BT_ZERO(args);
BfvCallSWClearConns(lp, &args);

BfvCallSWConnect

March 2017 121

BfvCallSWConnect

Purpose Forms a connection between specified source and destination
resources on the current module.

This function does not support hardware without an H.100
connector. The SR140 also does not support this function.

Syntax
int
BfvCallSWConnect (lp, args)

BTLINE *lp;
struct args_tel_ctrl_call_sw*args;

The structure contains the following fields.

Input Fields

unsigned conn_mode;
unsigned src_port_class;
unsigned src_port_unit;
unsigned src_stream;
unsigned src_slot;
unsigned dest_port_class;
unsigned dest_port_unit;
unsigned dest_stream;
unsigned dest_slot;

Output Fields
RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.conn_mode

BfvCallSWConnect

March 2017 122

Type of connection to be established or an indication to terminate
a previously established connection. Valid values are:

args.src_port_class

Port class of the source resource. Set to one of the following:

CALL_SW_PORT_WILD_DEF can be used only when
args.conn_mode is CALL_SW_DISCONNECT_DEF, indicating that
all connections to the specified destination are to be disconnected.

args.src_port_unit

Source resource port unit number.
If args.src_port_class is CALL_SW_PORT_CHANNEL_DEF: this
indicates the logical channel number. The first channel on each
module is logical channel number 2, the second is logical channel
3, and so forth. To determine the logical channel value of a
channel with an attached line pointer, use the LINE_SRC_ADDR
macro's mm_bChannel field (see Low-Level Macros on page 90).
If args.src_port_class is CALL_SW_PORT_NETWORK_DEF: this
indicates the physical interface. For T1/E1 and BRI, this is the
span/trunk (0-based). For analog, this is the number of the analog
line (0-based).
Example:

24 channel T1 0
4 channel BRI 0-1
4 port analog 0-3
8 port analog 0-8

CALL_SW_DISCONNECT_DEF 0x00
CALL_SW_TRANSMIT_ONLY_DEF 0x01
CALL_SW_RECEIVE_ONLY_DEF 0x02
CALL_SW_FULL_DUPLEX_DEF 0x03
CALL_SW_DUPLEX_AND_SIGNALING_DEF 0x07

CALL_SW_PORT_CHANNEL_DEF 0x00

CALL_SW_PORT_BUS_DEF 0x0E

CALL_SW_PORT_NETWORK_DEF 0x0F

CALL_SW_PORT_WILD_DEF 0x10

BfvCallSWConnect

March 2017 123

args.src_stream

Source resource stream number.
If args.src_port_class is CALL_SW_PORT_BUS_DEF:
For H.100 the valid range is 0-31.
Otherwise, must be zero.

args.src_slot

Source resource time slot number.
If args.src_port is CALL_SW_PORT_BUS_DEF:
For H.100 the valid ranges are:

2 MHz bus speed0-31
4 MHz bus speed0-63
8 MHz bus speed0-127

Otherwise, must be zero.

args.dest_port_class

Port class of the destination resource. Set to one of the following:

CALL_SW_PORT_WILD_DEF can be used only when
args.conn_mode is CALL_SW_DISCONNECT_DEF, indicating that
all connections to the specified source are to be disconnected.

CALL_SW_PORT_CHANNEL_DEF 0x00

CALL_SW_PORT_BUS_DEF 0x0E

CALL_SW_PORT_NETWORK_DEF 0x0F

CALL_SW_PORT_WILD_DEF 0x10

BfvCallSWConnect

March 2017 124

args.dest_port_unit

Destination resource port unit number.
If args.dest_port_class is CALL_SW_PORT_CHANNEL_DEF: this
indicates the logical channel number. The first channel on each
module is logical channel number 2, the second is logical channel
3, and so forth. To determine the logical channel value of a
channel with an attached line pointer, use the LINE_DEST_ADDR
macro's mm_bChannel field (see Low-Level Macros on page 90).
If args.dest_port_class is CALL_SW_PORT_NETWORK_DEF: this
indicates the physical interface. For T1/E1 and BRI, this is the
span/trunk (0-based). For analog, this is the number of the analog
line (0-based).
Example:

24 channel T1 0
4 channel BRI 0-1
4 port analog 0-3
8 port analog 0-8

Otherwise, must be zero.

args.dest_stream

Destination resource stream number.
If args.dest_port_class is CALL_SW_PORT_BUS_DEF:
For H.100 the valid range is 0-31.
Otherwise, must be zero.

args.dest_slot

Destination resource time slot number.
If args.dest_port is CALL_SW_PORT_BUS_DEF:
For H.100 the valid ranges are:

2 MHz bus speed0-31
4 MHz bus speed0-63
8 MHz bus speed0-127

Otherwise, must be zero.

BfvCallSWConnect

March 2017 125

Output Return value:

 0 Success

>0 Operational error reported by firmware

<0 Other error

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

CALL_SW_GENERIC_FAILURE_DEF 0x01

CALL_SW_UNKNOWN_CONN_MODE_DEF 0x02

CALL_SW_UNKNOWN_PORT_TYPE_DEF 0x03

CALL_SW_INVALID_PORT_TYPE_DEF 0x04

CALL_SW_UNKNOWN_PORT_UNIT_DEF 0x05

CALL_SW_INVALID_PORT_UNIT_DEF 0x06

CALL_SW_INVALID_PORT_STREAM_DEF 0x07

CALL_SW_INVALID_STREAM_SLOT_DEF 0x08

CALL_SW_SLOT_ALREADY_ASSIGNED_DEF 0x09

CALL_SW_SLOT_NOT_ASSIGNED_DEF 0x0A

BfvCallSWConnect

March 2017 126

Details The resources can each represent a channel, or any timeslot on any
telephony bus or network entity.

Once a connection is established, it remains established until
explicitly disconnected. It is important that applications terminate
connections prior to exiting, if the connection is not permanent.

Initialize T1/E1 controllers that are to be used prior to executing
BfvCallSWConnect calls. If you initialize T1/E1 controllers after
BfvCallSWConnect calls have been made, the Bfv API destroys the
connections previously made.

To disconnect a full-duplex connection, you must treat the
connection as two simplex connections. Therefore, you will need to
call BfvCallSWConnect two times (once for each direction). The
arguments for each call will be the same, except that the source and
destination connection points will be reversed.

To disconnect a TRANSMIT_ONLY switch connection, reverse the
source and destination fields for the DISCONNECT call. In other
words, when disconnecting, set the source field to the endpoint that
is receiving the data.

See Also
BfvCallSWClearConns, BfvCallSWGetInfo

Example BTLINE *lp;
struct args_tel_ctrl_call_sw args;

/* Connect logical channel 2 to stream 0, slot 0
 of the first network unit. */
BT_ZERO(args);
args.conn_mode = CALL_SW_DUPLEX_AND_SIGNALING_DEF;
args.src_port_class = CALL_SW_PORT_CHANNEL_DEF;
args.src_port_unit = 2;
args.src_stream = 0;
args.src_slot = 0;
args.dest_port_class = CALL_SW_NETWORK_DEF;
args.dest_port_unit = 0;
args.dest_stream = 0;
args.dest_slot = 0;
BfvCallSWConnect(lp, &args);

BFVCallSWConnectIP

March 2017 127

BFVCallSWConnectIP

Purpose Forms a connection between specified channel and IP address and
port.

This function does not support hardware without a network
interface or configuration where Bfv manages the PSTN or IP calls.
Use this function only when integrating third party call control
stacks. Refer to the section Using Third Party IP Stacks in the
Dialogic® Brooktrout® Fax Products SDK Developer’s Guide.

Syntax
int
BfvCallSWConnectIP(lp, args)

BTLINE *lp;
struct args_tel_ctrl_call_sw*args;

The structure contains the following fields.

Input Fields
unsigned conn_mode;
unsigned src_port_unit;
unsigned dest_port_class;

struct bt_sockaddr_storage destOptions.RTPopts.localRTPNgAddr;
struct bt_sockaddr_storage destOptions.RTPopts.localRTCPNgAddr;
struct bt_sockaddr_storage destOptions.RTPopts.remoteRTPNgAddr;
struct bt_sockaddr_storage destOptions.RTPopts.remoteRTCPNgAddr;
struct bt_sockaddr_storage destOptions.UDPTLopts.localNgAddr;
struct bt_sockaddr_storage destOptions.UDPTLopts.remoteNgAddr;
unsigned destOptions.UDPTLopts.t38_version;
unsigned destOptions.UDPTLopts.t38_max_bit_rate;
unsigned destOptions.UDPTLopts.t38_fax_fill_bit_removal;
unsigned destOptions.UDPTLopts.t38_fax_transcoding_MMR;
unsigned destOptions.UDPTLopts.t38_fax_transcoding_JBIG;
unsigned destOptions.UDPTLopts.t38_fax_rate_management;
unsigned destOptions.UDPTLopts.t38_fax_max_buffer;
unsigned destOptions.UDPTLopts.t38_fax_max_datagram_recv;
unsigned destOptions.UDPTLopts.t38_fax_udp_EC;
unsigned destOptions.UDPTLopts.t38_fax_max_datagram_send;

BFVCallSWConnectIP

March 2017 128

unsigned destOptions.UDPTLopts.t38_UDPTL_redundancy_depth_control;
unsigned destOptions.UDPTLopts.t38_t30_fast_notify;

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.conn_mode

Type of connection to be established or an indication to terminate
a previously established connection.

Valid values are:
CALL_SW_RECEIVE_ONLY_DEF
CALL_SW_FULL_DUPLEX_DEF
CALL_SW_DISCONNECT_MODE_DEF

args.src_port_unit

Source resource port unit number.
This indicates the logical channel number. The first channel on
each module is logical channel number 2, the second is logical
channel 3, and so forth. To determine the logical channel value of
a channel with an attached line pointer, use the
LINE_SRC_ADDR macro's mm_bChannel field

args.dest_port_class

This indicates the type of connection RTP or UDPTL.
Valid values are:
CALL_SW_PORT_RTP_DEF
CALL_SW_PORT_UDPTL_DEF

args.destOptions.RTPopts.localRTPNgAddr

This contains the local RTP address which is stored in a Next
Generation struct bt_sockaddr_storage structure and can be either
an IPv4 address or an IPv6 address. Depending on the type of IP

BFVCallSWConnectIP

March 2017 129

address being specified, this field must be cast to an appropriate IP
address structure type (either struct bt_sockaddr_in for IPv4
addresses or struct bt_sockaddr_in6 for IPv6 addresses) and then the
IP address specific settings can be specified.

The layout of these structures is provided below:

struct bt_sockaddr_storage
{
 uint8_t __ss_len;
 bt_sa_family_t __ss_family;
 char __ss_pad1[_BT_SS_PAD1SIZE];
 int64_t __ss_align;
 char __ss_pad2[_BT_SS_PAD2SIZE];
};

struct bt_sockaddr_in
{
 short sin_family;
 unsigned short sin_port;
 struct bt_in_addr sin_addr;
 char sin_zero[8];
};

struct bt_sockaddr_in6
{
 short sin6_family;
 unsigned short sin6_port;
 unsigned int sin6_flowinfo;
 struct bt_in6_addr sin6_addr;
 unsigned int sin6_scope_id;
};

The names and types of the IPv4 and IPv6 specific fields that can be
populated differ according to the IP address type as illustrated in the
following table:

IP Address Field IPv4Address IPv6Address

Family Type sin_family sin6_family

Port Number sin_port sin6_port

IP Address sin_addr sin6_addr

BFVCallSWConnectIP

March 2017 130

A detailed description of each of these fields is provided below:

Family Type

This indicates the type of local RTP addressing.

Valid values are:

TELE_CTRL_AF_INET_DEF (IPv4 Address Family)
TELE_CTRL_AF_INET6_DEF(IPv6 Address Family)

Port Number

This indicates the local RTP port number.

IP Address

This indicates the local RTP IP address and can be either an IPv4 or
IPv6 address. IPv4 addresses can be specified as a four byte integer
where

Class A is byte 4
Class B is byte 3
Class C is byte 2
Class D is byte 1
Example: 10.128.100.100 would be 0x0A806464

IPv4 addresses are assigned to a struct bt_in_addr structure. The
layout of this structure is provided below:

struct bt_in_addr
{
 union {
 struct {
 unsigned char s_b1, s_b2, s_b3, s_b4;
 } S_un_b;
 struct {
 unsigned short s_w1, s_w2;
 } S_un_w;
 unsigned int S_addr;
 } S_un;
};

Scope ID N/A sin6_scope_id

IP Address Field IPv4Address IPv6Address

BFVCallSWConnectIP

March 2017 131

In contrast to IPv4, IPv6 addresses are specified as 16 bytes. IPv6
addresses are stored in a struct bt_in6_addr structure, the layout of
which is provided below:

struct bt_in6_addr
{
 union
 {
 unsigned char _S6_u8[16];
 unsigned int _S6_u32[4];
 uint64_t _S6_u64[2];
 } _S6_un;
};

In contrast to IPv4, IPv6 addresses are specified as 16 bytes. IPv6
addresses are stored in a struct bt_in6_addr structure, the layout of
which is provided below:

struct bt_in6_addr
{
 union
 {
 unsigned char _S6_u8[16];
 unsigned int _S6_u32[4];
 uint64_t _S6_u64[2];
 } _S6_un;
};

Scope ID

This indicates a set of interfaces as appropriate for the scope of the
specified IP address. For link-local IP addresses, this would be an
interface index.

Note: This field is only applicable to IPv6 addresses.

In addition to populating the IP address fields defined above, the
args.destOptions.RTPopts.localRTPNgAddr.__ss_len field must be
populated with the size of the structure used to specify the actual IP
address settings. An example of how to populate these fields is
shown below:

IPv4 Example

unsigned short port = 56008;

BFVCallSWConnectIP

March 2017 132

struct bt_sockaddr_in *pIPv4Addr;
char *szIPv4Addr =;
args.destOptions.RTPopts.localRTPNgAddr.__ss_len =
sizeof(struct bt_sockaddr_in);
pIPv4Addr = (struct bt_sockaddr_in
*)&args.destOptions.RTPopts.localRTPNgAddr.__ss_family;
pIPv4Addr->sin_family = TELE_CTRL_AF_INET_DEF;
pIPv4Addr->sin_port = port;

/* Specify the IP address "10.128.100.55" */
pIPv4Addr->sin_addr.S_un.S_un_b.s_b4 = 10;
pIPv4Addr->sin_addr.S_un.S_un_b.s_b3 = 128;
pIPv4Addr->sin_addr.S_un.S_un_b.s_b2 = 100;
pIPv4Addr->sin_addr.S_un.S_un_b.s_b1 = 55;

IPv6 Example

unsigned int scope_id = 3;
unsigned short port = 56008;
struct bt_sockaddr_in6 *pIPv6Addr;

args.destOptions.RTPopts.localRTPNgAddr.__ss_len =
sizeof(struct bt_sockaddr_in6);
pIPv6Addr = (struct bt_sockaddr_in6
*)&args.destOptions.RTPopts.localRTPNgAddr.__ss_family;
pIPv6Addr->sin6_family = TELE_CTRL_AF_INET6_DEF;
pIPv6Addr->sin6_port = port;
pIPv6Addr->sin6_scope_id = scope_id;

/* Specify the IPv6 address
"fe80:0000:0000:0000:0211:25ff:fed3:fdf2" */
pIPv6Addr->sin6_addr.in6_u.u6_addr8[0] = 0xFE;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[1] = 0x80;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[2] = 0x00;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[3] = 0x00;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[4] = 0x00;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[5] = 0x00;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[6] = 0x00;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[7] = 0x00;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[8] = 0x02;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[9] = 0x11;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[10] = 0x25;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[11] = 0xFF;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[12] = 0xFE;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[13] = 0xD3;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[14] = 0xFD;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[15] = 0xF2;

BFVCallSWConnectIP

March 2017 133

args.destOptions.RTPopts.localRTCPNgAddr

This contains the local RTCP address which is stored in a Next
Generation struct bt_sockaddr_storage structure and can be either
an IPv4 address or an IPv6 address. Refer to
args.destOptions.RTPopts.localRTPNgAddr for information
describing the supported fields within this structure.

args.destOptions.RTPopts.remoteRTPNgAddr

This contains the remote RTP address which is stored in a Next
Generation struct bt_sockaddr_storage structure and can be either
an IPv4 address or an IPv6 address. Refer to
args.destOptions.RTPopts.localRTPNgAddr for information
describing the supported fields within this structure.

args.destOptions.RTPopts.remoteRTCPNgAddr

This contains the remote RTCP address which is stored in a Next
Generation struct bt_sockaddr_storage structure and can be either
an IPv4 address or an IPv6 address. Refer to
args.destOptions.RTPopts.localRTPNgAddr for information
describing the supported fields within this structure.

args.destOptions.UDPTLopts.localNgAddr

This contains the local UDPTL address which is stored in a Next
Generation struct bt_sockaddr_storage structure and can be either
an IPv4 address or an IPv6 address. Refer to
args.destOptions.RTPopts.localRTPNgAddr for information
describing the supported fields within this structure.

args.destOptions.UDPTLopts.remoteNgAddr

This contains the remote UDPTL address which is stored in a Next
Generation struct bt_sockaddr_storage structure and can be either
an IPv4 address or an IPv6 address. Refer to
args.destOptions.RTPopts.localRTPNgAddr for information
describing the supported fields within this structure.

args.destOptions.UDPTLopts.t38_version

Controls the maximum T.38 ASN.1 version the IP Call Control
offers or accepts from a remote party. Versions 0, 1, and 2 support
a maximum bit rate of 14,400 bps. Version 3 supports V.34. with
a maximum bit rate of 33,600 bps.
Valid values are:

0 - 3

BFVCallSWConnectIP

March 2017 134

args.destOptions.UDPTLopts.t38_max_bit_rate

Specifies the negotiated value that defines the maximum bit rate
for fax packetization onto the network.
Valid values are:

CALL_SW_BIT_RATE_2400_DEF
CALL_SW_BIT_RATE_4800_DEF
CALL_SW_BIT_RATE_7200_DEF
CALL_SW_BIT_RATE_9600_DEF
CALL_SW_BIT_RATE_12000_DEF
CALL_SW_BIT_RATE_14400_DEF
CALL_SW_BIT_RATE_16800_DEF
CALL_SW_BIT_RATE_19200_DEF
CALL_SW_BIT_RATE_21600_DEF
CALL_SW_BIT_RATE_24000_DEF
CALL_SW_BIT_RATE_26400_DEF
CALL_SW_BIT_RATE_28800_DEF
CALL_SW_BIT_RATE_31200_DEF
CALL_SW_BIT_RATE_33600_DEF

args.destOptions.UDPTLopts.t38_fax_fill_bit_removal

Specifies whether the Bfv API can remove or insert fill bits to
reduce the bandwidth of the transport mechanism.
Valid values are:

0 Indicates that the Bfv API does not support the capability.

1 Indicates that the Bfv API can remove or insert fill bits.

args.destOptions.UDPTLopts.t38_fax_transcoding_MMR

Specifies whether the Bfv API can convert to and from MMR fax
compression to reduce the bandwidth of the transport mechanism
when using a reliable transport (for example, TCP).
Valid values are:

0 Indicates that the Bfv API does not support the capability.

1 Indicates that the Bfv API can convert MMR compression.

args.destOptions.UDPTLopts.t38_fax_transcoding_JBIG

Specifies whether the Bfv API can convert to and from JBIG fax
images to reduce the bandwidth of the transport mechanism
when using a reliable transport (for example, TCP).

BFVCallSWConnectIP

March 2017 135

Valid values are:

0 Indicates that the Bfv API does not support the capability.

1 Indicates that the Bfv API can convert JBIG fax images.

args.destOptions.UDPTLopts.t38_fax_rate_management

Specifies a value that identifies the data rate management
method of the transport.
Valid values are:

CALL_SW_LOCAL_TCF_DEF

Indicates that the transport uses the local training check
frame (TCF) data rate management type (not supported).

CALL_SW_TRANSFERRED_TCF_DEF

Indicates that the transport uses the transferred training
check frame (TCF) data rate management type.

args.destOptions.UDPTLopts.t38_fax_max_buffer

Maximum fax buffer.

Valid value: 200

args.destOptions.UDPTLopts.t38_fax_max_datagram_recv

Maximum datagram for receive.

Valid value: 72

args.destOptions.UDPTLopts.t38_fax_udp_EC

Specifies a value that identifies the error correction method of the
T.38 fax transport.
Valid values are:

CALL_SW_FEC_DEF The transport uses the T.38 user
datagram protocol (UDP) forward error correction (FEC)
method (not supported).

CALL_SW_REDUNDANCY_DEF The transport uses the T.38 UDP
redundancy error correction method.

args.destOptions.UDPTLopts.t38_fax_max_datagram_send

Maximum datagram for transmit.

Valid value: 72

BFVCallSWConnectIP

March 2017 136

args.destOptions.UDPTLopts.t38_UDPTL_redundancy_dept
h_control

Specifies a value that defines the number of prior messages to
include as redundancy messages in a transmitted UDPTL packet
carrying signal information (FSK signals).
Valid values are:

0 - 5 Specifies a number value defining how many prior
messages to include as redundancy messages in a packet
carrying control data.

args.destOptions.UDPTLopts.t38_t30_fast_notify

Specifies whether the transport signals the beginning of T.30 by
means of a zero-length data field or uses a T.30 indicator value.
Valid values are:

0 Indicates that the T.38 fax transport uses a zero-length
data field to signal the beginning of T.30.

1 Indicates that the transport uses a T30_INDICAT

Output Return value:

0 Success

>0 Operational error reported by firmware

<0 Other error

args.res

A RES structure containing status information. For more
information, see Volume 6, Appendix B, Result Structures.

CALL_SW_GENERIC_FAILURE_DEF 0x01

CALL_SW_UNKNOWN_CONN_MODE_DEF 0x02

CALL_SW_UNKNOWN_PORT_TYPE_DEF 0x03

CALL_SW_INVALID_PORT_TYPE_DEF 0x04

CALL_SW_UNKNOWN_PORT_UNIT_DEF 0x05

CALL_SW_INVALID_PORT_UNIT_DEF 0x06

CALL_SW_INVALID_PORT_STREAM_DEF 0x07

CALL_SW_INVALID_STREAM_SLOT_DEF 0x08

CALL_SW_SLOT_ALREADY_ASSIGNED_DEF 0x09

BFVCallSWConnectIP

March 2017 137

Details The source resource needs to be a channel.

Once a connection is established, it remains established until
explicitly disconnected. It is important that applications terminate
connections prior to exiting.

To disconnect a connection, you must OR
CALL_SW_DISCONNECT_MODE_DEF with the parameters used
to set the connection. For example to disconnect a full duplex
connection set conn_mode to CALL_SW_FULL_DUPLEX_DEF |
CALL_SW_DISCONNECT_MODE_DEF.

With the introduction of the Next Generation IP address fields to the
RTP_options and UDPTL_options structures, the following IPv4-
only fields are deprecated and are included in the structures for
backwards compatibility only.

args.destOptions.RTPopts.localRTPAddr

args.destOptions.RTPopts.remoteRTPAddr

args.destOptions.RTPopts.localRTCPAddr

args.destOptions.RTPopts.remoteRTCPAddr

args.destOptions.UDPTLopts.localAddr

args.destOptions.UDPTLopts.remoteAddr

Application developers should use the Next Generation IP address
fields to specify IPv4 and IPv6 addresses instead of these fields.

Example BTLINE *lp;
struct args_tel_ctrl_call_sw args;
struct bt_sockaddr_in6 *pIPv6Addr;
char *szLocalAddr = "fe80::211:25ff:fed3:fdf2";
char *szRemoteAddr = "fe80::204:e2ff:fe3e:c089";

CALL_SW_SLOT_NOT_ASSIGNED_DEF 0x0A

CALL_SW_NO_T38_LICENSE_DEF 0x0B

CALL_SW_PORT_RTP_DEF 0x013

CALL_SW_IP_PORT_INUSE_DEF 0x014

CALL_SW_INVALID_CONN_MODE_DEF 0x15

CALL_SW_IP_PORT_REUSE_DEF 0x16

BFVCallSWConnectIP

March 2017 138

/* Connect logical channel 2 to RTP */
BT_ZERO(args);
args.conn_mode = CALL_SW_FULL_DUPLEX_DEF;
args.src_port_unit = 2;
args.dest_port_class = CALL_SW_PORT_RTP_DEF;

/*
 * RTP local IP Address [fe80::211:25ff:fed3:fdf2]:56008
 * and RTCP local IP Address
[fe80::211:25ff:fed3:fdf2]:56009
 * are used in the example below.
 */
args.destOptions.RTPopts.localRTPNgAddr.__ss_len =
 sizeof(struct
bt_sockaddr_in6);
pIPv6Addr = (struct bt_sockaddr_in6 *)

&args.destOptions.RTPopts.localRTPNgAddr.__ss_family;
pIPv6Addr->sin6_family = TELE_CTRL_AF_INET6_DEF;
pIPv6Addr->sin6_port = 56008;
pIPv6Addr->sin6_scope_id = 3; /* Use interface 3 for this
IP address */

/* Specify the IPv6 address
"fe80:0000:0000:0000:0211:25ff:fed3:fdf2" */
pIPv6Addr->sin6_addr.in6_u.u6_addr8[0] = 0xFE;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[1] = 0x80;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[2] = 0x00;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[3] = 0x00;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[4] = 0x00;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[5] = 0x00;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[6] = 0x00;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[7] = 0x00;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[8] = 0x02;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[9] = 0x11;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[10] = 0x25;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[11] = 0xFF;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[12] = 0xFE;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[13] = 0xD3;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[14] = 0xFD;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[15] = 0xF2;

/* Configure the local RTCP IP address settings */
args.destOptions.RTPopts.localRTCPNgAddr.__ss_len =
 sizeof(struct
bt_sockaddr_in6);
pIPv6Addr = (struct bt_sockaddr_in6 *)

BFVCallSWConnectIP

March 2017 139

&args.destOptions.RTPopts.localRTCPNgAddr.__ss_family;
pIPv6Addr->sin6_family = TELE_CTRL_AF_INET6_DEF;
pIPv6Addr->sin6_port = 56009;
pIPv6Addr->sin6_scope_id = 3; /* Use interface 3 for this
IP address */

/* Specify the IPv6 address
"fe80:0000:0000:0000:0211:25ff:fed3:fdf2" */
pIPv6Addr->sin6_addr.in6_u.u6_addr8[0] = 0xFE;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[1] = 0x80;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[2] = 0x00;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[3] = 0x00;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[4] = 0x00;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[5] = 0x00;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[6] = 0x00;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[7] = 0x00;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[8] = 0x02;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[9] = 0x11;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[10] = 0x25;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[11] = 0xFF;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[12] = 0xFE;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[13] = 0xD3;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[14] = 0xFD;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[15] = 0xF2;

/*
 * RTP remote IP Address [fe80::204:e2ff:fe3e:c089]:56008
 * and RTCP remote IP Address
[fe80::204:e2ff:fe3e:c089]:56009
 * are used in the example below.
 */
args.destOptions.RTPopts.remoteRTPNgAddr.__ss_len =
 sizeof(struct
bt_sockaddr_in6);
pIPv6Addr = (struct bt_sockaddr_in6 *)

&args.destOptions.RTPopts.remoteRTPNgAddr.__ss_family;
pIPv6Addr->sin6_family = TELE_CTRL_AF_INET6_DEF;
pIPv6Addr->sin6_port = 56008;
pIPv6Addr->sin6_scope_id = 3; /* Use interface 3 for this
IP address */

pIPv6Addr->sin6_addr.in6_u.u6_addr8[0] = 0xFE;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[1] = 0x80;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[2] = 0x00;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[3] = 0x00;

BFVCallSWConnectIP

March 2017 140

pIPv6Addr->sin6_addr.in6_u.u6_addr8[4] = 0x00;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[5] = 0x00;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[6] = 0x00;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[7] = 0x00;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[8] = 0x02;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[9] = 0x04;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[10] = 0xE2;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[11] = 0xFF;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[12] = 0xFE;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[13] = 0x3E;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[14] = 0xC0;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[15] = 0x89;

/* Configure the local RTCP IP address settings */
args.destOptions.RTPopts.remoteRTCPNgAddr.__ss_len =
 sizeof(struct
bt_sockaddr_in6);
pIPv6Addr = (struct bt_sockaddr_in6 *)

&args.destOptions.RTPopts.remoteRTCPNgAddr.__ss_family;
pIPv6Addr->sin6_family = TELE_CTRL_AF_INET6_DEF;
pIPv6Addr->sin6_port = 56009;
pIPv6Addr->sin6_scope_id = 3; /* Use interface 3 for this
IP address */

/* Specify the IPv6 address
"fe80:0000:0000:0000:0204:e2ff:fe3e:c089" */
pIPv6Addr->sin6_addr.in6_u.u6_addr8[0] = 0xFE;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[1] = 0x80;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[2] = 0x00;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[3] = 0x00;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[4] = 0x00;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[5] = 0x00;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[6] = 0x00;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[7] = 0x00;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[8] = 0x02;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[9] = 0x04;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[10] = 0xE2;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[11] = 0xFF;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[12] = 0xFE;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[13] = 0x3E;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[14] = 0xC0;
pIPv6Addr->sin6_addr.in6_u.u6_addr8[15] = 0x89;

rc = BfvCallSWConnectIP(lp, &args);

BFVCallSWConnectIP

March 2017 141

switch (rc)
{
 case CALL_SW_SUCCESS_DEF:
// Port was available and reserved
break;
 case CALL_SW_IP_PORT_INUSE_DEF:
// Try again with a different local port
break;
 case CALL_SW_NO_T38_LICENSE_DEF:
// Out of T.38 resources
break;
 default:
// Most likely an API error
if (rc > 0)
{
// error code reported from attempt before
// the call was sent to the FW
// Expect:
 // args.res.status = BT_STATUS_ERROR;
// args.res.line_status = APIERR_BADPARAMETER;
}

if (rc < 0)
{
// other error usually sent by the FW

BfvCallSWGetConns

March 2017 142

BfvCallSWGetConns

Purpose Retrieves and returns information about established call switching
connections on the current module.

This function does not support hardware without an H.100
connector. The SR140 also does not support this function.

Syntax
int
BfvCallSWGetConns (lp, args)

struct args_tel_ctrl_call_sw*args;

The structure contains the following fields.

Input Fields None

Output Fields unsigned conn_mode;
unsigned src_port_class;
unsigned src_port_unit;
unsigned src_stream;
unsigned src_slot;
unsigned src_port_type;
unsigned dest_port_class;
unsigned dest_port_unit;
unsigned dest_stream;
unsigned dest_slot;
unsigned dest_port_type;
RES res;

Input lp

Pointer to the BTLINE structure.

Output Return value:

1 Connection information is returned.

0 No more connection information.

–1 Error.

BfvCallSWGetConns

March 2017 143

args.conn_mode

Type of connection to be established or an indication to terminate
a previously established connection. Valid values are:

args.src_port_class

Port class of the source resource. Set to one of the following:

args.src_port_unit

Source resource port unit number for the source port class. If
args.src_port_class is CALL_SW_PORT_CHANNEL_DEF, then the
value indicates the logical channel number. The first channel on
each module is logical channel number 2, the second is logical
channel 3, and so forth.

args.src_stream

Source resource stream number.

args.src_slot

Source resource time slot number.

args.src_port_type

A value specifying the port type of the source port. Valid values
are:

CALL_SW_TRANSMIT_ONLY_DEF 0x01

CALL_SW_FULL_DUPLEX_DEF 0x03

CALL_SW_PORT_CHANNEL_DEF 0x00

CALL_SW_PORT_BUS_DEF 0x0E

CALL_SW_PORT_NETWORK_DEF 0x0F

CALL_SW_PORT_CHANNEL_DEF 0x00

CALL_SW_PORT_H100_DEF 0x05

CALL_SW_PORT_T1_DEF 0x06

CALL_SW_PORT_E1_DEF 0x07

CALL_SW_PRI_T1_DEF 0x08

CALL_SW_PRI_E1_DEF 0x09

CALL_SW_AT_MODEM_DEF 0x0A

CALL_SW_PORT_BRI_DEF 0x0B

BfvCallSWGetConns

March 2017 144

args.dest_port_class

Port class of the destination resource. Set to one of the following:

args.dest_port_unit

Destination resource port unit number for the destination port
class. If args.dest_port_class is CALL_SW_PORT_CHANNEL_DEF,
then the value indicates the logical channel number. The first
channel on each module is logical channel number 2, the second
is logical channel 3, etc.

args.dest_stream

Destination resource stream number.

args.dest_slot

Destination resource time slot number.

args.dest_port_type

A value specifying the port type of the destination port. Valid
values are:

CALL_SW_PORT_ANALOG_LOOP_START_DEF 0x0C

CALL_SW_PORT_ANALOG_DID_DEF 0x0D

CALL_SW_PORT_CHANNEL_DEF 0x00

CALL_SW_PORT_BUS_DEF 0x0E

CALL_SW_PORT_NETWORK_DEF 0x0F

CALL_SW_PORT_CHANNEL_DEF 0x00

CALL_SW_PORT_H100_DEF 0x05

CALL_SW_PORT_T1_DEF 0x06

CALL_SW_PORT_E1_DEF 0x07

CALL_SW_PRI_T1_DEF 0x08

CALL_SW_PRI_E1_DEF 0x09

CALL_SW_AT_MODEM_DEF 0x0A

CALL_SW_PORT_BRI_DEF 0x0B

CALL_SW_PORT_ANALOG_LOOP_START_DEF 0x0C

CALL_SW_PORT_ANALOG_DID_DEF 0x0D

BfvCallSWGetConns

March 2017 145

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details This function makes the assumption that connections will not
change for the duration of the query procedure. Use this function for
only one application session at a time.

Each call returns information about one connection. Call repeatedly
until the return value = 0 (no more information).

The procedure is quite time consuming for the firmware and should
only be used for debugging or explicit status requirements. Don’t use
the procedure on a frequent, regular basis.

When args.src_port_class or args.dest_port_class is
CALL_SW_PORT_CHANNEL_DEF, logical channel values must be used
in the corresponding port_unit input field. To determine the logical
channel value of a channel with an attached line pointer, the
LINE_DEST_ADDR macro's mm_bChannel field can be used (see Low-
Level Macros on page 90).

Note: A receive connection between two given points is identical to a
transmit connection between those same points with the
source and destination reversed.

See Also
BfvCallSWConnect

Example See the connlist.c sample application in the bapp.src directory.

BfvCallSWGetInfo

March 2017 146

BfvCallSWGetInfo

Purpose Retrieves and returns information about the connectable port classes
and units on the current module.

This function does not support hardware without an H.100
connector. The SR140 also does not support this function.

Syntax
int
BfvCallSWGetInfo (lp, args)

BTLINE *lp;
struct args_tel_ctrl_call_sw*args;

The structure contains the following fields.

Input Fields None

Output Fields unsigned src_port_class;
unsigned src_port_unit;
unsigned src_stream;
unsigned src_slot;
unsigned port_type;
RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

Output Return value:

1 Unit information is returned.

0 No more unit information.

<0 Error.

BfvCallSWGetInfo

March 2017 147

args.src_port_class

Port class of the source resource. Set to one of the following:

args.src_port_unit

Port unit number for the port class, starting from 0. If
args.src_port_class is CALL_SW_PORT_CHANNEL_DEF, then the
value indicates the total number of channels.

args.src_stream

The number of available streams for the port unit.

args.src_slot

The number of available slots for each stream.

args.port_type

A value specifying the port type of the port unit. Valid values are:

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

CALL_SW_PORT_CHANNEL_DEF 0x00

CALL_SW_PORT_BUS_DEF 0x0E

CALL_SW_PORT_NETWORK_DEF 0x0F

CALL_SW_PORT_CHANNEL_DEF 0x00

CALL_SW_PORT_H100_DEF 0x05

CALL_SW_PORT_T1_DEF 0x06

CALL_SW_PORT_E1_DEF 0x07

CALL_SW_PRI_T1_DEF 0x08

CALL_SW_PRI_E1_DEF 0x09

CALL_SW_AT_MODEM_DEF 0x0A

CALL_SW_PORT_BRI_DEF 0x0B

CALL_SW_PORT_ANALOG_LOOP_START_DEF 0x0C

CALL_SW_PORT_ANALOG_DID_DEF 0x0D

BfvCallSWGetInfo

March 2017 148

Details Each call returns information about one connectable port unit. Call
repeatedly until the return value = 0 (no more information).

For each value of args.src_port_class and args.src_port_unit,
args.src_stream indicates the number of available streams starting
from 0, and args.src_slot indicates the number of available slots
starting from 0 for each stream.

See Also BfvCallSWConnect, BfvCallSWClearConns

Example BTLINE *lp;
struct args_tel_ctrl_call_sw args;

BT_ZERO(args);
while (BfvCallSWGetInfo(lp,&args) > 0)
 printf("Port class %X, Unit %d, Stream %d, Slot %d,
 Type %X\n",
 args.src_port_class,args.src_port_unit,
 args.src_stream,args.src_slot,args.port_type);

BfvNetworkConfigGet

March 2017 149

BfvNetworkConfigGet

Purpose Returns network configuration information about a specified
interface.

Syntax
int
BfvNetworkConfigGet(lp,args)

BTLINE *lp;
struct args_network_config*args;

The structure contains the following fields.

Input Fields unsigned unit;

Output Fields struct bt_sockaddr_in localAddr;
struct bt_sockaddr_in localNetmask;
struct bt_sockaddr_in gateway1;
unsigned speed;
unsigned duplex;
unsigned flowControl;
unsigned ARPTimeout;
RES *res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.unit

Unit number of the interface to query. Values are:

1 to max Ethernet port.

BfvNetworkConfigGet

March 2017 150

Output Return value:

1 Unit information returned.

0 Unit not found.

<0 Error.

args.localAddr

The local address of the unit. The application fills in the
sin_family and sin_addr fields of the structure type
struct bt_sockaddr_in as follows:
struct bt_sockaddr_in
{
 short sin_family;
 unsigned short sin_port;
 struct bt_in_addr sin_addr;
 char sin_zero[8];
};
The args.localAddr.sin_family field specifies the address family.
The only valid value is:
TELE_CTRL_AF_INET_DEF 0x02
The args.localAddr.sin_addr field specifies the network address,
in network order. (This is big-endian order for
TELE_CTRL_AF_INET_DEF).
The definition of the struct bt_in_addr structure is:
struct bt_in_addr
{

union
{
 struct {
 unsigned char s_b1, s_b2, s_b3, s_b4;
 } S_un_b;
 struct {
 unsigned short s_w1, s_w2;
 } S_un_w:
 unsigned long S_addr;
} S_un;

};

args.localNetmask

The local network mask of the unit. This is the
args.localAddr.sin_addr field of the structure
struct bt_sockaddr_in defined in args.localAddr. Only the field
args.localAddr.sin_addr is used. The address family is presumed
to be the same as that specified for args.localAddr.

BfvNetworkConfigGet

March 2017 151

args.gateway1

The network address of the default gateway of the unit. This is
the args.localAddr.sin_addr field of the structure
struct bt_sockaddr_in defined in args.localAddr. Only the field
args.localAddr.sin_addr is used. The address family is presumed
to be the same as that specified for args.localAddr.

args.speed

The speed. When TELE_CTRL_SPEED_AUTO_DEF is selected for
args.speed, auto-negotiation is performed for both speed and
duplex (overriding the args.duplex selection). Valid values are:

args.duplex

Full/half duplex control. When the application sets args.speed to
TELE_CTRL_SPEED_AUTO_DEF, auto-negotiation is performed
for both speed and duplex (overriding the args.duplex selection).
Valid values are:

args.flowControl

Level of flow control for full duplex. Valid values are:

args.ARPTimeout

ARP cache expiration time, in milliseconds.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

TELE_CTRL_SPEED_AUTO_DEF 0x00

TELE_CTRL_SPEED_10M_DEF 0x01

TELE_CTRL_SPEED_100M_DEF 0x02

TELE_CTRL_DUPLEX_HALF_DEF 0x01

TELE_CTRL_DUPLEX_FULL_DEF 0x02

TELE_CTRL_FULLDUP_AUTO_DEF 0x00

TELE_CTRL_FULLDUP_RECEIVE_ONLY_DEF 0x01

TELE_CTRL_FULLDUP_TRANSMIT_ONLY_DEF 0x02

TELE_CTRL_FULLDUP_BOTH_DEF 0x03

BfvNetworkConfigGet

March 2017 152

Example BTLINE *lp;
struct args_network_config args;

BT_ZERO(args);
args.unit = 0;
BfvNetworkConfigGet(lp,&args);
printf("Local address is: %d.%d.%d.%d\n",
 args.localAddr.sin_addr.S_un.s_b1,
 args.localAddr.sin_addr.S_un.s_b2,
 args.localAddr.sin_addr.S_un.s_b3,
 args.localAddr.sin_addr.S_un.s_b4);
...

BfvNetworkConfigSet

March 2017 153

BfvNetworkConfigSet

Purpose Performs network configuration on an Ethernet interface using a
configuration file and specific supplied parameters.

Syntax int

BfvNetworkConfigSet(lp,args)
BTLINE *lp;
struct args_network_config*args;

The structure contains the following fields.

Input Fields unsigned unit;
unsigned ARPflush;
unsigned set_localAddr;
struct bt_sockaddr_in localAddr;
unsigned set_localNetmask;
struct bt_sockaddr_in localNetmask;
unsigned set_gateway1;
struct bt_sockaddr_in gateway1;
unsigned set_speed;
unsigned speed;
unsigned set_duplex;
unsigned duplex;
unsigned set_flowControl;
unsigned flowControl;
unsigned set_ARPTimeout;
unsigned ARPTimeout;

Output Fields RES *res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

BfvNetworkConfigSet

March 2017 154

args.unit

Unit number of the interface to query. Values are:

1 to max Ethernet port.

args.ARPflush

Resets the ARP cache for the unit, which is specified by args.unit.
Not normally performed.

args.set_localAddr

If nonzero, sets the value of the args.localAddr to active.

args.localAddr

The local address of the unit. This is specified by filling the
sin_family and sin_addr fields of the structure type
struct bt_sockaddr_in used for this input field.
struct bt_sockaddr_in
{
 short sin_family;
 unsigned short sin_port;
 struct bt_in_addr sin_addr;
 char sin_zero[8];
};
The args.localAddr.sin_family field specifies the address family.
The only valid value is:
TELE_CTRL_AF_INET_DEF 0x02
The args.localAddr.sin_addr field specifies the network address,
in network order. (This is big-endian order for
TELE_CTRL_AF_INET_DEF).
The definition of the struct bt_in_addr structure is:
struct bt_in_addr
{

union
{
 struct {
 unsigned char s_b1, s_b2, s_b3, s_b4;
 } S_un_b;
 struct {
 unsigned short s_w1, s_w2;
 } S_un_w:
 unsigned long S_addr;
} S_un;

};

BfvNetworkConfigSet

March 2017 155

args.set_localNetmask

If nonzero, the args.localNetmask parameter is active.

args.localNetmask

The local network mask of the unit. This is the
args.localAddr.sin_addr field of the structure
struct bt_sockaddr_in defined in args.localAddr. Only the field
args.localAddr.sin_addr is used. The address family is presumed
to be the same as that specified for args.localAddr.

args.set_gateway1

If nonzero, the args.gateway1 parameter will be active.

args.gateway1

The network address of the default gateway of the unit. This uses
the struct bt_sockaddr_in structure defined in args.localAddr.
Only the field args.localAddr.sin_addr is used. The address
family is presumed to be the same as that specified for
args.localAddr.

args.set_speed

If nonzero, the args.speed parameter will be active.

args.speed

The speed. When TELE_CTRL_SPEED_AUTO_DEF is selected for
args.speed, auto-negotiation is performed for both speed and
duplex (overriding the args.duplex selection). Valid values are:

args.set_duplex

If nonzero, the args.duplex parameter will be active.

TELE_CTRL_SPEED_AUTO_DEF 0x00

TELE_CTRL_SPEED_10M_DEF 0x01

TELE_CTRL_SPEED_100M_DEF 0x02

BfvNetworkConfigSet

March 2017 156

args.duplex

Full/half duplex control. When TELE_CTRL_SPEED_AUTO_DEF is
selected for args.speed, auto-negotiation is performed for both
speed and duplex (overriding the args.duplex selection). Valid
values are:

args.set_flowControl

If nonzero, the args.flowControl parameter will be active.

args.flowControl

Level of flow control for full duplex. Valid values are:

args.set_ARPTimeout

If nonzero, the args.ARPTimeout parameter will be active.

args.ARPTimeout

ARP cache expiration time, in milliseconds.

Output Return value:

0 Success.

>0 Operational error reported by firmware.

–2 File used but module not found.

–3 File used but unit not found.

<0 Other error.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

TELE_CTRL_DUPLEX_HALF_DEF 0x01

TELE_CTRL_DUPLEX_FULL_DEF 0x02

TELE_CTRL_FULLDUP_AUTO_DEF 0x00

TELE_CTRL_FULLDUP_RECEIVE_ONLY_DEF 0x01

TELE_CTRL_FULLDUP_TRANSMIT_ONLY_DEF 0x02

TELE_CTRL_FULLDUP_BOTH_DEF 0x03

BfvNetworkConfigSet

March 2017 157

Details When the _AUTO option is selected for args.speed or
args.flowControl, the Ethernet interface negotiates the appropriate
settings with link initialization.

Normally, you should allow the Ethernet interface to auto-negotiate
its speed, duplex and flow control. However, the Bfv API allows you
to force the speed to support various potential debugging needs. If
you intend to force the interface speed (for example, to 10 Mbps or
100 Mbps), you must first allow the Ethernet interface to auto-
negotiate its natural speed. The default power-up configuration is to
auto-negotiate. Therefore, you can force a fixed speed the first time
that you call BfvNetworkConfigSet. However, if you need to
change the speed again, you must first call BfvNetworkConfigSet
with the auto-negotiation setting (TELE_CTRL_SPEED_AUTO_DEF),
wait to be sure that the auto-negotiation has had time to complete
(500 ms should be adequate), and then set to the new fixed speed as
desired.

Example Setting parameters directly

BTLINE *lp;
struct args_network_config args;

/* This will set the local address, leaving other
 parameters set to their previous values. */
BT_ZERO(args);
args.unit = 0;
args.set_localAddr = 1;
args.localAddr.sin_family = TELE_CTRL_AF_INET_DEF;
args.localAddr.sin_addr.S_un.s_b1 = 192;
args.localAddr.sin_addr.S_un.s_b2 = 168;
args.localAddr.sin_addr.S_un.s_b3 = 0;
args.localAddr.sin_addr.S_un.s_b4 = 1;
BfvNetworkConfigSet(lp,&args);

BfvNetworkQuery

March 2017 158

BfvNetworkQuery

Purpose Retrieves statistics about the specified Ethernet unit.

Syntax int

BfvNetworkQuery (lp,args)
BTLINE *lp;
struct args_network_query*args;

The structure contains the following fields.

Input Fields unsigned unit;
unsigned report_mask;

Output Fields ENet_MIB ethernet;
ARP_MIB arp;
UDP_MIB udp;
IF_MIB if;
RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.unit

Ethernet unit for generating the report will be generated.

args.report_mask

Specifies values to use when generating reports. The value is
formed by ORing together the following values:

TELE_CTRL_REPORT_ENET_DEF 0x01
TELE_CTRL_REPORT_ARP_DEF 0x10

BfvNetworkQuery

March 2017 159

Output Return value:

0 Success.

<0 Error.

args.if

A structure of IF MIB compatible fields, filled in when
args.report_mask contains TELE_CTRL_REPORT_UDP_DEF.
Refer to Table 4, IF Statistics in the details section.

args.ethernet

A structure of Ethernet MIB compatible fields, filled in when
args.report_mask contains TELE_CTRL_REPORT_ENET_DEF.
Refer to Table 5, Ethernet Statistics in the details section.

args.arp

A structure of up to 60 ARP MIB compatible fields, filled in when
args.report_mask contains TELE_CTRL_REPORT_ARP_DEF.
Refer to Table 6, ARP Statistics in the details section.

args.udp

A structure of UDP MIB compatible fields, filled in when
args.report_mask contains TELE_CTRL_REPORT_UDP_DEF.
Refer to Table 7, UDP Statistics in the details section.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

TELE_CTRL_REPORT_UDP_DEF 0x20
TELE_CTRL_REPORT_IF_DEF 0x40

BfvNetworkQuery

March 2017 160

Details Bits set in args.report_mask determine which output values will be
returned.

The output structures are defined in the header file btmib.h. Not all
statistics are available if the unit is part of a trunk.

Table 4. IF Statistics
ifHighSpeed Indicates 10/100Mbps. If auto-negotiation is enabled, but

operational speed has not been negotiated, maximum speed
supported by the interface shall be reported (100Mbps).

ifHCInOctets Number of octets in valid MAC frames received on this interface,
including the MAC header and FCS.

ifHCInErrors Sum of receive errors:

40 - Receive CRC Errors
44 - Receive Alignment Errors
48 - Receive Resource Errors
52 - Receive Overrun Errors
60 - Receive Short Frame Errors

ifInUnknownProtos For packet-oriented interfaces, the number of packets received via
the interface which were discarded because of an unknown or
unsupported protocol.

ifHCOutOctets The total number of octets transmitted out of the interface, including
framing characters.

ifInUcastPkts The total number of packets received which were not addressed to a
multicast or broadcast address at this sub-layer, including those that
were discarded or not sent.

ifInMulticastPkts The number of packets received, which were addressed to a
multicast address at this sub-layer.

ifInBroadcast The number of packets received, which were addressed to a
broadcast address.

ifOutUcastPkts The total number of packets that higher-level protocols requested be
transmitted, and which were not addressed to a multicast or
broadcast address at this sub-layer, including those that were
discarded or not sent.

ifOutMulticastPkts The number of packets sent, which were addressed to a multicast
address.

ifOutBroadcastPkts The number of packets sent, which were addressed to a broadcast
address.

ifPhysAddress Hardware MAC address

BfvNetworkQuery

March 2017 161

Table 5. Ethernet Statistics
dot3StatsExcessiveCollisions The number of frames for which transmission on a

particular interface fails due to excessive collisions.

dot3StatsLateCollisions The number of times that a collision is detected on a
particular interface later than 512 bit-times into the
transmission of a packet.

dot3StatsInternalMacTransmitErrors The number of frames for which transmission on a
particular interface fails due to an internal MAC
sublayer transmit error.

dot3StatsCarrierSenseErrors The number of times that the carrier sense condition
was lost or never asserted when attempting to transmit
a frame on a particular interface.

dot3StatsDeferredTransmissions The number of frames for which the first transmission
attempt on a particular interface is delayed because the
medium is busy.

dot3StatsSingleCollisionFrames The number of successfully transmitted frames on a
particular interface for which transmission is inhibited
by exactly one collision.

dot3StatsFCSErrors The number of frames received on a particular interface
that are an integral number of octets in length but do
not pass the FCS check.

dot3StatsAlignmentErrors The number of frames received on a particular interface
that are not an integral number of octets in length and
do not pass the FCS check.

dot3StatsInternalMacReceiveErrors The number of frames for which reception on a
particular interface fails due to an internal MAC
sublayer receive error.

dot3StatsXTransmitGoodFrames The number of frames transmitted successfully by this
device.

dot3StatsXTransmitFlowControls The number of flow control messages transmitted by
this device.

dot3StatsXReceiveGoodFrames The number of frames successfully received without
data errors by this device.

dot3StatsXReceiveResourceErrors The number of frames received while the device’s
receive unit was not in the ready state.

dot3StatsXReceiveFlowControls The number of flow control frames received.

BfvNetworkQuery

March 2017 162

 Example struct args_network_query args;

/* Request reports on Ethernet and IP. */
BT_ZERO(args);
args.unit = 0;
args.report_mask = TELE_CTRL_REPORT_ENET_DEF |
 TELE_CTRL_REPORT_IP_DEF;
BfvNetworkQuery(lp, &args);

Table 6. ARP Statistics
atPhysAddress Hardware MAC address.

atNetAddress IP address.

Table 7. UDP Statistics
udpInDatagrams Total delivered datagrams.

udpNoPorts Undelivered datagrams: unused port.

udpInErrors Undelivered datagrams: other reasons.

udpOutDatagrams Successfully sent datagrams.

BfvTelephGetInfo

March 2017 163

BfvTelephGetInfo

Purpose Retrieves and returns information about the telephony hardware
units on the current module and their available port types.

Syntax int

BfvTelephGetInfo (lp, args)
BTLINE *lp;
struct args_tel_ctrl_call_sw*args;

The structure contains the following fields.

Input Fields

None

Output Fields
unsigned src_port_unit;
unsigned port_type;
RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

Output Return value:

1 Unit information is returned.

0 No more unit information.

<0 Error.

args.src_port_unit

Port unit number, starting from 0.

BfvTelephGetInfo

March 2017 164

args.port_type

A value defining available port types for the current telephony
hardware unit. The value is formed by logically ORing together
the following values:

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Each call returns information about one hardware unit. Call
repeatedly until the return value = 0 (no more information).

See Also BfvCallSWConnect, BfvCallSWGetInfo

Example BTLINE *lp;
struct args_tel_ctrl_call_sw args;

BT_ZERO(args);
while (BfvTelephGetInfo(lp,&args) > 0)
 printf("Unit %d, port type %X\n",
 args.src_port_unit,args.port_type);

TELE_CTRL_PORT_ANALOG_LOOP_START_DEF 0x01

TELE_CTRL_PORT_ANALOG_DID_DEF 0x02

TELE_CTRL_PORT_H100_DEF 0x20

TELE_CTRL_PORT_T1_DEF 0x40

TELE_CTRL_PORT_E1_DEF 0x80

TELE_CTRL_PORT_PRI_T1_DEF 0x100

TELE_CTRL_PORT_PRI_E1_DEF 0x200

TELE_CTRL_PORT_AT_MODEM_DEF 0x400

TELE_CTRL_PORT_BRI_DEF 0x800

TELE_CTRL_PORT_TYPE_H100_SCBUS_DEF 0x4000

TELE_CTRL_PORT_TYPE_H100_MVIP_DEF 0x8000

TELE_CTRL_PORT_TYPE_T3_DEF 0x10000

BfvTelephReset

March 2017 165

BfvTelephReset

Purpose Modifies the telephony state on the current module to permit
performing high level configuration again using BfvCallCtrlInit.

Syntax void
BfvTelephReset (lp, args)

BTLINE *lp;
struct args_tel_ctrl_call_sw*args;

The structure contains the following fields.

Input Fields None

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details This function only resets the configuration of the module when the
application calls the BfvCallCtrlInit function to perform the
modification. If not called, BfvCallCtrlInit will not do any
configuration after the first time.

See Also BfvCallSWConnect, BfvCallCtrlInit, BfvTelephGetInfo

BfvTelephReset

March 2017 166

Example See the telreset.c application in the bapp.src directory.

BfvTelephSave

March 2017 167

BfvTelephSave

Purpose Saves already configured telephony parameters to non-volatile
memory (NVRAM) on the current module.

Syntax int

BfvTelephSave (lp, args)
BTLINE *lp;
struct args_tel_ctrl_call_sw*args;

The structure contains the following fields.

Input Fields None

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

Output Return value:

0 Success

>0 Operational error reported by firmware

<0 Other error

args.res

TELE_CTRL_NVRAM_READ_SSEEPROM_ERR_DEF 0x02

TELE_CTRL_NVRAM_WRITE_SSEEPROM_ERR_DEF 0x03

TELE_CTRL_NVRAM_SSEEPROM_WRITTEN_DEF 0x04

BfvTelephSave

March 2017 168

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details The process this function performs enables boards to power up and
initialize with legal configurations for their environment.

See Also BfvCallCtrlInit

Example See the telsave.c sample application in the bapp.src directory.

March 2017 169

5 - Status and Monitoring

This chapter describes functions to control and monitor the status of
modules and telephony or network ports.

With the status and monitoring functions, you can:

 Set and get the state of a module by reading the Board Status
LED.

 Set a module temperature threshold.

 Get the temperature of a module.

 Have a module perform a series of self tests and, optionally,
report the results.

 Have a module notify the application of events or conditions on
the module such as:

 A network alarm

 A network error

 An H.110 clock event

 A temperature alarm

 General status of the module

 Ethernet link status

 RTP/RTCP statistics and reports

Function Summary

March 2017 170

Function Summary
Table 8 provides a brief summary of the functions used for monitoring
and retrieving the status of a board.

Table 8. Board Status and Monitoring Function Summary

Function Purpose Page

BfvBoardNotify Enables or disables module level notification
and sets up an optional callback function.

171

BfvBoardStateGet Retrieves the current state of a module
(Board Status LED).

178

BfvBoardStateSet Sets the current state of a module (Board
Status LED).

180

BfvBoardTemperatureGet Retrieves the current temperature of a
module.

182

BfvBoardTemperatureThreshSet Sets the temperature threshold of a module
for the purpose of module event notification.

184

BfvBoardTest Initiates a series of self tests on the module
and reports the results as they occur through
an optional callback function.

186

BfvIPCallControlNotify Enables or disables IP Call Control module
notifications and sets up an optional callback
function.

190

BfvRtpEventControl Registers for RTP events, statistics, and
RTCP reports.

195

BfvRtpEventGet Retrieves RTP events, statistics, and RTCP
reports.

198

BfvRtcpReportSend Configures RTCP SDES items and generates
RTCP APP reports.

206

BfvBoardNotify

March 2017 171

BfvBoardNotify

Purpose Enables or disables module level notification and sets up an optional
callback function.

Syntax void
BfvBoardNotify (lp, args)

BTLINE *lp;
struct args_board_notify*args;

The structure contains the following fields.

Input Fields unsigned enable;
unsigned notify_type;
void (*func)(BTLINE *lp, unsigned notify_type,
 struct args_board_notify *args);

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.enable

0 Disables notification.

Nonzero Enables notification.

This applies only to the notification type indicated by
args.notify_type.

BfvBoardNotify

March 2017 172

args.notify_type

The notification type to enable or disable.
Valid values are:

args.func

Optional callback function. If NULL, no callback will be performed.
The function will be called as indicated by its definition above.
Notify_type contains the notification type that occurred. Args is a
pointer to an args_board_notify structure with fields set to values
relevant to the incoming notification.

Note: The structure and its contents must not be modified.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details For the current set of notification types, the list below indicates the
fields of the args_board_notify structure that will be used when the
callback function is called. The text that follows provides values and
definitions for these fields.

ADMIN_NOTIFY_NETWORK_ALARM_DEF

unit, network_alarm
ADMIN_NOTIFY_NETWORK_ERROR_DEF

unit, network_error
ADMIN_NOTIFY_H110_CLOCK_EVENT_DEF

h110_clock_status
ADMIN_NOTIFY_TEMP_ALARM_DEF

temp_alarm, temp

ADMIN_NOTIFY_NETWORK_ALARM_DEF 0x01

ADMIN_NOTIFY_NETWORK_ERROR_DEF 0x02

ADMIN_NOTIFY_H110_CLOCK_EVENT_DEF 0x03

ADMIN_NOTIFY_TEMP_ALARM_DEF 0x04

ADMIN_NOTIFY_BOARD_STATE_DEF 0x05

ADMIN_NOTIFY_ENET_LINK_DEF 0x06

BfvBoardNotify

March 2017 173

ADMIN_NOTIFY_BOARD_STATE_DEF

board_state
ADMIN_NOTIFY_ENET_LINK_DEF

unit, link_status, failover_unit, speed, duplex

args->unit

Telephony or network hardware unit for notification.

args->network_alarm

Network alarm type. Valid values are:

args->network_error

Network error type. Valid values are:

args->h110_clock_status

H.110 clock status. Valid values are:

ADMIN_UNIT_ALARM_NONE_DEF 0x01

ADMIN_UNIT_ALARM_LOS_DEF 0x02

ADMIN_UNIT_ALARM_RAI_DEF 0x03

ADMIN_UNIT_ALARM_AIS_DEF 0x04

ADMIN_UNIT_ERROR_NONE_DEF 0x01

ADMIN_UNIT_ERROR_FRAMING_DEF 0x02

ADMIN_UNIT_ERROR_CRC_DEF 0x03

ADMIN_UNIT_ERROR_BPV_DEF 0x04

ADMIN_UNIT_ERROR_SLIP_DEF 0x05

ADMIN_H110_MASTER_REF_A_DEF

Clock is from first T1/E1 port.

0x07

ADMIN_H110_MASTER_REF_B_DEF

Clock is from second T1/E1 port.

0x08

ADMIN_H110_MASTER_REF_NETREF1_DEF

Clock is from NETREF1.a
0x09

ADMIN_H110_MASTER_REF_NETREF2_DEF

Clock is from NETREF2.a
0x0A

BfvBoardNotify

March 2017 174

args->temp_alarm

Temperature alarm threshold in units of 1/2 degree Celsius.

args->temp

Temperature of the module in units of 1/2 degree Celsius. An
alarm event triggers when the module’s temperature first exceeds
the threshold or first becomes less than the threshold. In other
words, an alarm is generated once for each threshold crossing,
regardless of the direction.

ADMIN_H110_MASTER_REF_INTERNAL_DEF

Clock is from internal oscillator.

0x0B

ADMIN_H110_MASTER_REF_C_DEF

Clock is from third T1/E1 port.

0x0C

ADMIN_H110_MASTER_REF_D_DEF

Clock is from fourth T1/E1 port.

0x0D

ADMIN_H110_MASTER_REF_E_DEF

Clock is from fifth T1/E1 port.

0x0E

ADMIN_H110_MASTER_REF_F_DEF

Clock is from sixth T1/E1 port.

0x0F

ADMIN_H110_MASTER_REF_G_DEF

Clock is from seventh T1/E1 port.

0x10

ADMIN_H110_MASTER_REF_H_DEF

Clock is from eighth T1/E1 port.

0x11

ADMIN_H110_MASTER_REF_A_BUS_DEF

Clock is from H110 A bus.

0x12

ADMIN_H110_MASTER_REF_B_BUS_DEF

Clock is from H110 B bus.

0x13

ADMIN_H110_MASTER_REF_NONE_DEF

Not receiving valid clock signal.

0x14

a. See the Release Notes to determine if supported.

BfvBoardNotify

March 2017 175

args->board_state

Module State. Valid values are:

args->link_status

Ethernet link status. Valid values are:

ADMIN_ENET_LINK_DOWN_DEF

The link is down.
ADMIN_ENET_LINK_UP_DEF

The link is up.
ADMIN_ENET_LINK_FAILOVER_DEF

The link has failed over to another unit.

ADMIN_ENET_LINK_FAILOVER_TRUNK_DEF

The link has failed over to another unit within the trunk.

ADMIN_ENET_LINK_FAILOVER_UNSUCC_DEF

The link attempted to failover but was unsuccessful.

args->failover_unit

Ethernet failover unit. Valid only when args->link_status is
ADMIN_ENET_LINK_FAILOVER_DEF.

args->speed

Ethernet link speed. Valid only when args->link_status is
ADMIN_ENET_LINK_UP_DEF. Valid values are:

ADMIN_BOARD_STATE_OK_DEF 0x01

ADMIN_BOARD_STATE_WARNING_DEF 0x02

ADMIN_BOARD_STATE_ERROR_DEF 0x03

ADMIN_BOARD_STATE_OUTOFSERVICE_DEF 0x04

ADMIN_BOARD_STATE_OFFLINE_DEF 0x05

ADMIN_SPEED_AUTO_DEF 0x0

ADMIN_SPEED_10M_DEF 0x1

ADMIN_SPEED_100M_DEF 0x2

BfvBoardNotify

March 2017 176

args->duplex

Ethernet link duplex mode. Valid only when args->link_status is
ADMIN_ENET_LINK_UP_DEF. Valid values are:

Enabling notification with no callback function is useful for the
purpose of viewing the resulting notifications in Bfv API debug
mode.

Only one notification function can be set up per line pointer, though
the notifications for the different notification types are set up
separately. All calls made with a non-NULL args.func value should
contain the same value.

The callback function will be called when notification is first enabled
and when a new notification occurs. It might, however, sometimes be
called multiple times in succession with the same args->notify_type
value under some conditions. This is normal and does not indicate a
recurrence of the event causing the notification. Applications should
only interpret the notification as representing an event of some sort
when the args->notify_type value or associated args field values are
different from the previous value.

The args_board_notify structure passed to the callback function also
contains an args_packet structure pointer. This pointer can be used
to access tagged values of a notification event in case a new
notification type is implemented which the Bfv API does not yet
support. Such access requires use of low level command set functions
and specific knowledge of the command set and should only be done
under the guidance of Dialogic Technical Services and Support.

See Also BfvBoardTemperatureThreshSet, BfvBoardStateGet,
BfvBoardStateSet

ADMIN_DUPLEX_AUTO_DEF 0x0

ADMIN_DUPLEX_HALF_DEF 0x1

ADMIN_DUPLEX_FULL_DEF 0x2

BfvBoardNotify

March 2017 177

Example /* Set up function to receive network alarm notifications.
 */

void notify_func(lp,notify_type,args)
BTLINE *lp;
unsigned notify_type;
struct args_board_notify args;
{
 printf("Got notify for type %d\n",notify_type);
 if (notify_type == ADMIN_NOTIFY_NETWORK_ALARM_DEF)
 printf("Network alarm type %x on unit %d\n",
 args->network_alarm,args->unit);
}

main()
{
 BTLINE *lp;
 struct args_board_notify args;

 ...
 BT_ZERO(args);
 args.enable = 1;
 args.notify_type = ADMIN_NOTIFY_NETWORK_ALARM_DEF;
 args.func = notify_func;
 BfvBoardNotify(lp,&args);

 /* Call BfvRcvProcessPkt or other API calls here. */
}

BfvBoardStateGet

March 2017 178

BfvBoardStateGet

Purpose Retrieves the current state of a module.

Syntax void
BfvBoardStateGet (lp, args)

BTLINE *lp;
struct args_board_state *args;

The structure contains the following fields.

Output Fields unsigned state;
RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

Output Return value: None.

args.state

Module state. Call BfvBoardStateSet before using
BfvBoardStateGet. The valid values are:

ADMIN_BOARD_STATE_UNINITIALIZED_DEF 0x00

ADMIN_BOARD_STATE_OK_DEF 0x01

ADMIN_BOARD_STATE_WARNING_DEF 0x02

ADMIN_BOARD_STATE_ERROR_DEF 0x03

ADMIN_BOARD_STATE_OUTOFSERVICE_DEF 0x04

ADMIN_BOARD_STATE_OFFLINE_DEF 0x05

BfvBoardStateGet

March 2017 179

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details The SR140 does not support this function.

Each Dialogic® Brooktrout® module has a Board Status LED that
indicates a module state previously set by using the
BfvBoardStateSet function. Use the BfvBoardStateGet function
to retrieve the current state. The valid states are:

See Also BfvBoardStateSet

Example BTLINE *lp;
struct args_board_state args;

...
BT_ZERO(args);
BfvBoardStateGet(lp,&args);
if (args.res.status == BT_STATUS_OK)
 printf("Module state is %d\n",args.state);

LED States Flashing Patterns
ADMIN_BOARD_STATE_UNINITIALIZED_DEF

Indicates that BfvBoardStateSet has not
been used to set a state.

ADMIN_BOARD_STATE_OK_DEF 1/4 sec. on

1/2 sec. off

Green

ADMIN_BOARD_STATE_WARNING_DEF 1/4 sec. on

1/2 sec. off

Yellow

ADMIN_BOARD_STATE_ERROR_DEF constant on Red

ADMIN_BOARD_STATE_OUTOFSERVICE_DEF 1/4 sec. on

1/2 sec. off

Red

ADMIN_BOARD_STATE_OFFLINE_DEF constant off –

BfvBoardStateSet

March 2017 180

BfvBoardStateSet

Purpose Sets the module state value.

Syntax void
BfvBoardStateSet (lp, args)

BTLINE *lp;
struct args_board_state *args;

The structure contains the following fields.

Input Fields unsigned state;

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.state

New module state. Call BfvBoardStateSet before using
BfvBoardStateGet.
The valid values are:

ADMIN_BOARD_STATE_OK_DEF 0x01

ADMIN_BOARD_STATE_WARNING_DEF 0x02

ADMIN_BOARD_STATE_ERROR_DEF 0x03

ADMIN_BOARD_STATE_OUTOFSERVICE_DEF 0x04

ADMIN_BOARD_STATE_OFFLINE_DEF 0x05

BfvBoardStateSet

March 2017 181

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details The SR140 does not support this function.

This function allows you to set the state of the Board Status LED
indicator on the module. It does not affect the operation of any other
Bfv API function nor alter the behavior of the module, other than
changing the color or winking pattern of the LED. The valid states
are:

See Also BfvBoardStateGet

Example BTLINE *lp;
struct args_board_state args;

...
/* Set state to Warning */
BT_ZERO(args);
args.state = ADMIN_BOARD_STATE_WARNING_DEF;
BfvBoardStateSet(lp,&args);

LED States Flashing Patterns
ADMIN_BOARD_STATE_OK_DEF 1/4 sec. on

1/2 sec. off

Green

ADMIN_BOARD_STATE_WARNING_DEF 1/4 sec. on

1/2 sec. off

Yellow

ADMIN_BOARD_STATE_ERROR_DEF constant on Red

ADMIN_BOARD_STATE_OUTOFSERVICE_DEF 1/4 sec. on

1/2 sec. off

Red

ADMIN_BOARD_STATE_OFFLINE_DEF constant off –

BfvBoardTemperatureGet

March 2017 182

BfvBoardTemperatureGet

Purpose Retrieves the current temperature of a module.

Syntax void
BfvBoardTemperatureGet (lp, args)

BTLINE *lp;
struct args_temperature *args;

The structure contains the following fields.

Output Fields int current_temp;
RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

Output Return value: None.

args.current_temp

Temperature, in 1/2 degree Celsius units.
1000 = Invalid. The module does not support this function.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details This function does not support the SR140 and the following boards
because they do not have a temperature sensor:

 TR1034 Analog and BRI boards

 TruFax® PCI BRI boards

BfvBoardTemperatureGet

March 2017 183

See Also BfvBoardTemperatureThreshSet

Example struct args_temperature args;

BT_ZERO(args);
BfvBoardTemperatureGet(lp,&args);
printf("Temp is %d in 0.5 degree
 units\n",args.current_temp);

BfvBoardTemperatureThreshSet

March 2017 184

BfvBoardTemperatureThreshSet

Purpose Sets the temperature threshold of a module for the purpose of
module event notification.

Syntax void
BfvBoardTemperatureThreshSet(lp, args)

BTLINE *lp;
struct args_temperature *args;

The structure contains the following fields.

Input Fields int temp_thresh;

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.temp_thresh

Temperature threshold, in 1/2 degree Celsius units.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

See Also BfvBoardTemperatureGet, BfvBoardNotify

BfvBoardTemperatureThreshSet

March 2017 185

Example struct args_temperature args;

/* Set temp thresh to 80 Celsius */
BT_ZERO(args);
args.temp_thresh = 160;
BfvBoardTemperatureThreshSet(lp,&args);

BfvBoardTest

March 2017 186

BfvBoardTest

Purpose Initiates a series of self tests of the module and reports the results as
they occur through an optional callback function.

Syntax void
BfvBoardTest (lp, args)

BTLINE *lp;
struct args_board_test *args;

The structure contains the following fields.

Input Fields unsigned iterations;
unsigned test_mask;
void (*func)(BTLINE *lp, struct args_board_test
 *args);

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.iterations

The number of test iterations to perform.

BfvBoardTest

March 2017 187

args.test_mask

An indication of which tests to perform. Logically OR together one
or more of the following values:

Note: Some of these tests might not be supported in a particular
version. For more information, see the Release Notes that
apply to your Dialogic® Brooktrout® board type.

args.func

Optional callback function. If NULL, no callback will be performed.
The function will be called as indicated by its definition above.
The args variable is a pointer to an args_board_test structure
with fields set to values indicating the current test status. The
structure and its contents must not be modified.

ADMIN_BOARD_TEST_DRAM_DEF

DRAM (dynamic memory)

0x01

ADMIN_BOARD_TEST_HPI_DEF

Communication path to DSPs

0x02

ADMIN_BOARD_TEST_NVRAM_DEF

NVRAM (nonvolatile memory)

0x04

ADMIN_BOARD_TEST_GUPI_DEF

Programmable logic controlling processor interfaces

0x08

ADMIN_BOARD_TEST_PCM_CONTROLLER_DEF

PCM controller

0x10

ADMIN_BOARD_TEST_SLBSRAM_USING_PPC_DEF

Shared local bus SRAM (static RAM) access from
control processor

0x40

ADMIN_BOARD_TEST_SLBSRAM_USING_DSP_DEF

Shared local bus SRAM (static RAM) access from DSP

0x80

ADMIN_BOARD_TEST_ENET_CONTROLLER_DEF

Ethernet controller

0x100

BfvBoardTest

March 2017 188

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details The SR140 does not support this function.

BfvBoardTest does not require that the firmware be loaded to the
module to function. Also, since the BfvBoardTest function performs
a module reset, firmware will need to be downloaded to the module
after BfvBoardTest executes and before any other function is
attempted (even if firmware had previously been downloaded to the
module).

Note: Use this function only with TR1034 digital (T1/E1) boards.

Each time the callback function is called, the following fields are
used:

Calling this function will cause the module to be reset back to its
initial state. After the test, download firmware before proceeding.

When the tests are first started, the callback function will be called
with args->test_mask set to MILL_TEST_ALL_DEF (0xffffffff) and
args->status set to ADMIN_BOARD_TEST_STARTED_DEF. As each test
starts, the function will be called with args->test_mask indicating
the test type and args->status set to ADMIN_BOARD_TEST_
STARTED_DEF. As each test finishes, the function will be called with
args->test_mask indicating the test type and args->status set to
ADMIN_BOARD_TEST_SUCCESS_DEF or ADMIN_BOARD_TEST_
FAILED_DEF. At the end of the entire set of all iterations of tests, the
function will be called with args->test_mask set to
MILL_TEST_ALL_DEF (0xffffffff) and args->status set to
ADMIN_BOARD_TEST_SUCCESS_DEF.

args->test_mask = Indication of which test has started or
completed.

args->status = Whether test started or completed/failed.

args->err_info = Additional error information.

BfvBoardTest

March 2017 189

When args->status is ADMIN_BOARD_TEST_FAILED_DEF,
args->error_info might contain additional error information,
depending upon the test. For ADMIN_BOARD_TEST_ENET_
CONTROLLER_DEF, the least significant byte contains the Ethernet
controller unit number that had an error. For
ADMIN_BOARD_TEST_SLBSRAM_USING_DSP_DEF, the least
significant byte contains the DSP number that had an error.

Performing tests with no callback function is useful for the purpose
of viewing the results in Bfv API debug mode.

Test durations depend upon the Dialogic® Brooktrout® board type,
and the args->test_mask in use. A typical test might take 4 seconds
for all tests, excluding the DRAM test
(ADMIN_BOARD_TEST_DRAM_DEF). A typical DRAM test may take 15
seconds.

Example void test_func(lp,args)
BTLINE *lp;
struct args_board_test *args;
{
 printf("Test %x, status %d\n",args->test_mask,
 args->status);
}

main()
{
 BTLINE *lp;
 struct args_board_test args;

 ...
 /* Do 10 iterations of the HPI test */
 BT_ZERO(args);
 args.iterations = 10;
 args.test_mask = ADMIN_BOARD_TEST_HPI_DEF;
 args.func = test_func;
 BfvBoardTest(lp,&args);
}

BfvIPCallControlNotify

March 2017 190

BfvIPCallControlNotify

Purpose Enables or disables IP Call Control module notifications and sets up
an optional callback function.

Syntax int
BfvIPCallControlNotify (lp, args)

BTLINE *lp;
struct args_ipcallcontrol_notify*args;

The structure contains the following fields.

Input Fields unsigned enable;
unsigned notify_type;
void (*func)(BTLINE *lp, unsigned notify_type,
 struct args_ipcallcontrol_notify *args);

Output Fields RES res;
GWStatus gateway_status[BT_MAX_GATEWAYS]

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.enable

0 Disables notification.

Nonzero Enables notification.

This applies only to the notification type indicated by
args.notify_type.

BfvIPCallControlNotify

March 2017 191

args.notify_type

The notification type to enable or disable.
Valid values are:

args.func

Optional callback function. If NULL, no callback will be performed.
The function will be called as indicated by its definition above.
Notify_type contains the notification type that occurred. Args is a
pointer to an args_ipcallcontrol_notify structure with fields set to
values relevant to the incoming notification.

Note: The structure and its contents must not be modified.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details The line structure passed into this function should be allocated using
BfvSessionAttach() with the HOST_MODULE() macro used to
specify the value for the mm_bModule field in the destination
address and the mm_bChannel field set to 1 (the Administrative
channel). The value specified in the HOST_MODULE() macro should
be the Host Module index of the IP Call Control stack as specified in
the CALLCTRL.CFG configuration file. For example, if the
CALLCTRL.CFG configuration file contains the following:

[host_module.1]

module_library=brktsip.dll

then the HOST_MODULE() macro would be specified with a 1 for
the SIP IP Call Control host module:

args.dest_addr.mm_bModule = HOST_MODULE(1);
args.dest_addr.mm_bChannel = 1;

For the current set of notification types, the list below indicates the
fields of the args_ipcallcontrol_notify structure that will be used
when the callback function is called. The text that follows provides
values and definitions for these fields.

IP_CC_NOTIFY_GATEWAY_STATUS_DEF 0x01

BfvIPCallControlNotify

March 2017 192

IP_CC_NOTIFY_GATEWAY_STATUS_DEF

SIP Gateway status change notification

A maximum of BT_MAX_GATEWAYS (4) gateways are supported
for SIP Gateway status notifications. When a notification of
IP_CC_NOTIFY_GATEWAY_STATUS_DEF is received, the
GWStatus structures pointed to by args->gateway_status will be
populated with the current status of all of the SIP Gateways
configured in the CALLCTRL.CFG configuration file as indicated in
the table below:

The GWStatus data structure used to report the current status of the
SIP Gateways is defined as follows:

typedef struct {
 unsigned status;
 unsigned response;
} GWStatus;

If a SIP Gateway isn’t configured in the CALLCTRL.CFG
configuration file, the GWStatus data structure associated with it
will be populated with a status of
IP_CC_GATEWAY_STATUS_DOWN_DEF (0) and a response of 0.

args->gateway_status[xx].status

SIP Gateway Status. The values returned in this field represent
the current SIP Gateway status as determined by responses
received for SIP OPTIONS requests transmitted to each of the
SIP Gateways configured in the CALLCTRL.CFG configuration
file.
Valid values are:

CALLCTRL.CFG Parameter Gateway Status Array Index
sip_default_gateway args->gateway_status[0]

sip_gateway2 args->gateway_status[1]

sip_gateway3 args->gateway_status[2]

sip_gateway4 args->gateway_status[3]

IP_CC_GATEWAY_STATUS_DOWN_DEF 0x00

IP_CC_GATEWAY_STATUS_UP_DEF 0x01

BfvIPCallControlNotify

March 2017 193

args->gateway_status[xx].response

SIP Gateway Response. The values returned in this field
represent the most recent SIP responses received from SIP
OPTIONS requests transmitted to the SIP Gateways configured
in the CALLCTRL.CFG configuration file. A value of zero (0)
indicates a timeout occurred waiting for a response.

Only one notification function can be set up per line pointer. The
callback function will be called when a notification is first enabled
and whenever a new notification occurs.

See Also BfvSessionAttach

BfvIPCallControlNotify

March 2017 194

Example void notify_func(BTLINE *lp,
 unsigned notify_type,
 struct args_ipcallcontrol_notify *args)
{
 printf("Got notify for type %d\n", notify_type);
 if (notify_type == IP_CC_NOTIFY_GATEWAY_STATUS_DEF)
 {
 int gw = 0;

 for (gw=0; gw<BT_MAX_GATEWAYS; gw++)
 {
 printf("Gateway [%d] Status: %d, Response: %d\n",
 gw,
 args->gateway_status[gw].status,
 args->gateway_status[gw].response);
 }
 }
}

main()
{
 BTLINE *lp;
 struct args_line_admin admin_args;
 struct args_ipcallcontrol_notify notify_args;

 /* Attach to SIP IP Call Control Host Module */
 /* Host Module is the value specified in callctrl.cfg */
 /* [host_module.1] */
 /* module_library=brktsip.dll */

 BT_ZERO(admin_args);
 admin_args.dest_addr.mm_bModule = HOST_MODULE(1);
 admin_args.dest_addr.mm_bChannel = 1;
 admin_args.present = 1;
 admin_args.unique = 0;
 if ((lp = BfvSessionAttach(&admin_args)) == NULL)
 {
 printf("BfvSessionAttach failed.\n");
 /* Process attach error */
 ...
 }

 BT_ZERO(notify_args);
 notify_args.enable = 1;
 notify_args.notify_type = IP_CC_NOTIFY_GATEWAY_STATUS_DEF;
 notify_args.func = notify_func;
 BfvIPCallControlNotify(lp, ¬ify_args);

 /* Call BfvRcvProcessPkt or other API calls here. */
 ...
}

BfvRtpEventControl

March 2017 195

BfvRtpEventControl

Purpose Registers for RTP events, statistics, and RTCP reports.

Syntax int
BfvRtpEventControl (lp, args)

BTLINE *lp;
struct args_rtp_event_control*args;

The structure contains the following fields.

Input Fields BTLINE *dest_lp;
int event_enable;
rtp_event_type_t event_type;

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to the args_rtp_event_control structure containing
input and output fields.

args.dest_lp

Set to NULL for the event to be returned to the BTLINE line
pointer (lp) used to invoke BfvRtpEventControl. Otherwise,
the event is sent to this line pointer. The same dest_lp may be
used for more than a single module.

args.event_enable

Boolean indicating whether one or more events are enabled or
disabled.
0 = Event disabled 1 = Event enabled

args.event_info.event_type

The registered events. These events can be OR’ed together.

BfvRtpEventControl

March 2017 196

Event Description
RTP_EVENT_JITTER_FRAME_OVERDUE Indicates a frame not received in time.

RTP_EVENT_JITTER_FRAME_INCORRECT_ORDER A frame received not in correct order. Only
sent if reordering is turned off.

RTP_EVENT_JITTER_OVERFLOW Jitter buffer not dequeuing packets fast
enough because, presumably, the remote
side is sending too fast.

RTP_EVENT_RTCP_SRRR Sender Report (SR) and Receiver Report
(RR) RTCP packets.

RTP_EVENT_RTCP_SDES Source description item (SDES) packets.

RTP_EVENT_RTCP_BYE Disconnection (BYE) RTCP packets.

RTP_EVENT_RTCP_APP Application specific RTCP packets.

RTP_EVENT_RTCP_ALL Only valid as report type. Reports all RTCP
events.

RTP_EVENT_RTP_PAYLOAD_CHANGE An RTP packet with a payload different
than the one negotiated has been received
and ignored.

RTP_EVENT_PACKET_STATS RTP statistics. Enabling this event will
generate an immediate event from the RTP
stack.

RTP_EVENT_ALL Selects all possible events.

BfvRtpEventControl

March 2017 197

Output Return values:

0 = The function executed successfully
<0 = An error occurred

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details BfvRtpEventControl registers for RTP events, statistics, and
RTCP reports. The events are retrieved by the application using
BfvRtpEventGet.

Some RTCP event types, such as RTP_EVENT_RTCP_ALL and
RTP_EVENT_RTCP_SDES, can result in multiple returns from
BfvRtpEventGet. For example, a single RTCP report can contain a
sender report (SR) and an SDES item. Both of these results return
from BfvRtpEventGet. Enabling the RTP_EVENT_PACKET_STATS
event generates RTP statistics immediately. If enabled events are to
be disabled, they must be disabled explicitly using this function.

All events are disabled by default.

BfvRtpEventGet

March 2017 198

BfvRtpEventGet

Purpose Retrieves RTP events, statistics, and RTCP reports previously
registered by BfvRtpEventControl.

Syntax int
BfvRtpEventGet (lp, args)

BTLINE *lp;
struct args_rtp_event_control*args;

The structure contains the following fields.

Input Fields LONG timeout;

Output Fields int event_module_num;
int event_chan_num;
struct rtp_event
{
 rtp_event_type_t event_type;

 union
 {

 struct rtp_rtcp
 {
 int version;

 int pad_flag;
 int report_count;
 int packet_length;
 rtp_rtcp_type_t packet_type;

BfvRtpEventGet

March 2017 199

 union
 {
 struct sr
 {
 unsigned ssrc;
 unsigned ntp_seconds;
 unsigned ntp_fraction;
 unsigned rtp_timestamp;
 unsigned num_packets_sent
 unsigned num_bytes_sent;
 rtp_rtcp_rr_t sr_item[31];

 } u_sr;
 struct rr
 {
 unsigned ssrc;
 rtp_rtcp_rr_t rr_item[31];

 } u_rr;
 struct sdes
 {
 rtp_rtcp_sdes_chunk sdes_chunk[31];

 } u_sdes;
 struct bye
 {
 unsigned ssrc[31];
 short reason_length;
 char reason[RTP_MAX_RTCP_\
 BYE_REASON];

 } u_bye;
 struct app

 {
 char app_data[RTP_MAX_RTCP_APP_DATA];

 int app_data_len;
 } u_app;

 } u_reports;
 } rtcp_data;
 struct rtp_packet_stats
 {
 unsigned num_packets;

 unsigned num_octets;
 unsigned num_packets_lost;
 unsigned interarrival_jitter;
 unsigned avg_transmission_delay;

 } packet_stats;
 }u;

BfvRtpEventGet

March 2017 200

} event_info;

RES res;

Input lp

Pointer to the BTLINE structure that is attached to the board.

args

Pointer to an argument structure, args_rtp_event_control,
containing input and output fields.

args.timeout

The time to block, in milliseconds, when waiting for an event. Set
to 0 to block indefinitely.

BfvRtpEventGet

March 2017 201

Output Return values:

0 = The function executed successfully
<0 = An error occurred

args

The args_rtp_event_control structure.

args.event_module_num

Packet source module number.

args.event_channel_num

Channel on which the specified event occurred.

args.event_info.event_type

The events reported back to the host are as follows:

args.event_info.u.rtcp_data

The rtp_rtcp structure
The parameters reported back to the host in
args.event_info.u.rtcp_data, are as follows

Parameter Additional Data
RTP_EVENT_JITTER_FRAME_OVERDUE None

RTP_EVENT_JITTER_FRAME_INCORRECT_ORDER None

RTP_EVENT_JITTER_OVERFLOW None

RTP_EVENT_RTCP_SRRR args.event_info.u.rtcp_data

RTP_EVENT_RTCP_SDES args.event_info.u.rtcp_data

RTP_EVENT_RTCP_BYE args.event_info.u.rtcp_data

RTP_EVENT_RTCP_APP args.event_info.u.rtcp_data

RTP_EVENT_RTP_PAYLOAD_CHANGE None

RTP_EVENT_PACKET_STATS args.event_info.u.packet_stats

Parameter Description
version Version of RTP/RTCP.

pad_flag Indicates whether RTCP packet contained padding octets.

report_count Indicates the number of internal parts in report.

BfvRtpEventGet

March 2017 202

args.event_info.u.rtcp_data.u_reports.u_sr

The u_sr structure.

args.event_info.u.rtcp_data.u_reports.u_sr.sr_item

 The rtp_rtcp_rr structure.

packet_length Indicates the length of RTCP packet in 32-bit words.

packet_type rtp_rtcp_type_t enumerator type, indicating the RTCP
packet type:

RTCP_SR

RTCP_RR

RTCP_SDES

RTCP_BYE

RTCP_APP

Parameter Description
ssrc Synchronization source - unique identifier for the

RTP session described by this report.

ntp_seconds Timestamp seconds of the wallclock time, as
represented in NTP (Network Time Protocol) format.

ntp_fraction Fractional element of ntp_seconds.

rtp_timestamp RTP timestamp.

num_packets_sent Total number of RTP data packets transmitted by the
sender since starting transmission.

num_bytes_sent Total number of octets transmitted by the sender
since starting transmission.

sr_item Array of receiver report items of type rtp_rtcp_rr_t
of which there are report_count.

Parameter Description
ssrc Data source being reported.

frac_lost Lost packets since last SR/RR/

last_seq Extended last sequence number received.

jitter Interarrival jitter

BfvRtpEventGet

March 2017 203

args.event_info.u.rtcp_data.u_reports.u_rr

The u_rr structure.

args.even_iInfo.u.rtcp_ata.u_reports.u_sdes

The u_sdes structure.

args.even_info.u.rtcp_data.u_reports.u_sdes.sdes_chu
nk

The rtp_rtcp_sdes_chunk structure.

args.even_info.u.rtcp_data.u_reports.u_sdes.sdes_
chunk[].sdes_item

The rtp_rtcp_sdes_item structure.

lsr Last SR packet from this source

dlsr Delay since last SR packet

Parameter Description
rr_item Array of receiver report items of type rtp_rtcp_rr_t

of which there are report_count.

ssrc Sender generating this report.

Parameter Description
sdes_chunk Array of SDES items of type rtp_rtcp_sdes_chunk,

which contains report_count elements.

Parameter Description
csrc SSRC/CSRC for this SDES chunk.

total_items Number of SDES items.

sdes_item Array of SDES items of type rtp_rtcp_sdes_item of
which there are total_items.

BfvRtpEventGet

March 2017 204

args.event_info.u.rtcp_data.u_reports.u_bye

The u_bye structure

args.event_info.u.rtcp_data.u_reports.u_app

The u_app structure.

args.event_info.u.packet_stats

The rtp_packet_stats structure.

Parameter Description
item_type SDES item type.

item_length SDES item length in bytes.

item_text Non nul-terminated ASCII string describing the
SDES item.

Parameter Description
ssrc Array of SSRC identifiers of which there are

report_count.

reason_length Length of reason string in bytes

reason ASCII encoded text string indicating the reason for
leaving a session. This string is not nul-terminated
and is reason_length bytes long.

Parameter Description
app_data Application specific data.

app_data_len Length of application specific data in bytes.

Parameter Description
num_packets Total number of packets from start.

num_octets Total number of octets from start.

num_packets_lost Total number of packets lost from start.

interarrival_jitter Estimate of the statistical variance of the RTP
interarrival time in milliseconds. Detailed algorithm
found in RFC1889.

avg_transmission_de
lay

Average transmission delay. This value is only
calculated for full-duplex connections. Estimate of
the network latency in milliseconds.

BfvRtpEventGet

March 2017 205

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details When BfvRtpEventGet returns, the output fields indicate the
event type and data content. Different structures are returned in
union u, depending upon the event_type.

The whole RTCP report is limited to 1500 octets. If an RTCP report
is received in excess of that (and hence fragmented), the whole report
is ignored.

Note: The BTLINE * registered with the BfvRTPEventControl
cannot be used for any other bfv function or else the data is
discarded.

BfvRtcpReportSend

March 2017 206

BfvRtcpReportSend

Purpose Configures RTCP SDES items and generates application-specific
APP reports.

Syntax int
BfvRtcpReportSend (lp, args)

BTLINE *lp;
struct args_rtp_event_control *args;

The structure contains the following fields.

Input Fields struct rtp_event
{

rtp_event_type_t event_type;
union
{

struct rtp_rtcp
{
rtp_rtcp_type_t packet_type;
union

 {
 struct sdes_send
 {
 rtp_rtcp_sdes_type_t sdes_type;
 char sdes_text[255];

 } u_sdes_send;
 struct app
 {
 char app_data[RTP_MAX_RTCP_APP_DATA];
 int app_data_len;
 } u_app;
} u_reports;

} rtcp_data;
}u;

} event_info;

BfvRtcpReportSend

March 2017 207

Output Fields RES res;

Input lp

Pointer to the BTLINE structure that is attached to the board.

args

Pointer to an argument structure, args_rtp_event_control,
containing input and output fields.

args.event_info.event_type

Selects the type of packet being created, one of:
RTP_EVENT_RTCP_SDES

RTP_EVENT_RTCP_APP

args.event_info.u.rtcp_data.packet_type

Identifies the RTCP packet, relates to event_type, one of:
RTCP_SDES

RTCP_APP

args.event_info.u.rtcp_data.u_reports.u_sdes_send.sd
es_text

This null-terminated ASCII encoded SDES text string is no
longer than 255 characters, including the nul character.

args.event_info.u.rtcp_data.u_reports.u_sdes_send.sd
es_type

Indicates the type of SDES item:
RTCP_SDES_END

RTCP_SDES_CNAME

RTCP_SDES_NAME

RTCP_SDES_EMAIL

RTCP_SDES_PHONE

RTCP_SDES_LOC

RTCP_SDES_TOOL

RTCP_SDES_NOTE

RTCP_SDES_PRIV

BfvRtcpReportSend

March 2017 208

args.event_info.u.rtcp_data.u_reports.u_app.app_data

This parameter is dependent upon the RTCP packet type being
created. An array of application specific data of maximum size
RTP_MAX_RTCP_APP_DATA in bytes.

args.event_info.u.rtcp_data.u_reports.u_app.app_data
_len

This parameter is dependent upon the RTCP packet type being
created. Length of application specific data in bytes.

Output Return values:

0 = The function executed successfully
<0 = An error occurred

args.res

A RES structure containing status information.

Details SDES strings must be no greater than 255 characters, including the
nul character. The CNAME SDES item is defined to be a unique
session identifier. Changing this during a call is not recommended.

If BfvRtcpReportSend is called specifying the same sdes_type as
an existing SDES item, the new SDES item is used. Application
specific data must be no greater than 1300 bytes. RTCP reports are
intended to provide limited control information. Large or frequent
application reports are discouraged to remain within RTCP
bandwidth recommendations.

March 2017 209

6 - Miscellaneous Functions

This chapter describes a set of useful administration functions which
cannot be classified with other functions.

Some administration functions and macros cannot be classified with
other functions, but are useful in various ways. For example:

 dll... functions for use on Windows operating systems. These
functions call standard C library functions such as fopen, fclose,
fread, and fwrite and their arguments use the runtime library
linked with the DLL.

 The getopt function parses command line options in a UNIX
environment. Most of the sample applications/utilities use this
function (see Sample Applications and Utilities in the Dialogic®
Brooktrout® Fax Products SDK Developer Guide).

 The BfvMemAllocFuncsSet function allows you to write your
own functions to dynamically allocate and free memory instead
of using the Bfv API functions to do so.

 The sleep macro lets you write applications that sleep for a
defined period of time (in seconds). This macro is only defined for
environments that do not have built-in sleep functions.

Function Summary

March 2017 210

Function Summary
Table 9 provides a brief summary of the administration functions
used to perform specialized tasks.

Table 9. Miscellaneous Functions Summary

Function Purpose Page

dll... Calls the standard C library function that matches
the _dll_... function with the arguments provided by
using the runtime library linked with the dll.

211

BfvGetVar Requests the value of a specified facility firmware
variable.

212

BfvLineAlert Interrupts an active channel for another use by
suspending, but not killing, the interrupted process
or thread.

215

BfvMemAllocFuncsSet Replaces Bfv API functions that dynamically allocate
and free memory with applications’ functions that do
the same.

218

BfvRcvProcessPkt Receives a packet, and performs internal Bfv API
processing of all commands contained within the
packet.

221

BfvSetSingleVar Attempts to send a SET command to set a single
variable.

224

getopt Parses command line options. 228

dll...

March 2017 211

dll...

Purpose Calls the standard C library function that matches the _dll_...
function with the arguments provided by using the runtime library
linked with the dll.

Syntax One of the following:

_dll_fopen
_dll_fclose
_dll_fread
_dll_fwrite
_dll_free
_dll_fseek
_dll_ftell
_dll_malloc
_dll_stdout
_dll_stdin
_dll_stderr

Input Same as the standard C library functions. See your compiler manual
for details.

Output Same as the standard C library functions. See your compiler manual
for details.

Details Each of these functions takes the same arguments and has the same
return type as the standard C library function that has the same
name without the _dll_... prefix. See your compiler manual for
information about these functions. Each _dll_... function calls the
matching standard C library function with the arguments provided
by using the runtime library linked with the DLL.

Applications use these functions on platforms where Dialogic
supplies DLL versions of the Bfv API library. These platforms include
Windows.

BfvGetVar

March 2017 212

BfvGetVar

Purpose Requests the value of a specified facility firmware variable.

Syntax void
BfvGetVar (lp, args)
BTLINE *lp;
struct args_packet *args;

The structure contains the following fields.

Input Fields unsigned facility;
unsigned tag_id;
unsigned char *pkt_buf;
unsigned pkt_len;
int no_hangup;
int use_alt_chan;
BTLINE *async_lp;

Output Fields unsigned tag_len;
unsigned tag_type;
unsigned tag_data_len;
unsigned tag_data_ptr;
unsigned var_value;
RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.facility

Facility of the variable to retrieve. See the command set for
possible values.

args.tag_id

Tag identifier of the variable. See the command set for possible
values.

BfvGetVar

March 2017 213

args.pkt_buf

Optional packet buffer.

args.pkt_len

Size of the optional packet buffer.

args.no_hangup

Unless nonzero, line hangup or equivalent conditions are treated
as an error.

args.use_alt_chan

If nonzero, specifies an alternate channel within the default
module to use for sending commands.

args.async_lp

If non-NULL, enables async operation. The variable contains the
line pointer of a session to be notified when this operation is
completed. See the Dialogic® Brooktrout® Fax Products SDK
Developer Guide for more information on async operation and
usage.

Output Return value: None.

args.tag_len

Length of the tag returned.

args.tag_type

Type of the tag returned.

args.tag_data_len

Data length of the tag returned.

args.tag_data_ptr

Data pointer for the tag returned.

args.var_value

Value of the variable, if integer and not array.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvGetVar

March 2017 214

Details This function should only be used under the guidance of Dialogic
Technical Services and Support.

The function requests the value of a facility firmware variable
specified by args.facility and args.tag_id. If the variable is of an
integer type and is only a single element (not an array),
args.var_value will be set to the value of the variable.

The packet is stored in a fixed internal buffer unless args.pkt_buf is
supplied.

If the value of args.timeout is MILL_MAX_TIMEOUT, which is the
maximum value of an unsigned integer, then the user configuration
file (btcall.cfg) parameter max_timeout applies to the timeout.

BfvLineAlert

March 2017 215

BfvLineAlert

Purpose Interrupts an active channel for another use by suspending, but not
killing, the interrupted process or thread.

Syntax void
BfvLineAlert (args)

struct args_line_admin *args;

The structure contains the following fields.

Input Fields int unit;
unsigned char alert_value;
MILL_ADDR dest_addr;
MILL_ADDR local_addr;

Output Fields RES res;

Input args

Pointer to an argument structure containing input and output
fields.

args.unit

Number of the channel whose associated application receives the
alert.
–1 = all channels.

args.alert_value

An alert value to be passed to the alerted channel. If left set to 0,
a value of 1 will be sent.

args.dest_addr

Specifies the address of the active channel that the Bfv API
notifies of its intention to temporarily interrupt for another use.
This is the address of a channel on a board. The channel and
module values must be set as appropriate. The facility value must
be set to M_ADDR_WILDCARD. The machine value can be set to 0
for the current machine, or set as appropriate.

BfvLineAlert

March 2017 216

args.local_addr

Explicitly specifies the address of the application receiving the
alert for a temporary interruption. The facility, channel, and
module values must be set as appropriate. The machine value can
be set to 0 for the current machine, or set as appropriate.

Output Return value: None

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Interrupts an application actively using a channel for another use
without killing the interrupted process or thread and without
introducing dangers caused by using longjmp.

This function sends an “alert” to the application associated with the
channel specified by args.unit or all channels if args.unit is –1. The
application session to alert can also be specified explicitly using
args.local_addr to give its address or implicitly using args.dest_addr
to give the associated address.

Alerting an application associated with a channel causes a
subsequent call to low level packet functions including packet
processing to:

 Indicate that a packet was received

 Temporarily change the line state to IDLE

 Set other internal line structure fields to distinguish the alert
from other errors.

When an application associated with a channel receives an “alert”,
any Bfv API function called on the channel will return. If the
function uses a RES structure, a res.status of BT_STATUS_ALERT
is returned. The function will also return an error indication if it has
that capability.

This function is not intended for interprocess or interthread
communications, but rather for aborting operations already in
progress on a channel.

BfvLineAlert

March 2017 217

You can use this function, for example, to temporarily interrupt a
channel that is waiting indefinitely for a call to arrive in order to
transmit a fax, or to interrupt a fax transmission or any other
operation taking a significant amount of time.

Normally, an alerted channel calls the BfvLineReset function.

Using the macro LINE_ALERT_CTL and the macro
LINE_SET_INCOMING_CMD_FUNC, the application can control its
own behavior when a channel receives an alert, and can make use of
the alert value passed. See Macros on page 82 for more information
about these macros.

If using multiple application sessions attached to the same channel
or destination address, alerting based on that channel or address
will not reliably alert the desired application session. Alerting based
on the target application session’s address is recommended.

This function uses one application session, which is normally only for
a very short span of time on an infrequent basis, and the session is
freed before the function returns.

BfvLineAlert must be called from a separate thread or process from
that used by the channel that is to be interrupted

See Also LINE_ALERT_CTL, LINE_SET_INCOMING_CMD_FUNC

Example /* Alert channel 0 */
struct args_line_admin args;

BT_ZERO(args);
args.unit = 0;
BfvLineAlert(&args);

BfvMemAllocFuncsSet

March 2017 218

BfvMemAllocFuncsSet

Purpose Replaces the Bfv API functions that dynamically allocate and free
memory with functions the application provides.

Syntax void
BfvMemAllocFuncsSet (alloc_func_ptr, free_func_ptr)

void * (*alloc_func_ptr)
(unsigned size,
int channel, int mem_type);

void (*free_func_ptr)
(void *ptr, int channel,
int mem_type);

Input alloc_func_ptr

A pointer to a user-supplied function that the Bfv API calls when
it needs to dynamically allocate memory.
Alloc_func_ptr is called as:
(*alloc_func_ptr)(size,channel,mem_type)

The size argument contains the number of bytes of memory to
allocate; see this function’s Details section for a description of the
channel and mem_type arguments.
The user-supplied function must return a valid pointer to the
allocated memory or NULL if the allocation fails.

free_func_ptr

A pointer to a user-supplied function that the Bfv API calls when
it needs to free memory it dynamically allocated previously.
Free_func_ptr is called as:
(*free_func_ptr)(ptr,channel,mem_type)

The ptr argument contains the pointer to the memory to free; see
this function’s Details section for a description of the channel and
mem_type arguments.

Output Return value: None.

BfvMemAllocFuncsSet

March 2017 219

Details This function gives applications complete control over dynamic
memory allocation on a per-type basis, permitting them to use a
number of strategies, such as allocating memory from a fixed-size
static pool.

When used in a multithreaded environment, this function applies to
all threads and to all channels.

The Bfv API performs all dynamic memory allocation, including
structures it not only explicitly allocates, but also the buffers that
the stdio fread and fwrite functions use, using the user-supplied
functions.

The Bfv API calls the allocation and free functions with channel and
mem_type arguments. The value of channel is either the number of
the associated channel (when appropriate and available) or –1. For
example, an associated channel number is available when attaching
a channel and when allocating PAGE_RES structures, but no channel
number is available when opening an infopkt file or when opening a
TIFF file. The possible values of mem_type are given by the
BTMEM_... symbols defined in the mill_api.h header file.

If the application does not call BfvMemAllocFuncsSet, the Bfv
API uses a default set of memory allocation and free functions that
simply call malloc and free, respectively.

The user-supplied functions are called only when Bfv API functions
allocate or free memory. Neither the application nor the non-Bfv API
functions called by the application use the user-supplied functions to
allocate memory.

The user-supplied function must not call any function that causes a
delay, such as waiting for a DTMF tone for a nonzero timeout or going
to sleep. All calls made within the user-supplied function must
return immediately. Applications performing DTMF tone detection
must enable the detection before beginning the operation that uses
the user-supplied function (for example, speech playback).

In multithreaded environments, make sure that the allocation and
free functions are re-entrant. Standard C library malloc and free
functions are already re-entrant. If the application uses a static
allocation strategy, it might need a synchronization object.

BfvMemAllocFuncsSet

March 2017 220

Example void *allocfunc(n, c, t)
unsigned n;
int c, t;
{

void *ptr = (void *)malloc(n);

printf("allocated %u bytes, chan %d, type %d\n",
n, c, t);
return (ptr);

}

void freefunc(ptr, c, t)
void *ptr;
int c, t;
{

free(ptr);
print("Freed memory chan %d, type %d\n", c, t);

}

main()
{

...
BfvMemAllocFuncsSet(allocfunc, freefunc);
...

}

BfvRcvProcessPkt

March 2017 221

BfvRcvProcessPkt

Purpose Attempts to receive a packet, and performs internal Bfv API
processing of all commands contained within the packet.

Syntax int
BfvRcvProcessPkt (lp, args)

BTLINE *lp;
struct args_packet *args;

The structure contains the following fields.

Input Fields unsigned timeout;
int no_hangup;
unsigned char *pkt_buf;
unsigned pkt_len;
int ignore_data;
BTLINE *async_lp;

Output Fields RES res;

Modified Fields pkt_buf, pkt_len, cmd_buf, cmd_len, sent, flags,
dest_addr, src_addr, facility.

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.timeout

Time to wait for an incoming packet in milliseconds.

args.no_hangup

Unless nonzero, line hangup or an equivalent condition is treated
as an error.

BfvRcvProcessPkt

March 2017 222

args.pkt_buf

Optional packet buffer. It is recommended that the buffer be large
enough to store the maximum packet size of 1K.

args.pkt_len

Size of the optional packet buffer.

args.ignore_data

If nonzero, DATA commands are ignored during packet
processing.

args.async_lp

If non-NULL, async operation is enabled. The variable contains
the line pointer of a session to be notified when this operation is
completed. See the Dialogic® Brooktrout® Fax Products SDK
Developer Guide for more information on async operation and
usage.

Output Return value: Indicates status

Values can be logically ORed together.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details This function should only be used under the guidance of Dialogic
Technical Services and Support.

The packet is stored in a fixed internal buffer that is at least 1K in
size, unless args.pkt_buf is supplied. Waits for up to args.timeout
milliseconds to receive a packet.

If the value of args.timeout is MILL_MAX_TIMEOUT, which is the
maximum value of an unsigned integer, then the user configuration
file (btcall.cfg) parameter max_timeout applies to the timeout.

MILL_RCV_COMPL

A packet was successfully received.

MILL_RCV_ERR

An error occurred while attempting to receive.

BfvRcvProcessPkt

March 2017 223

Example BTLINE *lp;
struct args_packet args;
int tmp;

/* Wait for a packet for up to 10 seconds. */
BT_ZERO(args);
args.timeout = 10000;
tmp = BfvRcvProcessPkt(lp,&args);

if (tmp & MILL_RCV_COMPL)
printf("Packet received.\n");

if (tmp & MILL_RCV_ERR)
printf("Error Receiving packet.\n");

BfvSetSingleVar

March 2017 224

BfvSetSingleVar

Purpose Attempts to send a SET command to set a single variable.

Syntax int
BfvSetSingleVar (lp, args)

BTLINE *lp;
struct args_packet *args;

The structure contains the following fields.

Input Fields unsigned facility;
unsigned tag_id;
unsigned tag_type;
unsigned tag_data_len;
unsigned char *tag_data_ptr;
unsigned var_value;
int prio;
int incoming_flag;
unsigned timeout;
int no_hangup;
int use_alt_chan;
BTLINE *async_lp;

Output Fields RES res;

Modified Fields cmd_buf, cmd_verb, cmd_specifier, tag_id, tag_type,
tag_data_len, tag_data_ptr, dest_addr, src_addr,
flags, cmd_len, pkt_buf, pkt_len, tag_ptr, tag_len.

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

BfvSetSingleVar

March 2017 225

args.facility

Facility to send to on the associated channel. See the command
set for possible values.

args.tag_id

Tag ID of the variable to set. See the command set for possible
values.

args.tag_type

Tag type of the variable to set. See the command set for possible
values.

args.tag_data_len

Length of the tag data specified by args.tag_data_ptr. If 0, the tag
data must be a single integer value and is specified by
args.var_value.

args.tag_data_ptr

Pointer to the tag data if args.tag_data_len is nonzero.

args.var_value

Tag data value if args.tag_data_len is 0.

args.prio

Specifies the priority of the packet:

args.incoming_flag

Affects the behavior when incoming packets arrive:

MILL_PKT_PRIO_LOW 0 Low (normal) priority

MILL_PKT_PRIO_HIGH 1 High priority

MILL_SEND_INCOMING_
IGNORE

Ignore incoming packets.

MILL_SEND_INCOMING_
RETURN

Return if an incoming packet is
available.

BfvSetSingleVar

March 2017 226

args.timeout

Time, in milliseconds, to wait to queue the packet.

args.no_hangup

Unless nonzero, line hangup or an equivalent condition is treated
as an error.

args.use_alt_chan

If nonzero, specifies an alternate channel within the default
module to use for sending commands.

args.async_lp

If non-NULL, enables async operation. The variable contains the
line pointer of a session to be notified when this operation is
completed. See the Dialogic® Brooktrout® Fax Products SDK
Developer Guide for more information on async operation and
usage.

Output Return value: Indicates status as:

Values can be logically ORed together.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

MILL_SEND_INCOMING_
PROCESS

Process incoming packets
while attempting to send.
Returns when send completes
or an error occurs.

MILL_SEND_INCOMING_
PROCESS_RETURN

Process incoming packets
while attempting to send.
Return if an incoming packet
arrives.

MILL_SEND_COMPL The packet was successfully
queued.

MILL_SEND_ERR An error occurred while
attempting to send.

MILL_SEND_INCOMING An incoming packet arrived.

MILL_SEND_INC_PROC An incoming packet was
processed.

BfvSetSingleVar

March 2017 227

Details This function should only be used under the guidance of Dialogic
Technical Services and Support.

The Bfv API forms the packet addressing using information from
BfvSessionAttach or BfvLineAttach, args.facility, and priority
specified by args.prio. Waits for up to args.timeout milliseconds to
queue the packet.

If the value of args.timeout is MILL_MAX_TIMEOUT, which is the
maximum value of an unsigned integer, then the user configuration
file (btcall.cfg) parameter max_timeout applies to the timeout.

See Also BfvSendCmd

getopt

March 2017 228

getopt

Purpose Parses command line options.

Syntax int
getopt argc, argv, optstring)

int argc;
char **argv;
char *optstring;

Input argc

The argc value from main.

argv

The argv value from main.

optstring

A string that specifies what options the program accepts and
whether or not the options take arguments. All of the option
letters must appear, and if they take an option argument, they
must be followed by a colon (:).

Output Return value:

>0 Identifies the next option letter in argv that matches a letter
in opstring. The function modifies optarg to point to the
option argument.

‘?’ Indicates that an unexpected option letter appeared or an
option was missing an option argument. The function also
prints an error message on stderr unless the application sets
opterr to 0.

–1 Indicates that the function processed all options and that only
operands remain.

In all cases, the function modifies optind to contain the index in argv
of the next command line argument to be processed.

getopt

March 2017 229

Details Command line entries must adhere to this format:

 <cmd> –<optlet1> –<optlet2> <arg2> <operands>

All options are single letters preceded by a hyphen (-). An option may
take an option argument. The option argument always follows the
option letter, and white space separates the option letter and its
option argument. Particular options either always or never take an
option argument.

Three global variables are associated with getopt:

extern int optind;
extern char *optarg;
extern int opterr;

This function is standard under UNIX. In all other environments,
the Bfv API provides this function to applications. Most of the
sample and utility programs found in the app.src directory use this
function.

For a complete description of this function, see the UNIX
programmer’s reference manuals. The functionality described here,
however, is all that the programs in the app.src directory require.

Example See applications in the sample application directory.

March 2017 230

7 - Debugging, Error Handling
and Return Values

This chapter describes functions to assist in debugging problems and
recovering from errors, as well as describing the levels and types of
logging available.

Dialogic provides several Bfv API functions to help you debug your
application program and find and recover from errors.

You can turn on debug mode so that the Bfv API prints commands,
data, and status messages, or you can set up a function to be used
with API debug mode that directs output to a file or filter. See
Debugging in Chapter 3 of the Dialogic® Brooktrout® Fax Products
SDK Developer Guide for more information.

When you install the Bfv API, you enable recording of the history of
the activity of the driver along with the hardware type, the firmware
version, and the boot ROM version. You can then use functions to
dump the buffer containing the driver’s history for a module and
channel to a file. You can also clear the history buffer for a module
and channel so that it will contain information relevant to the
current application.

If you have a RES structure that contains returned error information
from a previous Bfv API call, you can use the BfvErrorMessage
function to create a short and a long error message in a BTERR
structure. The application can then choose to print the short or long
message returned by the function in this structure.

March 2017 231

Dialogic provides a Call Tracer command line utility that collects call
trace information in an active system. The output is intended for Dialogic
Technical Services and Support, but it is important that all users know
how to use Call Tracer to create the output file, if Dialogic Technical
Services and Support personnel request it. The Call Tracer utility can be
started before or after starting the client application. If you want to trace
the initialization section of the client application, start the Call Tracer
before the client application.
For information on how to start the Call Tracer, type brktcctrace -?. Exit
the Call Tracer application by typing ‘q’ or ‘Control-C’, or by closing the
command console window. The Call Tracer application reads trace filter
settings from a text configuration file called filtersettings.cfg. The output
is logged to a file name of your choosing.
For log information internal to the Call Tracer, the application maintains
its own log file that is located in the current working directory of the
application. The tracer logs all warning, error and panic level messages
by default.
The Call Tracer utility, and a sample configuration file, can be found in
the \Brooktrout\Boston\utils\winnt\bin directory when installing the
Brooktrout SDK, or in the \Brooktrout\bin directory when installing just the
System Software. See Debugging in Chapter 3 of the Dialogic®
Brooktrout® Fax Products SDK Developer Guide for instructions on how
to run the Call Tracer application.

Structures and Return Values

March 2017 232

Structures and Return Values
The Bfv API uses argument structures to pass values to and from
functions. The argument structure is declared in an application and
passed as a pointer to the function. The argument structure type will
be named args_...; for example, struct args_fax. The same
argument structure type is used for functions that are related or in
the same category.

Contained within the argument structure are structure fields that
are used for input and/or output. Each function that uses an
argument structure has the fields marked that are used for each
purpose. Not all fields are used by all functions taking any particular
argument structure type.

Result structures are the most commonly used structures to return
information to the function. They are:

 RES structure – returns status information in res.status and
some additional information in res.line_status.

 CALL_RES – returns information about a call, such as its type
and caller ID. If applicable, ISDN information, such as called
party and redirect information, are returned as well.

 PAGE_RES – returns information for each complete fax page
sent or received.

For more information about the result structures, see Volume 6,
Appendix B, Bfv API Structures.

Function Summary

March 2017 233

Function Summary
Table 10 provides a brief summary of the functions to use for
debugging and error handling purposes.

Table 10. Debugging and Error Handling Function Summary

Function Purpose Page

BfvDebugFuncSet Sets up a function to use with Bfv API debug mode
that directs debug output to an alternate destination.

234

BfvDebugInitData Recreates name tables used for Bfv API debug mode
and the dh program, based on command set header
files found in a specified directory.

236

BfvDebugModeSet Enables debug mode, so the Bfv API prints
commands, data, interrupts, and status messages to
the standard output or alternate device.

237

BfvDebugModeSetAdv Allows the application to configure Bfv API
debugging features within the application, enabling
the user to control debugging in a remote application.

239

BfvErrorMessage Returns error message strings corresponding to Bfv
API errors returned in RES structures.

244

BfvHistoryClear Clears the driver’s history buffer. 246

BfvHistoryClearModChan Clears the contents of the driver’s history buffers for
the specified module and channel number.

248

BfvHistoryClearUnit Clears the contents of the driver’s history buffers on
the channel specified by the channel number.

250

BfvHistoryDump Dumps the driver’s history buffer to the specified
open file.

252

BfvHistoryDumpModChan Dumps the contents of the driver’s history buffer for
the specified module and channel number to the
specified open file.

255

BfvHistoryDumpUnit Dumps the contents of the driver’s history buffer
specified by the channel number to the specified open
file.

258

BfvLineDumpStructure Dumps the contents of the BTLINE structure to the
specified open file.

261

BfvDebugFuncSet

March 2017 234

BfvDebugFuncSet

Purpose Sets up a function to use with Bfv API debug mode that directs
debug output to an alternate destination — a file, filter, or non-stdio
device.

Syntax void
BfvDebugFuncSet (func)

void (*func) (char *msg);

Input Fields unsigned enable;
unsigned notify_type;
void (*func)(BTLINE *lp, unsigned notify_type,

struct args_board_notify *args);

Output Fields RES res;

Input args.func

A pointer to a user-supplied function that the Bfv API will call
when it has an Bfv API debug mode message to display. Func will
be called as (*func)(msg)where msg contains the message to
print.

Output Return value: None.

Details When used in a multithreaded environment, this function applies to
all threads and to all channels.

The BfvDebugModeSet function enables Bfv API debug mode
output.

The msg argument passed to the user-supplied function will be
0-terminated, but generally it will not contain a “newline” character.
The function is responsible for adding “newline” characters when
appropriate.

The user-supplied function can direct the output a variety of ways,
including storing it in a file, displaying it in a non-stdio way, or
filtering it.

BfvDebugFuncSet

March 2017 235

If the application does not call BfvDebugFuncSet, the Bfv API uses
a default output function. This function calls puts first to display the
output on stdout and then fflush.

The Bfv API can detect a number of fatal errors that will produce
debug mode output, even if no debug output has been enabled.
Therefore, use BfvDebugFuncSet to set up an appropriate function
if ordinary printf and fflush function calls to stdout will cause
problems in your operating environment.

The user-supplied function must not call any function that causes a
delay, such as waiting for a DTMF tone for a nonzero timeout or
going to sleep. All calls made within the user-supplied function must
return immediately. Applications performing DTMF tone detection
must enable the detection before beginning the operation that uses
the user-supplied function (for example, speech playback).

See Debugging in Chapter 3 of the Dialogic® Brooktrout® Fax
Products SDK Developer Guide for more information.

See Also BfvDebugModeSet

Example FILE *fp;

void dfunc(msg)
char *msg;
{
 fprintf(fp, "%s\n", msg);
}

main()
{
 ...
 BfvDebugModeSet(DEBUG_ALL);
 fp = fopen("debug.log", "w");
 BfvDebugFuncSet(dfunc);
 ...
}

BfvDebugInitData

March 2017 236

BfvDebugInitData

Purpose Recreates name tables used for Bfv API debug mode and the dh
program, based on command set header files found in a specified
directory.

Syntax void
BfvDebugInitData (dir_name)

char *dir_name;

Input dir_name

Directory storing the command set header files to read.

Output Return value: None.

Details Use this function if modifications were made to commands, or
additional command header files are made available after
compilation and distribution of the program. This function provides
the location of new unreleased command set header files so that
debug mode functions can understand the command additions. You
do not need to recompile the Bfv API.

Infrequently used in normal operation.

This function can only be called once per process.

Example BfvDebugInitData("/tmp/testfiles");

BfvDebugModeSet

March 2017 237

BfvDebugModeSet

Purpose Enables debug mode, so the Bfv API prints commands, data,
interrupts, and status messages to the standard output or alternate
device.

Syntax int
BfvDebugModeSet (mode)

int mode;

Input mode

A value that indicates whether debug mode is enabled or disabled
and sets the form the debug output will take.
The most frequently used values are:

Logically OR together the following values to form other mode
values:

DEBUG_NONE

No output.

 0

DEBUG_ALL

Print all debug messages.

-1

DEBUG_PRINT_CMD

Print information about commands sent from the Bfv
API to the firmware by the driver.

0x01

DEBUG_PRINT_INTR

Print information about commands sent from the
firmware to the Bfv API by the driver.

0x02

DEBUG_MON

Print informational and status messages.

0x04

BfvDebugModeSet

March 2017 238

Output Return value: None.

Details Debug mode can produce a large amount of output that can affect
system performance under heavy usage conditions.

By default, the Bfv API prints debug output on the standard output.
To change this behavior, use the BfvDebugFuncSet function.

Bfv API debug mode is disabled by default (0).

The output this function enables is separate and independent of the
dump history output that the dh program and the
BfvHistoryDump... functions produce.

See Debugging in Chapter 3 of the Dialogic® Brooktrout® Fax
Products SDK Developer Guide for more information.

When used in a multithreaded environment, this function applies to
all threads and to all channels.

See Also BfvDebugFuncSet

Example main()
{
 ...
 if (verbose_option)
 BfvDebugModeSet(DEBUG_ALL);
 else
 BfvDebugModeSet(DEBUG_NONE);
 ...
}

DEBUG_ERR

Print error messages.

0x08

DEBUG_DEBUG

Print output from the firmware debug interrupt (not
currently used).

0x10

BfvDebugModeSetAdv

March 2017 239

BfvDebugModeSetAdv

Purpose Allows the application to configure Bfv API debugging features
within the application, enabling the user to control debugging in a
remote application.

Syntax void
BfvDebugModeSetAdv (args)

struct args_debug_mode *args;

The structure contains the following fields.

Input Fields unsigned options;
M_CB1 void (* M_CB2 func) (char *msg);
int mode;
char *fname1;
char *fname2;
unsigned file_limit;
int unit;
MILL_ADDR dest_addr;
MILL_ADDR local_addr;
int cc_trace_level;
char *cc_trace_file_name;
int func_dbg_opts;

Output Fields RES res;

Input args.options

A bit-mapped value indicating the debug features to select.
Multiple options can be ORed together.
Defined options are as follows:

API_DBG_EXT_CTRL 0x00000001

API_DBG_MODE_SET 0x00000002

API_DBG_FUNC_SET 0x00000004

API_DBG_FUNC_ENTRY_EXIT 0x00000008

API_DBG_CC_API_SET 0x00000010

BfvDebugModeSetAdv

March 2017 240

args.func

A pointer to a user-supplied function that the API will call when
it has an Bfv API debug mode message to display. The func
variable will be called as (*func)(msg)where msg contains the
message to print.

args.mode

A value that indicates whether debug mode is enabled or disabled
and sets the form the debug output will take.
When the API_DBG_MODE_SET bit is set in the options field this
mode field has the same meaning as the mode field in the
BfvDebugModeSet function as detailed below.
The most frequently used values are:

Logically OR together the following values to form other mode
values:

API_DBG_CC_L3L4_SET 0x00000020

API_DBG_CC_L4L3_SET 0x00000040

API_DBG_CC_INT_SET 0x00000080

API_DBG_CC_HOST_MOD_SET 0x00000100

API_DBG_CC_IP_STACK_SET 0x00000200

API_DBG_CC_LOG_FILE_SET 0x00000400

API_DBG_FILE_SET 0x00000800

DEBUG_NONE

No output.

 0

DEBUG_ALL

Print all debug messages.

-1

DEBUG_PRINT_CMD

Print information about commands sent from the Bfv
API to the firmware by the driver.

0x01

DEBUG_PRINT_INTR

Print information about commands sent from the
firmware to the Bfv API by the driver.

0x02

DEBUG_MON

Print informational and status messages.
0x04

BfvDebugModeSetAdv

March 2017 241

args.fname1

Set to NULL to direct debug output to STDOUT. Otherwise, set to
the full path and filename of the file that the debug output will be
written to. Only used if args.options has API_DBG_FILE_SET bit
set, and no debug function has args.options API_DBG_FUNC_SET
bit set.

args.fname2

If fname1 is non-NULL, this parameter is the full path and
filename of the second file that the debug output will be written
to. Note: args.file_limit must be defined for this feature to work.
Only used if args.options has API_DBG_FILE_SET bit set, and no
debug function has args.options API_DBG_FUNC_SET bit set.

args.file_limit

The maximum length which the debug file should be allowed to
grow to. Only used if args.options has API_DBG_FILE_SET bit
set, and no debug function has args.options API_DBG_FUNC_SET
bit set.

args.unit

args.dest_addr

args.local_addr

When the API_DBG_EXT_CTRL bit is set in the options field, these
fields allow the user to specify a channel in a remote application
to change the debug settings on. If the unit is set to -1, the debug
command will apply to the current application.
Note that all channels in the application specified by this
parameter will have debugging enabled.
The meanings of unit, args.dest_addr, and args.local_addr have
the same meanings as for the BfvLineAlert function.

DEBUG_ERR

Print error messages.
0x08

DEBUG_DEBUG

Print output from the firmware debug interrupt (not
currently used).

0x10

BfvDebugModeSetAdv

March 2017 242

args.cc_trace_level

The level at which to set call control tracing.
Valid levels are ecc_trace_none, ecc_trace_error,
ecc_trace_warning, ecc_trace_basic,
ecc_trace_verbose.

args.cc_trace_file_name

The full path and filename to output call control tracing to.

args.func_dbg_opts

When args.options includes API_DBG_FUNC_ENTRY_EXIT, this
field specifies whether the function entry/exit debugging feature
is enabled, and in what mode. The value is a bitmapped value.
Defined options:

API_DBG_FUNC_OPT_ENA 0x00000001

API_DBG_FUNC_OPT_ARGS 0x00000002

If API_DBG_FUNC_OPT_ENA appears, the entry/exit debugging
feature will be enabled. Otherwise it is disabled.
If API_DBG_FUNC_OPT_ARGS appears, the debugging will also
include argument values and return values.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details The following details the function behavior for the various options:

Setting API_DBG_EXT_CTRL allows the debugging in another
application to be controlled via unit, args.dest_addr and
args.local_addr.

Setting API_DBG_MODE_SET allows the mode field to set the debug
output of the Bfv API.

Setting API_DBG_FILE_SET allows args.fname1 and args.fname2 to
set debug filenames, and args.file_limit to set a debug file size limit.

Setting API_DBG_FUNC_SET allows the func field to set the debug
callback function.

BfvDebugModeSetAdv

March 2017 243

Setting API_DBG_FUNC_ENTRY_EXIT allows control of Bfv tracing
the entry and exit of all Bfv API calls. The value of
args.func_dbg_opts controls whether the feature is enabled, and in
what mode.

Setting API_DBG_CC_API_SET causes Bfv to trace the entry and
exit of all call control Bfv API calls to the trace level specified in
args.cc_trace_level.

Setting API_DBG_CC_L3L4_SET turns on L3L4 call control tracing
to the trace level specified in args.cc_trace_level.

Setting API_DBG_CC_L4L3_SET turns on L4L3 call control tracing
to the trace level specified in args.cc_trace_level.

Setting API_DBG_CC_INT_SET turns on internal call control tracing
to the trace level specified in args.cc_trace_level.

Setting API_DBG_CC_HOST_MOD_SET turns on Host Module call
control tracing to the trace level specified in args.cc_trace_level.

Setting API_DBG_CC_IP_STACK_SET turns on IP call control
tracing to the trace level specified in args.cc_trace_level.

Setting API_DBG_CC_LOG_FILE_SET sets the name of the call
control log file to args.cc_trace_file_name. If NULL, the current log
file is closed and no log file is used.

See Debugging in Chapter 3 of the Dialogic® Brooktrout® Fax
Products SDK Developer Guide for more information.

Certain call control messages might not appear in the call control
trace file when enabled using this function. However, these
messages will appear in the Bfv API debug log.

See Also BfvDebugFuncSet, BfvDebugModeSet

Example See the debug_control application in the bapp.src sample
applications directory.

BfvErrorMessage

March 2017 244

BfvErrorMessage

Purpose Returns error message strings corresponding to Bfv API errors
returned in RES structures.

Syntax void
BfvErrorMessage lp, res, err_msg)

BTLINE *lp;
RES *res;
BTERR *err_msg;

Input lp

Pointer to the BTLINE structure.
Can be NULL, in which case the error messages might not have
complete information.

err_msg

Pointer to a preallocated structure of type BTERR to store the
formatted error messages.

res

Pointer to a RES structure containing returned error information
from a previous Bfv API call.

Output Return value: None.

Returns the following modified structure pointed to by the argument
err_msg:

typedef struct {
 char short_msg[31];
 char long_msg[129];
} BTERR;

BfvErrorMessage

March 2017 245

Details This function returns a pair of textual error message strings
corresponding to an Bfv API error returned in a RES structure.

Returns both a short and long error message. The function copies the
messages into a BTERR structure that the application passes in.

Example BTLINE *lp;
struct infopkt_stream *ips;
BTERR bterr;
struct args_fax args;

BT_ZERO(args);
args.s_ips = ips;
args.local_id = "my_id";
BfvFaxSend(lp, &args);

if (args.res.status != BT_STATUS_OK)
{
 BfvErrorMessage(lp, &args.res, &bterr);
 printf("Fax sending failed: %s\n", bterr.long_msg);
}

BfvHistoryClear

March 2017 246

BfvHistoryClear

Purpose Clears the contents of the driver’s history buffers on the specified
channel.

Syntax void
BfvHistoryClear (lp, args)

BTLINE *lp;
struct args_dh *args;

The structure contains the following fields.

Input Fields None

Output Fields RES res;

Modified Fields unit, module, channel.

Input lp

Pointer to the BTLINE structure containing the channel to clear
its history.

args

Pointer to an argument structure containing input and output
fields.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvHistoryClear

March 2017 247

Details Clears the contents of the driver’s history buffers on the channel
specified by the BTLINE * line pointer.

Use this function to ensure that a later BfvHistoryDump... call
contains only information relevant to an application about to run.

The application can specify a line pointer, a module and channel, a
channel, or all channels.

Clears the history for the attached destination module and channel,
if a history was created for those values. Typically, an application
calls the BfvHistoryClearModChan with the values of the
args.module and args.channel fields set to 1 to clear the module and
channel buffers.

Once the application clears the history buffer, it cannot recover the
discarded information.

See Also BfvHistoryDump...

Example main()
{
 int unit;
 struct args_dh args;
 BTLINE *lp = BfvLineAttach(unit);
 ...
 BT_ZERO(args);
 BfvHistoryClear(lp, &args);
 ...
}

BfvHistoryClearModChan

March 2017 248

BfvHistoryClearModChan

Purpose Clears the contents of the driver’s history buffers for the specified
module and channel number.

Syntax void
BfvHistoryClearModChan (args)

struct args_dh *args;

The structure contains the following fields.

Input Fields unsigned int module;
unsigned int channel;

Output Fields RES res;

Input args

Pointer to an argument structure containing input and output
fields.

args.module

The number of the module to clear its history. Usually set to 1.

args.channel

The number of the channel to clear its history. Usually set to 1.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvHistoryClearModChan

March 2017 249

Details Use this function to ensure that a later BfvHistoryDump... call
contains only information relevant to an application about to run.

When configured to include application histories, there are some
special module meanings. Set args.module to 0 to use the history for
the most recent application session corresponding to args.channel as
unit/ordinal channel number. Set args.module to 0xFE to use the
fixed application history corresponding to args.channel as an index
value.

Once the application clears the history buffer, it cannot recover the
discarded information.

See Also BfvHistoryDump...

Example main()
{
 struct args_dh args;
 ...
 BT_ZERO(args);
 args.module = 1;
 args.channel = 1;
 BfvHistoryClearModChan(&args);
 ...
}

BfvHistoryClearUnit

March 2017 250

BfvHistoryClearUnit

Purpose Clears the contents of the driver’s history buffers on the channel
specified by the channel number.

Syntax void
BfvHistoryClearUnit (args)

struct args_dh *args;

The structure contains the following fields.

Input Fields int unit;

Output Fields RES res;

Modified Fields module, channel.

Input args

Pointer to an argument structure containing input and output
fields.

args.unit

The number of the channel to clear its history.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvHistoryClearUnit

March 2017 251

Details Use this function to ensure that a later BfvHistoryDump... call
contains only information relevant to an application about to run.

Clears the history for the destination module and channel associated
with the ordinal channel value specified by unit, if a history was
created for those values. Typically, an application calls the
BfvHistoryClearModChan with the values of the args.module and
args.channel fields set to 1 to clear the module and channel buffers.

Once the application clears the history buffer, it cannot recover the
discarded information.

See Also BfvHistoryDump...

Example main()
{
 int unit;
 struct args_dh args;
 ...
 BT_ZERO(args);
 args.unit = unit;
 BfvHistoryClearUnit(&args);
 ...
}

BfvHistoryDump

March 2017 252

BfvHistoryDump

Purpose Dumps the driver’s history buffer for the specified channel to the
specified open file.

Syntax void
BfvHistoryDump (lp, args)

BTLINE *lp;
struct args_dh *args;

The structure contains the following fields.

Input Fields FILE *fp;
int continuous_output;
int raw_dump;

Output Fields RES res;

Modified Fields unit, module, channel.

Input lp

Pointer to the BTLINE structure containing the channel history to
dump.

args

Pointer to an argument structure containing input and output
fields.

args.fp

FILE * pointer to an open file to receive the channel’s history.

args.continuous_output

When set to 1, output displays continuously (similar to tail -f)
until the process is killed. During the life of the process, dump
history repeatedly prints all available new history information
and sleeps for 1/10 sec. History entries can be lost if activity is
rapid enough to exceed the capacity of the driver history buffer
during the sleep period or other periods of process inactivity.

BfvHistoryDump

March 2017 253

args.raw_dump

When set to 1, the output is an ASCII representation of the raw
history data, uninterpreted.
When set to 2, the output is the raw binary history data.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Dumps the contents of the driver’s history buffer for the channel
specified by the BTLINE * line pointer to the specified open file.

Dumps the history for the attached destination module and channel
that only produce output if a history was created for those values.
Typically, an application calls the BfvHistoryDumpModChan
with the values of the args.module and args.channel fields set to 1 to
dump the contents of the module and channel buffers.

The history output contains additional information, including the
time the history was created, driver version, and operating system
platform.

The dump history output that these BfvHistoryDump... functions
produce is separate and independent of the Bfv API debug mode
output that the BfvDebugModeSet function enables.

See Debugging in Chapter 3 of the Dialogic® Brooktrout® Fax
Products SDK Developer Guide for more information.

See Also BfvHistoryClear...

BfvHistoryDump

March 2017 254

Example main()
{
 int unit;
 struct args_dh args;
 BTLINE *lp = BfvLineAttach(unit);
 FILE *f = fopen ("dh.log", "w");

 ...
 BT_ZERO(args);
 args.fp = f;
 BfvHistoryDump(lp,&args);
 ...)
Note: When using Windows, it may be necessary to substitute

"fopen" with "_dll_fopen" to avoid problems with differences in
C runtime libraries.

BfvHistoryDumpModChan

March 2017 255

BfvHistoryDumpModChan

Purpose Dumps the contents of the driver’s history buffer for the specified
module and channel number to the specified open file.

Syntax void
BfvHistoryDumpModChan (args)

struct args_dh *args;

The structure contains the following fields.

Input Fields FILE *fp;
unsigned int module;
unsigned int channel;
int continuous_output;
int raw_dump;

Output Fields RES res;

Input args

Pointer to an argument structure containing input and output
fields.

args.fp

FILE * pointer to an open file to receive the channel’s history.

args.module

Module number of the history to dump. Usually set to 1.

args.channel

Channel number of the history to dump. Usually set to 1.

BfvHistoryDumpModChan

March 2017 256

args.continuous_output

When set to 1, output displays continuously (similar to tail -f)
until the process is killed. During the life of the process, dump
history repeatedly prints all available new history information
and sleeps for 1/10 sec. History entries can be lost if activity is
rapid enough to exceed the capacity of the driver history buffer
during the sleep period or other periods of process inactivity.

args.raw_dump

When set to 1, the output is an ASCII representation of the raw
history data, uninterpreted.
When set to 2, the output is the raw binary history data.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Under almost all conditions, the history should be configured for
0 physical histories and 0 application histories, and the only
module/channel combination that should be dumped is module 1 and
channel 1.

When configured to include application histories, there are some
special module meanings. Set args.module to 0 to use the history for
the most recent application session corresponding to args.channel as
unit/ordinal channel number. Set args.module to 0xFE to use the
fixed application history corresponding to args.channel as an index
value.

The history output contains additional information, including the
time the history was created, driver version, and operating system
platform.

The dump history output that these BfvHistoryDump... functions
produce is separate and independent of the Bfv API debug mode
output that the BfvDebugModeSet function enables.

See Debugging in Chapter 3 of the Dialogic® Brooktrout® Fax
Products SDK Developer Guide for more information.

See Also BfvHistoryClear...

BfvHistoryDumpModChan

March 2017 257

Example main()
{
 struct args_dh args;
 FILE *f = fopen ("dh.log", "w");

 ...
 BT_ZERO(args);
 args.fp = f;
 args.module = 1;
 args.channel = 1;
 BfvHistoryDumpModChan(&args);
 ...
}
Note: When using Windows, it may be necessary to substitute

"fopen" with "_dll_fopen" to avoid problems with differences in
C runtime libraries.

BfvHistoryDumpUnit

March 2017 258

BfvHistoryDumpUnit

Purpose Dumps the contents of the driver’s history buffer specified by the
channel number to the specified open file.

Syntax void
BfvHistoryDumpUnit (args)

struct args_dh *args;

The structure contains the following fields.

Input Fields FILE *fp;
int unit;
int continuous_output;
int raw_dump;

Output Fields RES res;

Modified Fields module, channel.

Input args

Pointer to an argument structure containing input and output
fields.

args.fp

FILE * pointer to an open file to receive the channel’s history.

args.unit

The number of the channel to write its history.

args.continuous_output

When set to 1, output displays continuously (similar to tail -f)
until the process is killed. During the life of the process, dump
history repeatedly prints all available new history information
and sleeps for 1/10 sec. History entries can be lost if activity is
rapid enough to exceed the capacity of the driver history buffer
during the sleep period or other periods of process inactivity.

BfvHistoryDumpUnit

March 2017 259

args.raw_dump

When set to 1, the output is an ASCII representation of the raw
history data, uninterpreted.
When set to 2, the output is the raw binary history data.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Dumps the history for the destination module and channel
associated with the ordinal channel specified by unit that only
produce output if a history was created for those values. Typically,
an application calls the BfvHistoryDumpModChan with the
values of the args.module and args.channel fields set to 1 to dump
the contents of the module and channel buffers.

The history output contains additional information, including the
time the history was created, driver version, and operating system
platform.

The dump history output that these BfvHistoryDump... functions
produce is separate and independent of the Bfv API debug mode
output that the BfvDebugModeSet function enables.

See Debugging in Chapter 3 of the Dialogic® Brooktrout® Fax
Products SDK Developer Guide for more information.

See Also BfvHistoryClear...

BfvHistoryDumpUnit

March 2017 260

Example main()
{
 int unit;
 struct args_dh args;
 FILE *f = fopen ("dh.log", "w");

 ...
 BT_ZERO(args);
 args.fp = f;
 args.unit = unit;
 BfvHistoryDumpUnit(&args);
 ...
}
Note: When using Windows, it may be necessary to substitute

"fopen" with "_dll_fopen" to avoid problems with differences in
C runtime libraries.

BfvLineDumpStructure

March 2017 261

BfvLineDumpStructure

Purpose Dumps the contents of the BTLINE structure and configuration
structures to the specified open file.

Syntax void
BfvLineDumpStructure (lp, fp)

BTLINE *lp;
FILE *fp;

Input Fields int continuous_output;

Output Fields RES res;

Input lp

Pointer to the BTLINE structure containing the structures to
dump.

fp

FILE * pointer to an open file to receive the contents of the
structures.

args.continuous_output

When set to 1, output displays continuously (similar to tail -f)
until the process is killed. During the life of the process, dump
history repeatedly prints all available new history information
and sleeps for 1/10 second. History entries can be lost if activity is
rapid enough to exceed the capacity of the driver history buffer
during the sleep period or other periods of process inactivity.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvLineDumpStructure

March 2017 262

Details Use this function to track changing states of the line and, in
conjunction with BfvHistoryDump... and the Bfv API debug mode,
to create error report logs.

Example main()
{
 BTLINE *lp;
 FILE *fp = fopen("dump.log", "w");

 ...
 BfvLineDumpStructure(lp, fp);
 ...
}
Note: When using Windows, it may be necessary to substitute

"fopen" with "_dll_fopen" to avoid problems with differences in
C runtime libraries.

Macros

March 2017 263

Macros
LINE_ERROR_INTR (lp)

Accesses the stored value of the data register that was generated
by the last error interrupt.
Any error interrupt value is considered a fatal error by most Bfv
API routines. The following are the error interrupt values:

See also HNG_ERROR_INTERRUPT in Volume 6, Appendix C,
Hangup Codes.

LINE_ERR_INTR_MSG (lp)

Returns the text message, if any, associated with the most
recently reported error interrupt accessible by using
LINE_ERROR_INTR.

LINE_ERR_INTR_DATA (lp)

Returns the data associated with the most recently reported error
interrupt accessible by using LINE_ERROR_INTR. The data size
can be retrieved using LINE_ERR_INTR_DATA_SIZE.

COMMON_ERR_XMIT_UNDERRUN_DEF 0x05

COMMON_ERR_RCV_OVERRUN_DEF 0x06

COMMON_ERR_ILLEGAL_CONFIG_DEF 0x09

COMMON_ERR_DATA_HEADER_DEF 0x0C

COMMON_ERR_FIRMWARE_PANIC_DEF 0xFF

COMMON_ERR_MODEM_ERR_DEF 0x101

COMMON_ERR_ILLEGAL_VAR_VALUE_DEF 0x102

COMMON_ERR_NO_RESOURCES_DEF 0x103

COMMON_ERR_TIMEOUT_DEF 0x104

COMMON_ERR_BAD_SEQ_DEF 0x105

COMMON_ERR_NO_DATA_MOTION_DEF 0x106

COMMON_ERR_ARRAY_OVERFLOW_DEF 0x107

Macros

March 2017 264

LINE_ERR_INTR_DATA_SIZE (lp)

Returns the data size of the data associated with the most
recently reported error interrupt accessible by using
LINE_ERROR_INTR. The data can be retrieved using
LINE_ERR_INTR_DATA.

LINE_INTR_OVERRUN (lp)

Accesses the stored value of the driver's interrupt overrun status.

0 No error.

The following interrupt overrun status value is considered a fatal
error by most Bfv API routines:

1 Indicates that the driver was unable to report commands
back to the application program. The incoming buffer area
has filled up due to the application sleeping or running
slowly.

The following values are not currently applicable:

777 Indicates that a fax command overflow occurred. Although
not required, we recommend that the application reset the
channel before using it again.

888 Indicates that the interrupt limit, enabled with the
BfvLineInterruptLimit function, has been exceeded.
The channel must be reset before it can be used again.

999 Indicates that at least five consecutive error commands
were received. When this situation occurs, the driver puts
the channel into shutdown mode, and the channel must be
reset before it can be used again.

See also HNG_INTERRUPT_OVERRUN in Volume 6, Appendix C,
Hangup Codes.

RES Structure Parameters

March 2017 265

RES Structure Parameters
The RES structure is used for return status indication from virtually
all Bfv API functions. The status field indicates the category of
error, and the line_status field indicates the specific error within
a category. Together they identify the error. See Volume 6,
Appendix B, Bfv API Structures, for more information.

March 2017 266

Volume 2 - Bfv-Level Call
Control and Call Switching

About this Volume
Volume 2, Bfv-Level Call Control and Call Switching, provides
information about the following Bfv API components:

 Bfv-level Call Control functions

 Dialing Database functions

 Call Control data structures and macro

March 2017 267

9 - Call Control Overview

This chapter introduces call control, explaining the distinction
between the two levels that Dialogic supports.

It has the following sections:

 Bfv-Level Call Control

 The host communicates with the Dialogic® Brooktrout® module
through the Control Interface. BSMI control messages are issued
by the host application (referenced as L4) to configure the board
or to instruct it to perform a specific action such as make a call,
clear a call, or request the status of an interface. BSMI control
messages issued by the board (referenced as L3) inform the host of
the status of the interface, call events, or identify an error
condition.

Call control functions enable the application to set up, initiate,
connect and disconnect calls, and perform other tasks related to the
telephone network. The Bfv API provides two forms of call control:

 Bfv-API Level Call Control

 BSMI-Level Call Control

Bfv-Level Call Control

March 2017 268

Bfv-Level Call Control
An application uses call control functions to perform the process of
setting up and tearing down calls on the public telephone system. The
Bfv-level offers two sets of functions to use for call control:

 High-level call control functions that simplify the programming
task.

This set of functions allows the user to implement a simplified
command structure to perform the call control operations. Each
command in the set automatically calls the low-level functions
needed to complete the call control process.

 Low-level functions that provide the application with more
control of ISDN service features.

The low-level functions allow the user more flexibility and greater
control of the features available with ISDN services, although
they generally require a better understanding of the ISDN
standard.

For details about the high-level and low-level call control functions,
see Chapter , Bfv-Level Call Control on page 271.

Bfv-Level Call Control

March 2017 269

The host communicates with the Dialogic® Brooktrout® module
through the Control Interface. BSMI control messages are issued by
the host application (referenced as L4) to configure the board or to
instruct it to perform a specific action such as make a call, clear a
call, or request the status of an interface. BSMI control messages
issued by the board (referenced as L3) inform the host of the status
of the interface, call events, or identify an error condition.

In addition to T1/E1 ISDN call control, BSMI supports the R2
signaling protocol. Using BSMI, you can:

 Start and stop the R2 protocol on a particular timeslot on an
E1 span.

 Block or unblock an idle B-channel (the ISDN channel that
handles data).

 Place an outbound call.

 Answer an inbound call.

 Disconnect a call.

 Reject an incoming call.

BSMI responds to the host with notification events such as:

 Starting and stopping the R2 protocol.

 Blocking or unblocking the B-channel.

 Seizing the line for an incoming call.

 Alerting the host and then connecting a call.

 Clearing a request.

 Notifying the host when the remote end phone is ringing.

 Notifying the host when the call is disconnected at the remote
end.

 Providing a protocol error or invalid command status message.

For details about BSMI-level call control functions, see Volume 5.

Bfv-Level Call Control

March 2017 270

BSMI-Level Call Control
An application uses the Boston Simple Message Interface (BSMI)
level of call control functions to facilitate communication directly
between the Dialogic® Brooktrout® module and the T1/E1 ISDN
lines. The BSMI call control functions use messages to communicate
between the module and the T1/E1 lines. The collection of messages
is the interface to the ISDN component of the Boston firmware and
provides all the facilities for management, call control, and
performance statistics monitoring. Naming conventions applied to
control messages in the Bfv API’s BSMI are descriptive of the
functions they serve and make it easier to develop an application.
When developing an application, you do not need to have a detailed
knowledge of the protocol involved although a general
understanding of the call model is beneficial.

March 2017 271

10 - Bfv-Level Call Control

This chapter describes the Bfv API-level functions an application
uses for call control.

It has the following sections:

 About Bfv API-Level Call Control

 Bfv API High-Level Call Control Summary

 Bfv API Low-Level Call Control Summary

 Bfv API Protocol-Specific Call Control Function Summary

 ISDN Services Call Control Summary

 Call Control Configuration File

 Bfv-level Call Control functions listed alphabetically

About Bfv API-Level Call Control

March 2017 272

About Bfv API-Level Call Control
The Bfv API offers two sets of call control functions: high-level
functions that simplify the command structure for the user and
low-level functions that provide the user with greater control of
ISDN service features. This chapter describes each function and how
to use it effectively.

Before your application can utilize call control features, you must
configure these features for your modules and their ports. You can
manually configure call control by building and editing a
configuration file (callctrl.cfg), or you can use the graphical
configuration tool (Windows operating systems only) to create or edit
the call control configuration file. When you have configured call
control, use the BfvLineReset function (see Volume 1, Chapter 2) to
load your callctrl.cfg file and initialize its parameters for the system.

The Bfv API call control mechanism no longer supports applications
designed to use the teleph.cfg or ecc.cfg configuration files. If your
application currently uses these configuration files, you must modify it to
use the current call control mechanism (see Configuring Call Control on
page 33).

Dialogic has merged the ECC library into the Boston library. You must
modify your application so that it no longer attempts to link to the ECC
library.

Note: Dialogic provides TruFax® boards to support the following
protocols:

Analog Loop Start

ISDN-BRI protocol variant.

Bfv API High-Level Call Control Summary

March 2017 273

Bfv API High-Level Call Control Summary
The Bfv API high-level call control functions consist of the set shown
in Table 11 (see Table 12 on page 274 for a list of the low-level
functions). Detailed information about these high-level functions
begins on page 280 and continues on page 357. A description of the
data structure these high-level functions use starts on page 458.

Table 11. High-Level Call Control Functions Summary
Function Purpose Page
BfvCallReject Rejects an incoming call on line types or

protocols that allow call rejection.
293

BfvLineAnswer Answers an incoming call. 357
BfvLineCCProtocolGet Retrieves the protocol assigned to the module. 360
BfvLineDialString Places the line in an OFF_HOOK state, dials the

digits specified, and returns after dialing the
last digit.

363

BfvLineOriginateCall Starts to divert an incoming call and waits for
the process to complete on a digital line using
the QSIG protocol.

369

BfvLineOriginateCall Places an outgoing call. 369
BfvLineTerminateCall Places the line in an ON_HOOK state. 384
BfvLineTransfer Automatically transfers an incoming call from

the called party to the dialed transfer number,
or returns control to the application so that it
can determine whether to complete or cancel the
transfer.
The SR140 does not support this function.

388

BfvLineTransferCancel Ends a previously initiated call transfer and
retrieves the original calling party.
The SR140 does not support this function.

394

BfvLineTransferCapabilityQuery Queries a channel’s transfer capability and
provides the application with information about
pairs of lines available to perform two B-channel
call transfers.

396

BfvLineTransferComplete Completes the call transfer connection for a
previously initiated call transfer.
The SR140 does not support this function.

398

BfvLineWaitForCall Waits for an incoming call. 400
BfvLoopCurrentDetectDisable Turns off loop current detection. 407
BfvLoopCurrentDetectEnable Turns on loop current detection. 409

Bfv API Low-Level Call Control Summary

March 2017 274

Bfv API Low-Level Call Control Summary
Table 12 groups the low-level call control functions by type. See
Table 14 on page 277 for information about high-level and low-level
call control functions. Detailed information about these functions
begins on page 280. See page 430 for descriptions of the fields in the
data structures that these functions use.

Table 12. Low-Level Call Control Function Summary

Function Type Function Name Purpose Page
Incoming Call BfvCallAccept Starts answering an incoming

telephone call.
280

BfvCallReject Rejects an incoming telephone call. 293

BfvCallRingDetect Turns detection of ring signals on
or off and determines the type of
detection for notification of
incoming calls.

297

BfvCallSendAlerting Sends an ALERTING message to
the remote end after detecting an
incoming call.

301

BfvCallWaitForAccept Finishes the process of answering
an incoming telephone call.

329

BfvCallWaitForSetup Waits for an incoming call, and
returns all available information
about the call to the application.

347

Outgoing Call BfvCallSetup Starts the process of dialing an
outgoing telephone call or
transferring a call.
The SR140 does not support call
transfer.

303

BfvCallWaitForAlerting Waits for an outgoing telephone
call to finish dialing or become
established.

332

BfvCallWaitForComplete Waits for the outgoing telephone
call to finish.

335

Call
Disconnect

BfvCallDisconnect Starts the process of terminating a
telephone call.

287

BfvCallWaitForRelease Waits for the termination of a
telephone call to finish.

342

Bfv API Low-Level Call Control Summary

March 2017 275

Call Diversion BfvCallWaitForHold Finishes the process of diverting an
incoming call on a digital port
using the QSIG protocol.

340

Call Transfer BfvCallHold Places the Bfv API in the hold
state. The SR140 does not support
this function.

289

BfvCallRetrieve Takes the Bfv API out of the hold
state.The SR140 does not support
this function.

295

BfvCallTransferComplete Completes the call transfer
operation but does not wait for the
transfer to finish.
The SR140 does not support this
function.

327

BfvCallWaitForHold Waits for the Bfv API to finish
transitioning to the hold state.
The SR140 does not support this
function.

340

BfvCallWaitForRetrieve Waits for the Bfv API to finish
transitioning out of the hold state.
The SR140 does not support this
function.

345

BfvCallWaitTransferComplete Waits for the transfer complete
command to finish.
The SR140 does not support this
function.

354

Initialization BfvCallCtrlInit Initializes the call control runtime
environment. You should use this
function only for backward
compatibility or to modify call
control parameters directly from
the Bfv API instead of changing a
file. Dialogic advises using the
BfvLineReset (see Volume 1,
Chapter 2) function to load and
initialize call control configuration
parameters.

284

Shut down BfvCallCtrlClose Disables signaling on all the ISDN
spans in the system, and shuts
down the call control library.

283

Status BfvCallStatus Retrieves the channel’s current call
state.

324

Table 12. Low-Level Call Control Function Summary (Continued)

Function Type Function Name Purpose Page

Bfv API Protocol-Specific Call Control Function Summary

March 2017 276

Bfv API Protocol-Specific Call Control
Function Summary

The functions listed in Table 13 can only be called when using
specific protocols.

Applications can only use the BfvCallSignalingStateMonitor and
BfvCallSignalingStateSet functions for T1 robbed-bit signaling
(RBS) and E1 Channel Associated Signaling (CAS) protocols. The
BfvCallStatus function provides a more generic version for the
protocols to retrieve the current call state of a channel.

Do not use the BfvCallSignalingStateSet function with any other call
control function because it provides an alternative way of controlling the
module. Use of this function can cause unexpected actions to take place
during the call because the function inadvertently signaled an illegal
state.

Table 13. Protocol-Specific Call Control Function Summary

Function Purpose Page

BfvCallReconfigureHostModule Forces the specified third party IP call control
stack (host module) to read its call control
configuration file again while the system is
running.

291

BfvCallSignalingStateMonitor Turns inbound call signaling state monitoring
on or off and sets up an optional callback
function.

317

BfvCallSignalingStateSet Sets the outbound call signaling state to one
value for a time and then to a second value.

Note: See the description below for information
about this function.

321

ISDN Services Call Control Summary

March 2017 277

ISDN Services Call Control Summary
Although the Bfv API high-level call control functions provide
sufficient control for most applications, these functions do not
provide a mechanism for analyzing received digits and properly
accepting, rejecting, or redirecting calls for ISDN protocols.

For an application to use special features provided by ISDN services
(for example, caller ID), use the low-level call control functions.
Table 14 shows the relationship between the high-level call control
functions and the low-level call control functions. The high-level call
control functions automatically execute the low-level functions to
perform the necessary call control operations.

Table 14. Relating High- and Low-Level Call Control Functions

High-level Functions Low-level Functions
BfvCallReject BfvCallDisconnect and BfvCallWaitForRelease

BfvLineAnswer BfvCallAccept and BfvCallWaitForAccept
BfvLineCCProtocolGet No equivalent

BfvLineDialString No equivalent

BfvLineOriginateCall BfvCallWaitForHold
No equivalent BfvCallSendAlerting
BfvLineOriginateCall BfvCallSetup, BfvCallWaitForAlerting, and

BfvCallWaitForComplete
BfvLineTerminateCall BfvCallDisconnect and BfvCallWaitForRelease
BfvLineTransfer BfvCallHold, BfvCallSetup,

BfvCallWaitForAlerting,
BfvCallWaitForComplete, and
BfvCallWaitForHold

BfvLineTransferCancel BfvCallDisconnect, BfvCallRetrieve, and
BfvCallWaitForRetrieve

BfvLineTransferCapabilityQuery No equivalent

BfvLineTransferComplete BfvCallTransferComplete,
BfvCallWaitTransferComplete, and
BfvCallWaitForRelease

BfvLineWaitForCall BfvCallRingDetect and BfvCallWaitForSetup
No equivalent BfvCallReconfigureHostModule
BfvLoopCurrentDetectDisable No equivalent

BfvLoopCurrentDetectEnable No equivalent

ISDN Services Call Control Summary

March 2017 278

Because the low-level functions split functionality into steps, you can
perform application-specific operations between these function calls.
For example: you can compare a called number against a database
and redirect it to another number for call forwarding.

Event messages that formerly went to the Windows Event log now
go to the Bfv API debug output. You can enable this output by calling
BfvDebugModeSet with DEBUG_ALL. See Volume 1 for more
information.

Call Control Configuration File

March 2017 279

Call Control Configuration File
For every installation you must create a call control configuration
file that defines how you want the modules configured for the Bfv
API. The sample programs provided with your Brooktrout SDK
include a sample configuration file (callctrl.cfg) that you can edit.
For Windows operating systems, Dialogic provides a graphical
configuration tool that you can use to create and modify the call
control configuration file. See the software installation and
configuration guide that came with your software for instructions on
how to use this tool.

When you have created the call control configuration file, you must
modify the call_control parameter in your user-defined (btcall.cfg)
configuration file to provide the file name as a null-terminated string
that identifies the call control configuration file your application will
use. The Bfv API configures the modules the first time your
application calls the BfvLineReset or BfvCallCtrlInit function.

For detailed information about the content and set up of the
user-defined configuration file and the call control configuration file,
see Volume 6, Appendix A, Configuration Files.

BfvCallAccept

March 2017 280

BfvCallAccept

Purpose Initiates a call answer after the BfvCallWaitForSetup or
BfvLineWaitForCall function detects an incoming call.

Syntax void
BfvCallAccept (lp, args)

BTLINE *lp;
struct args_cc *args;

The structure uses the following fields:

Input Field char name_ident [MAX_NAME_STR];
int name_char_set;
CONNECTED_NUM connected_num;

Output Field RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing an output field.

args.name_ident

Specifies text identifying the name of the called party. The field
allows a maximum of 50 characters (ECC_MAX_NAME_STR). Set
this field only for an E1 or T1 QSIG protocol.

args.name_char_set

Specifies the international standard specification (ISOxxx) of the
character set in use (only used with a QSIG protocol). Values are:

NAME_CHAR_SET_UNKNOWN –1

Unknown character set in use.

NAME_CHAR_SET_NOT_INCLUDED 0

Name does not identify a character set and the Bfv API does not
send one.

BfvCallAccept

March 2017 281

NAME_CHAR_SET_ISO8859_1 1

Specifies use of character set defined by ISO 8859-1 international
standard.

NAME_CHAR_SET_ISO8859_2 3

Specifies use of character set defined by ISO 8859-2 international
standard.

NAME_CHAR_SET_ISO8859_3 4

Specifies use of character set defined by ISO 8859-3 international
standard.

NAME_CHAR_SET_ISO8859_4 5

Specifies use of character set defined by ISO 8859-4 international
standard.
NAME_CHAR_SET_ISO8859_5 6

Specifies use of character set defined by ISO 8859-5 international
standard.

NAME_CHAR_SET_ISO8859_7 7

Specifies use of character set defined by ISO 8859-7 international
standard.

NAME_CHAR_SET_ISO10646_BMP 8

Specifies use of character set defined by ISO 10646-1 and ITU-T
Recommendation X.680 international standards.

NAME_CHAR_SET_ISO10646_UTF 9

Specifies use of character set defined by UTF-8-STRING Annex R
in ISO 10646-1 international standard.

args.connected_num

Specifies a structure of type CONNECTED_NUM, containing
information about the connected number that the function sends
to the network as part of the CONNECT message. This field is
only valid for ports using an E1 or T1 QSIG protocol. For more
information, see connected_num on page 441.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvCallAccept

March 2017 282

Details Use the BfvCallAccept function to initiate a call answer after using
a BfvCallWaitForSetup or BfvLineWaitForCall function to
detect an incoming call. To allow the channel to complete the
answering process, call the BfvCallWaitForAccept function
immediately after using BfvCallAccept.

BfvCallAccept starts the incoming call answering process for all
protocols.

The BfvCallAccept function returns without waiting for the
answering process to complete. For this reason, the application must
call the BfvCallWaitForAccept function to wait and ensure that
the call answering process completes before the application starts to
process the incoming call. An application that fails to wait for
answer completion risks starting to process an incompletely
answered incoming call.

Failing to wait for the answering process to complete can prevent
automatic detection of a remote hang-up in many instances. For
analog lines or lines that use the T1 robbed bit protocol, this failure
to wait can result in the application hearing the off-hook click or
prevent automatic detection of a remote hang-up.

Your application must use this function with the
BfvCallWaitForAccept function to start and complete the call
answering process correctly for all calls on ISDN lines. If using the
high-level call control functions, use the BfvLineAnswer function
to perform the call answering process.

See Also BfvCallRingDetect, BfvCallWaitForAccept,
BfvCallWaitForSetup, BfvLineAnswer, BfvLineWaitForCall

Example BTLINE *lp;
.
.
.
struct args_cc args;

BT_ZERO(args);
BfvCallRingDetect(lp, &args);
BfvCallWaitForSetup(lp, &args);

BT_ZERO(args);
BfvCallAccept(lp, &args);

BfvCallCtrlClose

March 2017 283

BfvCallCtrlClose

Purpose Shuts down the call control library.

Syntax int
BfvCallCtrlClose (void)

Input None

Output Return value:

0 Success

<1 Failed

>1 Failed

Details Calling this function disables the signaling on all the ISDN spans in
the system. The application cannot make or receive any more calls
after calling this function.

BfvCallCtrlInit

March 2017 284

BfvCallCtrlInit

Purpose Sets up the call control runtime environment for modules.

Syntax int
BfvCallCtrlInit (args)

struct args_cc *args;

The structure uses the following fields:

Input Fields char *btcall_file;
char *log_file;
int set_log_file;

Output Field RES res;

Input args

Pointer to an argument structure containing input and output
fields.

args.btcall_file

Pointer to a null-terminated string that identifies the full path
and file name of the btcall.cfg user-defined configuration file. The
field allows a maximum of 256 characters (MAX_PATH) and can
contain spaces.
The function opens the file specified in the args.btcall_file
argument to locate the callctrl.cfg file. If the call_control keyword
does not contain a value, the call control process assumes the
default value and looks for the callctrl.cfg file in the current
working directory. See Volume 6, Appendix A for more
information about the user-defined configuration file.

args.log_file

Specifies a null-terminated string that identifies the full path and
file name of the log file. The field allows a maximum of 256
characters (MAX_PATH) and can contain spaces. If set to NULL, the
system does not create a log file. The default value is NULL.

BfvCallCtrlInit

March 2017 285

args.set_log_file

If nonzero, the value of args.log_file overrides the default value
for the trace_file parameter in the call control configuration file
(see Volume 6, Appendix A).

Output Return value:

<0 Error detected.

0 Call control is in legacy T1 robbed-bit mode.

1 Call control is in ISDN mode.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Before your application can utilize call control features, you must
configure these features for your modules and their ports. You can
configure call control by building or modifying a call control
configuration file (callctrl.cfg — see Call Control Configuration File
on page 279) or using the graphical configuration tool (Windows
operating systems only).

When you have configured call control, use the BfvLineReset
function (see Volume 1, Chapter 2) to load your callctrl.cfg file and
initialize its parameters for the system. Dialogic only recommends
that you use BfvCallCtrlInit for backward compatibility or when
you need to change the configuration file.

The pointer reference to the btcall_file parameter is the name of your
btcall.cfg user-defined configuration file. This file contains a pointer
reference to the location of your call control configuration file.

The system initializes the call control configuration as follows:

 Applies the default configuration values. Then, any parameters
found in the call control configuration file override the defaults.

 Sets the log_file, if the set_log_file parameter is set to a nonzero
value.

Call BfvCallCtrlInit only once per process. When called, the
function sets up those modules specified in the call control
configuration file.

BfvCallCtrlInit

March 2017 286

Multiple applications can access a module. Control of the module is
through the first application. All other applications communicate
with the module through the first application. If the first application
stops, all the other applications lose the ability to make or receive
calls. If this control process presents an issue for your application,
You should use the BOSTON Host Service that remains active
whether or not the first application stops. If you use the service, you
must start it before you start any applications (see your installation
and configuration guide for instructions).

Specify the call control log file name using the args.log_file or the
trace_file parameter in the call control configuration file. Set
args.set_log_file to a nonzero value. The file name can contain
spaces. The name specified in the call to BfvCallCtrlInit has
precedence over the name in the configuration file. If you do not
specify a name, the system does not create a log file. If you specify a
file name of "null string" (two double quotes without characters
in between) or pass a NULL file name when calling BfvCallCtrlInit,
the function disables the log file even if the configuration file had
specified a name.

Example
BTLINE *lp;
.
.
.
struct args_cc args;

/* Setup call control using a configuration file */
BT_ZERO(args);
args.btcall_file = "btcall.cfg";
args.log_file = "call_cntrl_log.txt";
args.set_log_file = 1;
if (BfvCallCtrlInit(&args) < 0)
{
 fprintf (stderr, "Call control initialization error.\n");
 exit (1);
}

BfvCallDisconnect

March 2017 287

BfvCallDisconnect

Purpose Starts the process of terminating a telephone call.

Syntax void
BfvCallDisconnect (lp, args)

BTLINE *lp;
struct args_cc *args;

The structure uses the following fields:

Input Field int cause;
int subcause;

Output Field RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.cause

Specifies an ISDN-defined code that provides the reason why the
termination process failed. See Volume 6, Appendix D, Defining
ISDN Cause Codes, for a description. If the underlying line
protocol does not allow termination causes, the system ignores
the value set in this field.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvCallDisconnect

March 2017 288

Details BfvCallDisconnect initiates the process of terminating a call for all
protocols.

Use the BfvCallDisconnect function to start the process of
disconnecting a call or to clear a call that is in the connected state.
You can also use the function at any time to make sure that the line
is in an idle state. Use the BfvCallWaitForRelease function to
wait for the disconnect process to complete.

Your application must use this function with the
BfvCallWaitForRelease function to start and complete the call
termination process correctly for all calls on ISDN lines. If you use
the high-level call control functions, use the
BfvLineTerminateCall function to perform the equivalent
terminating process.

See Also BfvCallWaitForRelease, BfvLineTerminateCall

Example BTLINE *lp;
.
.
.
struct args_cc args;

BT_ZERO(args);
args.cause = IISDNcausDEFAULT;
BfvCallDisconnect(lp, &args);

BT_ZERO(args);
args.timeout = 0;
BfvCallWaitForRelease(lp, &args);
if (args.res.status != BT_STATUS_OK)
{
 /* It did not disconnect */
}

BfvCallHold

March 2017 289

BfvCallHold

Purpose Places the Bfv API in the hold state.

The SR140 and analog DID lines do not support this function.

Syntax void
BfvCallHold (lp, args)

BTLINE *lp;
struct args_cc *args;

The structure contains the following fields.

Input Field None

Output Field RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing an output field.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Use the BfvCallHold function to place the Bfv API in the hold state.
This function prepares the software to handle transferring a call.
Follow the BfvCallHold function with a call to
BfvCallWaitForHold to wait for the Bfv API to transition to the
hold state.

BfvCallHold

March 2017 290

The application can only have one call on hold per line. To verify that
the application does not already have a call on hold for the line, use
the BfvCallStatus function to check the args.calls_on_hold field.

See Also BfvCallStatus, BfvCallWaitForHold, BfvCallRetrieve,
BfvCallWaitForRetrieve

Example BTLINE *lp;
.
.
.
struct args_cc args;

BT_ZERO(args);
BfvCallHold(lp, &args);

BT_ZERO(args);
BfvCallWaitForHold(lp, &args);
if (args.res.status != BT_STATUS_OK)
{
 /* The API did not change to a hold state */
}

BfvCallReconfigureHostModule

March 2017 291

BfvCallReconfigureHostModule

Purpose Forces the specified third party call control stack (host module) to
read its call control configuration file again while the system is
running.

Syntax int
BfvCallReconfigureHostModule (

int host_module_number)

Input Field int host_module_number;

Output Field None

Input host_module_number

Identifies the number assigned to the third party IP call control
stack.

The value provided for this variable ranges from 1 to 9 and must
correspond to the number assigned to the call control stack in the
host_module.# parameter in your call configuration file (see
Internet Protocol (IP) Call Control Configuration Parameters in
Volume 6, Appendix A).

Output Return value:

0 Success

–1 The third party call control stack does not support
reconfiguring call control parameters

>1 Failed

BfvCallReconfigureHostModule

March 2017 292

Details Calling this function allows the application to force the specified call
control stack to reread its configuration parameters if the stack
permits reconfiguration.

At the option of the third party providing the call control stack, the
stack can limit the number of reconfigurable parameters or choose
not to support reconfiguration at all. When the stack only permits
reconfiguring certain parameters, the details about these parameters
can be found in the third party documentation that comes with your
call control stack product. The third party IP call control stacks that
Dialogic provides with its Brooktrout SDK support reconfiguration as
follows:

 H.323 — Does not permit rereading configuration parameters.

 SIP — Permits reconfiguring all parameters except
sip_max_sessions.

Example int host_module_number = 1;
BfvCallReconfigureHostModule (host_module_number);

BfvCallReject

March 2017 293

BfvCallReject

Purpose Rejects an incoming call detected by the BfvCallWaitForSetup or
BfvLineWaitForCall function.

Syntax void
BfvCallReject (lp, args)

BTLINE *lp;
struct args_cc *args;

The structure contains the following fields:

Input Field int cause;

Output Field RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.cause

Specifies an ISDN-defined code that provides the reason why
rejecting the call failed. See Volume 6, Appendix D, Defining
ISDN Cause Codes for a description. If the underlying line
protocol does not allow termination causes, the system ignores
the value set in this field.

args.subcause

Specifies the SIP response code to use in rejecting the call. This
field should only be used for SIP IP protocol calls and will be
ignored for all other protocols. The definitions of these response
codes are specified in RFC 3261.

Output Return value: None.

BfvCallReject

March 2017 294

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details BfvCallReject handles refusal of an incoming call detected by the
BfvCallWaitForSetup or BfvLineWaitForCall function.
BfvCallReject waits for the call to clear before it returns.

Not all line types and protocols allow the application to reject an
incoming call. Note the following:

 On digital lines using the T1 robbed bit protocol, BfvCallReject
blocks further processing until the incoming caller hangs up.

 On analog lines, BfvCallReject ignores the call but allows the
call to reappear as a new call when the next ring occurs.

 On analog DID lines, the far end must clear to complete the
rejection.

See Also BfvCallDisconnect, BfvCallWaitForRelease

Example
BTLINE *lp;
.
.
.
struct args_cc args;

BT_ZERO(args);
args.timeout = 0;
args.cause = IISDNcausNUM_CHANGED; // ISDN cause code 22 (0x16)

BfvCallWaitForSetup(lp, &args);
if (args.res.status == BT_STATUS_OK)
{
if (strncmp(args.cres.dest_id, "7814494100", 10)
{
 BT_ZERO(args);
 BfvCallReject(lp, &args);
}
else
{
 BT_ZERO(args);
 BfvCallAccept(lp, &args);
}
}

BfvCallRetrieve

March 2017 295

BfvCallRetrieve

Purpose Takes the Bfv API out of the hold state.

The SR140 and analog DID lines do not support this function.

Syntax void
BfvCallRetrieve (lp, args)

BTLINE *lp;
struct args_cc *args;

The structure contains the following fields.

Input Fields None

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing an output field.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Use this function to take the Bfv API out of the hold state. Follow
this function call with a call to BfvCallWaitForRetrieve to wait for
the transition to complete.

To verify that the application has a call on hold for the line, use the
BfvCallStatus function to check the args.calls_on_hold field.

See Also BfvCallStatus, BfvCallWaitForRetrieve

BfvCallRetrieve

March 2017 296

Example BTLINE *lp;
.
.
.
struct args_cc args;

BT_ZERO(args);
BfvCallRetrieve(lp, &args);

BT_ZERO(args);
BfvCallWaitForRetrieve(lp, &args);
if (args.res.status != BT_STATUS_OK)
{
 /* The API did not exit the hold state */
}

BfvCallRingDetect

March 2017 297

BfvCallRingDetect

Purpose Turns detection of ring signals on or off and determines the type of
detection for notification of incoming calls.

Syntax void
BfvCallRingDetect (lp, args)

BTLINE *lp;
struct args_cc *args;

The structure contains the following fields:

Input Field int mode;
char *phonenum;

Output Field RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.mode

Specifies a value that determines how and whether the function
detects incoming ring signals. Set this field as follows:

0 Turns ring detection behavior and static ring
detection mode off.

–1 Turns static ring detection mode on.
1 Turns ring detection behavior on.

args.phonenum

Pointer to a null-terminated ASCII string that identifies the DID
phone number the incoming call must match in order for the
system to present the call to the application.

BfvCallRingDetect

March 2017 298

Only calls using an internet protocol (IP) such as SIP or H.323 can
use this field. PSTN line types ignore the contents of this field.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details The application uses this function to enable ring detection or static
ring detection so that it receives notification of an incoming call. Use
this function before the BfvCallWaitForSetup function that waits
for an incoming call.

If the application uses the function to disable ring detection and the
underlying call transport mechanism supports call rejection, the
channel automatically rejects the incoming call without notifying the
user application.

When you turn on static ring detection mode on a module’s
configuration (see Volume 6, Appendix A, Configuration Files), your
application must specifically turn on the ring detection behavior on
each call control channel that your application uses to receive
inbound calls. Turn this behavior on by waiting for a call or calling
this function with args.mode set to 1. After turning on static ring
detection mode and ring detection behavior on a call control channel,
static ring detection mode and ring detection behavior remain
turned on until specifically turned off by calling the function with
args.mode set to 0. If you turned static ring detection mode off on a
call control channel and you want to turn it back on, you must call
the BfvCallRingDetect() function with args.mode set to –1.
Setting the args.mode field to –1 also turns on the ring detection
behavior on the call control channel. When you turn on both static
ring detection mode and ring detection behavior on a call control
channel, you must expect to receive calls on that channel. Setting the
args.mode field to a value of 1 only turns on the ring detection
behavior on a call control channel.

Before Dialogic added this static ring detection feature to the
configuration file, an application needed to enable ring detection
after each call. The application called the BfvCallRingDetect()
function with args.mode set to 1 or simply waited for an inbound

BfvCallRingDetect

March 2017 299

call. The Bfv API then rejected any inbound call on a channel
without ring detection enabled. This behavior increased the
likelihood of missing an inbound call.

Using the static ring detection feature allows an application to turn
on static ring detection mode just once on a channel. When a channel
has static ring detection mode enabled, the Bfv API buffers an
inbound call if the channel is not in the wait for call state. After the
channel enters the wait for call state, the Bfv API routes the
buffered inbound call to the waiting channel. If static ring detection
mode is enabled and the channel is already in the wait for call state,
the Bfv API routes the inbound call directly to the channel without
any buffering. This behavior increases the likelihood of answering an
inbound call.

If you turn static ring detection mode on for a module, but do not
enable ring detection behavior on the call control channel at least
once, the Bfv API will reject an inbound call on that call control
channel. If you turn static ring detection mode off for a module and a
call control channel is not waiting for an inbound call, the Bfv API
will reject an inbound call on that call control channel.

An application can use the args.phonenum input field to implement
basic inbound call routing for an IP-enabled application. Unlike
applications for PSTN line types, any channel in the system can
answer incoming IP calls. The args.phonenum field allows the
application to specify a DID number that an incoming call must
match before the system presents the call to the application. The Bfv
API only attempts to match the number of digits passed into this
function in this pointer. For example, if you specify 4 digits to pass
in, the Bfv API only seeks to match the first 4 digits of the incoming
call, and it ignores any extra digits in the incoming call’s DID string.
This field only works for incoming calls using SIP and H.323 internet
protocols. The Bfv API ignores the field for any incoming call on
PSTN line types.

If using the high-level call control functions, use the
BfvLineWaitForCall function to process an incoming call. The
BfvLineWaitForCall function automatically enables ring
detection.

See Also BfvCallAccept, BfvCallReject, BfvCallWaitForSetup,
BfvLineWaitForCall

BfvCallRingDetect

March 2017 300

Example BTLINE *lp;
.
.
.
struct args_cc args;

BT_ZERO(args);
args.mode = 1;

/* Use next line example only to implement call routing
 for an IP-enabled application */

args.phonenum = "4083700881";
BfvCallRingDetect(lp, &args);

BT_ZERO(args);
BfvCallWaitForSetup(lp, &args);

BT_ZERO(args);
BfvCallAccept(lp, &args);

BfvCallSendAlerting

March 2017 301

BfvCallSendAlerting

Purpose Sends an ALERTING message to the remote end after detecting an
incoming call.

The SR140 does not support this function.

Syntax void
BfvCallSendAlerting (lp, args)

BTLINE *lp;
struct args_cc *args;

The structure contains the following fields.

Input Fields None

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing an output field.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvCallSendAlerting

March 2017 302

Details For protocols that support call diversion, an application can use this
function rather than the automatic feature to send an alerting
message to the remote end after the system detects an incoming call.
The function is only effective if the application turns off the
automatic call alerting feature by setting the disable_alerting
parameter to TRUE in the call configuration file (see Volume 6,
Appendix A, Configuration Files). With the automatic feature turned
on (disable_alerting = FALSE = default value), the Bfv API expects to
send the ALERTING message automatically whenever it detects an
incoming call with a diversion request.

Note: The application cannot use this function after it uses a
function that answers a call.

The Bfv API does not report an error condition if the application calls
this function and the Bfv API has already sent an alerting message
automatically. If the protocol in use does not support this feature,
the Bfv API silently ignores the request implied in the
BfvCallSendAlerting function.

See Also BfvCallWaitForHold, BfvCallWaitForSetup,
BfvLineOriginateCall, BfvLineWaitForCall

Example BTLINE *lp;
.
.
.
struct args_cc args;

BT_ZERO(args);
BfvCallSendAlerting(lp, &args);

BfvCallSetup

March 2017 303

BfvCallSetup

Purpose Starts the process of making an outgoing telephone call.

Analog DID lines do not support this function.

Syntax void
BfvCallSetup (lp, args)

BTLINE *lp;
struct args_cc *args;

The structure contains the following fields:

Input Fields int call_protocol_code;
const char *calling_party;
unsigned char calling_party_presentation;
unsigned char calling_party_screening;
enum TRxECCCallType call_type;
char *phonenum;
int enquiry_call;
int ie_count;
int ie_length;
unsigned char *ie_data;
char name_ident[ECC_MAX_NAME_STR];
int name_char_set;
enum TRxTransportType call_transport;
unsigned num_user_sip_headers;
struct BT_USER_SIP_HEADER *user_sip_headers;
int fax_media_feature_tag;
unsigned fallback_rtp_reinvite;

Output Field RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

BfvCallSetup

March 2017 304

args.call_protocol_code

Specifies a calling protocol for the module that determines how
and when the module reports the results of call progress analysis.
Set the value of this field to one of the following (see page 432 for
descriptions):
CALL_PROTOCOL_FAX

CALL_PROTOCOL_RAW

CALL_PROTOCOL_VOICE

CALL_PROTOCOL_FAX_NO_RAW

CALL_PROTOCOL_VOICE_NO_RAW

args.calling_party

Specifies a pointer to a null-terminated ASCII string that the
channel sends as the calling party information to the remote side
during an outbound telephone call. Not all protocols support this
feature.
If you set this field to NULL, the channel sends the caller ID from
the callctrl.cfg file when appropriate.

args.calling_party_presentation

Specifies a value for ISDN calls that indicates the origin of the
calling party number presented to the called party or the
accessibility level of the calling party number. Set this field to one
of the following values (see page 433 for descriptions):
ECC_PRES_ALLOWED

ECC_PRES_RESTRICTED

ECC_PRES_NUM_NOT_AVAIL

In order to use one of the values above on a per call basis you have
to set the call control presentation parameter to APP_DEFINED.
Refer to the presentation parameter under the Call Control
Configuration File Format on page 1159.

BfvCallSetup

March 2017 305

args.calling_party_screening

Specifies a value for ISDN calls that indicates the origin and
validity of the calling party number passed to the called party. Set
this field to one of the following values (see page 433 for
descriptions):

ECC_SCRN_USER_NOT_SCREENED

ECC_SCRN_USER_VERIFICATION_PASSED

ECC_SCRN_USER_VERIFICATION_FAILED

ECC_SCRN_NETWORK_PROVIDED

In order to use one of the values above on a per call basis you have
to set the call control screening parameter to APP_DEFINED.
Refer to the presentation parameter under the Call Control
Configuration File Format on page 1159.

args.call_type

Specifies the call type to use when making the outbound call. Use
one of the following values for this field (see page 434 for
descriptions):
ECC_CALL_TYPE_AUTO

ECC_CALL_TYPE_DEFAULT

ECC_CALL_TYPE_MODEM

ECC_CALL_TYPE_VOICE

Note: Not all protocols support this feature. If the protocol does not
support the feature, the system ignores the args.call_type field.

args.phonenum

Specifies a pointer to a null-terminated ASCII string that
identifies the phone number to dial. Dial strings (phone numbers)
may be up to a maximum of 255 characters
(ECC_MAX_DIGIT_STR - 1) for most protocols and locations. See
Details.

PSTN Telephony
The dial string field supports the following digits and control
characters. Invalid characters are ignored; upper and lower case
letters are equivalent. Some protocols ignore control characters
and only accept DTMF characters.

BfvCallSetup

March 2017 306

Valid Digits and Control Characters

Note: In an analog environment or when using a T1 robbed bit
FXS loopstart or E1 CAS loopstart protocol, the ‘w’ character
means wait for dial tone. All other protocols ignore the ‘w’ and
‘i’ characters. Only analog environments and T1 robbed bit or
E1 CAS protocols use the ‘p’, ‘t’, comma and semicolon
characters.

IP Telephony
For IP outbound calls using the H.323 protocol:
 Phone#@IP Address:Port#

If the receiving side does not require a phone number, a value
for Phone# is optional. Also, :Port# is optional — the Bfv
API uses 1720 as the default port value.

 TA:IP Address:Port#,Phone#

:Port# is optional — the Bfv API uses 1720 as the default
port value. If the receiving side does not require a phone
number, a value for Phone# is optional.

 Name:<name of person to dial>

Use this form only if using gatekeeper

0 - 9 Dials digits ‘0’ through ‘9’.

(pound) Dials a pound.

* (asterisk) Dials an asterisk.

A - D Sends the DTMF tone corresponding to the
specified alphabetic character.

p Changes the current or default dialing mode
from tone dialing to pulse dialing.

t Changes the current or default dialing mode
from pulse dialing to tone dialing.

w Waits for dial tone.

, (comma) Causes a 1-second pause.

; (semicolon),
i or I

Causes a 5-second pause. To create longer
pauses, string any of these characters
together.

! (exclamation point) Sends a hook flash on analog and T1 robbed
bit modules.

BfvCallSetup

March 2017 307

 E164alias:7894561234

Use this form only if using gatekeeper
Note: DNS lookups are not supported in H.323. You can use an

H.323 or E.164 alias in conjunction with a gatekeeper to
provide similar functionality.

Examples
4082345555@10.155.89.6:175
4082345555@10.155.89.6

TA:10.155.89.6:175,4082345555
TA:10.155.89.6,4082345555
TA:10.155.89.6

Name:Fred Smith
E164alias:4082345555

For IP outbound calls using the SIP protocol:
Phone#@IP Address:Port#

If the receiving side does not require a phone number, a value for
Phone# is optional. Also, :Port# is optional - the Bfv API uses
5060 as the default port value.

Examples (IPv4 Addresses)
4082345555@10.155.89.7:175
4082345555@10.155.89.7

Examples (IPv6 Addresses)
4082345555@[2000::2ef3:1dff:ea3]:175
4082345555@[fe80::1f4:189c:74da:69f7]

Note: IPv6 addresses must be enclosed in brackets. In addition, if a
link-local IPv6 address is specified, the Scope ID should be
omitted from the address.

DTMF Post Dialing
For all types of IP calls, the character '&' (ampersand) may be
included to initiate post-dialing. This character indicates that the
rest of phonenum specifies a sequence of DTMF digits to be "post-
dialed" after messages from the remote side indicate the call is
proceeding towards connecting.
Within the post-dial string, all dialing characters listed for PSTN
Telephony are allowed except for 'p', 't', 'w', and '!'. The
appearance of an additional '&' will terminate processing of the
string.

BfvCallSetup

March 2017 308

Post-dialing of the specified digits will occur upon the first receipt
of one of the following IP call control messages:
 SIP -- 183 Progress
 SIP -- 200 OK
 H.323 -- Progress
 H.323 -- Connect
The post-dial feature is controlled by the user configuration file
parameter post_dialing_enable. If the feature is disabled by that
parameter, then the ampersand has no special effect and the
entire phonenum field is used as is.

Note: If a program accepts a phone number on the command line, the
phone number will likely need to be quoted if it contains an
ampersand, since this is a special character on most OSes.
(Use double quotes (") on Windows, or single (') or double (")
quotes on unixes.)

args.enquiry_call

Specifies a Boolean value that indicates whether the function sets
up the outbound call to handle it as a transfer from the called
party. Set the field as follows:

FALSE

Indicates that the outbound call is not set up to make a transfer.

TRUE

Indicates that the outbound call expects to make a transfer from
the called party.
When the application sets the value in this field to TRUE and the
line only supports single B-channel call transfer, the application
must put the line on hold first using the BfvCallHold function.
The application does not need to use the BfvCallHold function
when the line support provides two B-channels for the transfer.

args.ie_count

Specifies the number of custom information elements (IE) to
send.

args.ie_length

Specifies the number of bytes that the custom args.ie_data field
contains.

args.ie_data

Specifies an array of hexadecimal characters that indicate the
content of the custom IE.

BfvCallSetup

March 2017 309

args.name_ident

Specifies text identifying the name of the called party. The field
allows a maximum of 50 characters (ECC_MAX_NAME_STR). Set
this field only for an E1 or T1 QSIG protocol.

args.name_char_set

Specifies the international standard specification (ISOxxx) of the
character set in use (only used with a QSIG protocol). Values are:

NAME_CHAR_SET_UNKNOWN –1

Unknown character set in use.

NAME_CHAR_SET_NOT_INCLUDED 0

Name does not identify a character set and the Bfv API does not
send one.

NAME_CHAR_SET_ISO8859_1 1

Specifies use of character set defined by ISO 8859-1 international
standard.

NAME_CHAR_SET_ISO8859_2 3

Specifies use of character set defined by ISO 8859-2 international
standard.

NAME_CHAR_SET_ISO8859_3 4

Specifies use of character set defined by ISO 8859-3 international
standard.

NAME_CHAR_SET_ISO8859_4 5

Specifies use of character set defined by ISO 8859-4 international
standard.
NAME_CHAR_SET_ISO8859_5 6

Specifies use of character set defined by ISO 8859-5 international
standard.

NAME_CHAR_SET_ISO8859_7 7

Specifies use of character set defined by ISO 8859-7 international
standard.

NAME_CHAR_SET_ISO10646_BMP 8

Specifies use of character set defined by ISO 10646-1 and ITU-T
Recommendation X.680 international standards.

NAME_CHAR_SET_ISO10646_UTF 9

Specifies use of character set defined by UTF-8-STRING Annex R
in ISO 10646-1 international standard.

BfvCallSetup

March 2017 310

args.call_transport

Selects the transport protocol to use for an outbound SIP call from
one of the following:
TRANSPORT_TYPE_UDP
Select User Datagram Protocol (UDP) as the transport protocol to
use for the outbound SIP call.
TRANSPORT_TYPE_TCP
Select Transmission Control Protocol (TCP) as the transport
protocol to use for the outbound SIP call. In order to use this
setting, TCP protocol support must be enabled in the call control
configuration file (see Volume 6, Appendix A, Configuration
Files).
TRANSPORT_TYPE_DEFAULT
Use the default call transport, either UDP or TCP for the
outbound SIP call. If the default call transport is not explicitly
specified in the call control configuration file, UDP will be used.
Otherwise, the transport protocol used for the outbound SIP call
will be what's specified in the call control configuration file (see
Volume 6, Appendix A, Configuration Files).
NOTE: This field only works for calls using the SIP internet protocol. The
Bfv API ignores this field for calls using the H.323 internet protocol and
PSTN line types.

args.num_user_sip_headers

Specifies the number of entries in the array of
BT_USER_SIP_HEADER structures referenced by the
args.user_sip_headers field. The maximum number of entries in
the BT_USER_SIP_HEADER structure array is
BT_USER_SIP_HEADERS_MAX_NUM_HEADERS.
NOTE: This field only works for calls using the SIP internet protocol. The
Bfv API ignores this field for calls using the H.323 internet protocol and
PSTN line types.

BfvCallSetup

March 2017 311

args.user_sip_headers

Specifies a reference to an array of BT_USER_SIP_HEADER
structures that specify SIP header names and values to add to the
initial SIP INVITE of an outbound call. The
BT_USER_SIP_HEADER structure is defined below:
struct BT_USER_SIP_HEADER {

 char *header_name;

 char *header_value;

};

The number of entries in the array of BT_USER_SIP_HEADER
structures referenced by the args.user_sip_headers field is
specified by the value of the num_user_sip_headers field and can
have a maximum size of
BT_USER_SIP_HEADERS_MAX_NUM_HEADERS. If the
value specified by num_user_sip_headers is 0, this field is
ignored.
The header_name field in the BT_USER_SIP_HEADER
structure points to a null-terminated ASCII string that identifies
the name of the SIP header to add to the initial SIP INVITE for
an outbound SIP call. The maximum length that can be specified
for the header name (including the null terminator) is
BT_USER_SIP_HEADERS_MAX_NAME_LEN.
The header_value field in the BT_USER_SIP_HEADER
structure points to a null-terminated ASCII string that identifies
the value of the SIP header to add to the initial SIP INVITE for
an outbound SIP call. The maximum length that can be specified
for the header value (including the null terminator) is
BT_USER_SIP_HEADERS_MAX_VALUE_LEN.
Applications should not attempt to specify standard SIP headers
(e.g. To, From, Via, Call-ID, CSeq, Contact, etc.) using the
args.user_sip_headers field as this may result in unpredictable
and unsupported behavior.
NOTE: This field only works for calls using the SIP internet protocol. The
Bfv API ignores this field for calls using the H.323 internet protocol and
PSTN line types.

BfvCallSetup

March 2017 312

args.fax_media_feature_tag

Specifies a "sip.fax" media feature tag value to add to an Accept-
Contact header in the outbound SIP INVITE request. Set this
field to one of the following values:
BT_FAX_MEDIA_FEATURE_TAG_DEFAULT

Set "sip.fax" media feature tag to a default value based on the
fax_transport_protocol parameter value in the
t38parameters section of the callctrl.cfg file as specified in
the following table:

BT_FAX_MEDIA_FEATURE_TAG_T38
Set" sip.fax" media feature tag to "t38".

BT_FAX_MEDIA_FEATURE_TAG_PASSTHROUGH
Set "sip.fax" media feature tag to "passthrough".

BT_FAX_MEDIA_FEATURE_TAG_DISABLED
Do not add "sip.fax" media feature tag to transmitted SIP
INVITE message.

If a fax_media_feature_tag value is specified that is not supported by
the current configuration (e.g.,
BT_FAX_MEDIA_FEATURE_TAG_T38 specified but
fax_transport_protocol value set to t38_never in the callctrl.cfg
configuration file), the outbound SIP call will fail with the status
field in the RES results structure set to BT_STATUS_ERROR and
the line_status field in the RES results structure set to
APIERR_CALL_CONTROL.

In order to use this field for outbound SIP calls, RFC 6913 feature
support must be enabled in the call control configuration file (see
Volume 6, Appendix A, Configuration Files).

Note: This field only works for calls using the SIP internet protocol.
The Bfv API ignores this field for calls using the H.323 internet
protocol and PSTN line types.

fax_transport_protocol value "sip.fax" value
t38_never passthrough

t38_only t38

t38_first t38

Not specified in callctrl.cfg file t38

BfvCallSetup

March 2017 313

args.fallback_rtp_reinvite

Specifies whether or not a SIP RTP reINVITE should be
transmitted for G.711 fallback mode if a SIP T.38 reINVITE is
rejected with either a 488 (Not Acceptable Here) or a 606 (Not
Acceptable). Valid values are:
BT_FALLBACK_RTP_REINVITE_DEFAULT

Default to the setting specified in the call control
configuration file.

BT_FALLBACK_RTP_REINVITE_DISABLE
Do not transmit a SIP RTP reINVITE if a SIP T.38 reINVITE
is rejected.

BT_FALLBACK_RTP_REINVITE_ENABLE
Transmit a SIP RTP reINVITE if a SIP T.38 reINVITE is
rejected.

When the application sets the value in this field to
BT_FALLBACK_RTP_REINVITE_DEFAULT, the functionality
will default to the setting specified in the call control configuration
file (callctrl.cfg) by the g711_fallback_rtp_reinvite parameter. If
the g711_fallback_rtp_reinvite parameter isn't specified in the
call control configuration file, then the default functionality is
BT_FALLBACK_RTP_REINVITE_DISABLE.

An application can override the value specified in the call control
configuration file by the g711_fallback_rtp_reinvite parameter by
setting this field to a value of either
BT_FALLBACK_RTP_REINVITE_DISABLE or
BT_FALLBACK_RTP_REINVITE_ENABLE.

Setting this field to a value of
BT_FALLBACK_RTP_REINVITE_DISABLE will prevent
transmission of a SIP RTP reINVITE if a SIP T.38 reINVITE is
rejected.

BfvCallSetup

March 2017 314

Setting this field to a value of
BT_FALLBACK_RTP_REINVITE_ENABLE will result in
transmission of a SIP RTP reINVITE if a SIP T.38 reINVITE is
rejected with either a 488 (Not Acceptable Here) or a 606 (Not
Acceptable) and the fax transport protocol
(fax_transport_protocol) parameter specified in the call control
configuration file is set to t38_first. The SDP settings in the SIP
RTP reINVITE will be the same RTP codec settings initially used to
establish the call.

Note: This field only works for calls using the SIP internet protocol.
The Bfv API ignores this field for calls using the H.323 internet
protocol or PSTN line types.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details BfvCallSetup initiates an outbound call or a call transfer. Follow
this function call with a call to BfvCallWaitForComplete that
waits for the outbound calling process to finish establishing the call.

Note: The SR140 does not support call transfer. Analog DID lines do
not support outbound calling.

For applications that want to take the channel off hook and make it
busy whether or not any call is coming in, use this function and dial
a comma (pause character), but do not complete the process by
following this function call with a call to
BfvCallWaitForComplete. When you are ready to put the channel
on hook again, call the BfvLineTerminateCall function.

To initiate the outbound call as a transfer, set args.enquiry_call to
TRUE. If the line supports two B-channel transfers, BfvCallSetup
starts a transfer process and the application uses
BfvCallWaitForComplete to wait for the outbound calling process
to finish establishing the call. Use the BfvCallTransferComplete
function to complete the transfer.

BfvCallSetup

March 2017 315

If the application needs to cancel the transfer, use the
BfvCallDisconnect function to start the release of the enquiry call.

If the line only supports single channel transfers, the application
must first put the line on hold using BfvCallHold and
BfvCallWaitForHold before the BfvCallSetup function can start
making the enquiry call. Use BfvCallWaitForComplete to wait for
the outbound transfer to complete.

For applications using Euro-ISDN on E1 or BRI lines (but not T1
ISDN lines), this function automatically sends a dial string using the
protocol’s overlapped dialing feature when the phone number
exceeds 20 digits. The Euro-ISDN protocol only allows applications
to send 20 digits in a block when placing a call. For phone numbers
exceeding 20 digits, the protocol uses a process called overlapped
dialing. This process sends extra digits after the initial call setup,
allowing:

 The application to dial very large phone numbers
 The remote end to start answering a call before it receives all the

digits

Users can place a call with up to 255 digits in the dial string. The Bfv
API automatically breaks up the dial string into multiple blocks of
20 digits, and uses the overlapped dialing feature in the protocol to
send one block of digits at a time. This process does not require any
changes in the application.

Some protocols or locations do not support overlapped dialing. For
example, T1 ISDN only allows a maximum of 24 digits.

See Also BfvCallDisconnect, BfvCallHold, BfvCallWaitForAlerting,
BfvCallWaitForComplete, BfvCallWaitForHold,
BfvCallWaitForRelease

BfvCallSetup

March 2017 316

Example BTLINE *lp;
.
.
.
unsigned char ie_data[] = {

0x1c, 0x12, 0x91, 0xa1, 0x0f, 0x02, 0x02, 0x00,
0x80, 0x02, 0x01, 0x0f, 0x30, 0x06, 0x02, 0x01,
0x05, 0x0a, 0x01, 0x01};

struct args_cc args;

BT_ZERO(args);
args.call_protocol_code = CALL_PROTOCOL_FAX;
args.phonenum = ”18005551212”;
args.ie_count = 1;
args.ie_length = sizeof(ie_data);
args.ie_data = ie_data

BfvCallSetup(lp, &args);

BT_ZERO(args);
args.call_protocol_code = CALL_PROTOCOL_FAX;
args.timeout = 0;
BfvCallWaitForComplete(lp, &args);
if (args.res.status != BT_STATUS_OK)
{
 /* It did not connect */
}

BfvCallSignalingStateMonitor

March 2017 317

BfvCallSignalingStateMonitor

Purpose Turns inbound call signaling state monitoring on or off and sets up
an optional callback function.

The SR140 does not support this function.

Syntax int
BfvCallSignalingStateMonitor(lp, args)

BTLINE *lp;
struct args_signaling *args;

The structure contains the following fields.

Input Fields unsigned unit;
unsigned stream;
unsigned time_slot;
void (*func)(BTLINE *lp,

 struct args_signaling *args);
unsigned mon_mode;

Output Field RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.unit

Specifies the telephony port unit number (see the parameters for
the Call Control Configuration File in Volume 6, Appendix A).

args.stream

Specifies the stream number.

args.time_slot

Specifies the time slot number.

BfvCallSignalingStateMonitor

March 2017 318

args.func

Specifies a pointer to an optional callback function. If NULL, no
callback will be performed.
Call the function as indicated by its definition in the Input
Fields paragraph. Args is a pointer to an args_signaling
structure where the following fields contain values to describe the
new signaling state:
unit Telephony port unit number.
stream Stream number.
time_slot Time slot number.
stateIn_0 The signaling state of the previous inbound call.
durationIn_0 The time, in milliseconds, that the signaling state

remained in effect for the
previous inbound call.

stateIn_1 The new signaling state for the inbound call.
stateOut_0 The current signaling state of the outbound call.

The structure and its contents
must not be modified.

args.mon_mode

Specifies the monitoring mode. Valid values are:
BT_MON_MODE_ENABLE

Enables monitoring.

BT_MON_MODE_DISABLE

Disables monitoring.

BT_MON_MODE_ONETIME

Performs a one-time state check.

Output Return value: None. This function does not have a return value. Use
the return value from BfvCallSignalingStateSet.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Call signaling states are values whose bit representation takes the
form xxxx...xxxABCD, where x indicates values to be ignored (should
be 0), and A, B, C, D represent signaling bits.

BfvCallSignalingStateMonitor

March 2017 319

Enabling call signaling state monitoring with no callback function is
useful for the purpose of viewing the resulting notifications in Bfv
API debug mode. Your application can only set up one callback
function per module. All calls made with a non-NULL args.func value
should contain the same value.

The function also provides the ability to do a one-time state check.

Note: The BfvCallStatus function works for all protocols and you
should use it to determine the current call state.
You can call the BfvCallSignalingStateMonitor function
only for T1 robbed-bit signaling (RBS) and E1 Channel
Associated Signaling (CAS) telephony units. For all other
protocols, you must use BfvCallStatus to determine the
channel’s current call state.

The callback function will be called when monitoring is first enabled
and when an inbound signaling state change occurs.

To retrieve the signaling state values when performing a one-time
state check, you must still supply the callback function.

For notifications to process properly and the supplied callback
function to be invoked, use Bfv API functions involving the same line
pointer (lp). If there are no other Bfv API operations required, use
BfvRcvProcessPkt (see Volume 1, Chapter 2).

See Also BfvCallSignalingStateSet, BfvCallStatus

BfvCallSignalingStateMonitor

March 2017 320

Example void sig_func(lp,args)
BTLINE *lp;
struct args_signaling *args;
{

printf(
"State info: unit %d, stream %d, time slot %d,\n"
args->unit,args->stream,args->time_slot);

printf("\tprev in state %x, prev time %u,\n"
args->stateIn_0,args->durationIn_0);

printf("\tnew in state %x, cur out state %x\n",
args->stateIn_1,args->stateOut_0);

}

main()
{

BTLINE *lp;
struct args_signaling args;
struct args_telephone args_tel;

...
/* Set up signal monitoring on unit 1 */
BT_ZERO(args);
args.unit = 1;
args.stream = 6;
args.time_slot = 0;
args.func = sig_func;
args.mon_mode = BT_MON_MODE_ENABLE;
BfvCallSignalingStateMonitor(lp,&args);

BT_ZERO(args_tel);
BfvLineWaitForCall(lp,&args_tel);
...

}

BfvCallSignalingStateSet

March 2017 321

BfvCallSignalingStateSet

Purpose Sets the signaling state for the outbound call to one value for a time
and then to a second value.

The SR140 does not support this function.

Syntax int
BfvCallSignalingStateSet (lp, args)

BTLINE *lp;
struct args_signaling *args;

The structure contains the following fields.

Input Fields unsigned unit;
unsigned stream;
unsigned time_slot;
unsigned stateOut_0;
unsigned durationOut_0;
unsigned stateOut_1;
unsigned millisecs;

Output Field RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.unit

Specifies the telephony port unit number (see the Call Control
Configuration Files in Volume 6, Appendix A parameters).

args.stream

Specifies the stream number.

BfvCallSignalingStateSet

March 2017 322

args.time_slot

Specifies the time slot number.

args.stateOut_0

Specifies the first signaling state to set for the outbound call.

args.durationOut_0

Specifies the time, in milliseconds, to hold the first signaling state
for the outbound call.

args.stateOut_1

Specifies the second signaling state to set for the outbound call.

Output Return value:

0 Success.

>0 Operational error reported by firmware.

<0 Other error.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Call signaling states are values whose bit representation is of the
form xxxx...xxxABCD, where x are values to be ignored (should be 0),
and A, B, C, D represent signaling bits. To set an absolute steady
state, set args.stateOut_0 to equal args.stateOut_1 and set
args.durationOut_0 to 0.

Note: Call this function only for T1 robbed-bit signaling (RBS) and
E1 Channel Associated Signaling (CAS) telephony units. The
function does not work for any other protocol.

If you call this function for the applicable protocol, set the set_api
parameter to the BSMI value in the call configuration file (see
Volume 6, Appendix A).

Do not use this function with any other call control function because it
provides an alternative way of controlling the module. Use of this function
can cause unexpected actions to take place during the call because the
function inadvertently signaled an illegal state.

BfvCallSignalingStateSet

March 2017 323

See Also BfvCallSignalingStateMonitor

Example BTLINE *lp;
struct args_signaling args;

/* Set state on unit 1 */
BT_ZERO(args);
args.unit = 1;
args.stream = 6;
args.time_slot = 0;
args.stateOut_0 = 0x0f;
args.durationOut_0 = 1000;
args.stateOut_1 = 0x00;
args.millisecs = 1500;
BfvCallSignalingStateSet(lp,&args);

BfvCallStatus

March 2017 324

BfvCallStatus

Purpose Retrieves the channel’s current call state.

Syntax void
BfvCallStatus (lp, args)

BTLINE *lp;
struct args_cc *args;

The structure contains the following fields:

Input Field None

Output Fields RES res;
int state;
int calls_on_hold;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing output fields for the
retrieved information.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvCallStatus

March 2017 325

args.state

Returns values that include the following (see page 437 for
definitions):
BST_ALERTING
BST_CALL_DETECTED
BST_CLEAR_CALL
BST_CONNECTED
BST_DIAL
BST_DIAL_COMPLETE
BST_DOWN
BST_IDLE
BST_WAIT_FOR_CALL

args.calls_on_hold

Returns the number of calls that the channel has on hold.
The TR1034 and SR140 do not support this field.

Details Use BfvCallStatus to retrieve the current call state. Your
application achieves the most benefit when it calls this function to
detect a call state change after a call is connected.

Note: This function was previously named BfvISDNStatus.

BfvCallStatus

March 2017 326

Example
BTLINE *lp;
struct args_cc args;
struct args_line_admin args_admin;
BTERR bterr;

BT_ZERO(args);
args.unit = unit;
if ((lp = BfvLineAttach (&args_admin)) == NULL)
{
 BfvErrorMessage(lp, &args.res, &bterr);
 fprintf (stderr,"BfvLineAttach: %s\n", bterr.long_msg);
 exit (1);
}

BT_ZERO(args_admin);
args_admin.config_file_name = "btcall.cfg";
if (BfvLineReset (lp, &args_admin) < 0)
{
 BfvErrorMessage(lp, &args_admin.res, &bterr);
 fprintf (stderr, "BfvLineReset: %s: status %lX.\n",
 bterr.long_msg, args_admin.reset_status);
 exit (1);
}

BT_ZERO(args);
args.phonenum = “12345”;
BfvCallSetup(lp, &args);

BT_ZERO(args);
BfvCallWaitForComplete(lp, &args);

/* Application processing */

/* Check for Disconnect */
BT_ZERO(args);
BfvCallStatus(lp,&args);
if (args.res.status == BT_STATUS_OK && args.state == BST_CONNECTED)
{
 BT_ZERO(args);
 BfvCallDisconnect(lp,&args);

 BT_ZERO(args);
 BfvCallWaitForRelease(lp,&args);
}

BfvCallTransferComplete

March 2017 327

BfvCallTransferComplete

Purpose Completes a call transfer without waiting for the transfer process to
complete.

The SR140 and analog DID lines do not support this function.

Syntax void
BfvCallTransferComplete (lp, args)

BTLINE *lp;
struct args_cc *args;

The structure contains the following fields.

Input Field BTLINE *lp_second_channel;

Output Field RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.lp_second_channel

A reference to the lp of the second channel for the transfer process
to use for protocols that require two B-channels to transfer a call
(for example, Release Link Trunk (RLT) protocol).

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvCallTransferComplete

March 2017 328

Details This low-level function starts the completion process of a transfer
but does not wait until the transfer completes. The application must
use the BfvCallWaitTransferComplete function to wait for the
transfer complete process to finish and then use
BfvCallWaitForRelease to wait for the system to complete the
entire call transfer process.

If your application uses the high-level call control functions, use the
BfvLineTransferComplete function to perform the equivalent
completion process.

See Also BfvCallWaitForRelease, BfvCallWaitTransferComplete,
BfvLineTransferComplete

Example BTLINE *lp;
BTLINE *lp_2nd;
.
.
.
struct args_cc args;
.
. /* Transfer Set up */
.
BT_ZERO(args);
args.lp_second_channel = lp_2nd;
BfvCallTransferComplete(lp, &args);
if (args.res.status != BT_STATUS_OK)
{
 BT_ZERO(args);
 BfvCallDisconnect(lp,&args);
}
else
 BT_ZERO(args);
 BfvCallWaitTransferComplete (lp,&args);
}

BT_ZERO(args);
BfvCallWaitForRelease(lp, &args);

BfvCallWaitForAccept

March 2017 329

BfvCallWaitForAccept

Purpose Finishes the process of answering an incoming telephone call.

Syntax void
BfvCallWaitForAccept (lp, args)

BTLINE *lp;
struct args_cc *args;

The structure contains the following fields:

Input Field int timeout;

Output Fields int cause;
int cause_location;
int subcause;
RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.timeout

Specifies an integer value that determines the length of time to
wait for completion of an answer to the call. Valid values are:
0 Indicates waiting forever with no timeout.
nonzero Indicates the number of milliseconds to wait for

the function to complete.

Output Return value: None.

BfvCallWaitForAccept

March 2017 330

args.cause

Returns an ISDN-defined code if the call fails that provides the
reason why the function failed to finish answering the call. See
Volume 6, Appendix D, Defining ISDN Cause Codes for a
description.

args.subcause

If the call fails, returns the response code of the SIP message that
resulted in the failure of the incoming call. This field is only
applicable to calls using the SIP protocol. The definitions of these
response codes are specified in RFC 3261.

args.cause_location

Returns an ISDN-defined code that indicates the originator (local
or remote) of the failure notification (args.cause). Valid values
are:
IISDNlocUSER User
IISDNlocPVT_LOCAL Private network serving the local

user
IISDNlocPUB_LOCAL Public network serving the local

user
IISDNlocTRANSIT_NET Transit network
IISDNlocPUB_REMOTE Public network serving the

remote user
IISDNlocPVT_REMOTE Private network serving the

remote user
IISDNlocINTERNATIONAL International network
IISDNlocBEY_INTERWORK Network beyond

internet-working point

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Use BfvCallWaitForAccept after calling BfvCallAccept to allow
the channel to finish the answering process for the call.

An application that fails to wait for answer completion risks starting
to process an incompletely answered incoming call.

BfvCallWaitForAccept

March 2017 331

Failing to wait for the answering process to complete can prevent
automatic detection of a remote hang-up in many instances. For
analog lines or lines that use the T1 robbed bit protocol, this failure
to wait can result in the application hearing the off-hook click.

Your application must use this function with the BfvCallAccept
function to start and complete the call answering process correctly
for all calls. If using the high-level call control functions, use the
BfvLineAnswer function to perform the call answering process.

See Also BfvCallAccept, BfvLineAnswer

Example BTLINE *lp;
.
.
.
struct args_cc args;

BT_ZERO(args);
BfvCallAccept(lp, &args);

BT_ZERO(args);
args.timeout = 0;
BfvCallWaitForAccept(lp, &args);
if (args.res.status != BT_STATUS_OK)
{
 /* It did not answer */
}

BfvCallWaitForAlerting

March 2017 332

BfvCallWaitForAlerting

Purpose Waits for an outgoing telephone call to finish establishing or dialing
without waiting for the call to connect.

Analog DID lines do not support this function.

Syntax int
BfvCallWaitForAlerting (lp, args)

BTLINE *lp;
struct args_cc *args;

The structure contains the following fields.

Input Fields long timeout;

Output Fields int cause;
int cause_location;
int subcause;
RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.timeout

Specifies an integer value that determines the length of time to
wait for dialing to complete. Valid values are:

0 Indicates waiting forever with no timeout.
nonzero Indicates the number of milliseconds to wait for

the function to complete.

BfvCallWaitForAlerting

March 2017 333

Output Return value:

0 Successful return
nonzero Error

args.cause

Returns an ISDN-defined code if the call fails that provides the
reason why the function failed to complete the outbound call. See
Volume 6, Appendix D, Defining ISDN Cause Codes for a
description.

args.subcause

If the call fails, returns the response code of the SIP message that
resulted in the failure of the outbound call. This field is only
applicable to calls using the SIP protocol. The definitions of these
response codes are specified in RFC 3261.

args.cause_location

Returns an ISDN-defined code that indicates the originator (local
or remote) of the failure notification (args.cause). Valid values
are:
IISDNlocUSER User
IISDNlocPVT_LOCAL Private network serving the local

user
IISDNlocPUB_LOCAL Public network serving the local

user
IISDNlocTRANSIT_NET Transit network
IISDNlocPUB_REMOTE Public network serving the

remote user
IISDNlocPVT_REMOTE Private network serving the

remote user
IISDNlocINTERNATIONAL International network
IISDNlocBEY_INTERWORK Network beyond

internet-working point

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvCallWaitForAlerting

March 2017 334

Details BfvCallWaitForAlerting waits for an outbound call initiated by
using BfvCallSetup to finish dialing or become established. You
must use BfvCallSetup first to start the outbound call process.

BfvCallWaitForAlerting, unlike BfvCallWaitForComplete,
does not use in-band call progress analysis. However, if the protocol
provides an out-of-band indication of call answer, this indication can
cause BfvCallWaitForAlerting to succeed for an answered call.

BfvCallWaitForAlerting can set the line state to either
OFF_HOOK or CONNECTED. The application program must examine
args.res to determine how to proceed. For example, if the call setup
succeeded, the application can call BfvCallTransferComplete to
complete the blind transfer after the dialing finishes. Note that some
protocols require in-band call progress to determine if the call state
is busy, ringing, or answering. If the application needs to verify one
of these states before transferring the call, use
BfvCallWaitForComplete to determine the call state.

See Also BfvCallDisconnect, BfvCallSetup, BfvCallWaitForComplete,
BfvCallWaitForRelease

Example BTLINE *lp;
.
.
.
struct args_cc args;

BT_ZERO(args);
args.phonenum = ”13115552368”;
BfvCallSetup(lp, &args);

BT_ZERO(args);
args.timeout = 0;
BfvCallWaitForAlerting(lp, &args);
if (args.res.status != BT_STATUS_OK)
{

 /* It did not connect or go off hook*/

}

BfvCallWaitForComplete

March 2017 335

BfvCallWaitForComplete

Purpose Finishes the process of establishing an outgoing telephone call by
waiting for an answer to the call.

Analog DID lines do not support this function.

Syntax int
BfvCallWaitForComplete (lp, args)

BTLINE *lp;
struct args_cc *args;

The structure contains the following fields.

Input Fields char *arg;
int call_mode;
int call_protocol_code;
int (*func)(BTLINE *lp, char *arg);
long timeout;

Output Fields int cause;
int subcause;
int cause_location;
RES res;
CALL_RES cres.name_ident;
CALL_RES cres.name_char_set;
CALL_RES cres.connected_num;
enum TRxTransportType call_transport;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.arg

An argument for the func feature. This field can be set to NULL.

BfvCallWaitForComplete

March 2017 336

args.call_mode

Specifies a Boolean value that indicates whether the outbound
call expects to receive a fax transmission when the connection
completes. Set the field as follows:

FALSE

Indicates that the outbound call does not expect to receive a fax.

TRUE

Indicates that the outbound call expects to receive a fax after
establishing the connection.

args.call_protocol_code

Selects a calling protocol for the channel from one of the following
(see page 432 for descriptions):
CALL_PROTOCOL_FAX
CALL_PROTOCOL_FAX_NO_RAW
CALL_PROTOCOL_RAW
CALL_PROTOCOL_VOICE
CALL_PROTOCOL_VOICE_NO_RAW

The channel returns other detected call progress results after the
timeout value set for the ced_timeout (the length of time to wait
for the called station's ID signal) parameter.
The channel retrieves the wait_for_ced value from the
BT_CPARM.CFG file or from the user-defined configuration file
(see Volume 6, Appendix A, Configuration Files).

args.func

Pointer to a user-supplied integer function that the channel calls
during call progress. The channel calls this user function in a loop
until it returns a final call progress result, or the user function
indicates termination of call progress by returning 1.

args.timeout

This value only applies if there is no other applicable timeout. It
is used in the cases when args.call_protocol is either:

 CALL_PROTOCOL_RAW

 CALL_PROTOCOL_VOICE or CALL_PROTOCOL_NO_RAW and
the user configuration parameter v_timeout is set to 0.

In such cases, it specifies the length of time to wait for a call to be
established in milliseconds. 0 indicates to wait forever.

BfvCallWaitForComplete

March 2017 337

Output Return value:

0 Timeout has expired

<0 Error

>0 Successful return

args.cause

Returns an ISDN-defined code if the call fails that provides the
reason why the function failed to complete the outbound call. See
Volume 6, Appendix D, Defining ISDN Cause Codes for a
description.

args.call_transport

Returns a code indicating the transport protocol used for the
outbound call. Valid values are:
TRANSPORT_TYPE_UDP
User Datagram Protocol (UDP) was the transport protocol used
for the outbound SIP call.
TRANSPORT_TYPE_TCP
Transmission Control Protocol (TCP) was the transport protocol
used for the outbound SIP call.
TRANSPORT_TYPE_DEFAULT
This code is returned for calls using the H.323 internet protocol
and PSTN line types.

args.subcause

If the call fails, returns the response code of the SIP message that
resulted in the failure of the outbound call. This field is only
applicable to calls using the SIP protocol. The definitions of these
response codes are specified in RFC 3261.

BfvCallWaitForComplete

March 2017 338

args.cause_location

Returns an ISDN-defined code that indicates the originator (local
or remote) of the failure notification (args.cause). Valid values
are:
IISDNlocUSER User
IISDNlocPVT_LOCAL Private network serving the local

user
IISDNlocPUB_LOCAL Public network serving the local

user
IISDNlocTRANSIT_NET Transit network
IISDNlocPUB_REMOTE Public network serving the

remote user
IISDNlocPVT_REMOTE Private network serving the

remote user
IISDNlocINTERNATIONAL International network
IISDNlocBEY_INTERWORK Network beyond

internet-working point

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

args.cres.name_ident

Returns text in the name_ident field of the CALL_RES structure
(see Volume 6, Appendix B, CALL_RES Structure Parameters),
indicating the name of the calling party if provided by the
network. The field allows a maximum of 50 characters
(ECC_MAX_NAME_STR). This field is only valid for an E1 or T1
QSIG protocol.

args.cres.name_char_set

Indicates the international standard specification (ISOxxx) of the
character set in use (only supported by a QSIG protocol). For
values, see Volume 6, Appendix B, CALL_RES Structure
Parameters.

args.cres.connected_num

Returns the telephone number of the connected party in the
CALL_RES structure if the network provided this data (only
supported by a QSIG protocol).

BfvCallWaitForComplete

March 2017 339

Details BfvCallWaitForComplete waits for an answer to an outbound call
initiated by using BfvCallSetup. You must use BfvCallSetup first
to start the outbound call process.

Depending on the type of phone line and the value set for
args.call_protocol_mode, BfvCallWaitForComplete might use
in-band call progress analysis. However, if the protocol provides an
out-of-band indication of call answer or call failure, this indication
can cause BfvCallWaitForComplete to shorten or eliminate the
use of in-band analysis.

BfvCallWaitForComplete can set the line state to either
OFF_HOOK or CONNECTED. The application program must examine
args.res to determine how to proceed. For example, if the channel
detects a busy indication, the application normally calls
BfvCallDisconnect and BfvCallWaitForRelease to clear the
channel.

See Also BfvCallDisconnect, BfvCallSetup, BfvCallWaitForAlerting,
BfvCallWaitForRelease

Example BTLINE *lp;
.
.
.
struct args_cc args;

BT_ZERO(args);
args.phonenum = ”13115552368”;
BfvCallSetup(lp, &args);

BT_ZERO(args);
args.call_protocol_code = CALL_PROTOCOL_FAX;
args.timeout = 0;
BfvCallWaitForComplete(lp, &args);
if (args.res.status != BT_STATUS_OK)
{

 /* It did not connect */

}

BfvCallWaitForHold

March 2017 340

BfvCallWaitForHold

Purpose Waits for the Bfv API to finish transitioning to the hold state.

The SR140 and analog DID lines do not support this function.

Syntax void
BfvCallWaitForHold (lp, args)

BTLINE *lp;
struct args_cc *args;

The structure contains the following fields.

Input Field None

Output Field RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing an output field.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Use the BfvCallWaitForHold function after calling BfvCallHold
to allow the Bfv API to finish transitioning to the hold state.

See Also BfvCallHold, BfvCallRetrieve, BfvCallWaitForRetrieve

BfvCallWaitForHold

March 2017 341

Example BTLINE *lp;
.
.
.
struct args_cc args;

BT_ZERO(args);
BfvCallHold(lp, &args);

BT_ZERO(args);
BfvCallWaitForHold(lp, &args);
if (args.res.status != BT_STATUS_OK)
{
 /* The API did not change to a hold state */
}

BfvCallWaitForRelease

March 2017 342

BfvCallWaitForRelease

Purpose Finishes the process of terminating a telephone call.

Syntax void
BfvCallWaitForRelease (lp, args)

BTLINE *lp;
struct args_cc *args;

The structure contains the following fields:

Input Field int timeout;

Output Fields int cause;
int cause_location;
RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.timeout

Specifies an integer value that determines the length of time to
wait for the function to complete. Valid values are:

0 Indicates waiting forever with no timeout.
nonzero Indicates the number of milliseconds to wait for

the function to complete.

Output Return value: None.

args.cause

Returns an ISDN-defined code if the call fails that provides the
reason why the function failed to finish disconnecting the call. See
Volume 6, Appendix D, Defining ISDN Cause Codes for a
description.

BfvCallWaitForRelease

March 2017 343

args.subcause

Returns the response code of the SIP message that resulted in the
termination of the call. This field is only applicable to calls using
the SIP protocol. The definitions of these response codes are
specified in RFC 3261.

args.cause_location

Returns an ISDN-defined code that indicates the originator (local
or remote) of the failure notification (args.cause). For IP protocol
calls (SIP or H.323), this field indicates which side initiated the
termination of the call.
Valid values are:
IISDNlocUSER User
IISDNlocPVT_LOCAL Private network serving the local

user
IISDNlocPUB_LOCAL Public network serving the local

user
IISDNlocTRANSIT_NET Transit network
IISDNlocPUB_REMOTE Public network serving the

remote user
IISDNlocPVT_REMOTE Private network serving the

remote user
IISDNlocINTERNATIONAL International network
IISDNlocBEY_INTERWORK Network beyond

internet-working point

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Use BfvCallWaitForRelease after calling BfvCallDisconnect to
allow the channel to finish disconnecting the call and clearing the
line. An application can also use this function to wait for the other
party to clear a call on protocols that provide remote disconnect
notification.

You must use this function for all calls after calling
BfvCallDisconnect to complete disconnection of the call. When the
function terminates successfully, the line is ready to make another
call.

BfvCallWaitForRelease

March 2017 344

If you use the high-level call control functions, use the
BfvLineTerminateCall function to perform the equivalent
terminating process.

Note: On protocols that support Advice Of Charge (AOC), successful
completion of this function (or BfvLineTerminateCall)
means that the application can obtain the AOC information
provided by the network.

See Also BfvCallDisconnect, BfvLineTerminateCall

Example BTLINE *lp;
.
.
.
struct args_cc args;

BT_ZERO(args);
args.cause = IISDNcausDEFAULT;
BfvCallDisconnect(lp, &args);

BT_ZERO(args);
args.timeout = 0;
BfvCallWaitForRelease(lp, &args);
if (args.res.status != BT_STATUS_OK)
{
 /* It did not disconnect */
}

BfvCallWaitForRetrieve

March 2017 345

BfvCallWaitForRetrieve

Purpose Waits for the Bfv API to finish transitioning out of the hold state.

The SR140 and analog DID lines do not support this function.

Syntax void
BfvCallWaitForRetrieve (lp, args)

BTLINE *lp;
struct args_cc *args;

The structure contains the following fields.

Input Fields None

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing an output field.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Use the BfvCallWaitForRetrieve function after calling
BfvCallRetrieve to allow the Bfv API to finish transitioning out of
the hold state.

See Also BfvCallHold, BfvCallRetrieve, BfvCallWaitForHold

BfvCallWaitForRetrieve

March 2017 346

Example BTLINE *lp;
.
.
.
struct args_cc args;

BT_ZERO(args);
BfvCallHold(lp, &args);

BT_ZERO(args);
BfvCallWaitForHold(lp, &args);
if (args.res.status != BT_STATUS_OK)
{
 /* The API did not change to the hold state */
}

BT_ZERO(args);
BfvCallRetrieve(lp, &args);

BT_ZERO(args);
BfvCallWaitForRetrieve(lp, &args);
if (args.res.status != BT_STATUS_OK)
{
 /* The API did not exit the hold state */
}

BfvCallWaitForSetup

March 2017 347

BfvCallWaitForSetup

Purpose Waits to detect an incoming call enabled for ring detection.

Syntax int
BfvCallWaitForSetup (lp, args)

BTLINE *lp;
struct args_cc *args;

The structure contains the following fields.

Input Field int timeout;
unsigned sip_header_list_len;
BT_SIP_HEADER_LIST *sip_header_list;

Output Fields unsigned char calling_party_presentation;
unsigned char calling_party_screening;
CALL_RES cres;
char orig_called_num[256];
RES res;
enum TRxTransportType call_transport;
unsigned sip_header_list_len;
BT_SIP_HEADER_LIST *sip_header_list;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.timeout

Specifies an integer value that determines the length of time to
wait for the function to complete. Valid values are:

0 Indicates waiting forever with no timeout.
nonzero Indicates the number of milliseconds to wait for

the function to complete.

BfvCallWaitForSetup

March 2017 348

args.sip_header_list_len

Specifies the size of the memory buffer pointed to by the
sip_header_list field. This field should be set when the Bfv
application wants to retrieve the SIP header information
specified in an inbound SIP INVITE request used to establish a
SIP call.
This field should be set to the size of the memory buffer pointed
to by the sip_header_list field.
If the Bfv application doesn’t want to retrieve the SIP header
information specified in an inbound SIP INVITE request, this
field should be set to 0 and sip_header_list should be set to NULL.

Note: This field only works for inbound calls using the SIP internet
protocol. The Bfv API ignores this field for all outbound calls
and calls using the H.323 internet protocol or PSTN line types.

args.sip_header_list

Specifies a pointer to a memory buffer allocated by the Bfv
application to receive SIP header data from an inbound SIP
INVITE request used to establish a SIP call. The size of the
memory buffer pointed to by sip_header_list should be specified in
the sip_header_list_len field.
This field should be set to the address of a memory buffer
allocated by the Bfv application that will receive the SIP header
data. As sip_header_list is a pointer to a
BT_SIP_HEADER_LIST structure, the Bfv application memory
buffer should be allocated and initialized in a manner similar to
the following:
args.sip_header_list =
 (BT_SIP_HEADER_LIST *)malloc(1000);
memset(args.sip_header_list, 0, 1000);
args.sip_header_list_len = 1000;

If the Bfv application doesn’t want to retrieve the SIP header
information specified in an inbound SIP INVITE request,
sip_header_list_len should be set to 0 and sip_header_list should
be set to NULL.

Note: This field only works for inbound calls using the SIP internet
protocol. The Bfv API ignores this field for all outbound calls
and calls using the H.323 internet protocol or PSTN line types.

BfvCallWaitForSetup

March 2017 349

Output Return value:

0 Timeout has expired
<0 Error
>0 Successful return

args.calling_party_presentation

Returns a value for ISDN calls that indicates the origin of the
calling party number presented to the called party or the
accessibility level of the calling party number (see page 433 for
definitions of values). Valid values are:
ECC_PRES_APP_DEFINED

ECC_PRES_ALLOWED

ECC_PRES_RESTRICTED

ECC_PRES_NUM_NOT_AVAIL

args.calling_party_screening

Returns a value for ISDN calls that indicates the origin and
validity of the calling party number passed to the called party (see
page 433 for definitions of values). Valid values are:
ECC_SCRN_APP_DEFINED

ECC_SCRN_USER_NOT_SCREENED

ECC_SCRN_USER_VERIFICATION_PASSED

ECC_SCRN_USER_VERIFICATION_FAILED

ECC_SCRN_NETWORK_PROVIDED

args.cres.redir_number
args.cres.redir_reason

Returns a CALL_RES structure containing status information. See
CALL_RES Structure Parameters in Volume 6, Appendix B.
When receiving a diverted incoming call on a port using the QSIG
protocol, this field outputs the redir_number and
redir_reason fields of the CALL_RES structure to indicate the
phone number of the device diverting the call and the reason for
diverting the call. Valid diversion reasons are:

DIVERT_NONE Used for call that does not divert.
DIVERT_BUSY Call diverted for busy condition.
DIVERT_UNCONDITIONAL Call diverted without conditions.
DIVERT_NO_RESPONSE Call diverted for unresponsive

line.

args.cres.name_ident

BfvCallWaitForSetup

March 2017 350

Returns text in the name_ident field of the CALL_RES structure,
indicating the name of the calling party if provided by the
network. The field allows a maximum of 50 characters
(ECC_MAX_NAME_STR). This field is only valid for an E1 or T1
QSIG protocol.

args.cres.name_char_set

Indicates the international standard specification (ISOxxx) of the
character set in use (only supported by a QSIG protocol) in the
name_char_set field of the CALL_RES structure. For values, see
Volume 6, Appendix B, CALL_RES Structure Parameters.

args.orig_called_num[256]

Returns the number of the first destination for the outbound call.
The field allows a maximum of 255 characters
(ECC_MAX_DIGIT_STR - 1).

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

args.call_transport

Returns a code indicating the transport protocol used for the
inbound call. Valid values are:
TRANSPORT_TYPE_UDP
User Datagram Protocol (UDP) was the transport protocol used
for the inbound SIP call.
TRANSPORT_TYPE_TCP
Transmission Control Protocol (TCP) was the transport protocol
used for the inbound SIP call.
TRANSPORT_TYPE_DEFAULT
This code is returned for calls using the H.323 internet protocol
and PSTN line types.

BfvCallWaitForSetup

March 2017 351

args.sip_header_list_len

If a SIP call has successfully been received, this field will be set to
the amount of data in the sip_header_list memory buffer that has
been populated with SIP header data. If the memory buffer
pointed to by sip_header_list isn't large enough to hold all the SIP
header data from the inbound SIP INVITE request, then
sip_header_list_len will be set to a value of
SIP_HEADER_INVALID_LEN. In this case, the memory buffer
pointed to by sip_header_list will only be populated with complete
SIP header name/header value pairs that fit in the buffer.
For example, if there are 10 SIP headers in the inbound SIP
INVITE request, but the memory buffer pointed to by
sip_header_list can only hold enough data for 9 complete SIP
header name/header value pairs retrieved from the SIP INVITE
request with 30 bytes of the buffer unused, then
sip_header_list_len will be set to a value of
SIP_HEADER_INVALID_LEN and only 9 complete SIP header
name/header value pairs will be returned in the sip_header_list
buffer. No partial or incomplete SIP header information from the
10th header will be used to populate the remaining 30 bytes in the
sip_header_list buffer.

Note: This field only works for inbound calls using the SIP internet
protocol. The Bfv API ignores this field for all outbound calls
and calls using the H.323 internet protocol or PSTN line types.

args.sip_header_list

If a SIP call has successfully been received, the memory buffer
pointed to by sip_header_list will be populated with a singly
linked list of SIP header data stored in
BT_SIP_HEADER_NODE structures starting with a
BT_SIP_HEADER_LIST structure. The data structures used to
access the SIP header data in the singly linked list are defined
below:

BfvCallWaitForSetup

March 2017 352

struct BT_SIP_HEADER {
 char *header_name;
 char *header_value;
};
typedef struct _BT_SIP_HEADER_NODE {
 struct BT_SIP_HEADER header;
 struct _BT_SIP_HEADER_NODE *next_header;
} BT_SIP_HEADER_NODE;
typedef struct _BT_SIP_HEADER_LIST {
 int num_sip_headers;
 BT_SIP_HEADER_NODE sip_headers;
} BT_SIP_HEADER_LIST;

Some SIP headers that have multiple values may be returned as
several SIP headers. For example, the following header:
Allow: INVITE, ACK, OPTIONS, CANCEL, BYE

Will be returned as five separate headers:

If some of the SIP header names in the inbound SIP INVITE
request were specified in compact form, they may be returned to
the Bfv application in long form (e.g., Content-Type header name
specified in inbound SIP request as "c", returned to Bfv
application as "Content-Type").
The maximum supported number of SIP headers that can be
returned is 98.

Note: This field only works for inbound calls using the SIP internet
protocol. The Bfv API ignores this field for all outbound calls
and calls using the H.323 internet protocol or PSTN line types.

Header Name Header Value

Allow INVITE

Allow ACK

Allow OPTIONS

Allow CANCEL

Allow BYE

BfvCallWaitForSetup

March 2017 353

Details If the application previously enabled ring detection,
BfvCallWaitForSetup waits for detection of an incoming call.
Enable incoming ring detection by using the BfvCallRingDetect
function with the value for args.mode set to TRUE.

When BfvCallWaitForSetup detects an incoming call, answer the
call using BfvCallAccept followed by BfvCallWaitForAccept. To
divert the incoming call, use the BfvCallWaitForHold functions,
noting that a call cannot be diverted after it has been answered. This
sequence of function calls ensures that the channel answers the call
properly and completely before proceeding with any further call
processing.

If you use the high-level call control functions, use the
BfvLineAnswer function to perform the equivalent answering
process.

See Also BfvCallAccept, BfvCallRingDetect, BfvCallWaitForAccept,
BfvCallWaitForHold, BfvLineAnswer

Example BTLINE *lp;
.
.
.
struct args_cc args;

BT_ZERO(args);
args.mode = TRUE;
BfvCallRingDetect(lp, &args);

BT_ZERO(args);
args.timeout = 0;
BfvCallWaitForSetup(lp, &args);

BT_ZERO(args);
BfvCallAccept(lp, &args);

BT_ZERO(args);
args.timeout = 0;
BfvCallWaitForAccept(lp, &args);
if (args.res.status != BT_STATUS_OK)
{
 /* It did not answer */
}

BfvCallWaitTransferComplete

March 2017 354

BfvCallWaitTransferComplete

Purpose Waits for the line to complete the call transfer command after the
application initiates completion of the transfer.

The SR140 and analog DID lines do not support this function.

Syntax void
BfvCallWaitTransferComplete(lp, args)

BTLINE *lp;
struct args_cc *args;

The structure contains the following fields.

Input Fields int disable_auto_sw_connect;

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing an output field.

args.disable_auto_sw_connect

Specifies a Boolean value that indicates whether to turn the
automatic switch connection feature on or off when completing a
two-channel call transfer that requires connecting the two
B channels together (QSIG protocol) so that the parties can
communicate while executing the transfer. Set this field as
follows:

FALSE Automatically makes the switch connection for a call
transfer that requires two B channels connected
together.

TRUE Turns off the automatic switch connection capability
for the two-channel call transfer. The application
must call BfvCallSwitchConnect to connect the
B channels together.

BfvCallWaitTransferComplete

March 2017 355

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Use BfvCallTransferComplete to start completing a call transfer
but this function does not wait for the transfer command to
complete. To complete the transfer, use this
BfvCallWaitTransferComplete function to wait for the transfer
process to finish and then call the BfvCallWaitForRelease
function to complete the full transfer procedure.

When using a QSIG protocol that requires connecting two
B channels together to make a call transfer, this function
automatically connects the B channels when you set the
args.disable_auto_sw_connect to FALSE. If you set
args.disable_auto_sw_connect to TRUE, your application must
connect the two B channels together to make a call transfer by using
the BfvCallSwConnect function (see Volume 1, Administration,
Management, and Configuration).

See Also BfvCallTransferComplete, BfvCallWaitForRelease

BfvCallWaitTransferComplete

March 2017 356

Example BTLINE *lp;
.
.
.
struct args_cc args;
.
. /* Transfer Set up */
.
BT_ZERO(args);
BfvCallTransferComplete(lp, &args);
if (args.res.status != BT_STATUS_OK)
{
 BT_ZERO(args);
 BfvCallDisconnect(lp,&args);
}
else
 BT_ZERO(args);
 BfvCallWaitTransferComplete (lp,&args);
}

BT_ZERO(args);
BfvCallWaitForRelease(lp, &args);

BfvLineAnswer

March 2017 357

BfvLineAnswer

Purpose Answers an incoming call, sets the line state to CONNECTED and
waits for answer confirmation before returning.

Syntax void
BfvLineAnswer (lp, args)

BTLINE *lp;
struct args_telephone *args;

The structure contains the following fields.

Input Fields long timeout;
int orig_answer;

Output Fields int cause_code;
int subcause;
int cause_location;
RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.timeout

Specifies an integer value that determines the length of time to
wait for the function to complete. Valid values are:

0 Indicates waiting forever with no timeout.
nonzero Indicates the number of milliseconds to wait for

the function to complete.

BfvLineAnswer

March 2017 358

args.orig_answer

Specifies whether off-hook is for the purpose of originating a call
(BT_ORIGINATE) or answering a call (BT_ANSWER). Optionally,
this field can be left set to 0. It is extremely rare for an application
to ever set this input to any value other than 0 or BT_ORIGINATE.
In ISDN mode, this argument is ignored.

Output Return value: None.

args.cause_code

Returns an ISDN-defined code if the call fails that provides the
reason why the function failed to answer and connect the call. See
Volume 6, Appendix D, Defining ISDN Cause Codes for a
description.

args.subcause

Returns the response code of the SIP message that resulted in the
failure of the inbound call. This field is only applicable to calls
using the SIP protocol. The definitions of these response codes are
specified in RFC 3261.

args.cause_location

Returns an ISDN-defined code that indicates the originator (local
or remote) of the failure notification (args.cause_code). Valid
values are:

IISDNlocUSER User
IISDNlocPVT_LOCAL Private network serving the local

user
IISDNlocPUB_LOCAL Public network serving the local

user
IISDNlocTRANSIT_NET Transit network
IISDNlocPUB_REMOTE Public network serving the remote

user

IISDNlocPVT_REMOTE Private network serving the remote
user

IISDNlocINTERNATIONAL International network

IISDNlocBEY_INTERWORKNetwork beyond internet-working
point

BfvLineAnswer

March 2017 359

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Typically, an application calls BfvLineAnswer after calling the
BfvLineWaitForCall function to establish the reason for
connecting the line. This function can also be used by itself when you
connect the channel to the H.100 bus or when you do not connect the
channel to a phone line.

If you use the low-level call control functions, use the
BfvCallAccept and BfvCallWaitForAccept functions to perform
the equivalent answering process.

See Also BfvCallAccept, BfvCallWaitForAccept,
BfvLineTerminateCall, BfvLineWaitForCall

Example BTLINE *lp;
struct args_telephone args;

BT_ZERO(args);
BfvLineAnswer (lp, &args);

BfvLineCCProtocolGet

March 2017 360

BfvLineCCProtocolGet

Purpose Retrieves the protocol assigned to the module.

Syntax TRxPortConfig
BfvLineCCProtocolGet (lp, args)

BTLINE *lp;
struct args_telephone *tel_args;

The structure contains the following fields.

Input Field None

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing output fields.

BfvLineCCProtocolGet

March 2017 361

Output Returns one of the following values from TRxPortConfig:

0 PORT_CONFIG_INACTIVE (Port disabled)

2 PORT_CONFIG_H1X0

3 PORT_CONFIG_T1_ISDN

4 PORT_CONFIG_T1_ROBBED_BIT

5 PORT_CONFIG_E1_ISDN

6 PORT_CONFIG_E1_CAS

7 PORT_CONFIG_E1_CAS_R2

8 PORT_CONFIG_E1_DPNSS

9 PORT_CONFIG_BRI

10 PORT_CONFIG_ANALOG

11 PORT_CONFIG_ANALOG_DID

12 PORT_CONFIG_HOST_MODULE_1

13 PORT_CONFIG_HOST_MODULE_2

14 PORT_CONFIG_HOST_MODULE_3

15 PORT_CONFIG_HOST_MODULE_4

16 PORT_CONFIG_HOST_MODULE_5

17 PORT_CONFIG_HOST_MODULE_6

18 PORT_CONFIG_HOST_MODULE_7

19 PORT_CONFIG_HOST_MODULE_8

20 PORT_CONFIG_HOST_MODULE_9

21 PORT_CONFIG_E1_QSIG

22 PORT_CONFIG_T1_QSIG

23 PORT_CONFIG_BRI_QSIG

24 PORT_CONFIG_UNKNOWN

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvLineCCProtocolGet

March 2017 362

Details An application uses this function to determine the protocol
configured for a given channel. With this information, an application
can then provide appropriate Bfv API call control functions with the
ability to:

 Process protocol-specific dial strings, or

 Establish protocol-specific passthrough parameters for the Bfv
API to simply pass to and from an integrated IP call control
stack without modification.

Example BTLINE *lp;
struct args_telephone args;

TRxPortConfig config;

BT_ZERO(args);
config = BfvLineCCProtocolGet(lp, &args);
if (args.res.status != BT_STATUS_OK)
{
 /* Failed to retrieve the protocol */
}

BfvLineDialString

March 2017 363

BfvLineDialString

Purpose Places the line in an OFF_HOOK state, dials the digits specified,
and returns after dialing the last digit.

Syntax int
BfvLineDialString (lp, args)

BTLINE *lp;
struct args_telephone *args;

The structure contains the following fields.

Input Field char *phonenum;

Output Field RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.phonenum

Specifies a pointer to a null-terminated ASCII string that
identifies the phone number to dial. Dial strings (phone numbers)
may be up to a maximum of 255 characters
(ECC_MAX_DIGIT_STR - 1).

PSTN Telephony
The dial string field supports the following digits and control
characters. Invalid characters are ignored; upper and lower case
letters are equivalent. Some protocols ignore control characters
and only accept DTMF characters.

BfvLineDialString

March 2017 364

Valid Digits and Control Characters

Note: In an analog environment or when using a T1 robbed bit
FXS loopstart or E1 CAS loopstart protocol, the ‘w’ character
means wait for dial tone. All other protocols ignore the ‘w’ and
‘i’ characters. Only analog environments and T1 robbed bit or
E1 CAS protocols use the ‘p’, ‘t’, comma and semicolon
characters.

IP Telephony
For IP outbound calls using the H.323 protocol:
 Phone#@IP Address:Port#

If the receiving side does not require a phone number, a value
for Phone# is optional. Also, :Port# is optional — the Bfv
API uses 1720 as the default port value.

 TA:IP Address:Port#,Phone#

:Port# is optional — the Bfv API uses 1720 as the default
port value. If the receiving side does not require a phone
number, a value for Phone# is optional.

 Name:<name of person to dial>

Use this form only if using gatekeeper

0 - 9 Dials digits ‘0’ through ‘9’.

(pound) Dials a pound.

* (asterisk) Dials an asterisk.

A - D Sends the DTMF tone corresponding to the
specified alphabetic character.

p Changes the current or default dialing mode
from tone dialing to pulse dialing.

t Changes the current or default dialing mode
from pulse dialing to tone dialing.

w Waits for dial tone.

, (comma) Causes a 1-second pause.

; (semicolon),
i or I

Causes a 5-second pause. To create longer
pauses, string any of these characters
together.

! (exclamation point) Sends a hook flash on analog and T1 robbed
bit modules.

BfvLineDialString

March 2017 365

 E164alias:7894561234

Use this form only if using gatekeeper
Note: DNS lookups are not supported in H.323. You can use an

H.323 or E.164 alias in conjunction with a gatekeeper to
provide similar functionality.

Examples
4082345555@10.155.89.6:175
4082345555@10.155.89.6

TA:10.155.89.6:175,4082345555
TA:10.155.89.6,4082345555
TA:10.155.89.6

Name:Fred Smith
E164alias:4082345555

For IP outbound calls using the SIP protocol:
Phone#@IP Address:Port#

If the receiving side does not require a phone number, a value for
Phone# is optional. Also, :Port# is optional - the Bfv API uses
5060 as the default port value.

Examples (IPv4 Addresses)
4082345555@10.155.89.7:175
4082345555@10.155.89.7

Examples (IPv6 Addresses)
4082345555@[2000::2ef3:1dff:ea3]:175
4082345555@[fe80::1f4:189c:74da:69f7]

Note: IPv6 addresses must be enclosed in brackets. In addition, if a
link-local IPv6 address is specified, the Scope ID should be
omitted from the address.

DTMF Post Dialing
For all types of IP calls, the character '&' (ampersand) may be
included to initiate post-dialing. This character indicates that the
rest of phonenum specifies a sequence of DTMF digits to be "post-
dialed" after messages from the remote side indicate the call is
proceeding towards connecting.
Within the post-dial string, all dialing characters listed for PSTN
Telephony are allowed except for 'p', 't', 'w', and '!'. The
appearance of an additional '&' will terminate processing of the
string.

BfvLineDialString

March 2017 366

Post-dialing of the specified digits will occur upon the first receipt
of one of the following IP call control messages:
 SIP -- 183 Progress
 SIP -- 200 OK
 H.323 -- Progress
 H.323 -- Connect
The post-dial feature is controlled by the user configuration file
parameter post_dialing_enable. If the feature is disabled by that
parameter, then the ampersand has no special effect and the
entire phonenum field is used as is.

Note: If a program accepts a phone number on the command line, the
phone number will likely need to be quoted if it contains an
ampersand, since this is a special character on most OSes.
(Use double quotes (") on Windows, or single (') or double (")
quotes on unixes.)

Output Return value:

<0 Ringing detected or other error; dialing aborted.

 0 Dialing completed; no errors.

 1 No dial tone detected.

 2 No loop current detected.

 3 Local phone in use (country specific).

 4 Trunk is busy (e.g., out dialing on a PBX system).

 7 Dial tone detected after completing dialing.

 8 T1 time slot busy.

 9 Call collision detected (ringing occurred while dialing).

10 No wink signal on second or later 'w'.

11 ISDN invalid dial string.

12 Failure attempting a redial too soon because of Japanese
restrictions.

Note: To determine the corresponding res.line_status values for
BT_STATUS_ERROR_DIAL, returned by the
BfvLineOriginateCall function (see page 379), add each of
the above return values to 257 (DIAL_OK). For more details,
see Result Structures in Volume 6, Appendix B.

BfvLineDialString

March 2017 367

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details This function only serves to provide backward compatibility for
existing applications that call it to place an outgoing call. You should
verify that new applications place outgoing calls using either the
BfvLineOriginateCall (see page 369) function or the low-level
combination of the BfvCallSetup (see page 303) and
BfvCallWaitForComplete (see page 335) functions.

For applications using the BfvLineDialString function, the
function sets the line state to OFF_HOOK after successfully dialing.

For applications using Euro-ISDN on E1 or BRI lines, this function
automatically sends a dial string using the protocol’s overlapped
dialing feature when the phone number exceeds 20 digits. The
Euro-ISDN protocol only allows applications to send 20 digits in a
block when placing a call. For phone numbers exceeding 20 digits,
the protocol uses a process called overlapped dialing. This process
sends extra digits after the initial call setup, allowing:

 The application to dial very large phone numbers
 The remote end to start answering a call before it receives all the

digits

Users can place a call with up to 255 digits in the dial string. The Bfv
API automatically breaks up the dial string into multiple blocks of
20 digits, and uses the overlapped dialing feature in the protocol to
send one block of digits at a time. This process does not require any
changes in the application.

The function of BfvLineDialString does not perform any call
progress on the line. To perform call progress after the successful
return of BfvLineDialString, refer to the following in Volume 3:

 BfvLineCallProgressEnable

 BfvLineCallProgressDisable

 BfvDataCP

To set the line state to a connected state after satisfactory call
progress, use the LINE_STATE macro. See Volume 1, Chapter 1,
The BTLINE Structure.

BfvLineDialString

March 2017 368

International Issues In some countries, the PTT imposes certain dialing restrictions.
Applications dialing a fax machine in any of these countries must
use either the BfvLineOrigCallDB function or the
BfvDialDBCheck function in conjunction with the
BfvDialDBUpdate function. Otherwise, the application might be
non-compliant with the target country’s regulations.

For more information, see either:

 Dialing Database Functions on page 411
 Country-Specific Parameter Files on page 1415

See Also BfvCallSetup, BfvCallWaitForComplete,
BfvLineOriginateCall

Example BTLINE *lp;
int dial_result;
struct args_telephone args;

BT_ZERO(args);
args.phonenum = "17814494100";
dial_result = BfvLineDialString(lp, &args);
if (dial_result != 0)
 printf("Error in Dialing\n");

BfvLineOriginateCall

March 2017 369

BfvLineOriginateCall

Purpose Places a phone call on an outgoing line.

Analog DID lines do not support this function.

Syntax void
BfvLineOriginateCall (lp, args)

BTLINE *lp;
struct args_telephone *args;

The structure contains the following fields.

Input Fields char *arg;
int call_mode;
int call_protocol_code;
int (*func)(BTLINE *lp, char *arg);
char *phonenum;
long timeout;
enum TRxTransportType call_transport;
unsigned num_user_sip_headers;
struct BT_USER_SIP_HEADER *user_sip_headers;
int fax_media_feature_tag;
unsigned fallback_rtp_reinvite;

Output Fields RES res;
int cause_code;
int subcause;
int cause_location;
enum TRxTransportType call_transport;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

BfvLineOriginateCall

March 2017 370

args.arg

Provides an input argument for the func feature field. This field
accepts a NULL setting if the user-defined function does not need
an argument.

args.call_mode

Specifies a Boolean value that indicates whether the outbound
call expects to receive a fax transmission when the connection
completes. Set the field as follows:

FALSE

Indicates that the outbound call does not expect to receive a fax.

TRUE

Indicates that the outbound call expects to receive a fax after
establishing the connection.

args.call_protocol_code

Selects a calling protocol for the channel from one of the following:

CALL_PROTOCOL_FAX

Selects the fax protocol. Requests the channel to report the
results from the channel’s call progress analysis along with the
raw data. The channel reports the results as soon as it establishes
the fax connection or encounters a busy condition.

Other detected call progress results are returned after the
ced_timeout (the length of time to wait for the called stations’s
id signal) time-out.

CALL_PROTOCOL_VOICE

Selects the voice protocol. Requests the module to report the
results from the channel’s call progress analysis along with the
raw data. The channel reports the results as soon as it detects a
human or other answer condition.

CALL_PROTOCOL_RAW

Requests the channel to report the raw HIGH/LOW call progress
results without performing any analysis.

CALL_PROTOCOL_FAX_NO_RAW
CALL_PROTOCOL_VOICE_NO_RAW

Selects either the fax or voice protocol, requesting the channel to
report the results from the channel’s call progress analysis
without including the raw data.

BfvLineOriginateCall

March 2017 371

args.func

Specifies a pointer to a user-supplied integer function that the
channel calls during call progress. The channel calls this user
function in a loop until it returns a final call progress result, or
the user function indicates termination of call progress by
returning 1.

The args.func field is called as (*args.func)(lp,args.arg).
The lp argument contains the pointer to the line structure; the
args.arg argument contains the supplied user-defined argument.

args.phonenum

Specifies a pointer to a null-terminated ASCII string that
identifies the phone number to dial. Dial strings (phone numbers)
may be up to a maximum of 255 characters
(ECC_MAX_DIGIT_STR - 1) for most protocols and locations. See
Details.

PSTN Telephony
The dial string field supports the following digits and control
characters. Invalid characters are ignored; upper and lower case
letters are equivalent. Some protocols ignore control characters
and only accept DTMF characters.
Valid Digits and Control Characters
0 - 9 Dials digits ‘0’ through ‘9’.

(pound) Dials a pound.

* (asterisk) Dials an asterisk.

A - D Sends the DTMF tone corresponding to the
specified alphabetic character.

p Changes the current or default dialing mode
from tone dialing to pulse dialing.

t Changes the current or default dialing mode
from pulse dialing to tone dialing.

w Waits for dial tone.

, (comma) Causes a 1-second pause.

; (semicolon),
i or I

Causes a 5-second pause. To create longer
pauses, string any of these characters
together.

! (exclamation point) Sends a hook flash on analog and T1 robbed
bit modules.

BfvLineOriginateCall

March 2017 372

Note: In an analog environment or when using a T1 robbed bit
FXS loopstart or E1 CAS loopstart protocol, the ‘w’ character
means wait for dial tone. All other protocols ignore the ‘w’ and
‘i’ characters. Only analog environments and T1 robbed bit or
E1 CAS protocols use the ‘p’, ‘t’, comma and semicolon
characters.

IP Telephony
For IP outbound calls using the H.323 protocol:
 Phone#@IP Address:Port#

If the receiving side does not require a phone number, a value
for Phone# is optional. Also, :Port# is optional — the Bfv
API uses 1720 as the default port value.

 TA:IP Address:Port#,Phone#

:Port# is optional — the Bfv API uses 1720 as the default
port value. If the receiving side does not require a phone
number, a value for Phone# is optional.

 Name:<name of person to dial>

Use this form only if using gatekeeper
 E164alias:7894561234

Use this form only if using gatekeeper
Note: DNS lookups are not supported in H.323. You can use an

H.323 or E.164 alias in conjunction with a gatekeeper to
provide similar functionality.

Examples
4082345555@10.155.89.6:175
4082345555@10.155.89.6

TA:10.155.89.6:175,4082345555
TA:10.155.89.6,4082345555
TA:10.155.89.6

Name:Fred Smith
E164alias:4082345555

For IP outbound calls using the SIP protocol:
Phone#@IP Address:Port#

If the receiving side does not require a phone number, a value for
Phone# is optional. Also, :Port# is optional - the Bfv API uses
5060 as the default port value.

BfvLineOriginateCall

March 2017 373

Examples (IPv4 Addresses)
4082345555@10.155.89.7:175
4082345555@10.155.89.7

Examples (IPv6 Addresses)
4082345555@[2000::2ef3:1dff:ea3]:175
4082345555@[fe80::1f4:189c:74da:69f7]

Note: IPv6 addresses must be enclosed in brackets. In addition, if a
link-local IPv6 address is specified, the Scope ID should be
omitted from the address.

DTMF Post Dialing
For all types of IP calls, the character '&' (ampersand) may be
included to initiate post-dialing. This character indicates that the
rest of phonenum specifies a sequence of DTMF digits to be "post-
dialed" after messages from the remote side indicate the call is
proceeding towards connecting.
Within the post-dial string, all dialing characters listed for PSTN
Telephony are allowed except for 'p', 't', 'w', and '!'. The
appearance of an additional '&' will terminate processing of the
string.
Post-dialing of the specified digits will occur upon the first receipt
of one of the following IP call control messages:
 SIP -- 183 Progress
 SIP -- 200 OK
 H.323 -- Progress
 H.323 -- Connect
The post-dial feature is controlled by the user configuration file
parameter post_dialing_enable. If the feature is disabled by that
parameter, then the ampersand has no special effect and the
entire phonenum field is used as is.

Note: If a program accepts a phone number on the command line, the
phone number will likely need to be quoted if it contains an
ampersand, since this is a special character on most OSes.
(Use double quotes (") on Windows, or single (') or double (")
quotes on unixes.)

BfvLineOriginateCall

March 2017 374

args.timeout

This value only applies if there is no other applicable timeout. It
is used in the cases when args.call_protocol is either:

 CALL_PROTOCOL_RAW

 CALL_PROTOCOL_VOICE or CALL_PROTOCOL_NO_RAW and
the user configuration parameter v_timeout is set to 0.

In such cases, it specifies the length of time to wait for a call to be
established in milliseconds. 0 indicates to wait forever.

args.call_transport

Selects the transport protocol to use for an outbound SIP call from
one of the following:
TRANSPORT_TYPE_UDP
Select User Datagram Protocol (UDP) as the transport protocol to
use for the outbound SIP call.
TRANSPORT_TYPE_TCP
Select Transmission Control Protocol (TCP) as the transport
protocol to use for the outbound SIP call. In order to use this
setting, TCP protocol support must be enabled in the call control
configuration file (see Volume 6, Appendix A, Configuration
Files).
TRANSPORT_TYPE_DEFAULT
Use the default call transport, either UDP or TCP for the
outbound SIP call. If the default call transport is not explicitly
specified in the call control configuration file, UDP will be used.
Otherwise, the transport protocol used for the outbound SIP call
will be what's specified in the call control configuration file (see
Volume 6, Appendix A, Configuration Files).
NOTE: This field only works for calls using the SIP internet protocol. The
Bfv API ignores this field for calls using the H.323 internet protocol and
PSTN line types.

args.num_user_sip_headers

Specifies the number of entries in the array of
BT_USER_SIP_HEADER structures referenced by the
args.user_sip_headers field. The maximum number of entries in
the BT_USER_SIP_HEADER structure array is
BT_USER_SIP_HEADERS_MAX_NUM_HEADERS.
NOTE: This field only works for calls using the SIP internet protocol. The
Bfv API ignores this field for calls using the H.323 internet protocol and
PSTN line types.

BfvLineOriginateCall

March 2017 375

args.user_sip_headers

Specifies a reference to an array of BT_USER_SIP_HEADER
structures that specify SIP header names and values to add to the
initial SIP INVITE of an outbound call. The
BT_USER_SIP_HEADER structure is defined below:
struct BT_USER_SIP_HEADER {

 char *header_name;

 char *header_value;

};

The number of entries in the array of BT_USER_SIP_HEADER
structures referenced by the args.user_sip_headers field is
specified by the value of the num_user_sip_headers field and can
have a maximum size of
BT_USER_SIP_HEADERS_MAX_NUM_HEADERS. If the
value specified by num_user_sip_headers is 0, this field is
ignored.
The header_name field in the BT_USER_SIP_HEADER
structure points to a null-terminated ASCII string that identifies
the name of the SIP header to add to the initial SIP INVITE for
an outbound SIP call. The maximum length that can be specified
for the header name (including the null terminator) is
BT_USER_SIP_HEADERS_MAX_NAME_LEN.
The header_value field in the BT_USER_SIP_HEADER
structure points to a null-terminated ASCII string that identifies
the value of the SIP header to add to the initial SIP INVITE for
an outbound SIP call. The maximum length that can be specified
for the header value (including the null terminator) is
BT_USER_SIP_HEADERS_MAX_VALUE_LEN.
Applications should not attempt to specify standard SIP headers
(e.g. To, From, Via, Call-ID, CSeq, Contact, etc.) using the
args.user_sip_headers field as this may result in unpredictable
and unsupported behavior.
NOTE: This field only works for calls using the SIP internet protocol. The
Bfv API ignores this field for calls using the H.323 internet protocol and
PSTN line types.

BfvLineOriginateCall

March 2017 376

args.fax_media_feature_tag

Specifies a "sip.fax" media feature tag value to add to an Accept-
Contact header in the outbound SIP INVITE request. Set this
field to one of the following values:
BT_FAX_MEDIA_FEATURE_TAG_DEFAULT

Set "sip.fax" media feature tag to a default value based on the
fax_transport_protocol parameter value in the
t38parameters section of the callctrl.cfg file as specified in
the following table:

BT_FAX_MEDIA_FEATURE_TAG_T38
Set" sip.fax" media feature tag to "t38".

BT_FAX_MEDIA_FEATURE_TAG_PASSTHROUGH
Set "sip.fax" media feature tag to "passthrough".

BT_FAX_MEDIA_FEATURE_TAG_DISABLED
Do not add "sip.fax" media feature tag to transmitted SIP
INVITE message.

If a fax_media_feature_tag value is specified that is not supported by
the current configuration (e.g.,
BT_FAX_MEDIA_FEATURE_TAG_T38 specified but
fax_transport_protocol value set to t38_never in the callctrl.cfg
configuration file), the outbound SIP call will fail with the status
field in the RES results structure set to BT_STATUS_ERROR and
the line_status field in the RES results structure set to
APIERR_CALL_CONTROL.

In order to use this field for outbound SIP calls, RFC 6913 feature
support must be enabled in the call control configuration file (see
Volume 6, Appendix A, Configuration Files).

Note: This field only works for calls using the SIP internet protocol.
The Bfv API ignores this field for calls using the H.323 internet
protocol and PSTN line types.

fax_transport_protocol value "sip.fax" value
t38_never passthrough

t38_only t38

t38_first t38

Not specified in callctrl.cfg file t38

BfvLineOriginateCall

March 2017 377

args.fallback_rtp_reinvite

Specifies whether or not a SIP RTP reINVITE should be
transmitted for G.711 fallback mode if a SIP T.38 reINVITE is
rejected with either a 488 (Not Acceptable Here) or a 606 (Not
Acceptable). Valid values are:
BT_FALLBACK_RTP_REINVITE_DEFAULT

Default to the setting specified in the call control
configuration file.

BT_FALLBACK_RTP_REINVITE_DISABLE
Do not transmit a SIP RTP reINVITE if a SIP T.38 reINVITE
is rejected.

BT_FALLBACK_RTP_REINVITE_ENABLE
Transmit a SIP RTP reINVITE if a SIP T.38 reINVITE is
rejected.

When the application sets the value in this field to
BT_FALLBACK_RTP_REINVITE_DEFAULT, the functionality
will default to the setting specified in the call control configuration
file (callctrl.cfg) by the g711_fallback_rtp_reinvite parameter. If
the g711_fallback_rtp_reinvite parameter isn't specified in the
call control configuration file, then the default functionality is
BT_FALLBACK_RTP_REINVITE_DISABLE.

An application can override the value specified in the call control
configuration file by the g711_fallback_rtp_reinvite parameter by
setting this field to a value of either
BT_FALLBACK_RTP_REINVITE_DISABLE or
BT_FALLBACK_RTP_REINVITE_ENABLE.

Setting this field to a value of
BT_FALLBACK_RTP_REINVITE_DISABLE will prevent
transmission of a SIP RTP reINVITE if a SIP T.38 reINVITE is
rejected.

BfvLineOriginateCall

March 2017 378

Setting this field to a value of
BT_FALLBACK_RTP_REINVITE_ENABLE will result in
transmission of a SIP RTP reINVITE if a SIP T.38 reINVITE is
rejected with either a 488 (Not Acceptable Here) or a 606 (Not
Acceptable) and the fax transport protocol
(fax_transport_protocol) parameter specified in the call control
configuration file is set to t38_first. The SDP settings in the SIP
RTP reINVITE will be the same RTP codec settings initially used to
establish the call.

Note: This field only works for calls using the SIP internet protocol.
The Bfv API ignores this field for calls using the H.323 internet
protocol or PSTN line types.

Output Return value: None.

args.cause_code

Returns an ISDN-defined code if the call fails that provides the
reason why the function failed to complete the outbound call. See
Volume 6, Appendix D, Defining ISDN Cause Codes for a
description.

args.subcause

If the call fails, returns the response code of the SIP message that
resulted in the failure of the outbound call. This field is only
applicable to calls using the SIP protocol. The definitions of these
response codes are specified in RFC 3261.

args.cause_location

IISDNlocUSER User
IISDNlocPVT_LOCAL Private network serving the local

user
IISDNlocPUB_LOCAL Public network serving the local

user
IISDNlocTRANSIT_NET Transit network
IISDNlocPUB_REMOTE Public network serving the remote

user

IISDNlocPVT_REMOTE Private network serving the remote
user

IISDNlocINTERNATIONAL International network

IISDNlocBEY_INTERWORKNetwork beyond internet-working
point

BfvLineOriginateCall

March 2017 379

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Table 15. Status Information Returned for args.res

args.res.status args.res.line_status1

BT_STATUS_OK DIAL_OK
FCP_ANSWER
FCP_ANSWER_TONE_DETECT
FCP_BUSY1
FCP_BUSY2
FCP_CONFIRM
FCP_DIALTON
FCP_G2DETCT
FCP_HUMAN
FCP_PULSE
FCP_QUIET
FCP_RECALL
FCP_RNGNOANS
FCP_ROBUSY
FCP_SILENCE
FCP_UNKNOWN
FCP_CNGDETCT
FCP_ISDN_CALL_COLLISION
FCP_ISDN_CALL_PROGRESS
FCP_SITINTC
FCP_SITNOCIR
FCP_SITREORD
FCP_SITVACODE

BT_STATUS_ERROR_DIAL DIAL_CALL_COLLISION
DIAL_ISDN_INVAL
DIAL_JP_REDIAL_FAIL
DIAL_LOCAL_IN_USE
DIAL_NO_DIAL_TONE
DIAL_NO_LOOP_CUR
DIAL_NO_WINK
DIAL_SLOT_BUSY
DIAL_TRUNK_BUSY

DIAL_TRANSORT_INVAL
DIAL_UNKNOWN

BfvLineOriginateCall

March 2017 380

Details This function performs the following:

 Places a phone call on an outgoing line.

 Dials a phone number and reports call progress results.

 Accepts a call protocol code that differentiates between a call
answered by a fax machine and a call answered by a person and
alters the behavior of the line accordingly.

The firmware performs sophisticated call progress functions.

In CALL_PROTOCOL_RAW mode, the channel reports the output of the
call progress filter (a 300 – 600 Hz bandpass filter on each channel)
and the time the output was in that particular state only. In this
mode, the channel disables call analysis and provides raw call
progress signal data directly to the user. The user then has complete
control of signal interpretation.

In CALL_PROTOCOL_FAX or CALL_PROTOCOL_VOICE mode, the
channel continues to report the CALL_PROTOCOL_RAW output values,
which can be analyzed by the user-supplied function, and it also
analyzes those values for meaningful patterns, such as ring-back,
busy, and answer. If a final call progress value is detected (see
args.res), call progress is halted.

Because connection to a fax machine is the goal in fax mode, some
results are suppressed until the end of the ced_timeout.

1 See Call Progress Notes on page 1394 for code descriptions.

args.call_transport

Returns a code indicating the transport protocol used for the
outbound call. Valid values are :
TRANSPORT_TYPE_UDP
User Datagram Protocol (UDP) was the transport protocol
used for the outbound SIP call.
TRANSPORT_TYPE_TCP
Transmission Control Protocol (TCP) was the transport
protocol used for the outbound SIP call.
TRANSPORT_TYPE_DEFAULT
This code is returned for calls using the H.323 internet
protocol and PSTN line types.

BfvLineOriginateCall

March 2017 381

For example, if a person answers a phone call, realizes the beeping
on the line is a fax machine, and switches on the fax machine, fax
mode suppresses the FCP_ANSWER or FCP_HUMAN result and reports
FCP_ANSWER_TONE_DETECT when the fax machine is switched on.
If the remote fax machine is not detected and the ced_timeout
expires, FCP_RNGNOANS or FCP_ANSWER (or a similar condition) is
reported, depending on the conditions detected.

BfvLineOriginateCall sets the line state to either OFF_HOOK or
CONNECTED. The application program must examine args.res to
determine how to proceed. For example, if the channel detects a busy
indication, the application normally calls BfvLineTerminateCall
to end the call.

BfvLineOriginateCall sets the line state to OFF_HOOK if any of the
following conditions occur:

 The user-supplied function returns a value of 1.
 The final call progress result is one of the following:

FCP_BUSY1 301
FCP_BUSY2 302
FCP_ROBUSY 303
FCP_RECALL 304
FCP_PULSE 306
FCP_DIALTON 318
FCP_RNGNOANS 325
FCP_G2DETCT 326
FCP_SITINTC 327
FCP_QUIET 328
FCP_SITVACODE 329
FCP_SITREORD 330
FCP_SITNOCIR 331
FCP_CNGDETCT 332
FCP_UNKNOWN 340
FCP_ISDN_CALL_COLLISION 349

If the final call progress result is FCP_HUMAN(316),
FCP_ANSWER(317), or FCP_SILENCE(324),
BfvLineOriginateCall sets the line state to:

Line State Call_Protocol
OFF_HOOK _FAX

CONNECTED _VOICE

BfvLineOriginateCall

March 2017 382

If the final call progress result is FCP_ANSWER_TONE_DETECT
(339), BfvLineOriginateCall sets the line state to:

Line State Call_Protocol
CONNECTED _FAX

CONNECTED _VOICE

The user-supplied function can serve several purposes as follows:

 Report call progress values for debug functions

 Report intermediate call progress results (e.g., ring-back)

 Detect other call progress patterns not detected by firmware

The firmware automatically adapts to most international call
progress signals.

If the application specifies the CALL_PROTOCOL_RAW value for
args.call_protocol_code, the application must provide a function to
analyze the raw call progress data.

The user-supplied function can access the call progress data using
the BfvDataCP function. The user-supplied function must not call
any function that causes a delay, such as waiting for a DTMF tone
for a nonzero timeout or going to sleep. All calls made within the
user-supplied function must return immediately.

For applications using Euro-ISDN on E1 or BRI lines (but not T1
ISDN lines), this function automatically sends a dial string using the
protocol’s overlapped dialing feature when the phone number
exceeds 20 digits. The Euro-ISDN protocol only allows applications
to send 20 digits in a block when placing a call. For phone numbers
exceeding 20 digits, the protocol uses a process called overlapped
dialing. This process sends extra digits after the initial call setup,
allowing:

 The application to dial very large phone numbers
 The remote end to start answering a call before it receives all the

digits

Users can place a call with up to 255 digits in the dial string. The Bfv
API automatically breaks up the dial string into multiple blocks of
20 digits, and uses the overlapped dialing feature in the protocol to
send one block of digits at a time. This process does not require any
changes in the application.

Some protocols or locations do not support overlapped dialing. For
example, T1 ISDN only allows a maximum of 24 digits.

BfvLineOriginateCall

March 2017 383

If you use the low-level call control functions, use the BfvCallSetup
and BfvCallWaitForComplete functions to perform the equivalent
outbound calling process.

International Issues In some countries, the PTT imposes certain dialing restrictions.
Applications dialing a fax machine in any of these countries must
use either the BfvLineOrigCallDB function or the
BfvDialDBCheck function in conjunction with the
BfvDialDBUpdate function. Otherwise, the application might be
non-compliant with the target country’s regulations.

For more information, see either:

 Chapter , Dialing Database Functions on page 411
 Country-Specific Dialing Requirements on page 1426

See Also BfvCallSetup, BfvCallWaitForComplete, BfvDataCP,
BfvLineDialString, BfvLineOrigCallDB

Example BTLINE *lp;
struct args_telephone args_tel;
.
.
.

BT_ZERO(args_tel);
args_tel.call_protocol_code = CALL_PROTOCOL_FAX;
args_tel.phonenum = “9,w5551212”;
BfvLineOriginateCall (lp, &args_tel);

BfvLineTerminateCall

March 2017 384

BfvLineTerminateCall

Purpose Sets the line state to on-hook and completes the disconnect process.

Syntax void
BfvLineTerminateCall (lp, args)

BTLINE *lp;
struct args_telephone *args;

The structure contains the following fields.

Input Field long timeout;

Output Fields int cause_code;
int subcause;
int cause_location;
RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.timeout

Specifies an integer value that determines the length of time to
wait for the function to complete. Valid values are:

0 Indicates waiting forever with no timeout.
nonzero Indicates the number of milliseconds to wait for

the function to complete.

BfvLineTerminateCall

March 2017 385

Output Return value: None.

args.cause_code

Returns an ISDN-defined code if the call fails that provides the
reason why the function failed to finish disconnecting the call. See
Volume 6, Appendix D, Defining ISDN Cause Codes for a
description.
The value returned in this field only has significance if the
application calls BfvLineTerminateCall for a line that is
already idle.

args.subcause

Returns the response code of the SIP message that resulted in the
termination of the call. This field is only applicable to calls using
the SIP protocol. The definitions of these response codes are
specified in RFC 3261.

args.cause_location

Returns an ISDN-defined code that indicates the originator (local
or remote) of the failure notification (args.cause_code). For IP
protocol calls (SIP or H.323), this field indicates which side
initiated the termination of the call.
Valid values are:
IISDNlocUSERUser
IISDNlocPVT_LOCAL Private network serving the local
user
IISDNlocPUB_LOCAL Public network serving the local user
IISDNlocTRANSIT_NET Transit network
IISDNlocPUB_REMOTE Public network serving the remote
user
IISDNlocPVT_REMOTE Private network serving the remote
user
IISDNlocINTERNATIONALInternational network
IISDNlocBEY_INTERWORKNetwork beyond internet-working
point

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvLineTerminateCall

March 2017 386

Details Use this function to end a call placed by the application or the
remote end, or when an error occurs. BfvLineTerminateCall puts
the call for the line in a disconnect or "on-hook" state.

Under IP call control, when using a channel to both receive and
originate calls, applications should call the BfvLineTerminateCall
function to disable incoming call detection before making an
outbound call.

All calls must use BfvLineTerminateCall to properly complete the
disconnect process. You can also use the equivalent low-level
functions BfvCallDisconnect and BfvCallWaitForRelease to
initiate and complete the disconnect process.

See Also BfvCallDisconnect, BfvCallReject, BfvCallWaitForRelease

BfvLineTerminateCall

March 2017 387

Example BTLINE *lp;
char phonenum[32] = "w9w6175551234";
char local_id[20] = "1234567890abcdefg";
int calls_to_make; /* flag indicating we wish to end */
 /* the call and make another */
struct args_telephone args_tel;
struct args_fax args_fax;

while (calls_to_make)
{

BT_ZERO(args_tel);
args_tel.call_protocol_code = CALL_PROTOCOL_FAX;
args_tel.phonenum = phonenum;
BfvLineOriginateCall(lp, &args_tel);

/* Check returns, handle errors */

BT_ZERO(args_fax);
args_fax.s _ips = ips;
args_fax.local_id = local_id;
BfvFaxSend(lp, &args_fax);

/* Check returns, handle errors */

BT_ZERO(args_tel);
BfvLineTerminateCall(lp, &args_tel);

}

BfvLineTransfer

March 2017 388

BfvLineTransfer

Purpose Automatically transfers an incoming call from the called party to the
dialed transfer number, or returns control to the application so that
it can determine whether to complete or cancel the transfer.

The SR140 and analog DID lines do not support this function.

Syntax void
BfvLineTransfer (lp, args)

BTLINE *lp;
struct args_telephone *args;

The structure contains the following fields.

Input Fields char *arg;
int call_mode;
int call_protocol_code;
int (*func)(BTLINE *lp, char *arg);
char *phonenum;
long timeout;
BTLINE *lp_second_channel;
int supervised;
int transfer_line_state;
int hold_call;

Output Field RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.arg

Provides an input argument for the func feature field. This field
accepts a NULL setting if the user-defined function does not need
an argument.

BfvLineTransfer

March 2017 389

args.call_mode

Specifies a Boolean value that indicates whether the outbound
call expects to receive a fax transmission when the connection
completes. Set the field as follows:

FALSE

Indicates that the outbound call does not expect to receive a fax.

TRUE

Indicates that the outbound call expects to receive a fax after
establishing the connection.

args.call_protocol_code

Selects a calling protocol for the channel from one of the following:

CALL_PROTOCOL_FAX

Selects the fax protocol. Requests the channel to report the
results from the channel’s call progress analysis along with the
raw data. The channel reports the results as soon as it establishes
the fax connection or encounters a busy condition.

Other detected call progress results are returned after the
ced_timeout (the length of time to wait for the called stations’s
id signal) time-out.

CALL_PROTOCOL_VOICE

Selects the voice protocol. Requests the module to report the
results from the channel’s call progress analysis along with the
raw data. The channel reports the results as soon as it detects a
human or other answer condition.

CALL_PROTOCOL_RAW

Requests the channel to report the raw HIGH/LOW call progress
results without performing any analysis.

CALL_PROTOCOL_FAX_NO_RAW
CALL_PROTOCOL_VOICE_NO_RAW

Selects either the fax or voice protocol, requesting the channel to
report the results from the channel’s call progress analysis
without including the raw data.

BfvLineTransfer

March 2017 390

args.func

Specifies a pointer to a user-supplied integer function that the
channel calls during call progress. The channel calls this user
function in a loop until it returns a final call progress result, or
the user function indicates termination of call progress by
returning 1.

Args.func is called as (*args.func)(lp,args.arg). The lp
argument contains the pointer to the line structure; the args.arg
argument contains the supplied user-defined argument.

args.phonenum

Specifies a pointer to a null-terminated ASCII string that
identifies the phone number to dial. Dial strings (phone numbers)
may be up to a maximum of 255 characters
(ECC_MAX_DIGIT_STR - 1).

PSTN Telephony
The dial string field supports the following digits and control
characters. Invalid characters are ignored; upper and lower case
letters are equivalent. Some protocols ignore control characters
and only accept DTMF characters.
Valid Digits and Control Characters
0 - 9 Dials digits ‘0’ through ‘9’.

(pound) Dials a pound.

* (asterisk) Dials an asterisk.

A - D Sends the DTMF tone corresponding to the
specified alphabetic character.

p Changes the current or default dialing mode
from tone dialing to pulse dialing.

t Changes the current or default dialing mode
from pulse dialing to tone dialing.

w Waits for dial tone.

, (comma) Causes a 1-second pause.

; (semicolon),
i or I

Causes a 5-second pause. To create longer
pauses, string any of these characters
together.

! (exclamation point) Sends a hook flash on analog and T1 robbed
bit modules.

BfvLineTransfer

March 2017 391

Note: In an analog environment or when using a T1 robbed bit
FXS loopstart or E1 CAS loopstart protocol, the ‘w’ character
means wait for dial tone. All other protocols ignore the ‘w’ and
‘i’ characters. Only analog environments and T1 robbed bit or
E1 CAS protocols use the ‘p’, ‘t’, comma and semicolon
characters.

args.timeout

Specifies an integer value that determines the length of time to
wait for the function to complete. Valid values are:

0 Indicates waiting forever with no timeout.
nonzero Indicates the number of milliseconds to wait for

the function to complete.

args.lp_second_channel

A reference to the lp of the line to use for the enquiry call for
protocols that require two B-channels to transfer a call (for
example, Release Link Trunk (RLT) protocol).
Set to 0 when the transfer occurs over a single channel (for
example, an analog line).

args.supervised

Specifies a Boolean value that determines whether the function
automatically completes the transfer or returns without
completing the transfer when it detects the value defined for the
args.transfer_line_state argument. Valid values are:

FALSE

Indicates that the function automatically completes the transfer
when it detects the value defined for args.transfer_line_state.

TRUE

Indicates that the function returns control to the application
without completing the transfer when it detects the value defined
for args.transfer_line_state.

args.transfer_line_state

Specifies the call state that determines when to complete the
transfer. Valid values are:

BST_DIAL_COMPLETE

Completes the call transfer after dialing the transfer number.

BST_ALERTING

Completes the call transfer after detecting a ring.

BfvLineTransfer

March 2017 392

BST_CONNECTED

Completes the call transfer when the called party answers.

args.hold_call

Specifies an integer value that determines whether to place the
original call on hold or allow it to remain active. Use this field
when transferring a call using two B channels; the field has no
effect on single B-channel call transfers that must place the
original call on hold to make the transfer. Valid values are:

0 Allows the original call to remain active and does not
place it on hold before making the enquiry call on the
other B channel.

nonzero Places the original call on hold before making the
enquiry call on the other B channel.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details This function performs the following to transfer an incoming call:

 Places the existing call on hold when the transfer occurs over a
single channel.

 Dials the transfer number.

 Waits for the specified transfer state to be satisfied.

Then the function uses the value set in the args.supervised field as
follows:

 When set to TRUE, returns control to the application allowing it
to determine whether to complete or cancel the transfer, or

 When set to FALSE, automatically completes the call transfer
and returns the original calling party’s line state to idle.

When the application chooses to transfer a call without supervision,
the completion of this function signals the end of the call and a
return of the line state to idle.

BfvLineTransfer

March 2017 393

When the application chooses to supervise the call transfer, the
BfvLineTransfer function places the calling party on hold and
connects the application to the transfer number. The function
returns control to the application when it detects the line state the
application selected to determine the timing. After the application
regains control from the BfvLineTransfer function, it can choose
to:

 Complete the transfer using the BfvLineTransferComplete
function, or

 Cancel the transfer using the BfvLineTransferCancel
function.

See Also BfvLineTransferCancel, BfvLineTransferComplete

Example BTLINE *lp;
struct args_telephone args_tel;
.
. /* Establish first call */
.

BT_ZERO(args_tel);
args_tel.call_protocol_code = CALL_PROTOCOL_FAX;
args_tel.phonenum = “123”;
args_tel.transfer_line_state = BST_CONNECTED;
BfvLineTransfer(lp, &args_tel);
if (args_tel.res.status != BT_STATUS_OK)
{
 /* Failed to transfer the call */
}

BfvLineTransferCancel

March 2017 394

BfvLineTransferCancel

Purpose Ends a previously initiated call transfer and retrieves the original
calling party.

The SR140 and analog DID lines do not support this function.

Syntax void
BfvLineTransferCancel (lp, args)

BTLINE *lp;
struct args_telephone *args;

The structure contains the following fields.

Input Field long timeout;
BTLINE *lp_second_channel;

Output Field RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.timeout

Specifies an integer value that determines the length of time to
wait for the function to complete. Valid values are:

0 Indicates waiting forever with no timeout.
nonzero Indicates the number of milliseconds to wait for

the function to complete.

BfvLineTransferCancel

March 2017 395

args.lp_second_channel

A reference to the lp of the line to use for the enquiry call for
protocols that require two B-channels to transfer a call (for
example, Release Link Trunk (RLT) protocol).
Set to 0 when the transfer occurs over a single channel (for
example, an analog line).

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Use this function to correctly cancel a call transfer that the
application initiated with the BfvLineTransfer function. The
BfvLineTransferCancel function drops the connection to the
transfer party and returns control to the originating party.

See Also BfvLineTransfer

Example BTLINE *lp;
struct args_telephone args_tel;
.
.
.
/* Establish call and begin call transfer in
 supervised mode */
.
.
.
BT_ZERO(args_tel);
BfvLineTransferCancel(lp, &args_tel);

BfvLineTransferCapabilityQuery

March 2017 396

BfvLineTransferCapabilityQuery

Purpose Retrieves information about the transfer capability of a channel.

Syntax void
BfvLineTransferCapabilityQuery(lp, args)

BTLINE *lp;
struct args_telephone *args;

The structure contains the following fields.

Input Field None

Output Fields RES res;
int transfer_mode;
int transfer_group;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing output fields.

Output Return value: None.

args.transfer_mode

Returns a value that indicates how a line supports call transfers.
Valid values are:
LINE_XFER_NONE

Line does not support call transfer.

LINE_XFER_SINGLE

Line only supports single B-channel (same channel) call transfer.

LINE_XFER_TWO_CHAN

Line only supports two B-channel (explicit) call transfer.

BfvLineTransferCapabilityQuery

March 2017 397

LINE_XFER_ALL

Line supports single and two B-channel call transfers.

LINE_XFER_TWO_CHAN_NEEDS_NAILUP

Line supports two B-channel call transfers, but the application
must connect the B channels together (QSIG protocol
requirement). When the application calls
BfvCallWaitTransferComplete (see page 354), this function
provides a feature to make the B-channel connection
automatically. If the application has turned this feature off (set
args.disable_auto_sw_connect to TRUE), the application must use
the BfvCallSwitchConnect function to connect the two
B channels together to make the call transfer.

args.transfer_group

Returns values to the application that indicate which lines can be
paired to perform a two B-channel call transfer. Only lines that
support two B-channel call transfers return valid values in this
field.
This field returns matching line values for lines that can be
paired to perform a two B-channel call transfer. When the line
values do not match, the lines cannot be paired to perform a two
B-channel call transfer.

Details Use this function to retrieve information about the call transfer
capability that a channel’s protocol supports.

The function indicates that the call transfer feature is not supported
for applications using an H.323 call control stack.

If the returned information indicates support for two B-channel call
transfer, this function also provides the application with the
information necessary to determine which two lines can be paired to
perform two B-channel transfer.

Example BTLINE *lp;
struct args_telephone args_tel;
.
.
.
BT_ZERO(args_tel);
BfvLineTransferCapabilityQuery(lp, &args_tel);

BfvLineTransferComplete

March 2017 398

BfvLineTransferComplete

Purpose Completes the call transfer connection for a previously initiated call
transfer.

The SR140 and analog DID lines do not support this function.

Syntax void
BfvLineTransferComplete (lp, args)

BTLINE *lp;
struct args_telephone *args;

The structure contains the following fields.

Input Field long timeout;
BTLINE *lp_second_channel;

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.timeout

Specifies an integer value that determines the length of time to
wait for the function to complete. Valid values are:

0 Indicates waiting forever with no timeout.
nonzero Indicates the number of milliseconds to wait for

the function to complete.

BfvLineTransferComplete

March 2017 399

args.lp_second_channel

A reference to the lp of the line to use for the enquiry call for
protocols that require two B-channels to transfer a call (for
example, Release Link Trunk (RLT) protocol).
Set to 0 when the transfer occurs over a single channel (for
example, an analog line).

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Use this function to correctly finish a call transfer that the
application initiated with the BfvLineTransfer function. The
BfvLineTransferComplete function completes the connection to
the transfer party and returns control to the originating party.

See Also BfvLineTransfer

Example BTLINE *lp;
struct args_telephone args_tel;
.
.
.
/* Establish call and begin call transfer in
 supervised mode */
.
.
.
BT_ZERO(args_tel);
BfvLineTransferComplete(lp, &args_tel);

BfvLineWaitForCall

March 2017 400

BfvLineWaitForCall

Purpose Activates a callback routine to wait for an incoming call and to
perform call screening based on the routing information received
with the call.

Syntax void
BfvLineWaitForCall (lp, args)

BTLINE *lp;
struct args_telephone *args;

The structure contains the following fields.

Input Fields long timeout;
char *phonenum;
unsigned sip_header_list_len;
BT_SIP_HEADER_LIST *sip_header_list;

Output Fields CALL_RES call_res;
RES res;
enum TRxTransportType call_transport;
unsigned sip_header_list_len;
BT_SIP_HEADER_LIST *sip_header_list;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

BfvLineWaitForCall

March 2017 401

args.timeout

Specifies an integer value that determines the length of time to
wait for the function to complete. Valid values are:

0 Indicates waiting forever with no timeout.
>0 Indicates the number of milliseconds to wait for

the function to complete.
<0 Indicates the number of milliseconds to wait for

the call. However, if the function
times out, it does not
automatically reject calls that
the system detects before the
application makes the next call
to BfvLineWaitForCall.

args.phonenum

Pointer to a null-terminated ASCII string that identifies the DID
phone number the incoming call must match in order for the
system to present the call to the application.
Only calls using an internet protocol (IP) such as SIP or H.323 can
use this field. PSTN line types ignore the contents of this field.

args.sip_header_list_len

Specifies the size of the memory buffer pointed to by the
sip_header_list field. This field should be set when the Bfv
application wants to retrieve the SIP header information
specified in an inbound SIP INVITE request used to establish a
SIP call.
This field should be set to the size of the memory buffer pointed
to by the sip_header_list field.
If the Bfv application doesn’t want to retrieve the SIP header
information specified in an inbound SIP INVITE request, this
field should be set to 0 and sip_header_list should be set to NULL.

Note: This field only works for inbound calls using the SIP internet
protocol. The Bfv API ignores this field for all outbound calls
and calls using the H.323 internet protocol or PSTN line types.

args.sip_header_list

Specifies a pointer to a memory buffer allocated by the Bfv
application to receive SIP header data from an inbound SIP
INVITE request used to establish a SIP call. The size of the
memory buffer pointed to by sip_header_list should be specified in
the sip_header_list_len field.

BfvLineWaitForCall

March 2017 402

This field should be set to the address of a memory buffer
allocated by the Bfv application that will receive the SIP header
data. As sip_header_list is a pointer to a
BT_SIP_HEADER_LIST structure, the Bfv application memory
buffer should be allocated and initialized in a manner similar to
the following:
args.sip_header_list =
 (BT_SIP_HEADER_LIST *)malloc(1000);
memset(args.sip_header_list, 0, 1000);
args.sip_header_list_len = 1000;

If the Bfv application doesn’t want to retrieve the SIP header
information specified in an inbound SIP INVITE request,
sip_header_list_len should be set to 0 and sip_header_list should
be set to NULL.

This field only works for inbound calls using the SIP internet
protocol. The Bfv API ignores this field for all outbound calls and
calls using the H.323 internet protocol or PSTN line types.

Output Return value: None.

args.call_res

A structure containing information about the incoming call,
including call type and DID digits. For a detailed description of
the CALL_RES structure parameters, see Volume 6, Appendix B,
CALL_RES Structure Parameters.
When the call control configuration file (callctrl.cfg) has the
caller_id parameter enabled for an analog port, the Bfv API
returns the name of the caller in the calling_party_subaddress
and the name_ident fields of the CALL_RES structure. The Bfv
API returns the caller ID information for an E1 or T1 QSIG port
in the name_ident and name_char_set fields of the CALL_RES
structure.
When receiving a diverted incoming call on a port using the QSIG
protocol, this field outputs the redir_number and
redir_reason fields of the CALL_RES structure to indicate the
phone number of the device diverting the call and the reason for
diverting the call. Valid diversion reasons are:

DIVERT_NONE Used for call that does not divert.
DIVERT_BUSY Call diverted for busy condition.
DIVERT_UNCONDITIONAL Call diverted without conditions.
DIVERT_NO_RESPONSE Call diverted for unresponsive

line.

BfvLineWaitForCall

March 2017 403

args.call_transport

Returns a code indicating the transport protocol used for the
inbound call. Valid values are :
TRANSPORT_TYPE_UDP
User Datagram Protocol (UDP) was the transport protocol used
for the inbound SIP call.
TRANSPORT_TYPE_TCP
Transmission Control Protocol (TCP) was the transport protocol
used for the inbound SIP call.
TRANSPORT_TYPE_DEFAULT
This code is returned for calls using the H.323 internet protocol
and PSTN line types.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

args.sip_header_list_len

If a SIP call has successfully been received, this field will be set to
the amount of data in the sip_header_list memory buffer that has
been populated with SIP header data. If the memory buffer
pointed to by sip_header_list isn't large enough to hold all the SIP
header data from the inbound SIP INVITE request, then
sip_header_list_len will be set to a value of
SIP_HEADER_INVALID_LEN. In this case, the memory buffer
pointed to by sip_header_list will only be populated with complete
SIP header name/header value pairs that fit in the buffer.
For example, if there are 10 SIP headers in the inbound SIP
INVITE request, but the memory buffer pointed to by
sip_header_list can only hold enough data for 9 complete SIP
header name/header value pairs retrieved from the SIP INVITE
request with 30 bytes of the buffer unused, then
sip_header_list_len will be set to a value of
SIP_HEADER_INVALID_LEN and only 9 complete SIP header
name/header value pairs will be returned in the sip_header_list
buffer. No partial or incomplete SIP header information from the
10th header will be used to populate the remaining 30 bytes in the
sip_header_list buffer.

Note: This field only works for inbound calls using the SIP internet
protocol. The Bfv API ignores this field for all outbound calls
and calls using the H.323 internet protocol or PSTN line types.

BfvLineWaitForCall

March 2017 404

args.sip_header_list

If a SIP call has successfully been received, the memory buffer
pointed to by sip_header_list will be populated with a singly
linked list of SIP header data stored in
BT_SIP_HEADER_NODE structures starting with a
BT_SIP_HEADER_LIST structure. The data structures used to
access the SIP header data in the singly linked list are defined
below:
struct BT_SIP_HEADER {
 char *header_name;
 char *header_value;
};
typedef struct _BT_SIP_HEADER_NODE {
 struct BT_SIP_HEADER header;
 struct _BT_SIP_HEADER_NODE *next_header;
} BT_SIP_HEADER_NODE;
typedef struct _BT_SIP_HEADER_LIST {
 int num_sip_headers;
 BT_SIP_HEADER_NODE sip_headers;
} BT_SIP_HEADER_LIST;

Some SIP headers that have multiple values may be returned as
several SIP headers. For example, the following header:
Allow: INVITE, ACK, OPTIONS, CANCEL, BYE

Will be returned as five separate headers:

If some of the SIP header names in the inbound SIP INVITE
request were specified in compact form, they may be returned to
the Bfv application in long form (e.g., Content-Type header name
specified in inbound SIP request as "c", returned to Bfv
application as "Content-Type").

Header Name Header Value

Allow INVITE

Allow ACK

Allow OPTIONS

Allow CANCEL

Allow BYE

BfvLineWaitForCall

March 2017 405

The maximum supported number of SIP headers that can be
returned is 98.

Note: This field only works for inbound calls using the SIP internet
protocol. The Bfv API ignores this field for all outbound calls
and calls using the H.323 internet protocol or PSTN line types.

Details Use this function to wait for detection of an incoming call and allow
your application to screen the call based on the routing information
it receives with the call. The function waits until an incoming call
has been detected or the timeout expires.

An application can use the args.phonenum input field to implement
basic inbound call routing for an IP-enabled application. Unlike
applications for PSTN line types, any channel in the system can
answer incoming IP calls. The args.phonenum field allows the
application to specify a DID number that an incoming call must
match before the system presents the call to the application. The Bfv
API only attempts to match the number of digits passed into this
function in this pointer. For example, if you specify 4 digits to pass
in, the Bfv API only seeks to match the first 4 digits of the incoming
call, and it ignores any extra digits in the incoming call’s DID string.
This field only works for incoming calls using SIP and H.323 internet
protocols. The Bfv API ignores the field for any incoming call on
PSTN line types.

If no error occurs when the function executes, args.res.status
contains BT_STATUS_OK.

If a call is:

 Detected, the args.res.line_status field contains
WAIT_FOR_CALL_OK.

 Not detected within the timeout, the args.res.line_status field
contains WAIT_FOR_CALL_TIMEOUT.

An early return occurs when timeout is a nonzero value and the
specified time interval expires.

For DID lines, BfvLineWaitForCall waits to capture DID digits.
See Volume 6, Appendix A, Call Control Configuration File to define
the DID digit parameters.

Applications can execute call screening (for example, on DID digits)
with the BfvLineAnswer and BfvLineTerminateCall functions.
If the telephone number is invalid, the application can terminate the
call with the BfvLineTerminateCall or BfvCallReject functions.

BfvLineWaitForCall

March 2017 406

The call control configuration file (callctrl.cfg) stores the
configuration for DID channels (the expected number of DID digits
to receive [max_did_digits]).

Using a negative value for args.timeout permits an application to
begin ring detection and continue it during the interval between
calls to this function. This capability permits a program to
repeatedly switch, at short intervals, between waiting for a ring and
processing other tasks without risking any loss of rings due to timing
between enabling/disabling ring detection and the actual ring
occurrence.

If the application does not detect a ring and decides to do something
else (for example, make a phone call), the application must disable
ring detection. To disable ring detection:

 Use BfvLineWaitForCall and set args.timeout to a small
positive value (1)

or

 Use the BfvCallRingDetect function and set args.mode = 0

See Also BfvCallRingDetect, BfvCallWaitForSetup, BfvLineAlert,
BfvLineAnswer, BfvLineTerminateCall

Example BTLINE *lp;
struct args_telephone args;

BT_ZERO(args);
args.timeout = 0L; /* wait until incoming call occurs */

/* Use next line example only to implement call routing
 for an IP-enabled application */

args.phonenum = "4083700881";
BfvLineWaitForCall(lp, &args);
if (args.res.line_status != WAIT_FOR_CALL_OK)
{
 printf("Error While Waiting for Call\n");
}

BfvLoopCurrentDetectDisable

March 2017 407

BfvLoopCurrentDetectDisable

Purpose Turns off loop current detection for the specified channel.

Syntax void
BfvLoopCurrentDetectDisable(lp, args)

BTLINE *lp;
struct args_telephone *args;

The structure contains the following fields.

Input Field None

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvLoopCurrentDetectDisable

March 2017 408

Details Use this function to turn off loop current detection for the specified
channel. If loop current detection is already turned off, calling this
function has no effect and does not return an error value.

Turning off loop current detection prevents the system from
immediately terminating a fax or voice function call and returning
the BT_STATUS_ERROR_HANGUP res.status value. When the
far end of a call disconnects with loop current detection turned off:

 fax functions terminate with a status code set
 voice functions might or might not terminate with a status code

set, depending on the settings turned on for voice functions.

You must call this function after the call has been established and
before calling any fax or voice functions.

If your application uses call transfer or call retrieve functions, loop
current detection is automatically enabled when the transfer or
retrieve function terminates.

Do not call this function while a fax or voice function is in progress.
Doing so might cause a failure of the fax or voice function to start or
stop properly, or result in a loss of data.

Note: Functions like BfvLineOriginateCall and
BfvLineWaitForCall automatically turn on loop current
detection.

See Also BfvLoopCurrentDetectEnable

Example BTLINE *lp;
struct args_telephone args;
.
.
.
BT_ZERO(args);
BfvLoopCurrentDetectDisable(lp, &args);

BfvLoopCurrentDetectEnable

March 2017 409

BfvLoopCurrentDetectEnable

Purpose Turns on loop current detection for the specified channel.

Syntax void
BfvLoopCurrentDetectEnable (lp, args)

BTLINE *lp;
struct args_telephone *args;

The structure contains the following fields.

Input Field None

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Use this function to turn on loop current detection for the specified
channel if the application previously turned off loop current
detection (BfvLoopCurrentDetectDisable). Since the release of
Brooktrout SDK 3.0, the Bfv API always enables loop current
detection at the start of a call. If loop current detection is already
turned on, calling this function has no effect and does not return an
error value.

BfvLoopCurrentDetectEnable

March 2017 410

You must call this function after the call has been established and
before calling any fax or voice functions.

Do not call this function while a fax or voice function is in progress.
Doing so causes a failure of the fax or voice function to start or stop
properly, or results in a loss of data.

Note: Functions like BfvLineOriginateCall and
BfvLineWaitForCall automatically turn on loop current
detection.

See Also BfvLoopCurrentDetectDisable

Example BTLINE *lp;
struct args_telephone args;
.
.
.
BT_ZERO(args);
BfvLoopCurrentDetectEnable(lp, &args);

March 2017 411

11 - Dialing Database Functions

This chapter describes the functions an application uses to dial
facsimile machines from a database.

It has the following sections:

 Dialing Database Function Call Summary on page 413

 Dialing Database functions listed alphabetically

Many countries have dialing restrictions that require applications to
maintain a database of information about previously called fax
telephone numbers. If the application dials a fax machine in one of
these countries, it must use the dialing database functions to avoid
violating the target country’s PTT regulations.

Use the dialing database functions only if your application sends
facsimiles into countries with such restrictions. For a list of the
countries the API supports and a description of their dialing
restrictions, see Volume 6, Appendix G, Country-Specific Parameter
Files.

An application uses the dialing database functions to send a fax only
when it expects a fax machine to answer. An application must not
use the dialing database functions when it expects a human or a
voice answering machine to answer.

An application uses the dialing database locally and only on a single
computer. It must not share the dialing database with multiple
computers over a network. The API does not provide for sharing or
for format differences in intercompiler time storage.

March 2017 412

The dialing database functions use a lock file to ensure exclusive
access to the database. The name of this file is btdb.lck, and it
resides in the same directory as the dialing database. If execution of
the program stops prematurely (that is, the system crashes), the lock
file might remain. If this occurs, you must manually remove the lock
file so the dialing database functions can proceed.

The API uses the C library time() function for timing purposes.
Some libraries implement this function slightly differently. Users
must make sure that all programs using the DialDB functions on a
particular computer are linked with the same version of their
compiler library.

See Volume 6, Appendix G, Country-Specific Parameter Files for
more information about implementing dialing restrictions.

Dialing Database Function Call Summary

March 2017 413

Dialing Database Function Call Summary
The dialing database functions include the following shown in
Table 16.

Table 16. Dialing Database Function Summary

Function Purpose Page

BfvDialDBCheck Checks the specified dialing database for the specified
telephone number and returns the amount of time the
application must wait before dialing the telephone
number.

414

BfvDialDBList Enables the application to read the contents of the
specified dialing database.

416

BfvDialDBUpdate Updates the specified dialing database with the results of
the most recent call to the specified telephone number.

419

BfvLineOrigCallDB Checks the specified dialing database for the specified
telephone number, returns the amount of time to wait
before dialing, and then places the call on an outgoing line
and updates the dialing database.

422

BfvDialDBCheck

March 2017 414

BfvDialDBCheck

Purpose Checks the specified dialing database for the specified telephone
number and returns the amount of time the application must wait
before dialing the telephone number.

Syntax int
BfvDialDBCheck (lp, args)

BTLINE *lp;
struct args_telephone *args;

The structure contains the following fields.

Input Fields char *dbfile;
char *raw_number;

Output Fields long wait_time;
int reason;
RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.db_file

Name of the dialing database file.

args.raw_number

String containing the telephone number to dial. This string must
contain the actual telephone number only; no long distance,
trunk, or other codes are valid. All characters except digits,
(pound or number symbol), and * (star or asterisk) will be
ignored.

BfvDialDBCheck

March 2017 415

Output Return value:

0 Successful database lookup.

–1 Error accessing database file.

args.wait_time

The amount of time to wait before dialing, in seconds.

args.reason

The reason for the delay specified by args.wait_time.
The reason will be one of the DL_REASON_... values defined in
dialdb.h.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details The application must call this function before it calls
BfvLineOriginateCall. If this function returns a nonzero
args.wait_time value, the application must not proceed with dialing
the telephone number. After calling BfvLineOriginateCall, the
application must call BfvDialDBUpdate to update the dialing
database. The application can use the BfvDialDBList to examine
the contents of the dialing database.

Checks the dialing database specified by args.db_file for information
about args.raw_number. Using args.wait_time, it returns the
amount of time the application must wait before it dials
args.raw_number on channel lp. It returns the reason for the delay
using args.reason.

See Also BfvDialDBList, BfvDialDBUpdate, BfvDialDBUpdate

Example See the dlfax.c application in the sample applications directory.

BfvDialDBList

March 2017 416

BfvDialDBList

Purpose Enables the application to read the contents of the specified dialing
database.

Syntax int
BfvDialDBList (args)

struct args_telephone *args;

The structure contains the following fields.

Input Fields char *db_file;
int (*db_func)(struct dialdb *dbentry, char *arg);
char *arg;

Output Fields RES res;

Input args

Pointer to an argument structure containing input and output
fields.

args.db_file

Name of the dialing database file.

args.db_func

Pointer to a user-supplied integer function that is called once for
each entry in the dialing database.
The value of args.db_func cannot be NULL. The function
args.db_func is called as
(*args.db_func)(dbentry,args.arg), where dbentry is a
struct dialdb * pointer to a structure that describes a
database entry, and arg is the user-supplied argument.
If args.db_func returns 0, processing of the database continues.
Otherwise, processing halts.

args.arg

A user-supplied argument for args.db_func, which can be NULL.

BfvDialDBList

March 2017 417

Output Return value:

0 Successful database listing.

1 Error opening the database file.

2 Error reading the database file.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details The application can call this function at any time. Before calling
BfvLineOriginateCall, the application must call
BfvDialDBCheck. After calling BfvLineOriginateCall, the
application must call BfvDialDBUpdate.

For each database entry, it calls the function args.db_func with a
struct dialdb * pointer and the user-supplied argument args.arg.

The dialing database file can often contain empty entries, which do
not contain any database information and should be skipped. These
entries have an empty telephone number; that is, the first byte of
phonenum is 0.

Many countries have dialing restrictions that require applications to
maintain a database of information about previously called fax
telephone numbers. If the application dials a fax machine in one of
these countries, it must use the dialing database functions to avoid
violating the target country’s PTT regulations. Use the dialing
database functions only if your application sends facsimiles into
countries with such restrictions. For a list of the countries the API
supports and a description of their dialing restrictions, see Volume 6,
Appendix G, Country-Specific Parameter Files.

An application uses the dialing database functions to send a fax only
when it expects a fax machine to answer. An application must not
use the dialing database functions when it expects a human or a
voice answering machine to answer.

An application uses the dialing database locally and only on a single
computer. The application must not share the dialing database with
multiple computers over a network. The API does not provide for
sharing or for format differences in intercompiler time storage.

BfvDialDBList

March 2017 418

The dialing database functions use a lock file to ensure exclusive
access to the database. The name of this file is btdb.lck, and it
resides in the same directory as the dialing database. If execution of
the program stops prematurely (that is, the system crashes), the lock
file might remain. If this occurs, you must manually remove the lock
file so the dialing database functions can proceed.

The API uses the C library time() function for timing purposes.
Some libraries implement this function slightly differently. Users
must make sure that all programs using the BfvDialDB functions
on a particular computer are linked with the same version of their
compiler library.

See Volume 6, Appendix G, Country-Specific Parameter File for more
information about implementing dialing restrictions.

See Also BfvDialDBCheck, BfvDialDBUpdate, BfvLineOrigCallDB

Example See the dlfax.c application in the sample applications directory.

BfvDialDBUpdate

March 2017 419

BfvDialDBUpdate

Purpose Updates the specified dialing database with the results of the most
recent call to the specified telephone number.

Syntax int
BfvDialDBUpdate (lp, args)

BTLINE *lp;
struct args_telephone *args;

The structure contains the following fields.

Input Fields char *db_file;
char *raw_number;
RES *db_res;

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.db_file

Name of the dialing database file.

args.raw_number

String containing the dialed telephone number. This string must
contain the actual telephone number only; no long distance,
trunk, or other codes are valid. All characters except digits,
(pound or number symbol), and * (star or asterisk) will be
ignored.

BfvDialDBUpdate

March 2017 420

arg.db_res

Pointer to a RES structure that contains the result of the last call
attempt to args.raw_number.
This RES structure is usually the one contained within the
args_telephone structure that BfvLineOriginateCall updates.

Output Return value:

0 Successful database update.

–1 Error accessing the database file.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details The application must call this function after it calls
BfvLineOriginateCall, whether BfvLineOriginateCall returns a
successful call result or not. Before calling BfvLineOriginateCall,
the application must call BfvDialDBCheck. The application can
use the BfvDialDBList function to examine the contents of the
dialing database.

To manually blacklist a telephone number (preventing applications
from dialing it), call the BfvDialDBUpdate function with an
args.res value of NULL. To manually remove a telephone number
from the blacklist (permitting applications to dial it), call this
function with res.status = BT_STATUS_OK and
res.line_status = FCP_ANSWER_TONE_DETECT (the values that
normally indicate a successful connection).

Many countries have dialing restrictions that require applications to
maintain a database of information about previously called fax
telephone numbers. If the application dials a fax machine in one of
these countries, it must use the dialing database functions to avoid
violating the target country’s PTT regulations. Use the dialing
database functions only if your application sends facsimiles into
countries with such restrictions. For a list of the countries the API
supports and a description of their dialing restrictions, see Volume 6,
Appendix G, Country-Specific Parameter Files.

An application uses the dialing database functions to send a fax only
when it expects a fax machine to answer. An application must not
use the dialing database functions when it expects a human or a
voice answering machine to answer.

BfvDialDBUpdate

March 2017 421

An application uses the dialing database locally and only on a single
computer. It must not share the dialing database with multiple
computers over a network. The API does not provide for sharing or
for format differences in intercompiler time storage.

The dialing database functions use a lock file to ensure exclusive
access to the database. The name of this file is btdb.lck, and it
resides in the same directory as the dialing database. If execution of
the program stops prematurely (that is, the system crashes), the lock
file might remain. If this occurs, you must manually remove the lock
file so the dialing database functions can proceed.

The API uses the C library time() function for timing purposes.
Some libraries implement this function slightly differently. Users
must make sure that all programs using the DialDB functions on a
particular computer are linked with the same version of their
compiler library.

See Volume 6, Appendix G, Country-Specific Parameter Files for
more information about implementing dialing restrictions.

See Also BfvDialDBCheck, BfvDialDBList, BfvLineOrigCallDB

Example See the dlfax.c application in the sample applications directory.

BfvLineOrigCallDB

March 2017 422

BfvLineOrigCallDB

Purpose Checks the specified dialing database for the specified telephone
number, returns the amount of time to wait before dialing, and then
places the call on an outgoing line and updates the dialing database.

Syntax void
BfvLineOrigCallDB (lp, args)

BTLINE *lp;
struct args_telephone *args;

The structure contains the following fields.

Input Fields char *phonenum;
int call_protocol_code;
int (* func) (BTLINE *lp, char *arg);
char *arg;
char *db_file;
char *raw_number;
unsigned report_cadence;
unsigned report_freq;
unsigned freq_report_time;

Output Fields long wait_time;
int reason;
RES res;

Modified Fields db_res;

BfvLineOrigCallDB

March 2017 423

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.phonenum

Specifies a pointer to a null-terminated ASCII string that
identifies the phone number to dial. Dial strings (phone numbers)
may be up to a maximum of 255 characters
(ECC_MAX_DIGIT_STR - 1).

PSTN Telephony
The dial string field supports the following digits and control
characters. Invalid characters are ignored; upper and lower case
letters are equivalent. Some protocols ignore control characters
and only accept DTMF characters.
Valid Digits and Control Characters

Note: In an analog environment or when using a T1 robbed bit
FXS loopstart or E1 CAS loopstart protocol, the ‘w’ character
means wait for dial tone. All other protocols ignore the ‘w’ and
‘i’ characters. Only analog environments and T1 robbed bit or
E1 CAS protocols use the ‘p’, ‘t’, comma and semicolon
characters.

0 - 9 Dials digits ‘0’ through ‘9’.

(pound) Dials a pound.

* (asterisk) Dials an asterisk.

A - D Sends the DTMF tone corresponding to the
specified alphabetic character.

p Changes the current or default dialing mode
from tone dialing to pulse dialing.

t Changes the current or default dialing mode
from pulse dialing to tone dialing.

w Waits for dial tone.

, (comma) Causes a 1-second pause.

; (semicolon),
i or I

Causes a 5-second pause. To create longer
pauses, string any of these characters
together.

! (exclamation point) Sends a hook flash on analog and T1 robbed
bit modules.

BfvLineOrigCallDB

March 2017 424

IP Telephony
For IP outbound calls using the H.323 protocol:
 Phone#@IP Address:Port#

If the receiving side does not require a phone number, a value
for Phone# is optional. Also, :Port# is optional — the Bfv
API uses 1720 as the default port value.

 TA:IP Address:Port#,Phone#

:Port# is optional — the Bfv API uses 1720 as the default
port value. If the receiving side does not require a phone
number, a value for Phone# is optional.

 Name:<name of person to dial>

Use this form only if using gatekeeper
 E164alias:7894561234

Use this form only if using gatekeeper
Note: DNS lookups are not supported in H.323. You can use an

H.323 or E.164 alias in conjunction with a gatekeeper to
provide similar functionality.

Examples
4082345555@10.155.89.6:175
4082345555@10.155.89.6

TA:10.155.89.6:175,4082345555
TA:10.155.89.6,4082345555
TA:10.155.89.6

Name:Fred Smith
E164alias:4082345555

For IP outbound calls using the SIP protocol:
Phone#@IP Address:Port#

If the receiving side does not require a phone number, a value for
Phone# is optional. Also, :Port# is optional - the Bfv API uses
5060 as the default port value.

Examples (IPv4 Addresses)
4082345555@10.155.89.7:175
4082345555@10.155.89.7

BfvLineOrigCallDB

March 2017 425

Examples (IPv6 Addresses)
4082345555@[2000::2ef3:1dff:ea3]:175
4082345555@[fe80::1f4:189c:74da:69f7]

Note: IPv6 addresses must be enclosed in brackets. In addition, if a
link-local IPv6 address is specified, the Scope ID should be
omitted from the address.

DTMF Post Dialing
For all types of IP calls, the character '&' (ampersand) may be
included to initiate post-dialing. This character indicates that the
rest of phonenum specifies a sequence of DTMF digits to be "post-
dialed" after messages from the remote side indicate the call is
proceeding towards connecting.
Within the post-dial string, all dialing characters listed for PSTN
Telephony are allowed except for 'p', 't', 'w', and '!'. The
appearance of an additional '&' will terminate processing of the
string.
Post-dialing of the specified digits will occur upon the first receipt
of one of the following IP call control messages:
 SIP -- 183 Progress
 SIP -- 200 OK
 H.323 -- Progress
 H.323 -- Connect
The post-dial feature is controlled by the user configuration file
parameter post_dialing_enable. If the feature is disabled by that
parameter, then the ampersand has no special effect and the
entire phonenum field is used as is.

Note: If a program accepts a phone number on the command line, the
phone number will likely need to be quoted if it contains an
ampersand, since this is a special character on most OSes.
(Use double quotes (") on Windows, or single (') or double (")
quotes on unixes.)

BfvLineOrigCallDB

March 2017 426

args.call_protocol_code

Selects a calling protocol for the channel. Supports:

CALL_PROTOCOL_VOICE

CALL_PROTOCOL_FAX

CALL_PROTOCOL_RAW

CALL_PROTOCOL_VOICE_NO_RAW

CALL_PROTOCOL_FAX_NO_RAW

Voice protocol – reports the results from the channel call progress
analysis and the raw data; generates a quick return (that is,
reports call progress results as soon as they are detected) when a
human or other answer condition is detected.
Fax protocol – reports the results from the channel call progress
analysis and the raw data; generates a quick return only when it
has established a fax connection or encountered a busy signal.
Other detected call progress results are returned after the
ced_timeout (the length of time to wait for the called station's
ID signal).
The BT_CPARM.CFG or the user-defined configuration file
determine the wait_for_ced value.
Raw protocol – reports raw HIGH/LOW call progress values
without performing any analysis.

args.func

Pointer to a user-supplied integer function that is called during
call progress. This function is called in a loop until a final call
progress result is returned or the user function indicates
termination of call progress.
Args.func is called as (*args.func)(lp,args.arg). The lp
argument contains the pointer to the line structure; the args.arg
argument contains the supplied user-defined argument.

args.arg

An argument for the args.func feature. Can be NULL.

args.db_file

Name of the dialing database file.

BfvLineOrigCallDB

March 2017 427

args.raw_number

String containing the telephone number to dial. This string must
contain the actual telephone number only; no long distance,
trunk, or other codes are valid. All characters except digits,
(pound or number symbol), and * (star or asterisk) will be
ignored.

args.report_cadence

If nonzero, enables cadence analysis and reporting. This mode is
available in full call progress mode only, not in limited call
progress mode (DISS).
Do not enable call progress programming in conjunctions with
this option. (See BfvLineCallProgressProgram).
Use this argument for development and debugging purposes.
When enabled, most other call progress analysis is disabled.

args.report_freq

If nonzero, enables frequency analysis and reporting. This mode
is available in full call progress mode only, not in limited call
progress mode (DISS).
Do not enable call progress programming in conjunction with this
option. (See BfvLineProgressProgram).
Use this argument for development and debugging purposes.
When enabled, most other call progress analysis is disabled.

args.freq_report_time

If nonzero, specifies frequency reporting interval, in milliseconds.
The default is 1000.

Output Return value: None.

args.wait_time

The amount of time to wait before dialing.

args.reason

The reason for the delay specified by args.wait_time.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvLineOrigCallDB

March 2017 428

Details This function takes the place of BfvDialDBCheck,
BfvLineOriginateCall, and BfvDialDBUpdate. The application
can use the BfvDialDBList function to examine the contents of the
dialing database.

This function can return res.status = BT_STATUS_ERROR and
res.line_status = APIERR_TOO_SOON.

Many countries have dialing restrictions that require applications to
maintain a database of information about previously called fax
telephone numbers. If the application dials a fax machine in one of
these countries, it must use the dialing database functions to avoid
violating the target country’s PTT regulations. Use the dialing
database functions only if your application sends facsimiles into
countries with such restrictions. For a list of the countries the API
supports and a description of their dialing restrictions, see Volume 6,
Appendix G, Country-Specific Parameter Files.

An application uses the dialing database functions to send a fax only
when it expects a fax machine to answer. An application must not
use the dialing database functions when it expects a human or a
voice answering machine to answer.

The dialing database functions use a lock file to ensure exclusive
access to the database. The name of this file is btdb.lck, and it
resides in the same directory as the dialing database. If execution of
the program stops prematurely (that is, the system crashes), the lock
file might remain. If this occurs, you must manually remove the lock
file so the dialing database functions can proceed.

The API uses the C library time() function for timing purposes.
Some libraries implement this function slightly differently. Users
must make sure that all programs using the DialDB functions on a
particular computer are linked with the same version of their
compiler library.

See Volume 6, Appendix G, Country-Specific Parameter Files for
more information about implementing dialing restrictions.

See Also BfvDialDBCheck, BfvDialDBList, BfvDialDBUpdate,
BfvLineDialString, BfvLineOriginateCall

Example See the dlfax.c application in the sample application directory.

March 2017 429

12 - Data Structures

This chapter describes the data structures and a macro that an
application uses to pass call control information to the Bfv API-level
functions.

It has the following sections:

 Low-Level Call Control (args_cc)

 Functions Using the args_cc Structure

 High-Level Call Control (args_telephone)

 Macros

The following pages describe the contents of data structures that
provide input or output to the call control functions. For call control
functions, use one of two common structures depending on the level
of control the application requires. These structures are:

 Low-Level Call Control (args_cc) on page 430

A common structure providing input and output information for
the low-level call control functions.

 High-Level Call Control (args_telephone) on page 458

A common structure providing input and output information for
high-level call control functions.

Low-Level Call Control (args_cc)

March 2017 430

Low-Level Call Control (args_cc)
The low-level call control functions use the args_cc data structure to
provide specific call control parameters for the called function.

This release of the Bfv API modifies this structure, removing fields that
allow the user to pass module and port-specific call control configuration
parameters to the system by calling the BfvCallCtrlInit function. You
must use the configuration tool provided with your Brooktrout SDK
(Windows systems), or edit your call control configuration (callctrl.cfg) file
to make changes to module or port-specific call control parameters. You
should use the BfvLineReset function to load and initialize new call
control configuration parameters.

Table 17 through Table 22, starting on page 456 show how functions
use the fields in the args_cc structure. The structure contains the
following fields:

struct args_cc
{
 int mode;
 int call_protocol_code;
 int cause;
 long timeout;
 const char *calling_party;
 char orig_called_num[ECC_MAX_DIGIT_STR];
 unsigned char calling_party_presentation;
 unsigned char calling_party_screening;
 enum TRxECCCallType call_type
 int call_mode;
 const char *phonenum;
 int state;
 RES res;
 CALL_RES cres;
 M_CB1 int (* M_CB2 db_func)(MILL_LINE *lp,char *arg);
 char *arg;
 char *btcall_file;
 void *reserved0; /* Removed - TRxModuleInfo

structure */
 int *reserved1; /* Removed - Number of elements

in structure */

Low-Level Call Control (args_cc)

March 2017 431

 int set_log_file;
 const char *log_file;
 MILL_LINE *lp_second_channel;
 int enquiry_call;
 int calls_on_hold;
 int ie_count;
 int ie_length;
 unsigned char ie_data;
 int cause_location;
 char name_ident[MAX_NAME_STR];
 int name_char_set;
 int disable_auto_sw_connect;
 CONNECTED_NUM connected_num;
 unsigned char override_numbering_plan;
 unsigned char override_numbering_type;
 int subcause;
 enum TRxTransportType call_transport;
 unsigned num_user_sip_headers;
 struct BT_USER_SIP_HEADER *user_sip_headers;
 int fax_media_feature_tag;
 unsigned fallback_rtp_reinvite;
 unsigned sip_header_list_len;
 BT_SIP_HEADER_LIST *sip_header_list;
};

Low-Level Call Control (args_cc)

March 2017 432

Fields in the args_cc Data Structure
Field Description

mode Specifies a value that determines how and whether the
BfvCallRingDetect function detects incoming ring signals. Set this
field as follows:

0 Turns ring detection behavior and static ring
detection mode off.

–1 Turns static ring detection mode on.
1 Turns ring detection behavior on.

call_protocol_code Specifies a calling protocol for the module that determines how and
when the module reports the results of call progress analysis. Set the
value of this field to:

CALL_PROTOCOL_FAX

Selects the fax protocol. This setting requests the module to
report the results from the module’s call progress analysis along
with the raw data. The module reports the results as soon as it
establishes the fax connection or encounters a busy condition.

CALL_PROTOCOL_RAW

Selects a value that requests the module to report the raw high
and low call progress results without performing any analysis.

CALL_PROTOCOL_VOICE

Selects the voice protocol. This setting requests the module to
report the results from the module’s call progress analysis along
with the raw data. The module reports the results as soon as it
detects a human or other answer condition.

CALL_PROTOCOL_FAX_NO_RAW
CALL_PROTOCOL_VOICE_NO_RAW

Selects either the fax or voice protocol, requesting the module to
report the results from the module’s call progress analysis
without including the raw data.

cause Specifies or returns an ISDN-defined code that provides the reason
why the call failed. See Volume 6, Appendix D, Defining ISDN Cause
Codes, for a description.

timeout Specifies an integer value that determines the length of time to wait
for the call control function to complete. Values are:

0 Indicates waiting forever with no timeout.
nonzero Indicates the number of milliseconds to wait for the

function to complete.

Low-Level Call Control (args_cc)

March 2017 433

calling_party Specifies a pointer reference to calling party information to send to
the remote end during an outbound call. The field allows a maximum
of 255 characters (ECC_MAX_DIGIT_STR - 1).

orig_called_num Returns the number of the first destination for the outbound call.
The field allows a maximum of 255 characters
(ECC_MAX_DIGIT_STR - 1).

calling_party_
presentation

Specifies or returns a value for ISDN calls only that indicates the
origin of the calling party number presented to the called party or
the accessibility level of the calling party number. Values are:
ECC_PRES_APP_DEFINED

Indicates that the application defined the presentation intention
to the called party.

ECC_PRES_ALLOWED

Indicates that the network allows presentation of the calling
party number to the called party.

ECC_PRES_RESTRICTED

Indicates that the network restricts presentation of the calling
party number to the called party.

ECC_PRES_NUM_NOT_AVAIL

Indicates that the network does not have a calling party number
specified to present to the called party.

calling_party_screening Specifies or returns a value for ISDN calls only that indicates the
origin and validity of the calling party number passed to the called
party. Values are:
ECC_SCRN_APP_DEFINED

Indicates that the application provided the calling party number
and defined its validation level.

ECC_SCRN_USER_NOT_SCREENED

Indicates that the network provided the calling party number
without validating it.

ECC_SCRN_USER_VERIFICATION_PASSED

Indicates that the network provided the calling party number and
passed a successfully validated number to the called party.

ECC_SCRN_USER_VERIFICATION_FAILED

Indicates that the network failed to validate the calling party
number.

ECC_SCRN_NETWORK_PROVIDED

Indicates that the network validated the calling party number.

Low-Level Call Control (args_cc)

March 2017 434

call_type Specifies the call type to use when making the outbound call. Set a
value in this field only if the ISDN port uses a BRI or PRI protocol. If
you set the field for any other type of ISDN protocol, the system
ignores this value. Use one of the following values for this field:

ECC_CALL_TYPE_DEFAULT

Makes the call using the default setting from the callctrl.cfg file.
ECC_CALL_TYPE_VOICE

Makes a voice call.
ECC_CALL_TYPE_MODEM

Makes a modem (3.1 kHz audio) call. This setting provides higher
quality audio for the call.

ECC_CALL_TYPE_AUTO

Makes a call using the modem type and then automatically
retries the call using the voice type if the other end cannot accept
modem calls.

call_mode Specifies a Boolean value that indicates whether the outbound call
expects to receive a fax transmission when the connection completes.
Set the field as follows:

FALSE Indicates that the outbound call does not expect to
receive a fax.

TRUE Indicates that the outbound call expects to receive a
fax after establishing the connection.

phonenum Specifies a pointer to a null-terminated ASCII string that identifies
the phone number to expect or dial. Dial strings (phone numbers)
may be up to a maximum of 255 characters (ECC_MAX_DIGIT_STR -
1).

An application can use the phonenum field as input to the
BfvCallRingDetect function to implement basic inbound call
routing for an IP-enabled application. Unlike applications for PSTN
line types, any channel in the system can answer incoming IP calls.
To route an inbound IP-enabled (SIP and H.323) call, use this field to
pass in a DID phone number that the incoming call must match
before the system presents the call to the application (see
BfvCallRingDetect on page 297).

PSTN Telephony

The dial string field supports the following digits and control
characters. Invalid characters are ignored; upper and lower case
letters are equivalent. Some protocols ignore control characters
and only accept DTMF characters.

Low-Level Call Control (args_cc)

March 2017 435

Valid Digits and Control Characters

Note: In an analog environment or when using a T1 robbed bit
FXS loopstart or E1 CAS loopstart protocol, the ‘w’ character
means wait for dial tone. All other protocols ignore the ‘w’ and
‘i’ characters. Only analog environments and T1 robbed bit or
E1 CAS protocols use the ‘p’, ‘t’, comma and semicolon
characters.

IP Telephony
For IP outbound calls using the H.323 protocol:
 Phone#@IP Address:Port#

If the receiving side does not require a phone number, a value
for Phone# is optional. Also, :Port# is optional — the Bfv
API uses 1720 as the default port value.

 TA:IP Address:Port#,Phone#

:Port# is optional — the Bfv API uses 1720 as the default
port value. If the receiving side does not require a phone
number, a value for Phone# is optional.

 Name:<name of person to dial>

Use this form only if using gatekeeper

0 - 9 Dials digits ‘0’ through ‘9’.

(pound) Dials a pound.

* (asterisk) Dials an asterisk.

A - D Sends the DTMF tone corresponding to the
specified alphabetic character.

p Changes the current or default dialing mode
from tone dialing to pulse dialing.

t Changes the current or default dialing mode
from pulse dialing to tone dialing.

w Waits for dial tone.

, (comma) Causes a 1-second pause.

; (semicolon),
i or I

Causes a 5-second pause. To create longer
pauses, string any of these characters
together.

! (exclamation point) Sends a hook flash on analog and T1 robbed
bit modules.

Low-Level Call Control (args_cc)

March 2017 436

 E164alias:7894561234

Use this form only if using gatekeeper
Note: DNS lookups are not supported in H.323. You can use an

H.323 or E.164 alias in conjunction with a gatekeeper to
provide similar functionality.

Examples
4082345555@10.155.89.6:175
4082345555@10.155.89.6

TA:10.155.89.6:175,4082345555
TA:10.155.89.6,4082345555
TA:10.155.89.6

Name:Fred Smith
E164alias:4082345555

For IP outbound calls using the SIP protocol:
Phone#@IP Address:Port#

If the receiving side does not require a phone number, a value for
Phone# is optional. Also, :Port# is optional - the Bfv API uses
5060 as the default port value.

Examples (IPv4 Addresses)
4082345555@10.155.89.7:175
4082345555@10.155.89.7

Examples (IPv6 Addresses)
4082345555@[2000::2ef3:1dff:ea3]:175
4082345555@[fe80::1f4:189c:74da:69f7]

Note: IPv6 addresses must be enclosed in brackets. In addition, if a
link-local IPv6 address is specified, the Scope ID should be
omitted from the address.

DTMF Post Dialing
For all types of IP calls, the character '&' (ampersand) may be
included to initiate post-dialing. This character indicates that the
rest of phonenum specifies a sequence of DTMF digits to be "post-
dialed" after messages from the remote side indicate the call is
proceeding towards connecting.
Within the post-dial string, all dialing characters listed for PSTN
Telephony are allowed except for 'p', 't', 'w', and '!'. The
appearance of an additional '&' will terminate processing of the
string.

Low-Level Call Control (args_cc)

March 2017 437

Post-dialing of the specified digits will occur upon the first receipt
of one of the following IP call control messages:
 SIP -- 183 Progress
 SIP -- 200 OK
 H.323 -- Progress
 H.323 -- Connect
The post-dial feature is controlled by the user configuration file
parameter post_dialing_enable. If the feature is disabled by that
parameter, then the ampersand has no special effect and the
entire phonenum field is used as is.

Note: If a program accepts a phone number on the command line, the
phone number will likely need to be quoted if it contains an
ampersand, since this is a special character on most OSes.
(Use double quotes (") on Windows, or single (') or double (")
quotes on unixes.)

state Returns the current state of the call. Values are:
BST_ALERTING

Detected an incoming call.
BST_CALL_DETECTED

Detected an incoming call but the call is not ready to be answered.
BST_CLEAR_CALL

Attempting to clear an active call on the channel.
BST_CONNECTED

Call is connected.
BST_DIAL

Attempted an outgoing call.
BST_DIAL_COMPLETE

Waiting for the remote end to answer the call.
BST_DOWN

Phone line or trunk is out of order.
BST_IDLE

Channel does not have an active call.
BST_WAIT_FOR_CALL

Waiting to receive a call.

res Returns a result (RES) structure to the caller that contains status
information about the call. See Result Structures in Volume 6,
Appendix B for return values.

Low-Level Call Control (args_cc)

March 2017 438

cres Returns a CALL_RES structure that contains specific information
about the call, particularly calls made over ISDN lines. See
Appendix B, CALL_RES Structure Parameters in Volume 6, for
return values.

func Specifies a pointer reference to a user-supplied integer function to call
during call progress. Call this user-defined function in a loop until the
function:

1. Returns a final call progress result or

2. Indicates the end of call progress by returning a value of 1.

arg Provides an input argument for the func feature field. This field
accepts a NULL setting if the user-defined function does not need an
argument.

btcall_file Specifies a null-terminated string that identifies the full path and
file name to the btcall.cfg user-defined configuration file. The field
allows a maximum of 256 characters (MAX_PATH).

set_log_file Specifies a Boolean value that defines the validity of the log_file field
as follows:

FALSE Ignores the log_file field.
TRUE Signifies that the log_file field contains a valid file

name for the log file.

log_file Specifies a null-terminated string that identifies the full path and
file name of the log file. The field allows a maximum of 256
characters (MAX_PATH). Setting a value in this field overrides the log
file named in the call control configuration file.

lp_second_channel Specifies a reference to the lp of the second channel for the transfer
process to use when the protocol requires two B-channels to transfer
a call. For example, when a protocol uses the Release Link Trunk
(RLT) feature that requires two B-channels to process a call transfer,
the application must specify this field to make a call transfer.

Note: The SR140 does not support this field.

Low-Level Call Control (args_cc)

March 2017 439

enquiry_call Specifies a Boolean value that indicates whether the function sets up
the outbound call to handle it as a transfer from the called party.

Note: The SR140 does not support this field.

Set the field as follows:

FALSE Indicates that the outbound call is not set up to make
a transfer.

TRUE Indicates that the outbound call expects to make a
transfer from the called party.

When the application sets the value in this field to TRUE and the line
only supports single B-channel call transfer, the application must
put the line on hold first using the BfvCallHold function. The
application does not need to use the BfvCallHold function when the
line support provides two B-channels for the transfer.

calls_on_hold Returns the number of calls that the channel has on hold.

Note: The SR140 does not support this field.

args.ie_count Specifies the number of custom information elements (IE) to send.

args.ie_length Specifies the number of bytes that the custom args.ie_data field
contains.

args.ie_data Specifies an array of hexadecimal characters that indicate the
content of the custom IE.

cause_location Returns an ISDN-defined code that indicates the originator (local or
remote) of the failure notification or call teardown (see cause on
page 432).

name_ident Specifies text identifying the name of the calling party if provided by
the network. The field allows a maximum of 50 characters
(ECC_MAX_NAME_STR).

name_char_set Specifies the international standard specification (ISOxxx) of the
character set in use. Values are:

NAME_CHAR_SET_UNKNOWN–1

Unknown character set in use.
NAME_CHAR_SET_NOT_INCLUDED0

Name does not identify a character set and the API does not send
one.

NAME_CHAR_SET_ISO8859_11

Specifies use of character set defined by ISO 8859-1 international
standard.

Low-Level Call Control (args_cc)

March 2017 440

NAME_CHAR_SET_ISO8859_23

Specifies use of character set defined by ISO 8859-2 international
standard.

NAME_CHAR_SET_ISO8859_34

Specifies use of character set defined by ISO 8859-3 international
standard.

NAME_CHAR_SET_ISO8859_45

Specifies use of character set defined by ISO 8859-4 international
standard.

NAME_CHAR_SET_ISO8859_56

Specifies use of character set defined by ISO 8859-5 international
standard.

NAME_CHAR_SET_ISO8859_77

Specifies use of character set defined by ISO 8859-7 international
standard.

NAME_CHAR_SET_ISO10646_BMP8

Specifies use of character set defined by ISO 10646-1 and ITU-T
Recommendation X.680 international standards.

NAME_CHAR_SET_ISO10646_UTF9

Specifies use of character set defined by UTF-8-STRING Annex R
in ISO 10646-1 international standard.

disable_auto_sw_connect Specifies a Boolean value that indicates whether to turn the
automatic switch connection feature on or off when completing a
two-channel call transfer that requires connecting the two
B channels together (QSIG protocol). In the
BfvCallWaitTransferComplete function, set this field as follows:
FALSE Automatically makes the switch connection for a call

transfer that requires two B-channels connected
together.

TRUE Turns off the automatic switch connection capability
for the two-channel call transfer. The application
must use the BfvCallSwConnect function to
connect the two B channels together to make a call
transfer.

Low-Level Call Control (args_cc)

March 2017 441

connected_num Specifies a structure of type CONNECTED_NUM, containing
information about the connected number that the function sends or
receives from the network as part of the CONNECT message. The
structure contains the following fields:

typedef struct {
char addr [MAX_CONN_NUM];
unsigned char connected_num_type;
unsigned char connected_num_plan;
unsigned char connected_num_presentation;
unsigned char connected_num_screening;

} CONNECTED_NUM

The fields are defined as follows:

addr

Specifies a null-terminated string of up to 31 characters
(MAX_CONN_NUM) that provides the telephone number of the
connected party.

connected_num_type

Specifies a valid value for the type of telephone number in use
depending on the value selected for connected_num_plan.
Values are:
ECC_NUM_TYPE_ABBREVIATED

Indicates that the port uses an abbreviated numbering type.
ECC_NUM_TYPE_INTERNATIONAL

Indicates that the port uses an international numbering type.
ECC_NUM_TYPE_NATIONAL

Indicates that the port uses a national numbering type.
ECC_NUM_TYPE_SUBSCRIBER

Indicates that the port uses a subscriber numbering type.
ECC_NUM_TYPE_UNKNOWN

Indicates that the port uses an unknown numbering type.

Low-Level Call Control (args_cc)

March 2017 442

connected_num_plan

Specifies a valid value for the type of numbering plan in use.
Values are:
ECC_NUM_PLAN_UNKNOWN

Indicates that the port uses an unknown numbering plan.
ECC_NUM_PLAN_ISDN

Indicates that the port uses an ISDN numbering plan.
ECC_NUM_PLAN_TELEPHONY

Indicates that the port uses a telephony numbering plan.
ECC_NUM_PLAN_PRIVATE

Indicates that the port uses a private numbering plan.

connected_num_presentation

See calling_party_ presentation on page 433 for the description
and values for this field.

connected_num_screening

See calling_party_screening on page 433 for the description and
values for this field.

override_numbering_plan Specifies the telephone numbering plan used for outbound calls.
Values are:

ECC_NUM_PLAN_UNKNOWN
Indicates that the port uses an unknown numbering plan.

ECC_NUM_PLAN_ISDN
Indicates that the port uses an ISDN numbering plan.

ECC_NUM_PLAN_TELEPHONY
Indicates that the port uses a telephony numbering plan.

ECC_NUM_PLAN_PRIVATE
Indicates that the port uses a private numbering plan.

override_numbering_type Specifies the type of telephone number used for outbound calls.
Values are:

ECC_NUM_TYPE_UNKNOWN
Indicates that the port uses an unknown numbering type.

ECC_NUM_TYPE_INTERNATIONAL
Indicates that the port uses an international numbering type.

Low-Level Call Control (args_cc)

March 2017 443

ECC_NUM_TYPE_NATIONAL
Indicates that the port uses a national (North American)
numbering type.

ECC_NUM_TYPE_SUBSCRIBER
Indicates that the port uses a subscriber numbering type.

ECC_NUM_TYPE_ABBREVIATED
Indicates that the port uses an abbreviated numbering type.

subcause Specifies or returns a SIP response code that provides the reason
why the call failed or terminated. The definitions of these response
codes are specified in RFC 3261.

call_transport Specifies or returns a value for SIP calls only that indicates the
transport protocol from one of the following:

TRANSPORT_TYPE_UDP
Indicates User Datagram Protocol (UDP) as the transport
protocol for the SIP call.

TRANSPORT_TYPE_TCP
Indicates Transmission Control Protocol (TCP) as the
transport protocol for the SIP call. In order to use this setting
for outbound SIP calls, TCP protocol support must be enabled
in the call control configuration file (see Volume 6, Appendix
A, Configuration Files).

TRANSPORT_TYPE_DEFAULT
Indicates the default call transport, either UDP or TCP to use
for an outbound SIP call. If the default call transport is not
explicitly specified in the call control configuration file, UDP
will be used. Otherwise, the transport protocol used for the
outbound SIP call will be what's specified in the call control
configuration file (see Volume 6, Appendix A, Configuration
Files).

Note: This field only works for calls using the SIP internet protocol.
The Bfv API ignores this field for calls using the H.323 internet
protocol and PSTN line types.

num_user_sip_headers Specifies the number of entries in the array of
BT_USER_SIP_HEADER structures referenced by the
user_sip_headers field.

Note: This field only works for calls using the SIP internet protocol.
The Bfv API ignores this field for calls using the H.323 internet
protocol and PSTN line types.

Low-Level Call Control (args_cc)

March 2017 444

user_sip_headers Specifies a reference to an array of BT_USER_SIP_HEADER
structures that specify non-standard SIP header names and values
to add to the initial SIP INVITE of an outbound call. The number of
entries in the array is specified by the num_user_sip_headers field. If
the value specified by num_user_sip_headers is 0, this field is
ignored.

Note: This field only works for calls using the SIP internet protocol.
The Bfv API ignores this field for calls using the H.323 internet
protocol and PSTN line types.

fax_media_feature_tag Specify "sip.fax" media feature tag value to add to Accept-Contact
header in outbound SIP INVITE request. Use one of the following
values for this field:

BT_FAX_MEDIA_FEATURE_TAG_DEFAULT
Set "sip.fax" media feature tag to a default value based on the
fax_transport_protocol parameter value in the
t38parameters section of the callctrl.cfg file as specified in
the following table:

BT_FAX_MEDIA_FEATURE_TAG_T38
Set" sip.fax" media feature tag to "t38".

BT_FAX_MEDIA_FEATURE_TAG_PASSTHROUGH
Set "sip.fax" media feature tag to "passthrough".

BT_FAX_MEDIA_FEATURE_TAG_DISABLED
Do not add "sip.fax" media feature tag to transmitted SIP
INVITE message.

In order to use this field for outbound SIP calls, RFC 6913 feature
support must be enabled in the call control configuration file (see
Volume 6, Appendix A, Configuration Files).

Note: This field only works for calls using the SIP internet protocol.
The Bfv API ignores this field for calls using the H.323 internet
protocol and PSTN line types.

fax_transport_protocol value "sip.fax" value
t38_never passthrough

t38_only t38

t38_first t38

Not specified in callctrl.cfg file t38

Low-Level Call Control (args_cc)

March 2017 445

fallback_rtp_reinvite Specifies whether or not a SIP RTP reINVITE should be transmitted
for G.711 fallback mode if a SIP T.38 reINVITE is rejected with
either a 488 (Not Acceptable Here) or a 606 (Not Acceptable). Valid
values are:

BT_FALLBACK_RTP_REINVITE_DEFAULT

Default to the setting specified in the call control configuration
file.

BT_FALLBACK_RTP_REINVITE_DISABLE

Do not transmit a SIP RTP reINVITE if a SIP T.38 reINVITE
is rejected.

BT_FALLBACK_RTP_REINVITE_ENABLE

Transmit a SIP RTP reINVITE if a SIP T.38 reINVITE is
rejected.

When the application sets the value in this field to
BT_FALLBACK_RTP_REINVITE_DEFAULT, the functionality
will default to the setting specified in the call control configuration
file (callctrl.cfg) by the g711_fallback_rtp_reinvite parameter. If
the g711_fallback_rtp_reinvite parameter isn't specified in the
call control configuration file, then the default functionality is
BT_FALLBACK_RTP_REINVITE_DISABLE.

An application can override the value specified in the call control
configuration file by the g711_fallback_rtp_reinvite parameter by
setting this field to a value of either
BT_FALLBACK_RTP_REINVITE_DISABLE or
BT_FALLBACK_RTP_REINVITE_ENABLE.

Setting this field to a value of
BT_FALLBACK_RTP_REINVITE_DISABLE will prevent
transmission of a SIP RTP reINVITE if a SIP T.38 reINVITE is
rejected.

Low-Level Call Control (args_cc)

March 2017 446

Setting this field to a value of
BT_FALLBACK_RTP_REINVITE_ENABLE will result in
transmission of a SIP RTP reINVITE if a SIP T.38 reINVITE is
rejected with either a 488 (Not Acceptable Here) or a 606 (Not
Acceptable) and the fax transport protocol
(fax_transport_protocol) parameter specified in the call control
configuration file is set to t38_first. The SDP settings in the SIP
RTP reINVITE will be the same RTP codec settings initially used to
establish the call.

Note: This field only works for calls using the SIP internet protocol.
The Bfv API ignores this field for calls using the H.323 internet
protocol or PSTN line types.

sip_header_list_len Specifies the size of the memory buffer pointed to by the
sip_header_list field. This field should be set when the Bfv
application wants to retrieve the SIP header information specified in
an inbound SIP INVITE request used to establish a SIP call.

On input to the BfvCallWaitForSetup function, this field should be
set to the size of the memory buffer pointed to by the sip_header_list
field.

Upon return from the BfvCallWaitForSetup function, if a SIP call
has successfully been received, this field will be set to the amount of
data in the sip_header_list memory buffer that has been populated
with SIP header data. If the memory buffer pointed to by
sip_header_list isn't large enough to hold all the SIP header data
from the inbound SIP INVITE request, then sip_header_list_len will
be set to a value of SIP_HEADER_INVALID_LEN. In this case,
the memory buffer pointed to by sip_header_list will only be
populated with complete SIP header name/header value pairs that
fit in the buffer.

For example, if there are 10 SIP headers in the inbound SIP INVITE
request, but the memory buffer pointed to by sip_header_list can
only hold enough data for 9 complete SIP header name/header value
pairs retrieved from the SIP INVITE request with 30 bytes of the
buffer unused, then the sip_header_list_len field will be set to a
value of SIP_HEADER_INVALID_LEN and only 9 complete SIP
header name/header value pairs will be returned in the
sip_header_list buffer. No partial or incomplete SIP header
information from the 10th header will be used to populate the
remaining 30 bytes in the sip_header_list buffer.

Low-Level Call Control (args_cc)

March 2017 447

If the Bfv application doesn't want to retrieve the SIP header
information specified in an inbound SIP INVITE request,
sip_header_list_len should be set to 0 and sip_header_list should be
set to NULL prior to calling BfvCallWaitForSetup.

Note: This field only works for inbound calls using the SIP internet
protocol. The Bfv API ignores this field for all outbound calls
and calls using the H.323 internet protocol or PSTN line types.

sip_header_list Specifies a pointer to a memory buffer allocated by the Bfv
application to receive SIP header data from an inbound SIP INVITE
request used to establish a SIP call. The size of the memory buffer
pointed to by sip_header_list should be specified in the
sip_header_list_len field.

On input to the BfvCallWaitForSetup function, this field should be
set to the address of a memory buffer allocated by the Bfv
application that will receive the SIP header data. As sip_header_list
is a pointer to a BT_SIP_HEADER_LIST structure, the Bfv
application memory buffer should be allocated and initialized in a
manner similar to the following:

args_cc.sip_header_list =
 (BT_SIP_HEADER_LIST *)malloc(1000);
memset(args_cc.sip_header_list, 0, 1000);
args_cc.sip_header_list_len = 1000;

Upon return from the BfvCallWaitForSetup function, if a SIP call
has successfully been received, the memory buffer pointed to by
sip_header_list will be populated with a singly linked list of SIP
header data stored in BT_SIP_HEADER_NODE structures
starting with a BT_SIP_HEADER_LIST structure.

Some SIP headers that have multiple values may be returned as
several SIP headers. For example, the following header:

Allow: INVITE, ACK, OPTIONS, CANCEL, BYE

Will be returned as five separate headers:

Header Name Header Value

Allow INVITE

Allow ACK

Allow OPTIONS

Low-Level Call Control (args_cc)

March 2017 448

If some of the SIP header names in the inbound SIP INVITE request
were specified in compact form, they may be returned to the Bfv
application in long form (e.g., Content-Type header name specified in
inbound SIP request as "c", returned to Bfv application as "Content-
Type").

The maximum supported number of SIP headers that can be
returned is 98.

If the Bfv application doesn't want to retrieve the SIP header
information specified in an inbound SIP INVITE request,
sip_header_list_len should be set to 0 and sip_header_list should be
set to NULL prior to calling BfvCallWaitForSetup.

Note: This field only works for inbound calls using the SIP internet
protocol. The Bfv API ignores this field for all outbound calls
and calls using the H.323 internet protocol or PSTN line types.

Allow CANCEL

Allow BYE

Functions Using the args_cc Structure

March 2017 449

Functions Using the args_cc Structure
The following tables provide a matrix of the low-level call control
functions and the fields in the args_cc data structure. "Input" and
"Output" define how the function requires or returns a value for the
indicated field.

 Table 17 on page 450

Includes BfvCallAccept, BfvCallCtrlInit,
BfvCallDisconnect, BfvCallDivert

 Table 18 on page 451

Includes BfvCallHold, BfvCallReject, BfvCallRetrieve,
BfvCallRingDetect

 Table 19 on page 452

Includes BfvCallSendAlerting, BfvCallSetup,
BfvCallStatus, BfvCallTransferComplete

 Table 20 on page 453

Includes BfvCallWaitForAccept, BfvCallWaitForAlerting,
BfvCallWaitForComplete, BfvCallWaitForDivert

 Table 21 on page 455

Includes BfvCallWaitForHold, BfvCallWaitForRelease,
BfvCallWaitForRetrieve

 Table 22 on page 456

Includes BfvCallWaitForSetup,
BfvCallWaitTransferComplete

Functions Using the args_cc Structure

March 2017 450

Table 17. How Functions Use args_cc Fields - Part 1
Field BfvCallAccept BfvCallCtrlInit BfvCallDisconnect BfvCallDivert
arg

btcall_file Input

call_mode

call_protocol_code

call_type

calling_party

calling_party_presentation

calling_party_screening

calls_on_hold

cause Input

cause_location

connected_num Input

cres Input

disable_auto_sw_connect

enquiry_call

func

ie_count

ie_data

ie_length

log_file Input

lp_second_channel Input

mode

name_char_set Input

name_ident Input

orig_called_num

phonenum

res Output Output Output Output

set_log_file Input

state

subcause

timeout

call_transport

Functions Using the args_cc Structure

March 2017 451

num_user_sip_headers

user_sip_headers

fax_media_feature_tag

fallback_rtp_reinvite

sip_header_list_len

sip_header_list

Table 18. How Functions Use args_cc Fields - Part 2
Field BfvCallHold BfvCallReject BfvCallRetrieve BfvCallRingDetect
arg

btcall_file

call_mode

call_protocol_code

call_type

calling_party

calling_party_presentation

calling_party_screening

calls_on_hold

cause Input

cause_location

connected_num

cres

disable_auto_sw_connect

enquiry_call

func

ie_count

ie_data

ie_length

log_file

lp_second_channel

mode Input

name_char_set

name_ident

Table 17. How Functions Use args_cc Fields - Part 1
Field BfvCallAccept BfvCallCtrlInit BfvCallDisconnect BfvCallDivert

Functions Using the args_cc Structure

March 2017 452

orig_called_num

phonenum Input

res Output Output Output Output

set_log_file

state

subcause Input

timeout

call_transport

num_user_sip_headers

user_sip_headers

fax_media_feature_tag

fallback_rtp_reinvite

sip_header_list_len

sip_header_list

Table 19. How Functions Use args_cc Fields - Part 3

Field
BfvCallSend
Alerting BfvCallSetup BfvCallStatus

BfvCallTransfer
Complete

arg

btcall_file

call_mode

call_protocol_code Input

call_type Input

calling_party Input

calling_party_presentation Input

calling_party_screening Input

calls_on_hold Output

cause

cause_location

connected_num

cres

disable_auto_sw_connect

enquiry_call Input

func

Table 18. How Functions Use args_cc Fields - Part 2
Field BfvCallHold BfvCallReject BfvCallRetrieve BfvCallRingDetect

Functions Using the args_cc Structure

March 2017 453

ie_count Input

ie_data Input

ie_length Input

log_file

lp_second_channel Input

mode

name_char_set Input

name_ident Input

orig_called_num

phonenum Input

res Output Output Output Output

set_log_file

state Output

subcause

timeout

call_transport Input

num_user_sip_headers Input

user_sip_headers Input

fax_media_feature_tag Input

fallback_rtp_reinvite Input

sip_header_list_len

sip_header_list

Table 20. How Functions Use args_cc Fields - Part 4

Field
BfvCallWaitFor
Accept

BfvCallWaitFor
Alerting

BfvCallWaitFor
Complete

BfvCallWaitFor
Divert

arg Input

btcall_file

call_mode Input

call_protocol_code Input

call_type

calling_party

calling_party_presentation

Table 19. How Functions Use args_cc Fields - Part 3

Field
BfvCallSend
Alerting BfvCallSetup BfvCallStatus

BfvCallTransfer
Complete

Functions Using the args_cc Structure

March 2017 454

calling_party_screening

calls_on_hold

cause Output Output Output

cause_location Output Output Output

connected_num

cres Output

disable_auto_sw_connect

enquiry_call

func Input

ie_count

ie_data

ie_length

log_file

lp_second_channel

mode

name_char_set

name_ident

orig_called_num

phonenum

res Output Output Output Output

set_log_file

state

subcause Output Output Output

timeout Input Input Input Input

call_transport Output

num_user_sip_headers

user_sip_headers

fax_media_feature_tag

fallback_rtp_reinvite

sip_header_list_len

sip_header_list

Table 20. How Functions Use args_cc Fields - Part 4

Field
BfvCallWaitFor
Accept

BfvCallWaitFor
Alerting

BfvCallWaitFor
Complete

BfvCallWaitFor
Divert

Functions Using the args_cc Structure

March 2017 455

Table 21. How Functions Use args_cc Fields - Part 5

Field BfvCallWaitForHold
BfvCallWaitFor
Release

BfvCallWaitFor
Retrieve

arg

btcall_file

call_mode

call_protocol_code

call_type

calling_party

calling_party_presentation

calling_party_screening

calls_on_hold

cause Output

cause_location Output

connected_num

cres

disable_auto_sw_connect

enquiry_call

func

ie_count

ie_data

ie_length

log_file

lp_second_channel

mode

name_char_set

name_ident

orig_called_num

phonenum

res Output Output Output

set_log_file

state

subcause Output

timeout Input

call_transport

Functions Using the args_cc Structure

March 2017 456

num_user_sip_headers

user_sip_headers

fax_media_feature_tag

fallback_rtp_reinvite

sip_header_list_len

sip_header_list

Table 22. How Functions Use args_cc Fields - Part 6
Field BfvCallWaitForSetup BfvCallWaitTransferComplete
arg

btcall_file

call_mode

call_protocol_code

call_type

calling_party

calling_party_presentation Output

calling_party_screening Output

calls_on_hold

cause

cause_location

connected_num

cres Output

disable_auto_sw_connect Input

enquiry_call

func

ie_count

ie_data

ie_length

log_file

lp_second_channel

mode

name_char_set

name_ident

Table 21. How Functions Use args_cc Fields - Part 5

Field BfvCallWaitForHold
BfvCallWaitFor
Release

BfvCallWaitFor
Retrieve

Functions Using the args_cc Structure

March 2017 457

orig_called_num Output

phonenum

res Output Output

set_log_file

state

subcause

timeout Input

call_transport Output

num_user_sip_headers

user_sip_headers

fax_media_feature_tag

fallback_rtp_reinvite

sip_header_list_len Input/Output

sip_header_list Input/Output

Table 22. How Functions Use args_cc Fields - Part 6
Field BfvCallWaitForSetup BfvCallWaitTransferComplete

High-Level Call Control (args_telephone)

March 2017 458

High-Level Call Control (args_telephone)
The high-level call control functions use fields of the args_telephone
data structure to provide call control parameters for the called
function. The structure contains the following fields:

struct args_telephone
{
 RES res;
 CALL_RES call_res;
 MCONST char *phonenum;
 int call_protocol_code;
 long timeout;
 int call_mode;
 M_CB1 int (* M_CB2 func)(MILL_LINE *lp, char *arg);
 char *arg;
 unsigned char type;
 unsigned char data;
 MCONST char *db_file;
 MCONST RES *db_res;
 long wait_time;
 int reason;
 M_CB1 int (* M_CB2 db_func)(struct dialdb *dbentry, char *arg);
 char *raw_number;
 int orig_answer;
 unsigned report_cadence;
 unsigned report_freq;
 unsigned req_report_time;
 unsigned template_number;
 unsigned prog_freq;
 unsigned prog_cadence;
 unsigned diss_mode;
 unsigned short frequencies[2];
 unsigned duration;
 int level;
 unsigned short cadence_pattern[4];
 struct {
 unsigned short freq;
 short level;
 } freq_data[3];
 int diss_only;
 unsigned cause_code;
 MILL_LINE *async_lp;
 int transfer_mode;
 int transfer_group;
 MILL_LINE *lp_second_channel;
 int supervised;
 int transfer_line_state;
 int hold_call;
 unsigned subcause;
 unsigned cause_location;
 enum TRxTransportType call_transport;
 unsigned num_user_sip_headers;
 struct BT_USER_SIP_HEADER *user_sip_headers;
 int fax_media_feature_tag;
 unsigned fallback_rtp_reinvite;
 unsigned sip_header_list_len;
 BT_SIP_HEADER_LIST *sip_header_list;
};

High-Level Call Control (args_telephone)

March 2017 459

Field Description

res Returns a result (RES) structure to the caller that contains status
information about the call. See Result Structures in Volume 6,
Appendix B for return values.

call_res Returns a CALL_RES structure that contains specific information
about the call, particularly calls made over ISDN lines. See
CALL_RES Structure Parameters in Volume 6, Appendix B for
return values.

phonenum Specifies a pointer to a null-terminated ASCII string that identifies
the phone number to expect or dial. Dial strings (phone numbers)
may be up to a maximum of 255 characters (ECC_MAX_DIGIT_STR -
1).

An application can use the phonenum field as input to the
BfvLineWaitForCall function to implement basic inbound call
routing for an IP-enabled application. Unlike applications for PSTN
line types, any channel in the system can answer incoming IP calls.
To route an inbound IP-enabled (SIP or H.323) call, use this field to
pass in a DID phone number that the incoming call must match
before the system presents the call to the application (see
BfvLineWaitForCall on page 400).

PSTN Telephony

The dial string field supports the following digits and control
characters. Invalid characters are ignored; upper and lower case
letters are equivalent. Some protocols ignore control characters
and only accept DTMF characters.

High-Level Call Control (args_telephone)

March 2017 460

Valid Digits and Control Characters

Note: In an analog environment or when using a T1 robbed bit
FXS loopstart or E1 CAS loopstart protocol, the ‘w’ character
means wait for dial tone. All other protocols ignore the ‘w’ and
‘i’ characters. Only analog environments and T1 robbed bit or
E1 CAS protocols use the ‘p’, ‘t’, comma and semicolon
characters.

IP Telephony
For IP outbound calls using the H.323 protocol:
 Phone#@IP Address:Port#

If the receiving side does not require a phone number, a value
for Phone# is optional. Also, :Port# is optional — the Bfv
API uses 1720 as the default port value.

 TA:IP Address:Port#,Phone#

:Port# is optional — the Bfv API uses 1720 as the default
port value. If the receiving side does not require a phone
number, a value for Phone# is optional.

 Name:<name of person to dial>

Use this form only if using gatekeeper

0 - 9 Dials digits ‘0’ through ‘9’.

(pound) Dials a pound.

* (asterisk) Dials an asterisk.

A - D Sends the DTMF tone corresponding to the
specified alphabetic character.

p Changes the current or default dialing mode
from tone dialing to pulse dialing.

t Changes the current or default dialing mode
from pulse dialing to tone dialing.

w Waits for dial tone.

, (comma) Causes a 1-second pause.

; (semicolon),
i or I

Causes a 5-second pause. To create longer
pauses, string any of these characters
together.

! (exclamation point) Sends a hook flash on analog and T1 robbed
bit modules.

High-Level Call Control (args_telephone)

March 2017 461

 E164alias:7894561234

Use this form only if using gatekeeper
Note: DNS lookups are not supported in H.323. You can use an

H.323 or E.164 alias in conjunction with a gatekeeper to
provide similar functionality.

Examples
4082345555@10.155.89.6:175
4082345555@10.155.89.6

TA:10.155.89.6:175,4082345555
TA:10.155.89.6,4082345555
TA:10.155.89.6

Name:Fred Smith
E164alias:4082345555

For IP outbound calls using the SIP protocol:
Phone#@IP Address:Port#

If the receiving side does not require a phone number, a value for
Phone# is optional. Also, :Port# is optional - the Bfv API uses
5060 as the default port value.

Examples (IPv4 Addresses)
4082345555@10.155.89.7:175
4082345555@10.155.89.7

Examples (IPv6 Addresses)
4082345555@[2000::2ef3:1dff:ea3]:175
4082345555@[fe80::1f4:189c:74da:69f7]

Note: IPv6 addresses must be enclosed in brackets. In addition, if a
link-local IPv6 address is specified, the Scope ID should be
omitted from the address.

DTMF Post Dialing
For all types of IP calls, the character '&' (ampersand) may be
included to initiate post-dialing. This character indicates that the
rest of phonenum specifies a sequence of DTMF digits to be "post-
dialed" after messages from the remote side indicate the call is
proceeding towards connecting.
Within the post-dial string, all dialing characters listed for PSTN
Telephony are allowed except for 'p', 't', 'w', and '!'. The
appearance of an additional '&' will terminate processing of the
string.

High-Level Call Control (args_telephone)

March 2017 462

Post-dialing of the specified digits will occur upon the first receipt
of one of the following IP call control messages:
 SIP -- 183 Progress
 SIP -- 200 OK
 H.323 -- Progress
 H.323 -- Connect
The post-dial feature is controlled by the user configuration file
parameter post_dialing_enable. If the feature is disabled by that
parameter, then the ampersand has no special effect and the
entire phonenum field is used as is.

Note: If a program accepts a phone number on the command line, the
phone number will likely need to be quoted if it contains an
ampersand, since this is a special character on most OSes.
(Use double quotes (") on Windows, or single (') or double (")
quotes on unixes.)

call_protocol_code Specifies a calling protocol for the module that determines how and
when the module reports the results of call progress analysis. Set the
value of this field to:

CALL_PROTOCOL_FAX

Selects the fax protocol. This setting requests the module to
report the results from the module’s call progress analysis along
with the raw data. The module reports the results as soon as it
establishes the fax connection or encounters a busy condition.

CALL_PROTOCOL_RAW

Selects a value that requests the module to report the raw high
and low call progress results without performing any analysis.

CALL_PROTOCOL_VOICE

Selects the voice protocol. This setting requests the module to
report the results from the module’s call progress analysis along
with the raw data. The module reports the results as soon as it
detects a human or other answer condition.

CALL_PROTOCOL_FAX_NO_RAW

CALL_PROTOCOL_VOICE_NO_RAW

Selects either the fax or voice protocol, requesting the module to
report the results from the module’s call progress analysis
without including the raw data.

High-Level Call Control (args_telephone)

March 2017 463

timeout Specifies a value that determines the length of time to wait for a call
control function to complete. Values are:

0 Indicates waiting forever with no timeout.
nonzero Indicates the number of milliseconds to wait for the

function to complete.

call_mode Specifies a Boolean value that indicates whether the outbound call
expects to receive a fax transmission when the connection completes.
Set the field as follows:

FALSE Indicates that the outbound call does not expect to
receive a fax.

TRUE Indicates that the outbound call expects to receive a
fax after establishing the connection.

func Specifies a pointer to a user-supplied integer function to call during
call progress. Call this user-defined function in a loop until the
function:

1. Returns a final call progress result or

2. Indicates the end of call progress by returning a value of 1.

arg Provides an input argument for the func or db_func feature field.
This field accepts a NULL setting if the user-defined function does not
need an argument.

type Contains one of the following values that indicates the call progress
type:

CP_TYPE_LOW

Low call progress. The data indicates the length of time in 5-msec
units that the output of the call progress filter was low.

CP_TYPE_HIGH

High call progress. The data indicates the length of time in
5-msec units that the output of the call progress filter was high.

CP_TYPE_BOARD_DET

A channel-determined call progress result. See Call Progress
Notes in Volume 6, Appendix F, for interpretation of the data
values.

CP_TYPE_CED

Detection of a fax answer tone. The args.data field does not apply.

High-Level Call Control (args_telephone)

March 2017 464

CP_TYPE_FREQUENCY

Frequency information. The args.freq_data field contains the
frequency information. Frequency information is only used when
frequency reporting is enabled in the
BfvLineCallProgressEnable function.

CP_TYPE_CADENCE

Cadence information. The args.cadence_pattern field contains the
cadence information. Cadence information is only used when
cadence reporting is enabled in the
BfvLineCallProgressEnable function.

data Contains the associated data that corresponds to the call progress
type.

db_file Specifies the name of the dialing database file.

Many countries have dialing restrictions that require applications to
maintain a database of information about previously called fax
telephone numbers. If the application dials a fax machine in one of
these countries, it must use the dialing database functions (see
Chapter , Dialing Database Functions, on page 411 and Volume 6,
Appendix G, Country-Specific Parameter Files) to avoid violating the
target country’s PTT regulations.

db_res Specifies a pointer to a RES structure that contains the result of the
last attempt to call the number specified in the args.raw_number
field.

wait_time Returns a value indicating the amount of time in seconds that the
function waited before dialing.

reason Returns a value indicating why the system delayed dialing for the
period indicated in args.wait_time.

High-Level Call Control (args_telephone)

March 2017 465

This field returns one of the following values:

DL_REASON_NONE

DL_REASON_WRONG_DELAY

DL_REASON_UNSUCC_DELAY

DL_REASON_BLACK_PRE

DL_REASON_BLACK_MANUAL

DL_REASON_BLACK_UNSUCC

DL_REASON_BLACK_SUM

DL_REASON_UNSUCC_LMT

DL_REASON_SUM_LMT

DL_REASON_TRK_UNS_DELAY

DL_REASON_UNKNOWN

db_func Specifies a pointer to a user-supplied integer function that the
application must call once for each entry in the dialing database.

The value of args.db_func cannot be NULL. Call the function as:

(*args.db_func) (dbentry, args.arg) where dbentry is a
struct dialdb * pointer to a structure that describes a database
entry, and arg is the user-supplied argument.

raw_number Specifies a string that contains the telephone number to dial. This
string must contain only the actual telephone number and omit long
distance, trunk, or other codes. Valid characters include:

0 – 9

(pound or number symbol)

* (star or asterisk symbol)

The function ignores any other character.

orig_answer Specifies one of the following values that indicates the purpose of
taking the line off hook and making a connection. The function
ignores the setting when the line operates in ISDN mode.

BT_ORIGINATE

Sets the line state to CONNECTED to make an outbound call.
BT_ANSWER

Sets the line state to CONNECTED to answer an incoming call.

High-Level Call Control (args_telephone)

March 2017 466

report_cadence Specifies a Boolean value that enables or disables cadence analysis
and reporting. This mode enables full call progress mode only, not
limited call progress mode (DISS).

Specify a TRUE value for this field only for testing and
troubleshooting purposes. When you enable this field, you disable
most other call progress analysis.

FALSE Disables cadence analysis and reporting for the
outbound call.

TRUE Enables cadence analysis and reporting for the
outbound call. Use this value only for troubleshooting
or testing purposes.

report_freq Specifies a Boolean value that enables or disables frequency analysis
and reporting. This mode enables full call progress mode only, not
limited call progress mode (DISS).

Specify a TRUE value for this field only for testing and
troubleshooting purposes. When you enable this field, you disable
most other call progress analysis.

FALSE Disables frequency analysis and reporting for the
outbound call.

TRUE Enables frequency analysis and reporting for the
outbound call. Use this value only for troubleshooting
or testing purposes.

freq_report_time Specifies a frequency reporting interval in milliseconds. The typical
value is 1000 (milliseconds).

template_number Specifies the template number to program. In full call progress
mode, the range of values can be 0 through 7. In limited call progress
mode (DISS), set the template number to 0.

prog_freq Specifies a Boolean value that indicates whether to use frequency
programming. The application must enable this field or the
args.prog_cadence field for programmable call progress monitoring.
When enabled for frequency programming, use the args.frequencies,
args.duration, and args.level fields to program a frequency detector.
Set the field as follows:

FALSE Disables frequency programming.
TRUE Enables frequency programming.

High-Level Call Control (args_telephone)

March 2017 467

prog_cadence Specifies a Boolean value that indicates whether to use cadence
analysis programming. The application must enable this field or the
args.prog_frequency field for programmable call progress
monitoring. When enabled for cadence analysis programming in full
progress mode, use the args.cadence_pattern field to program a
cadence detector. In limited call progress mode, also set values in the
args.frequencies and args.level fields to program a cadence detector.
Set the field as follows:

FALSE Disables cadence analysis programming.
TRUE Enables cadence analysis programming.

diss_mode Specifies a Boolean value that indicates whether to use
programming for the limited call progress performed during speech
(DISS). Set the field as follows:

FALSE Performs programming in full call progress mode.
TRUE Performs programming in limited call progress mode

during speech (DISS).

frequencies[2] Specifies an array consisting of two frequency values in Hz. Use this
field for programming frequency analysis in both full and limited call
progress modes and for cadence analysis in limited call progress
mode (DISS). The function only uses the first frequency when
detecting frequencies in limited call progress mode.

duration Specifies the minimum length of time that the system requires to
recognize a tone. The unit value is milliseconds. Use this field for
programming frequency analysis.

level Specifies the minimum magnitude of the signal that the system
requires to detect a tone. The unit value is cBm (centibel milliwatt).
Use this field for programming frequency analysis in both full and
limited call progress modes and for cadence analysis in limited call
progress mode (DISS).

cadence_pattern[4] Specifies an array of four duration values that define the cadence
pattern. The unit value is milliseconds. The values represent the
high/low/high/low durations that define a cadence pattern for full
call progress. Use this field for programming cadence analysis when
you set args.type with a value of CP_TYPE_CADENCE. In limited call
progress mode (DISS), call progress only uses the first two values.
For full call progress, the system only detects signals in the range of
300 – 640 Hz.

High-Level Call Control (args_telephone)

March 2017 468

freq_data[3] Specifies an array of three elements where each element contains
tone information that consists of a frequency in Hz and a level in
cBm. The three tones together describe the detected signal. Use this
field when you set args.type with a value of CP_TYPE_FREQUENCY.

diss_only Specifies a Boolean value that unconditionally enables limited call
progress mode (DISS). When enabled for DISS mode, the function
ignores all other call progress input options. Full duplex speech
operations frequently select this call progress mode. Set this field as
follows:
FALSE Disables limited call progress (DISS) mode.
TRUE Enables limited call progress (DISS) mode.

cause_code Specifies or returns an ISDN-defined code that provides the reason
why the call failed. See Volume 6, Appendix D, Defining ISDN Cause
Codes for a description.

async_lp Specifies a line pointer to the session so that the application notifies
the session when the operation is complete. If the field contains a
nonzero value, it enables asynchronous operation. See the
developer’s guide that came with your software for more information
on asynchronous operation and usage.

transfer_mode Returns a value that indicates how a line supports call transfer.

The SR140 does not support this field.
Values are:
LINE_XFER_NONE Line does not support call transfer.
LINE_XFER_SINGLE Line only supports single B-channel

(same channel) call transfer.
LINE_XFER_TWO_CHAN Line only supports two B-channel

(explicit) call transfer.
LINE_XFER_ALL Line supports single and two B-channel

call transfers.

High-Level Call Control (args_telephone)

March 2017 469

LINE_XFER_TWO_CHAN_ Line supports two B-channel call
NEEDS_NAILUPtransfers, but the application must

connect the B-channels together. Only
a QSIG protocol supports this value.
The API makes the connection
automatically if using a high level API
function, and provides the option to
make the required connection
automatically when you set
args.disable_auto_sw_connect to
FALSE for BfvCallWaitTransfer
Complete. If you set
args.disable_auto_sw_connect to TRUE,
the application must call the
BfvCallSwitchConnect function to
make the required B-channel
connection.

transfer_group Returns matching line values to the application that indicate which
lines can be paired to perform a two B-channel call transfer. When
the line values do not match, the lines cannot be paired to perform a
two B-channel call transfer. Only lines that support two B-channel
call transfers return valid values in this field.

The SR140 does not support this field.

lp_second_channel A reference to the lp of the line to use for the enquiry call for
protocols that require two B-channels to transfer a call (for example,
Release Link Trunk (RLT) protocol).

The SR140 does not support this field.

Set to 0 when the transfer occurs over a single channel (for example,
an analog line).

supervised Specifies a Boolean value that determines whether the function
automatically completes the transfer or returns without completing
the transfer when it detects the value defined for the
args.transfer_line_state argument.

The SR140 does not support this field.

Values are:

FALSE Indicates that the function automatically completes
the transfer when it detects the value defined for
args.transfer_line_state.

TRUE Indicates that the function returns control to the
application without completing the transfer when it
detects the value defined for args.transfer_line_state.

High-Level Call Control (args_telephone)

March 2017 470

transfer_line_state Specifies the call state that determines when to complete the
transfer.

The SR140 does not support this field.

Values are:

BST_DIAL_COMPLETE

Completes the call transfer after dialing the transfer number.
BST_ALERTING

Completes the call transfer after detecting a ring.
BST_CONNECTED

Completes the call transfer when the called party answers.

hold_call Specifies an integer value that determines whether to place the
original call on hold or allow it to remain active. Use this field when
transferring a call using two B channels; the field has no effect on
single B-channel call transfers that must place the original call on
hold to make the transfer.

The SR140 does not support this field.

Values are:

0 Allows the original call to remain active and does not
place it on hold before making the enquiry call on the
other B channel.

nonzero Places the original call on hold before making the
enquiry call on the other B channel.

subcause Specifies or returns a SIP response code that provides the reason
why the call failed or terminated. The definitions of these response
codes are specified in RFC 3261.

cause_location Returns an ISDN-defined code that indicates the originator (local or
remote) of the failure notification or call teardown (see cause_code).

call_transport Specifies or returns a value for SIP calls only that indicates the
transport protocol from one of the following:

TRANSPORT_TYPE_UDP

Indicates User Datagram Protocol (UDP) as the transport protocol
for the SIP call.

High-Level Call Control (args_telephone)

March 2017 471

TRANSPORT_TYPE_TCP

Indicates Transmission Control Protocol (TCP) as the transport
protocol for the SIP call. In order to use this setting for outbound SIP
calls, TCP protocol support must be enabled in the call control
configuration file (see Volume 6, Appendix 6, Appendix A,
Configuration Files.)

TRANSPORT_TYPE_DEFAULT

Indicates the default call transport, either UDP or TCP to use for an
outbound SIP call. If the default call transport is not explicitly
specified in the call control configuration file, UDP will be used.
Otherwise, the transport protocol used for the outbound SIP call will
be what's specified in the call control configuration file (see Volume
6, Appendix A, Configuration Files).

NOTE: This field only works for calls using the SIP internet protocol. The Bfv
API ignores this field for calls using the H.323 internet protocol and PSTN line
types.

num_user_sip_headers Specifies the number of entries in the array of
BT_USER_SIP_HEADER structures referenced by the
user_sip_headers field.

Note: This field only works for calls using the SIP internet protocol.
The Bfv API ignores this field for calls using the H.323 internet
protocol and PSTN line types.

user_sip_headers Specifies a reference to an array of BT_USER_SIP_HEADER
structures that specify SIP header names and values to add to
the initial SIP INVITE of an outbound call. The number of
entries in the array is specified by the num_user_sip_headers
field. If the value specified by num_user_sip_headers is 0, this
field is ignored.

Note: This field only works for calls using the SIP internet protocol.
The Bfv API ignores this field for calls using the H.323 internet
protocol and PSTN line types.

High-Level Call Control (args_telephone)

March 2017 472

fax_media_feature_tag Specify "sip.fax" media feature tag value to add to Accept-Contact
header in outbound SIP INVITE request. Use one of the following
values for this field:

BT_FAX_MEDIA_FEATURE_TAG_DEFAULT
Set "sip.fax" media feature tag to a default value based on the
fax_transport_protocol parameter value in the
t38parameters section of the callctrl.cfg file as specified in
the following table:

BT_FAX_MEDIA_FEATURE_TAG_T38
Set" sip.fax" media feature tag to "t38".

BT_FAX_MEDIA_FEATURE_TAG_PASSTHROUGH
Set "sip.fax" media feature tag to "passthrough".

BT_FAX_MEDIA_FEATURE_TAG_DISABLED
Do not add "sip.fax" media feature tag to transmitted SIP
INVITE message.

In order to use this field for outbound SIP calls, RFC 6913 feature
support must be enabled in the call control configuration file (see
Volume 6, Appendix A, Configuration Files).

Note: This field only works for calls using the SIP internet protocol.
The Bfv API ignores this field for calls using the H.323 internet
protocol and PSTN line types.

fax_transport_protocol value "sip.fax" value
t38_never passthrough

t38_only t38

t38_first t38

Not specified in callctrl.cfg file t38

High-Level Call Control (args_telephone)

March 2017 473

fallback_rtp_reinvite Specifies whether or not a SIP RTP reINVITE should be transmitted
for G.711 fallback mode if a SIP T.38 reINVITE is rejected with
either a 488 (Not Acceptable Here) or a 606 (Not Acceptable). Valid
values are:

BT_FALLBACK_RTP_REINVITE_DEFAULT

Default to the setting specified in the call control configuration
file.

BT_FALLBACK_RTP_REINVITE_DISABLE

Do not transmit a SIP RTP reINVITE if a SIP T.38 reINVITE
is rejected.

BT_FALLBACK_RTP_REINVITE_ENABLE

Transmit a SIP RTP reINVITE if a SIP T.38 reINVITE is
rejected.

When the application sets the value in this field to
BT_FALLBACK_RTP_REINVITE_DEFAULT, the functionality
will default to the setting specified in the call control configuration
file (callctrl.cfg) by the g711_fallback_rtp_reinvite parameter. If
the g711_fallback_rtp_reinvite parameter isn't specified in the
call control configuration file, then the default functionality is
BT_FALLBACK_RTP_REINVITE_DISABLE.

An application can override the value specified in the call control
configuration file by the g711_fallback_rtp_reinvite parameter by
setting this field to a value of either
BT_FALLBACK_RTP_REINVITE_DISABLE or
BT_FALLBACK_RTP_REINVITE_ENABLE.

Setting this field to a value of
BT_FALLBACK_RTP_REINVITE_DISABLE will prevent
transmission of a SIP RTP reINVITE if a SIP T.38 reINVITE is
rejected.

High-Level Call Control (args_telephone)

March 2017 474

Setting this field to a value of
BT_FALLBACK_RTP_REINVITE_ENABLE will result in
transmission of a SIP RTP reINVITE if a SIP T.38 reINVITE is
rejected with either a 488 (Not Acceptable Here) or a 606 (Not
Acceptable) and the fax transport protocol
(fax_transport_protocol) parameter specified in the call control
configuration file is set to t38_first. The SDP settings in the SIP
RTP reINVITE will be the same RTP codec settings initially used to
establish the call.

Note: This field only works for calls using the SIP internet protocol.
The Bfv API ignores this field for calls using the H.323 internet
protocol or PSTN line types.

sip_header_list_len Specifies the size of the memory buffer pointed to by the
sip_header_list field. This field should be set when the Bfv
application wants to retrieve the SIP header information specified in
an inbound SIP INVITE request used to establish a SIP call.

On input to the BfvLineWaitForCall function, this field should be
set to the size of the memory buffer pointed to by the sip_header_list
field.

Upon return from the BfvLineWaitForCall function, if a SIP call
has successfully been received, this field will be set to the amount of
data in the sip_header_list memory buffer that has been populated
with SIP header data. If the memory buffer pointed to by
sip_header_list isn't large enough to hold all the SIP header data
from the inbound SIP INVITE request, then sip_header_list_len will
be set to a value of SIP_HEADER_INVALID_LEN. In this case,
the memory buffer pointed to by sip_header_list will only be
populated with complete SIP header name/header value pairs that
fit in the buffer.

For example, if there are 10 SIP headers in the inbound SIP INVITE
request, but the memory buffer pointed to by sip_header_list can
only hold enough data for 9 complete SIP header name/header value
pairs retrieved from the SIP INVITE request with 30 bytes of the
buffer unused, then the sip_header_list_len field will be set to a
value of SIP_HEADER_INVALID_LEN and only 9 complete SIP
header name/header value pairs will be returned in the
sip_header_list buffer. No partial or incomplete SIP header
information from the 10th header will be used to populate the
remaining 30 bytes in the sip_header_list buffer.

High-Level Call Control (args_telephone)

March 2017 475

If the Bfv application doesn't want to retrieve the SIP header
information specified in an inbound SIP INVITE request,
sip_header_list_len should be set to 0 and sip_header_list should be
set to NULL prior to calling BfvLineWaitForCall.

Note: This field only works for inbound calls using the SIP internet
protocol. The Bfv API ignores this field for all outbound calls
and calls using the H.323 internet protocol or PSTN line types.

sip_header_list Specifies a pointer to a memory buffer allocated by the Bfv
application to receive SIP header data from an inbound SIP INVITE
request used to establish a SIP call. The size of the memory buffer
pointed to by sip_header_list should be specified in the
sip_header_list_len field.

On input to the BfvLineWaitForCall function, this field should be
set to the address of a memory buffer allocated by the Bfv
application that will receive the SIP header data. As sip_header_list
is a pointer to a BT_SIP_HEADER_LIST structure, the Bfv
application memory buffer should be allocated and initialized in a
manner similar to the following:

args_tel.sip_header_list =
 (BT_SIP_HEADER_LIST *)malloc(1000);
memset(args_tel.sip_header_list, 0, 1000);
args_tel.sip_header_list_len = 1000;

Upon return from the BfvLineWaitForCall function, if a SIP call
has successfully been received, the memory buffer pointed to by
sip_header_list will be populated with a singly linked list of SIP
header data stored in BT_SIP_HEADER_NODE structures
starting with a BT_SIP_HEADER_LIST structure.

Some SIP headers that have multiple values may be returned as
several SIP headers. For example, the following header:

Allow: INVITE, ACK, OPTIONS, CANCEL, BYE

Will be returned as five separate headers:

Header Name Header Value

Allow INVITE

Allow ACK

Allow OPTIONS

High-Level Call Control (args_telephone)

March 2017 476

If some of the SIP header names in the inbound SIP INVITE request
were specified in compact form, they may be returned to the Bfv
application in long form (e.g., Content-Type header name specified in
inbound SIP request as "c", returned to Bfv application as "Content-
Type").

The maximum supported number of SIP headers that can be
returned is 98.

If the Bfv application doesn't want to retrieve the SIP header
information specified in an inbound SIP INVITE request,
sip_header_list_len should be set to 0 and sip_header_list should be
set to NULL prior to calling BfvLineWaitForCall.

This field only works for inbound calls using the SIP internet
protocol. The Bfv API ignores this field for all outbound calls and
calls using the H.323 internet protocol or PSTN line types.

Allow CANCEL

Allow BYE

Macros

March 2017 477

Macros
LINE_AOC_INFO (lp)

This macro only applies to boards with a BRI interface or digital
ports using the QSIG protocol variant.
Accesses a structure containing AOC (advice of charge)
information.
Returns a structure pointer of type AOC_INFO *. The structure is:

 typedef struct {
 int status;
 int charge_info;
 long charge;
 } AOC_INFO;

After a call completes, this structure returns the AOC
information. The fields have the following meanings:

status Returns a value indicating the form of the AOC
information, if available. The values are:

BT_AOC_UNAVAILABLE 0

BT_AOC_FREE 1

BT_AOC_UNITS 2

BT_AOC_CURRENCY 3

charge_info For status BT_AOC_UNITS, specifies the units.
The user defines the meaning of the units.

For status BT_AOC_CURRENCY, specifies the
multiple of one of the BT_AOC_CUR_... values
defined in a header file. The header file is
mill_api.h.

charge Returns the value of the charge in units or
currency.

March 2017 478

Volume 3 - Media Processing
About This Volume

 Volume 3, Media Processing, provides information about the
following Bfv API components:

 Signal Generation and Detection functions

 Voice Play and Record functions

 Infopkt file functions

 Audio Conferencing functions

March 2017 479

14 - Signal Generation and Detection

Not all functions in this chapter are supported on the SR140. The
functions not fully supported are noted.

This chapter describes functions to generate and detect various tones,
digits and call progress patterns.

With the signal generation and tone detection functions, you can:

 Play call progress signals and generate other tone groups and
tone patterns.

 Get the next call progress code.

 Enable and disable DTMF detection.

 Discard tones from a buffer.

 Wait for a tone and return it as an ASCII character or return it
without disturbing the buffer.

 Play a tone for a specified time.

 Play a single frequency tone.

 Replace a tone in the buffer for reuse.

Channels on Dialogic® Brooktrout® modules receive call progress
signals generated by telcos and Private Branch Exchanges (PBXs)
before, during, and after dialing. Then the firmware’s call progress
analysis process interprets them.

During call progress analysis, the firmware can report dial tone
detection, ring-back, busy signals, remote fax tone detection, and
other important information. Applications can use this information

March 2017 480

to determine their next course of action, to display the status of a
call, or to track billing information. Applications can use postdialing
results such as HUMAN and BUSY to decide what redialing strategy to
use.

Channels can also generate and play DTMF and MF tone groups and
single tone patterns to send to the telco or PBX.

Signal Generation/Detection Function Summary

March 2017 481

Signal Generation/Detection Function Summary
Table 23 provides a high-level description for the signal generation
and detection functions. Function details in alphabetical order begin
on page 482.

Table 23. Signal Generation/Detection Function Summary

Function Purpose Page

BfvCPGen Generates call progress signals. 482

BfvCPGenAdv Generates call progress signals and other tone
patterns.

484

BfvDataCP Retrieves the next call progress code. 488

BfvLineCallProgressDisable Disables call progress. 492

BfvLineCallProgressEnable Enables call progress in one of three modes. 494

BfvLineCallProgressProgram Programs frequency and cadence analysis
parameters used during call progress
monitoring.

499

BfvToneDetectDisable Disables DTMF detection. 503

BfvToneDetectEnable Enables DTMF detection. 505

BfvToneFlush Discards all tones currently stored in the buffer. 508

BfvToneGet Retrieves the next tone from the tone buffer and
removes it from the buffer.

509

BfvTonePeek Retrieves the next tone in the buffer without
disturbing the buffer.

511

BfvTonePlay Plays the tone for the specified time. 513

BfvTonePlayBeep Plays a single frequency tone. 515

BfvToneUnget Puts a tone at the top of the tone buffer, so it is
available for the next request to retrieve a tone.

518

BfvCPGen

March 2017 482

BfvCPGen

Purpose Generates call progress signals.

Syntax void
BfvCPGen (lp, args)

BTLINE *lp;
struct args_tone *args;

The structure contains the following fields.

Input Field int cp_type;

Output Field RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.cp_type

Indicates the type of call progress signals to generate. Valid
values are:

CP_GEN_DIALTONE 0

CP_GEN_RING 1

CP_GEN_BUSY 2

CP_GEN_REORDER 20

CP_GEN_END 128

BfvCPGen

March 2017 483

Output Return value: None

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details To begin signal generation, call this function with a value
designating a call progress signal type. To end signal generation, call
the function again with the special value CP_GEN_END.

After starting, signal generation continues indefinitely until the
application calls BfvCPGen with CP_GEN_END. The application
must end signal generation before performing any other activity, for
example: sending a fax, playing speech, enabling full call progress, or
playing touch tones. Limited call progress (DISS) can be used.

See Also BfvCPGenAdv

Example struct args_tone args;
struct args_packet args_pkt;

BT_ZERO(args);
args.cp_type = CP_GEN_RING;
BfvCPGen(lp,&args);
BT_ZERO(args_pkt);
args_pkt.timeout = 1000L;
BfvRcvProcessPkt(lp,&args_pkt);
args.cp_type = CP_GEN_END;
BfvCPGen(lp,&args);

BfvCPGenAdv

March 2017 484

BfvCPGenAdv

Purpose Generates and plays call progress signals, other tone groups, and
tone patterns.

Syntax int
BfvCPGenAdv (lp, args)

BTLINE *lp;
struct args_tone *args;

The structure contains the following fields.

Input Fields unsigned count;
struct cpgen_signal_info *signal_info;
int volume;

Output Field RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.count

The number of times to play the entire tone pattern.
If args.signal_info is NULL, the value of this argument indicates
whether to wait for signal generation to finish (0) or to terminate
signal generation (1).

args.signal_info

If non-NULL, this argument is a pointer to an array of
cpgen_signal_info structures, each of which describes a group
of tones to play.
If NULL, BfvCPGenAdv either completes or terminates signal
generation, depending on the value in count.

BfvCPGenAdv

March 2017 485

args.volume

If nonzero, indicates that attenuation values provided represent
level values in 0.1 dBm units.

Output Return value:

0 The function executed successfully.

<0 An error occurred.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details The SR140 does not support this function.

A tone consists of a frequency and an attenuation value or volume. A
tone group consists of a duration, in milliseconds, and up to two
tones. A tone pattern consists of one or more tone groups.

This function plays all tones in a tone group simultaneously for a
specified duration. It can play several tone groups in sequence and
tone patterns multiple times.

The args.signal_info argument is a pointer to an array of
cpgen_signal_info structures:

struct cpgen_signal_info {
 unsigned play_time;
 struct cpgen_tone_info *tone_info;
};

Each cpgen_signal_info structure describes a group of tones to
play simultaneously. The application must include an additional
terminating cpgen_signal_info structure that contains a 0 in the
play_time field.

The play_time field of each cpgen_signal_info structure
contains the time, in milliseconds, to play the tones. The maximum
value is 0xFFFF.

The tone_info field is a pointer to an array of cpgen_tone_info
structures, each of which describes one tone:

struct cpgen_tone_info {
 unsigned freq;
 unsigned atten;

BfvCPGenAdv

March 2017 486

};

The application must include an additional terminating
cpgen_tone_info structure that contains a 0 in the freq field.

If the array contains only the terminating structure, the function
plays silence for the specified duration. The maximum number of
tones permitted in a tone_info array (and the maximum number of
tones this function can play simultaneously) is two.

The freq field of each cpgen_tone_info structure contains the
frequency, in Hertz, of the tone. The valid range is 100 to 3500. The
atten field contains the attenuation value for the tone in 0.1 dB
units. The valid range is 0 to 120, where 0 represents maximum
output.

To complete signal generation, call this function with a
args.signal_info value of NULL. This function waits for signal
generation to finish if the value of count is 0, or it terminates signal
generation if the value of count is 1.

Applications can generate several common call progress signals
using the following tone information:

Dial tone350 Hz and 440 Hz, continuous

Ringing440 Hz and 480 Hz, on/off

Busy 480 Hz and 620 Hz, on/off

Purity of the signal generated when this function plays the
individual tones in the tone group simultaneously depends on the
harmonics produced by mixing the tones’ frequencies. Tones in the
range of 100 to 200 Hz or 3450 to 3500 Hz might be weaker.

When an application exceeds this limit, the Bfv API returns an error
indication.

The maximum number of tone groups is 20.

The application must end signal generation before performing any
other activity, for example: sending a fax, playing speech, enabling
full call progress, or playing touch tones. Limited call progress
(DISS) can be used.

See Also BfvCPGen

BfvCPGenAdv

March 2017 487

Example /* Tone info for silence portion of ringing */
struct cpgen_tone_info silence_freq[] = {
 {0}
};

/* Tone info for ring portion of ringing */
struct cpgen_tone_info ring_freq[] = {
 {440,0},
 {480,0},
 {0}
};
/* Signal info for the entire ringing pattern */
struct cpgen_signal_info ring_info[] = {
 {1000,ring_freq},
 {3000,silence_freq},
 {0,NULL}
};

BT_ZERO(args);
args.count = 1;
args.signal_info = ring_info;
/* Play one cycle of ringing */
BfvCPGenAdv(lp, &args);
BT_ZERO(args);
/* Wait for signal generation to finish */
BfvCPGenAdv(lp, &args);

BfvDataCP

March 2017 488

BfvDataCP

Purpose Retrieves the next call progress code.

Syntax int
BfvDataCP (lp, args)

BTLINE *lp;
struct args_telephone *args;

The structure contains the following fields.

Input Fields None

Output Fields unsigned char type;
unsigned char data;
unsigned short cadence_pattern[4];
struct {

unsigned short freq;
short level;
} freq_data[3];

RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

BfvDataCP

March 2017 489

Output Return value:

0 New data is available and is stored in args.type and
args.data.

1 No new data available.

args.type

Contains the call progress type. It can contain any of the following
values:

args.data

Contains the associated data corresponding to the call progress
type.

CP_TYPE_LOW

Low call progress. The data indicates, in 5 ms units, the
time interval in which the output of the call progress
filter was low.

0

CP_TYPE_HIGH

High call progress. The data indicates, in 5 ms units,
the time interval when the output of the call progress
filter was high.

1

CP_TYPE_BOARD_DET

A firmware-determined call progress result.

2

CP_TYPE_CED

Detection of a fax answer tone. The args.data is not
relevant.

3

CP_TYPE_FREQUENCY

Frequency information. The frequency information is
contained in args.freq_data. Use this argument only
when frequency reporting is enabled in
BfvLineCallProgressEnable.

4

CP_TYPE_CADENCE

Cadence information. The cadence information is
contained in args.cadence_pattern. Use this argument
only when cadence reporting is enabled in
BfvLineCallProgressEnable.

5

BfvDataCP

March 2017 490

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

args.cadence_pattern

When args.type is CP_TYPE_CADENCE, the 4 elements of this
array contain the high/low/high/low durations in milliseconds
that make up the cadence of the detected signal. The first high
and low durations might be reported as 0, which means that only
a single high and low are required to describe the cadence. The
function only detects signals in the range 300-640 Hz.

args.freq_data

When args.type is CP_TYPE_FREQUENCY, the 3 elements of this
array each contain tone information consisting of a frequency in
Hz and a level in cBm. The three tones together describe the
detected signal.

Details Removes data from an internal call progress buffer and returns it
using args.type and args.data. The field args.type identifies the kind
of data, and the field args.data identifies the associated data that
corresponds to the call progress type.

The values returned in args.data correspond to the CS_... names
defined in the header file named btlib.h.

This function is incorporated into the higher-level function
BfvLineOriginateCall.

The function processes any interrupts available from the channel
before checking the call progress buffer for data, so all call progress
data generated by the channel is processed, stored, and available to
the user.

If the call progress buffer fills up and incoming call progress data
overwrites unread data, the function reinitializes the buffer, clearing
the entire contents of the buffer (128 bytes) to ensure the proper
chronological order of all subsequent data. Otherwise, call progress
data remains in the buffer until it is read, even between calls.

BfvDataCP

March 2017 491

When frequency reporting is enabled, the firmware analyzes tone
frequencies and reports the 3 sets of frequency and level values
together. The frequencies are 2-byte unsigned integers (Hz) and the
levels are 2-byte signed integers (cBm). The values are returned
through BfvDataCP in the following way: Freq 1 low byte, Freq 1
high byte, Level 1 low byte, Level 1 high byte, etc. Each byte is
returned by a subsequent call with the type CP_TYPE_FREQUENCY.

See Also BfvLineCallProgressEnable

Example struct args_telephone args;

fp = fopen("fsk_cp_stats", "a");
fprintf(fp, "For Line # %d\n", LINE_UNIT_NUM(lp));

for (;;)
{
 BT_ZERO(args);
 if (BfvDataCP(lp, &args) == 1)
 break;
 fprintf(fp, "CP INFO: type = %x, data = %x\n",
 args.type & 0xff, args.data & 0xff);
}

BfvLineCallProgressDisable

March 2017 492

BfvLineCallProgressDisable

Purpose Disables call progress.

Syntax void
BfvLineCallProgressDisable (lp, args)

BTLINE *lp;
struct args_telephone *args;

The structure contains the following fields.

Input Fields None

Output Field RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details This function is incorporated into the higher-level function
BfvLineOriginateCall. See Volume 2, Chapter 2.

See Also BfvLineCallProgressEnable

BfvLineCallProgressDisable

March 2017 493

Example BTLINE *lp
struct args_telephone args;

BT_ZERO(args);
BfvLineCallProgressDisable(lp,&args);

BfvLineCallProgressEnable

March 2017 494

BfvLineCallProgressEnable

Purpose Enables call progress with one of three call protocols: voice, fax, or
raw.

Syntax int
BfvLineCallProgressEnable (lp, args)

BTLINE *lp;
struct args_telephone *args;

The structure contains the following fields.

Input Fields int call_protocol_code;
int call_mode;
unsigned report_cadence;
unsigned report_freq;
unsigned freq_report_time;
int diss_only;

Output Field RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

BfvLineCallProgressEnable

March 2017 495

args.call_protocol_code

Selects a calling protocol for the channel from one of the following:

CALL_PROTOCOL_FAX

Selects the fax protocol. This setting requests the module to
report the results from the module’s call progress analysis along
with the raw data. The module reports the results as soon as it
establishes the fax connection or encounters a busy condition.

CALL_PROTOCOL_RAW

Selects a value that requests the module to report the raw high
and low call progress results without performing any analysis. To
use CALL_PROTOCOL_RAW, the application must analyze the raw
call progress data.
CALL_PROTOCOL_VOICE

Selects the voice protocol. This setting requests the module to
report the results from the module’s call progress analysis along
with the raw data. The module reports the results as soon as it
detects a human or other answer condition.

Note: See Appendix F, DISS - Limited Call Progress Mode, for more
information on the results from call progress analysis.

CALL_PROTOCOL_FAX_NO_RAW

CALL_PROTOCOL_VOICE_NO_RAW

Selects either the fax or voice protocol, requesting the module to
report the results from the module’s call progress analysis
without including the raw data.

Other detected call progress results are returned after the
ced_timeout (the length of time to wait for the called station id
signal) timeout.
The ced_timeout value is obtained from the BT_CPARM.CFG
configuration file or from the user-defined configuration file (see
Volume 6, Appendix A).

BfvLineCallProgressEnable

March 2017 496

args.call_mode

Selects one of two possible call modes, BT_ORIGINATE or
BT_ANSWER, that define which call progress signals the channel
expects to receive.

BT_ORIGINATE – Normally used; must be used to detect G2 fax
tone and (with fax protocol) to play a CNG tone.
BT_ANSWER – Must be used to detect CNG tone; automatically
enables voice protocol. In answer mode, CALL_PROTOCOL_VOICE
and CALL_PROTOCOL_VOICE_NO_RAW replace
CALL_PROTOCOL_FAX and CALL_PROTOCOL_FAX_NO_RAW,
respectively. See Volume 6, Appendix F, Call Progress Notes for
more information on args.call_mode.

args.report_cadence

If nonzero, enables cadence analysis and reporting. This mode is
available in full call progress mode only, not in limited call
progress mode (DISS).
Do not enable call progress programming in conjunction with this
option. (See BfvLineCallProgressProgram).
This argument is meant for development and debugging
purposes. When enabled, most other call progress analysis is
disabled. Use of this mode is limited to a single channel on a DSP
at a time.

args.report_freq

If nonzero, enables frequency analysis and reporting. This mode
is available in full call progress mode only, not limited call
progress mode (DISS).
Do not enable call progress programming in conjunction with this
option. (See BfvLineCallProgressProgram).
This argument is intended for development and debugging
purposes. When enabled, most other call progress analysis is
disabled. Use of this mode is limited to a single channel on a DSP
at a time.

args.freq_report_time

If nonzero, specifies frequency reporting interval, in milliseconds.
The default is 1000.

args.diss_only

BfvLineCallProgressEnable

March 2017 497

When set to 1, unconditionally enables limited call progress mode
(DISS). In this case, all other input options are ignored. This
mode must be enabled when using full-duplex speech operations,
since full call progress is not compatible with full-duplex speech.

Output Return value:

0 Call progress was successfully enabled.

<0 An error condition occurred; enabling call progress failed.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details The firmware performs sophisticated call progress functions.

The firmware automatically adapts to most international call
progress signals, but applications that possess special knowledge of
the dialed phone number might get faster results.

In CALL_PROTOCOL_VOICE or CALL_PROTOCOL_FAX mode, the
channel continues to report the CALL_PROTOCOL_RAW output values
that can be analyzed by the user-supplied function, and it also
analyzes those values for meaningful patterns, such as ring-back,
busy, and answer. If a final call progress value is detected (see
args.res), call progress is halted (fax and voice modes only).

Because connection to a fax machine is the goal in fax mode, some
results are suppressed until the end of the ced_timeout timeout. For
example, if a person who answers a phone call realizes the beeping
on the line is a fax machine and switches on a fax machine, fax mode
suppresses the FCP_ANSWER or FCP_HUMAN result and reports
FCP_ANSWER_TONE_DETECT when the fax machine is switched on.

If the remote fax machine is not detected and the ced_timeout
timeout expires, FCP_RNGNOANS or FCP_ANSWER (or other call
progress tone) is reported, depending on the conditions detected.

Ring-back (FCP_RING1, FCP_RING2) is not a final call progress
value. However, ring-back is detected and reported as an
intermediate value as are the CALL_PROTOCOL_RAW call progress
values (where applicable).

BfvLineCallProgressEnable

March 2017 498

When an application enables call progress and then plays or records
speech, it provides only limited call progress (DISS mode) results.
The final call progress results that are available are BUSY1,
ROBUSY, DIALTON, CNG, CED, CUSTOM_DIS_FREQ0, and
CUSTOM_DIS_CAD0. No raw call progress data are available.

Full call progress cannot be used in conjunction with BfvCPGen,
BfvCPGenAdv, BfvTonePlayBeep, or any of the speech functions,
but DISS mode can be used (see args.diss_only).

Do not enable call progress before placing a call using
BfvLineOriginateCall, BfvLineDialString or any other means,
before generating tones using BfvTonePlay or before beginning fax
operation. Full call progress cannot be used in conjunction with
BfvCPGen, BfvCPGenAdv, or BfvTonePlayBeep, but DISS
mode can be used (see args.diss_only).

This function does not analyze call progress results. The application
must monitor the call progress codes using BfvDataCP.

This function is incorporated into the higher-level function
BfvLineOriginateCall.

In CALL_PROTOCOL_RAW mode, the channel reports the output of the
call progress filter (a 300 – 600 Hz bandpass filter on each channel)
and the time the output was in that particular state only. In this
mode, the channel disables call analysis and provides raw call
progress signal data directly to the user. The user then has complete
control of signal interpretation.

When using full-duplex speech, args.diss_only should be set to 1,
since full call progress is not compatible with full-duplex speech.

Note: See Appendix F, Call Progress Notes, for more information on
the results from call progress analysis.

See Also BfvDataCP, BfvLineCallProgressDisable,
BfvLineCallProgressProgram

Example BTLINE *lp;
struct args_telephone args;

BT_ZERO(args);
args.call_protocol_code = CALL_PROTOCOL_FAX;
args.call_mode = BT_ORIGINATE;
if (BfvLineCallProgressEnable(lp, &args) != 0)
 printf (“Unable to Enable Call Progress\n”);

BfvLineCallProgressProgram

March 2017 499

BfvLineCallProgressProgram

Purpose Programs custom frequency and cadence detectors used during call
progress monitoring.

Syntax void
BfvLineCallProgressProgram (lp, args)

BTLINE *lp;
struct args_telephone *args;

The structure contains the following fields.

Input Fields unsigned template_number;
unsigned prog_freq;
unsigned prog_cadence;
unsigned diss_mode;
unsigned short frequencies[2];
unsigned duration;
int level;
unsigned short cadence_pattern[4];

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.template_number

The template number to program. In full call progress mode, the
template number can be 0-7. In limited call progress mode (DISS),
the template number must be 0.

BfvLineCallProgressProgram

March 2017 500

args.prog_freq

If nonzero, frequency programming is in effect. Enable either this
or args.prog_cadence. args.frequencies, args.duration, and
args.level to program a frequency detector.

args.prog_cadence

If nonzero, cadence programming is in effect. You must enable
either this or args.prog_freq. To program a cadence detector in
full call progress mode, use args.cadence_pattern. In limited call
progress mode, also use args.frequencies and args.level.

args.diss_mode

If nonzero, programming is in effect for the limited call progress
performed during speech (DISS).

args.frequencies

An array of two frequency values in Hz (200-3900Hz). Used for
programming frequency analysis in both modes and for cadence
analysis in limited call progress mode (DISS). For limited call
progress mode, only the first frequency is used. If both values are
nonzero, the lower frequency must come first.
When you want to detect dual tone frequencies, the lower
frequency must be the first element of the array.

args.duration

Minimum tone duration, in milliseconds (10ms), before a tone is
recognized. Used for programming frequency analysis.

args.level

Minimum tone magnitude, in cBm, for a tone to be detected. Used
for programming frequency analysis in both modes and for
cadence analysis in limited call progress mode (DISS).

args.cadence_pattern

An array of four duration values, in milliseconds. These represent
the high/low/high/low durations defining a cadence pattern for
full call progress. Used for programming cadence analysis. In
limited call progress mode (DISS), only the first two values are
used. For full call progress, only signals in the range 300-640Hz
are detected.

BfvLineCallProgressProgram

March 2017 501

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details When a tone or cadence is analyzed and found to match one of the
user-programmed detectors, a call progress value of
CS_CUSTOM_FREQ0 (or 1 to 7), CS_CUSTOM_CAD0 (or 1 to 7),
CS_CUSTOM_DIS_FREQ0, CS_CUSTOM_DIS_CAD0 is reported using
BfvDataCP, based on the matching template number.

For full call progress there are 16 possible detectors (sets of analysis
parameters) that can be programmed; 8 for frequency, 8 for cadence.
For limited call progress (DISS) there is only one detector, either
frequency or cadence.

Do not enable call progress programming in conjunction with the
report_freq or report_cadence options of BfvLineOrigCallDB, or
BfvLineCallProgressEnable.

To determine the correct parameters for programming a custom
detector to detect a given cadence or a single or dual tone signal,
enable call progress using the report_cadence or report_freq option of
BfvLineCallProgressEnable.

Cadence detection programming accuracy is 15%. Two intervals are
considered to be equal if: |A - B| < (A * 0.15)

Where:

 A is the interval defined for the detector.

 B is the interval measured by call progress detectors.

Cadence high intervals that are longer than the DIALTONE detection
length are not measured correctly. The DIALTONE detection length
is defined by the dtone_len parameter in the BT_CPARM.CFG
configuration file.

For frequency detection programming, a single tone can be detected
with maximum deviation of 30 Hz. If a dual tone signal has a
frequency difference of < 120 Hz between the tones, the signal
detector might classify the incoming signal as a single tone signal. In
such cases, the single tone is the proper way to program the detector.

See Also BfvDataCP

BfvLineCallProgressProgram

March 2017 502

Example BTLINE *lp;
struct args_telephone args;

/* Program custom frequency 0 for the pair of 1000 and
 1100 Hz, with a minimum level of -100 cBm and minimum
 duration of 100ms. */
BT_ZERO(args);
args.prog_freq = 1;
args.template_number = 0;
args.frequencies[0] = 1000;
args.frequencies[1] = 1100;
args.duration = 100;
args.level = -100;
BfvLineCallProgressProgram(lp,&args);

/* Program custom cadence 0 for a pattern of 200ms on,
 200ms off, 500ms on, 300ms off. */
BT_ZERO(args);
args.prog_cadence = 1;
args.template_number = 0;
args.cadence_pattern[0] = 200;
args.cadence_pattern[1] = 200;
args.cadence_pattern[2] = 500;
args.cadence_pattern[3] = 300;
BfvLineCallProgressProgram(lp,&args);

/* Enable call progress so that the previously programmed
 detectors may match signals on the line. */
BT_ZERO(args);
args.call_protocol_code = CALL_PROTOCOL_VOICE;
args.call_mode = BT_ORIGINATE;
BfvLineCallProgressEnable(lp,&args);

BfvToneDetectDisable

March 2017 503

BfvToneDetectDisable

Purpose Disables tone detection.

Syntax void
BfvToneDetectDisable (lp, args)

BTLINE *lp;
struct args_tone *args;

The structure contains the following fields.

Input Fields None

Output Field RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Tone detection must already be enabled before calling this function
(refer to the Release Notes to determine whether the release
supports the tone detection feature). Any previously detected tones
are placed in the tone buffer and can be retrieved with the
BfvToneGet function.

See Also BfvToneDetectEnable

BfvToneDetectDisable

March 2017 504

Example BTLINE *lp;
struct args_tone args;

BT_ZERO(args);
BfvToneDetectDisable(lp, &args);

BfvToneDetectEnable

March 2017 505

BfvToneDetectEnable

Purpose Enables tone detection.

Syntax void
BfvToneDetectEnable (lp, args)

BTLINE *lp;
struct args_tone *args;

The structure contains the following fields.

Input Field int decode_flag;

Output Field RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.decode_flag

Selects DTMF or MF tone decoding and whether to report the
ending of detected tones.

To enable the reporting of detected tone endings, logically OR this
argument's value with TONE_REPORT_END.

DTMF_12TONE 12- digit DTMF decoding

DTMF_16TONE 16-digit DTMF decoding

TONE_R1 R1 MF tones

TONE_R2_FORWARD R2 forward MF tones

TONE_R2_BACKWARD R2 backward MF tones

BfvToneDetectEnable

March 2017 506

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Tone detection must be in the disabled state when calling this
function.

TONE_R1, TONE_R2, and TONE_R2_BACKWARD tones are not
supported on the SR140.

The function places detected tones in a tone buffer where they can be
retrieved with the BfvToneGet function. Normally, a value is
stored in the tone buffer at the beginning of the detection of a tone.
When the TONE_REPORT_END feature is used, the function also
stores 0 in the tone buffer when detecting the end of a tone.

Several different tone types might be detected, but only one type of
detection can be enabled at a time.

DTMF tones have a standard mapping between digits and pairs of
frequencies. The following are the mappings used for MF tones. All
frequencies are in Hz.

Digit R1 R2/forward R2/backward

0 1300/1500 1740/1860 780/660

1 700/900 1380/1500 1140/1020

2 700/1100 1380/1620 1140/900

3 900/1100 1500/1620 1020/900

4 700/1300 1380/1740 1140/780

5 900/1300 1500/1740 1020/780

6 1100/1300 1620/1740 900/780

7 700/1500 1380/1860 1140/660

8 900/1500 1500/1860 1020/660

9 1100/1500 1620/1860 900/660

* 1500/1700 N/A N/A

1100/1700 1860/1980 660/540

A 700/1700 1380/1980 1140/540

BfvToneDetectEnable

March 2017 507

See Also BfvToneGet

Example BTLINE *lp;
struct args_tone args;

BT_ZERO(args);
args.decode_flag = DTMF_12TONE;

or

args.decode_flag = DTMF_12TONE | TONE_REPORT_END;
BfvToneDetectEnable(lp, &args);

B 900/1700 1500/1980 1020/540

C 1300/1700 1620/1980 900/540

D N/A 1740/1980 780/540

Digit R1 R2/forward R2/backward

BfvToneFlush

March 2017 508

BfvToneFlush

Purpose Discards all of the tones in the tone buffer.

Syntax void
BfvToneFlush (lp, args)

BTLINE *lp;
struct args_tone *args;

The structure contains the following fields.

Input Fields None

Output Field RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

See Also BfvToneGet

Example BTLINE *lp;
struct args_tone args;

BT_ZERO(args);
BfvToneFlush(lp, &args);

BfvToneGet

March 2017 509

BfvToneGet

Purpose Retrieves the next tone from the tone buffer and removes it from the
buffer.

Syntax int
BfvToneGet (lp, args)

BTLINE *lp;
struct args_tone *args;

The structure contains the following fields.

Input Fields long millisecs;
int tone_cp;

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.millisecs

The amount of time (in milliseconds) to wait for the arrival of a
tone.

args.tone_cp

If set to 1, enables checking for available call progress
information in addition to tones.

BfvToneGet

March 2017 510

Output Return value:

Returns a detected tone as an ASCII value.

1 Indicates call progress is available for the BfvDataCP
function to read, and no tone data is available for this
function to return (if args.tone_cp is set to 1).

0 Indicates this function detected the end of a tone if the
application enabled tone detection using the
TONE_REPORT_END option of the BfvToneDetectEnable
function.

<0 Indicates a timeout occurred and no tone was available, or
another error condition occurred.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

See Also BfvToneFlush, BfvTonePeek, BfvToneUnget

Example BTLINE *lp;
int tone;
struct args_tone args;

BT_ZERO(args);
args.millisecs = 10000L;
if ((tone = BfvToneGet(lp, &args)) >= 0)
{
 printf("Received Tone\n");
}

BfvTonePeek

March 2017 511

BfvTonePeek

Purpose Retrieves the next tone from the tone buffer without removing it.

Syntax int
BfvTonePeek (lp, args)

BTLINE *lp;
struct args_tone *args;

The structure contains the following fields.

Input Fields int tone_cp;

Output Fields RES res;

Modified Fields millisecs, digit

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.tone_cp

If set to 1, enables checking for available call progress
information in addition to tones.

BfvTonePeek

March 2017 512

Output Return value:

Returns a detected tone as an ASCII value.

l Indicates call progress is available for the BfvDataCP
function to read, and no tone data is available for this
function to return (if args.tone_cp is set to 1).

0 Indicates this function detected the end of a tone if the
application enabled tone detection using the
TONE_REPORT_END option of the BfvToneDetectEnable
function.

<0 Indicates a timeout occurred and no tone was available, or
another error condition occurred.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

See Also BfvToneGet

Example BTLINE *lp;
int digit;
struct args_tone args;

BT_ZERO(args);
if ((digit = BfvTonePeek(lp, &args)) < 0)
 printf("No Tones in Buffer\n");

BfvTonePlay

March 2017 513

BfvTonePlay

Purpose Plays a tone for the specified time.

Syntax void
BfvTonePlay (lp, args)

BTLINE *lp;
struct args_tone *args;

The structure contains the following fields.

Input Fields int digit;
long millisecs;
int tone_type;
unsigned interdigit_time;

Output Field RES res;

Modified Field decode_flag

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.digit

Designates the digit to play. The ASCII characters 0 – 9,*, #, A,
B, C, and D identify the corresponding tones. See
BfvToneDetectEnable for information about tone mappings for
MF tones.

args.millisecs

The amount of time (in milliseconds) the tone plays.

BfvTonePlay

March 2017 514

args.tone_type

Selects the tone type.

args.interdigit_time

If nonzero, overrides the default interdigit time with the value
specified, in ms.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Tone digits and letters must be specified as character constants (that
is, ‘4’ not 4).

Generated tones are always separated by a minimum amount of
silence that is specified by tone_inter_time (see Volume 6,
Appendix G, Country-Specific Parameter Files).

TONE_R1, TONE_R2, and TONE_R2_BACKWARD tones are not
supported on the SR140.

Example struct args_tone args;

BT_ZERO(args);
args.digit = '4';
args.millisecs = 5000L;
args.tone_type = DTMF_TONE;
BfvTonePlay(lp, &args);

DTMF_12TONE 12- digit DTMF decoding

DTMF_16TONE 16-digit DTMF decoding

TONE_R1 R1 MF tones

TONE_R2_FORWARD R2 forward MF tones

TONE_R2_BACKWARD R2 backward MF tones

BfvTonePlayBeep

March 2017 515

BfvTonePlayBeep

Purpose Plays a single frequency tone.

Syntax void
BfvTonePlayBeep (lp, args)

BTLINE *lp;
struct args_tone *args;

The structure contains the following fields.

Input Fields int toneid;
long millisecs;
int volume;

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.toneid

Indicates which of the possible tones to play.
Valid values are:

TONEID_CCITT_1

462 Hz
0

TONEID_CCITT_2

1100 Hz
1

TONEID_CCITT_3

1650 Hz
2

TONEID_CCITT_4

1850 Hz
3

BfvTonePlayBeep

March 2017 516

args.millisecs

Indicates the amount of time the tone plays in milliseconds.

args.volume

Indicates the transmit level of the tone in dBm.
The range is –20 to 3 dBm.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details The application must end signal generation before performing any
other activity (for example: sending a fax, playing speech, enabling
full call progress, or playing touch tones). You can use limited call
progress (DISS).

TONEID_CCITT_5

2100 Hz
4

TONEID_697_HZ

DTMF row 1
7

TONEID_770_HZ

DTMF row 2
13

TONEID_852_HZ

DTMF row 3
19

TONEID_941_HZ

DTMF row 4
5

TONEID_1209_HZ

DTMF col 1
8

TONEID_1336_HZ

DTMF col 2
10

TONEID_1477_HZ

DTMF col 3
12

TONEID_1633_HZ

DTMF col 4
6

BfvTonePlayBeep

March 2017 517

Example BTLINE *lp;
struct args_tone args;

/* Play tone 4 for a half-second at max volume */
BT_ZERO(args);
args.toneid = 4;
args.millisecs = 500L;
args.volume = 3;
BfvTonePlayBeep(lp, &args);

BfvToneUnget

March 2017 518

BfvToneUnget

Purpose Puts a tone at the top of the tone buffer, so it is available for the next
request to retrieve a tone.

Syntax void
BfvToneUnget (lp, args)

BTLINE *lp;
struct args_tone *args;

The structure contains the following fields.

Input Field int digit;

Output Field RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.digit

The ASCII representation of the digit stored in the tone buffer.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Only one tone can be returned to the top of the tone buffer. To back
up more than one tone, you must write your own application-level
function.

March 2017 519

15 - Voice Play and Record

This chapter describes functions to play, record and control voice from
wave or raw files, raw data buffers or an infopkt stream.

Not all functions in this chapter are fully supported on the SR140.
The functions not fully supported are noted.

With the Bfv voice record and play functions, the application can:

 Open, play, and close a previously recorded prompt file.

 Record speech into an infopkt stream, a raw speech data buffer,
a raw speech file, or a wave file.

 Play back speech from an infopkt stream, a raw speech data
buffer, a raw speech file, or a wave file.

 Modify the volume and rate of a speech playback while it is in
progress.

The voice functions allow you to write Interactive Voice
Response (IVR) systems to record prompts for later playback. You
can also build voice mail systems for recording and playing back
messages.

TruFax® boards do not support this functionality.

Voice Play and Record Function Summary

March 2017 520

Voice Play and Record Function Summary
Table 24 describes the voice play and record functions. Details about
each function begin on page 521, in alphabetical order.

Table 24. Voice Play and Record Function Summary

Function Purpose Page

BfvPromptPlay Plays phrases from a prompt file. 521

BfvSpeechEchoCancelControl Allows enabling, disabling, resetting echo
cancellation. Also allows routing of echo
cancelled data using an alternate timeslot or
accepting echo cancellation input from an
alternate timeslot.

525

BfvSpeechModify Enables an application to modify the volume
(gain) and rate of a speech playback while it is
in progress.

528

BfvSpeechPlay Plays speech from the infopkt stream. 531

BfvSpeechPlayData Plays raw speech data from a data buffer. 534

BfvSpeechPlayFile Plays raw speech data from a file. 541

BfvSpeechPlayWave Plays speech from a wave file. 547

BfvSpeechRecord Retrieves the summation group number
assigned to a channel.

551

BfvSpeechRecord Records speech in infopkt format. 551

BfvSpeechRecordData Records raw speech data into the specified
buffer using the specified speech parameters.

564

BfvSpeechRecordFile Records raw speech data into the specified file
using the specified speech parameters.

574

BfvSpeechRecordWave Records speech into the specified wave (.wav)
file using the specified speech parameters.

583

BfvPromptPlay

March 2017 521

BfvPromptPlay

Purpose Plays a phrase from a prompt file, often in a sequence with other
phrases.

Syntax void
BfvPromptPlay (lp, args)

BTLINE *lp;
struct args_speech *args;

The structure contains the following fields.

Input Fields PROMPT_MAP *prompt_map;
unsigned phrase_number;
int (*func)(BTLINE *lp, char *arg);
char *arg;
unsigned min_callback;

Output Fields RES res;

Modified Fields buf, size, coding_fmt, rate, bits_per_samp, afe_rate,
data_fmt, playf_cont, fname, ips

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.prompt_map

Pointer to the PROMPT_MAP pointer returned by the
BfvPromptOpen function or NULL to end speech playback.

args.phrase_number

The number of the phrase within the prompt file you want the
function to play.

BfvPromptPlay

March 2017 522

args.func

Pointer to a user-supplied function called during speech
playback. NULL disables this feature.
The args.func argument is called as
(*args.func)(lp,args.arg).
The lp variable contains the pointer to the line structure; args.arg
contains the supplied user-defined argument.
Returns an integer:

0 Maintains speech playback.

1 Aborts speech playback.

args.arg

Argument to args.func. Can be NULL.

args.min_callback

The maximum time (in milliseconds) that the Bfv API allows to
elapse between calls to the user-supplied callback function
(args.func). Zero (0) indicates that the calling of the callback
function depends on the activity taking place on the channel.
Note: Setting this parameter to a nonzero value smaller than one

second might have an adverse effect on the system CPU
usage. The smaller the value, the greater the effect on CPU
usage.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvPromptPlay

March 2017 523

Details Speech playback continues uninterrupted between phrases as long
as the underlying speech format does not change. Continuity of
speech playback eliminates clicks and delays that result from
stopping and restarting speech playback. After the application has
played the last phrase in a sequence, it must call the function with a
prompt_map value of NULL to specify the end of speech.

The phrases in the prompt file are infopkt sequences with an
END_OF_SPEECH infopkt at the end. This function plays SPEECH
infopkts and follows indirect (INDIR) infopkts (places infopkts
identified by the INDIR pointer into the stream).

INFOPKT_SPEECH_PARAMETERS infopkts typically precede SPEECH
infopkts.

Playing continues until the function reaches the end of the last
phrase or the user-supplied function returns a nonzero value.

If the user function stops playback, the BfvPromptPlay function
discards data remaining in the driver and firmware buffers.

See Table 25 through Table 27, starting on page 560, for information
about valid speech settings.

Checks to ensure that the line state is set to CONNECTED when the
function starts and during the buffer read loops.

Speech playback terminates when the line state changes to IDLE.

The user-supplied function must not call any function that causes a
delay, such as waiting for a DTMF tone for a nonzero timeout or going
to sleep. All calls made within the user-supplied function must
return immediately. Applications performing DTMF tone detection
must enable detection before beginning the operation that uses the
user-supplied function (for example, speech playback).

If you set a nonzero value for args.min_callback, the Bfv API makes
sure that it calls the args.func user-supplied callback function at
least every args.min_callback milliseconds. If you set
args.min_callback to zero, callback function calling depends on
activity taking place on the channel.

See Also BfvSpeechModify, BfvSpeechPlay, BfvPromptOpen

BfvPromptPlay

March 2017 524

Example BTLINE *lp;
struct args_infopkt args_info;
struct args_speech args_speech;
PROMPT_MAP *prompt_map;
...

BT_ZERO (args_info);
args_info.name = “prompt.ips”;
args_info.fmode = “r”;
prompt_map = BfvPromptOpen (&args_info);

BT_ZERO (args_speech);
args_speech.prompt_map = prompt_map;
args_speech.phrase_number = 2;
args_speech.func = play_func;
BfvPromptPlay (lp, &args_speech);
...

int play_func (lp, arg)
BTLINE *lp
char *arg;
{
 ...
}

BfvSpeechEchoCancelControl

March 2017 525

BfvSpeechEchoCancelControl

Purpose Allows enabling, disabling, or resetting echo cancellation.

Syntax void
BfvSpeechEchoCancelControl (lp, args)

BTLINE *lp;
struct args_speech *args;

The structure contains the following fields.

Input Fields int echoc_op;
int output_select;

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.echoc_op

Selects the operation to perform. Valid values include:

ECHOC_OP_ENABLE

Enable echo cancellation.

ECHOC_OP_DISABLE

Disable echo cancellation.

ECHOC_OP_RESET

Reset echo cancellation.

BfvSpeechEchoCancelControl

March 2017 526

args.output_select

When args.echoc_op is ECHOC_OP_ALT_OUTPUT_SELECT, selects
the routing method of echo cancelled data. Valid values include:

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

ECHOC_OP_ALT_INPUT_ENABLE

Enable acceptance of input for echo cancellation from
an alternate timeslot. The timeslot is timeslot 1 on the
current channel.

ECHOC_OP_ALT_OUTPUT_SELECT

Select routing of echo cancelled data. The selection is
specified by args.output_select.

SPEECH_RECORD_TO_HOST_TSLOT_DEF

Send recorded data to both the host and the alternate
timeslot. The timeslot is timeslot 1 on the current
channel.

0x01

BfvSpeechEchoCancelControl

March 2017 527

Details The SR140 does not support this function.

This function controls echo cancellation. Use the function for:

 Enabling, disabling, resetting echo cancellation.

 Routing of echo cancelled data using alternate timeslot or
accepting echo cancellation input from an alternate timeslot.

BfvSpeechEchoCancelControl configuration persists, even after
BfvLineReset or program exit. For example, if you turn off echo
cancellation and exit your program and restart, echo cancellation
will still be off.

When using an alternate timeslot for echo cancelled input or output,
the timeslot is timeslot 1 on the current channel. Use
BfvCallSWConnect to establish an appropriate half-duplex
connection between the ultimate input or output stream and the
alternate timeslot.

This timeslot is port_class CALL_SW_PORT_CHANNEL_DEF. port_unit
is equal to the logical channel number on the module, stream 0,
slot 1. The first channel on each module is logical channel 2, the
second channel is logical channel 3, and so on. You can use the
LINE_DEST_ADDR macro to determine the logical channel number.

Example /* Enable echo cancellation */
struct args_speech args;

BT_ZERO(args);
args.echoc_op = ECHOC_OP_ENABLE;
BfvSpeechEchoCancelControl (lp,&args);

BfvSpeechModify

March 2017 528

BfvSpeechModify

Purpose Enables an application to modify the volume (gain) of speech
playback while it is in progress.

Syntax void
BfvSpeechModify (lp, args)

BTLINE *lp;
 struct args_speech *args;

The structure contains the following fields.

Input Fields int modification;
int value;

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.modification

An integer value that represents the type of modification to
perform.

SPCH_MOD_GAIN_UP

Increase volume

 2

SPCH_MOD_GAIN_DOWN

Decrease volume

 3

SPCH_MOD_GAIN_SET

Set volume.
6

BfvSpeechModify

March 2017 529

args.value

Parameter used when setting volume using
SPCH_MOD_GAIN_SET .
Valid values for SPCH_MOD_GAIN_SET are:

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details With each application of the SPCH_MOD_GAIN_SET modification
value, the volume increases or decreases by a factor of 2. Maximum
increase is 100% above the original gain, and maximum decrease is
50% below the original gain.

Applications can call this function from within the user-defined
function.

Using this function, applications can enable users to adjust the
volume of a recording during play by pressing a specified key (DTMF
tone) on their telephone keypad.

Applications can call this function multiple times.

See Also BfvSpeechPlay, BfvSpeechPlayData, BfvSpeechPlayFile

Example BTLINE *lp;
struct args_speech args_speech;
...

BT_ZERO (args_speech);
args_speech.modification = SPCH_MOD_GAIN_UP;

–18 dB –3

–12 dB –2

–6 dB –1

0 dB 0

+6 dB 1

+12 dB 2

+18 dB 3

BfvSpeechModify

March 2017 530

BfvSpeechModify (lp, &args_speech);

BfvSpeechPlay

March 2017 531

BfvSpeechPlay

Purpose Plays speech from the infopkt stream.

Syntax void
BfvSpeechPlay (lp, args)

BTLINE *lp;
struct args_speech *args;

The structure contains the following fields.

Input Fields struct infopkt_stream *ips;
int (*func)(BTLINE *lp, char *arg);
char *arg;
unsigned min_callback;

Output Fields unsigned bytes_processed;
RES res;

Modified Fields buf, size, coding_fmt, rate, bits_per_samp, afe_rate,
data_fmt, playf_cont, fname

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.ips

Pointer to an infopkt stream that is opened for reading.

BfvSpeechPlay

March 2017 532

args.func

Pointer to a user-supplied function called during speech
playback. NULL disables this feature.
The args.func argument is called as
(*args.func)(lp,args.arg).
The lp variable contains the pointer to the line structure; args.arg
contains the supplied user-defined argument.
Returns an integer:

0 Maintains speech playback.

1 Aborts speech playback.

args.arg

Argument to args.func. Can be NULL.

args.min_callback

The maximum time (in milliseconds) that the Bfv API allows to
elapse between calls to the user-supplied callback function
(args.func). Zero (0) indicates that the calling of the callback
function depends on the activity taking place on the channel.
Note: Setting this parameter to a nonzero value smaller than one

second might have an adverse effect on the system CPU
usage. The smaller the value, the greater the effect on CPU
usage.

Output Return value: None.

args.bytes_processed

The number of bytes of raw speech data played. This field is only
valid when speech playback has terminated with a non-error
return.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvSpeechPlay

March 2017 533

Details This function plays SPEECH infopkts and places infopkts identified
by the INDIR pointer into the stream. All other infopkt types are
ignored.

The first non-INDIR infopkt must be
INFOPKT_SPEECH_PARAMETERS that sets the bit rate.

See Table 25 through Table 27, starting on page 560, for information
about valid speech settings.

Playing continues until one of the following conditions is met:

 The infopkt stream is finished.
 The user-supplied function returns a nonzero value.
 The function encounters an END_OF_SPEECH infopkt with a mode

parameter value of 0.

If the user function stops playback, the BfvSpeechPlay function
discards data remaining in the driver and firmware buffers.

The function checks to ensure that the line state is set to CONNECTED
when the function starts and during the buffer read loops.

Speech playback terminates when the line state changes to IDLE.

The user-supplied function must not call any function that causes a
delay, such as waiting for a DTMF tone for a nonzero timeout or going
to sleep. All calls made within the user-supplied function must
return immediately. Applications performing DTMF tone detection
must enable the detection before beginning the operation that uses
the user-supplied function (for example, speech playback).

If you set a nonzero value for args.min_callback, the Bfv API makes
sure that it calls the args.func user-supplied callback function at
least every args.min_callback milliseconds. If you set
args.min_callback to zero, callback function calling depends on
activity taking place on the channel.

See Also BfvSpeechPlayData, BfvSpeechPlayFile

Example See applications in the boston/bfv.api/app.src sample application
directory.

BfvSpeechPlayData

March 2017 534

BfvSpeechPlayData

Purpose Plays raw speech data from a data buffer.

Syntax void
BfvSpeechPlayData (lp, args)

BTLINE *lp;
struct args_speech *args;

The structure contains the following fields.

Input Fields unsigned char *buf;
unsigned size;
unsigned coding_fmt;
unsigned rate;
unsigned bits_per_samp;
unsigned afe_rate;
unsigned data_fmt;
int (*func)(BTLINE *lp, char *arg);
char *arg;
int playf_cont;
unsigned min_callback;

Output Fields unsigned bytes_processed;
RES *res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.buf

Pointer to a data buffer that contains the speech data.

args.size

The size, in bytes, of the user-allocated data buffer.

BfvSpeechPlayData

March 2017 535

args.coding_fmt

Coding format of the data. Valid values are:

args.rate

The compressed sample rate for playback. If the value is
RATE_STOP, speech playback is stopped. Valid values are:

CODE_ADPCM

OKI ADPCM
1

CODE_PCM_ULAW

μ-Law
2

CODE_PCM_ALAW

A-Law
3

CODE_G726

G.726
17

CODE_GSM_610

Microsoft GSM 6.10
14

CODE_LINEAR

Linear
4

RATE_STOP

Stop playback

RATE_5300

5,300 samples/sec
9

RATE_6000

6,000 samples/sec
0

RATE_8000

8,000 samples/sec
1

RATE_9600

9,600 samples/sec
7

RATE_11000

11,000 samples/sec
8

RATE_12300

12,300 samples/sec
12

RATE_13000

13,000 samples/sec
11

BfvSpeechPlayData

March 2017 536

args.bits_per_samp

Number of bits per sample. Valid values are:

args.afe_rate

AFE sample rate. Valid values are:

args.data_fmt

RATE_16000

16,000 samples/sec
6

RATE_20000

20,000 samples/sec
2

RATE_24000

24,000 samples/sec
3

RATE_28000

28,000 samples/sec
4

RATE_32000

32,000 samples/sec
5

BITS_1

1 bit/sample
0

BITS_2

2 bit/sample
7

BITS_3

3 bit/sample
1

BITS_4

4 bits/sample
2

BITS_5

5 bit/sample
8

BITS_8

8 bits/sample
3

BITS_16

16 bits/sample
5

AFE_8000

8000 samples/sec
0

BfvSpeechPlayData

March 2017 537

Data format specification. Value at present is:

args.func

Pointer to a user-supplied function called during speech
playback. NULL disables this feature.
The args.func argument is called as
(*args.func)(lp,args.arg).
The lp variable contains the pointer to the line structure; args.arg
contains the supplied user-defined argument.
Returns an integer:
0 Maintains speech playback.
1 Aborts speech playback.

args.arg

Argument to args.func. Can be NULL.

args.playf_cont

If set to 1, this function does not terminate speech playback at end
of file.

args.min_callback

The maximum time (in milliseconds) that the Bfv API allows to
elapse between calls to the user-supplied callback function
(args.func). Zero (0) indicates that the calling of the callback
function depends on the activity taking place on the channel.
Note: Setting this parameter to a nonzero value smaller than one

second might have an adverse effect on the system CPU
usage. The smaller the value, the greater the effect on CPU
usage.

SPCH_MSB

MSB is first
0

BfvSpeechPlayData

March 2017 538

Output Return value: None.

args.bytes_processed

The number of bytes of raw speech data played. This field is only
valid when speech playback has terminated with a non-error
return.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details The SR140 supports only CODE_PCM_ULAW and
CODE_PCM_ALAW coding formats, sampled at RATE_8000
samples per second with BITS_8 per sample.

This function plays raw speech data from the specified data buffer,
using the specified speech parameters.

See Table 25 through Table 27, starting on page 560, for information
about valid speech settings.

Playing continues until one of the following conditions is met:

 The value of rate is RATE_STOP. All data to be played has been
supplied and playback continues until end-of-data.

 The user-supplied function returns a nonzero value. Playback is
immediately stopped.

If the user function stops playback, the BfvSpeechPlayData
function discards data remaining in the driver and firmware buffers.
The value of rate can be changed between subsequent calls to
BfvSpeechPlayData without halting playback.

The function checks to ensure that the line state is set to CONNECTED
when the function starts and during the buffer read loops.

Speech playback terminates when the line state changes to IDLE.

Employing the user-supplied function is the only way to immediately
stop speech playback; a rate value of RATE_STOP only indicates that
all data has been supplied.

The user-supplied function must not call any function that causes a
delay, such as waiting for a DTMF tone for a nonzero timeout or going
to sleep. All calls made within the user-supplied function must
return immediately. Applications performing DTMF tone detection
must enable the detection before beginning the operation that uses
the user-supplied function (for example, speech playback).

BfvSpeechPlayData

March 2017 539

If you set a nonzero value for args.min_callback, the Bfv API makes
sure that it calls the args.func user-supplied callback function at
least every args.min_callback milliseconds. If you set
args.min_callback to zero, callback function calling depends on
activity taking place on the channel.

Using args.playf_cont helps prevent noticeable transitions when
making subsequent calls to BfvSpeechPlayData or
BfvSpeechPlayFile by preventing speech playback from
terminating. Terminate the speech playback using a later call to a
speech playback function.

See Also BfvSpeechModify, BfvSpeechPlay, BfvSpeechPlayFile

BfvSpeechPlayData

March 2017 540

Example
BTLINE *lp;
unsigned char buf[1024];
int n;
int my_user_func();
struct args_speech args;

/* Read and play from a file until done or user function indicates to stop */
while ((n = read_file(buf, sizeof(buf)) > 0)
{
 BT_ZERO(args);
 args.buf = buf;
 args.size = n;
 args.coding_fmt = CODE_ADPCM;
 args.rate = RATE_8000;
 args.bits_per_samp = BITS_4;
 args.afe_rate = AFE_8000;
 args.data_fmt = SPCH_MSB;
 args.func = my_user_func;
 args.arg = NULL;
 BfvSpeechPlayData(lp, &args);
 if (args.res.status != BT_STATUS_OK)
 return(-1);
}
BT_ZERO(args);
args.buf = NULL;
args.size = 0;
args.coding_fmt = CODE_ADPCM;
args.rate = RATE_STOP;
args.func = my_user_func;
args.arg = NULL;
BfvSpeechPlayData(lp, &args);
if (args.res.status != BT_STATUS_OK)
 return(-1);

BfvSpeechPlayFile

March 2017 541

BfvSpeechPlayFile

Purpose Plays raw speech data from a file.

Syntax void
BfvSpeechPlayFile (lp, args)

BTLINE *lp;
struct args_speech *args;

The structure contains the following fields.

Input Fields char fname;
unsigned char *buf;
unsigned size;
unsigned coding_fmt;
unsigned rate;
unsigned bits_per_samp;
unsigned afe_rate;
unsigned data_fmt;
int (*func)(BTLINE *lp, char *arg);
char *arg;
int playf_cont;
unsigned min_callback;

Output Fields unsigned bytes_processed;
RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.fname

The name of the file that contains the speech data to play.

args.buf

Pointer to a data buffer that contains the speech data.

BfvSpeechPlayFile

March 2017 542

args.size

The size, in bytes, of the user-allocated data buffer.

args.coding_fmt

Coding format of the data. Valid values are:

args.rate

The compressed sample rate for playback. If the value is
RATE_STOP, speech playback is stopped. Valid values are:

CODE_ADPCM

OKI ADPCM
1

CODE_PCM_ULAW

μ-Law
2

CODE_PCM_ALAW

A-Law
3

CODE_G726

G.726
17

CODE_GSM_610

Microsoft GSM 6.10
14

CODE_LINEAR

Linear
4

RATE_STOP

Stop playback
RATE_5300

5,300 samples/sec
9

RATE_6000

6,000 samples/sec
0

RATE_8000

8,000 samples/sec
1

RATE_9600

9,600 samples/sec
7

RATE_11000

11,000 samples/sec
8

RATE_12300

12,300 samples/sec
12

BfvSpeechPlayFile

March 2017 543

args.bits_per_samp

Number of bits per sample. Valid values are:

RATE_13000

13,000 samples/sec
11

RATE_16000

16,000 samples/sec
6

RATE_20000

20,000 samples/sec
2

RATE_24000

24,000 samples/sec
3

RATE_28000

28,000 samples/sec
4

RATE_32000

32,000 samples/sec
5

BITS_1

1 bit/sample
0

BITS_2

2 bit/sample
7

BITS_3

3 bit/sample
1

BITS_4

4 bits/sample
2

BITS_5

5 bit/sample
8

BITS_8

8 bits/sample
3

BITS_16

16 bits/sample
5

BfvSpeechPlayFile

March 2017 544

args.afe_rate

AFE sample rate. Valid values are:

args.data_fmt

Data format specification. Value at present is:

args.func

Pointer to a user-supplied function called during speech
playback. NULL disables this feature.
The args.func argument is called as
(*args.func)(lp,args.arg).
The lp variable contains the pointer to the line structure; args.arg
contains the supplied user-defined argument.
Returns an integer:
0 Maintains speech playback.
1 Aborts speech playback.

args.arg

Argument to args.func. Can be NULL.

args.playf_cont

If set to 1, this function does not terminate speech playback at end
of file.

args.min_callback

The maximum time (in milliseconds) that the Bfv API allows to
elapse between calls to the user-supplied callback function
(args.func). Zero (0) indicates that the calling of the callback
function depends on the activity taking place on the channel.
Note: Setting this parameter to a nonzero value smaller than one

second might have an adverse effect on the system CPU
usage. The smaller the value, the greater the effect on CPU
usage.

AFE_8000

8000 samples/sec
0

SPCH_MSB

MSB is first
0

BfvSpeechPlayFile

March 2017 545

Output Return value: None.

args.bytes_processed

The number of bytes of raw speech data played. This field is only
valid when speech playback has terminated with a non-error
return.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details The SR140 supports only CODE_PCM_ULAW and
CODE_PCM_ALAW coding formats, sampled at RATE_8000
samples per second with BITS_8 per sample.

This function plays raw speech data from the specified file, using the
specified parameters.

See Table 25 through Table 27, starting on page 560, for information
about valid speech settings.

The value of rate can be changed between subsequent calls to
BfvSpeechPlayFile without halting playback.

Playing continues until one of the following conditions is met:

 The file is finished.
 The user-supplied function returns a nonzero value.

If the user function stops playback, the BfvSpeechPlayFile
function discards data remaining in the driver and firmware buffers.

The function checks to ensure that the line state is set to CONNECTED
when the function starts and during the buffer read loops.

Speech playback terminates when the line state changes to IDLE.

Employing the user-supplied function is the only way to immediately
abort speech playback.

The user-supplied function must not call any function that causes a
delay, such as waiting for a DTMF tone for a nonzero timeout or going
to sleep. All calls made within the user-supplied function must
return immediately. Applications performing DTMF tone detection
must enable the detection before beginning the operation that uses
the user-supplied function (for example, speech playback).

BfvSpeechPlayFile

March 2017 546

If you set a nonzero value for args.min_callback, the Bfv API makes
sure that it calls the args.func user-supplied callback function at
least every args.min_callback milliseconds. If you set
args.min_callback to zero, callback function calling depends on
activity taking place on the channel.

Using args.playf_cont helps prevent noticeable transitions when
making subsequent calls to BfvSpeechPlayFile or
BfvSpeechPlayData by preventing speech playback from
terminating. Terminate the speech playback using a later call to a
speech playback function.

See Also BfvSpeechModify, BfvSpeechPlay, BfvSpeechPlayData

Example BTLINE *lp;
char *fname;
int my_user_func();
struct args_speech args;

/* Play from a file until done or user function indicates
 to stop */
BT_ZERO(args);
args.fname = fname;
args.coding_fmt = CODE_ADPCM;
args.rate = RATE_8000;
args.bits_per_samp = BITS_4;
args.afe_rate = AFE_8000;
args.data_fmt = SPCH_MSB;
args.func = my_user_func;
args.arg = NULL;
BfvSpeechPlayFile(lp, &args);

BfvSpeechPlayWave

March 2017 547

BfvSpeechPlayWave

Purpose Plays speech from a wave file.

Syntax void
BfvSpeechPlayWave (lp, args)

BTLINE *lp;
struct args_speech *args;

The structure contains the following fields.

Input Fields char *fname;
int (*func)(BTLINE *lp, char *arg);
char *arg;
int playf_cont;
unsigned min_callback;

Output Fields unsigned bytes_processed;
RES res;

Modified Fields buf, size, coding_fmt, rate, bits_per_samp, afe_rate,
data_fmt

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.fname

Name of the wave file to play.

BfvSpeechPlayWave

March 2017 548

args.func

Pointer to a user-supplied function called during speech
playback. NULL disables this feature.
The args.func argument is called as
(*args.func)(lp,args.arg).
The lp variable contains the pointer to the line structure; args.arg
contains the supplied user-defined argument.
Returns an integer:
0 Maintains speech playback.
1 Aborts speech playback.

args.arg

Argument to args.func. Can be NULL.

args.playf_cont

If set to 1, this function does not terminate speech playback at end
of file.

args.min_callback

The maximum time (in milliseconds) that the Bfv API allows to
elapse between calls to the user-supplied callback function
(args.func). Zero (0) indicates that the calling of the callback
function depends on the activity taking place on the channel.
Note: Setting this parameter to a nonzero value smaller than one

second might have an adverse effect on the system CPU
usage. The smaller the value, the greater the effect on CPU
usage.

Output Return value: None.

args.bytes_processed

The number of bytes of raw speech data played. This field is only
valid when speech playback has terminated with a non-error
return.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvSpeechPlayWave

March 2017 549

Details The SR140 supports only u-Law, A-Law coding formats, sampled at
8Khz with 8 bits per sample.

This function plays speech from the specified wave (.wav) file.

See Table 25 through Table 27, starting on page 560, for information
about valid speech settings. Because some format or rate conversions
might be done at host level, the possible formats and rates might not
match the native capabilities of the firmware (see Table 26, Voice
Encoding Settings, on page 561).

Only wave files containing data recorded in one of the following
combinations of coding format, rate, and bits per sample can be
played:

Playing continues until one of the following conditions is met:

 The file comes to an end.
 The user-supplied function returns a nonzero value.

If the user function stops playback, the BfvSpeechPlayWave
function discards data remaining in the driver and firmware buffers.

The function checks to ensure that the line state is set to CONNECTED
when the function starts and during the buffer read loops.

Speech playback terminates when the line state changes to IDLE.

Employing the user-supplied function is the only way to immediately
abort speech playback.

The user-supplied function must not call any function that causes a
delay, such as waiting for a DTMF tone for a nonzero timeout or going
to sleep. All calls made within the user-supplied function must
return immediately. Applications performing DTMF tone detection
must enable the detection before beginning the operation that uses
the user-supplied function (for example, speech playback).

Coding format = μ-Law sample rate = 8KHz, 11KHz

bits per sample = 8

Coding format = A-Law sample rate = 8KHz, 11KHz

bits per sample = 8

Coding format = Linear sample rate = 8KHz, 11KHz

bits per sample = 8, 16

BfvSpeechPlayWave

March 2017 550

If you set a nonzero value for args.min_callback, the Bfv API makes
sure that it calls the args.func user-supplied callback function at
least every args.min_callback milliseconds. If you set
args.min_callback to zero, callback function calling depends on
activity taking place on the channel.

Using args.playf_cont helps prevent noticeable transitions when
making subsequent calls to another speech playback function by
preventing speech playback from terminating. Terminate the speech
playback using a later call to a speech playback function.

Note: Stereo wave files are not supported.

See Also BfvSpeechRecordWave

Example BTLINE *lp;
char *fname;
int my_user_func();
struct args_speech args;

/* Play from a wave file until finished or user function
 indicates to stop */
BT_ZERO(args);
args.fname = fname;
args.func = my_user_func;
args.arg = NULL;
BfvSpeechPlayWave(lp, &args);

BfvSpeechRecord

March 2017 551

BfvSpeechRecord

Purpose Records speech in infopkt format.

Syntax void
BfvSpeechRecord (lp, args)

BTLINE *lp;
struct args_speech *args;

The structure contains the following fields.

Input Fields struct infopkt_stream *ips;
unsigned char *buf;
unsigned size;
unsigned coding_fmt;
unsigned rate;
unsigned bits_per_samp;
unsigned afe_rate;
unsigned data_fmt;
long timeout;
long silence_timeout;
int s_compr;
int (*func)(BTLINE *lp, char *arg);
char *arg;
int vad;
int vad_thresh;
unsigned vad_passthru;
int asr_mode;
int beep;
unsigned min_callback;

Output Fields RES res;

BfvSpeechRecord

March 2017 552

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.ips

Pointer to the infopkt where speech data is written.

args.buf

Pointer to the user-allocated data buffer that holds the received
data. The data buffer must be at least 1024 bytes in size.

args.size

The size, in bytes, of the user-allocated data buffer.

args.coding_fmt

Coding format of the data. Valid values are:

CODE_ADPCM

OKI ADPCM
1

CODE_PCM_ULAW

μ-Law
2

CODE_PCM_ALAW

A-Law
3

CODE_G726

G.726
17

CODE_GSM_610

Microsoft GSM 6.10
14

CODE_LINEAR

Linear
4

BfvSpeechRecord

March 2017 553

args.rate

The compressed sample rate for playback. If the value is
RATE_STOP, speech playback is stopped. Valid values are:

RATE_STOP

Stop playback

RATE_5300

5,300 samples/sec
9

RATE_6000

6,000 samples/sec
0

RATE_8000

8,000 samples/sec
1

RATE_9600

9,600 samples/sec
7

RATE_11000

11,000 samples/sec
8

RATE_12300

12,300 samples/sec
12

RATE_13000

13,000 samples/sec
11

RATE_16000

16,000 samples/sec
6

RATE_20000

20,000 samples/sec
2

RATE_24000

24,000 samples/sec
3

RATE_28000

28,000 samples/sec
4

RATE_32000

32,000 samples/sec
5

BfvSpeechRecord

March 2017 554

args.bits_per_samp

Number of bits per sample. Valid values are:

args.afe_rate

AFE sample rate. Valid values are:

args.data_fmt

Data format specification. Value at present is:

args.timeout

The total time (in milliseconds) to record. Zero (0) indicates that
recording continues unaffected by a time limit.

BITS_1

1 bit/sample
0

BITS_2

2 bit/sample
7

BITS_3

3 bit/sample
1

BITS_4

4 bits/sample
2

BITS_5

5 bit/sample
8

BITS_8

8 bits/sample
3

BITS_16

16 bits/sample
5

AFE_8000

8000 samples/sec
0

SPCH_MSB

MSB is first
0

BfvSpeechRecord

March 2017 555

args.silence_timeout

Stops recording when silence is detected for this amount of time
(in milliseconds). Zero (0) indicates that recording continues
unaffected by a period of silence. Maximum value is 5 * 65535.

args.s_compr

Indicates if the function removes silence. A value of 1 enables
silence removal, 0 disables. Do not use this parameter during
full-duplex recording and playback or if args.asr_mode is in use.
Use in these cases.

args.func

Pointer to a user-supplied function called during speech
recording. NULL disables this feature.
The args.func argument is called as
(*args.func)(lp,args.arg).
The lp variable contains the pointer to the line structure; arg
contains the supplied user-defined argument.
Returns an integer:

0 Maintains speech recording.

1 Aborts speech recording.

args.arg

Argument to args.func. Can be NULL.

args.vad

Enables or disables Voice Activity Detection (VAD) and specifies
the mode. Use this argument with full-duplex recording and
playback, or when simplex recording and args.asr_mode is set
to 1. Possible values are:

VAD_OFF

No VAD operation.
0

VAD_ALL

VAD reporting with all speech data supplied.
1

VAD_DETECT

VAD reporting with only detected speech data supplied.
2

BfvSpeechRecord

March 2017 556

args.vad_thresh

Specifies the change from the default detection sensitivity.
Applicable to all VAD modes. Units are internally defined steps.
Range: –6 to 12

args.vad_passthru

When nonzero, enables unconditional pass through of the
specified amount of data (in ms) when recording starts. This
argument has no effect when args.vad is set to a value other than
VAD_OFF or VAD_ALL.

args.asr_mode

When set to 1, speech recording takes place in an ASR-compatible
mode, regardless of whether full-duplex speech operations are
occurring.

args.beep

When nonzero, a beep will be played prior to record starting. If
the channel is already performing playback, then the beep will
not be played.
By default the beep tone will be played for 500 milliseconds at
500 Hz.
The behavior is controlled by the user configuration file
record_beep_dur and record_beep_freq parameters (see Volume 6,
Appendix A).

VAD_DETECT_AUTO

VAD reporting with only detected speech data supplied
and automatic playback suppression. Playback will no
longer be audible, but the application must terminate
the playback operation itself through one of the
standard mechanisms for the playback function in use.

3

VAD_THRESH

VAD reporting with data that is above a threshold.
Modify the threshold using args.vad_thresh.

4

BfvSpeechRecord

March 2017 557

args.min_callback

The maximum time (in milliseconds) that the Bfv API allows to
elapse between calls to the user-supplied callback function
(args.func). Zero (0) indicates that the calling of the callback
function depends on the activity taking place on the channel.
Note: Setting this parameter to a nonzero value smaller than

one second might have an adverse effect on the system CPU
usage. The smaller the value, the greater the effect on CPU
usage.

Output args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details The SR140 supports only CODE_PCM_ULAW and
CODE_PCM_ALAW coding formats, sampled at RATE_8000
samples per second with BITS_8 per sample. In addition, all VAD,
ASR, and Summation parameters are also unsupported on virtual
modules.

See Table 25 through Table 27, starting on page 560, for information
about valid speech settings. Not all combinations of args.coding_fmt,
args.rate, and args.bits_per_samp are valid (see Table 26, Voice
Encoding Settings, on page 561).

Recording stops at the first occurrence of one of the following:

 The value of args.rate is RATE_STOP
 Silence timeout
 Overall timeout
 The user-supplied integer function returns nonzero
 The line state changes to IDLE

After recording stops, the function stores the data remaining in the
channel and driver buffers in the supplied infopkt stream, and clears
the channel and driver buffers.

When recording is stopped because the value of rate is RATE_STOP,
the driver buffer might still contain speech data. To receive the
complete set of speech data, the application must call
BfvSpeechRecord repeatedly until the return value is 0.

BfvSpeechRecord

March 2017 558

The args.timeout and args.silence_timeout arguments only have
effect when recording is first begun. Values for these arguments in
subsequent calls to this function for the same recording are ignored.
The args.silence_timeout argument has no effect during summation
recording.

The application can enable Voice Activity Detection (VAD) for use
with full-duplex recording and playback (often useful for ASR
applications).

To enable AGC, the application uses the agc keyword in the
user-defined configuration file.

The argument args.func can be NULL, or it can point to a
user-supplied function that determines when to stop recording.

The user-supplied function is a flexible and powerful tool and can be
used to:

 Detect the end of recording caused by an event. Events include:
 Detection of a DTMF tone
 Detection of a particular call progress result
 An external trigger such as the keyboard

 Report information during recording.

The user-supplied function must not call any function that causes a
delay, such as waiting for a DTMF tone for a nonzero timeout or going
to sleep. All calls made within the user-supplied function must
return immediately. Applications performing DTMF tone detection
must enable the detection before beginning the operation that uses
the user-supplied function (for example, speech playback).

If you set a nonzero value for args.min_callback, the Bfv API makes
sure that it calls the args.func user-supplied callback function at
least every args.min_callback milliseconds. If you set
args.min_callback to zero, callback function calling depends on
activity taking place on the channel.

During any of the following conditions, the user callback function
might not be called regularly unless there is some activity destined
for the application session. Alerts sent by BfvLineAlert (which can
be cancelled by the application) can create such activity.

 When silence compression is enabled using args.s_compr and
silence is detected.

 If VAD is enabled and no speech is detected.
 If speech data has been routed to an alternate timeslot using

BfvSpeechEchoCancelControl.

BfvSpeechRecord

March 2017 559

If VAD is enabled, when the recording firmware determines that
speech has started or stopped, use the LINE_VAD_STATE (lp)
macro to determine the type of voice activity. This macro returns
either VAD_SPEECH_DETECTED to indicate speech was detected or
VAD_NO_SPEECH_DETECTED (default state) to indicate that speech
is not currently being detected. Your application would normally call
this macro from within the user callback function. However, the
macro can also be called from outside the user callback function. The
LINE_VAD_BYTES_PROCESSED (lp) macro returns the number of
bytes played at the time the last speech detection occurred.

After full-duplex operation begins or when args.asr_mode is in use,
the application assumes that it stays in effect until both recording
and playback have been terminated.

In full-duplex operation or when args.asr_mode is in use, the silence
compression and AGC capabilities are not available. When
performing full-duplex recording/playing, the record coding format
value can only be CODE_PCM_ULAW or CODE_PCM_ALAW, but the play
format can be any valid format.

Table 25 on page 560 identifies the coding formats that each TR1034
model supports for play and record.

BfvSpeechRecord

March 2017 560

Table 25. Product Support of Codecs for Play and Record
Functions

Codec

TR1034:
Digital (Single
Span)
Analog and
BRI

SR140

OKI ADPCM 24
kbps

Yes No

OKI ADPCM 32
kbps

Yes No

PCM_ULAW
48 kbps

Yes No

PCM_ULAW
64 kbps

Yes Yes

PCM_ULAW
88 kbps

Yes No

PCM_ALAW
48 kbps

Yes No

PCM_ALAW
64 kbps

Yes Yes

PCM_ALAW
88 kbps

Yes No

G726 16 kbps No No

G726 24 kbps No No

G726 32 kbps No No

G726 40 kbps No No

GSM_610
13 kbps

No No

Linear 16-bit
128 kbps

No No

BfvSpeechRecord

March 2017 561

Table 26 specifies the valid settings that applications can use to
record and to playback speech. These settings include values for:

 Coding format of the data (CODE_...)
 Number of bits per sample (BITS_...). BITS_... does not apply

to frame-based coders (GSM_610).
 Compressed sample rate for playback (RATE_...)

Table 26. Voice Encoding Settings

CODE_ BITS_ RATE_ Notes

ADPCM 4 6,000 24 kbps ADPCM

ADPCM 4 8,000 32 kbps ADPCM

PCM_ULAW 8 6,000 48 kbps μ_law

PCM_ULAW 8 8,000 64 kbps μ_law

PCM_ULAW 8 11,000 88 kbps µ_law

PCM_ALAW 8 6,000 48 kbps a_law

PCM_ALAW 8 8,000 64 kbps a_law

PCM_ALAW 8 11,000 88 kbps a_law

G726 2 8,000 16 kbps G.726

G726 3 8,000 24 kbps G.726

G726 4 8,000 32 kbps G.726

G726 5 8,000 40 kbps G.726

GSM_610 Any 13,000 13 kbps Microsoft
GSM 6.10

LINEAR 16 8,000 128 kbps Linear 16-bit

BfvSpeechRecord

March 2017 562

Table 27 indicates the voice features and modes that TR1034 models
support.

Table 27. Product Support of Voice Features and Modes for Play
and Record (Continued)

See Also BfvSpeechRecord, BfvSpeechRecordData,
BfvSpeechRecordFile, BfvSpeechRecordWave,
LINE_HAS_CAP (lp, cap), LINE_VAD_STATE (lp),
LINE_VAD_BYTES_PROCESSED (lp)

Voice Feature/Mode
Play TR1034 Simplex Record

TR1034
SR140

PCM A-law Yes Yes Yes

PCM μ_law Yes Yes Yes

OKI ADPCM Yes Yes No

G726 ADPCM Yes Yes No

Microsoft GSM 6.10 Yes Yes No

Linear 16-bit Yes Yes No

Volume control Yes N/A Yes

AGC N/A Yes No

Record beep N/A Yes Yes

Echo cancellation Yes N/A No

Silence compression N/A Yes Yes

VAD N/A Yes No

Silence Timeout N/A Yes Yes

DISS Yes Yes Yes

DTMF Detection Yes Yes Yes

DTMF Generation Yes N/A Yes

BfvSpeechRecord

March 2017 563

Example BTLINE *lp;
struct args_speech args_speech;
struct args_infopkt args_infopkt;
struct infopkt_stream *ips;
...

BT_ZERO (args_infopkt);
args_infopkt.fname = “record.ips”;
args_info.fmode = “w”;
ips = BfvInfopktOpen (&args_infopkt);

BT_ZERO (args_speech);
args_speech.ips = ips;
args_speech.coding_fmt = CODE_PCM_ULAW;
args_speech.rate = RATE_8000;
args_speech.bits_per_samp = BITS_8;
args_speech.afe_rate = AFE_8000;
args_speech.timeout = 10000L;
args_speech.silence_timeout = 0L;
args_speech.s_compr =1;
args_speech.func = play_func;
BfvSpeechRecord (lp, &args_speech);
...

int play_func (lp, arg)
BTLINE *lp
char *arg;
{
 ...
}

BfvSpeechRecordData

March 2017 564

BfvSpeechRecordData

Purpose Records raw speech data into the specified buffer using the specified
speech parameters.

Syntax unsigned int
BfvSpeechRecordData (lp, args)

BTLINE *lp;
struct args_speech *args;

The structure contains the following fields.

Input Fields unsigned char *buf;
unsigned size;
unsigned coding_fmt;
unsigned rate;
unsigned bits_per_samp;
unsigned afe_rate;
unsigned data_fmt;
long timeout;
long silence_timeout;
int s_compr;
int (*func)(BTLINE *lp, char *arg);
char *arg;
int vad;
int vad_thresh;
unsigned vad_passthru;
int asr_mode;
int beep;
unsigned min_callback;

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

BfvSpeechRecordData

March 2017 565

args.buf

Pointer to the user-allocated data buffer that holds the received
data. The data buffer must be at least 1024 bytes in size.

args.size

The size, in bytes, of the user-allocated data buffer.

args.coding_fmt

Coding format of the data. Valid values are:

args.rate

The compressed sample rate for playback. The lower rates are
more space efficient but produce poorer speech quality. If the
value is RATE_STOP, speech playback is stopped. Valid values
are:

CODE_ADPCM

OKI ADPCM
1

CODE_PCM_ULAW

μ-Law
2

CODE_PCM_ALAW

A-Law
3

CODE_G726

G.726
17

CODE_GSM_610

Microsoft GSM 6.10
14

CODE_LINEAR

Linear
4

RATE_STOP

Stop playback

RATE_5300

5,300 samples/sec
9

RATE_6000

6,000 samples/sec
0

RATE_8000

8,000 samples/sec
1

BfvSpeechRecordData

March 2017 566

args.bits_per_samp

Number of bits per sample. Valid values are:

RATE_9600

9,600 samples/sec
7

RATE_11000

11,000 samples/sec
8

RATE_12300

12,300 samples/sec
12

RATE_13000

13,000 samples/sec
11

RATE_16000

16,000 samples/sec
6

RATE_20000

20,000 samples/sec
2

RATE_24000

24,000 samples/sec
3

RATE_28000

28,000 samples/sec
4

RATE_32000

32,000 samples/sec
5

BITS_1

1 bit/sample
0

BITS_2

2 bit/sample
7

BITS_3

3 bit/sample
1

BITS_4

4 bits/sample
2

BITS_5

5 bit/sample
8

BfvSpeechRecordData

March 2017 567

args.afe_rate

AFE sample rate. Valid values are:

args.data_fmt

Data format specification. Value at present is:

args.timeout

If nonzero, recording terminates after no more than args.timeout
milliseconds elapse.

args.silence_timeout

Stops recording when silence is detected for this amount of time
(in milliseconds). Zero (0) indicates that recording continues
unaffected by a period of silence. Maximum value is 5 * 65535.

args.s_compr

Indicates if the function removes silence. A value of 1 enables
silence removal, 0 disables. Do not use this parameter during
full-duplex recording and playback or if args.asr_mode is in use.
Use args.vad in these cases.

BITS_8

8 bits/sample
3

BITS_16

16 bits/sample
5

AFE_8000

8000 samples/sec
0

SPCH_MSB

MSB is first
0

BfvSpeechRecordData

March 2017 568

args.func

Pointer to a user-supplied function called during speech
recording. NULL disables this feature.
The args.func argument is called as
(*args.func)(lp,args.arg).
The lp variable contains the pointer to the line structure; arg
contains the supplied user-defined argument.
Returns an integer:

0 Maintains speech recording.

1 Aborts speech recording.

args.arg

Argument to args.func. Can be NULL.

args.vad

Enables or disables Voice Activity Detection (VAD) and specifies
the mode. Use this argument with full-duplex recording and
playback, or when simplex recording and args.asr_mode is set
to 1. Possible values are:

VAD_OFF

No VAD operation.
0

VAD_ALL

VAD reporting with all speech data supplied.
1

VAD_DETECT

VAD reporting with only detected speech data supplied.
2

VAD_DETECT_AUTO

VAD reporting with only detected speech data supplied
and automatic playback suppression. Playback will no
longer be audible, but the application must terminate
the playback operation itself through one of the
standard mechanisms for the playback function in use.

3

VAD_THRESH

VAD reporting with data that is above a threshold.
Modify the threshold using args.vad_thresh.

4

BfvSpeechRecordData

March 2017 569

args.vad_thresh

Specifies the change from the default detection sensitivity.
Applicable to all VAD modes. Units are internally defined steps.
Range: –6 to 12

args.vad_passthru

When nonzero, enables unconditional pass through of the
specified amount of data (in ms) when recording starts. This
argument has no effect when args.vad is set to a value other than
VAD_OFF or VAD_ALL.

args.asr_mode

When set to 1, speech recording takes place in an ASR-compatible
mode, regardless of whether full-duplex speech operations are
occurring.

args.beep

When nonzero, a beep will be played prior to record starting. If
the channel is already performing playback, then the beep will
not be played.
By default the beep tone will be played for 500 milliseconds at
500 Hz.
The behavior is controlled by the record_beep_dur and
record_beep_freq parameters in the user-defined configuration
file (see Volume 6, Appendix A).

args.min_callback

The maximum time (in milliseconds) that the Bfv API allows to
elapse between calls to the user-supplied callback function
(args.func). Zero (0) indicates that the calling of the callback
function depends on the activity taking place on the channel.
Note: Setting this parameter to a nonzero value smaller than one

second might have an adverse effect on the system CPU
usage. The smaller the value, the greater the effect on CPU
usage.

BfvSpeechRecordData

March 2017 570

Output Return value:

The number of bytes stored in args.buf. When this value is 0,
speech recording has completed.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details The SR140 supports only CODE_PCM_ULAW and
CODE_PCM_ALAW coding formats, sampled at RATE_8000
samples per second with BITS_8 per sample. In addition, all VAD,
ASR, and Summation parameters are also unsupported on virtual
modules.

This function writes the received data to the user-allocated data
buffer.

See Table 25 through Table 27, starting on page 560, for information
about valid speech settings. Not all combinations of args.coding_fmt,
args.rate, and args.bits_per_samp are valid (see Table 26, Voice
Encoding Settings, on page 561).

Recording stops at the first occurrence of one of the following:

 The value of args.rate is RATE_STOP
 Silence timeout
 Overall timeout
 The user-supplied integer function returns nonzero
 The line state changes to IDLE

After recording stops, the function stores the data remaining in the
driver buffers into the supplied buffer and clears the driver buffers.

When recording is stopped because the value of rate is RATE_STOP,
the driver buffer might still contain speech data. To receive the
complete set of speech data, the application must call
BfvSpeechRecordData repeatedly until the return value is 0.

The args.timeout and args.silence_timeout arguments only have
effect when recording is first begun. Values for these arguments in
subsequent calls to this function for the same recording are ignored.
The args.silence_timeout argument has no effect during summation
recording.

BfvSpeechRecordData

March 2017 571

The application can enable Voice Activity Detection (VAD) for use
with full-duplex recording and playback (often useful for ASR
applications).

To enable AGC, the application uses the agc keyword in the
user-defined configuration file.

The argument args.func can be NULL, or it can point to a
user-supplied function that determines when to stop recording.

The user-supplied function is a flexible and powerful tool and can be
used to:

 Detect the end of recording caused by an event. Events include:
 Detection of a DTMF tone
 Detection of a particular call progress result
 An external trigger such as the keyboard

 Report information during recording.

The user-supplied function must not call any function that causes a
delay, such as waiting for a DTMF tone for a nonzero timeout or going
to sleep. All calls made within the user-supplied function must
return immediately. Applications performing DTMF tone detection
must enable the detection before beginning the operation that uses
the user-supplied function (for example, speech playback).

If you set a nonzero value for args.min_callback, the Bfv API makes
sure that it calls the args.func user-supplied callback function at
least every args.min_callback milliseconds. If you set
args.min_callback to zero, callback function calling depends on
activity taking place on the channel.

During any of the following conditions, the user callback function
might not be called regularly unless there is some activity destined
for the application session. Alerts sent by BfvLineAlert (which can
be cancelled by the application) can create such activity.

 When silence compression is enabled using args.s_compr and
silence is detected.

 If VAD is enabled and no speech is detected.
 If speech data has been routed to an alternate timeslot using

BfvSpeechEchoCancelControl.

If VAD is enabled, when the recording firmware determines that
speech has started or stopped, use the LINE_VAD_STATE (lp)
macro to determine the type of voice activity. This macro returns
either VAD_SPEECH_DETECTED to indicate speech was detected or
VAD_NO_SPEECH_DETECTED (default state) to indicate that speech

BfvSpeechRecordData

March 2017 572

is not currently being detected. Your application would normally call
this macro from within the user callback function. However, the
macro can also be called from outside the user callback function. The
LINE_VAD_BYTES_PROCESSED (lp) macro returns the number of
bytes played at the time the last speech detection occurred.

After full-duplex operation begins or when args.asr_mode is in use,
the application assumes that it stays in effect until both recording
and playback have been terminated.

In full-duplex operation or when args.asr_mode is in use, the silence
compression and AGC capabilities are not available. When
performing full-duplex recording/playing, the record coding format
value can only be CODE_PCM_ULAW or CODE_PCM_ALAW, but the play
format can be any valid format.

See Also BfvSpeechRecord, BfvSpeechRecord, BfvSpeechRecordFile,
BfvSpeechRecordWave,
LINE_HAS_CAP (lp, cap), LINE_VAD_STATE (lp),
LINE_VAD_BYTES_PROCESSED (lp)

BfvSpeechRecordData

March 2017 573

Example BTLINE *lp;
unsigned char buf[1024];
int n;
int my_user_func();
struct args_speech args;

/* Record & write to a file until user */
/* function indicates to stop */
for (;;)
{
 BT_ZERO(args);
 args.buf = buf;
 args.size = sizeof(buf);
 args.coding_fmt = CODE_ADPCM;
 args.rate = RATE_8000;
 args.bits_per_samp = BITS_4;
 args.afe_rate = AFE_8000;
 args.data_fmt = SPCH_MSB;
 args.timeout = 0L;
 args.silence_timeout = 0L;
 args.s_compr = 0;
 args.func = my_user_func;
 args.arg = NULL;
 if ((n = BfvSpeechRecordData(lp, &args)) <= 0 ||
 args.res.status != BT_STATUS_OK)
 return(-1);
 write_file(buf, n);
}

BfvSpeechRecordFile

March 2017 574

BfvSpeechRecordFile

Purpose Records raw speech data into the specified file using the specified
speech parameters.

Syntax void
BfvSpeechRecordFile (lp, args)

BTLINE *lp;
struct args_speech *args;

The structure contains the following fields.

Input Fields char *fname;
unsigned char *buf;
unsigned size;
unsigned coding_fmt;
unsigned rate;
unsigned bits_per_samp;
unsigned afe_rate;
unsigned data_fmt;
long timeout;
long silence_timeout;
int s_compr;
int (*func)(BTLINE *lp, char *arg);
char *arg;
int vad;
int vad_thresh;
unsigned vad_passthrugh;
int asr_mode;
int beep;
unsigned min_callback;

Output Fields RES res;

BfvSpeechRecordFile

March 2017 575

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.fname

Name of the file in which to store the incoming data.

args.buf

Pointer to the user-allocated data buffer that holds the received
data. The data buffer must be at least 1024 bytes in size.

args.size

The size, in bytes, of the user-allocated data buffer.

args.coding_fmt

Coding format of the data. Valid values are:

CODE_ADPCM

OKI ADPCM
1

CODE_PCM_ULAW

μ-Law
2

CODE_PCM_ALAW

A-Law
3

CODE_G726

G.726
17

CODE_GSM_610

Microsoft GSM 6.10
14

CODE_LINEAR

Linear
4

BfvSpeechRecordFile

March 2017 576

args.rate

The compressed sample rate for playback. The lower rates are
more space efficient but produce poorer speech quality. If the
value is RATE_STOP, speech playback is stopped. Valid values
are:

RATE_STOP

Stop playback

RATE_5300

5,300 samples/sec
9

RATE_6000

6,000 samples/sec
0

RATE_8000

8,000 samples/sec
1

RATE_9600

9,600 samples/sec
7

RATE_11000

11,000 samples/sec
8

RATE_12300

12,300 samples/sec
12

RATE_13000

13,000 samples/sec
11

RATE_16000

16,000 samples/sec
6

RATE_20000

20,000 samples/sec
2

RATE_24000

24,000 samples/sec
3

RATE_28000

28,000 samples/sec
4

RATE_32000

32,000 samples/sec
5

BfvSpeechRecordFile

March 2017 577

args.bits_per_samp

Number of bits per sample. Valid values are:

args.afe_rate

AFE sample rate. Valid values are:

args.data_fmt

Data format specification. Value at present is:

args.timeout

If nonzero, recording terminates after no more than args.timeout
milliseconds elapse.

BITS_1

1 bit/sample
0

BITS_2

2 bit/sample
7

BITS_3

3 bit/sample
1

BITS_4

4 bits/sample
2

BITS_5

5 bit/sample
8

BITS_8

8 bits/sample
3

BITS_16

16 bits/sample
5

AFE_8000

8000 samples/sec
0

SPCH_MSB

MSB is first
0

BfvSpeechRecordFile

March 2017 578

args.silence_timeout

Stops recording when silence is detected for this amount of time
(in milliseconds). Zero (0) indicates that recording continues
unaffected by a period of silence. Maximum value is 5 * 65535.

args.s_compr

Indicates if the function removes silence. A value of 1 enables
silence removal, 0 disables. Do not use this parameter during
full-duplex recording and playback or if args.asr_mode is in use.
Use args.vad in these cases.

args.func

Pointer to a user-supplied function called during speech
recording. NULL disables this feature.
The args.func argument is called as
(*args.func)(lp,args.arg).
The lp variable contains the pointer to the line structure; arg
contains the supplied user-defined argument.
Returns an integer:

0 Maintains speech recording.

1 Aborts speech recording.

args.arg

Argument to args.func. Can be NULL.

args.vad

Enables or disables Voice Activity Detection (VAD) and specifies
the mode. Use this argument with full-duplex recording and
playback, or when simplex recording and args.asr_mode is set
to 1. Possible values are:

VAD_OFF

No VAD operation.
0

VAD_ALL

VAD reporting with all speech data supplied.
1

VAD_DETECT

VAD reporting with only detected speech data supplied.
2

BfvSpeechRecordFile

March 2017 579

args.vad_thresh

Specifies the change from the default detection sensitivity.
Applicable to all VAD modes. Units are internally defined steps.
Range: –6 to 12

args.vad_passthru

When nonzero, enables unconditional pass through of the
specified amount of data (in ms) when recording starts. This
argument has no effect when args.vad is set to a value other than
VAD_OFF or VAD_ALL.

args.asr_mode

When set to 1, speech recording takes place in an ASR-compatible
mode, regardless of whether full-duplex speech operations are
occurring.

args.beep

When nonzero, a beep will be played prior to record starting. If
the channel is already performing playback, then the beep will
not be played.
By default the beep tone will be played for 500 milliseconds at
500 Hz.
The behavior is controlled by the record_beep_dur and
record_beep_freq parameters in the user-defined configuration
file (see Volume 6, Appendix A).

VAD_DETECT_AUTO

VAD reporting with only detected speech data supplied
and automatic playback suppression. Playback will no
longer be audible, but the application must terminate
the playback operation itself through one of the
standard mechanisms for the playback function in use.

3

VAD_THRESH

VAD reporting with data that is above a threshold.
Modify the threshold using args.vad_thresh.

4

BfvSpeechRecordFile

March 2017 580

args.min_callback

The maximum time (in milliseconds) that the Bfv API allows to
elapse between calls to the user-supplied callback function
(args.func). Zero (0) indicates that the calling of the callback
function depends on the activity taking place on the channel.
Note: Setting this parameter to a nonzero value smaller than one

second might have an adverse effect on the system CPU
usage. The smaller the value, the greater the effect on CPU
usage.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details The SR140 supports only CODE_PCM_ULAW and
CODE_PCM_ALAW coding formats, sampled at RATE_8000
samples per second with BITS_8 per sample. In addition, all VAD,
ASR, and Summation parameters are also unsupported on virtual
modules.

This function writes the received data to the user-specified file.

See Table 25 through Table 27, starting on page 560, for information
about valid speech settings. Not all combinations of args.coding_fmt,
args.rate, and args.bits_per_samp are valid (see Table 26, Voice
Encoding Settings, on page 561).

Recording stops at the first occurrence of one of the following:

 The value of args.rate is RATE_STOP
 Silence timeout
 Overall timeout
 The user-supplied integer function returns nonzero
 The line state changes to IDLE

After recording stops, the function stores the data remaining in the
driver buffers into the supplied file and clears the driver buffers.

When recording is stopped because the value of rate is RATE_STOP,
the driver buffer might still contain speech data. To receive the
complete set of speech data, the application must call
BfvSpeechRecordFile repeatedly until the return value is 0.

BfvSpeechRecordFile

March 2017 581

The args.timeout and args.silence_timeout arguments only have
effect when recording is first begun. Values for these arguments in
subsequent calls to this function for the same recording are ignored.
The args.silence_timeout argument has no effect during summation
recording.

The application can enable Voice Activity Detection (VAD) for use
with full-duplex recording and playback (often useful for ASR
applications).

To enable AGC, the application uses the agc keyword in the
user-defined configuration file.

The argument args.func can be NULL, or it can point to a
user-supplied function that determines when to stop recording.

The user-supplied function is a flexible and powerful tool and can be
used to:

 Detect the end of recording caused by an event. Events include:
 Detection of a DTMF tone
 Detection of a particular call progress result
 An external trigger such as the keyboard

 Report information during recording.

The user-supplied function must not call any function that causes a
delay, such as waiting for a DTMF tone for a nonzero timeout or going
to sleep. All calls made within the user-supplied function must
return immediately. Applications performing DTMF tone detection
must enable the detection before beginning the operation that uses
the user-supplied function (for example, speech playback).

If you set a nonzero value for args.min_callback, the Bfv API makes
sure that it calls the args.func user-supplied callback function at
least every args.min_callback milliseconds. If you set
args.min_callback to zero, callback function calling depends on
activity taking place on the channel.

During any of the following conditions, the user callback function
might not be called regularly unless there is some activity destined
for the application session. Alerts sent by BfvLineAlert (which can
be cancelled by the application) can create such activity.

 When silence compression is enabled using args.s_compr and
silence is detected.

 If VAD is enabled and no speech is detected.
 If speech data has been routed to an alternate timeslot using

BfvSpeechEchoCancelControl.

BfvSpeechRecordFile

March 2017 582

If VAD is enabled, when the recording firmware determines that
speech has started or stopped, use the LINE_VAD_STATE (lp)
macro to determine the type of voice activity. This macro returns
either VAD_SPEECH_DETECTED to indicate speech was detected or
VAD_NO_SPEECH_DETECTED (default state) to indicate that speech
is not currently being detected. Your application would normally call
this macro from within the user callback function. However, the
macro can also be called from outside the user callback function. The
LINE_VAD_BYTES_PROCESSED (lp) macro returns the number of
bytes played at the time the last speech detection occurred.

After full-duplex operation begins or when args.asr_mode is in use,
the application assumes that it stays in effect until both recording
and playback have been terminated.

In full-duplex operation or when args.asr_mode is in use, the silence
compression and AGC capabilities are not available. When
performing full-duplex recording/playing, the record coding format
value can only be CODE_PCM_ULAW or CODE_PCM_ALAW, but the play
format can be any valid format.

See Also BfvSpeechRecord, BfvSpeechRecord, BfvSpeechRecordData,
BfvSpeechRecordWave, LINE_HAS_CAP (lp, cap),
LINE_VAD_STATE (lp), LINE_VAD_BYTES_PROCESSED (lp)

Example BTLINE *lp;
char *fname;
int my_user_func();
struct args_speech args;

BT_ZERO(args);
args.fname = fname;
args.coding_fmt = CODE_ADPCM;
args.rate = RATE_8000;
args.bits_per_samp = BITS_4;
args.afe_rate = AFE_8000;
args.data_fmt = SPCH_MSB;
args.timeout = 10000L;
args.silence_timeout = 0L;
args.s_compr = 0;
args.func = my_user_func;
args.arg = NULL;
BfvSpeechRecordFile(lp, &args);

BfvSpeechRecordWave

March 2017 583

BfvSpeechRecordWave

Purpose Records speech into the specified wave (.wav) file using the specified
speech parameters.

Syntax void
BfvSpeechRecordWave (lp, args)

BTLINE *lp;
struct args_speech *args;

The structure contains the following fields.

Input Fields char *fname;
unsigned char *buf;
unsigned size;
unsigned coding_fmt;
unsigned rate;
unsigned bits_per_samp;
unsigned afe_rate;
unsigned data_fmt;
long timeout;
long silence_timeout;
int s_compr;
int (*func)(BTLINE *lp, char *arg);
char *arg;
int vad;
int vad_thresh;
unsigned vad_passthrough;
int asr_mode;
int beep;
unsigned min_callback;

Output Fields RES res;

BfvSpeechRecordWave

March 2017 584

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.fname

Name of wave file to record.

args.buf

Pointer to the user-allocated data buffer that holds the received
data. The data buffer must be at least 1024 bytes in size.

args.size

The size, in bytes, of the user-allocated data buffer.

args.coding_fmt

Coding format of the data. Valid values are:

args.rate

The compressed sample rate for recording. Valid values are:

CODE_PCM_ULAW

μ-Law
2

CODE_PCM_ALAW

A-Law
3

CODE_LINEAR

Linear
4

RATE_8000

8,000 samples/sec
1

RATE_11000

11,025 samples/sec
8

BfvSpeechRecordWave

March 2017 585

args.bits_per_samp

Number of bits per sample. Valid values are:

args.afe_rate

AFE sample rate. Valid values are:

args.data_fmt

Data format specification. Value at present is:

args.timeout

The total time (in milliseconds) to record. Zero (0) indicates that
recording continues unaffected by a time limit.

args.silence_timeout

Stops recording when silence is detected for this amount of time
(in milliseconds). Zero (0) indicates that recording continues
unaffected by a period of silence. Maximum value is 5 * 65535.

args.s_compr

Indicates if the function removes silence. A value of 1 enables
silence removal, 0 disables. Do not use this parameter during
full-duplex recording and playback or if args.asr_mode is in use.
Use args.vad in these cases.

BITS_8

8 bits/sample
3

BITS_16

16 bits/sample
5

AFE_8000

8000 samples/sec.
0

SPCH_MSB

MSB is first
0

BfvSpeechRecordWave

March 2017 586

args.func

Pointer to a user-supplied function called during speech
recording. NULL disables this feature.
The args.func argument is called as
(*args.func)(lp,args.arg).
The lp variable contains the pointer to the line structure; arg
contains the supplied user-defined argument.
Returns an integer:

0 Maintains speech recording.

1 Aborts speech recording.

args.arg

Argument to args.func. Can be NULL.

args.vad

Enables or disables Voice Activity Detection (VAD) and specifies
the mode. Use this argument with full-duplex recording and
playback, or when simplex recording and args.asr_mode is set
to 1. Possible values are:

VAD_OFF

No VAD operation.
0

VAD_ALL

VAD reporting with all speech data supplied.
1

VAD_DETECT

VAD reporting with only detected speech data supplied.
2

VAD_DETECT_AUTO

VAD reporting with only detected speech data supplied
and automatic playback suppression. Playback will no
longer be audible, but the application must terminate
the playback operation itself through one of the
standard mechanisms for the playback function in use.

3

VAD_THRESH

VAD reporting with data that is above a threshold.
Modify the threshold using args.vad_thresh.

4

BfvSpeechRecordWave

March 2017 587

args.vad_thresh

Specifies the change from the default detection sensitivity.
Applicable to all VAD modes. Units are internally defined steps.
Range: –6 to 12

args.vad_passthru

When nonzero, enables unconditional pass through of the
specified amount of data (in ms) when recording starts. This
argument has no effect when args.vad is set to a value other than
VAD_OFF or VAD_ALL.

args.asr_mode

When set to 1, speech recording takes place in an ASR-compatible
mode, regardless of whether full-duplex speech operations are
occurring.

args.beep

When nonzero, a beep will be played prior to record starting. If
the channel is already performing playback, then the beep will
not be played.
By default the beep tone will be played for 500 milliseconds at
500 Hz.
The behavior is controlled by the record_beep_dur and
record_beep_freq parameters in the user-defined configuration
file (see Volume 6, Appendix A).

args.min_callback

The maximum time (in milliseconds) that the Bfv API allows to
elapse between calls to the user-supplied callback function
(args.func). Zero (0) indicates that the calling of the callback
function depends on the activity taking place on the channel.
Note: Setting this parameter to a nonzero value smaller than one

second might have an adverse effect on the system CPU
usage. The smaller the value, the greater the effect on CPU
usage.

Output args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvSpeechRecordWave

March 2017 588

Details The SR140 supports only CODE_PCM_ULAW and
CODE_PCM_ALAW coding formats, sampled at RATE_8000
samples per second with BITS_8 per sample. In addition, all VAD,
ASR, and Summation parameters are also unsupported on virtual
modules.

This function writes the received data into the specified .wav file.

See Table 25 through Table 27, starting on page 560, for information
about valid speech settings. Because some format or rate conversions
might be done at host level, the possible formats and rates might not
match the native capabilities of the firmware (see Table 26, Voice
Encoding Settings, on page 561).

Recording stops at the first occurrence of one of the following:

 The value of args.rate is RATE_STOP
 Silence timeout
 Overall timeout
 The user-supplied integer function returns nonzero
 The line state changes to IDLE

After recording stops, the function stores the data remaining in the
driver buffers into the supplied file and clears the driver buffers.

When recording is stopped because the value of rate is RATE_STOP,
the driver buffer might still contain speech data. To receive the
complete set of speech data, the application must call
BfvSpeechRecordWave repeatedly until the return value is 0.

The args.timeout and args.silence_timeout arguments only have
effect when recording is first begun. Values for these arguments in
subsequent calls to this function for the same recording are ignored.
The args.silence_timeout argument has no effect during summation
recording.

The application can enable Voice Activity Detection (VAD) for use
with full-duplex recording and playback (often useful for ASR
applications).

To enable AGC, the application uses the agc keyword in the
user-defined configuration file.

The argument args.func can be NULL, or it can point to a
user-supplied function that determines when to stop recording.

The user-supplied function is a flexible and powerful tool and can be
used to:

BfvSpeechRecordWave

March 2017 589

 Detect the end of recording caused by an event. Events include:
 Detection of a DTMF tone
 Detection of a particular call progress result
 An external trigger such as the keyboard

 Report information during recording.

The user-supplied function must not call any function that causes a
delay, such as waiting for a DTMF tone for a nonzero timeout or going
to sleep. All calls made within the user-supplied function must
return immediately. Applications performing DTMF tone detection
must enable the detection before beginning the operation that uses
the user-supplied function (for example, speech playback).

If you set a nonzero value for args.min_callback, the Bfv API makes
sure that it calls the args.func user-supplied callback function at
least every args.min_callback milliseconds. If you set
args.min_callback to zero, callback function calling depends on
activity taking place on the channel.

During any of the following conditions, the user callback function
might not be called regularly unless there is some activity destined
for the application session. Alerts sent by BfvLineAlert (which can
be cancelled by the application) can create such activity.

 When silence compression is enabled using args.s_compr and
silence is detected.

 If VAD is enabled and no speech is detected.
 If speech data has been routed to an alternate timeslot using

BfvSpeechEchoCancelControl.

If VAD is enabled, when the recording firmware determines that
speech has started or stopped, use the LINE_VAD_STATE (lp)
macro to determine the type of voice activity. This macro returns
either VAD_SPEECH_DETECTED to indicate speech was detected or
VAD_NO_SPEECH_DETECTED (default state) to indicate that speech
is not currently being detected. Your application would normally call
this macro from within the user callback function. However, the
macro can also be called from outside the user callback function. The
LINE_VAD_BYTES_PROCESSED (lp) macro returns the number of
bytes played at the time the last speech detection occurred.

After full-duplex operation begins or when args.asr_mode is in use,
the application assumes that it stays in effect until both recording
and playback have been terminated.

BfvSpeechRecordWave

March 2017 590

In full-duplex operation or when args.asr_mode is in use, the silence
compression and AGC capabilities are not available. When
performing full-duplex recording/playing, the record coding format
value can only be CODE_PCM_ULAW or CODE_PCM_ALAW, but the play
format can be any valid format.

See Also BfvSpeechRecord, BfvSpeechRecord, BfvSpeechRecordData,
BfvSpeechRecordFile,
LINE_HAS_CAP (lp, cap), LINE_VAD_STATE (lp),
LINE_VAD_BYTES_PROCESSED (lp)

BfvSpeechRecordWave

March 2017 591

Example BTLINE *lp;
char *fname;
int my_user_func();
struct args_speech args;

BT_ZERO(args);
args.fname = fname;
args.coding_fmt = CODE_PCM_ULAW;
args.rate = RATE_8000;
args.bits_per_samp = BITS_8;
args.afe_rate = AFE_8000;
args.data_fmt = SPCH_MSB;
args.timeout = 10000L;
args.silence_timeout = 0L;
args.s_compr = 0;
args.func = my_user_func;
args.arg = NULL;
BfvSpeechRecordWave(lp, &args);

Macros

March 2017 592

Macros
LINE_HAS_CAP (lp, cap)

Determines if a channel has a particular capability. Returns
nonzero if lp has capability cap; returns 0 if lp does not have
capability cap. The caps.h header file contains definitions of the
capabilities. You should use this macro instead of examining the
LINE_TYPE value.

LINE_VAD_STATE (lp)

When recording with Voice Activity Detection (VAD) enabled,
this macro returns either VAD_SPEECH_DETECTED to indicate
that speech was detected or VAD_NO_SPEECH (default state) to
indicate that speech is not currently being detected. Your
application would normally call this macro from within the user
callback function. However, it can also be called from outside the
user callback function.

LINE_VAD_BYTES_PROCESSED (lp)

When recording with Voice Activity Detection (VAD) enabled,
this macro returns the number of bytes played at the time the last
speech detection occurred.

March 2017 593

16 - Infopkt File Functions

This chapter describes the functions used to process infopkt files.

The chapter provides syntax and code examples for the functions
used to process infopkt files. Functions used to manage speech
playback and record using infopkts or fax transmission and
reception using infopkts are described elsewhere.

InfoPkt Function Summary

March 2017 594

InfoPkt Function Summary
Table 1 provides a high-level description of each Infopkt function.
Detailed descriptions of each function begin on page 595.

Table 1. Infopkt Function Summary

Function Purpose Page

BfvInfopktClose Closes the current infopkt file and frees all
associated structure memory.

595

BfvInfopktFseek Searches to a specified offset in a file relative to
a specified origin.

597

BfvInfopktFtell Gives the pointer position within an infopkt
stream file.

599

BfvInfopktGet Reads one infopkt from the stream. Can follow
indirect infopkts if specified.

601

BfvInfopktOpen Opens an infopkt stream-formatted disk file. 603

BfvInfopktOpenMem Opens an infopkt stream associated with a
user-supplied buffer instead of a file.

605

BfvInfopktPut Writes one infopkt to the infopkt stream file. 609

BfvInfopktUnget Replaces the last infopkt in the infopkt stream
so it is available for the next request.

611

BfvInfopktUser Sets up a user-supplied function to handle user-
defined infopkts.

613

BfvPromptClose Closes the current prompt file and frees its
associated memory.

616

BfvPromptOpen Opens a prompt file, a specialized infopkt file. 618

BfvInfopktClose

March 2017 595

BfvInfopktClose

Purpose Closes the current file and frees all associated structure memory.

Syntax int
BfvInfopktClose (args)

struct args_infopkt *args;

The structure contains the following fields.

Input Fields struct infopkt_stream *ips;

Output Fields RES res;

Input args

Pointer to an argument structure containing input and output
fields.

args.ips

Pointer to the infopkt stream.

Output Return value:

0 The current file was closed successfully.

nonzero An error occurred in closing the file.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details This function retains the same resource-sharing restrictions as the
fopen call.

Use the BfvInfopktOpenMem function to open memory-based
infopkt streams.

BfvInfopktClose

March 2017 596

If the infopkt stream was opened using the args.use_open_file option,
calling this function does not close the originally opened file.

See Also BfvInfopktOpen

Example struct infopkt_stream *ips;
struct args_infopkt args;

BT_ZERO(args);
args.ips = ips;
BfvInfopktClose(&args);

BfvInfopktFseek

March 2017 597

BfvInfopktFseek

Purpose Searches to a specified offset in a file relative to the specified origin.

Syntax int
BfvInfopktFseek (args)

struct args_infopkt *args;

The structure contains the following fields.

Input Fields struct infopkt_stream *ips;
long offset;
int origin;

Output Fields RES res;

Input args

Pointer to an argument structure containing input and output
fields.

args.ips

Pointer to the infopkt stream.

args.offset

The offset in the file from the specified origin.

args.origin

0 Beginning of file.

1 Current location in file.

2 End of file.

BfvInfopktFseek

March 2017 598

Output Return value:

0 The current file was closed successfully.

nonzero An error occurred in closing the file.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details This function is not useful while the application is processing nested
infopkt files.

In some compilation environments, the application can use the
symbolic constants SEEK_SET, SEEK_CUR, and SEEK_END for the
origin values. See your fseek documentation for more details.

See Also BfvInfopktFtell

Example struct infopkt_stream *ips;
struct args_infopkt args;

BT_ZERO(args);
args.ips = ips;
args.offset = 0L;
args.origin = 0;
err = BfvInfopktFseek(&args);

BfvInfopktFtell

March 2017 599

BfvInfopktFtell

Purpose Retrieves the position of the pointer within the specified infopkt
stream file.

Syntax long
BfvInfopktFtell (args)

struct args_infopkt *args;

The structure contains the following fields.

Input Fields struct infopkt_stream *ips;

Output Fields RES res;

Input args

Pointer to an argument structure containing input and output
fields.

args.ips

Pointer to the infopkt stream.

Output Return value:

The position of the pointer as the number of bytes from the
beginning of the infopkt stream file.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details This function is not useful while the application is processing nested
infopkt files.

See Also BfvInfopktFseek

BfvInfopktFtell

March 2017 600

Example struct infopkt_stream *ips;
long position;
struct args_infopkt args;

BT_ZERO(args);
args.ips = ips;
position = BfvInfopktFtell(&args);

BfvInfopktGet

March 2017 601

BfvInfopktGet

Purpose Gets infopkts from an infopkt stream and can follow indirect
infopkts if specified.

Syntax struct infopkt *
BfvInfopktGet (args)

struct args_infopkt *args;

The structure contains the following fields.

Input Fields struct infopkt_stream *ips;
enum indir_mode i_mode;

Output Fields RES res;

Modified Fields offset, origin

Input args

Pointer to an argument structure containing input and output
fields.

args.ips

Pointer to the infopkt stream.

args.i_mode

INDIR_MODE_FOLLOW

Indirect infopkts are followed.

INDIR_MODE_RETURN

Indirect infopkts are not followed; they are
returned.

INDIR_MODE_FOLLOW_NOUSER

User-defined infopkts are ignored.

BfvInfopktGet

March 2017 602

Output Return value:

Infopkt pointer. An infopkt read from the stream args.ips.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Reads one infopkt from the stream and can follow indirect infopkts if
specified.

Returned data is allocated in the args.ips structure and is
overwritten by the results of the next BfvInfopktGet function
called on the same stream.

Indirect infopkts are followed if that parameter is selected.

Several infopkt streams can operate simultaneously without
interfering with each other.

User-defined infopkts can be processed with the BfvInfopktUser
function when INDIR_MODE_FOLLOW_NOUSER mode is used.

See Accessing an Infopkt Stream From an Application in Chapter 2
of the Dialogic® Brooktrout® Fax Products SDK Developer Guide for
more information.

See Also BfvInfopktUnget

Example struct infopkt_stream *ips;
struct infopkt *ip;
struct args_infopkt args;

BT_ZERO(args);
args.ips = ips;
args.i_mode = INDIR_MODE_FOLLOW;
if ((ip = BfvInfopktGet(&args) == NULL)
 printf(“Unable to get infopkt\n”);

BfvInfopktOpen

March 2017 603

BfvInfopktOpen

Purpose Opens an infopkt stream-formatted disk file.

Syntax struct infopkt_stream *
BfvInfopktOpen (args)

struct args_infopkt *args;

The structure contains the following fields.

Input Fields char *fname;
char *fmode;
int use_open_file;
FILE *fp;

Output Fields RES res;

Input args

Pointer to an argument structure containing input and output
fields.

args.fname

Complete filename, including the path, of the disk file.

args.fmode

Sets the mode to read, write, or append.

“r” Read

“w” Write

“a” Append

args.use_open_file

When set to 1, the function creates an infopkt stream using the
FILE * file pointer supplied in args.fp.

args.fp

FILE * file pointer for use with use_open_file.

BfvInfopktOpen

March 2017 604

Output Return value:

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details This function retains the same resource-sharing restrictions as the
fopen call. Applications use the BfvInfopktOpenMem function to
open memory-based infopkt streams.

See Also BfvInfopktClose, BfvInfopktOpenMem, BfvInfopktGet,
BfvInfopktPut

Example struct infopkt_stream *ips;
struct args_infopkt args;

BT_ZERO(args);
args.fname = "myinfopkt";
args.fmode = "r";
if ((ips = BfvInfopktOpen(&args)) == NULL)
 fprintf(stderr, "Can't open infopkt\n");

infopkt_stream pointer = File successfully opened.

NULL = Error occurred.

BfvInfopktOpenMem

March 2017 605

BfvInfopktOpenMem

Purpose Opens an infopkt stream associated with a user-supplied memory
buffer instead of a file.

Syntax struct infopkt_stream *
BfvInfopktOpenMem (args)

struct args_infopkt *args;

The structure contains the following fields.

Input Fields unsigned char *buf;
long buf_size;
int limited_read;
long valid_data;
void (*buf_func) (struct infopkt_stream *ips,
 long old_offset,

long new_offset,
unsigned char **buf,
long *bufsize, char *arg);

char *arg;

Output Fields RES res;

Input args

Pointer to an argument structure containing input and output
fields.

args.buf

Pointer to a user-supplied buffer for writing or reading infopkt
data.

args.buf_size

The size, in bytes, of args.buf.

BfvInfopktOpenMem

March 2017 606

args.limited_read

If 0, then BfvInfopktGet can read the entire args.buf_size bytes.
If 1, then BfvInfopktGet can read only args.valid_data bytes or
the furthest data written to the buffer using BfvInfopktPut,
whichever is larger.

args.valid_data

If args.limited_read is set to 1, then this specifies a limit for
BfvInfopktGet as described under args.limited_read. The value
must be <= args.buf_size unless a non-NULL value is supplied for
args.buf_func.

args.buf_func

Pointer to a user-supplied callback function that the Bfv API calls
if a call to either BfvInfopktGet or BfvInfopktPut would cause
an access outside of the valid data in the current buffer. NULL
disables this feature.
The args.buf_func argument is called as:
(*args.buf_func)(ips,old_offset,new_offset,buf,
 bufsize,args.arg);
The old_offset variable contains the current offset of the buffer
within the file. The new_offset variable contains the required new
offset. This value could be either greater than or less than the old
offset. The buf variable is a char ** pointer pointing to a variable
containing the current buffer value. The bufsize variable is a long
* pointer pointing to a variable containing the current buffer
length. The application modifies the buffer pointer and buffer
length variables to contain the new buffer and length values. If
the requested offset is not one the application wishes to service, it
should set the length to 0. The args.arg argument contains the
supplied user-defined argument.

args.arg

Argument for args.buf_func. Can be NULL.

Output Return value:

args.res

infopkt_stream pointer File successfully opened.

NULL Error occurred.

BfvInfopktOpenMem

March 2017 607

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details A memory-based infopkt stream does not require specifying an
explicit read or write mode. You can use it for either purpose.

Any function that can use a file-based infopkt stream can use the
infopkt stream that the BfvInfopktOpenMem function opens.

Use the BfvInfopktOpen function to open file-based infopkt
streams.

When BfvInfopktOpenMem is called with args.limited_read set
to 0 and args.buf_func set to NULL, any write attempt using
BfvInfopktPut past args.buf_size gets an error; any read attempt
using BfvInfopktGet past args.buf_size gets an error, and all
buf_size bytes are considered valid data for read.

If args.limited_read is set to 1, only args.valid_data bytes of the
args.buf_size total bytes are considered valid, and read attempts are
limited to this amount. If writes are performed which go beyond
args.valid_data, the valid size is increased.

If an args.buf_func is supplied, then this action allows replacement
of the current buffer with a new buffer. The buffer can be considered
representing a piece of a larger file, starting at some offset in the file
and extending for some length. Initially the offset in the file is 0, and
the length is args.buf_size. When args.buf_func is called, this
application can change this offset.

By using the args.limited_read, args.valid_data, and args.buf_func
input fields, memory-based infopkts can be used for both read and
write in a powerful, consistent fashion. It is not necessary to have a
buffer containing the entire set of data in memory at once.

See Also BfvInfopktClose, BfvInfopktOpen

BfvInfopktOpenMem

March 2017 608

Example struct infopkt_stream *ips;
unsigned char buffer[10000];
int buf_size;
FILE *fp;
struct args_infopkt args;
fp = fopen("test.pkt", "r"); /* or "rb" */
if (fp == NULL)
{
 fprintf(stderr,"Can't open file\n");
 exit(1);
}
buf_size = fread(buffer, 1, sizeof(buffer), fp);
fclose(fp);
BT_ZERO(args);
args.buf = buffer;
args.buf_size = buf_size;
if ((ips = BfvInfopktOpenMem(&args)) == NULL)
 fprintf(stderr, "Can't open mem-infopkt\n");

BfvInfopktPut

March 2017 609

BfvInfopktPut

Purpose Writes one infopkt to the infopkt stream.

Syntax int
BfvInfopktPut (args)

struct args_infopkt *args;

The structure contains the following fields.

Input Fields struct infopkt_stream *ips;
struct infopkt *ip;

Output Fields RES res;

Input args

Pointer to an argument structure containing input and output
fields.

args.ips

Pointer to the infopkt stream.

args.ip

Pointer to the infopkt.

Output Return value:

0 Last infopkt successfully replaced in the infopkt stream.

<0 Failure to replace the last infopkt into the infopkt stream.

 args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvInfopktPut

March 2017 610

Details Only one infopkt can be returned to the infopkt stream. To back up
up more than one infopkt, you must write your own application-level
front end to these functions.

Example struct infopkt_stream *ips;
struct infopkt *ip;
struct args_infopkt args;

BT_ZERO(args);
args.ips = ips;
args.ip = ip;
if (BfvInfopktPut(&args) < 0)
 printf("BfvInfopktPut failed\n");

BfvInfopktUnget

March 2017 611

BfvInfopktUnget

Purpose Replaces the last infopkt in the infopkt stream so it is available for
the next BfvInfopktGet call.

Syntax int
BfvInfopktUnget (args)

struct args_infopkt *args;

The structure contains the following fields.

Input Fields struct infopkt_stream *ips;
struct infopkt *ip;

Output Fields RES res;

Input args

Pointer to an argument structure containing input and output
fields.

args.ips

Pointer to the infopkt stream.

args.ip

Pointer to the infopkt.

Output Return value:

0 Last infopkt successfully replaced in the infopkt stream.

<0 Failure to replace the last infopkt into the infopkt stream.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvInfopktUnget

March 2017 612

Details Only one infopkt can be returned to the infopkt stream. To back up
up more than one infopkt, you must write your own application-level
front end to these functions.

See Also BfvInfopktGet

Example struct infopkt_stream *ips;
struct infopkt *ip
struct args_infopkt args_infopkt;

BT_ZERO(args);
args.ips = ips;
args.ip = ip;
if (BfvInfopktUnget(&args) < 0)
 printf("BfvInfopktUnget failed\n");

BfvInfopktUser

March 2017 613

BfvInfopktUser

Purpose Sets up a user-supplied function to handle user-defined infopkts.

Syntax void
BfvInfopktUser (args)

struct args_infopkt *args;

The structure contains the following fields.

Input Fields struct infopkt_stream *ips;
void (*user_func) (struct infopkt *ip,

struct infopkt_stream *ips,
char *arg);

char *arg;

Output Fields RES res;

Input args

Pointer to an argument structure containing input and output
fields.

args.ips

Pointer to the infopkt stream.

args.user_func

Pointer to a user-supplied function called when a user type
infopkt is encountered. This function does not return a value.
The user-supplied function is called as:
(*args.user_func) (ip, args.ips, args.arg)

where ip is the user-defined infopkt being read, args.ips is the
infopkt stream, and args.arg is the user-defined argument.

args.arg

Argument for args.user_func; can be NULL.

BfvInfopktUser

March 2017 614

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details This function sets up the state of the infopkt stream args.ips so that
the application calls the user-supplied function args.user_func when
the application calls BfvInfopktGet function with its
args.indir_mode argument set to INDIR_MODE_FOLLOW_NOUSER
and then encounters a user-defined infopkt in the infopkt stream.

Do not use the user-supplied function to close the infopkt stream ips.
Since args.user_func can be called during fax transmission or speech
playing, do not call other fax or speech functions from within it.

The user-supplied function must not call any function that causes a
delay, such as waiting for a DTMF tone for a nonzero timeout or going
to sleep. All calls made within the user-supplied function must
return immediately. Applications performing DTMF tone detection
must enable the detection before beginning the operation that uses
the user-supplied function, such as speech playback.

See Also BfvInfopktGet

BfvInfopktUser

March 2017 615

Example BTLINE *lp;
struct infopkt_stream *ips;
struct args_infopkt args_infopkt;
struct args_fax args_fax;
void user_func();

...
BT_ZERO(args_infopkt);
args_infopkt.fname = "test.pkt";
args_infopkt.fmode = "r";
ips = BfvInfopktOpen(&args_infopkt);
args_infopkt.ips = ips;
args_infopkt.user_func = user_func;
args_infopkt.arg = NULL;
BfvInfopktUser(&args_infopkt);
BT_ZERO(args_fax);
args_fax.s_ips = ips;
args_fax.local_id = "local_id";
BfvFaxSend(lp,&args_fax);
...

user_func(ip, ips, arg)
struct infopkt *ip;
struct infopkt_stream *ips;
char *arg;
{
...

BfvPromptClose

March 2017 616

BfvPromptClose

Purpose Closes the current prompt file and frees all associated memory.

Syntax int
BfvPromptClose (args)

struct args_infopkt *args;

The structure contains the following fields.

Input Fields PROMPT_MAP *prompt_map;

Output Fields RES res;

Modified Fields ips

Input args

Pointer to an argument structure containing input and output
fields.

args.prompt_map

PROMPT_MAP pointer for the current file.

Output Return value:

0 The current prompt file was closed successfully.

nonzero An error occurred in closing the current prompt file.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details You cannot reuse the pointer after the function returns a closing
error.

See Also BfvPromptOpen

BfvPromptClose

March 2017 617

Example BTLINE *lp;
struct args_infopkt args_info;
PROMPT_MAP *prompt_map;
...

BT_ZERO (args_info);
args_info.name = “prompt.ips”;
args_info.fmode = “r”;
prompt_map = BfvPromptOpen (&args_info);

args_info.prompt_map = prompt_map;
BfvPromptClose (&args_tel);

BfvPromptOpen

March 2017 618

BfvPromptOpen

Purpose Opens the specified prompt file, which is a specialized infopkt file.

Syntax PROMPT_MAP *
BfvPromptOpen (args)

struct args_infopkt *args;

The structure contains the following fields.

Input Fields char *fname;
char *fmode;
int use_open_file;
struct infopkt_stream *ips;

Output Fields RES res;

Modified Fields offset, origin, ips, i_mode

Input args

Pointer to an argument structure containing input and output
fields.

args.fname

The name of the prompt file.

args.fmode

Sets the mode, as with fopen.

“r” Read.

“r+” Read/write.

This input field must be supplied regardless of the
args.use_open_file setting.

args.use_open_file

When set to 1, uses an opened infopkt stream supplied in args.ips.

BfvPromptOpen

March 2017 619

args.ips

If args.use_open_file is set to 1, supplies an opened infopkt
stream.

Output Return value:

Returns a PROMPT_MAP pointer if it successfully opens the
specified prompt file. Returns NULL if an error occurs when
opening the specified prompt file.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details This function can also be used with an opened infopkt stream,
possibly returned by BfvInfopktOpenMem.

The function retains the same resource-sharing restrictions as the
fopen call.

You cannot use this function to create a new prompt file.

If the application calls this function with an opened infopkt stream,
it must use BfvPromptClose, not BfvInfopktClose, to close the
infopkt stream.

See Also BfvPromptClose

Example BTLINE *lp;
struct args_infopkt args_info;
PROMPT_MAP *prompt_map;
...

BT_ZERO (args_info);
args_info.name = “prompt.ips”;
args_info.fmode = “r”;
prompt_map = BfvPromptOpen (&args_info);

March 2017 621

Volume 4 - Fax Processing
About this Volume

 Volume 4, Fax Processing, provides information about the
following Bfv API components:

 Fax functions and macros

 TIFF-F files functions and macros

March 2017 622

18 - Fax Overview

This chapter provides an overview of the fax functionality, functions
and file formats.

The Bfv API contains functions that provide easy, flexible control of
inbound and outbound fax calls. It also provides easy access to the
T.30 facsimile protocol and eliminates the need to understand every
detail of the protocol’s implementation.

High-level functions simplify the process of transmitting and
receiving facsimiles. For example, the high-level function
BfvFaxSend is constructed of these mid-level and low-level
functions:

 BfvFaxBeginSend
 BfvFaxEndOfDocument
 BfvFaxGetRemoteInfo
 BfvFaxSendPage
 BfvFaxSetLocalId
 BfvFaxWaitForTraining

Mid-level functions provide more flexibility and control than the
corresponding high-level functions, but they require more knowledge
of and attention to the basic steps involved in sending and receiving
facsimiles. Low-level functions provide the greatest flexibility and
control, but they require extensive knowledge of and attention to the
basic steps involved.

March 2017 623

Since both the high-level and mid-level functions use infopkt files
exclusively, the distinction between them is measured in the
flexibility and control they provide. The low-level functions, however,
use raw data files exclusively. Combining the high-, mid-, and
low-level functions within the same application program is valid and
useful.

TIFF-F fax functions are used exclusively to send and receive
TIFF-F files, rather than formatted infopkt stream files, see
Chapter , TIFF-F Files Functions on page 769. The remaining fax
functions are used with raw files; some are also used with raw data
files, TIFF-F files, and/or DCX files, see Chapter , Fax Functions on
page 624. A set of utilities is also provided that let you manipulate
raw G3 fax files (rather than raw files) from the command line.

March 2017 624

19 - Fax Functions

This chapter describes the high and mid-level functions to send and
receive TIFF, Raw, DCX or Infopkt formatted images.

Each of the following fax functions may apply only to specific types of
files. The functions are marked to indicate a type as follows:

 Infopkt-formatted files [I]

 Raw data files [R]

 TIFF/F files [T]

 DCX files [D]

If the file type does not matter, no type is designated.

Fax Function Summary

March 2017 625

Fax Function Summary
Table 2 provides a brief summary of these functions.

Table 2. Fax Function Summary

Function Purpose Page

BfvDataFSK Fills an FSK buffer with FSK data for debugging aid. 628

BfvFaxAbort Stops a fax transmission or reception cleanly when
possible.

632

BfvFaxBegin Initiates fax transmit or receive for infopkt streams.
Handles all variations of polling. [I]

634

BfvFaxBeginRaw Initiates fax transmit or receive for raw fax data.
Handles all variations of polling. [R,D]

639

BfvFaxBeginReceive Sets parameters and instructs the channel to receive. 644

BfvFaxBeginSend Begins fax transmission using an infopkt stream. [I] 648

BfvFaxBeginSendRaw Initiates fax transmit for raw fax data. [R,D] 651

BfvFaxBeginSendTiff Begins transmission using a TIFF-F file. [T] 656

BfvFaxBeginTiff Initiates fax transmit or receive for TIFF-F files.
Handles all variations of polling. [T]

659

BfvFaxDownloadFont Loads a .fz8 font file to the channel as the specified
font.

664

BfvFaxDownloadFontData Downloads a supplied font from the buffer to the
channel as the specified numbered font.

668

BfvFaxEndOfDocument Transmits end-of-page with no more pages to follow. 671

BfvFaxEndReception Waits for completion of the T.30 confirmation
handshaking sequence. Called after receipt of last
page.

673

BfvFaxGetRemoteInfo Waits for and reports ID, DIS/DCS and NSF/NSS
data.

675

BfvFaxHeader Sets up headers or footers on all subsequent pages in
a fax transmission.

677

BfvFaxNextPage Transmits an end-of-page and new page setup, if
appropriate, for use with infopkt streams. [I]

681

Fax Function Summary

March 2017 626

BfvFaxNextPageDCX Transmits an end-of-page and new page setup, if
appropriate, for use with DCX pages. [D]

684

BfvFaxNextPageRaw Transmits an end-of-page and new page setup, if
appropriate, for noninfopkt-formatted fax data. [R]

687

BfvFaxNextPageTiff Transmits an end-of-page and new page setup, if
appropriate, for use with TIFF-F files. [T]

690

BfvFaxPageParams Sets the page parameters for subsequent pages of
data.

693

BfvFaxPoll Sends and/or receives faxes using infopkt streams. A
high-level function. [I]

695

BfvFaxRcvPageDCX Receives a fax page to a DCX file. [D] 700

BfvFaxRcvPageTiff Receives a fax page to a TIFF-F file. [T] 702

BfvFaxReceive Receives faxes using infopkt streams. A high-level
function. [I]

705

BfvFaxReceiveData Receives raw fax data into a user-supplied buffer. [R] 709

BfvFaxReceiveFile Receives a raw fax page to a file. [R] 713

BfvFaxReceivePage Receives a fax page to an infopkt stream. [I] 716

BfvFaxReceivePages Receives multiple pages of fax data to an infopkt
stream. [I]

718

BfvFaxSend Sends faxes using infopkt streams. A high-level
function. [I]

720

BfvFaxSendData Sends raw fax data from a user-supplied buffer. [R] 724

BfvFaxSendFile Sends a noninfopkt-formatted fax page from a file. [R] 726

BfvFaxSendPage Sends an entire page from the infopkt stream to the
driver buffer. Looks for an EOF or new page type
infopkt before returning. [I]

729

BfvFaxSendPageDCX Sends a fax page from a DCX file. [D] 732

BfvFaxSendPageTiff Sends a fax page from a TIFF-F file. [T] 734

BfvFaxSetLocalId Sets the local ID to a specified string. 736

Table 2. Fax Function Summary (Continued)

Function Purpose Page

Fax Function Summary

March 2017 627

BfvFaxSetNSF Sets up NSF, NSC, and NSS messages for
transmission to the remote host.

738

BfvFaxSetReceiveFmt Sets the format of the received data. [I,R,T] 741

BfvFaxSetSubPwdSep Sets up a SUB, PWD, or SEP FSK message to send to
the remote host.

744

BfvFaxStripParams Separates different strips of data and sets the strip
parameters. [R,T,D]

747

BfvFaxT30Holdup Causes the channel to wait during T.30 negotiations
and calls a user-supplied function.

751

BfvFaxT30Params Sets the T.30 parameters for transmission. 757

BfvFaxT4TimerParams Obtains the T4 duration, the T4 attempt, the current
T4 timer value and the T4 timer expiration, or sets a
new T4 timer value.

761

BfvFaxWaitForTraining Reports when training is complete or turn_around
is indicated.

764

Table 2. Fax Function Summary (Continued)

Function Purpose Page

BfvDataFSK

March 2017 628

BfvDataFSK

Purpose Fills a user-allocated buffer with all the FSK data that the line has
sent and/or received since the last BfvDataFSK call.

Syntax int
BfvDataFSK (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Input Fields unsigned char *buf;

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.buf

Pointer to the beginning of the user-allocated buffer. This buffer
must be allocated at least 1K bytes.

Output Return value:

1 No new FSK data is available. Ignore the contents of the
user buffer.

0 The contents of the FSK buffer were successfully
transferred into the user buffer.

BfvDataFSK

March 2017 629

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details FSK (Frequency Shift Key) data consists of commands and data that
are issued during the T.30 protocol handshaking procedure and
between pages of data transmission. Retrieving and reviewing FSK
data after each function call facilitates debugging during the T.30
procedure.

To preserve chronological order, the contents of the FSK data buffer
are discarded when wrap-around occurs. Because the FSK buffer is a
1K ring buffer, 1K blocks of FSK data can be lost when wrap-around
occurs on unread data. No indication is passed to the user when the
contents of the FSK buffer are discarded.

FSK data is encoded in the buffer as a sequence of elements in the
form: NSx, where N specifies the number of bytes of FSK data that
follow after the S byte, S identifies the following FSK data as either
transmitted (1) or received (0), and x represents the bytes of actual
FSK data (which includes an FSK command followed by its
associated data). The N and S fields are each one byte, and the x field
is limited to a maximum of 255 bytes. A zero in N indicates the end
of the FSK data.

After each call, the FSK buffer is reset, and old data transferred into
the user buffer cannot be recaptured after a BfvDataFSK command
is issued.

Using the BfvDataFSK function in a loop causes an undesirable
busy-wait and prevents updating of FSK values. To avoid this
problem, use BfvRcvProcessPkt.

FSK Signals For FSK signal definitions, see header file fsk.h.

CFR Confirmation to receive.

CIG Calling subscriber identification.

CRP Command repeat.

CSI Called subscriber identification.

CTC Continue to correct.

CTR Response to CTC.

DCN Disconnect.

BfvDataFSK

March 2017 630

DCS Digital command signal.

DIS Digital identification signal.

DTC Digital transmit command.

EOM End of message.

EOP End of procedures.

EOR End of retransmission.

ERR Response to EOR.

FTT Failure to train.

MCF Message confirmation.

MPS Multipage signal.

NSC Nonstandard facilities command.

NSF Nonstandard facilities.

NSS Nonstandard facilities setup.

PIN Procedure interrupt negative.

PIP Procedure interrupt positive.

PPR Partial page request.

PPS Partial page signal.

PRI-EOM Procedure interrupt—End of message.

PRI-EOP Procedure interrupt—End of procedures.

PRI-MPS Procedure interrupt—Multipage signal.

PWD Password.

RNR Receive not ready.

RR Receive ready.

RTN Retrain negative.

RTP Retrain positive.

SEP Selective polling.

SUB Subaddress.

TSI Transmitting subscriber identification.

BfvDataFSK

March 2017 631

Example void debug_fsk_cp_calls(lp)
BTLINE *lp;
{
 FILE *fp;
 unsigned char ubuf[1024];
 unsigned char *print;
 unsigned char count;
 int i;
 static char *dirstr[] = {"received", "sent"};
 char temp[20];
 struct args_fax args;

 sprintf(temp, "stats.%02d",LINE_UNIT_NUM(lp));
 fp = fopen(temp,"a");
 BT_ZERO(args);
 args.buf = ubuf;
 if (BfvDataFSK(lp,&args) == 0)
 {
 print = ubuf;
 while ((count = *print++) != 0)
 {
 fprintf(fp,"Count = %d(%s)\n",
 count, dirstr[*print++]);
 for (i=0; i < count; i++)
 fprintf(fp, " %x", *print++);
 fprintf(fp, "\n");
 }
 }
 else
 fprintf(fp, "FSK BUFFER empty error\n");
 fclose (fp);
}

BfvFaxAbort

March 2017 632

BfvFaxAbort

Purpose Stops a fax transmission or reception cleanly when possible.

Syntax void
BfvFaxAbort (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Call this function only between Bfv API function calls or from within
an interrupt function set up using the
LINE_SET_INCOMING_CMD_FUNC macro. Do not call it from another
thread.

This procedure usually includes sending a DCN to the remote fax
machine.

BfvFaxAbort

March 2017 633

After calling this function and until it finishes, which takes a few
seconds, the application must attempt to continue from the point of
interruption.

If the application cannot continue, it must call the
BfvFaxEndOfDocument function on transmit or the
BfvFaxEndReception function on receive.

Example main()
{
 BTLINE *lp;
 struct infopkt_stream *ips;
 struct args_fax args;
 ...
 BT_ZERO(args);
 args.s_ips = ips;
 BfvFaxBeginSend(lp, &args);
 ...
 BfvFaxAbort(lp, &args);
 ...
 BfvFaxEndOfDocument(lp, &args);
}

BfvFaxBegin

March 2017 634

BfvFaxBegin

Purpose Initiates the fax process in originate or answer mode depending on
whether the channel dialed a number or answered a call.

Syntax void
BfvFaxBegin (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Input Fields int oa_flag;
struct infopkt_stream *s_ips;
struct infopkt_stream *r_ips;
int xmit_mode;
int rcv_mode;
int specify_tz_offset;
int tz_offset;
unsigned fallback_rtp_reinvite;
int ecm_override;

Output Fields RES res;

Modified Fields can_send, can_receive, resolution, width,
eff_page_type

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

BfvFaxBegin

March 2017 635

args.oa_flag

Indicates whether the channel dialed a number or answered a
call.

BT_ORIGINATEChannel dialed a number.

BT_ANSWERChannel answered a call.

args.s_ips

Pointer to the infopkt stream ready for transmission.
NULL = Sending is disabled.

args.r_ips

Pointer to the infopkt stream ready for fax data reception.
NULL = Receiving is disabled.

args.xmit_mode

Specifies the fax transmit mode. Valid values are:

args.rcv_mode

Specifies the fax receive mode. Valid values are:

args.specify_tz_offset

If nonzero, enables args.tz_offset.

XMIT_MODE_AUTO
Auto transmit mode; standard, default.

0

XMIT_MODE_MANUAL
Manual transmit mode; same as AUTO, but has
timing differences when retransmitting FSK
signals.

1

RCV_MODE_AUTO
Auto receive mode; standard, default.

0

RCV_MODE_MANUAL
Manual receive mode; same as AUTO, but no
initial CED is played and startup delays are
reduced.

1

BfvFaxBegin

March 2017 636

args.tz_offset

A value, in seconds, to be added to the current time in GMT to
produce a desired local time. Enabled by args.specify_tz_offset. If
disabled, the function uses the local time set on the host
computer.

args.fallback_rtp_reinvite

Specifies whether or not a SIP RTP reINVITE should be
transmitted for G.711 fallback mode if a SIP T.38 reINVITE is
rejected with either a 488 (Not Acceptable Here) or a 606 (Not
Acceptable). Valid values are:
BT_FALLBACK_RTP_REINVITE_DEFAULT

Default to the setting specified in the call control
configuration file.

BT_FALLBACK_RTP_REINVITE_DISABLE
Do not transmit a SIP RTP reINVITE if a SIP T.38 reINVITE
is rejected.

BT_FALLBACK_RTP_REINVITE_ENABLE
Transmit a SIP RTP reINVITE if a SIP T.38 reINVITE is
rejected.

When the application sets the value in this field to
BT_FALLBACK_RTP_REINVITE_DEFAULT, the functionality
will default to the setting specified in the call control configuration
file (callctrl.cfg) by the g711_fallback_rtp_reinvite parameter. If
the g711_fallback_rtp_reinvite parameter isn't specified in the
call control configuration file, then the default functionality is
BT_FALLBACK_RTP_REINVITE_DISABLE.

An application can override the value specified in the call control
configuration file by the g711_fallback_rtp_reinvite parameter by
setting this field to a value of either
BT_FALLBACK_RTP_REINVITE_DISABLE or
BT_FALLBACK_RTP_REINVITE_ENABLE.

Setting this field to a value of
BT_FALLBACK_RTP_REINVITE_DISABLE will prevent
transmission of a SIP RTP reINVITE if a SIP T.38 reINVITE is
rejected.

BfvFaxBegin

March 2017 637

Setting this field to a value of
BT_FALLBACK_RTP_REINVITE_ENABLE will result in
transmission of a SIP RTP reINVITE if a SIP T.38 reINVITE is
rejected with either a 488 (Not Acceptable Here) or a 606 (Not
Acceptable) and the fax transport protocol
(fax_transport_protocol) parameter specified in the call control
configuration file is set to t38_first. The SDP settings in the SIP
RTP reINVITE will be the same RTP codec settings initially used to
establish the call.

Note: This field only works for calls using the SIP internet protocol.
The Bfv API ignores this field for calls using the H.323 internet
protocol or PSTN line types.

args.ecm_override

If set to 0, there is no effect; if > 0, ECM is enabled, overriding the
setting of ecm_enable in the user configuration file; if < 0, ECM is
disabled, overriding the settings of ecm_enable and t34_enable in
the user configuration file. See the ecm_enable parameter in
Volume 6, Appendix A, User-defined Configuration File.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Use this function instead of BfvFaxBeginSend or
BfvFaxBeginReceive when polling is required or permitted. This
function handles all polling variations (dial and send, answer and
receive, dial and receive, answer and send, dial and send-receive,
answer and receive-send).

The channel is initially in send mode after originating (args.oa_flag
= BT_ORIGINATE) a call and initially in receive mode after answering
(args.oa_flag = BT_ANSWER) a call. This initial mode of transfer may
change and reverse direction, depending on the args.s_ips and
args.r_ips parameters. When the direction of transfer is reversed,
the line state changes to LINE_STATE_TURNAROUND. This change in
the line state is seen either on return from the first call to
BfvFaxWaitForTraining, before any data is transmitted or
received, or on return from BfvFaxEndOfDocument,
BfvFaxReceivePages, or BfvFaxEndReception.

BfvFaxBegin

March 2017 638

The application must keep track of the mode of transfer and,
depending on the current direction of transfer, call the appropriate
fax send or receive functions.

See the chart under the BfvFaxPoll function for information on how
to configure args.s_ips and args.r_ips to set the send/receive mode.

If args.s_ips is not NULL, the first infopkt must be
INFOPKT_DOCUMENT_PARAMETERS.

This function sets parameters based on the infopkts appearing at the
start of args.s_ips that indicate a beginning-of-page. Infopkts
which indicate a beginning-of-page are:

INFOPKT_BEGINNING_OF_PAGE
INFOPKT_DOCUMENT_PARAMETERS
INFOPKT_T30_PARAMETERS
INFOPKT_ASCII_PAGE_PARAMETERS
INFOPKT_PAGE_PARAMETERS
INFOPKT_FAX_HDR
INFOPKT_EFF_PAGE_PARAMETERS

This function is incorporated into the higher-level function
BfvFaxPoll.

When calling the BfvFaxSetLocalId function, call it before issuing
BfvFaxBegin.

Before calling this function, the application can use the
LINE_FAX_RES macro to enable PAGE_RES structure allocation.

See Also BfvFaxBeginTiff, BfvFaxEndOfDocument,
BfvFaxEndReception, BfvFaxGetRemoteInfo, BfvFaxPoll

Example BTLINE *lp;
struct args_infopkt args_infopkt;
struct args_fax args_fax;

BT_ZERO(args_infopkt);
BT_ZERO(args_fax);
args_infopkt.fname = "report.fax";
args_infopkt.fmode = "r";
args_fax.r_ips = BfvInfopktOpen(&args_infopkt);
args_fax.s_ips = NULL;
args_fax.oa_flag = BT_ANSWER;
/* This performs ordinary Answer and Receive with no
 polling */
BfvFaxBegin(lp, &args_fax);

BfvFaxBeginRaw

March 2017 639

BfvFaxBeginRaw

Purpose Transmits or receives raw data files.

Syntax void
BfvFaxBeginRaw (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Input Fields int oa_flag;
int can_send;
int can_receive;
int resolution;
int width;
int xmit_mode;
int rcv_mode;
unsigned long eff_page_type;
int specify_tz_offset;
int tz_offset;
unsigned fallback_rtp_reinvite;
int ecm_override;

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.oa_flag

Indicates whether the channel dialed a number or answered a
call.

BT_ORIGINATEChannel dialed a number.

BT_ANSWERChannel answered a call.

BfvFaxBeginRaw

March 2017 640

args.can_send

Indicates whether the channel is enabled to send.
1 Sending enabled.
0 Sending disabled.

args.can_receive

Indicates whether the channel is enabled to receive.
1 Receiving enabled.
0 Receiving disabled.

args.resolution

Resolution of the first page to be transmitted.
See the BfvFaxBeginSendRaw function for resolution values.

args.width

Horizontal width of the first page to be transmitted.
See the BfvFaxBeginSendRaw function for width values.

args.xmit_mode

Specifies the fax transmit mode. Valid values are:

args.rcv_mode

Specifies the fax receive mode. Valid values are:

XMIT_MODE_AUTO
Auto transmit mode; standard, default.

0

XMIT_MODE_MANUAL
Manual transmit mode; same as AUTO, but has
timing differences when retransmitting FSK
signals.

1

RCV_MODE_AUTO
Auto receive mode; standard, default.

0

RCV_MODE_MANUAL
Manual receive mode; same as AUTO, but no
initial CED is played and startup delays are
reduced.

1

BfvFaxBeginRaw

March 2017 641

args.eff_page_type

Not supported on TruFax®.
If nonzero, the next transmitted page will be an enhanced fax
format page of the specified type. Valid values are:

args.specify_tz_offset

If nonzero, enables args.tz_offset.

args.tz_offset

A value, in seconds, to be added to the current time in GMT to
produce a desired local time. Enabled by args.specify_tz_offset. If
disabled, the function uses the local time set on the host
computer.

args.fallback_rtp_reinvite

Specifies whether or not a SIP RTP reINVITE should be
transmitted for G.711 fallback mode if a SIP T.38 reINVITE is
rejected with either a 488 (Not Acceptable Here) or a 606 (Not
Acceptable). Valid values are:
BT_FALLBACK_RTP_REINVITE_DEFAULT

Default to the setting specified in the call control
configuration file.

BT_EFF_JPEG_ENABLE
JPEG. May also logically OR in the following.

0x1

BT_EFF_JPEG_FULLCOLOR
Full color.

0x2

BT_EFF_JPEG_DEFAULT_TABLES
Default Huffman Tables.

0x4

BT_EFF_JPEG_12BIT
12 bits/pel, Otherwise 8.

0x8

BT_EFF_JPEG_NOSUBSAMPLING
No subsampling.

0x10

BT_EFF_JPEG_CUSTOM_ILLUMINANT
Custom Illuminant.

0x20

BT_EFF_JPEG_CUSTOM_GAMUT
Custom Gamut.

0x40

BT_EFF_JBIG
JBIG. May also logically OR in the following.

0x0100

BT_EFF_JBIG_L0
L0 Mode.

0x0200

BfvFaxBeginRaw

March 2017 642

BT_FALLBACK_RTP_REINVITE_DISABLE
Do not transmit a SIP RTP reINVITE if a SIP T.38 reINVITE
is rejected.

BT_FALLBACK_RTP_REINVITE_ENABLE
Transmit a SIP RTP reINVITE if a SIP T.38 reINVITE is
rejected.

When the application sets the value in this field to
BT_FALLBACK_RTP_REINVITE_DEFAULT, the functionality
will default to the setting specified in the call control configuration
file (callctrl.cfg) by the g711_fallback_rtp_reinvite parameter. If
the g711_fallback_rtp_reinvite parameter isn't specified in the
call control configuration file, then the default functionality is
BT_FALLBACK_RTP_REINVITE_DISABLE.

An application can override the value specified in the call control
configuration file by the g711_fallback_rtp_reinvite parameter by
setting this field to a value of either
BT_FALLBACK_RTP_REINVITE_DISABLE or
BT_FALLBACK_RTP_REINVITE_ENABLE.

Setting this field to a value of
BT_FALLBACK_RTP_REINVITE_DISABLE will prevent
transmission of a SIP RTP reINVITE if a SIP T.38 reINVITE is
rejected.

Setting this field to a value of
BT_FALLBACK_RTP_REINVITE_ENABLE will result in
transmission of a SIP RTP reINVITE if a SIP T.38 reINVITE is
rejected with either a 488 (Not Acceptable Here) or a 606 (Not
Acceptable) and the fax transport protocol
(fax_transport_protocol) parameter specified in the call control
configuration file is set to t38_first. The SDP settings in the SIP
RTP reINVITE will be the same RTP codec settings initially used to
establish the call.

Note: This field only works for calls using the SIP internet protocol.
The Bfv API ignores this field for calls using the H.323 internet
protocol or PSTN line types.

args.ecm_override

If set to 0, there is no effect; if > 0, ECM is enabled, overriding the
setting of ecm_enable in the user configuration file; if < 0, ECM is
disabled, overriding the settings of ecm_enable and t34_enable in
the user configuration file. See the ecm_enable parameter in
Volume 6, Appendix A, User-defined Configuration File.

BfvFaxBeginRaw

March 2017 643

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Initiates the fax process in originate or answer mode depending on
the contents of the args.oa_flag.

Use this function instead of BfvFaxBeginSendRaw or
BfvFaxBeginReceive when polling is required or permitted. See
the BfvFaxBegin and BfvFaxPoll functions for more information
on polling.

This function handles all polling variations (dial and send, answer
and receive, dial and receive, answer and send, dial and send-
receive, answer and receive-send).

The BfvFaxSetLocalId, BfvFaxPageParams or
BfvFaxT30Params functions can be called before this function.

Before calling this function, the application can use the
LINE_FAX_RES macro to enable PAGE_RES structure allocation.

Many fax devices do not support the reception of enhanced fax
format pages. To ensure that the receiver can support the format you
wish to send, you should use the T.30 holdup feature and examining
the DIS (see BfvFaxT30Holdup and LINE_DIS_DTC (lp)).

See Also BfvFaxBegin, BfvFaxBeginTiff

Example struct args_fax args;

/* performs ordinary Answer and Receive with no polling */
BT_ZERO(args);
args.oa_flag = BT_ANSWER;
args.can_send = 0;
args.can_receive = 1;
args.resolution = RES_200H_100V;
args.width = WIDTH_A4;
args.rcv_mode = RCV_MODE_AUTO;
BfvFaxBeginRaw (lp, &args);

BfvFaxBeginReceive

March 2017 644

BfvFaxBeginReceive

Purpose Instructs the channel to begin fax reception.

Syntax int
BfvFaxBeginReceive (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Input Fields int rcv_mode;
unsigned fallback_rtp_reinvite;
int ecm_override;

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.rcv_mode

Specifies the fax receive mode. Valid values are:

RCV_MODE_AUTO
Auto receive mode; standard, default.

0

RCV_MODE_MANUAL
Manual receive mode; same as AUTO, but no
initial CED is played and startup delays are
reduced.

1

BfvFaxBeginReceive

March 2017 645

args.fallback_rtp_reinvite

Specifies whether or not a SIP RTP reINVITE should be
transmitted for G.711 fallback mode if a SIP T.38 reINVITE is
rejected with either a 488 (Not Acceptable Here) or a 606 (Not
Acceptable). Valid values are:
BT_FALLBACK_RTP_REINVITE_DEFAULT

Default to the setting specified in the call control
configuration file.

BT_FALLBACK_RTP_REINVITE_DISABLE
Do not transmit a SIP RTP reINVITE if a SIP T.38 reINVITE
is rejected.

BT_FALLBACK_RTP_REINVITE_ENABLE
Transmit a SIP RTP reINVITE if a SIP T.38 reINVITE is
rejected.

When the application sets the value in this field to
BT_FALLBACK_RTP_REINVITE_DEFAULT, the functionality
will default to the setting specified in the call control configuration
file (callctrl.cfg) by the g711_fallback_rtp_reinvite parameter. If
the g711_fallback_rtp_reinvite parameter isn't specified in the
call control configuration file, then the default functionality is
BT_FALLBACK_RTP_REINVITE_DISABLE.

An application can override the value specified in the call control
configuration file by the g711_fallback_rtp_reinvite parameter by
setting this field to a value of either
BT_FALLBACK_RTP_REINVITE_DISABLE or
BT_FALLBACK_RTP_REINVITE_ENABLE.

Setting this field to a value of
BT_FALLBACK_RTP_REINVITE_DISABLE will prevent
transmission of a SIP RTP reINVITE if a SIP T.38 reINVITE is
rejected.

BfvFaxBeginReceive

March 2017 646

Setting this field to a value of
BT_FALLBACK_RTP_REINVITE_ENABLE will result in
transmission of a SIP RTP reINVITE if a SIP T.38 reINVITE is
rejected with either a 488 (Not Acceptable Here) or a 606 (Not
Acceptable) and the fax transport protocol
(fax_transport_protocol) parameter specified in the call control
configuration file is set to t38_first. The SDP settings in the SIP
RTP reINVITE will be the same RTP codec settings initially used to
establish the call.

Note: This field only works for calls using the SIP internet protocol.
The Bfv API ignores this field for calls using the H.323 internet
protocol or PSTN line types.

args.ecm_override

If set to 0, there is no effect; if > 0, ECM is enabled, overriding the
setting of ecm_enable in the user configuration file; if < 0, ECM is
disabled, overriding the settings of ecm_enable and t34_enable in
the user configuration file. See the ecm_enable parameter in
Volume 6, Appendix A, User-defined Configuration File.

Output Return value:

0 Channel was successfully set at the beginning of the T.30
sequence.

<0 Failure to set channel at the beginning of the T.30
sequence.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Use this function to initiate reception of any kind of fax data
(infopacket, raw, TIFF, etc.). The function places the channel at the
beginning of Phase B of the T.30 sequence to initiate transmission of
the DIS to the calling machine.

If the application intends to call the BfvFaxSetLocalId function, it
should do so before calling this function.

Call BfvFaxGetRemoteInfo next to set the channel to wait for
information from the remote machine.

Checks to ensure that the line state is set to CONNECTED.

BfvFaxBeginReceive

March 2017 647

Polling cannot occur when the application uses this function. When
the application uses low-level infopkt functions, polling can occur
only with the BfvFaxBegin function. When the application uses
noninfopkt, raw fax data functions, polling can occur with the
BfvFaxBeginRaw function. When the application uses TIFF-F
functions, polling can occur with the BfvFaxBeginTiff function.

This function is incorporated into the higher-level function
BfvFaxReceive.

The application can call the BfvFaxSetReceiveFmt function before
calling this function.

Before calling this function, the application can use the
LINE_FAX_RES macro to enable PAGE_RES structure allocation.

See Also BfvFaxGetRemoteInfo, BfvFaxReceive

Example BTLINE *lp;
struct args_fax args;

BT_ZERO(args);
if (BfvFaxBeginReceive(&args) < 0)
{
 printf("Error in BfvFaxBeginReceive\n");
}

BfvFaxBeginSend

March 2017 648

BfvFaxBeginSend

Purpose Prepares the line data structure for fax transmission.

Syntax void
BfvFaxBeginSend (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Input Fields struct infopkt_stream *s_ips;
int xmit_mode;
int specify_tz_offset;
int tz_offset;
int ecm_override;

Output Fields RES res;

Modified Fields resolution, width, eff_page_type

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.s_ips

Pointer to the infopkt stream to transmit.

BfvFaxBeginSend

March 2017 649

args.xmit_mode

Specifies the fax transmit mode. Valid values are:

args.specify_tz_offset

If nonzero, enables args.tz_offset.

args.tz_offset

A value, in seconds, to be added to the current time in GMT to
produce a desired local time. Enabled by args.specify_tz_offset. If
disabled, the function uses the local time set on the host
computer.

args.ecm_override

If set to 0, there is no effect; if > 0, ECM is enabled, overriding the
setting of ecm_enable in the user configuration file; if < 0, ECM is
disabled, overriding the settings of ecm_enable and t34_enable in
the user configuration file. See the ecm_enable parameter in
Volume 6, Appendix A, User-defined Configuration File.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details This function begins fax transmission using an infopkt stream
(places the channel at the top of Phase B on the transmit side to look
for a DIS signal from the answering fax machine).

If you call the BfvFaxSetLocalId function, call it before calling this
function.

The first infopkt in ips must be:

INFOPKT_DOCUMENT_PARAMETERS

XMIT_MODE_AUTO
Auto transmit mode; standard, default.

0

XMIT_MODE_MANUAL
Manual transmit mode; same as AUTO, but has
timing differences when retransmitting FSK
signals.

1

BfvFaxBeginSend

March 2017 650

This function sets parameters based on the infopkts appearing at the
start of args.s_ips that indicate a beginning-of-page. Infopkts that
indicate a beginning-of-page are:

INFOPKT_BEGINNING_OF_PAGE
INFOPKT_DOCUMENT_PARAMETERS
INFOPKT_T30_PARAMETERS
INFOPKT_ASCII_PAGE_PARAMETERS
INFOPKT_PAGE_PARAMETERS
INFOPKT_FAX_HDR
INFOPKT_EFF_PAGE_PARAMETERS

This function is incorporated into the higher-level function
BfvFaxSend.

Polling cannot occur when the application uses this function. When
the application uses low-level functions, polling can only occur with
the BfvFaxBegin function.

Before calling this function, the application can use the
LINE_FAX_RES macro to enable PAGE_RES structure allocation.

See Also BfvFaxBeginSendRaw, BfvFaxBeginSendTiff,
BfvFaxGetRemoteInfo, BfvFaxSend, BfvFaxSendPage,
LINE_FAX_RES

Example BTLINE *lp;
struct infopkt_stream *ips;
struct args_fax args;

BT_ZERO(args);
args.s_ips = ips;
BfvFaxBeginSend(lp,&args);
if (args.res.status != BT_STATUS_OK)
{
 printf ("Error in BfvFaxBeginSend\n");
}

BfvFaxBeginSendRaw

March 2017 651

BfvFaxBeginSendRaw

Purpose Prepares the line data structure to transmit raw data files.

Syntax void
BfvFaxBeginSendRaw (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Input Fields int resolution;
int width;
int xmit_mode;
unsigned long eff_page_type;
int specify_tz_offset;
int tz_offset;
int ecm_override;

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.resolution

RES_200H_400V, RES_300H_300V, RES_400H_400V,
RES_600H_600V, RES_1200H_1200V, RES_300H_600V,
RES_400H_800V, RES_600H_1200V, RES_100H_100V, are not
supported on TruFax®.

BfvFaxBeginSendRaw

March 2017 652

Resolution of the first page of the transmitting document. Values
are:

Note: Non-square pixels cannot be used for JPEG.

args.width

Horizontal width of the first page to be transmitted. Valid values
are:

WIDTH_A40: 215 mm, 1728 normal resolution pixels.
WIDTH_B41: 255 mm, 2048 normal resolution pixels.
WIDTH_A32: 303 mm, 2432 normal resolution pixels.

RES_200H_100V

204 dpi horizontal, 98 dpi vertical
(normal resolution, also RES_NORMAL)

0

RES_200H_200V

204 dpi horizontal, 196 dpi vertical
(fine resolution, also RES_FINE)

1

RES_200H_400V

200 dpi horizontal, 400 dpi vertical
2

RES_300H_300V

300 dpi horizontal, 300 dpi vertical
3

RES_400H_400V

400 dpi horizontal, 400 dpi vertical
4

RES_600H_600V

600 dpi horizontal, 600 dpi vertical
5

RES_1200H_1200V

1200 dpi horizontal, 1200 dpi vertical
6

RES_300H_600V

300 dpi horizontal, 600 dpi vertical
7

RES_400H_800V

400 dpi horizontal, 800 dpi vertical
8

RES_600H_1200V

600 dpi horizontal, 1200 dpi vertical
9

RES_100H_100V

100 dpi horizontal, 100 dpi vertical. For use with
JPEG only.

10

BfvFaxBeginSendRaw

March 2017 653

args.xmit_mode

Specifies the fax transmit mode. Valid values are:

args.eff_page_type

Not supported on TruFax®.
If nonzero, the next transmitted page will be an enhanced fax
format page of the specified type. Valid values are:

args.specify_tz_offset

If nonzero, enables args.tz_offset.

XMIT_MODE_AUTO

Auto transmit mode; standard, default.
0

XMIT_MODE_MANUAL

Manual transmit mode; same as AUTO, but has
timing differences when retransmitting FSK
signals.

1

BT_EFF_JPEG_ENABLE
JPEG. May also logically OR in the following.

0x1

BT_EFF_JPEG_FULLCOLOR
Full color.

0x2

BT_EFF_JPEG_DEFAULT_TABLES
Default Huffman Tables.

0x4

BT_EFF_JPEG_12BIT
12 bits/pel, Otherwise 8.

0x8

BT_EFF_JPEG_NOSUBSAMPLING
No subsampling.

0x10

BT_EFF_JPEG_CUSTOM_ILLUMINANT
Custom Illuminant.

0x20

BT_EFF_JPEG_CUSTOM_GAMUT
Custom Gamut.

0x40

BT_EFF_JBIG
JBIG. May also logically OR in the following.

0x0100

BT_EFF_JBIG_L0
L0 Mode.

0x0200

BfvFaxBeginSendRaw

March 2017 654

args.tz_offset

A value, in seconds, to be added to the current time in GMT to
produce a desired local time. Enabled by args.specify_tz_offset. If
disabled, the function uses the local time set on the host
computer.

args.ecm_override

If set to 0, there is no effect; if > 0, ECM is enabled, overriding the
setting of ecm_enable in the user configuration file; if < 0, ECM is
disabled, overriding the settings of ecm_enable and t34_enable in
the user configuration file. See the ecm_enable parameter in
Volume 6, Appendix A, User-defined Configuration File.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details This function begins fax transmission of raw data files (places the
channel at the top of Phase B on the transmit side to look for a DIS
signal from the answering fax machine).

The BfvFaxSetLocalId, BfvFaxPageParams or
BfvFaxT30Params functions can be called before this function.

Polling cannot occur when the application uses this function. When
the application uses noninfopkt raw data functions, polling can occur
only with the BfvFaxBeginRaw function.

Before calling this function, the application can use the
LINE_FAX_RES macro to enable PAGE_RES structure allocation.

Many fax devices do not support the reception of enhanced fax
format pages. To ensure that the receiver can support the format you
wish to send, you should use the T.30 holdup feature and examining
the DIS (see BfvFaxT30Holdup and LINE_DIS_DTC (lp)).

See Also BfvFaxBeginSend, BfvFaxBeginSendTiff,
BfvFaxGetRemoteInfo, LINE_FAX_RES

BfvFaxBeginSendRaw

March 2017 655

Example BTLINE *lp;
struct args_fax args;

BT_ZERO(args);
args.resolution = RES_200H_200V;/* fine resolution first
 page */
args.width = WIDTH_A4; /* A4 width 1st page */
BfvFaxBeginSendRaw(lp, &args);

BfvFaxBeginSendTiff

March 2017 656

BfvFaxBeginSendTiff

Purpose Prepares the line data structure to transmit TIFF-F files.

Syntax void
BfvFaxBeginSendTiff (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Input Fields TFILE *s_tp;
int xmit_mode;
int specify_tz_offset;
int tz_offset;
int ecm_override;

Output Fields RES res;

Modified Fields resolution, width

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.s_tp

TFILE* pointer to a TIFF file ready for transmission.

BfvFaxBeginSendTiff

March 2017 657

args.xmit_mode

Specifies the fax transmit mode. Valid values are:

args.specify_tz_offset

If nonzero, enables args.tz_offset.

args.tz_offset

A value, in seconds, to be added to the current time in GMT to
produce a desired local time. Enabled by args.specify_tz_offset. If
disabled, the function uses the local time set on the host
computer.

args.ecm_override

If set to 0, there is no effect; if > 0, ECM is enabled, overriding the
setting of ecm_enable in the user configuration file; if < 0, ECM is
disabled, overriding the settings of ecm_enable and t34_enable in
the user configuration file. See the ecm_enable parameter in
Volume 6, Appendix A, User-defined Configuration File.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details This function begins fax transmission of TIFF-F files (places the
channel at the top of Phase B on the transmit side to look for a DIS
signal from the answering fax machine).

The BfvFaxSetLocalId, BfvFaxPageParams or
BfvFaxT30Params functions can be called before this function.

Before calling this function, the application can use the
LINE_FAX_RES macro to enable PAGE_RES structure allocation.

XMIT_MODE_AUTO

Auto transmit mode; standard, default.
0

XMIT_MODE_MANUAL

Manual transmit mode; same as AUTO, but has
timing differences when retransmitting FSK
signals.

1

BfvFaxBeginSendTiff

March 2017 658

If sending is enabled using args.s_tp, the application can send other
non-TIFF G3 or ASCII data for the channel to combine on the same
page after calling this function. The application will then call
BfvFaxSendPageTiff at the appropriate time. This sequencing
permits the application to use the width and resolution from the
TIFF file for the page and for the individual data strip.

TIFF-F, as supported by Dialogic® Brooktrout® boards, only
supports MH, MR, and MMR. It does not support JPEG, JBIG, or
any other enhanced fax formats.

See Also BfvFaxBegin, LINE_FAX_RES

Example BTLINE *lp;
TFILE *tp;
struct args_fax args;

BT_ZERO(args);
args.s_tp = tp;
BfvFaxBeginSendTiff(lp, &args);

BfvFaxBeginTiff

March 2017 659

BfvFaxBeginTiff

Purpose Initiates the fax transmission process of TIFF-F files in originate or
answer mode depending on whether the channel dialed a number or
answered a call.

Syntax void
BfvFaxBeginTiff (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Input Fields int oa_flag;
TFILE *s_tp;
TFILE *r_tp;
int xmit_mode;
int rcv_mode;
int specify_tz_offset;
int tz_offset;
unsigned fallback_rtp_reinvite;
int ecm_override;

Output Fields RES res;

Modified Fields can_send, can_receive, resolution, width

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

BfvFaxBeginTiff

March 2017 660

args.oa_flag

Indicates whether the channel dialed a number or answered a
call.

BT_ORIGINATEChannel dialed a number.

BT_ANSWERChannel answered a call.

args.s_tp

TFILE* pointer to a TIFF file ready for transmission.
NULL = Sending is disabled.

args.r_tp

TFILE* pointer to a TIFF file ready for reception.
NULL = Receiving is disabled.

args.xmit_mode

Specifies the fax transmit mode. Valid values are:

args.rcv_mode

Specifies the fax receive mode. Valid values are:

args.specify_tz_offset

If nonzero, enables args.tz_offset.

XMIT_MODE_AUTO

Auto transmit mode; standard, default.
0

XMIT_MODE_MANUAL

Manual transmit mode; same as AUTO, but has
timing differences when retransmitting FSK
signals.

1

RCV_MODE_AUTO
Auto receive mode; standard, default.

0

RCV_MODE_MANUAL
Manual receive mode; same as AUTO, but no
initial CED is played and startup delays are
reduced.

1

BfvFaxBeginTiff

March 2017 661

args.tz_offset

A value, in seconds, to be added to the current time in GMT to
produce a desired local time. Enabled by args.specify_tz_offset. If
disabled, the function uses the local time set on the host
computer.

args.fallback_rtp_reinvite

Specifies whether or not a SIP RTP reINVITE should be
transmitted for G.711 fallback mode if a SIP T.38 reINVITE is
rejected with either a 488 (Not Acceptable Here) or a 606 (Not
Acceptable). Valid values are:
BT_FALLBACK_RTP_REINVITE_DEFAULT

Default to the setting specified in the call control
configuration file.

BT_FALLBACK_RTP_REINVITE_DISABLE
Do not transmit a SIP RTP reINVITE if a SIP T.38 reINVITE
is rejected.

BT_FALLBACK_RTP_REINVITE_ENABLE
Transmit a SIP RTP reINVITE if a SIP T.38 reINVITE is
rejected.

When the application sets the value in this field to
BT_FALLBACK_RTP_REINVITE_DEFAULT, the functionality
will default to the setting specified in the call control configuration
file (callctrl.cfg) by the g711_fallback_rtp_reinvite parameter. If
the g711_fallback_rtp_reinvite parameter isn't specified in the
call control configuration file, then the default functionality is
BT_FALLBACK_RTP_REINVITE_DISABLE.

An application can override the value specified in the call control
configuration file by the g711_fallback_rtp_reinvite parameter by
setting this field to a value of either
BT_FALLBACK_RTP_REINVITE_DISABLE or
BT_FALLBACK_RTP_REINVITE_ENABLE.

Setting this field to a value of
BT_FALLBACK_RTP_REINVITE_DISABLE will prevent
transmission of a SIP RTP reINVITE if a SIP T.38 reINVITE is
rejected.

BfvFaxBeginTiff

March 2017 662

Setting this field to a value of
BT_FALLBACK_RTP_REINVITE_ENABLE will result in
transmission of a SIP RTP reINVITE if a SIP T.38 reINVITE is
rejected with either a 488 (Not Acceptable Here) or a 606 (Not
Acceptable) and the fax transport protocol
(fax_transport_protocol) parameter specified in the call control
configuration file is set to t38_first. The SDP settings in the SIP
RTP reINVITE will be the same RTP codec settings initially used to
establish the call.

Note: This field only works for calls using the SIP internet protocol.
The Bfv API ignores this field for calls using the H.323 internet
protocol or PSTN line types.

args.ecm_override

If set to 0, there is no effect; if > 0, ECM is enabled, overriding the
setting of ecm_enable in the user configuration file; if < 0, ECM is
disabled, overriding the settings of ecm_enable and t34_enable in
the user configuration file. See the ecm_enable parameter in
Volume 6, Appendix A, User-defined Configuration File.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details This function transmits TIFF-F files in originate or answer mode
depending on the contents of the args.oa_flag. The function handles
all polling variations (dial and send, answer and receive, dial and
receive, answer and send, dial and send and receive, answer and
receive and send).

Use this function instead of BfvFaxBeginSendTiff or
BfvFaxBeginReceive when polling is required or permitted. See
the BfvFaxBegin and BfvFaxPoll functions for more information
on polling.

The BfvFaxSetLocalId or BfvFaxPageParams functions can be
called before this function, and the BfvFaxT30Params function can
be called immediately after this function.

Before calling this function, the application can use the
LINE_FAX_RES macro to enable PAGE_RES structure allocation.

BfvFaxBeginTiff

March 2017 663

If sending is enabled using args.s_tp, the application can send other
non-TIFF G3 or ASCII data for the channel to combine on the same
page after calling this function. The application will then call
BfvFaxSendPageTiff at the appropriate time. This sequencing
permits the application to use the width and resolution from the
TIFF file for the page and for the individual data strip.

TIFF-F, as supported by Dialogic® Brooktrout® boards, only
supports MH, MR, and MMR. It does not support JPEG, JBIG, or
any other enhanced fax formats.

See Also BfvFaxBegin, BfvFaxBeginRaw, LINE_FAX_RES

Example /* Performs ordinary Answer and Receive with */
/* no polling */
BTLINE *lp;
TFILE *tp = BfvTiffOpen("fax.tiff", "w");
struct args_fax args;

BT_ZERO(args);
args.oa_flag = BT_ANSWER;
args.s_tp = NULL;
args.r_tp = tp;
BfvFaxBeginTiff(lp, &args);

BfvFaxDownloadFont

March 2017 664

BfvFaxDownloadFont

Purpose Downloads the indicated font file to the channel for use as the
specified numbered font.

Syntax int
BfvFaxDownloadFont (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Input Fields char *fname;
int font_no;

Output Fields RES res;

Modified Fields buf, size.

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

BfvFaxDownloadFont

March 2017 665

args.fname

The name of the font file to download to the channel.
The following font files are currently available in the fonts
directory:

args.font_no

The font number to download. For more information see the
font_file parameter in Volume 6, Appendix A.
The range is 0-6 or 255.

Output Return value:

0 Font file successfully downloaded.

<0 Failure to download the font file.

Failure to download a font file could occur due to one of the
following reasons: failure to find the file, failure to open the file,
or failure to allocate memory.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details The fonts specified by the font_file parameters in the user-defined
configuration file are automatically downloaded to the module when
the function is called. Use the LINE_FONT_DOWNLOADED (lp,
font_no) macro to determine if a font was successfully downloaded.

The number of fonts that a module can support is hardware and
firmware dependent. No more than seven fonts (0-6) per module can
be downloaded. These fonts will be shared across all channels on the
module. Total memory for font storage is fixed; see the Firmware
Release Notes for the amount of memory.

Normal Resolution Fine Resolution
epsones.fz8
epsonps.fz8
epsonpc.fz8
epsonec.fz8
ibmpcs.fz8

courb8.fz8
courb10.fz8
courb18.fz8
wcrb8.fz8

BfvFaxDownloadFont

March 2017 666

Only line pointers attached to logical channel 1 using
BfvSessionAttach can download fonts. The fonts apply to all
channels on a module. Once a font with a given number is
downloaded, it cannot be replaced without re-initializing the module.
The font number 255 serves as a default font, which is used if a font
number referenced for ASCII conversion has not been loaded.

If downloading a font, the application must do it before initiating a
call or waiting for ring. Some font numbers may be reserved for
preloaded fonts.

The normal resolution font sets currently available from Dialogic
emulate either the Epson LX or the IBM extended character set and
are set in pica (10 characters/inch), elite (12 characters/inch), or
compressed (132 characters/line) format. The normal resolution font
sets are:

The fine resolution font sets currently available from Dialogic are set
in courier bold in 8, 10, and 18 points. The fine resolution font sets
are:

Note: If the firmware encounters an ASCII character that is not a
member of the current font, the firmware replaces the
character with a "space" (ASCII 32) character.

Epson LX type: epsonps.fz8 (Pica standard)

epsonpc.fz8 (Pica compressed)

epsones.fz8 (Elite standard)

 epsonec.fz8 (Elite compressed)

IBM PC type: ibmpcps.fz8 (Pica standard)

IBM PC type: courb8.fz8 (8 points; 256 chars., 0-255)

courb10.fz8 (10 points; 137 chars., 32-168)

courb18.fz8 (18 points; 64 chars., 32-95)

Windows type: wcrb8.fz8 (8 points; 256 chars., 0-255)

BfvFaxDownloadFont

March 2017 667

See Also BfvFaxDownloadFontData, BfvLineReset,
LINE_FONT_DOWNLOADED

Example BTLINE *lp;
struct args_fax args;

BT_ZERO(args);
args.fname = "ibmpcps.fz8";
args.font_no = 0;
BfvFaxDownloadFont(lp, &args)

BfvFaxDownloadFontData

March 2017 668

BfvFaxDownloadFontData

Purpose Downloads the font supplied in a user-allocated data buffer to the
module for use as the specified numbered font.

Syntax int
BfvFaxDownloadFontData (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Input Fields unsigned char *buf;
unsigned size;
int font_no;

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.buf

Pointer to a user-allocated data buffer that contains the font data
to download.

args.size

Size, in bytes, of the user-allocated data buffer.

args.font_no

The number of the font to download. The range is 0-6 or 255.

BfvFaxDownloadFontData

March 2017 669

Output Return value:

0 Font file successfully downloaded.

<0 Font file failed to download.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details This function must be called repeatedly with buffers of data until the
entire font is downloaded. After all data are downloaded,
BfvFaxDownloadFontData must be called once with an args.buf
value of NULL and an args.size value of 0.

The fonts specified by the font_file parameters in the user-defined
configuration file are automatically downloaded to the module when
the BfvLineReset function is called.

See the LINE_FONT_DOWNLOADED (lp, font_no) macro to
determine if a font was successfully downloaded.

The number of fonts that can be supported by a module is hardware
and firmware dependent. No more than seven fonts (0-6) per module
can be downloaded. These fonts will be shared across all channels on
the module. Total memory for font storage is fixed; see the Release
Notes for the amount of memory.

Only line pointers attached to logical channel 1 using
BfvSessionAttach can download fonts. The fonts apply to all
channels on a module. Once a font with a given number is
downloaded, it cannot be replaced without re-initializing the module.
The font number 255 serves as a default font, which is used if a font
number referenced for ASCII conversion has not been loaded.

If downloading a font, the application must do it before initiating a
call or waiting for ring. Some font numbers may be reserved for
preloaded fonts.

See the BfvFaxDownloadFont function for detailed information
about the fonts that are supported by Dialogic.

See Also BfvFaxDownloadFont, BfvLineReset, LINE_FONT_DOWNLOADED

BfvFaxDownloadFontData

March 2017 670

Example BTLINE *lp;
FILE *fp = fopen("ibmpcps.fz8","r");
unsigned char buf[1024];
unsigned n;
struct args_fax args;

BT_ZERO(args);
while ((n=fread(buf, 1, sizeof(buf), fp)) > 0)
{
 args.buf = buf;
 args.size = n;
 args.font_no = 0;
 BfvFaxDownloadFontData(lp, &args);
}
args.buf = NULL;
args.size = 0;
args.font_no = 0;
BfvFaxDownloadFontData(lp, &args);

BfvFaxEndOfDocument

March 2017 671

BfvFaxEndOfDocument

Purpose Sends the channel an end-of-page, accompanied by a flag that
indicates no more pages are to follow.

Syntax int
BfvEndOfDocument (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

Output ReturnValue:

<0 Error occurred, transmission not completed successfully.

0 Last page transmitted successfully.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvFaxEndOfDocument

March 2017 672

Details On return from this function, the last page was sent to the remote
fax machine and:

 Either the channel went on-hook, and the line state was changed
to IDLE

or

 The channel remained off-hook and the line state was changed to
TURNAROUND if polling was enabled using a function such as
BfvFaxBegin or BfvFaxBeginRaw. The transmitter then
becomes a receiver, and BfvFaxGetRemoteInfo and
BfvFaxWaitForTraining must be called again.

This function is incorporated into the higher-level functions
BfvFaxSend and BfvFaxPoll.

Example BTLINE *lp;
struct infopkt_stream *ips;
struct args_fax args;

for (;;)
{
 BT_ZERO(args);
 args.s_ips = ips;
 if (BfvFaxNextPage(lp, &args) <= 0)
 break;
 BT_ZERO(args);
 args.s_ips = ips;
 BfvFaxSendPage(lp, &args);
}
BfvFaxEndOfDocument(lp, &args);

BfvFaxEndReception

March 2017 673

BfvFaxEndReception

Purpose Waits after receiving the last page of a fax transmission for the
completion of the T.30 handshaking confirmation sequence.

Syntax int
BfvFaxEndReception (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

Output Return:

<0 Error occurred, reception not completed successfully.

0 Last page received successfully.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvFaxEndReception

March 2017 674

Details Use this function after receiving the last page of a fax transmission.
On the function’s return, the last page was received from the remote
fax machine and:

 Either the channel went on-hook, and the line state was changed
to IDLE

or

 The channel remained off-hook and the line state was changed to
TURNAROUND if polling was enabled using a function such as
BfvFaxBegin or BfvFaxBeginRaw. The receiver then becomes
a transmitter, and BfvFaxGetRemoteInfo and
BfvFaxWaitForTraining must be called again.

This function is incorporated into the higher-level function
BfvFaxReceivePages.

Example BTLINE *lp;
struct infopkt_stream *ips;
struct args_fax args;

do
{
 BT_ZERO(args);
 args.r_ips = ips;
}
while (BfvFaxReceivePage(lp, &args) > 0);
BfvFaxEndReception(lp, &args);

BfvFaxGetRemoteInfo

March 2017 675

BfvFaxGetRemoteInfo

Purpose Waits until the remote machine sends DIS, DTC, or DCS, and
reports the remote ID, NSF/NSS/NSC information, and
SUB/PWD/SEP information.

Syntax void
BfvFaxGetRemoteInfo (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Output Fields INFO_RES remote_info;
RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

Output Return value: None.

args.remote_info

INFO_RES type structure reporting the remote ID and any
NSF/NSS/NSC or SUB/PWD/SEP information from the remote
fax device. The INFO_RES structure is documented in Volume 6,
Appendix B.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvFaxGetRemoteInfo

March 2017 676

Details Before calling this function, the application must call one of the
following functions:

BfvFaxBegin
BfvFaxBeginRaw
BfvFaxBeginReceive
BfvFaxBeginSend
BfvFaxBeginSendRaw
BfvFaxBeginSendTiff
BfvFaxBeginTiff

Processes interrupts in a loop until DIS, DTC, or DCS (FSK
commands) are received and sets the current line state to
AWAIT_TRAINING. At each pass through the loop, the line state is
tested to ensure that it is still CONNECTED.

This function is incorporated into the higher-level functions
BfvFaxSend, BfvFaxReceive, and BfvFaxPoll.

Normally BfvFaxWaitForTraining is called after this function
returns.

When this function returns without error, the line state changes to
AWAIT_TRAINING.

The format of the nsf_nss_frame field in the INFO_RES structure is:

Length, data, length, data, ..., etc.
where length (one byte) is the length of the next piece of NSF,
NSS, or NSC information, not including the length byte. When
length is zero, no more NSF, NSS, or NSC data is available.

See Also BfvFaxWaitForTraining, LINE_DCS, LINE_DIS_DTC

Example BTLINE *lp;
struct args_fax args;

BT_ZERO(args);
BfvFaxGetRemoteInfo(lp, &args);
if (args.res.status != BT_STATUS_OK)
 printf("Failed to Get Remote info\n");

BfvFaxHeader

March 2017 677

BfvFaxHeader

Purpose Sets up a header or footer to appear on all subsequent pages of a fax
transmission, using the specified text format and insertion mode.

Syntax void
BfvFaxHeader (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Input Fields int placement;
int insert_mode;
char *label;

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.placement

HDR_HEADER

Specifies a header (top of page).

HDR_FOOTER

Specifies a footer (bottom of page).

BfvFaxHeader

March 2017 678

args.insert_mode

args.label

A text string that specifies the format of the header or footer
using format characters described under Details.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Using the specified text format (args.label) and insertion mode
(args.insert_mode), sets up a header or footer to appear on all
subsequent pages of a fax transmission.

Only disable and insert are valid for footers.

When transmitting infopkt files, you can insert the
INFOPKT_FAX_HDR infopkt type in the input stream instead of
calling this function.

Applications usually call this function once before calling
BfvFaxSend or BfvFaxBeginSendRaw. But, to reset page
numbers for example, applications can call it between fax pages
during transmission.

The label format uses date/printf style specifications to place items
of information into header or footer text lines.

HDR_MODE_DISABLE

Disables the current header.

HDR_MODE_INSERT

Inserts a header before or after an image.

HDR_MODE_REPLACE

Replaces an image with a header.

HDR_MODE_OVERLAY

Forms a bit-wise logical OR of the image and the
header.

BfvFaxHeader

March 2017 679

All characters, except ‘%’, represent themselves on output. When the
function encounters a ‘%’ character, it bases its output format on the
format character immediately following the ‘%’ character.

Note: Some roll paper fax machines may have a gap of about 1/8 inch
when printing a fax. This means that the fax machine may not
display the first character of the header/footer because the
header/footer is positioned at address 0. To avoid this
condition, add leading spaces to the fax header/footer.

The format characters include:

a Day of the week, 3-character abbreviation

A Day of the week, full-length

b Month, 3 character abbreviation.

m Month, 01-12

g Month, _1-12, a two-character field where a leading zero is
replaced by a space. (The underscore ("_") character here is
used to represent a space character.)

d Day of the month, 01-31

e Day of the month, _1-31, a two-character field where a
leading zero is replaced by a space. (The underscore ("_")
character here is used to represent a space character.)

H Hour, 00-23

h Hour, __-23, a two-character field where leading zeroes are
replaced by spaces. (The underscore ("_") character here is
used to represent a space character.)

I Hour, 01-12

M Minute, 00-59

k Minute, __-59, a two-character field where leading zeroes are
replaced by spaces. (The underscore ("_") character here is
used to represent a space character.)

p Indicates the time of day (AM/PM). If you use this format
character, you must also use the “I” hour character.

nP Page number, 01-99 (leading 0 is rendered as a space),
optional ‘n’ resets page numbering as specified, and when
sent together, the ‘n’ in the header overrides the ‘n’ in the
footer.

nQ Same as nP, but uses 2-digit page numbers 01-99 with
leading zeros.

nU Same as nP, but uses 3-digit page numbers 001-999 with
leading zeros.

BfvFaxHeader

March 2017 680

Example struct args_fax args;

BT_ZERO(args);
args.placement = HDR_HEADER;
args.insert_mode = HDR_MODE_INSERT;
args.label = "Time is %H:%M, page %P";
BfvFaxHeader(lp &args);

nR Same as nP, but uses 3-digit page numbers 001-999

Nf Switch to font #N. The range of N is 0-6. The change takes
effect from this point in the header/footer. Applications can
only mix fonts of the same height. Text preceding the first
occurrence of or in absence of this font specification uses a
default font. If the specified font has not been downloaded, a
default font is used (see BfvFaxDownloadFont or the
font_file keyword in Volume 6, Appendix A).

N^ Insert N blank G3 lines before header/footer. This directive
can only appear at the beginning of the format string.

N_ Insert N blank G3 lines after header/footer. This directive can
only appear at the beginning of the format string.

S Seconds, 00-59

y Year, 00-99

Y 4-digit year

% Percent (%) character

BfvFaxNextPage

March 2017 681

BfvFaxNextPage

Purpose Sends an end-of-page to the channel and processes parameters for
the next page of data to be transmitted.

Syntax int
BfvFaxNextPage (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Input Fields struct infopkt_stream *s_ips;
int force_eom;

Output Fields RES res;

Modified Fields action, resolution, width, eff_page_type.

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.s_ips

Pointer to the infopkt stream designated for transmission.

args.force_eom

If set to 1, this value forces an EOM FSK message to be sent
during the next page break instead of an MPS FSK.

BfvFaxNextPage

March 2017 682

Output Return value:

1 An infopkt(s) indicating a beginning-of-page appeared and
was processed.

0 End-of-file.

<0 Next infopkt does not indicate a beginning-of-page.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details This function sends the end-of-page between pages only.
BfvFaxEndOfDocument sends the end-of-page after the last
page has been sent.

BfvFaxNextPage peeks ahead in args.s_ips. If end-of-file is
encountered, 0 is returned. If the next infopkt does not indicate a
beginning-of-page, –1 is returned, and the infopkt is left at the
head of the stream to be read by another function.

If the next infopkt indicates a beginning-of-page, 1 is returned,
and that infopkt and all succeeding infopkts in args.s_ips that
indicate a beginning-of-page are read and processed (for example,
sending a new resolution to the channel).

If the next infopkt is not the first page of a document, an
end-of-page is sent to the channel.

Infopkts that indicate a beginning-of-page are:

INFOPKT_BEGINNING_OF_PAGE
INFOPKT_DOCUMENT_PARAMETERS
INFOPKT_T30_PARAMETERS
INFOPKT_ASCII_PAGE_PARAMETERS
INFOPKT_PAGE_PARAMETERS
INFOPKT_FAX_HDR
INFOPKT_EFF_PAGE_PARAMETERS

This function is incorporated into the higher-level functions
BfvFaxPoll and BfvFaxSend.

See Also BfvFaxSendPage

BfvFaxNextPage

March 2017 683

Example BTLINE *lp;
struct infopkt_stream *ips;
struct args_fax args;

for (;;)
{
 BT_ZERO(args);
 args.s_ips = ips;
 if (BfvFaxNextPage(lp, &args) <= 0)
 break;
 BT_ZERO(args);
 args.s_ips = ips;
 BfvFaxSendPage(lp, &args);
}
BfvFaxEndOfDocument(lp, &args);

BfvFaxNextPageDCX

March 2017 684

BfvFaxNextPageDCX

Purpose Sends an end-of-page in an Intel DCX fax file to the channel and
processes parameters for the next page of data to be transmitted.

Syntax int
BfvFaxNextPage DCX (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Input Fields FILE *fp;
int combine;
int force_eom;

Output Fields RES res;

Modified Fields resolution, width.

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.fp

FILE * pointer returned by fopen.

args.combine

Indicates whether combination with earlier data will occur.
Valid values are:
0 Data not combined; page break.
1 Data combined; no page break.

BfvFaxNextPageDCX

March 2017 685

args.force_eom

If set to 1, this value forces an EOM FSK message to be sent
during the next page break instead of an MPS FSK.

Output Return value:

 1 The next page was read and its parameters processed.
 0 End-of–file.
<0 An error condition occurred.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details This function sends the end-of-page to the channel between pages of
a document only. BfvFaxEndOfDocument sends the end-of-page
to the channel after the last page of a document is sent.

Use this function to transmit an Intel DCX fax file, which contains a
set of Intel Bi-level PCX fax pages.

The args.combine argument will normally have a value of 0, causing
it to send an end-of-page when appropriate. To force combination
on a single page with data previously sent, the combine value must
be set to 1. This value must also be set to 1 if the page begins with a
function not designed for DCX files; for example,
BfvFaxBeginSendTiff or BfvFaxNextPageRaw.

The application can call the BfvFaxPageParams function before
calling this function with an args.combine value of 0.

After calling this function, the application can send other, non-DCX
G3 or ASCII data for the channel to combine on the same page. The
application would then call BfvFaxNextPageDCX with an
args.combine value of 1 and BfvFaxNextPageDCX at the
appropriate time. This sequencing permits the application to use the
width and resolution from the DCX file for the page and for the strip
containing the DCX image.

BfvFaxNextPageDCX

March 2017 686

When ending a page and starting a new page, the application must
call this function once with an args.combine value of 0 and an args.fp
value for the next page. Therefore, if the function returns 0,
indicating end-of-file, and the application intends to continue fax
transmission with a new DCX file, the application must call this
function again with an args.combine value of 0 and the new args.fp
value before transmitting the new page.

To begin DCX transmission, the application must use one of the fax
raw data functions, for example BfvFaxBeginSendRaw. You
should specify the RES_FINE and WIDTH_A4 when using DCX
because all PCX pages are in this format.

Applications that create DCX files might find it useful to use the
constant DCX_ID that the Dialogic® Brooktrout® header file defines.

See Also BfvFaxSendPage

Example BTLINE *lp;
FILE *fp;
struct args_fax *args;

for (;;)
{
 BT_ZERO(args);
 args.fp = fp;
 args.combine = 0;
 if (BfvFaxNextPageDCX(lp,&args) <= 0)
 break;
 BT_ZERO(args);
 args.fp = fp;
 BfvFaxSendPageDCX(lp,&args);
}
BfvFaxEndOfDocument(lp,&args);

BfvFaxNextPageRaw

March 2017 687

BfvFaxNextPageRaw

Purpose Sends an end-of-page from a raw data file to the channel and
processes parameters for the next page of data to be transmitted.

Syntax void
BfvFaxNextPageRaw (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Input Fields int resolution;
int width;
int force_eom;
unsigned long eff_page_type;

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.resolution

The resolution of the next page.
See the BfvFaxBeginSendRaw function for resolution values.

args.width

Horizontal width of the next page.
See the BfvFaxBeginSendRaw function for width values.

args.force_eom

If set to 1, this value forces an EOM FSK message to be sent
during the next page break instead of an MPS FSK.

BfvFaxNextPageRaw

March 2017 688

args.eff_page_type

Not supported on TruFax®.
If nonzero, the next transmitted page will be an enhanced fax
format page of the specified type. Valid values are:

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BT_EFF_JPEG_ENABLE
JPEG. May also logically OR in the following.

0x1

BT_EFF_JPEG_FULLCOLOR
Full color.

0x2

BT_EFF_JPEG_DEFAULT_TABLES
Default Huffman Tables.

0x4

BT_EFF_JPEG_12BIT
12 bits/pel, Otherwise 8.

0x8

BT_EFF_JPEG_NOSUBSAMPLING
No subsampling.

0x10

BT_EFF_JPEG_CUSTOM_ILLUMINANT
Custom Illuminant.

0x20

BT_EFF_JPEG_CUSTOM_GAMUT
Custom Gamut.

0x40

BT_EFF_JBIG
JBIG. May also logically OR in the following.

0x0100

BT_EFF_JBIG_L0
L0 Mode.

0x0200

BfvFaxNextPageRaw

March 2017 689

Details This function sends the end-of-page to the channel between pages
of a document only.

BfvFaxEndOfDocument sends the end-of-page to the channel
after the last page of a document is sent.

The BfvFaxPageParams function can be called before this
function.

Many fax devices do not support the reception of enhanced fax
format pages. To verify that the receiver can support the format you
wish to send, you should use the T.30 holdup feature and examining
the DIS (see BfvFaxT30Holdup and LINE_DIS_DTC (lp)).

See Also BfvFaxSendData, BfvFaxSendFile

Example BTLINE *lp;
struct args_fax args;

BT_ZERO(args);
args.fname = "page_one";
args.fmt = DATA_G3;
BfvFaxSendFile(lp, &args);
/* Begin second page, normal resolution, standard (A4)
 width */
args.resolution = RES_200H_100V;
args.width = WIDTH_A4;
BfvFaxNextPageRaw(lp, &args);
BT_ZERO(args);
args.fname = "page_two";
args.fmt = DATA_ASCII;
BfvFaxSendFile(lp, &args);

BfvFaxNextPageTiff

March 2017 690

BfvFaxNextPageTiff

Purpose Sends an end-of-page from a TIFF-F file to the channel and
processes parameters for the next page of data to be transmitted.

Syntax int
BfvFaxNextPageTiff (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Input Fields TFILE *s_tp;
int combine;
int force_eom;

Output Fields RES res;

Modified Fields resolution, width.

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.s_tp

FILE * pointer returned by fopen.

args.combine

Indicates whether combination with earlier data will occur.
Valid values are:
0 Data not combined; page break.
1 Data combined; no page break.

BfvFaxNextPageTiff

March 2017 691

args.force_eom

If set to 1, this value forces an EOM FSK message to be sent
during the next page break instead of an MPS FSK.

Output Return value:

 1 The next page was read and its parameters processed.
 0 End-of-file.
<0 An error condition occurred.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details This function sends the end-of-page to the channel between pages
of a document only. BfvFaxEndOfDocument sends the
end-of-page to the channel after the last page of a document is
sent.

The args.combine argument will normally have a value of 0, causing
it to send an end-of-page when appropriate. To force combination
on a single page with data previously sent, the args.combine value
must be set to 1. This value must also be set to 1 if the page began
with a function not designed for TIFF files; for example,
BfvFaxBeginSendRaw.

The application can call the BfvFaxPageParams function before
calling this function with an args.combine value of 0.

After calling this function, the application can send other, non-TIFF
G3 or ASCII data for the channel to combine on the same page. The
application would then call BfvFaxNextPageTiff with an
args.combine value of 1 and BfvFaxSendPageTiff at the
appropriate time. This sequencing permits the application to use the
width and resolution from the TIFF file for the page and for the strip
containing the TIFF image.

BfvFaxNextPageTiff

March 2017 692

When ending a page and starting a new page, the application must
call this function once with an args.combine value of 0 and an
args.s_tp value for the next page. Therefore, if the function returns 0,
indicating end-of-file, and the application intends to continue fax
transmission with a new TIFF file, the application must call this
function again with an args.combine value of 0 and the new args.s_tp
value before transmitting the new page.

TIFF-F, as supported by Dialogic® Brooktrout® boards, only
supports MH, MR, and MMR. It does not support JPEG, JBIG, or
any other enhanced fax formats.

See Also BfvFaxSendPageTiff

Example BTLINE *lp;
TFILE *tp;
struct args_fax args;

for (;;)
{
 BT_ZERO(args);
 args.tp = tp;
 args.combine = 0;
 if (BfvFaxNextPageTiff(lp, &args) <= 0)
 break;
 BT_ZERO(args);
 args.tp = tp;
 BfvFaxSendPageTiff(lp, &args);
}
BfvFaxEndOfDocument(lp, &args);

BfvFaxPageParams

March 2017 693

BfvFaxPageParams

Purpose Sets the page parameters for subsequent pages of data when using
raw data files.

Syntax void
BfvFaxPageParams (lp, args)

BTLINE *lp;
struct args_fax_page_params *args;

The structure contains the following fields.

Input Fields unsigned top_margin;
unsigned bottom_margin;
unsigned length;
unsigned ascii_pad;

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.top_margin

Specifies the top margin in units of tenths of an inch.

args.bottom_margin

Specifies the bottom margin in units of tenths of an inch.

args.length

Specifies the length of a page (normal resolution) in G3 lines.
(97.79 normal resolution G3 lines/inch; 195.58 fine resolution G3
lines/inch).

BfvFaxPageParams

March 2017 694

args.ascii_pad

Specifies whether or not to pad short pages with blank scan lines
to size args.length. Valid values are:
0 Pad.
1 Do not pad.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Call this function before beginning transmission with
BfvFaxBeginSendRaw or BfvFaxBeginRaw or before beginning
a new page with BfvFaxNextPageRaw.

Use the pageparampkt infopkt type to set these parameters when
using infopkt-formatted data files. See Volume 6, Appendix E,
Infopkt Parameter Values for more information on page parameters.

Example struct args_fax args;

BT_ZERO(args);
arg.top_margin = 3;
args.bottom_margin = 3;
args.length = 1143;
args.ascii_pad = 0;
BfvFaxPageParams(lp, &args);

BfvFaxPoll

March 2017 695

BfvFaxPoll

Purpose Performs fax polling depending on the channel’s mode, capability,
and the results of the interrupts.

Syntax void
BfvFaxPoll (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Input Fields int oa_flag;
struct infopkt_stream *s_ips;
struct infopkt_stream *r_ips;
char *local_id;
int xmit_mode;
int rcv_mode;
int btg3;
int force_eom;
int ecm_override;

Output Fields FAX_RES fax_res;
RES res;

Modified Fields can_send, can_receive, resolution, width,
overlay_number, action, buf, size, fmt,
expect_another, placement, insert_mode, label,
spacing, units, s_tp, combine, fp, resolution_negot,
use_open_file, open_file_size, fname, remote_info,
btg3, eff_page_type.

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

BfvFaxPoll

March 2017 696

args.oa_flag

Sets the channel to dial or answer mode.

BT_ORIGINATEDial mode.

BT_ANSWERAnswer mode.

args.s_ips

Pointer to the infopkt stream ready for transmission.
NULL = Sending is disabled.

args.r_ips

Pointer to the infopkt stream ready for data reception.
NULL = Receiving is disabled.

args.local_id

Pointer to an ASCII string of digits and/or alphanumerics used as
the TSI, CSI, or CIG ID string.
This ID string supersedes the ID string in the user-defined
configuration file unless the value of args.local_id is NULL. In the
case of NULL, the user-defined configuration file id_string remains
unchanged.
This argument is ignored in countries that do not permit changes
to the local_id.

args.xmit_mode

Specifies the fax transmit mode. Valid values are:

XMIT_MODE_AUTO

Auto transmit mode; standard, default.
0

XMIT_MODE_MANUAL

Manual transmit mode; same as AUTO, but has
timing differences when retransmitting FSK
signals.

1

BfvFaxPoll

March 2017 697

args.rcv_mode

Specifies the fax receive mode. Valid values are:

args.btg3

If set to 1, this value requests the function to interpret btg3
headers. If a BTG3 or INDIR_BTG3 infopkt appears in the transmit
infopkt stream, the resolution and width stored within the btg3
header will be used as the strip resolution and width.

args.force_eom

If set to 1, this value forces an EOM FSK message to be sent
during the next page break instead of an MPS FSK.

args.ecm_override

If set to 0, there is no effect; if > 0, ECM is enabled, overriding the
setting of ecm_enable in the user configuration file; if < 0, ECM is
disabled, overriding the settings of ecm_enable and t34_enable in
the user configuration file. See the ecm_enable parameter in
Volume 6, Appendix A, User-defined Configuration File.

Output Return value: None.

args.fax_res

A structure containing information about the completed fax
session. For a detailed description of the FAX_RES structure
parameters, see Volume 6, Result Structures, Appendix B. See the
max_pagelist parameter in Volume 6, Appendix A. The Bfv API
automatically allocates and stores PAGE_RES structures in a
linked list within args.fax_res. The application must free these
structures after use to release the memory.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

RCV_MODE_AUTO
Auto receive mode; standard, default.

0

RCV_MODE_MANUAL
Manual receive mode; same as AUTO, but no
initial CED is played and startup delays are
reduced.

1

BfvFaxPoll

March 2017 698

Details Not supported on TruFax®.

This is a high-level function to perform fax polling.

Performs Dial and Send, Dial and Receive, Answer and Send,
Answer and Receive, Dial and Send and Receive, or Answer and
Receive and Send fax, depending on the results of the
training_complete and turnaround interrupts.

The args.oa_flag sets the channel to the Dial or Answer mode, the
args.s_ips and args.r_ips arguments set the channel's capability to
send or receive facsimiles or to perform both functions, and the
results of the interrupts (training_complete/turnaround) trigger
the actions that the channel performs.

The channel's capability is determined by the args.s_ips and
args.r_ips arguments:

If args.oa_flag = ORIGINATE

If received interrupt = training_complete
Go to SEND.

If received interrupt = turnaround
Go to RECEIVE.

If args.oa_flag = ANSWER

If received interrupt = training_complete
Go to RECEIVE.

If received interrupt = turnaround
Go to SEND.

SEND: Send from infopkt stream args.s_ips.

If received interrupt = hangup
DONE.

If received interrupt = turnaround
Go to RECEIVE.

Channel Capability args.s_ips set to args.r_ips set to

Receive only Null Non-Null

Send only Non-Null Null

Send and receive Non-Null Non-Null

Error condition Null Null

BfvFaxPoll

March 2017 699

RECEIVE: Receive into infopkt stream args.r_ips.

If received interrupt = hangup
DONE.

If received interrupt = turnaround
Go to SEND.

The first infopkt in args.s_ips must be:

INFOPKT_DOCUMENT_PARAMETERS

This function sets parameters based on the infopkts appearing at the
start of args.s_ips that indicate a beginning-of-page.

Infopkts that indicate a beginning-of-page are:

INFOPKT_BEGINNING_OF_PAGE
INFOPKT_DOCUMENT_PARAMETERS
INFOPKT_T30_PARAMETERS
INFOPKT_ASCII_PAGE_PARAMETERS
INFOPKT_PAGE_PARAMETERS
INFOPKT_FAX_HDR
INFOPKT_EFF_PAGE_PARAMETERS

See Also BfvFaxReceive, BfvFaxSend

Example BTLINE *lp;
struct infopkt_stream *s_ips, *r_ips;
struct args_infopkt args_infopkt;
struct args_fax args_fax;

BT_ZERO(args_infopkt);
args_infopkt.fname = "sendfile";
args_infopkt.fmode = "r";
s_ips = BfvInfopktOpen(&args_infopkt);
args_infopkt.fname = "recfile";
args_infopkt.fmode = "w";
r_ips = BfvInfopktOpen(&args_infopkt);
/* If the remote fax machine permits, send a fax and, */
/* if the remote fax machine permits, receive a fax */

BT_ZERO(args_fax);
args_fax.oa_flag = ORIGINATE;
args_fax.s_ips = s_ips;
args_fax.r_ips = r_ips;
args_fax.local_id = "local_id";
BfvFaxPoll(lp, &args_fax);

BfvFaxRcvPageDCX

March 2017 700

BfvFaxRcvPageDCX

Purpose Receives a fax into an Intel DCX fax file that contains a set of Intel
bi-level PCX fax pages.

Syntax int
BfvFaxRcvPageDCX (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Input Fields FILE *fp;

Output Fields RES res;

Modified Fields fmt, resolution, width, expect_another,
resolution_negot, force_res, btg3, buf, size,
eff_page_type.

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.fp

FILE * pointer returned by fopen with mode "w+"/"wb+".

BfvFaxRcvPageDCX

March 2017 701

Output Return value:

 1 Another page is waiting to be transferred.
 0 No more pages are waiting to be transferred.
<1 An error condition occurred.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details To use this function, the application must have opened the file using
fopen with mode "w+"/"wb+".

An application uses this function to receive a fax into an Intel DCX
fax file that contains a set of Intel bi-level PCX fax pages. The
function can also transfer a page of G3 data from the driver buffer to
a PCX page within the specified DCX file.

Prior to beginning DCX reception, the application must call
BfvFaxSetReceiveFmt to set the format to FMT_PCX_BILEVEL.

After the last page is received and zero (0) is returned, call the
BfvFaxEndReception function.

Applications that create DCX files might find it useful to use the
constant DCX_ID that the header file defines.

Example FILE *fp = fopen("test.dcx","w+");
struct args_fax args;

do
{
 BT_ZERO(args);
 args.fp = fp;
}
while (BfvFaxRcvPageDCX(lp, &args) > 0);
BfvFaxEndReception(lp, &args);

Note: When using Windows, it may be necessary to substitute
"fopen" with "_dll_fopen" to avoid problems with differences in
C runtime libraries.

BfvFaxRcvPageTiff

March 2017 702

BfvFaxRcvPageTiff

Purpose Transfers a page of G3 data from the driver buffer to the specified
TIFF file, along with appropriate TIFF tags and, optionally, a set of
user-supplied TIFF tags.

Syntax int
BfvFaxRcvPageTiff (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Input Fields TFILE *r_tp;
struct ifd_field *opt_tags;
int num_opt_tags;
int compat_width;

Output Fields RES res;

Modified Fields fmt, buf, size, resolution, width, expect_another,
resolution_negot, force_res, eff_page_type.

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.r_tp

TFILE * pointer to a TIFF file.

args.opt_tags

Pointer to an array of structures of type struct ifd_field that
contain extra tags to be written in addition to those normally
created in a received fax document.

BfvFaxRcvPageTiff

March 2017 703

args.num_opt_tags

The number of tags specified in args.opt_tags. Can be 0.

args.compat_width

If nonzero, files produced for resolutions 300Hx300V and
400Hx400V will store width values readable by a previous Bfv
API version 4.0.

Output Return value:

 1 Another page is waiting to transfer.
 0 No more pages are waiting to transfer.
–1 An error condition occurred.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details After the last page is received and zero (0) is returned, call the
BfvFaxEndReception function.

The args.opt_tags argument permits the user to optionally specify a
set of IFD entries to be written to the TIFF-F file with the rest of the
data for the received page. The user must know about TIFF file
formats to make use of this feature.

The args.opt_tags argument contains a pointer to the first element of
an array of struct ifd_field structures. Only IFD entries with field
type FT_BYTE, FT_SHORT, or FT_LONG, with a count of 1, or with field
type FT_ASCII are permitted. For field type FT_ASCII, set the offset
to be the string pointer (cast to MILL_PTR_INT_TYPE).

BfvFaxRcvPageTiff

March 2017 704

All tags that are required for use with TIFF-F are automatically
added to the IFD and should not be specified in args.opt_tags. These
tags are:

TAG_NEWSUBFILETYPE TAG_IMAGEWIDTH

TAG_IMAGELENGTH TAG_BITSPERSAMPLE

TAG_COMPRESSION TAG_PHOTOMETRICINTERP

TAG_FILLORDER TAG_SAMPLESPERPIXEL

TAG_ROWSPERSTRIP TAG_XRESOLUTION

TAG_YRESOLUTION TAG_T4OPTIONS

TAG_T6OPTIONS TAG_RESOLUTIONUNIT

TAG_PAGENUMBER TAG_BADFAXLINES

TAG_CLEANFAXDATA

In addition, the underlying function BfvTiffWriteIFD does not
allow specification of TAG_STRIPOFFSETS or TAG_STRIPBYTECOUNTS.

The argument field args.compat_width can be used to produce files
that, for high resolutions, are compatible with those that Bfv API
version 4.0 produced and expected to read. These values were
incorrect, and this option should only be used if such compatibility is
required.

TIFF-F, as supported by Dialogic® Brooktrout® boards, only
supports MH, MR, and MMR. It does not support JPEG, JBIG, or
any other enhanced fax formats.

See Also BfvFaxEndReception

Example BTLINE *lp;
TFILE *tp;
struct args_fax args;

for (;;)
{
 BT_ZERO(args);
 args.r_tp = tp;
}
while (BfvFaxRcvPageTiff(lp, &args) > 0);
BfvFaxEndReception(lp, &args);

BfvFaxReceive

March 2017 705

BfvFaxReceive

Purpose Receives documents for storing as an infopkt stream.

Syntax void
BfvFaxReceive (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Input Fields struct infopkt_stream *r_ips;
char *local_id;
int rcv_mode;
unsigned fallback_rtp_reinvite;
int ecm_override;

Output Fields FAX_RES fax_res;
RES res;

Modified Fields remote_info, buf, size, expect_another, resolution,
width, resolution_negot, eff_page_type.

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.r_ips

Pointer to the infopkt stream where the received data is stored.

BfvFaxReceive

March 2017 706

args.local_id

Pointer to the ASCII string that contains the ID for transmission
as part of the CSI.
This ID string supersedes the ID string in the user-defined
configuration file unless the value of the local_id is NULL. In the
case of NULL, the ID string remains unchanged.
This argument is ignored in countries that do not permit changes
to the local ID.

args.rcv_mode

Specifies the fax receive mode. Valid values are:

args.fallback_rtp_reinvite

Specifies whether or not a SIP RTP reINVITE should be
transmitted for G.711 fallback mode if a SIP T.38 reINVITE is
rejected with either a 488 (Not Acceptable Here) or a 606 (Not
Acceptable). Valid values are:
BT_FALLBACK_RTP_REINVITE_DEFAULT

Default to the setting specified in the call control
configuration file.

BT_FALLBACK_RTP_REINVITE_DISABLE
Do not transmit a SIP RTP reINVITE if a SIP T.38 reINVITE
is rejected.

BT_FALLBACK_RTP_REINVITE_ENABLE
Transmit a SIP RTP reINVITE if a SIP T.38 reINVITE is
rejected.

When the application sets the value in this field to
BT_FALLBACK_RTP_REINVITE_DEFAULT, the functionality
will default to the setting specified in the call control configuration
file (callctrl.cfg) by the g711_fallback_rtp_reinvite parameter. If
the g711_fallback_rtp_reinvite parameter isn't specified in the
call control configuration file, then the default functionality is
BT_FALLBACK_RTP_REINVITE_DISABLE.

RCV_MODE_AUTO
Auto receive mode; standard, default.

0

RCV_MODE_MANUAL
Manual receive mode; same as AUTO, but no
initial CED is played and startup delays are
reduced.

1

BfvFaxReceive

March 2017 707

An application can override the value specified in the call control
configuration file by the g711_fallback_rtp_reinvite parameter by
setting this field to a value of either
BT_FALLBACK_RTP_REINVITE_DISABLE or
BT_FALLBACK_RTP_REINVITE_ENABLE.

Setting this field to a value of
BT_FALLBACK_RTP_REINVITE_DISABLE will prevent
transmission of a SIP RTP reINVITE if a SIP T.38 reINVITE is
rejected.

Setting this field to a value of
BT_FALLBACK_RTP_REINVITE_ENABLE will result in
transmission of a SIP RTP reINVITE if a SIP T.38 reINVITE is
rejected with either a 488 (Not Acceptable Here) or a 606 (Not
Acceptable) and the fax transport protocol
(fax_transport_protocol) parameter specified in the call control
configuration file is set to t38_first. The SDP settings in the SIP
RTP reINVITE will be the same RTP codec settings initially used to
establish the call.

Note: This field only works for calls using the SIP internet protocol.
The Bfv API ignores this field for calls using the H.323 internet
protocol or PSTN line types.

args.ecm_override

If set to 0, there is no effect; if > 0, ECM is enabled, overriding the
setting of ecm_enable in the user configuration file; if < 0, ECM is
disabled, overriding the settings of ecm_enable and t34_enable in
the user configuration file. See the ecm_enable parameter in
Volume 6, Appendix A, User-defined Configuration File.

Output args.fax_res

A structure containing information about the completed fax
session. For a detailed description of the FAX_RES structure
parameters, see Volume 6, Appendix B. See also the max_pagelist
parameter in Volume 6, Appendix A, Configuration Files, User-
defined Configuration File.
The Bfv API automatically allocates and stores PAGE_RES
structures in a linked list within args.fax_res. The application
must free these structures after use to release the memory.

BfvFaxReceive

March 2017 708

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details This is a high-level function that:

 Receives fax pages and writes them to a file.
 Records the filenames and page parameters in an infopkt stream.

This function provides less flexibility than the low-level functions
which implement it. For example, screening based on the remote ID
and NSF/NSS information is not possible.

See Also BfvFaxPoll, BfvFaxSend

Example BTLINE *lp;
struct infopkt_stream *r_ips;
struct args_infopkt args_infopkt;
struct args_fax args_fax;

BT_ZERO(args_infopkt);
args_infopkt.fname = “recfile”;
args_infopkt.fmode = “w”;
r_ips = BfvInfopktOpen (&args_infopkt);
BT_ZERO(args_fax);
args_fax.r_ips = r_ips;
args_fax.local_id = “local_id”;
BfvFaxReceive(lp, &args_fax);

BfvFaxReceiveData

March 2017 709

BfvFaxReceiveData

Purpose Receives raw fax data into a user-supplied buffer.

Syntax int
BfvFaxReceiveData (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Input Fields unsigned char *buf;
unsigned size;

Output Fields int resolution;
int width;
int expect_another;
int resolution_negot;
unsigned long eff_page_type;
RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.buf

Pointer to a user-allocated data buffer to hold the received data.
The data buffer must be at least 1024 bytes in size.

args.size

Size, in bytes, of the user-allocated data buffer.

BfvFaxReceiveData

March 2017 710

Output Return value:

 0 A full page was successfully transferred into the user
buffer.

>0 The number of valid bytes successfully transferred into
the user buffer. The number of bytes may be less than a
full page.

<0 An error condition occurred.

args.resolution

The resolution of the incoming fax data. The value stored is only
guaranteed to be valid on the first call to this function for a page.
See the BfvFaxBeginSendRaw function for resolution values.

args.width

The width of the incoming fax. The value stored is only
guaranteed to be valid on the first call to this function for a page.
See the BfvFaxBeginSendRaw function for width values.

args.expect_another

A flag that indicates whether another page of incoming data
exists. Values are:
0 No more pages exist.
1 Another page exists.
The value stored is only guaranteed to be valid when the return
value from this function is 0 (indicating successful completion of
a page).

args.resolution_negot

The negotiated incoming fax resolution. This value may differ
from that of resolution if the force_res option of
BfvFaxSetReceiveFmt is used.

BfvFaxReceiveData

March 2017 711

args.eff_page_type

Not supported on TruFax®.
If nonzero, the current page is an enhanced fax format page of the
specified type. Valid values are:

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BT_EFF_JPEG_ENABLE
JPEG. May also logically OR in the following.

0x1

BT_EFF_JPEG_FULLCOLOR
Full color.

0x2

BT_EFF_JPEG_DEFAULT_TABLES
Default Huffman Tables.

0x4

BT_EFF_JPEG_12BIT
12 bits/pel, Otherwise 8.

0x8

BT_EFF_JPEG_NOSUBSAMPLING
No subsampling.

0x10

BT_EFF_JPEG_CUSTOM_ILLUMINANT
Custom Illuminant.

0x20

BT_EFF_JPEG_CUSTOM_GAMUT
Custom Gamut.

0x40

BT_EFF_JBIG
JBIG. May also logically OR in the following.

0x0100

BT_EFF_JBIG_L0
L0 Mode.

0x0200

BfvFaxReceiveData

March 2017 712

Details This function should be called repeatedly until 0 is returned or an
error occurs.

Call the BfvFaxEndReception function after the last page is
received.

If the application selects FMT_PCX_BILEVEL, You should avoid use
of the BfvFaxReceiveData function to receive the fax because the
PCX header value containing the page length will be incorrect.

On successful return, the PAGE_RES structure containing
information about the received page is complete and can be
examined. See Volume 6, Appendix B, Bfv API Structures,
PAGE_RES Structure Parameters.

See Also BfvFaxEndReception

Example BTLINE *lp;
unsigned char buf[1024];
unsigned size;
struct args_fax args;

for (;;)
{
 BT_ZERO(args);
 args.buf = buf;
 args.size = sizeof(buf);
 size = BfvFaxReceiveData(lp,&args);
 if (size == 0)
 break;
 process_data(buf,size);
}

BfvFaxReceiveFile

March 2017 713

BfvFaxReceiveFile

Purpose Receives a raw fax page to a file.

Syntax void
BfvFaxReceiveFile (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Input Fields char *fname;
int use_open_file;
FILE *fp;
int btg3;

Output Fields int resolution;
int width;
int expect_another;
int resolution_negot;
unsigned long eff_page_type;
RES res;

Modified Fields buf, size.

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.fname

Pointer to the data file in which to store the incoming data.

args.use_open_file

When set to 1, uses an opened file pointer supplied in args.fp.

BfvFaxReceiveFile

March 2017 714

args.fp

If args.use_open_file is set to 1, supplies an opened FILE *
pointer.
If used in conjunction with PCX reception, the application must
open the file it uses in “w+”/”wb+” mode.

args.btg3

If set to 1, this value requests the function to create a btg3 header.
The resolution and width will be stored within the header.

Output Return value: None.

args.resolution

The resolution of the incoming fax data. See the
BfvFaxBeginSendRaw function for resolution values.

args.width

The width of the incoming fax. See the BfvFaxBeginSendRaw
function for width values.

args.expect_another

A flag that indicates whether another page of incoming data
exists. Values are:
0 No more pages exist.
1 Another page exists.

args.resolution_negot

The negotiated incoming fax resolution. This value may differ
from that of args.resolution if the force_res option of
BfvFaxSetReceiveFmt is used.

args.eff_page_type

Not supported on TruFax®.
If nonzero, the current page is an enhanced fax format page of the
specified type. Valid values are:

BT_EFF_JPEG_ENABLE
JPEG. May also logically OR in the following.

0x1

BT_EFF_JPEG_FULLCOLOR
Full color.

0x2

BT_EFF_JPEG_DEFAULT_TABLES
Default Huffman Tables.

0x4

BfvFaxReceiveFile

March 2017 715

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Call BfvFaxEndReception after the last page is received.

On successful return, the PAGE_RES structure containing
information about the received page is complete and can be
examined. See Volume 6, Appendix B, Bfv API Structures,
PAGE_RES Structure Parameters.

See Also BfvFaxEndReception, LINE_SET_FILE_OPEN

Example BTLINE *lp;
struct args_fax args;

BT_ZERO(args);
args.fname = "fax1";
BfvFaxReceiveFile(lp, &args);

BT_EFF_JPEG_12BIT
12 bits/pel, Otherwise 8.

0x8

BT_EFF_JPEG_NOSUBSAMPLING
No subsampling.

0x10

BT_EFF_JPEG_CUSTOM_ILLUMINANT
Custom Illuminant.

0x20

BT_EFF_JPEG_CUSTOM_GAMUT
Custom Gamut.

0x40

BT_EFF_JBIG
JBIG. May also logically OR in the following.

0x0100

BT_EFF_JBIG_L0
L0 Mode.

0x0200

BfvFaxReceivePage

March 2017 716

BfvFaxReceivePage

Purpose Receives a fax page to an infopkt stream.

Syntax int
BfvFaxReceivePage (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Input Fields struct infopkt_stream *r_ips;

Output Fields RES res;

Modified Fields buf, size, expect_another, resolution, width,
resolution_negot, eff_page_type.

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.r_ips

Pointer to the infopkt stream where the received data is stored.

Output Return value:

1 Another page is waiting to transfer.
0 No more pages are waiting to transfer.

<0 An error condition occurred.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvFaxReceivePage

March 2017 717

Details After the last page is received and zero is returned, call the
BfvFaxEndReception function.

This function is incorporated into the higher-level function
BfvFaxReceivePages.

On successful return, the PAGE_RES structure containing
information about the received page is complete and can be
examined. See Volume 6, Appendix B, Bfv API Structures,
PAGE_RES Structure Parameters.

See Also BfvFaxReceivePages, BfvFaxEndReception

Example BTLINE *lp;
struct infopkt_stream *ips;
struct args_fax args;

for (;;)
{
 BT_ZERO(args);
 args.r_ips = ips;
}
while (BfvFaxReceivePage(lp, &args) > 0);
BfvFaxEndReception(lp, &args);

BfvFaxReceivePages

March 2017 718

BfvFaxReceivePages

Purpose Receives multiple pages of fax data to an infopkt stream.

Syntax void
BfvFaxReceivePages (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Input Fields struct infopkt_stream *r_ips;

Output Fields RES res;

Modified Fields buf, size, expect_another, resolution, width,
resolution_negot, eff_page_type.

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.r_ips

Pointer to the infopkt stream where the received data is stored.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvFaxReceivePages

March 2017 719

Details On return from this function, the last page was received from the
remote fax machine and:

 Either the channel went on-hook, and the line state was changed
to IDLE.

or

 The channel remained off-hook, and the line state was changed
to TURNAROUND if polling was enabled using BfvFaxBegin or
BfvFaxBeginSendRaw. The receiver then becomes a
transmitter, and BfvFaxGetRemoteInfo and
BfvFaxWaitForTraining must be called again.

This function is incorporated into the higher-level functions
BfvFaxPoll and BfvFaxReceive.

See Also BfvFaxReceivePage

Example BTLINE *lp;
struct infopkt_stream *ips;
struct args_fax args;

BT_ZERO(args);
args.r_ips = ips;
BfvFaxReceivePages(lp, &args);

BfvFaxSend

March 2017 720

BfvFaxSend

Purpose Sends documents as an infopkt stream.

Syntax void
BfvFaxSend (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Input Fields struct infopkt_stream *s_ips;
char *local_id;
int xmit_mode;
int btg3;
int force_eom;
int ecm_override;

Output Fields FAX_RES fax_res;
RES res;

Modified Fields resolution, width, remote_info, overlay_number,
action, placement, insert_mode, label, spacing, units,
buf, size, fmt, s_tp, combine, fp, open_file_size,
fname, btg3, eff_page_type.

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.s_ips

Pointer to the infopkt stream ready for transmission.

BfvFaxSend

March 2017 721

args.local_id

Pointer to the ASCII string of digits and/or alphanumerics used
as the TSI ID string. This ID string supersedes the ID string in
the user-defined configuration file unless the value of the local_id
is NULL. In the case of NULL, the ID string remains unchanged.
This argument is ignored in countries that do not permit changes
to the local ID.

args.xmit_mode

Specifies the fax transmit mode. Valid values are:

args.btg3

If set to 1, this value requests the function to interpret btg3
headers. If a BTG3 or INDIR_BTG3 infopkt appears in the transmit
infopkt stream, the resolution and width stored within the btg3
header will be used as the strip resolution and width.
If set to –1, a header appearing in the file will be skipped.

args.force_eom

If set to 1, this value forces an EOM FSK message to be sent
during the next page break instead of an MPS FSK.

args.ecm_override

If set to 0, there is no effect; if > 0, ECM is enabled, overriding the
setting of ecm_enable in the user configuration file; if < 0, ECM is
disabled, overriding the settings of ecm_enable and t34_enable in
the user configuration file. See the ecm_enable parameter in
Volume 6, Appendix A, User-defined Configuration File.

XMIT_MODE_AUTO

Auto transmit mode; standard, default.
0

XMIT_MODE_MANUAL

Manual transmit mode; same as AUTO, but has
timing differences when retransmitting FSK
signals.

1

BfvFaxSend

March 2017 722

Output Return value: None.

args.fax_res

A structure containing information about the completed fax
session. For a detailed description of the FAX_RES structure
parameters, see Volume 6, Appendix B, FAX_RES Structure
Parameters. See also the max_pagelist parameter in Volume 6,
Appendix A, User-defined Configuration File.
The Bfv API automatically allocates and stores PAGE_RES
structures in a linked list within args.fax_res. The application
must free these structures after use to release the memory.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details This is a high-level function that sends documents based on an
infopkt stream.

The function provides less flexibility than the low-level functions
that implement it. Screening transmissions based on the remote
fax ID, poll for a fax document, or NSF/NSS (Non Standard
Facility/Non Standard Set-up) information is not possible with this
function.

Use the function after BfvLineOriginateCall to perform all steps
necessary to transmit a fax and go off-hook.

The function sets parameters that indicate a beginning-of-page
based on the infopkts appearing at the start of args.s_ips. Infopkts
that indicate a beginning-of-page are:

INFOPKT_BEGINNING_OF_PAGE

INFOPKT_DOCUMENT_PARAMETERS

INFOPKT_T30_PARAMETERS

INFOPKT_ASCII_PAGE_PARAMETERS

INFOPKT_PAGE_PARAMETERS

INFOPKT_FAX_HDR

INFOPKT_EFF_PAGE_PARAMETERS

At function start, checks to ensure that the line state is set to
CONNECTED. At function end, loops until fax transmission completes
successfully and the line state is set to IDLE.

BfvFaxSend

March 2017 723

See Also BfvFaxPoll, BfvFaxReceive

Example BTLINE *lp;
struct infopkt_stream *s_ips;
struct args_infopkt args_infopkt;
struct args_fax args_fax;

BT_ZERO(args_infopkt);
args_infopkt.fname = “sendfile”;
args_infopkt.fmode = “r”;
s_ips = BfvInfopktOpen (&args_infopkt);
BT_ZERO(args_fax);
args_fax.s_ips = s_ips;
args_fax.local_id = “local_id”;
BfvFaxSend(lp, &args_fax);

BfvFaxSendData

March 2017 724

BfvFaxSendData

Purpose Sends raw fax data from a user-supplied buffer.

Syntax void
BfvFaxSendData (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Input Fields unsigned char *buf;
unsigned size;
unsigned fmt;

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.buf

Pointer to a user-allocated data buffer.

args.size

Size, in bytes, of the user-allocated data buffer.

args.fmt

Specifies the format of the data to be transmitted. Typical values
are DATA_G3 and DATA_ASCII. See the BfvFaxStripParams and
BfvFaxSetReceiveFmt functions for more information on data
formats.

BfvFaxSendData

March 2017 725

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Call the BfvFaxNextPageRaw or BfvFaxEndOfDocument
function after this function. The BfvFaxStripParams function can
be called before or after this function.

See Also BfvFaxNextPageRaw, BfvFaxSendFile

Example BTLINE *lp;
unsigned char buf[1024];
unsigned size;
struct args_fax args;

for (;;)
{
 size = read_data_from_file(buf);
 if (size == 0)
 break;
 BT_ZERO(args);
 args.buf = buf;
 args.size = size;
 BfvFaxSendData(lp,&args);
}

BfvFaxSendFile

March 2017 726

BfvFaxSendFile

Purpose Sends a raw fax page from a file.

Syntax void
BfvFaxSendFile (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Input Fields char *fname;
unsigned fmt;
int use_open_file;
FILE *fp;
long open_file_size;
int btg3;

Output Fields RES res;

Modified Fields buf, size.

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.fname

Name of the file where the data to transmit is stored.

args.fmt

Specifies the format of the data to be transmitted. Typical values
are DATA_G3 and DATA_ASCII. See the BfvFaxStripParams and
BfvFaxSetReceiveFmt functions for more information on data
formats.

BfvFaxSendFile

March 2017 727

args.use_open_file

When set to 1, uses an opened file pointer supplied in args.fp and
a size supplied in args.open_file_size.

args.fp

If args.use_open_file is set to 1, supplies an opened FILE *
pointer.

args.open_file_size

If args.use_open_file is set to 1, then if this value is nonzero it
specifies a maximum number of bytes to send from the opened
file.

args.btg3

If set to 1, this value requests the function to interpret btg3
headers. If a header appears in the file, the resolution and width
stored within will be used as the strip resolution and width.
If set to –1, a header appearing in the file will be skipped.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Call the BfvFaxNextPageRaw or BfvFaxEndOfDocument
function after this function. The BfvFaxStripParams function can
be called before this function.

If you call BfvFaxSendFile several times in a row without
specifying a page break (BfvFaxNextPageRaw) in between, the
function sends one large page and not multiple pages.

Upon successful return, fax data is sent to the board but not yet sent
over the line. Therefore, the PAGE_RES structure is not complete. Use
the LINE_SET_PAGE_COMPLETE_FUNC macro to determine
completeness.

See Also BfvFaxNextPageRaw, BfvFaxSendData,
LINE_SET_PAGE_COMPLETE_FUNC

BfvFaxSendFile

March 2017 728

Example BTLINE *lp;
struct args_fax args;

BT_ZERO(args);
args.fname = "page_one";
args.fmt = DATA_G3;
BfvFaxSendFile(lp, &args);
/* Begin second page, normal resolution, standard (A4)
 width */
args.resolution = RES_200H_100V;
args.width = WIDTH_A4;
BfvFaxNextPageRaw(lp, &args);
BT_ZERO(args);
args.fname = "page_two";
args.fmt = DATA_ASCII;
BfvFaxSendFile(lp, &args);

BfvFaxSendPage

March 2017 729

BfvFaxSendPage

Purpose Sends one fax page from the infopkt stream and looks for an
end-of-file or new page type infopkt before returning.

Syntax int
BfvFaxSendPage (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Input Fields struct infopkt_stream *s_ips;
int btg3;
int force_eom;

Output Fields RES res;

Modified Fields placement, insert_mode, label, spacing, units, buf,
size, fmt, s_tp, combine, fp, resolution, width,
open_file_size, fname, eff_page_type.

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.s_ips

Pointer to the infopkt stream designated for transmission.

args.btg3

If set to 1, this value requests the function to interpret btg3
headers. If a BTG3 or INDIR_BTG3 infopkt appears in the transmit
infopkt stream, the resolution and width stored within the btg3
header will be used as the strip resolution and width.

BfvFaxSendPage

March 2017 730

args.force_eom

If set to 1, this value forces an EOM FSK message to be sent
during the next page break instead of an MPS FSK.

Output Return value:

0 An entire page was successfully transmitted to the driver
buffer.

<0 Failed to transmit an entire page.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details A page can be composed of several strips that are combined by the
channel as they are transmitted. The user must keep track of the
results.

The function processes strip infopkts if they are first in the infopkt
stream.

The function checks to ensure that the line state is set to FAX_MODE
both at function start and in the loop that loads data into the driver
buffer.

This function is incorporated into the higher-level functions
BfvFaxPoll and BfvFaxSend.

Upon successful return, fax data is sent to the board but not yet sent
over the line. Therefore, the PAGE_RES structure is not complete. Use
the LINE_SET_PAGE_COMPLETE_FUNC macro to determine
completeness.

See Also BfvFaxNextPage, LINE_SET_PAGE_COMPLETE_FUNC

BfvFaxSendPage

March 2017 731

Example BTLINE *lp;
struct infopkt_stream *ips;
struct args_fax args;

for (;;)
{
 BT_ZERO(args);
 args.s_ips = ips;
 if (BfvFaxNextPage(lp, &args) <= 0)
 break;
 BT_ZERO(args);
 args.s_ips = ips;
 BfvFaxSendPage(lp, &args);
}
BfvFaxEndOfDocument(lp, &args);

BfvFaxSendPageDCX

March 2017 732

BfvFaxSendPageDCX

Purpose Transmits one fax page from an Intel DCX fax file that contains a set
of Intel bi-level PCX fax pages.

Syntax int
BfvFaxSendPageDCX (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Input Fields FILE *fp;

Output Fields RES res;

Modified Fields fmt, open_file_size, btg3, buf, size.

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.fp

FILE * pointer returned by fopen.

Output Return value:

 0 An entire page was successfully transmitted to the driver
buffer.

<0 Transmission failed.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvFaxSendPageDCX

March 2017 733

Details Call the BfvFaxNextPageDCX or BfvFaxEndOfDocument
function after this function.

See Also BfvFaxNextPageDCX

Example BTLINE *lp;
FILE *fp;
struct args_fax args;

for (;;)
{
 BT_ZERO(args);
 args.fp = fp;
 args.combine = 0;
 if (BfvFaxNextPageDCX(lp, &args) <= 0)
 break;
 BT_ZERO(args);
 args.fp = fp;
 BfvFaxSendPageDCX(lp, &args);
}
BfvFaxEndOfDocument(lp, &args);

BfvFaxSendPageTiff

March 2017 734

BfvFaxSendPageTiff

Purpose Transmits one fax page from the TIFF-F file.

Syntax int
BfvFaxSendPageTiff (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Input Fields TFILE *s_tp;

Output Fields RES res;

Modified Fields buf, size, fmt.

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.s_tp

Pointer to a TIFF file.

Output Return value:

 0 An entire page was successfully transmitted to the driver
buffer.

<0 Transmission failed.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvFaxSendPageTiff

March 2017 735

Details Call the BfvFaxNextPageTiff or BfvFaxEndOfDocument
function after this function.

TIFF-F, as supported by Dialogic® Brooktrout® boards, only
supports MH, MR, and MMR. It does not support JPEG, JBIG, or
any other enhanced fax formats.

See Also BfvFaxNextPageTiff

Example BTLINE *lp;
TFILE *tp;
struct args_fax args;

for (;;)
{
 BT_ZERO(args);
 args.tp = tp;
 args.combine = 0;
 if (BfvFaxNextPageTiff(lp, &args) <= 0)
 break;
 BT_ZERO(args);
 args.tp = tp;
 BfvFaxSendPageTiff(lp, &args);
}
BfvFaxEndOfDocument(lp, &args);

BfvFaxSetLocalId

March 2017 736

BfvFaxSetLocalId

Purpose Sets the local ID to the specified string using only the first 20
characters of the string.

Syntax int
BfvFaxSetLocalId (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Input Fields char *local_id;

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.local_id

A null terminated ASCII string that contains the local ID (usually
the phone number) used in the TSI, CSI, or CIG commands. The
maximum length of the string is 20 characters.

Output Return value:

0 The local ID was successfully set.
<0 Failed to set the local ID.
Setting the local ID is not permitted in some countries.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvFaxSetLocalId

March 2017 737

Details Use this command before initiating fax transmission or reception
protocols (for example, using the BfvFaxBeginSend function).

The loaded value remains in effect until the channel is reset
(BfvLineReset) or this function is re-executed.

This function is ignored in countries that do not permit changes to
the local ID.

This function is incorporated into the higher-level functions
BfvFaxSend, BfvFaxReceive and BfvFaxPoll.

See Also BfvFaxSetNSF, BfvFaxSetSubPwdSep, id_string parameter in
Volume 6, Appendix A, Configuration Files, User-defined
Configuration File.

Example BTLINE *lp;
struct args_fax args;

BT_ZERO(args);
args.local_id = "My_Id_String";
if (BfvFaxSetLocalId(lp, &args) < 0)
{
 printf("Unable to Change Local Id ");
 printf("Due to Country Restrictions.\n");
}

BfvFaxSetNSF

March 2017 738

BfvFaxSetNSF

Purpose Sets up an NSF/NSC or NSS FSK message for transmission to the
remote host.

Syntax void
BfvFaxSetNSF (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Input Fields int nsf_or_nss;
unsigned char *buf;
unsigned size;

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.nsf_or_nss

Determines whether the NSF/NSC or NSS is set. Valid values
are:

SET_NSF_NSC1

SET_NSS2

BfvFaxSetNSF

March 2017 739

args.buf

Pointer to a user-supplied buffer that contains the message to set
up for NSF/NSC or NSS transmission. For example:

args.size

The number of bytes contained in args.buf.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details The meanings of NSF, NSS, and NSC messages are often defined by
a particular fax machine manufacturer and are meaningful only to
other such machines.

The message passed to this function should only include the contents
of the message and omit any preliminary bytes or trailing CRC
bytes.

Note: The firmware treats the BfvFaxSetNSF message as an ASCII
null-terminated string. Therefore, the BfvFaxSetNSF
function does not support message strings that contain an
embedded byte value of 0 (NULL byte).

If enabled, the NSF is sent along with the DIS from receiver to
transmitter; the NSS is sent along with the DCS from transmitter to
receiver; the NSC is sent along with the DTC from receiver to
transmitter.

You should verify that all applications that call this function use the
T.30 holdup feature. Call this function to set the NSF/NSC before
beginning fax transmission or reception and to set the NSS after
entering the T30H_SECTION_XMIT_DCS holdup (see the
BfvFaxT30Holdup function).

See Also BfvFaxSetLocalId, BfvFaxSetSubPwdSep

Octal representation \001\002\003\004

Hex representation \x01\x02\x03\x04

BfvFaxSetNSF

March 2017 740

Example struct args_fax args;

BT_ZERO(args);
args.nsf_or_nss = SET_NSF_NSC;
args.buf = "\001\002\003\004";
args.size = 4;
BfvFaxSetNSF(lp, &args);
BfvFaxBeginReceive(lp, &args);

BfvFaxSetReceiveFmt

March 2017 741

BfvFaxSetReceiveFmt

Purpose Sets the format used to pass received fax data from the channel to
the computer.

Syntax void
BfvFaxSetReceiveFmt (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Input Fields unsigned fmt;
int force_res;
int resolution;

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.fmt

FMT_MMR_UNALIGN_MSB, FMT_MMR_UNALIGN_LSB,
FMT_MMR_ALIGN_MSB, and FMT_MMR_ALIGN_LSB are not
supported on TruFax®.
Value indicating the format to use. Valid values are:

FMT_MH_UNALIGN_MSB

MH data, EOLs not byte-aligned, MSB order.
0x0

FMT_MH_UNALIGN_LSB

MH data, EOLs not byte-aligned, LSB order.
0x1

FMT_MH_ALIGN_MSB

MH data, EOLs byte-aligned, MSB order.
0x2

BfvFaxSetReceiveFmt

March 2017 742

args.force_res

If set to 1, enables the args.resolution field.

args.resolution

If args.force_res is set to 1, this value specifies the resolution of
the received data to be supplied to the host.
See the BfvFaxBeginSendRaw function for resolution values.

FMT_MH_ALIGN_LSB

MH data, EOLs byte-aligned, LSB order.
0x3

FMT_MR_UNALIGN_MSB

MR data, EOLs not byte-aligned, MSB order.
0x4

FMT_MR_UNALIGN_LSB

MR data, EOLs not byte-aligned, LSB order.
0x5

FMT_MR_ALIGN_MSB

MR data, EOLs byte-aligned, MSB order.
0x6

FMT_MR_ALIGN_LSB

MR data, EOLs byte-aligned, LSB order.
0x7

FMT_PCX_BILEVEL

Intel Bi-level PCX data.
0x9

FMT_MMR_UNALIGN_MSB

MMR data, EOLs not byte-aligned, MSB order.
0x10

FMT_MMR_UNALIGN_LSB

MMR data, EOLs not byte-aligned, LSB order.
0x11

FMT_MMR_ALIGN_MSB

MMR data, EOLs byte-aligned, MSB order.
0x12

FMT_MMR_ALIGN_LSB

MMR data, EOLs byte-aligned, LSB order.
0x13

BfvFaxSetReceiveFmt

March 2017 743

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Applications can call this function before calling:

BfvFaxBeginReceive
BfvFaxReceive
BfvFaxBegin
BfvFaxBeginRaw
BfvFaxBeginTiff

To transmit data previously received in a nonstandard format, see
the data_fmt field of the struct g3strippkt type in Volume 6,
Appendix E, Infopkt Parameter Values, ASCII Strip Infopkt.

The received format remains in effect until the application calls this
function again, or it resets the channel. If infopkt streams are used,
the receive file contains a G3 strip parameter packet with the
appropriate data format information in it. If noninfopkt files are
used, applications must keep track of the data format.

If the application selects FMT_PCX_BILEVEL, You should avoid use of
the BfvFaxReceiveData function to receive the fax because the
PCX header value containing the page length will be incorrect.

The default format is FMT_MH_UNALIGN_MSB.

See Also BfvFaxSetLocalId, BfvFaxSetSubPwdSep.

Example BTLINE *lp;
struct args_fax args;

BT_ZERO(args);
args.fmt = FMT_MH_ALIGN_MSB;
BfvFaxSetReceiveFmt(lp, &args);
BfvFaxBeginReceive(lp, &args);

BfvFaxSetSubPwdSep

March 2017 744

BfvFaxSetSubPwdSep

Purpose Sets up a SUB, PWD, or SEP (FSK) message to send to the remote
host.

Syntax void
BfvFaxSetSubPwdSep (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Input Fields unsigned selector;
unsigned char *buf;

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.buf

Not supported on TruFax®.
Pointer to a user-supplied buffer that contains the message. The
message must be 0-terminated.

BfvFaxSetSubPwdSep

March 2017 745

args.selector

The FSK value to enable:

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details The message passed to this function should only include the contents
of the message and omit any preliminary bytes or trailing CRC
bytes.

If enabled, and if the channel is the transmitter, the channel sends
the SUB or PWD message with the DCS to the receiver. If the
channel becomes the receiver, it sends the PWD or SEP with the
DTC to the transmitter. The channel sends the message only if the
answering side sends a DIS that indicates it is capable of receiving
the message (see the subpwdsep parameter in Volume 6,
Appendix A, User-defined Configuration File).

The length of the user-supplied buffer, excluding the 0-termination,
must be < 20. If the length is < 20, the function pads the message on
the left with spaces.

You should verify that all applications calling this function use the
T.30 Holdup feature. Call this function to set the SUB message after
entering the T30H_SECTION_XMIT_DCS holdup (see the
BfvFaxT30Holdup function).

See Also BfvFaxSetLocalId, BfvFaxSetNSF, subpwdsep parameter in
Volume 6, Appendix A, User-defined Configuration File.

FSK_SUB_1

FSK_PWD_XMIT_1

FSK_PWD_POLL

FSK_SEP

BfvFaxSetSubPwdSep

March 2017 746

Example struct args_fax args;

BT_ZERO(args);
args.selector = FSK_SUB_1;
args.buf = "123456";
BfvFaxSetSubPwdSep(lp, &args);
BfvFaxBeginSend(lp, &args);

BfvFaxStripParams

March 2017 747

BfvFaxStripParams

Purpose Sets strip parameters and separates different data strips for raw
data files.

Syntax void
BfvFaxStripParams (lp, args)

BTLINE *lp;
struct args_fax_strip_params *args;

The structure contains the following fields.

Input Fields unsigned fmt;
int resolution;
unsigned width;
unsigned left_margin;
unsigned right_margin;
unsigned line_spacing;
unsigned eof_char;
unsigned font_no;

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.fmt

Specifies the format of the data (ASCII or G3) and, when G3 data
is specified, identifies the type of G3.
The values most commonly used are:

DATA_G3(= FMT_MH_UNALIGN_MSB)

DATA_ASCII(= FMT_ASCII)

BfvFaxStripParams

March 2017 748

Other valid values are:

See also the BfvFaxSetReceiveFmt function.

args.resolution

Specifies the resolution of the strip, which can differ from the
resolution of the page (as specified in BfvFaxBeginSendRaw,
BfvFaxNextPageRaw, or BfvFaxBeginRaw) containing the
strip.
See the BfvFaxBeginSendRaw function for resolution values.
ASCII strips are always in normal resolution.

args.width

Specifies the width of the strip, which can differ from the width of
the page (as specified in BfvFaxBeginSendRaw,
BfvFaxNextPageRaw, or BfvFaxBeginRaw) containing the
strip.
See the BfvFaxBeginSendRaw function for width values.

args.left_margin

Specifies the left margin in units of tenths of an inch
(ASCII only – Range of 0-12 units).

FMT_MH_UNALIGN_MSB 0x0

FMT_MH_UNALIGN_LSB 0x1

FMT_MH_ALIGN_MSB 0x2

FMT_MH_ALIGN_LSB 0x3

FMT_MR_UNALIGN_MSB 0x4

FMT_MR_UNALIGN_LSB 0x5

FMT_MR_ALIGN_MSB 0x6

FMT_MR_ALIGN_LSB 0x7

FMT_ASCII 0x8

FMT_PCX_BILEVEL 0x9

FMT_MMR_UNALIGN_MSB 0x10

FMT_MMR_UNALIGN_LSB 0x11

FMT_MMR_ALIGN_MSB 0x12

FMT_MMR_ALIGN_LSB 0x13

BfvFaxStripParams

March 2017 749

args.right_margin

Specifies the right margin in units of tenths of an inch
(ASCII only – Range of 0-12 units).

args.line_spacing

Specifies the spacing between text lines in G3 lines (ASCII only).

args.eof_char

Specifies the ASCII end-of-file character (ASCII only).

args.font_no

Specifies the font to use (ASCII only). For more information, see
the font_file parameter in Volume 6, Appendix A, User-defined
Configuration File or BfvFaxDownloadFont. The range is 0-6.
If the specified font has not been downloaded, a default font is
used (see BfvFaxDownloadFont or the font_file parameter in
Volume 6, Appendix A).

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details FMT_MMR_UNALIGN_MSB, FMT_MMR_UNALIGN_LSB,
FMT_MMR_ALIGN_MSB, and FMT_MMR_ALIGN_LSB are not supported
on TruFax®.

This function is normally called before BfvFaxSendFile or
BfvFaxSendData. The args.fmt value in the subsequent calls to
BfvSendFile or BfvSendData must match the value supplied to
this function.

Use either the asciistrippkt or g3strippkt infopkt type to
send strip parameters when using infopkt-formatted data files.

See Volume 6, Appendix E, Infopkt Parameter Values for more
information on strip parameters and how they are used.

See Also BfvFaxSetReceiveFmt

BfvFaxStripParams

March 2017 750

Example struct args_fax_strip_params args;

BT_ZERO(args);
args.fmt = DATA_G3;
args.resolution = RES_200H_100V;
args.width = WIDTH_A4;
BfvFaxStripParams(lp, &args);

or

BT_ZERO(args);
args.fmt = DATA_ASCII;
args.resolution = RES_200H_100V;
args.width = WIDTH_A4;
args.left_margin = 5;
args.right_margin = 0;
args.line_spacing = 2;
args.eof_char = 0x1a;
args.font_no = 0;
BfvFaxStripParams(lp, &args);

BfvFaxT30Holdup

March 2017 751

BfvFaxT30Holdup

Purpose Enables the T.30 holdup feature that causes the channel to wait
during T.30 negotiations until told to continue, and calls the
specified user-supplied function when a T.30 holdup does occur.

Syntax void
BfvFaxT30Holdup (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Input Fields int holdup_mode;
int (*func) (BTLINE *lp, char *arg, int section);
char *arg;

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.holdup_mode

Specifies how T.30 holdup will operate. Logically OR together the
following values:

T30_HOLDUP_NONE

Disable T.30 holdup.
0

T30_HOLDUP_DCS

Holds up on transmit before DCS transmission or
on receive after DCS reception.

1

T30_HOLDUP_RCV_MCF

Holds up on receive before page confirmation.
2

BfvFaxT30Holdup

March 2017 752

args.func

A pointer to a user-supplied integer function that is called when
the channel enters a T.30 holdup state. Within this function, the
application calls other functions that set T.30 parameters.
Args.func will be called as
(*args.func)(lp,args.arg,section).
The lp variable contains the pointer to the line structure; args.arg
contains the supplied user-defined argument; section contains a
value that indicates where in the T.30 protocol the holdup
occurred. Valid values for section are:
T30H_SECTION_XMIT_DCS

T30H_SECTION_RCV_DCS

T30H_SECTION_RCV_MCF

Returns an integer:
0 Continues with fax procedure.
1 Aborts fax procedure.

args.arg

Argument to args.func. Can be NULL.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Applications can use this function in conjunction with any fax
sending and/or receiving functions except the highest level infopkt
functions BfvFaxSend, BfvFaxReceive, and BfvFaxPoll. When
the channel has entered a T.30 holdup state and the user-supplied
function is called, the Bfv API sets the line state to
LINE_STATE_HOLDUP.

Using this feature enables an application and associated channel to
delay making decisions about T.30 parameters until after they have
received as much information as possible from the remote side.

A basic understanding of T.30 negotiations is helpful in
understanding how to use this function. The information that follows
applies to T30_HOLDUP_DCS holdup mode only.

BfvFaxT30Holdup

March 2017 753

The following scenario is a typical T.30 negotiation in which polling
is not involved. When an answering fax machine (receiver) answers,
it transmits a DIS signal, a CSI signal (optional), and one or more
NSF (optional) signals. The calling fax machine (transmitter)
responds with a DCS signal, a TSI signal (optional), and one or more
NSS (optional) signals. The receiver then transmits a CFR signal.

In this scenario, the transmitter will enter a T.30 holdup state after
receiving the DIS signal from the receiver, and the user-supplied
function will be called with section set to T30H_SECTION_XMIT_DCS.
The receiver will enter a T.30 holdup state after receiving the DCS
signal from the transmitter, and the user-supplied function will be
called with section set to T30H_SECTION_RCV_DCS.

If polling was involved at the start, the signaling sequence would be
DIS (CSI NSF), DTC (CIG NSC), DCS (TSI NSS). The calling
machine (receiver) would enter a T.30 holdup state after receiving
the DIS signal from the answering machine (transmitter), and the
user-supplied function would be called with section set to
T30H_SECTION_XMIT_DCS.

The answering machine (transmitter) would enter a T.30 holdup
state after receiving the DTC signal from the calling machine
(receiver), and the user-supplied function would be called with
section set to T30H_SECTION_XMIT_DCS. The calling machine
(receiver) would enter a T.30 holdup state after receiving the DCS
signal from the answering machine (transmitter), and the user-
supplied function would be called with section set to
T30H_SECTION_RCV_DCS.

When an application begins fax transmission, for example using
BfvFaxBeginSend, the Bfv API normally sends the T.30
parameters to the channel at that time. When using the T.30 holdup
feature, however, the Bfv API does not send the T.30 parameters at
that time. When the Bfv API calls the user-supplied function, the
application is expected to examine the received DIS, CSI, and NSF
information and decide what to do. Accordingly, the application can
decide to transmit (and what to transmit), to receive (if polling is
involved), or to abort the call.

BfvFaxT30Holdup

March 2017 754

After deciding, the application will call the same functions it would
call when starting a fax without T.30 holdup, including the original
function used to start the fax procedure (in this case,
BfvFaxBeginSend). The functions that the application can call at
this time include BfvFaxBeginSend, BfvFaxSetLocalId,
BfvFaxBegin, BfvFaxBeginSendRaw, BfvFaxT30Params,
BfvFaxSetNSF, BfvFaxBeginRaw, BfvFaxBeginSendTiff, and
BfvFaxBeginTiff. Whichever function the application calls will
then send the T.30 parameters.

If the fax procedure began with one of the functions that permit
polling (BfvFaxBegin, BfvFaxBeginRaw, or BfvFaxBeginTiff),
the values passed when the function is called the second time
determine whether the channel will initially transmit or receive.

The receiver’s options when the Bfv API calls the user-supplied
function are limited to examining the DCS, TSI, and NSS
information, deciding whether or not to abort the call, and returning
0 or 1 as appropriate.

Under certain conditions, a T.30 holdup can also occur after a page
has finished transmission. If a T.30 parameter (for example,
resolution or width) changes between pages, the transmitter and
receiver will each enter a holdup state. When this occurs, the
transmitter should not call any of the starting fax procedure
functions listed above. If the transmitter and receiver change
directions (polling), they will each enter a holdup state in a way
similar to the polling scenario described earlier. At that time, the
new transmitter (formerly the receiver) must perform the same
actions a transmitter would normally perform when it enters the
holdup state.

The application can retrieve received DIS, DCS, and DTC
information via the LINE_DCS and LINE_DIS_DTC macros and
received CSI, TSI, CIG, NSF, and NSS information from the
INFO_RES structure (filled by the last call to
BfvFaxGetRemoteInfo).

The information that follows applies to T30_HOLDUP_RCV_MCF
mode only.

After a fax page is transmitted, the transmitter sends one of several
FSK signals (EOP, MPS, EOM, or their procedure interrupt or ECM
equivalents) to the receiver. The receiver responds with a signal
which is typically MCF, though it could also be RTN, RTP, PIN, or
PIP.

BfvFaxT30Holdup

March 2017 755

If the transmitter sent MPS after it receives MCF, it normally begins
transmitting data for a new page immediately.

In this scenario, the receiver will enter a T.30 holdup state after
receiving the EOP, MPS, EOM, or equivalent, and the Bfv API will
call the user-supplied function with section set to
T30H_SECTION_RCV_MCF. The Bfv API delays calling the user-
supplied function until the receive function in progress has returned
all the data (BfvFaxReceiveData) or until it has called fwrite to
write all the data (all other fax receive functions).

When the Bfv API calls the user-supplied function, the receiver’s
options are limited to deciding whether or not to abort the call,
returning 0 or 1 as appropriate.

The Bfv API expects applications to use the T30_HOLDUP_RCV_MCF
mode that permits the receiving application to delay sending the
MCF signal until it has determined that the received fax is properly
saved.

See Also LINE_FAX_T30_RCV_MCF_FSK (lp)

BfvFaxT30Holdup

March 2017 756

Example
int holdup(lp, arg, section)
BTLINE *lp;
char *arg;
int section;
{
 printf("Channel %d, received holdup in %s section\n",
 LINE_UNIT_NUM(lp),
 (section == T30H_SECTION_XMIT_DCS)? "xmit" : "rcv");
 if (section == T30H_SECTION_XMIT_DCS)
 {
 struct args_fax args;
 BT_ZERO(args);
 args.s_ips = arg;
 BfvFaxBeginSend(lp, &args);
 }
 return(0);
}
main()
{
 struct args_fax args;

 ...
 BT_ZERO(args);
 args.holdup_mode = T30_HOLDUP_DCS;
 args.func = holdup;
 args.arg = (char *)ips;
 BfvFaxT30Holdup(lp, &args);
 BT_ZERO(args);
 args.s_ips = ips;
 BfvFaxBeginSend(lp, &args);

 ...
}

BfvFaxT30Params

March 2017 757

BfvFaxT30Params

Purpose Sets the transmission bit rate, scan time, modulation type and line
compression.

Syntax void
BfvFaxT30Params (lp, args)

BTLINE *lp;
struct args_fax_t30_params *args;

The structure contains the following fields.

Input Fields unsigned bit_rate;
unsigned scan_time;
unsigned modulation_type;
unsigned line_compression;
unsigned line_compression;
unsigned iaf_bit_rate;

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.bit_rate

Specifies the maximum transmission bit rate for non T.38
Internet Aware Fax (IAF) modulation types.
Valid values include:

BITRATE_2400 0x00

BITRATE_4800 0x02

BITRATE_7200 0x01

BITRATE_9600 0x03

BITRATE_12000 0x04

BfvFaxT30Params

March 2017 758

Note: TruFax® does not support values 0x06 through 0x0D.

args.scan_time

Specifies the minimum transmission scan time in milliseconds.
Valid values include:

args.modulation_type

Specifies a modulation type to use.
Valid values include:

BITRATE_14400 0x05

BITRATE_16800 0x06

BITRATE_19200 0x07

BITRATE_21600 0x08

BITRATE_24000 0x09

BITRATE_26400 0x0A

BITRATE_28800 0x0B

BITRATE_31200 0x0C

BITRATE_33600 0x0D

BITRATE_GENERIC 0xFF

SCANTIME_0 7

SCANTIME_5 1

SCANTIME_10 2

SCANTIME_20 0

SCANTIME_40 4

MODULATION_GENERIC

Any, no restriction.
0x00

MODULATION_V27

V.27 only.
0x01

MODULATION_V29

V.29 only.
0x02

MODULATION_V33

V.33 only.
0x03

MODULATION_V17

V.17 only.
0x04

BfvFaxT30Params

March 2017 759

args.line_compression

Allows restriction of the fax compression type used on the phone
line. This value overrides the line_compression user configuration
file parameter.
Valid values include:

args.iaf_bit_rate

If args.modulation_type is set to MODULATION_IAF, this value
specifies the maximum transmission bit rate in bits per second for
T.38 Internet Aware Fax (IAF) modulation.
Range: 14400 to 2400000

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details Call this function immediately before the function used to begin fax
transmission or reception (for example, before BfvFaxBeginSend
or BfvFaxBeginRaw).

Alternatively, when using infopkt-formatted data files, the
application can include an INFOPKT_T30_PARAMETERS infopkt near
the start of the infopkt stream to set these parameters.

MODULATION_V34

V.34 only. TruFax® does not support this value.
0x05

MODULATION_IAF

T.38 Internet Aware Fax (IAF).
0x06

LINECOMPR_ANY

No restriction.
0

LINECOMPR_MH

MH only.
1

LINECOMPR_MR_MH

MH or MR only.
2

LINECOMPR_MMR_MR_MH

MH or MR or MMR.
3

BfvFaxT30Params

March 2017 760

When a call uses ECM, the scan time specification has no effect.

If ECM is disabled, then MMR fax compression on the line is
unavailable.

Transmission or reception of a fax using T.38 Internet Aware Fax
(IAF) modulation is only supported in the following configuration:

 SR140 only

 SR140 must have an IAF license

 ECM is enabled

 T.38 version must be 1 or higher

Example struct args_fax_t30_params args;

BT_ZERO(args);
args.bit_rate = BITRATE_9600;
args.scan_time = SCANTIME_0;
args.modulation_type = MODULATION_GENERIC;
BfvFaxT30Params(lp, &args);

BfvFaxT4TimerParams

March 2017 761

BfvFaxT4TimerParams

Purpose Obtains the T4 duration, the T4 attempt, the current T4 timer value
and the T4 timer expiration, or sets a new T4 timer value.

Syntax void
BfvFaxT4TimerParams (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Input Fields unsigned t4TimerValue;

Output Fields unsigned t4TimerValue;
unsigned t4Duration;
unsigned t4Attempt;
unsigned t4Timeout;
RES *res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

args.t4TimerValue

If this input value is set to 0, then the function call will return the
t4TimerValue, t4Duration, t4Attempt and t4Timeout from the
event sent by the firmware. If this input value is set to a value
other than 0, then the function call will set a new T4 timer value
by sending a command to the firmware.

Output Return value: None.

args.t4TimerValue

The current value of the T4 timer setting.

BfvFaxT4TimerParams

March 2017 762

args.t4Duration

The duration to receive the last response or the T4 timeout value
if no response is received.

args.t4Attempt

The attempt number which just took place for the
command/response exchange.

args.t4Timeout

Indicates if a response was received or the T4 timer expired.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details The keyword t4_timer_mode needs to be set to a value of 2 in order
for this function to be utilized. See the keyword t4_timer_mode in the
Parameters for Technical Support Purposes section for more
information. After a T4 adapt information event is sent by the
firmware to the host, this function can be called after setting
args.t4TimerValue to 0 to obtain the current T4 timer setting, the
duration to receive the last response or the T4 timeout value if no
response is received, the last attempt number, and the T4 timeout
flag indicating if a response was received or the T4 timer expired. To
set a new T4 timer setting, call this function after setting
args.t4TimerValue to the desired value for the T4 timer setting. The
T4 timer value should be set between 3,000 and 15,000 ms.

Example BTLINE *lp;
void t4TimerProcessEvent(BTLINE *lp, struct args_packet
*args)
{
 struct args_fax args_fax;
 unsigned t4TimerValue;
 unsigned t4Duration;
 unsigned t4Attempt;
 unsigned t4Timeout;

 // Check to see if the event received is
 // from the fax facility and is the
 // T4 adaptation information event.
 if ((args->facility == MILL_FACILITY_FAX) &&
 (args->cmd_verb == MILL_VERB_EVENT) &&
 (args->cmd_specifier == FAX_T4_ADAPT_INFO_EVENT))

BfvFaxT4TimerParams

March 2017 763

 {
 // Obtain the current T4 timer value,
 // the T4 duration to receive a response
 // or T4 timeout, the T4 attempt
 // and the T4 timeout indication.
 BT_ZERO(args_fax);
 BfvFaxT4TimerParams(lp, &args_fax);
 t4TimerValue = args_fax.t4TimerValue;
 t4Duration = args_fax.t4Duration;
 t4Attempt = args_fax.t4Attempt;
 t4Timeout = args_fax.t4Timeout;

 // Set the T4 timer value to a new value.
 // For example, the following checks to see
 // if the attempt just completed is 1 and
 // if so it will set the T4 timer value to
 // the existing T4 timer value plus 500 ms.
 // End user can change the following to set
 // the T4 timer value to a new value according
 // to some algorithm determined by the end user
 if (t4Attempt == 1)
 {
 BT_ZERO(args_fax);
 args_fax.t4TimerValue = t4TimerValue + 500;
 BfvFaxT4TimerParams(lp, &args_fax);
 }
 }
}
LINE_SET_INCOMING_CMD_FUNC(lp, t4TimerProcessEvent);

BfvFaxWaitForTraining

March 2017 764

BfvFaxWaitForTraining

Purpose Waits until either the training_complete or direction_change
interrupt is received.

Syntax void
BfvFaxWaitForTraining (lp, args)

BTLINE *lp;
struct args_fax *args;

The structure contains the following fields.

Output Fields RES res;

Input lp

Pointer to the BTLINE structure.

args

Pointer to an argument structure containing input and output
fields.

Output Return value: None.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvFaxWaitForTraining

March 2017 765

Details Call this function after BfvFaxGetRemoteInfo.

If the training_complete interrupt is received, the next step to
send or receive a fax (for example, BfvFaxSendPage or
BfvFaxReceivePages) must be initiated. If the
direction_change interrupt is received (possible only if polling
was enabled with the BfvFaxBegin or BfvFaxBeginRaw
functions), the direction to send or receive a fax is reversed, and both
BfvFaxGetRemoteInfo and BfvFaxWaitForTraining must be
called again. Check the line state to determine the appropriate
action.

This function is incorporated into the higher-level functions
BfvFaxSend, BfvFaxReceive, and BfvFaxPoll.

When this function returns without error, the line state changes to
either FAX_MODE for normal transmission or TURNAROUND for
polling.

After completion of BfvFaxWaitForTraining, the application can
access decoded values of the FSK message information exchanged
between transmitter and receiver. See the LINE_DCS and
LINE_DIS_DTC in Macros on page 723 for more detailed
information.

See Also BfvFaxGetRemoteInfo

Example BTLINE *lp;
struct args_fax args;

BT_ZERO(args);
BfvFaxWaitForTraining(lp, &args);

Macros

March 2017 766

Macros
There are many important macros available to applications. For
each of the following macros, lp is defined as BTLINE *.

LINE_DCS (lp)

Returns a pointer to a structure of type dcs_info, that contains
decoded information from the DCS FSK message(s) sent from
transmitter to receiver. The information is available after
BfvFaxWaitForTraining returns. See the dcs_info structure
definition for more information about the stored values. The
definition appears in dcs.h. Applications must not modify the
values in the structure since the Bfv API uses these values.
Since retraining may occur after the values are initially stored in
the structure, the values in some of the fields may not reflect the
actual transmission parameters. If this situation occurs, the
values in the structure are updated at the time of retraining.

LINE_DIS_DTC (lp)

Returns a pointer to a structure of type dis_dtc_info that
contains decoded information from the DIS or DTC FSK
message(s) sent from receiver to transmitter. The information is
available after BfvFaxWaitForTraining returns. See the
dis_dtc_info structure definition for more information about
the stored values. The definition appears in dcs.h. Applications
must not modify the values in the structure since the Bfv API
uses these values.
Since retraining may occur after the values are initially stored in
the structure, the values in some of the fields may not reflect the
actual transmission parameters. If this situation occurs, the
values in the structure are updated at the time of retraining.

Macros

March 2017 767

LINE_FAX_RES (lp)

Accesses a pointer to a preallocated buffer of type FAX_RES. This
buffer stores PAGE_RES structures that are automatically
allocated when a page is sent or received. The application may set
the value of this macro to such a pointer to enable allocation and
storage of PAGE_RES structures. The application must free these
structures after use. After enabling this feature, set this macro to
NULL to disable it.
Typically, this feature is enabled before beginning fax
transmission or reception (for example, using
BfvFaxBeginSend). If the high-level fax functions (for example,
BfvFaxSend) are used, the FAX_RES structure supplied to that
function takes precedence.
You should zero out (using memset) the FAX_RES structure
between calls or before assigning it to this macro.
See Volume 6, Appendix B, Bfv API Structures for more
information about these structure types. See also the
max_pagelist parameter in Volume 6, Appendix A, User-defined
Configuration File.

LINE_FAX_T30_RCV_MCF_FSK (lp)

This is intended for use with T.30 holdup RCV_MCF case. It
returns the receive status FSK being sent to the transmitter. See
BfvFaxT30Holdup.

LINE_FIRM_BITRATE (lp)

For compatibility only, this macro can be used to indicate the
maximum bit rate the firmware and hardware support. The
macro returns a fixed value depending on the features supported
by the firmware/hardware. If fax is supported and V.34 is also
supported, returns 33600; if fax only is supported, returns 14400;
otherwise returns 0.

LINE_FONT_DOWNLOADED (lp, font_no)

Returns nonzero if a font was successfully downloaded to the
module as the specified numbered font after firmware was
downloaded.

Note: This macro returns a long (32-bit) value.

Macros

March 2017 768

LINE_PAGE_CT (lp)

Accesses a page counter kept during fax transmission and
reception. The value is initialized to 0 at the start of fax
procedures and is incremented each time a page transmission or
reception ends. The application can reset this counter.
Normally this macro is useful only when used in conjunction with
the LINE_SET_PAGE_COMPLETE_FUNC or
LINE_SET_INCOMING_CMD_FUNC macro (see Determining Fax
Status Information from an Application in Chapter 2 of the
Dialogic® Brooktrout® Fax Products SDK Developer Guide, for
more information).

LINE_SET_PAGE_COMPLETE_FUNC (lp, func,
arg)

Sets up a user-supplied function that the Bfv API calls when it
processes an end-of-page.
The Bfv API calls the user supplied function as:

void (*func)(BTLINE *lp, int stage, char *arg);

The lp argument contains the pointer to the line structure; the
stage argument contains a value specifying the processing that
has been performed by the Bfv API; the arg argument contains
the supplied user-defined argument.
If the value of stage is 1, it indicates that the page completion has
been processed but the confirmation value has not been received
yet. If the value is 2, it indicates that the processing of the page
completion and confirmation value is complete, and the PAGE_RES
structure for the current page is ready.
A value of NULL for func disables this feature.
LINE_PAGE_COMPLETE_FUNC (lp)
LINE_PAGE_COMPLETE_ARG (lp)
Similar to LINE_SET_PAGE_COMPLETE_FUNC. Allows accessing of
the page complete function and argument for setting or reading.

March 2017 769

20 - TIFF-F Files Functions

This chapter provides descriptions and programming examples to
help clarify the use of the functions used to process TIFF-F image
files.

Functions used to manage fax transmission and reception for TIFF-F
and other image formats are documented in Fax Functions on
page 624.

Table 3 provides a list and brief description of all functions available
to process TIFF_F image files.

TIFF-F Files Function Summary

March 2017 770

TIFF-F Files Function Summary
The TIFF-F fax functions are used exclusively to send and receive
TIFF-F files rather than formatted infopkt stream files. Table 3
provides a brief summary of these functions. Detailed information
about these functions begins on page 771.

Table 3. TIFF-F Function Summary

Function Purpose Page

BfvTiffClose Closes an opened TIFF-F file. 771

BfvTiffOpen Opens a TIFF-F file. 773

BfvTiffReadIFD Reads the IFD of the current page in a TIFF-F file. 775

BfvTiffReadImage Reads image data of current page, one buffer at a time. 778

BfvTiffReadRes Interprets the IFD entry that contains the Y resolution tag;
returns vertical resolution of current page.

780

BfvTiffWriteIFD Writes the IFD of the current page in a TIFF-F file. 782

BfvTiffWriteImage Writes image data of the current page to a TIFF-F file. 785

BfvTiffWriteRes Writes the page resolution specifications data to a TIFF-F file;
returns the offset of the location where this data is written.

787

BfvTiffClose

March 2017 771

BfvTiffClose

Purpose Closes an opened TIFF-F file and frees all associated structure
memory.

Syntax int
BfvTiffClose (args)

struct args_tiff *args;

The structure contains the following fields.

Input Fields TFILE *tp;

Output Fields RES res;

Input args

Pointer to an argument structure containing input and output
fields.

args.tp

TFILE* pointer to the open file, returned by BfvTiffOpen.

Output Return value:

0 The file was closed successfully.

non-0An error occurred in closing the file.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details The pointer may not be reused after a closing error value is returned.

See Also BfvTiffOpen

BfvTiffClose

March 2017 772

Example TFILE *tp;
struct args_tiff args;

BT_ZERO(args);
args.fname = "image.tif";
args.fmode = "r";
if ((tp = BfvTiffOpen(&args)) == NULL)
 fprintf(stderr,"Error opening TIFF file.\n");
else
{
 args.tp = tp;
 .
 .
 .
 BfvTiffClose(&args);
}

BfvTiffOpen

March 2017 773

BfvTiffOpen

Purpose Opens a TIFF-F file.

Syntax TFILE *
BfvTiffOpen (args)

struct args_tiff *args;

The structure contains the following fields.

Input Fields char *fname;
char *fmode;

Output Fields RES res;

Modified Fields tp

Input args

Pointer to an argument structure containing input and output
fields.

args.fname

Filename of the TIFF-F file.

args.fmode

Sets the mode to read or write.

“r” Read.

“w” Write.

BfvTiffOpen

March 2017 774

Output Return value:

TFILE* pointer Disk file was successfully opened.

NULL An error occurred.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details This function retains the same resource sharing restrictions as the
fopen call.

After opening a TIFF file for reading, the BfvTiffReadIFD function
is normally called and then the BfvTiffReadImage function is
called repeatedly. After opening a TIFF file for writing, normally the
BfvTiffWriteImage function is called repeatedly and then the
BfvTiffWriteIFD function is called repeatedly.

Both the current TIFF-F standard and the older TIFF Class F
standards are supported for reading. When creating new files, only
the current TIFF-F standard will be used. These files should be
compatible with most earlier applications that used TIFF Class F.

See Also BfvTiffClose

Example TFILE *tp;
struct args_tiff args;

BT_ZERO(args);
args.fname = "image.tif";
args.fmode = "r";
if ((tp = BfvTiffOpen(&args)) == NULL)
 fprintf(stderr,"Error opening TIFF file.\n");
else
{
 args.tp = tp;
 .
 .
 .
 BfvTiffClose(&args);
}

BfvTiffReadIFD

March 2017 775

BfvTiffReadIFD

Purpose Reads the IFD of the current page in a TIFF-F file.

Syntax int
BfvTiffReadIFD (args)

struct args_tiff *args;

The structure contains the following fields.

Input Fields TFILE *tp;
int (*func)(TFILE *tp, struct ifd_field *ifd_ptr,

char *arg);
char *arg;

Output Fields RES res;

Input args

Pointer to an argument structure containing input and output
fields.

args.tp

TFILE * pointer to a TIFF-F file.

args.func

A pointer to a user-supplied integer function that is called once
for each IFD entry for the current page in the TIFF file. The value
of args.func cannot be NULL.
If args.func returns 0, processing of the current IFD continues. If
args.func returns a nonzero value, processing of the current IFD
halts, and BfvTiffReadIFD indicates an error. For a description
of how calls are made and of the arguments, see this function’s
Purpose section.

args.arg

A user-supplied argument for args.func which can be NULL.

BfvTiffReadIFD

March 2017 776

Output Return value:

0 No more pages are in the file.

>0 The IFD was successfully read.

<0 An error occurred.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details This function is called directly after BfvTiffOpen and before calling
BfvTiffReadImage. If the application elects to bypass reading the
image after the IFD is read, BfvTiffReadIFD can be called again to
proceed to the next page.

As it reads each IFD entry, this function calls the user-supplied
function as:

(*args.func)(args.tp,ifd_ptr,args.arg)

The ifd_ptr argument is of type struct ifd_field*, a pointer to a
structure type containing the following. Some commonly used tags
(symbols TAG_...), and field type definitions (symbols FT_...) are
defined in tiff.h.

struct ifd_field {
short tag; /* Tag type, usually one of the
 TAG_... values */
short field_type; /* Field type, one of the FT_...
 values */
unsigned count; /* Number of values of the field
 type */
MILL_PTR_INT_TYPE offset; /* offset for values or the value(s)
 themselves */
};

The argument arg is the user-supplied argument. After all IFD
entries are read, args.func is called once with a NULL ifd_ptr value.

After receiving an ifd_field structure, the offset field contains either
a value or an offset that indicates where the values are located. To
read the value(s) at the offset, use fseek to move the current file
position to the appropriate offset. Use the TIFF_FP (tp) file pointer
if tp is the TFILE * pointer. Returning to the starting position after
reading data at another offset is not necessary; the
BfvTiffReadIFD function always reads from the correct position.

To read the resolution value, use the BfvTiffReadRes function.

BfvTiffReadIFD

March 2017 777

If the field_type value is such that more than one value can fit into
the offset field, the first value occupies the least significant portion of
the offset field, the second value occupies the most significant portion
of the offset field, and so on. This arrangement is followed whether
the TIFF file byte-ordering format is Intel or Motorola.

The type of byte-ordering format becomes significant when the
application reads data values at the offset specified by the offset
field. Motorola format stores multibyte integers in the file in the
opposite order from the internal representation of integers on
Intel x86 and all Brooktrout-supported platforms. Therefore, the
application will often need to reverse the byte order of the integer
values read from the file before using them. The application can
examine the bytes_reversed field of the TFILE structure to
determine which byte-ordering format is used in the TIFF file; a
nonzero value indicates Motorola format.

The user-supplied function must not call any function that causes a
delay, such as waiting for a Touch-Tone for a nonzero timeout or
going to sleep. All calls made within the user-supplied function must
return immediately. Applications performing Touch-Tone detection
must enable the detection before beginning the operation that uses
the user-supplied function (for example, speech playback).

See Also BfvTiffReadImage, BfvTiffReadRes

Example See the tiffdump.c or tstrip.c applications in the app.src directory.

BfvTiffReadImage

March 2017 778

BfvTiffReadImage

Purpose Reads the image data of the current page in a TIFF-F file, one buffer
at a time.

Syntax int
BfvTiffReadImage (args)

struct args_tiff *args;

The structure contains the following fields.

Input Fields TFILE *tp;
unsigned char *buf;
unsigned size;

Output Fields RES res;

Input args

Pointer to an argument structure containing input and output
fields.

args.tp

TFILE * pointer to a TIFF-F file.

args.buf

Pointer to a user-allocated data buffer.

args.size

The size, in bytes, of the user-allocated buffer.

BfvTiffReadImage

March 2017 779

Output ReturnValue:

0 Image data is completed.

>0 Number of bytes stored in args.buf on this call.

<0 An error occurred.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details This function is called directly after BfvTiffReadIFD. Call this
function repeatedly until the return value is 0.

TIFF-F pages may be internally constructed so that the image data
is partitioned into strips. If a page that uses MMR data format is
constructed in this way, there will be multiple MMR end-of-data
markers (known as EOFBs), one after each strip of data.

In such cases, the data read for different strips cannot simply be
concatenated together since an EOFB indicates an end of page.
When transmitting such data via BfvFaxSendData the strips can
be separated using BfvFaxStripParams.

See Also BfvTiffReadIFD

Example See the tstrip.c application in the app.src directory.

BfvTiffReadRes

March 2017 780

BfvTiffReadRes

Purpose Interprets IFD entries from a TIFF-F file containing the tags for the
X and Y resolution, and returns the resolution of the current fax
page.

Syntax int
BfvTiffReadRes (args)

struct args_tiff *args;

The structure contains the following fields.

Input Fields TFILE *tp;
struct ifd_field *horiz_ifd_field;
struct ifd_field *vert_ifd_field;
unsigned res_unit;

Output Fields RES res;

Input args

Pointer to an argument structure containing input and output
fields.

args.tp

TFILE * pointer to a TIFF-F file.

args.horiz_ifd_field

Pointer to a filled-in struct ifd_field structure, read using
BfvTiffReadIFD. The tag field of this structure must be
TAG_XRESOLUTION.

args.vert_ifd_field

Pointer to a filled-in struct ifd_field structure, read using
BfvTiffReadIFD. The tag field of this structure must be
TAG_YRESOLUTION.

BfvTiffReadRes

March 2017 781

args.res_unit

The resolution unit value from the IFD entry with tag
TAG_RESOLUTIONUNIT. This allows for TIFF files with
resolutions expressed in units of either inches (as is standard) or
centimeters. If left set to 0, inches are used.

Output Return value:

≥0 Resolution value. See the BfvFaxBeginSendRaw
function on page 651 for resolution values.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details This function is provided as a convenience. It enables an application
using BfvTiffReadIFD to easily compute the resolution of the
current page. The application is freed from performing the low-level
steps required for this computation.

The function interprets IFD entries from a TIFF-F file that contains
the tag for the Y resolution (TAG_YRESOLUTION) and the tag for the
X resolution (TAG_XRESOLUTION), and returns the resolution of the
current fax page.

To interpret the IFD entry, BfvTiffReadRes uses the fseek
function to move to the appropriate location in the TIFF file, reads
two values, and examines their quotient. If the result is equal to or
close to certain fixed values for normal or fine resolution, the
appropriate value is returned.

See Also BfvTiffReadIFD

Example See the tstrip.c application in the app.src directory.

BfvTiffWriteIFD

March 2017 782

BfvTiffWriteIFD

Purpose Writes the IFD of the current page to a TIFF-F file.

Syntax int
BfvTiffWriteIFD (args)

struct args_tiff *args;

The structure contains the following fields.

Input Fields TFILE *tp;
struct ifd_field *ifd_field;

Output Fields RES res;

Input args

Pointer to an argument structure containing input and output
fields.

args.tp

TFILE * pointer to a TIFF-F file.

args.ifd_field

Pointer to a structure of type struct ifd_field, which contains the
IFD entry to write.

Output Return value:

1 An error occurred.

0 IFD successfully written.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvTiffWriteIFD

March 2017 783

Details This function is called repeatedly and directly after all calls to
BfvTiffWriteImage until the entire IFD is written. After all IFD
entries are written, this function must be called once with a NULL
ifd_field value.

The struct ifd_field is shown below. Some commonly used tags
(symbols TAG_...) and field type definitions (symbols FT_...) are
defined in tiff.h.

struct ifd_field {
short tag; /* Tag type, usually one of the
 TAG_... values */
short field_type; /* Field type, one of the FT_...
 values */
unsigned count; /* Number of values of the field
 type */
MILL_PTR_INT_TYPE offset; /* offset for values or the value(s)
 themselves */
};

When writing an ifd_field structure, the offset field contains either
a value or an offset that indicates where the values are located. To
write the value(s) elsewhere in the file, use fseek to move the
current file position to the end of the file and write the values there.
Note that the TIFF specification requires that all offset values be
even. Use the TIFF_FP (tp) file pointer if tp is the TFILE * pointer.
Returning to the starting position after writing data at another
offset is not necessary; the BfvTiffWriteIFD function always writes
from the correct position.

To write the resolution value, use the BfvTiffWriteRes function.

The IFD entries associated with tag types TAG_STRIPOFFSETS and
TAG_STRIPBYTECOUNTS cannot be explicitly written; these entries
are automatically put in the IFD based on the image previously
written with the BfvTiffWriteImage function. For all other tag
types, the user must decide what IFD entry/tag combinations to
write.

BfvTiffWriteIFD automatically sorts the IFD entries in ascending
tag order as required by TIFF specifications. Duplicate tag values
are not permitted. The earliest IFD entry with a particular tag value
is the one that is written. A maximum of forty different IFD entries
can be written per IFD.

See Also BfvTiffWriteImage, BfvTiffWriteRes

BfvTiffWriteIFD

March 2017 784

Example TFILE *tp = BfvTiffOpen("image.tif", "w");
struct ifd_field ifd_entry;
struct args_tiff args;

/* Write the image */
...
/* Then write the IFD entries* /
/* This is just one of many entries that will be written */
ifd_entry.tag = TAG_COMPRESSION;
ifd_entry.field_type = FT_SHORT;
ifd_entry.count = 1;
ifd_entry.offset = 3; /* Group 3 data */

BT_ZERO(args);
args.tp = tp;
args.ifd_entry = &ifd_entry;
BfvTiffWriteIFD(&args);

/* Write the rest of the entries */
...
args.ifd_entry = NULL;
BfvTiffWriteIFD(&args);

BfvTiffWriteImage

March 2017 785

BfvTiffWriteImage

Purpose Writes the image data of the current page to a TIFF-F file.

Syntax int
BfvTiffWriteImage (args)

struct args_tiff *args;

The structure contains the following fields.

Input Fields TFILE *tp;
unsigned char *buf;
unsigned size;

Output Fields RES res;

Input args

Pointer to an argument structure containing input and output
fields.

args.tp

TFILE* pointer to a TIFF Class F file.

args.buf

A buffer containing the image data to be written.

args.size

The number of bytes contained in buf.

Output Return value:

0 Image successfully written.

>0 An error occurred.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

BfvTiffWriteImage

March 2017 786

Details This function is called repeatedly and directly after BfvTiffOpen
(before BfvTiffWriteIFD is called repeatedly).

The function must be repeatedly called with buffers of data until the
entire image is written. After all image data is written, this function
must be called once with a NULL buf value and a size of 0.

The original TIFF Class F standard required byte-aligned EOLs and
no RTC. The more recent TIFF-F standard does not require these
properties although they are permitted. If the data supplied to
BfvTiffWriteImage does have byte-aligned EOLs, the RTC will
automatically be removed.

See Also BfvTiffWriteIFD

Example FILE *fp = fopen("image.301", "w");
TFILE *tp = BfvTiffOpen("image.tif", "w");
int n;
unsigned char buf[1024];
struct args_tiff args;

BT_ZERO(args);
args.tp = tp;
args.buf = buf;

/* Write the image */

while((n = fread(buf,1,sizeof(buf),fp)) > 0)
{
 args.size = n;
 BfvTiffWriteImage(&args);
}
args.buf = NULL;
args.size = 0;
BfvTiffWriteImage(&args);

/* Then write the IFD entries */
...

BfvTiffWriteRes

March 2017 787

BfvTiffWriteRes

Purpose Writes the page resolution data for a page to a TIFF-F file and
returns the offset of the location where this data is written.

Syntax void
BfvTiffWriteRes (args)

struct args_tiff *args;

The structure contains the following fields.

Input Fields TFILE *tp;
int resolution;

Output Fields long horiz_offset;
long vert_offset;
RES res;

Input args

Pointer to an argument structure containing input and output
fields.

args.tp

TFILE * pointer to a TIFF-F file.

args.resolution

The resolution of the page. See the BfvFaxBeginSendRaw
function for resolution values.

BfvTiffWriteRes

March 2017 788

Output Return value: None.

args.horiz_offset

The offset in the TIFF file where the horizontal resolution data is
located.

args.vert_offset

The offset in the TIFF file where the vertical resolution data is
located.

args.res

A RES structure containing status information. The RES
structure is documented in Appendix B, Result Structures, in this
document.

Details This function is provided as a convenience. It enables an application
using BfvTiffWriteRes to easily write the resolution data. The
application is freed from performing the low-level steps required to
write the resolution data.

To include the vertical or horizontal resolution in the IFD for the
current page, the application must pass args.vert_offset or
args.horiz_offset to the BfvTiffWriteIFD function as the offset
value of an IFD entry with tag TAG_YRESOLUTION or
TAG_XRESOLUTION, respectively.

To write the page resolution data, BfvTiffWriteRes uses the fseek
function to move to the end of the TIFF file and writes fixed values
that correspond to the desired resolution.

See Also BfvTiffWriteIFD

Macros

March 2017 789

Macros
TIFF_FP (tp)

Returns the file pointer associated with the opened TIFF-F file; is
suitable for use in functions such as fseek, fread, and fwrite.

March 2017 791

Volume 5 - BSMI-Level Call
Control and Call Switching

About this Volume
Volume 5, BSMI-Level Call Control and Call Switching, provides
information about the following Boston Simple Message Interface
(BSMI) Bfv API components:

 BSMI-Level Call Control functions

 Message structure

 R2 Signaling Protocol messages

 Local Exchange Carrier (LEC) Protocol messages

 Host to Module and Module to Host messages

 B-Channel and D-Channel Maintenance procedures

March 2017 792

22 - BOSTON Simple Message Interface
(BSMI)

This chapter describes the BSMI-level of call control functions an
application uses to facilitate communication directly between the
Dialogic® Brooktrout® module and the ISDN lines.

It has the following sections:

 BSMI Installation

 BSMI-level Call Control functions listed alphabetically

 Error Return Values

 Firmware Download

 BSMI Use Examples

The BOSTON Simple Message Interface (BSMI) consists of a
comprehensive control mechanism for implementing advanced
telecommunications services. The BSMI consists of two parts:

 A Bfv API library that allows the passing of messages between
the applications and the firmware.

 The collection of the messages themselves.

This collection of messages is the interface to the ISDN component of
the firmware and provides all the facilities for management, call
control, and performance statistics monitoring. The ISDN

March 2017 793

component of the firmware is common to the Dialogic® Brooktrout®
platforms. Common software eases development, and the platforms
share the exact type of interface through the BSMI.

The facilities provided within the low-level ISDN firmware of the
Dialogic® Brooktrout® boards are consistent with capabilities
originally introduced within the Instant ISDN Software (IISDN) of
the Dialogic® Brooktrout® NetAccess series boards. Within this
manual, any references to Instant ISDN Software are applicable to
the firmware implemented on both series of Dialogic® Brooktrout®
boards.

Control messages names in the BSMI are descriptive of the functions
they serve and make it easier to develop applications.

The BSMI is based on the function call available in the
Windows NT I/O Request Packet (IRP) driver library for the
Dialogic® Brooktrout® T1/E1 WAN Controllers and BRI Network
Adapters.

Having similar but differently named functions for boards allows an
application to easily support simultaneous use of both series of
Dialogic® Brooktrout® boards.

BSMI Installation

March 2017 794

BSMI Installation
To install the BSMI, follow the installation instructions found in the
Dialogic® Brooktrout® Fax Products SDK Installation and
Configuration Guide. The following are the directories and files
installed for BSMI:

Directory Contents
Windows boston\bsmi.api\bapp.src\

boston\bsmi.api\bapp.src\
boston\bsmi.api\bapp.src\
boston\bsmi.api\inc\
boston\bsmi.api\inc\
boston\bsmi.api\inc\
boston\bsmi.api\inc\
boston\bsmi.api\inc\
boston\bsmi.api\inc\
boston\bsmi.api\inc\
boston\bsmi.api\inc\
boston\bsmi.api\winnt\bapp.src\

getopt.c
getopt.h
vttyapp.c
bsmilib.h
iisdn.h
r2_argentina.h
r2_brazil.h
r2_china.h
r2_egypt.h
r2_korea.h
r2_mexico.h
makefile

Linux boston/bsmi.api/bapp.src/
boston/bsmi.api/bapp.src/
boston/bsmi.api/bapp.src/
boston/bsmi.api/inc/
boston/bsmi.api/inc/
boston/bsmi.api/inc/
boston/bsmi.api/inc/
boston/bsmi.api/inc/
boston/bsmi.api/inc/
boston/bsmi.api/inc/
boston/bsmi.api/inc/
boston/bsmi.api/linux/bapp.src/

getopt.c
getopt.h
vttyapp.c
bsmilib.h
iisdn.h
r2_argentina.h
r2_brazil.h
r2_china.h
r2_egypt.h
r2_korea.h
r2_mexico.h
makefile

Solaris SPARC boston/bsmi.api/bapp.src/
boston/bsmi.api/bapp.src/
boston/bsmi.api/bapp.src/
boston/bsmi.api/inc/
boston/bsmi.api/inc/
boston/bsmi.api/inc/
boston/bsmi.api/inc/
boston/bsmi.api/inc/
boston/bsmi.api/inc/
boston/bsmi.api/inc/
boston/bsmi.api/inc/
boston/bsmi.api/solaris/bapp.src/

getopt.c
getopt.h
vttyapp.c
bsmilib.h
iisdn.h
r2_argentina.h
r2_brazil.h
r2_china.h
r2_egypt.h
r2_korea.h
r2_mexico.h
makefile

BSMI Function Summary

March 2017 795

BSMI Function Summary
Table 4 provides a brief summary of the BSMI functions.

Table 4. BSMI Function Summary

Function Purpose Page

BsmiClearVtty Stops transmission/reception of data packets to/from
firmware VTTY facility.

796

BsmiCloseAdapter Closes and releases an open handle. 797

BsmiControlRead Reads control message from the module. 798

BsmiControlWrite Writes control message to the module. 800

BsmiLineAlert Aborts a blocking ControlRead or ControlWrite function. 801

BsmiModuleList Returns a list of hardware modules in the current system. 803

BsmiOpenAdapter Returns a handle to the specific hardware module. 805

BsmiResetAdapter Resets the ISDN component of the module associated with a
handle.

807

BsmiSetVtty Starts transmission/reception of data packets to/from
firmware VTTY facility.

809

BsmiVttyRead Reads data packet sent by firmware VTTY facility. 810

BsmiVttyWrite Writes data packet to firmware VTTY facility. 811

BsmiClearVtty

March 2017 796

BsmiClearVtty

Purpose Stops transmission/reception of data packets to/from firmware VTTY
facility.

Syntax int
BsmiClearVtty (handle)

HANDLE handle;

The structure contains the following fields:

Input handle

Handle to the control channel on a particular module.

Output Return value:

0 Successful.

<0 Error, see Error Return Values on page 812 for details.

Details Terminates communication with the firmware VTTY facility.

See Also BsmiSetVtty

Example See vttyapp.c

BsmiCloseAdapter

March 2017 797

BsmiCloseAdapter

Purpose Closes and releases an open handle.

Syntax int
BsmiCloseAdapter (handle)

HANDLE handle;

The structure contains the following fields:

Input handle

Handle to the control channel on a particular module.

Output Return value:

0 Successful.

<0 Error, see Error Return Values on page 812 for details.

Details Close and releases an open handle and associated BTLINE
structures.

See Also BsmiOpenAdapter

Example HANDLE hp;

BsmiCloseAdapter (hp);

BsmiControlRead

March 2017 798

BsmiControlRead

Purpose Reads a control message from the module.

Syntax int
BsmiControlRead (handle, buffer, args)

HANDLE handle;
L3_to_L4_struct *buffer;
struct args_bsmi *args;

The structure contains the following fields:

Input Fields unsigned timeout;

Input handle

Handle to the control channel on a particular module.

buffer

Pointer to a buffer containing the L3_to_L4_struct. Refer to
Chapter , BSMI General Message Structure on page 832 for
further details.

args

Pointer to a structure containing input and output fields.

args.timeout

Time to wait for incoming packet, in milliseconds.

Output Return value:

0 Successful.

<0 Error, see Error Return Values on page 812 for details.

Details This function waits for any control message from the module.

You can specify timeout (optional). If args is NULL, the timeout is the
maximum possible, MILL_MAX_TIMEOUT. If a timeout occurs, the
function returns ERROR_TIMEOUT.

BsmiControlRead

March 2017 799

See Also BsmiControlWrite

Example
HANDLE hp;
L3_to_L4_struct l34msg;
int i, err;
IISDNu8bit num_digits;
err = BsmiControlRead(hp, &l34msg, NULL);
if (!err)
{
 switch (l34msg.msgtype)
 {
 case L3L4mSETUP_IND:
 num_digits = l34msg->data.setup_data.called_party.num_digits;
 for (i = 0; i < num_digits; i++)
 printf ("%d\n", l34msg->data.setup_data.called_party.digits[i]);
 break;
 }
}

BsmiControlWrite

March 2017 800

BsmiControlWrite

Purpose Writes the control message to the module.

Syntax int
BsmiControlWrite (handle, buffer)

HANDLE handle;
L4_to_L3_struct *buffer;

The structure contains the following fields:

Input handle

Handle to the control channel on a particular module.

buffer

Pointer to a buffer containing the L4_to_L3_struct. Refer to
Chapter , BSMI General Message Structure on page 819 for
further details.

Output Return value:

0 Successful.

<0 Error, see Error Return Values on page 812 for details.

Details In abnormal circumstances, if the driver and/or firmware cannot
receive the message, this function blocks until space is available. Use
BsmiLineAlert to abort this function.

See Also BsmiControlRead

Example HANDLE hp;
L4_to_L3_struct l43msg;

BT_ZERO(l43msg);
l43msg.msgtype = L4L3mREQ_BOARD_ID;
BsmiControlWrite(hp, &l43msg);

BsmiLineAlert

March 2017 801

BsmiLineAlert

Purpose Aborts a blocking ControlRead or ControlWrite function.

Syntax int
BsmiLineAlert (handle, args)

HANDLE handle;
struct args_alert *args;

The structure contains the following fields:

Input Fields int type;
int alert_value;

Input handle

Handle to the control channel on a particular module.

args

Pointer to a structure containing input and output fields.

args.type

Indicates the destination alert type. Possible values include:
BSMI_ALERT_READ

BSMI_ALERT_WRITE

args.alert_value

An alert value passed to the alerted channel. If left set to 0, a
value of 1 is sent. See BfvLineAlert in Volume 1, Chapter 2, Line
Administration and Initialization.

Output Return value:

0 Successful.

<0 Error, see Error Return Values on page 812 for details.

BsmiLineAlert

March 2017 802

Details This function calls BfvLineAlert. See Volume 1, Chapter 2, for
specifics on BfvLineAlert.

This function causes a BsmiControlWrite or BsmiControlRead
function to return immediately with a Return value of
ERROR_OPERATION_ABORTED. The alert waits, for example, if a
BsmiLineAlert is called with a type of BSMI_ALERT_WRITE, when
no BsmiControlWrite is waiting. The next call to
BsmiControlWrite immediately returns.

See Also BsmiControlWrite, BsmiControlRead

Example HANDLE hp;
args_alert args;

BT_ZERO(args);
args.type = BSMI_ALERT_READ;
BsmiLineAlert(hp,&args);

BsmiModuleList

March 2017 803

BsmiModuleList

Purpose Returns a list of hardware modules in the current system.

Syntax int
BsmiModuleList (args)

struct args_mod *args;

The structure contains the following fields:

Input Fields unsigned char *list;
int list_size;

Output Fields int total;

Input args

Pointer to a structure containing input and output fields.

args.list

Pointer to an array to hold hardware module identifiers. The list
contains args.total hardware module identifiers and is zero
terminated.

args.list_size

Size of the array used to store hardware module identifiers. Must
include space for the zero termination.

Output Return value:

0 Successful.

<0 Error, see Error Return Values on page 812 for details.

args.total

Returns the total number of hardware modules.

BsmiModuleList

March 2017 804

Details This function provides a list of hardware modules located in the
current system.

If more hardware modules are detected than list_size –1, the
function returns ERROR_TOO_MANY_MODULES.

See Also BsmiOpenAdapter

Example unsigned char list[30];
struct args_mod args;
int i;

BT_ZERO(args);
args.list = list;
args.list_size = sizeof(list);
BsmiModuleList(&args);
i = 0;
while (list[i] != 0)
{

printf("Found module number: %x\n",list[i]);
i++;

}

BsmiOpenAdapter

March 2017 805

BsmiOpenAdapter

Purpose Returns a handle to the specified hardware module.

Syntax HANDLE
BsmiOpenAdapter (bus_number, module, args)

int bus_number;
int module;
struct args_open *args;

The structure contains the following fields:

Input Fields unsigned read_buf_size;
unsigned write_buf_size;

Input bus_number

Must be BSMI_BUS_NUMBER.

module

Module number.

args.read_buf_size

Specifies a driver buffer size to be used when creating the
application session for messages from the hardware module. This
value is in effect only if greater than the default driver buffer size.
Use this feature only in circumstances where extremely high
traffic volume warrants.

args.write_buf_size

Specifies a driver buffer size used when creating the application
session for messages going to the hardware module. This value is
in effect only if greater than the default driver buffer size. Use
this feature only in circumstances where extremely high traffic
volume warrants.

BsmiOpenAdapter

March 2017 806

Output Return value:

On success: A pointer to the control channel for the module

On error: INVALID_HANDLE_VALUE

Details Returns a pointer to the control channel on a particular module,
initializing the appropriate BTLINE structures. The bus_number is
defined for NetAccess Series compatibility purposes and must be set
to BSMI_BUS_NUMBER (0xFE).

In UNIX systems, HANDLE is defined as typedef void *HANDLE.

For applications with a heavy call load (especially with large
simultaneous bursts of calls), set both the read_buf_size and
write_buf_size to a large value (for example: 200000 is generous).

See Also BsmiCloseAdapter

Example HANDLE hp;
int module;
struct args_open args;
module = 2;
hp = BsmiOpenAdapter(BSMI_BUS_NUMBER,module, &args);

BsmiResetAdapter

March 2017 807

BsmiResetAdapter

Purpose This function resets the ISDN component of the module associated
with handle.

Syntax int
BsmiResetAdapter (handle, args)

HANDLE handle;
struct args_reset *args;

The structure contains the following fields:

Input Fields unsigned char no_config;
char *config_file_name;

Output Fields unsigned char facil_ver_major;
unsigned char facil_ver_minor;
unsigned char facil_ver_build;

Input handle

Handle to the control channel on a particular module.

args.no_config

Disables telephony interface configuration when equal to 1.

args.config_file_name

Filename for the user configuration file. If set to NULL, the
function uses the btcall.cfg file in the current directory. If the
function does not find a btcall.cfg file, it skips configuration.

Output Return value:

0 Successful.

<0 Error, see Error Return Values on page 812 for details.

args.facil_ver_major

Major version of the ISDN facility on the module.

BsmiResetAdapter

March 2017 808

args.facil_ver_minor

Minor version of the ISDN facility on the module.

args.facil_ver_build

Build version of the ISDN facility on the module.

Details Initializes the firmware ISDN facility, which clears all calls and
active D-channel processing for all ports on the module.

The call verifies that the version of the Dialogic® Brooktrout®
firmware ISDN facility is compatible with the host version of
included iisdn.h header file. If incompatible,
ERROR_REVISION_MISMATCH is returned.

If args.no_config is 0, the telephony configuration file specified in
args.config_file_name is used to configure all telephony hardware
units for the module specified by handle and set up any specified
telephony connections. If args.no_config is 1, configuration is
skipped.

Once connections indicated in the file are established, connections
remain in effect until explicitly disconnected. Generally, connections
specified in the file are intended as static connections for long term
use.

Example HANDLE hp;
struct args_reset args;

BT_ZERO(args);
BsmiResetAdapter(hp,&args);
printf("Module ISDN facility version is %d.%d.%d\n",
args.facil_ver_major, args.facil_ver_minor,
args.facil_ver_build);

BsmiSetVtty

March 2017 809

BsmiSetVtty

Purpose Starts transmission/reception of data packets to/from firmware
VTTY facility.

Syntax int
BsmiSetVtty (handle)

HANDLE handle;

The structure contains the following fields:

Input handle

Handle to the control channel on a particular module.

Output Return value:

0 Successful.

<0 Error, see Error Return Values on page 812 for details.

Details Begins communication with the firmware VTTY facility.

See Also BsmiClearVtty

Example See vttyapp.c

BsmiVttyRead

March 2017 810

BsmiVttyRead

Purpose Reads data packet sent by firmware VTTY facility.

Syntax int
BsmiVttyRead (handle, buffer, length)

HANDLE handle;
char *buffer;
int *length;

The structure contains the following fields:

Input handle

Handle to the control channel on a particular module.

buffer

Pointer to a buffer of size at least 1024 where incoming data will
be stored.

length

Pointer to an int variable in which the amount of data stored in
buffer will be stored.

Output Return value:

0 Successful.

<0 Error, see Error Return Values on page 812 for details.

Details Waits for and reads data sent by the firmware VTTY facility. The
timeout is the maximum possible, MILL_MAX_TIMEOUT. If a
timeout occurs, the function returns ERROR_TIMEOUT.

See Also BsmiVttyWrite

Example See vttyapp.c

BsmiVttyWrite

March 2017 811

BsmiVttyWrite

Purpose Writes data packet to firmware VTTY facility.

Syntax int
BsmiVttyWrite (handle, buffer, length)

HANDLE handle;
char *buffer;
int *length;

The structure contains the following fields:

Input handle

Handle to the control channel on a particular module.

buffer

Pointer to the buffer containing the data to write.

length

Pointer to an int variable containing the length of the data buffer
buffer to write.

Output Return value:

0 Successful.

<0 Error, see Error Return Values on page 812 for details.

Details Writes data to the firmware VTTY facility. In abnormal
circumstances, if the driver and/or firmware cannot receive the
message, this function blocks until space is available. Use
BsmiLineAlert to abort this function.

See Also BsmiVttyRead

Example See vttyapp.c

Error Return Values

March 2017 812

Error Return Values
The BSMI uses low level function calls available in the Bfv API. If
one of these function calls returns an error, the RES results
structure is translated to a similar Winerror value, which is then
negated and returned by the BSMI call.

In non-Windows NT operating systems, these return values are
defined in bsmi.h. All operating systems return the value shown in
the Value column of Table 5.

Table 5. BSMI Error Return Values

RES.status RES.line_status winerror.h definition Value

BT_STATUS_OK ERROR_SUCCESS 0L

BT_STATUS_ERROR APIERR_UNCLASSIFIED ERROR_EXTENDED_ERROR 1208L

BT_STATUS_ERROR APIERR_FILEIO ERROR_IO_DEVICE 1117L

BT_STATUS_ERROR APIERR_FILEFORMAT ERROR_FILE_CORRUPT 1392L

BT_STATUS_ERROR APIERR_BOARDCAPABILITY ERROR_NOT_SUPPORTED 50L

BT_STATUS_ERROR APIERR_NOTCONNECTED ERROR_NOT_CONNECTED 2250L

BT_STATUS_ERROR APIERR_BADPARAMETER ERROR_BAD_COMMAND 22L

BT_STATUS_ERROR APIERR_MEMORY ERROR_NOT_ENOUGH_
MEMORY

8L

BT_STATUS_ERROR APIERR_BADSTATE ERROR_CONNECTION_
UNAVAIL

1201L

BT_STATUS_ERROR APIERR_TOOSOON ERROR_CONNECTION_
REFUSED

1225L

BT_STATUS_ERROR default ERROR_CAN_NOT_COMPLETE 1003L

BT_STATUS_ERROR_
DIAL

ERROR_UNEXP_NET_ERR 59L

BT_STATUS_ERROR_
HANGUP

ERROR_GRACEFUL_
DISCONNECT

1226L

BT_STATUS_USER_
TERMINATED

ERROR_CANCELLATION 1223L

BT_STATUS_TIMEOUT ERROR_TIMEOUT 1460L

BT_STATUS_ALERT ERROR_OPERATION_ABORTED 995L

Error Return Values

March 2017 813

In addition, some functions might return the following:

The ResetAdapter functions can also return an error value based
from –0x20000000L. This value represents args_admin.reset_status
returned from BfvLineReset logically ORed with –0x20000000L.

BSMI functions return –1, if the handle argument equals zero.

winerror.h definition Value

ERROR_REVISION_MISMATCH 1306L

ERROR_TOO_MANY_MODULES 214L

ERROR_INVALID_PARAMETERS 87L

ERROR_MOD_NOT_FOUND 126

ERROR_INVALID_MODULETYPE 190L

Firmware Download

March 2017 814

Firmware Download
Call one BsmiOpenAdapter function for each hardware module; it
returns a handle used to reference all ports on that hardware
module. A hardware module may contain no ports or multiple
network interface ports. To determine the quantity and type of ports
use either BfvTelephGetInfo or see the L3L4mBOARD_ID
message response to the L4L3mSEND_BOARD_ID requests.

The structures transferred by BsmiControlWrite and
BsmiControlRead (L4_to_L3_struct and L3_to_L4_struct
respectively) are discussed in detail in Chapter , BSMI General
Message Structure on page 819.

The individual network port on a particular hardware module can
then be further referenced by the lapdid component of the common
message header. There are two lapdids for each network port,
referencing the two HDLC channels available per port. The lowest
numbered HDLC channel on each port is currently used for
signaling purposes, for example:

lapd_id 0 2 4 6 ...

T1/E1 Telephony Unit 1 2 3 4 ...

BSMI Use Examples

March 2017 815

BSMI Use Examples

Initialization and BSMI Message Sequence
This example shows an initialization and BSMI message sequence,
matching that for the typical ISDN call scenario previously
presented. It does not show an example of a real call.

 Returns a handle to the specified hardware module:

#define LAPDID_SPAN_A 0

HANDLE hp;
int module = 0x02;
unsigned short call_ref;
unsigned short l4_id = 1;
struct args_open args_open;
struct args_reset args_reset;
L4_to_L3_struct l43msg;
L3_to_L4_struct l34msg;

hp = BsmiOpenAdapter(BSMI_BUS_NUMBER,module, &args_open);

 Resets the ISDN component of the module associated with
handle. The example obtains the hardware configuration from a
valid configuration file in the current directory.

Note: The teleph.cfg is a deprecated configuration file. See Volume 6,
Appendix H for more information:

BT_ZERO(args_reset);
BsmiResetAdapter(hp,&args_reset);

BSMI Use Examples

March 2017 816

 Writes an enable-protocol message:

BT_ZERO(l43msg);
l43msg.lapdid = LAPDID_SPAN_A;
l43msg.msgtype = L4L3mENABLE_PROTOCOL;
l43msg.data.enable_protocol.level1.l1_mode = IISDNl1modHDLC;
l43msg.data.enable_protocol.level2.l2_mode = IISDNl2modLAP_D;
l43msg.data.enable_protocol.level2.dce_dte = IISDNdirUSER_SIDE;
l43msg.data.enable_protocol.level3.l3_mode = IISDNl3modQ931;
l43msg.data.enable_protocol.level3.q931_cnfg.switch_type = IISDNstUNKNOWN;
l43msg.data.enable_protocol.level3.q931_cnfg.variant = IISDNvarNET5;
l43msg.data.enable_protocol.level3.q931_cnfg.b_channel_service_state[0] =

0xfffefffe; /* For E-1 configuration; For T-1 use 0x7fffff */
BsmiControlWrite(fd, & l43msg);

 Waits for Layer 2 to establish:

while (BsmiControlRead(hp, &l34msg, NULL)!= 0)
if (l34msg.msgtype == L3L4mPROTOCOL_STATUS)

if (l34msg. L3L4.pcol_stat_data.status == IISDNdsESTABLISHED)
break;

 Writes a L4L3mCALL_REQUEST message:

BT_ZERO(l43msg);
l43msg.lapdid = LAPDID_SPAN_A;
l43msg.L4_ref = L4_id;
l43msg.msgtype = L4L3mCALL_REQUEST;
l43msg.data.call_req_data.call_type = IISDNcalltypVOICE;
l43msg.data.call_req_data.bchannel = 1;
l43msg.data.call_req_data.called_party.num_digits = 10;
l43msg.data.call_req_data.called_party.num_type = IISDNnumtUNKNOWN;
l43msg.data.call_req_data.called_party.num_plan = IISDNnumpUNKNOWN;
strncpy(&l43msg.data.call_req_data.called_party.digits[0]),

"0123456789",10;
BsmiControlWrite(hp, &l43msg);

 Waits for a L3L4mCONNECT message:

while (BsmiControlRead(hp, &l34msg, NULL))
if ((l34msg.L4_ref == L4_id) && (l34msg.msgtype == L3L4mCONNECT))
{

call_ref = l3l4msg.call_ref;
break;
}

BSMI Use Examples

March 2017 817

 Writes a L4L3mCLEAR_REQUEST message to disconnect:

BT_ZERO(l43msg);
l43msg.msgtype = L4L3mCLEAR_REQUEST;
l43msg.lapdid = LAPDID_SPAN_A;
l43msg.L4_ref = L4_id;
l43msg.call_ref = call_ref;
BsmiControlWrite(hp, &l43msg);

 Waits for the acknowledgement:

while (BsmiControlRead(hp, &l34msg, NULL))
if ((l34msg.L4_ref == L4_id) && (l34msg.msgtype ==
L3L4mCLEAR_REQUEST))

{
call_ref = l3l4msg.call_ref;
break;

}

 Closes and releases the open handle:

BsmiCloseAdapter(hp);

BSMI Use Examples

March 2017 818

BRI Protocol Stack Initialization
This example shows the initialization of the protocol stack on a BRI
card. Once all the layers are established, call control is done in the
same manner as PRI ISDN.

L4_to_L3_struct msg;

//set layer 1 for BRI
memset(&msg,0,sizeof(L4_to_L3_struct));
msg.msgtype = L4L3mSET_HARDWARE;
msg.lapdid = LAPDID_PORT_A;
msg.data.hardware_data.line_data[0].briL1_cmd = IISDNcmdL1_ACTIVATE;
msg.data.hardware_data.line_data[0].bri_l1mode = IISDN_l1mode_Terminal;
BsmiControlWrite(fd, &msg);

//set layer 2 and 3
memset(&msg,0,sizeof(L4_to_L3_struct));
msg.msgtype = L4L3mENABLE_PROTOCOL;
msg.lapdid = LAPDID_PORT_A;
msg.data.enable_protocol.level1.l1_mode = IISDNl1modHDLC;
msg.data.enable_protocol.level2.l2_mode = IISDNl2modLAP_D;
msg.data.enable_protocol.level2.par.lap.dce_dte = IISDNdirUSER_SIDE;
msg.data.enable_protocol.level2.par.lap.TEI_mode = 1;

//use auto-assigned TEI
// msg.lli = TO_IISDN_LLI(0,TEI);
//need only if TEI_mode = 0;
msg.data.enable_protocol.level3.l3_mode = IISDNl3modQ931;
msg.data.enable_protocol.level3.q931_cnfg.switch_type = IISDNstUNKNOWN;
msg.data.enable_protocol.level3.q931_cnfg.variant = IISDNvarNET3;
msg.data.enable_protocol.level3.q931_cnfg.basic_rate = 1;

// Put all channels on spans A into service
msg.data.enable_protocol.level3.q931_cnfg.b_channel_service_state[0] = 6;
msg.data.enable_protocol.level3.q931_cnfg.b_channel_service_state[1] = 6;
msg.data.enable_protocol.level3.q931_cnfg.suppress_auto_spid = 1;

//don't send SPID
BsmiControlWrite(fd, &msg);

//start layer 2
msg.msgtype = L4L3mENABLE_PROTOCOL;
msg.data.enable_protocol.command = IISDNepcmdDL_ESTABLISH;
BsmiControlWrite(fd, &msg);

March 2017 819

23 - BSMI General Message Structure

This chapter describes the general structure of the BSMI control
messages passed between the host and module.

It has the following sections:

 BSMI Message Naming Convention
 BSMI Control Messages by Category
 L4L3 Message Common Header
 L3L4 Message Common Header
 L4 Reference and Call Reference
 Common Structures

The host communicates with the Dialogic® Brooktrout® module
through the Control Interface. The host application (referenced as
L4) issues BSMI control messages to configure the module or to
instruct it to perform a specific action, such as make a call, clear a
call, or request the status of an interface.

The module (referenced as L3) issues BSMI control messages to
inform the host of the status of the interface, call events, or an error
condition.

Additional information on this interface is contained in the iisdn.h
C header file. The iisdn.h file may change and some features might
not match the current documentation. If you upgrade to newer
versions, review the new iisdn.h files along with recompiling all
drivers, applications, and utilities.

BSMI Message Naming Convention

March 2017 820

BSMI Message Naming Convention
BSMI control messages are identified using the following naming
convention:

sender receiver m messageid

where:

All BSMI control messages have the same general format, as
illustrated in Figure 1. Messages from the host (L4) begin with a
common data structure, or header. When the application orders an
action, the header provides the information necessary to identify
that message and the interface or call. See L4L3 Message Common
Header on page 830.

A similar common header is used for all messages from the
module (L3). Length of the message data varies depending on the
specific message, but never exceeds 512 bytes. See L3L4 Message
Common Header on page 832.

Figure 1. Control Message Structure

sender Identifies the source of the message. L4 refers to the
host, L3 refers to the module.

receiver Identifies the message destination. L4 refers to the
host, L3 refers to the module.

m Indicates that the message is a BSMI control message.

messageid Identifies the specific message.

Common Header

Message Specific Data 2

0 512
byte offset

L4L3 BSMI Message

L3L4 BSMI Message

Common Header

Message Specific Data 2

0 5127 8
byte offset

15 161

 1 Starting offset depends on message

 2 Message Specific Data length depends on message type

BSMI Control Messages by Category

March 2017 821

BSMI Control Messages by Category
There are several functional categories of BSMI control messages.

 Management Messages

 Call Control Messages

 ISDN Supplemental and Miscellaneous Messages

All the messages are arranged in alphabetical order by layer
direction within protocol type:

 Chapter , R2 Signaling Protocol with BSMI on page 864

 Chapter , LEC Protocols with BSMI on page 919

 Chapter , Host to Module (L4L3m) Messages on page 993

 Chapter , Module to Host (L3L4m) Messages on page 1074

Management Messages
Used for administration, configuration, and non-call related
functions. For a summary of valid management messages, see:

 Table 6, Management Messages (L4L3)

 Table 7 on page 823

Table 6. Management Messages (L4L3)

Name Meaning

L4L3mDISABLE_B_CHANNEL

ID: 0xA3

Disables the specified B-channel or group of
B-channels; places a B-channel into the out-of-
service (near-end) state. For AT&T B-channel
Maintenance only.

L4L3mDISABLE_CAS (R2)

L4L3mDISABLE_CAS (LEC)

ID: 0xC7

Disables the R2 protocol. This message is for
any timeslot on an E1 span.

Stops the LEC protocol. This message is issued
for each logical channel available on the module.

CAS protocols only (R2 and LEC).

L4L3mDISABLE_PROTOCOL

ID: 0xA1

Disables Layers 1, 2, and 3 protocols and call
processing for one or more 64K channels on a
single module.

BSMI Control Messages by Category

March 2017 822

L4L3mENABLE_B_CHANNEL

ID: 0xA2

Enables the specified B-channel; used to return
a B-channel from out-of-service (near-end) to
active state. For AT&T B Channel Maintenance
only.

L4L3mENABLE_CAS (R2)

L4L3mENABLE_CAS (LEC)

ID: 0xC6

Starts the R2 protocol. This message is issued
for each timeslot on the E1 span.

Starts the LEC protocol. This message is issued
for each logical channel available on the module.

CAS protocols only (R2 and LEC).

L4L3mENABLE_PROTOCOL

ID: 0xB6

Enables Layers 1, 2, and 3 protocols and call
processing for one or more 64K channels on a
single module.

L4L3mREQ_ABCD_DATA (R2)

L4L3mREQ_ABCD_DATA (LEC)

ID: 0xBC

Requests the module to return to the host all
signaling bits from all B-channels in module.

CAS protocols only (R2 and LEC).

L4L3mREQ_BOARD_ID

ID: 0xC1

Requests module identification information
from the module.

L4L3mREQ_CONFIGURATION

ID: 0xEA

Retrieves parameters on a B-channel or line
interface.

CAS protocols (currently LEC only).

L4L3mREQ_PROTOCOL_STATUS

ID: 0xA5

Reports current data link layer status for the
specified D-channel.

L4L3mRESTART

ID: 0xA4

Restarts the specified B-channel; idles and tears
down any call on a B-channel.

L4L3mSET_CONFIGURATION

ID: 0xE9

Sets parameters on a B-channel or line
interface.

CAS protocols (currently LEC only).

Table 6. Management Messages (L4L3) (Continued)

Name Meaning

BSMI Control Messages by Category

March 2017 823

Table 7. Management Messages (L3L4)

Name Meaning

L3L4mABCD_SIGNAL_DATA (LEC)

ID: 0x35

Returns both the received and transmitted
signaling bits for each B-channel on the module.

CAS protocols only (R2 and LEC).

L3L4mACK_DOWNLOAD
ID: 0x44

Indicates downloading of trunk-specific
coefficients is successfully completed (currently
applicable to analog modules only).

CAS protocols (currently LEC only).

L3L4mACK_UPLOAD
ID: 0x47

Returns both trunk-specific coefficients
(currently only applicable to analog modules).

L3L4mB_CHANNEL_STATUS
ID: 0x22

Indicates the status of the specified B-channel
has changed.

L3L4mBOARD_ID

ID: 0x3B

Sends the module identification to the host.

L3L4mCAS_SIGNALING_BIT_STATUS (R2)

L3L4mCAS_SIGNALING_BIT_STATUS (LEC)

ID: 0x4F

Notifies host that signaling bits for a B-channel
have changed.

CAS protocols only (R2 and LEC).

L3L4mCAS_STATUS (R2)

L3L4mCAS_STATUS (LEC)

ID: 0x40

Enable and disable CAS messages response.

CAS protocols only (R2 and LEC).

L3L4mDISCONNECT

ID: 0x21

Indicates a change in status on an enabled
protocol stack (D-channels or B-channel).

L3L4mERROR

ID: 0x20

Indicates either invalid information in the host
specified L4L3 message or an error condition
occurred.

L3L4mRESTART

ID: 0x0D

Restarts the specified B-channel; idles and tears
down any call on a B-channel.

BSMI Control Messages by Category

March 2017 824

Call Control Messages
Used for all ISDN call-related functions, such as setup, clearing, and
event reporting. For a summary of valid call control messages, see:

 Table 8, Call Control Messages (L4L3)

 Table 9 on page 826

Table 8. Call Control Messages (L4L3)

Name Meaning

L4L3mALERTING_REQUEST

ID: 0x83

Informs the network an incoming call is
ringing (send ALERTING message to the
network).

L4L3mCALL_REQUEST
ID: 0x81

Starts an outgoing call (send SETUP
message to the network).

L4L3mCALL_PROCEEDING_REQUEST

ID: 0x89

Notifies the switching equipment originating
the call that the called party’s line is free and
being alerted (ringing). (R2)

Send a CALL PROCEEDING message to the
network; used with B-channel negotiation
only.

L4L3mCAS_CHAN_BLOCK

ID: 0xD6

Asserts blocking pattern on the line. Only
valid from the idle state. Transitions the
B-channel to the blocking state.

CAS protocols (currently R2 only).

L4L3mCAS_CHAN_UNBLOCK

ID: 0xD7

Asserts idle pattern on the line and return to
the idle state. Only valid from the blocking
state.

CAS protocols (currently R2 only).

L4L3mCLEAR_REQUEST

ID: 0x85

Clears (tears down) a call or refuses an
incoming call (sends DISCONNECT,
RELEASE, or RELEASE COMPLETE
message to the network).

L4L3mCOLLECT_DIGITS (R2)

L4L3mCOLLECT_DIGITS (LEC)

ID: 0xC9

Acknowledges an incoming R2 MF digit and
requests the next one. (R2)

Instructs the module to start detecting
digits.

CAS protocols only (R2 and LEC).

BSMI Control Messages by Category

March 2017 825

L4L3mCONNECT_REQUEST

ID: 0x84

Informs the network an incoming call has
been answered (sends CONNECT message
to the network).

L4L3mDIAL

ID: 0xCA

Specifies digits dialed by the module, and the
dialing method (DTMF, MF, or Analog
Pulse).

CAS protocols (currently LEC only).

L4L3mEND_DIAL

ID: 0xBE

Notifies the module that the host has
finished dialing digits.

CAS protocols (currently LEC only).

L4L3mFACILITY_REQUEST

ID: 0x86

Sends a FACILITY message to the network;
used with Release Link Trunk signaling
only.

L4L3mFEATURE_REQUEST

ID: 0xB3

Requests ANI on Demand or Variabill
feature for an incoming call; supported on
AT&T #4ESS only.

L4L3mFORCE_CONNECTION_REQUEST

ID: 0xEB

Notifies the module that the application has
detected an answer for the current outbound
call. Used when the protocol does not already
provide that information.

CAS protocols (currently LEC only).

L4L3mINFO_REQUEST

ID: 0x8B

Dials a test R2 MF string of tones.

L4L3mPROGRESS_REQUEST

ID: 0x82

Informs the network an incoming call is
being processed (send PROGRESS message
to the network).

L4L3mTX_HOOKFLASH

ID: 0xC0

Transmits a hookflash if the line is currently
offhook. Not all protocols support sending a
hookflash.

CAS protocols (currently LEC only).

L4L3mTX_WINK

ID: 0xBD

Transmits a wink if the line is currently
onhook. Not all protocols support sending a
wink.

CAS protocols (currently LEC only).

Table 8. Call Control Messages (L4L3) (Continued)

Name Meaning

BSMI Control Messages by Category

March 2017 826

L4L3mUNIVERSAL

ID: 0x88

Sends a custom or proprietary Q.931
message. Host application is responsible for
constructing this message, and it has no
effect on the call state.

L4L3mUSER_INFO

ID: 0x87

Sends up to 130 bytes of information over the
network without establishing a switched
end-to-end connection.

Table 9. Call Control Messages (L3L4)

Name Meaning

L3L4mALERTING (R2)

L3L4mALERTING (LEC)

L3L4mALERTING (ISDN)

ID: 0x03

Indicates to the outbound side that the call is
accepted by the remote end and the phone is
ringing.

L3L4mANI

ID: 0x31

Provides the result of the ANI on Demand
request; generated in response to an
L4L3mFEATURE_REQUEST message.

L3L4mBILLING_STATUS

ID: 0x30

Provides the result of the billing change
request (Variabill), generated in response to
an L4L3mFEATURE_REQUEST
message.

L3L4mCALL_PROC_SENT

ID: 0x38

Reports the transmission of the call
proceeding.

L3L4mCALL_PROCEEDING

ID: 0x3A

Indicates that a call proceeding message was
received.

L3L4mCALLER_ID_DETECTED

ID: 0x59

Notifies host that called ID information is
detected on the line.

L3L4mCAS_CHAN_BLOCKED

ID: 0x4B

Indicates either a response to a block
message or an asynchronous event that the
line has been blocked by the remote end.

CAS protocols (currently R2 only).

Table 8. Call Control Messages (L4L3) (Continued)

Name Meaning

BSMI Control Messages by Category

March 2017 827

L3L4mCAS_CHAN_UNBLOCKED

ID: 0x4C

Indicates either a response to an unblock
message or an asynchronous event that the
line was unblocked by the remote end.

CAS protocols (currently R2 only).

L3L4mCLEAR_REQUEST (R2)

L3L4mCLEAR_REQUEST (LEC)

L3L4mCLEAR_REQUEST (ISDN)

ID: 0x06

Indicates response to a CLEAR_REQUEST
message. This event is not received until the
remote end is idle. (R2)

Notifies the host that the line is idle and
ready for another call (inbound or outbound).
(LEC)

L3L4mCLEAR_WITH_RESTART_REQUEST

ID: 0x08

Indicates a call has been cleared due to a
network detected error. The B-channel
involved in the call has been restarted.

L3L4mCONN_ACK_IND

ID: 0x0C

Received connection acknowledgement.

L3L4mCONNECT (R2)

L3L4mCONNECT (LEC)

L3L4mCONNECT (ISDN)

ID: 0x04

Notifies the host that the ongoing outbound
call is answered.

L3L4mDISCONNECT (R2)

L3L4mDISCONNECT (LEC)

L3L4mDISCONNECT (ISDN)

ID: 0x05

Indicates that the remote end has
disconnected.

Notifies the host that the network released
the line, either initiating the call
disconnection procedure or in response to a
disconnection initiated by the module.

L3L4mPRE_SEIZE (R2)

L3L4mPRE_SEIZE (LEC)

ID: 0x33

Indicates that the line was seized and that
an incoming call is in progress. (R2)

Notify host that the line is seized for an
incoming call, and the handshaking
necessary to proceed with the call is taking
place. (LEC)

CAS protocols only (R2 and LEC).

Table 9. Call Control Messages (L3L4) (Continued)

Name Meaning

BSMI Control Messages by Category

March 2017 828

L3L4mPROGRESS (LEC)

L3L4mPROGRESS (ISDN)

ID: 0x02

Notifies the application that the procedure
for establishing an outbound call (initiated
by an L4L3mCALL_REQUEST message) is
in progress.

L3L4mRAW_QDATA

ID: 0x16

Contains up to 256 bytes of undecoded Q.931
packets; this message is usually generated in
tandem with an ISDN L3L4m message and
follows the L3L4 message, if any.

L3L4mSETUP_IND (R2)

L3L4mSETUP_IND (LEC)

L3L4mSETUP_IND (ISDN)

ID: 0x01

Notifies the host of an incoming call. The
called and calling party numbers are
contained within the L3L4 data structure.

L3L4mSTATUS_IND

ID: 0x07

Provides status information for a call,
usually indicating a remote call state
mismatch.

L3L4mUNIVERSAL

ID: 0x17

Sends a custom or proprietary Q.931
message to the host. It has no effect on the
call state.

L3L4mUSER_INFO

ID: 0x09

Indicates receipt of a USER INFO message,
containing up to 130 bytes of information.

Table 9. Call Control Messages (L3L4) (Continued)

Name Meaning

BSMI Control Messages by Category

March 2017 829

ISDN Supplemental and Miscellaneous Messages
ISDN uses supplemental and miscellaneous messages for
activities outside standard ISDN call-related functions, such as
ITU-T suspend/resume functions and the passing of undecoded
Q.931 packets from the network to the host. See Table 10 for more
information.

Table 10. ISDN Supplemental and Miscellaneous Messages (L3L4)

Name Meaning

L3L4mANI
ID: 0x31

Provides the result of the ANI on Demand request;
generated in response to an
L4L3mFEATURE_REQUEST message.

L3L4mBILLING_STATUS
ID: 0x30

Provides the result of the billing change request (Variabill),
generated in response to an
L4L3mFEATURE_REQUEST message.

L3L4mRAW_QDATA
ID: 0x16

Contains up to 256 bytes of undecoded Q.931 packets; this
message is usually generated in tandem with an ISDN
L3L4m message and follows the L3L4 message, if any.

L3L4mUNIVERSAL
ID: 0x17

Sends a custom or proprietary Q.931 message to the host. It
has no effect on the call state.

L4L3 Message Common Header

March 2017 830

L4L3 Message Common Header

Description The L4L3 message common header is used for all control messages
passed from the host to the Dialogic® Brooktrout® module. It is
eight bytes in length and has the structure described below.

All eight bytes of the common header must be present in each L4L3
message.

L4L3 messages are described in:

 Chapter , R2 Signaling Protocol with BSMI on page 864

 Chapter , LEC Protocols with BSMI on page 919

 Chapter , Host to Module (L4L3m) Messages on page 993

Input Fields unsigned char lapdid;
unsigned char msgtype;
unsigned short L4-ref;
unsigned short call_ref;
unsigned short lli;

Input lapdid

LAP-D ID. A number from 0 to 63 that identifies the physical
HDLC channel to be used.

msgtype

Message ID. Identifies the message being sent. Refer to Table 6
on page 821 for valid L4L3 message IDs.

L4-ref

L4 Reference. Reference value assigned to outgoing calls by the
host application for tracking purposes. The host defines the
numbering scheme, but the value must be unique for each active
call. The module references this number in all L3L4 response
messages.
See L4 Reference Value on page 834 and Relationship between L4
Reference and Call Reference on page 836 for more information.

L4L3 Message Common Header

March 2017 831

call_ref

Call Reference. Reference value assigned on a per call basis by the
module. This value identifies the call for which the host is issuing
an ISDN Call Control message. Use a value of 0x0000 for L4L3
Management messages and an initial
L4L3mCALL_REQUEST.
See Call Reference Value on page 835 and Relationship between
L4 Reference and Call Reference on page 836 for more
information.

lli

Logical Link ID or DLCI. Used for LAP-D data connections. For
other connection types, set these bytes to 0x0000. The format for
the Logical Link ID is shown in Figure 2 on page 837.
See Logical Link ID or DLCI on page 837 for more information.

L3L4 Message Common Header

March 2017 832

L3L4 Message Common Header

Description The L3L4 message common header is used for all control messages
passed from the Dialogic® Brooktrout® module to the host. It is 16
bytes in length and has the structure described below.

All 16 bytes of the common header are present in each L3L4
message.

L3L4 messages are described in:

 Chapter , R2 Signaling Protocol with BSMI on page 900
 Chapter , LEC Protocols with BSMI on page 919
 Chapter , Module to Host (L3L4m) Messages on page 1074

Input Fields unsigned char lapdid;
unsigned char msgtype;
unsigned short L4-ref;
unsigned short call_ref;
unsigned char bchannel;
unsigned char interface;
unsigned short lli;

Input lapdid

LAP-D ID. A number from 0 to 63 that identifies the physical
HDLC channel to be used.

msgtype

Message ID. Identifies the message being sent. Refer to Table 6
on page 821 for valid L4L3 message IDs.

L4-ref

L4 Reference. Reference value assigned to outgoing calls by the
host application for tracking purposes. The host defines the
numbering scheme, but the value must be unique for each active
call. The module references this number in all L3L4 response
messages.
See L4 Reference Value on page 834 and Relationship between L4
Reference and Call Reference on page 836 for more information.

L3L4 Message Common Header

March 2017 833

call_ref

Call Reference. Reference value assigned on a per call basis by the
module. This value identifies the call for which the host is issuing
an ISDN Call Control message. Use a value of 0x0000 for L4L3
Management messages and an initial
L4L3mCALL_REQUEST. Refer to page 835 for more
information about call_ref values.
See Call Reference Value on page 835 and Relationship between
L4 Reference and Call Reference on page 836 for details.

bchannel

B-channel. Identifies the channel. Channels are numbered as
listed below:

interface

Non-Facility Associated Signaling (NFAS) interface. Use a
default value of 0xFF if NFAS is not configured. Interfaces are
numbered from 0 – 19.

lli

Logical Link ID or DLCI. Used for LAP-D data connections. For
other connection types, set these bytes to 0x0000. The format for
the Logical Link ID is shown in Figure 2 on page 837.
See Logical Link ID or DLCI on page 837 for more information.

ISDN 23B+D Channels numbered 1 - 23. Channel 24 reserved
for signaling.

ISDN 30B+D Channels numbered 1 - 15, 17 - 31 (Channel 16
reserved for signaling). Channel 0 reserved for
telemetry.

ISDN NFAS Channels numbered 1 - 24; the interface field value
indicates the span where the channel resides,

L4 Reference and Call Reference

March 2017 834

L4 Reference and Call Reference
The BSMI control interface uses two types of reference values in call
handling: L4 Reference and Call Reference. Together, they provide
both the host and the Dialogic® Brooktrout® module with a method
of indicating the specific call for a Call Control message. L4 ref and
call_ref are included in the common header for both L4L3 and L3L4
messages.

Refer to L4L3 Message Common Header on page 830 and L3L4
Message Common Header on page 832 for more information.

L4 Reference Value
The L4 Reference value is a unique number assigned to a call by the
host application and exists for the duration of the call. Dialogic®
Brooktrout® firmware stores the L4_ref upon receipt of any and
every call control message. The Dialogic® Brooktrout® module uses
this value in the following manner:

 Outgoing calls – The host must provide an L4_ref when it
initiates a call using the L4L3mCALL_REQUEST message. All
subsequent L4L3 Call Control messages for this call must use
L4_ref. The Dialogic® Brooktrout® module stores L4_ref for use
in all L3L4 messages pertaining to that call. L4_ref is especially
important for outgoing B-channel negotiation since it is the only
way to reference the call before the B-channel is assigned.

 Incoming calls – After receiving an L3L4mSETUP_IND
(incoming call), the host is expected to provide an L4 reference
value in its first L4L3 response to the card. In this initial
message, the Dialogic® Brooktrout® module uses a value of
0xFFFF for L4_ref. If no L4_ref is provided, this module assigns
a value of 0xFFFF for use in subsequent messages.

An L4_ref is not required for Management messages (L4_ref set to
0xFFFF as a default).

L4 Reference and Call Reference

March 2017 835

Call Reference Value
The call reference value is a unique number assigned to a call by the
Dialogic® Brooktrout® module. The module uses this value in the
following manner:

 Outgoing calls – The host must use a call_ref of 0x00 in the
initial L4L3mCALL_REQUEST message since this number is
assigned by the module. If no errors occur, the module returns
call_ref to the host in the initial PROGRESS, ALERTING, or
CONNECT message. All subsequent L4L3 Call Control
messages from the host must include call_ref. L4L3 Call Control
messages received without the proper call reference value cause
an L3L4mERROR message with an error code of
L3L4errCALL_REF_ERROR (06).

 Incoming calls – The module assigns a call reference value to
each incoming call request from the network. The application
passes this value to the host in an L3L4mSETUP_IND
message. All subsequent L4L3 ISDN Call Control messages from
the host must include this call_ref. L4L3 ISDN Call Control
messages received without the proper call reference value cause
an L3L4mERROR message with an error code of
L3L4errCALL_REF_ERROR (06).

A call reference value is not required for Management messages
(call_ref set to 0 as a default).

L4 Reference and Call Reference

March 2017 836

Relationship between L4 Reference and Call Reference
Typically, Dialogic® Brooktrout® firmware tracks calls using
call_ref. When the host issues an L4L3m call control message,
Dialogic® Brooktrout® firmware searches its call record data
structure for the call_ref matching the call_ref received in the
common header. If no matching call_ref is found, an L3L4mERROR
message is generated with an error code of
L3L4errCALL_REF_ERROR (06) indicating no record of the call can
be found.

The L4_ref value is used to identify a call in the following cases:

 The application determines an outgoing call is to be abandoned
prior to receiving a response from the module. In this case,
L4_ref used in the initial L4L3mCALL_REQUEST message is
used to identify the call; call_ref is zero. Dialogic® Brooktrout®
firmware searches the call record data structures for a value
matching the L4_ref received from the host. If no matching
L4_ref is found, an L3L4mERROR message is generated with
an error code of L3L4errCALL_REF_ERROR (06) indicating no
record of the call can be found.

 When using B-channel negotiation for outgoing calls, the L4_ref
value is the only way the call can be identified by the module in
the first response to an L4L3mCALL_REQUEST. Subsequent
L3L4m messages contain the appropriate call_ref value.

L4 Reference and Call Reference

March 2017 837

Logical Link ID or DLCI
The Logical Link ID is equivalent to the ISDN LAP-D/Q.921 Data
Link Connection Identifier (DLCI). The DLCI consists of two bytes
that uniquely identify a logical connection. The two main
components of the DLCI are:

 Terminal Endpoint Identifier (TEI)

The high level bits of the least significant byte (LSB), identifying
the connected terminal equipment.

 Service Access Point Identifier (SAPI)

The high six bits of the most significant byte (MSB), identifying
the Layer 3 user of LAP-D.

The DLCI has the format shown in Figure 2.

Figure 2. DLCI Format

The following excerpts from iisdn.h illustrate sample macros that
can be used by the host for constructing the LLI/DLCI.

 * For Q.921, the user might use the following macro to specify LLI in
 * an ENABLE_PROTOCOL message:
 * #define TO_IISDN_LLI(SAPI,TEI) (((SAPI) << 10) | ((TEI) << 1))

Table 11 lists the LLI values to be used for the various protocol
configurations. For more information on protocol configuration, refer
to L4L3mENABLE_PROTOCOL on page 1021.

MSB LSB

x 0x x x x x xx x x x x x 0

TEI

0
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

SAPI

Table 11. Protocol Mode and Corresponding LLI Values

Protocol Mode
Recommended LLI Value

iisdn.h define Hex Value

LAP-D use macro shown above

Q.931 PRI and BRI
point-to-multipoint

IISDN_LLI_CNTL 0x0000

Q.931 BRI point-to-point use macro shown above

Common Structures

March 2017 838

Common Structures
ISDN Supplemental and Miscellaneous messages make use of
common structures to initiate or report call status. This section
defines these common structures referred to in the message
structure definitions found in the following chapters:

 Chapter , Host to Module (L4L3m) Messages on page 993
 Chapter , Module to Host (L3L4m) Messages on page 1074

The common structures include:

 Alerting and Connecting Data Message (IISDN_AL_CON_DATA)
on page 839

 Call ID (IISDN_CALL_ID) on page 842

 Called Party (IISDN_CALLED_PARTY) on page 843

 Calling Party (IISDN_CALLING_PARTY) on page 845

 Cause Data (IISDN_CAUSE) on page 848

 Connected Address (IISDN_CONNECTED_ADDRESS) on
page 851

 Information Element (IISDN_IE_STRUCT) on page 853

 Progress Indication (IISDN_PROGRESS) on page 855

 Q.933 DLCI Negotiation (IISDN_Q922_DLCI) on page 858

 Redirecting Number (IISDN_REDIRECT_NUM) on page 859

 User Info (IISDN_USER_INFO) on page 863

Dialogic® Brooktrout® firmware uses the data that populates these
structures to provide call routing and billing information to the
network in the format appropriate for the service supporting the
Dialogic® Brooktrout® module. This data includes ISDN
Information Elements (IEs) required for Q.931 connections.

Alerting and Connecting Data Message (IISDN_AL_CON_DATA)

March 2017 839

Alerting and Connecting Data Message
(IISDN_AL_CON_DATA)

Description This message alerts and connects messages to and from the network.
The Alerting and Connect Data Message structure detailed below
can be found in the following messages:

 L4L3mALERTING_REQUEST
 L4L3mCONNECT_REQUEST
 L3L4mALERTING
 L3L4mCONNECT

Input Fields IISDN_REDIRECT_NUM redirect_num;
unsigned short x25_tx_pktsize;
unsigned short x25_rx_pktsize;
unsigned char bchannel;
unsigned char iface;
IISDN_USER_INFO user_info;
IISDN_Q922_DLCI fr_dlci;
IISDN_CONNECTED_ADDRESS connected_address;
IISDN_PROGRESS_IND progress_ind;
IISDN_CALL_ID call_id;
IISDN_IE_STRUCT ie;

Input redirect_num

Redirecting Number Structure. See Redirecting Number
(IISDN_REDIRECT_NUM) on page 859.

x25_tx_pktsize

X.25 Transmit Packet Size. Unused in this message; set this field
to 0x00

x25_rx_pktsize

X.25 Receive Packet Size. Unused in this message; set this field
to 0x00

Alerting and Connecting Data Message (IISDN_AL_CON_DATA)

March 2017 840

bchannel

B-channel. Identifies the channel to be used for the call. In this
message use bchannel only when B-channel negotiation is
enabled by setting b_chan_negot in the IISDN_LEVEL3_CNFG
structure of the L4L3mENABLE_PROTOCOL message. If the
feature is not enabled or a
L4L3mCALL_PROCEEDING_REQUEST message is already
issued for this call, bchannel is ignored and set to 0x00. Channels
are numbered as listed below:

iface

Non-Facilities Associated Signaling (NFAS) Interface. Indicates
the channel’s span specified in bchannel. The host application
must maintain the mapping of span (line) to interface. In this
message use iface only when both B-channel negotiation
(b_chan_negot) and NFAS (nfas) is enabled in the
IISDN_LEVEL3_CNFG structure of the
L4L3mENABLE_PROTOCOL message. If neither field is
enabled, iface is ignored and set to 0x00. If B-channel negotiation
is enabled and NFAS is not in use, set iface to 0xFF.

user_info

See User Info (IISDN_USER_INFO) on page 863.

fr_dlci

See Q.933 DLCI Negotiation (IISDN_Q922_DLCI) on page 858.

connected_address

See Cause Data (IISDN_CAUSE) on page 848.

progress_ind

See Progress Indication (IISDN_PROGRESS) on page 855.

ISDN 23B+D Channels numbered 1 - 23.

ISDN 30B+D Channels numbered 1 - 15, 17-31 (channel 16
reserved for signaling).

ISDN NFAS Channels numbered 1 - 24; the interface field
value indicates the span where the channel
resides.

ISDN H0 Interfaces numbered either 1 - 3 (23B+D) or 1 - 4
(NFAS); supported for 384K ISDN service on
AT&T 4ESS only.

Alerting and Connecting Data Message (IISDN_AL_CON_DATA)

March 2017 841

call_id

See Call ID (IISDN_CALL_ID) on page 842.

ie

See Information Element (IISDN_IE_STRUCT) on page 853.

Call ID (IISDN_CALL_ID)

March 2017 842

Call ID (IISDN_CALL_ID)

Description Call ID provides information necessary to support Release Link
Trunk (RLT) signaling on PRI spans connected to DMS-100 and
DMS-250 switches. Since this method of call deflection is used to
forward an incoming call to another destination without allocating a
B-channel, the Call ID is the only way to identify this call.

The Call ID structure detailed below is used in the following
messages:

 L4L3mALERTING_REQUEST
 L4L3mFACILITY_REQUEST
 L4L3mPROGRESS_REQUEST
 L3L4mALERTING
 L3L4mCONNECT
 L3L4mPROGRESS

Input Fields unsigned char length;
unsigned char call_id [IISDN_MAX_CALL_ID];

Input length

Length of Call ID. Specifies the number of ASCII (IA5) digits
contained in the call_id array.

call_id

Call ID. An array of up to 31 ASCII (IA5) digits used to identify
this call. When present in an L3L4 message, this value indicates
the call ID number provided by the network in a FACILITY IE.

Called Party (IISDN_CALLED_PARTY)

March 2017 843

Called Party (IISDN_CALLED_PARTY)

Description Called Party provides information necessary to route the call and/or
construct the Called Party Number IE. The application uses this
information to indicate the destination of the call and contains the
following components:

 Number of digits in the destination telephone number

 Type of number (usually National for North American numbers)

 Numbering plan used (typically ISDN)

 Destination telephone number

The Called Party structure detailed below is used in the following
messages:

 L4L3mCALL_REQUEST
 L4L3mINFO_REQUEST
 L3L4mSETUP_IND

Input Fields unsigned short num_digits;
unsigned char num_type;
unsigned char num_plan;
unsigned char digits [IISDN_MAX_DIGITS];

Input num_digits

Number of Digits. Specifies the number of digits in the Called
Party Number. The application determines valid Calling Party
numbers by the current network dialing plan. This number must
be less than 0x18.

Called Party (IISDN_CALLED_PARTY)

March 2017 844

num_type

Number Type. Corresponds to the Called Party Number Types as
defined by ITU-T. This field is usually specified as
IISDNnumtNATIONAL (0x02). Possible values include:

num_plan

Numbering Plan Identification. Corresponds to the Called Party
numbering plan identification as defined by AT&T. This field is
usually specified as IISDNnumpISDN (0x01). Possible values
include:

digits

Digits. Called Party number in ASCII digits. Number of digits in
this string must equal the number of digits specified in
num_digits. Eight-bit values in this field must be between 0x30
and 0x39 (ASCII 0 through 9).

IISDNnumtUNKNOWN

Unknown number type, used when there is no knowledge of
the type of number.

0x00

IISDNnumtINTERNATIONAL

International number.

0x01

IISDNnumtNATIONAL

National number.

0x02

IISDNnumtSUBSCRIBER

Subscriber number.

0x04

IISDNnumtABBREVIATED

Abbreviated number.

0x06

IISDNnumpUNKNOWN

Unknown Numbering Plan.

0x00

IISDNnumpISDN

Numbering per ISDN Recommendation E.164/E.163.

0x01

IISDNnumpTELEPHONY

Standard telephone numbering plan.

0x02

IISDNnumpPRIVATE

Private numbering plan.

0x05

Calling Party (IISDN_CALLING_PARTY)

March 2017 845

Calling Party (IISDN_CALLING_PARTY)

Description Calling Party provides information necessary to identify the
originator of the call and/or construct the Calling Party Number IE.
The application uses this information to indicate the origin of the
call (originating number) and contains the following components:

 Number of digits in the originating telephone number (or zero if
the number is not available)

 Type of number (usually National for North American numbers)

 Numbering plan used (typically ISDN)

 Optional Presentation indicator

 Optional Screening indicator

 Originating telephone number, if available

The Calling Party structure detailed below is used in the following
messages:

 L4L3mCALL_REQUEST
 L3L4mANI
 L3L4mSETUP_IND

Input Fields unsigned short num_digits;
unsigned char num_type;
unsigned char num_plan;
unsigned char presentation_ind;
unsigned char screening_ind;
unsigned char digits [IISDN_MAX_DIGITS+2];

Input num_digits

Number of Digits. Specifies the number of digits in the Calling
Party Number. A value of 0x0000 indicates the Calling Party
number is not available and the remainder of this structure can
be omitted. The application determines valid Calling Party
numbers by the current network dialing plan. This number must
be less than IISDN_MAX_DIGITS.

Calling Party (IISDN_CALLING_PARTY)

March 2017 846

num_type

Number Type. Corresponds to the Calling Party Number Types
as ignored by ITU-T. This field is usually specified as
IISDNnumtNATIONAL (0x02). Possible values include:

num_plan

Numbering Plan Identification. Corresponds to Calling Party
numbering plan identification as defined by ITU-T. This field is
usually specified as IISDNnumpISDN (0x01). Possible values
include:

IISDNnumtUNKNOWN

Unknown number type, used when there is no knowledge of
the type of number.

0x00

IISDNnumtINTERNATIONAL

International number.

0x01

IISDNnumtNATIONAL

National number.

0x02

IISDNnumtSUBSCRIBER

subscriber number.

0x04

IISDNnumtABBREVIATED

Abbreviated number.

0x06

IISDNnumpUNKNOWN

Unknown Numbering Plan.

0x00

IISDNnumpISDN

Numbering per ISDN Recommendation E.164/E.163.

0x01

IISDNnumpTELEPHONY

Standard telephone numbering plan.

0x02

IISDNnumpPRIVATE

Private numbering plan.

0x09

Calling Party (IISDN_CALLING_PARTY)

March 2017 847

presentation_ind

Presentation Indicator. Identifies whether the calling user wants
the Calling Party number presented to the called user. If no
preference, specify a value of 0x00. Possible values include:

screening_ind

Screening Indicator. Identifies whether screening has been
performed on the calling user and the status of any screening
performed. If no preference, specify a value of 0x00. Possible
values include:

digits

Digits. Calling Party number in ASCII digits. Number of digits in
this string must equal the number of digits specified in
num_digits. Eight-bit values in this field must be between 0x30
and 0x39 (ASCII 0 through 9).

IISDNpresALLOWED

Presentation allowed or no preference.

0x00

IISDNpresRESTRICTED

Presentation restricted/not allowed.

0x01

IISDNpresNUM_NOT_AVAIL

Calling Party number not available due to
inter-networking.

0x02

IISDNscrUSER_NOT_SCREENED

User provided, not screened.

0x00

IISDNscrUSER_VER_PASSED

User provided, verified and passed.

0x01

IISDNscrUSER_VER_FAILED

User provided, verified and failed.

0x02

IISDNscrNETWORK_PROVIDED

Network provided.

0x03

Cause Data (IISDN_CAUSE)

March 2017 848

Cause Data (IISDN_CAUSE)

Description Cause Data provides information relating to the source and reason
for generation of an ISDN message. This structure contains the
following components:

 Coding standard being used
 Location of the equipment generating the message
 Additional diagnostic information

The Cause Data structure detailed below is used in the following
Call Control messages:

 L4L3mCLEAR_REQUEST
 L4L3mINFO_REQUEST
 L3L4mCLEAR_REQUEST
 L3L4mDISCONNECT

Note: Using a non-default cause value in an
L4L3mCALL_REQUEST message may cause your
application to fail ISDN conformance testing.

Input Fields unsigned char coding_standard;
unsigned char location;
unsigned char cause_val;
unsigned char diag_len;
unsigned char diags;

Cause Data (IISDN_CAUSE)

March 2017 849

Input coding_standard

Coding Standard. Indicates the coding standard used to construct
this message. The default value of IISDNcodCCITT (0x00) should
be used on most cases. Possible values include:

location

Location. Indicates the location of the user for the generated
message. Possible values include:

IISDNcodCCITT

ITU-T coding standard used for this message. This value
should be used unless the progress indication cannot be
represented using standard ITU-T coding.

0x00

IISDNcodNATIONAL_STD

National standard coding values not supported by ITU-T
coding values used for this message. Recipient of this
message should be capable of interpreting this meaning.

0x02

IISDNcodSTD_SPF_2_LOC

Coding standard in use is specific to the location.

0x03

IISDNlocUSER

User.

0x00

IISDNlocPVT_LOCAL

Private network serving the local user.

0x01

IISDNlocPUB_LOCAL

Public network serving the local user.

0x02

IISDNlocTRANSIT_NET

Transit network.

0x03

IISDNlocPUB_REMOTE

Public network serving the remote user.

0x04

IISDNlocPVT_REMOTE

Private network serving the remote user.

0x05

IISDNlocINTERNATIONAL

International network.

0x07

IISDNlocBEY_INTERWORK

Network beyond the interworking point.

0x10

Cause Data (IISDN_CAUSE)

March 2017 850

cause_val

Cause. Indicates the reason the message in which this structure
is contained was generated. A value of 0x00 indicates either the
default cause is used or the cause information is unavailable.
Refer to Volume 6, Appendix D, BSMI Cause Values, for a listing
of possible values.

diag_len

Diagnostics Length. Specifies the number of diagnostic
information bytes that follow this char. If this value is 0x00, no
diagnostic information is available or required. Not all cause
values support additional diagnostic information. Diagnostics are
encoded only if cause_val is a non-zero value.

diags

Diagnostic codes in hex bytes. Specifies the number of bytes
included in this array in diag_len. Not all cause values support
additional diagnostic information.
Refer to Volume 6, Appendix D, BSMI Cause Codes for more
information on cause values.

Connected Address (IISDN_CONNECTED_ADDRESS)

March 2017 851

Connected Address
(IISDN_CONNECTED_ADDRESS)

Description Connected Address provides information necessary to identify the
actual party connected to the call and contains the following
components:

 Number of digits in the originating telephone number (or zero if
the number is not available)

 Type of number (usually National for domestic U.S. calls)

 Numbering plan used (typically ISDN)

 Originating telephone number, if available

The Connected Address structure detailed below is used in the
following messages:

 L4L3mALERTING_REQUEST
 L4L3mCLEAR_REQUEST
 L4L3mCONNECT_REQUEST
 L3L4mALERTING
 L3L4mCLEAR_REQUEST
 L3L4mCONNECT
 L3L4mDISCONNECT

Input Fields unsigned short num_digits;
unsigned char num_type;
unsigned char num_plan;
unsigned char digits [IISDN_MAX_DIGITS];

Input num_digits

Number of Digits. Specifies the number of digits in the Connected
Address Number. A value of 0x0000 indicates the Connected
Address number is not available and the remainder of this
structure can be ignored. The application determines valid
Connected Address numbers using the current network dialing
plan. This number must be less than 0x18.

Connected Address (IISDN_CONNECTED_ADDRESS)

March 2017 852

num_type

Number Type. Corresponds to the Connected Address Number
Types as defined by ITU-T. Possible values include:

num_plan

Numbering Plan Identification. Corresponds to Connected
Address numbering plan identification as defined by ITU-T. This
field is usually specified as IISDNnumpISDN (0x01). Possible
values include:

digits

Digits. Connected Address number in ASCII digits. Number of
digits in this string must equal the number of digits specified in
num_digits. Eight-bit values in this field must be between 0x30
and 0x39 (ASCII 0 through 9).

IISDNnumtUNKNOWN

Unknown number type, used when there is no knowledge of
the type of number.

0x00

IISDNnumtINTERNATIONAL

International number.

0x01

IISDNnumtNATIONAL

National number.

0x02

IISDNnumtSUBSCRIBER

Subscriber number.

0x04

IISDNnumtABBREVIATED

Abbreviated number.

0x06

IISDNnumpUNKNOWN

Unknown Numbering Plan.

0x00

IISDNnumpISDN

Numbering per ISDN Recommendation E.164/E.163.

0x01

IISDNnumpTELEPHONY

Standard telephone numbering plan.

0x02

IISDNnumpPRIVATE

Private numbering plan.

0x09

Information Element (IISDN_IE_STRUCT)

March 2017 853

Information Element (IISDN_IE_STRUCT)

Description Information Element (IE) allows the application to append IEs to
messages generated by the Dialogic® Brooktrout® firmware. The
application can use this feature to add optional or site-specific IEs to
a standard ISDN message. When used with the
L4L3mUNIVERSAL BSMI message, the Information Element
structure permits the application to issue non-standard ISDN
messages. This structure contains the following components:

 Information Element identifier
 Length of the IE
 Application-specific information (data bytes)

Up to 30 IEs can be transmitted in a single ISDN message. This
number includes those IEs generated automatically by the Dialogic®
Brooktrout® firmware.

Single octet IEs are specified as follows:

 Information Element identifier
 Length = 0
 No additional data bytes

Multiple IEs are specified as a string of bytes that include the above
components. IEs must be specified in ascending order within a
codeset. Only locking codeset shifts are allowed.

Use the same structure also to specify a locking codeset shift to be
applied to all subsequent IEs in the message. Once the firmware
shifts to an alternate codeset, only shifts to higher codesets are
allowed in the same message. When making a codeset shift, the
components of the structure are specified as follows:

 Codeset shift IE in place of the IE identifier

 Length = 0x00 (no data bytes to follow)

 No data bytes are included in this structure (the byte that
follows is the first octet of the next IE)

Information Element (IISDN_IE_STRUCT)

March 2017 854

The total message size, including the main body of the message and
all IE structures, must be less than or equal to the L4L3m buffer
size.

The Information Element structure is used in the following
messages:

 L4L3mALERTING_REQUEST
 L4L3mCALL_PROCEEDING_REQUEST
 L4L3mCALL_REQUEST
 L4L3mCALL_REQUEST
 L4L3mFACILITY_REQUEST
 L4L3mINFO_REQUEST
 L4L3mPROGRESS_REQUEST
 L4L3mSETUP_ACK_REQUEST
 L4L3mUNIVERSAL

With the exception of the L4L3mUNIVERSAL message, Dialogic®
Brooktrout® firmware ensures the proper IE ordering within a
message. When using L4L3mUNIVERSAL the host application is
responsible for proper IE ordering.

Input Fields unsigned char ie_id;
unsigned char ie_length;
unsigned char ie_data [1];

Input ie_id

IE Identifier. First octet of the IE. The receiving application must
be able to determine the IE from this information.

ie_length

Length. Specifies the number of octets in this IE.

ie_data

Data Bytes. Variable length.
Note: The IE structure and the message containing it must fit in the

size of L3_to_L4_struct or L4_to_L3_struct. Dialogic®
Brooktrout® firmware call control messages are always
limited to 512 bytes.

Progress Indication (IISDN_PROGRESS)

March 2017 855

Progress Indication (IISDN_PROGRESS)

Description The Progress Indication notifies the user of the current status that
the B-channel and interface is in for the certain call. Its structure is
designed to allow the user information on the location of the call as
well as its description. During initial SETUP, Progress Indication
feeds the user with the feature availability and the bearer selection
of the call and notifies when the sending message has been
completed.

The Progress Indication structure detailed below is used in the
following messages:

 L4L3mALERTING_REQUEST
 L4L3mCALL_PROCEEDING_REQUEST
 L4L3mCLEAR_REQUEST
 L4L3mCONNECT_REQUEST
 L4L3mSETUP_ACK_REQUEST
 L3L4mALERTING
 L3L4mCALL_PROCEEDING
 L3L4mCLEAR_REQUEST
 L3L4mCONNECT
 L3L4mDISCONNECT
 L3L4mPROGRESS

Input Fields unsigned char coding_standard;
unsigned char location;
unsigned char PROGRESS_DSCR;
IISDN_CAUSE cause;
IISDN_USER_INFO user_info;
unsigned char ie_count;
IISDN_CALL_ID call_id;
IISDN_IE_STRUCT ie;

Progress Indication (IISDN_PROGRESS)

March 2017 856

Input coding_standard

Coding Standard. Indicates the coding standard used to construct
this message. Use the default value of IISDNcodCCITT (0x00) for
most cases. Possible values include:

location

Location. Indicates the location of the user that generated the
message. Possible values include:

IISDNcodCCITT

ITU-T coding standard used for this message. Do not use
this value unless the progress indication cannot be
represented using standard ITU-T coding.

0x00

IISDNcodNATIONAL_STD

National standard coding values not supported by ITU-T
coding values used for this message. Recipient of this
message should be capable of interpreting this meaning.

0x02

IISDNcodSTD_SPF_2_LOC

Coding standard used is specific to the location to which the
message is sent.

0x03

IISDNlocUSER

User.

0x00

IISDNlocPVT_LOCAL

Private network serving the local user.

0x01

IISDNlocPUB_LOCAL

Public network serving the local user.

0x02

IISDNlocTRANSIT_NET

Transit network.

0x03

IISDNlocPUB_REMOTE

Public network serving the remote user.

0x04

IISDNlocPVT_REMOTE

Private network serving the remote user.

0x05

IISDNlocINTERNATIONAL

International network.

0x07

IISDNlocBEY_INTERWORK

Network beyond the interworking point.

0x10

Progress Indication (IISDN_PROGRESS)

March 2017 857

PROGRESS_DSCR

Indicates the progress of the call.

cause

See Cause Data (IISDN_CAUSE) on page 848.

user_info

See User Info (IISDN_USER_INFO) on page 863.

ie_count

Counts the number of IEs in this message.

call_id

See Call ID (IISDN_CALL_ID) on page 842.

ie

See Information Element (IISDN_IE_STRUCT) on page 853.

IISDNprogUNKNOWN

Information not available; default value.

0x00

IISDNprogNOT_ISDN_INBAND

Call is not end-to-end ISDN; additional information for this
call might be available in-band. Use this selection to
indicate to the destination processor that digits or other
in-band signaling might be present and should be
monitored.

0x01

IISDNprogDEST_NOT ISDN

Call destination (called party) is not ISDN.

0x02

IISDNprogORIG_NOT_ISDN

Call origination (calling party) is not ISDN.

0x03

IISDNprogRETURNED_ISDN

Call has been returned to the ISDN.

0x04

IISDNprogINBAND_INFO_AVL

Additional in-band information for this call is available
in-band. This selection indicates that digits or other in-band
signaling is present and should be monitored.

0x08

Q.933 DLCI Negotiation (IISDN_Q922_DLCI)

March 2017 858

Q.933 DLCI Negotiation (IISDN_Q922_DLCI)

Description Q.933 DLCI Negotiation is used to perform DLCI negotiation similar
to B-channel negotiation in Q.931 applications. The application uses
this structure to populate (outgoing calls) and decode (incoming
calls) a data link connection identifier IE in SETUP messages. The
structure indicates the DLCI selection setting (preferred or
exclusive) and the DLCI requested (for outgoing calls) or assigned
(for incoming calls).

The Q.933 DLCI Negotiation structure detailed below is used in the
following messages:

 L4L3mALERTING_REQUEST
 L4L3mCALL_PROCEEDING_REQUEST
 L4L3mCALL_REQUEST
 L4L3mCONNECT_REQUEST
 L3L4mALERTING
 L3L4mCONNECT
 L3L4mSETUP_IND

Input Fields unsigned char dlci_present;
unsigned char preferred;

Input dlci_present

DLCI Present. Specifies whether the data structure supplies a
DLCI value. Possible values are:
0x00 = DLCI information not available
0x01 = DLCI provided

preferred

Preferred DLCI. Specifies whether the DLCI included in the data
structure is preferred or exclusive.

Preferred DLCI DLCI allows the negotiation of the value between
the network and the module. Value is 0x01.

Exclusive DLCI Must use a DLCI value. No negotiation is
allowed. Value is 0x00.

Redirecting Number (IISDN_REDIRECT_NUM)

March 2017 859

Redirecting Number (IISDN_REDIRECT_NUM)

Description Redirecting Number provides information necessary to construct the
Redirecting Number IE. This IE is used to indicate the reason and
source of a forwarded call and contains the following components:

 Number of digits in the Redirection (new destination) telephone
number

 Type of number (usually National for North American numbers).

 Numbering plan used (typically ISDN)

 Reason the call is being redirected

 Redirection (new destination) telephone number

The Redirecting Number structure detailed below is used in the
following messages:

 L4L3mALERTING_REQUEST
 L4L3mCALL_REQUEST
 L4L3mCONNECT_REQUEST
 L3L4mALERTING
 L3L4mCONNECT
 L3L4mSETUP_IND

Input Fields unsigned short num_digits;
unsigned char num_type;
unsigned char num_plan;
unsigned char presentation_ind;
unsigned char screening_ind;
unsigned char redir_reason;
unsigned char digits [IISDN_MAX_DIGITS];

Input num_digits

Number of Digits. Specifies the number of digits in the
Redirection number. The application determines valid
Redirection Party numbers by the current network dialing plan.
A value of zero indicates this information is not available. This
number must be less than 0x18.

Redirecting Number (IISDN_REDIRECT_NUM)

March 2017 860

num_type

Number Type. Corresponds to the Calling Party Number Types
as defined by ITU-T. Possible values include:

num_plan

Numbering Plan Identification. Corresponds to Calling Party
numbering plan identification as defined by AT&T. The firmware
usually specifies as IISDNnumpISDN (0x01). Possible values
include:

IISDNnumtUNKNOWN

Unknown number type, used when there is no knowledge of
the type of number.

0x00

IISDNnumtINTERNATIONAL

International number.

0x01

IISDNnumtNATIONAL

National number.

0x02

IISDNnumtSUBSCRIBER

Subscriber number.

0x04

IISDNnumtABBREVIATED

Abbreviated number.

0x06

IISDNnumpUNKNOWN

Unknown Numbering Plan.

0x00

IISDNnumpISDN

Numbering per ISDN Recommendation E.164/E.163.

0x01

IISDNnumpTELEPHONY

Standard telephone numbering plan.

0x02

IISDNnumpPRIVATE

Private numbering plan.

0x05

Redirecting Number (IISDN_REDIRECT_NUM)

March 2017 861

presentation_ind

Presentation Indicator. Identifies whether the calling user wants
the Calling Party number presented to the called user. If no
preference, specify a value of 0x00. Possible values include:

screening_ind

Screening Indicator. Identifies whether screening has been
performed on the calling user and the status of any screening
performed. If no preference, specify a value of 0x00. Possible
values include:

IISDNpresALLOWED

Presentation allowed or no preference.

0x00

IISDNpresRESTRICTED

Presentation restricted/not allowed.

0x01

IISDNpresNUM_NOT_AVAIL

Calling Party number not available due to
inter-networking.

0x02

IISDNscrUSER_NOT_SCREENED

User provided, not screened.

0x00

IISDNscrUSER_VER_PASSED

User provided, verified and passed.

0x01

IISDNscrUSER_VER_FAILED

User provided, verified and failed.

0x02

IISDNscrNETWORK_PROVIDED

Network provided.

0x03

Redirecting Number (IISDN_REDIRECT_NUM)

March 2017 862

redir_reason

Redirecting Reason. Indicates the reason the call has been
redirected. Possible values include:

digits

Digits. Redirection number (new destination) in ASCII digits.
Number of digits in this string must equal the number of digits
specified in num_digits. Eight-bit values in this field must be
between 0x30 and 0x39 (ASCII 0 through 9).

IISDNrrsnUNKNOWN

Unknown reason for redirection.

0x00

IISDNrrsnCALL_FWD_BUSY

Original destination party is busy.

0x01

IISDNrrsnCALL_FWD_NOANS

Original destination number has not answered.

0x02

IISDNrrsnOOS

Original destination number is out of service.

0x05

IISDNrrsnCALL_FWD_DTE

The called data terminal equipment provided redirect
instructions.

0x0A

IISDNrrsnCALL_FWD_ALL

Forwards all calls to original destination number.

0x0F

User Info (IISDN_USER_INFO)

March 2017 863

User Info (IISDN_USER_INFO)

Description User Info allows the passing of up to 130 bytes of information over
the network without establishing a switched end-to-end connection.
This structure provides the information necessary to construct the
User-user IE. This IE contains the following components:

 Number of bytes of information being transferred
 User-specific information

The User Info structure detailed below is used in the following
messages:

 L4L3mALERTING_REQUEST
 L4L3mCALL_REQUEST
 L4L3mCLEAR_REQUEST
 L4L3mCONNECT_REQUEST
 L4L3mPROGRESS_REQUEST
 L4L3mUSER_INFO
 L4L3mALERTING_REQUEST
 L3L4mCLEAR_REQUEST
 L3L4mCONNECT
 L3L4mDISCONNECT
 L3L4mPROGRESS
 L3L4mSETUP_IND
 L3L4mUSER_INFO

Input Fields unsigned short len;
unsigned char info [IISDN_MAX_USER_INFO];

Input len

Length. Specifies the number of bytes that follow this char. If this
value is 0x00, no information bytes follow this short integer.
Possible values are between 0 and 130 (decimal).

info

User info, the number of bytes specified by len. Possible values up
to IISDN_MAX_USER_INFO.

March 2017 864

24 - R2 Signaling Protocol with BSMI

This chapter describes the subset of ISDN messages and events used
in the BSMI implementation of an R2 signaling protocol.

This chapter has the following sections:

 Application to Stack (Host to Module) Messages

 R2 Signaling L4L3 Messages

 Stack to Application (Module to Host) Messages

 Normal Event Sequence

 R2 Signaling L3L4 Messages

Application to Stack (Host to Module) Messages

March 2017 865

Application to Stack (Host to Module) Messages
R2 signaling for Host to Module message summaries are shown in:

 Table 12, R2 Signaling Management Messages (L4L3)

 Table 13, R2 Signaling Call Control Messages (L4L3)

Table 13 lists call control related messages. Use the call control
messages to:

 Place an outbound call.

 Answer an inbound call.

 Disconnect a call or reject and incoming call.

Table 12. R2 Signaling Management Messages (L4L3)

Message Meaning

L4L3mDISABLE_CAS

ID: 0xC7

Disables the R2 protocol. This message is for
any timeslot on an E1 span.

L4L3mENABLE_CAS

ID: 0xC6

Starts the R2 protocol. This message is issued
for each timeslot on the E1 span.

L4L3mREQ_ABCD_DATA

ID: 0xBC

Requests the module to return to the host all
signaling bits from all B-channels in module.

L4L3mSET_CAS_SIGNALING_BITS Sets the signaling bit pattern on a particular
B-channel.

Table 13. R2 Signaling Call Control Messages (L4L3)

Message Meaning

L4L3mALERTING_REQUEST

ID: 0x83

Informs the network an incoming call is ringing
(send ALERTING message to the network).

L4L3mCALL_PROCEEDING_REQUEST

ID: 0x89

Notifies the switching equipment originating
the call that the called party’s line is free and
being alerted (ringing).

Application to Stack (Host to Module) Messages

March 2017 866

Numbering Conventions
The R2 numbering conventions follow the ISDN conventions.
E1 trunks are numbered starting from 0 and B-channels are
logically numbered starting at 0. Consequently, the valid range of
B-channels for a given E1 trunk is from 0 to 29. These values
correspond to the physical timeslots 1 to 15 and 17 to 31, inclusive.

Arguments
Arguments are passed to the R2 protocol using the standard ISDN
Layer 4 to Layer 3 (L4_to_L3_struct) data structure.

L4L3mCALL_REQUEST

ID: 0x81

Places an outbound call.

L4L3mCAS_CHAN_BLOCK

ID: 0xD6

Asserts blocking pattern on the line. Only valid
from the idle state. Transitions the B-channel to
the blocking state.

L4L3mCAS_CHAN_UNBLOCK

ID: 0xD7

Asserts idle pattern on the line and returns to
the idle state. Only valid from the blocking
state.

L4L3mCLEAR_REQUEST

ID: 0x85

Disconnects a connected call or rejects an
incoming call.

L4L3mCOLLECT_DIGITS

ID: 0xC9

Acknowledges an incoming R2 MF digit and
request the next one.

L4L3mCONNECT_REQUEST

ID: 0x84

Answers an incoming call.

L4L3mINFO_REQUEST

ID: 0x8B

Dials a test R2 MF string of tones.

Table 13. R2 Signaling Call Control Messages (L4L3) (Continued)

Message Meaning

Application to Stack (Host to Module) Messages

March 2017 867

The only message using a call reference number is the clear request
message. Although ISDN allows the application to specify its own
call reference number for outgoing calls, R2 signaling does not allow
this functionality. When clearing a call, the call reference number is
the one obtained from previous messages associated with the call.

R2 Signaling L4L3 Messages

March 2017 868

R2 Signaling L4L3 Messages
The following message subset is used in the R2 signaling protocol for
Host to Module messaging. Specific message details begin on
page 873:

 L4L3mALERTING_REQUEST on page 869

 L4L3mCALL_PROCEEDING_REQUEST on page 871

 L4L3mCALL_REQUEST on page 873

 L4L3mCAS_CHAN_BLOCK on page 876

 L4L3mCAS_CHAN_UNBLOCK on page 878

 L4L3mCLEAR_REQUEST on page 880

 L4L3mCOLLECT_DIGITS on page 882

 L4L3mCONNECT_REQUEST on page 884

 L4L3mDISABLE_CAS on page 886

 L4L3mENABLE_CAS on page 888

 L4L3mINFO_REQUEST on page 891

 L4L3mSET_CAS_SIGNALING_BITS on page 894

L4L3mALERTING_REQUEST

March 2017 869

L4L3mALERTING_REQUEST

Description Accepts an incoming call reported by the module through
L3L4mSETUP_IND but does not answer it. The module notifies the
network that the called subscriber is free and its terminal
(telephone) is ringing (the module automatically generates the
ringback tone). The application can later decide to answer the call
(L4L3mCONNECT_REQUEST) or not, in which case the caller
receives a ringback tone until it decides to terminate the call.

Arguments The trunk must always be specified in L4_to_L3_struct.lapdid.

The B-channel is determined by setting
L4_to_L3_struct.call_ref to: ((Trunk <<8) | Bchannel).

Expected Response None.

Data Checking The timeslot must be in the range 0 through 29.

The protocol must be initialized for that line (L4L3mENABLE_CAS
completed successfully).

The line must be in an inbound seized state (an incoming call is
detected but not answered by the host), with call setup information
(R2 MF compelled signaling) still in progress.

Error Codes
L3L4errCALL_REF_ERROR B-channel values obtained from

L4_to_L3_struct.data.al_con_data.bchannel and
from L4_to_L3_struct.call_ref did not match.

L3L4errINVALID_B_CHANNEL B-channel value exceeded the maximum number of
available B-channels (30 for E1, 24 for T1).

L3L4errINVALID_COMMAND_ARGS Invalid data in L4_to_L3_struct.data.al_con_data
structure.

L4L3mALERTING_REQUEST

March 2017 870

See Also None.

Example L4_to_L3_struct L4L3;

memset(&L4L3, 0, sizeof(L4_to_L3_struct));

L4L3.msgtype = L4L3mALERTING_REQUEST;

//This example uses trunk 0, channel 20
L4L3m.lapdid = 0;
L4L3m.call_ref = ((L4L3m.lapdid << 8) | 20);
BsmiControlWrite (fd, &L4L3);

L3L4errINVALID_MSG_FOR_STATE Message sent while the protocol was in a state that
did not accept it. L4L3mALERTING_REQUEST
is only accepted when the incoming call reported to
the application but the application has not yet
answered.

L3L4errLAPDID_NOT_ESTABLISHED The application did not configure the line to run any
protocol (by sending L4L3mENABLE_CAS).

L3L4errLAPDID_OUT_OF_RANGE Trunk (span) number is greater than the maximum
number of trunks are present on the module.

L4L3mCALL_PROCEEDING_REQUEST

March 2017 871

L4L3mCALL_PROCEEDING_REQUEST

Description Notifies the module that the call address (called party number) is
complete and the R2 MF signaling proceeds to group B. Use this
message if the host requests (see option R2_COLLECT_DIGITS in
R2Options field of IISDN_E1_CAS_R2_DATA) notification of each
incoming digit so it can control the flow of the R2 MF signaling.

Arguments The trunk must always be specified in L4_to_L3_struct.lapdid.

The B-channel is determined by setting
L4_to_L3_struct.call_ref to: ((Trunk <<8) | Bchannel).

Expected Response None.

Data Checking The timeslot must be in the range 0 through 29.

Initialize the protocol for that line (L4L3mENABLE_CAS
completed successfully).

The line must be in an inbound seized state (an incoming call is
detected, but not answered by the host), with call setup information
(R2 MF compelled signaling) still in progress.

Initialize the protocol (L4L3mENABLE_CAS) with option
R2_COLLECT_DIGITS in R2Options field of
IISDN_E1_CAS_R2_DATA.

L4L3mCALL_PROCEEDING_REQUEST

March 2017 872

Error Codes

See Also IISDN_E1_CAS_R2_DATA

Example L4_to_L3_struct L4L3;

memset(&L4L3, 0, sizeof(L4_to_L3_struct));

L4L3.msgtype = L4L3mCALL_PROCEEDING_REQUEST;

//This example uses trunk 0, channel 20
L4L3m.lapdid = 0;
L4L3m.call_ref = ((L4L3m.lapdid << 8) | 20);
BsmiControlWrite (fd, &L4L3);

L3L4errCALL_REF_ERROR B-channel values obtained from
L4_to_L3_struct.data.proc_data.bchannel and from
L4_to_L3_struct.call_ref did not match.

L3L4errFEATURE_NOT_ACTIVE The channel is not configured to let the application
handle the R2 MF signaling (channel must be
configured with option R2_COLLECT_DIGITS set in:
L4_to_L3_struct.data.data.cas_data.cas_params.e1
_cas_r2_data.R2Options

L3L4errINVALID_B_CHANNEL B-channel value exceeded maximum number of
available B-channels (30 for E1, 24 for T1).

L3L4errINVALID_COMMAND_ARGS Invalid data in structure
L4_to_L3_struct.data.proc_data.

L3L4errINVALID_MSG_FOR_STATE The message was sent while the protocol was in a
state that did not accept it.

The firmware only accepts
L4L3mALERTING_REQUEST when an
incoming call reported to the application but the
application has not yet answered and the R2 MF
signaling is in progress and collecting the address
(called party) digits.

L3L4errLAPDID_NOT_ESTABLISHED The application did not configure the line to run any
protocol (by sending L4L3mENABLE_CAS).

L3L4errLAPDID_OUT_OF_RANGE Trunk (span) number is greater than the maximum
number of trunks present on the module.

L4L3mCALL_REQUEST

March 2017 873

L4L3mCALL_REQUEST

Description This message is used to start an outgoing call.

The called party number and the calling party number are supplied
in the Called Party (IISDN_CALLED_PARTY) and Calling
Party (IISDN_CALLING_PARTY) structures respectively.

Arguments The trunk and B-channel must always be specified in fields:

 L4_to_L3_struct.lapdid

 L4_to_L3_struct.data.call_req_data.bchannel

 Set L4_to_L3_struct.call_ref to:
(Trunk <<8) | Bchannel)

 L4_to_L3_struct.data.call_req_data must be set properly.

Expected Response The protocol stack sends no response message if the outbound call is
successfully started. Otherwise, error messages are sent.

Data Checking The trunk and B-channel numbers are verified. The range of valid
B-channel depends on the hardware being utilized:

 T1 trunks have 24 B-channels

 E1 trunks have 30 B-channels

 Analog Loop Start modules have variable number of trunks

The protocol must be initialized for that line (L4L3mENABLE_CAS
completed successfully).

The line must be in the idle state.

Digits specified as Called Party number and Calling Party number
are checked for validity.

L4L3mCALL_REQUEST

March 2017 874

Error Codes

See Also Called Party (IISDN_CALLED_PARTY), Calling Party
(IISDN_CALLING_PARTY), IISDN_CALL_REQ_DATA

L3L4errGLARE The firmware received a signal indicating the
presence of an inbound call when the module was
trying to initiate an outbound call.

L3L4errINVALID_B_CHANNEL B-channel value exceeded maximum number of
available B-channels (30 for E1, 24 for T1).

L3L4errINVALID_COMMAND_ARGS Invalid data in structure
L4_to_L3_struct.data.call_req_data.
call_party_num_digits must have a positive value.

L3L4errINVALID_MSG_FOR_STATE Message sent while the protocol was in a state that
did not accept it. L4L3mCALL_REQUEST is only
accepted when line is idle.

L3L4errLAPDID_NOT_ESTABLISHED The application did not configure the line to run any
protocol (by sending L4L3mENABLE_CAS).

L3L4errLAPDID_OUT_OF_RANGE Trunk (span) number is greater than the maximum
number of trunks present on the module.

L4L3mCALL_REQUEST

March 2017 875

Example
L4_to_L3_struct L4L3;

memset(&L4L3, 0, sizeof(L4_to_L3_struct));

L4L3.msgtype = L4L3mCALL_REQUEST;

//This example uses trunk 0, channel 20
L4L3.lapdid = 0;
L4L3.data.call_req_data.bchannel = 20;

//Called party number.
L4L3.data.call_req_data.called_party.num_digits = 10;
L4L3.data.call_req_data.called_party.num_type = IISDNnumtUNKNOWN;
L4L3.data.call_req_data.called_party.num_plan = IISDNnumpUNKNOWN;
strncpy(&(L4L3.data.call_req_data.called_party.digits[0]),

"1234567890", 10);

//Calling party number (this is not required by the protocol)
L4L3.data.call_req_data.calling_party.num_digits = 10;
L4L3.data.call_req_data.calling_party.num_type = IISDNnumtUNKNOWN;
L4L3.data.call_req_data.calling_party.num_plan = IISDNnumpUNKNOWN;
strncpy(&(L4L3.data.call_req_data.calling_party.digits[0]),

"0987654321", 20);

BsmiControlWrite(fd, &L4L3);

L4L3mCAS_CHAN_BLOCK

March 2017 876

L4L3mCAS_CHAN_BLOCK

Description This message blocks a B-channel, thus preventing it from receiving
inbound calls. The B-channel remains blocked until
L4L3mCAS_CHAN_UNBLOCK is received. You cannot initiate
outbound calls while the B-channel is blocked.

Arguments The trunk and B-channel must always be specified in fields:

 L4_to_L3_struct.lapdid

 L4_to_L3_struct.data.cas_data.bchannel

 Set L4_to_L3_struct.call_ref to:
((Trunk <<8) | Bchannel)

Expected Response The module responds with L4L3mCAS_CHAN_BLOCK, and
L3_to_L4_struct.data.b_channel_status is set to
R2_BLOCKED_NEAR_END_BLOCKING.

Data Checking The timeslot must be in the range 0 through 29, the protocol must be
in the idle state for this B-channel, and the B-channel must be active
(the protocol is started).

Error Codes
L3L4errINVALID_B_CHANNEL B-channel value exceeded maximum number of

available B-channels (30 for E1, 24 for T1).

L3L4errINVALID_COMMAND_ARGS Invalid data in structure L4_to_L3_struct.data.

L3L4errINVALID_MSG_FOR_STATE Message sent while the protocol was in a state that
did not accept it.
L4L3mCALL_PROCEEDING_REQUEST is
only accepted when line is idle.

L3L4errLAPDID_NOT_ESTABLISHED The application did not configure the line to run any
protocol (by sending L4L3mENABLE_CAS).

L3L4errLAPDID_OUT_OF_RANGE Trunk (span) number is greater than the maximum
number of trunks present on the module.

L4L3mCAS_CHAN_BLOCK

March 2017 877

See Also IISDN_BCHANNEL_ID

Example L4_to_L3_struct L4L3;

memset(&L4L3, 0, sizeof(L4_to_L3_struct));

L4L3.msgtype = L4L3mCAS_CHAN_BLOCK;
L4L3.data.cas_data.bchannel = 20;
L4L3.lapdid = 1;
BsmiControlWrite(fd, &L4L3);

L4L3mCAS_CHAN_UNBLOCK

March 2017 878

L4L3mCAS_CHAN_UNBLOCK

Description This message unblocks a B-channel, allowing it to start outbound
calls and receive inbound calls.

Arguments The trunk and B-channel must always be specified in fields:

 L4_to_L3_struct.lapdid

 L4_to_L3_struct.data.cas_data.bchannel

 Set L4_to_L3_struct.call_ref to:
((Trunk <<8) | Bchannel)

Expected Response The module responds with L4L3mCAS_CHAN_BLOCK, and the
application sets L3_to_L4_struct.data.b_channel_status to
R2_BLOCKED_NEAR_END_BLOCKING.

Data Checking The timeslot must be in the range 0 through 29, and the protocol
must be in the blocked state for this B-channel. The B-channel must
be active (the protocol is started).

Error Codes
L3L4errINVALID_B_CHANNEL B-channel value exceeded maximum number of

available B-channels (30 for E1, 24 for T1).

L3L4errINVALID_COMMAND_ARGS Invalid data in L4_to_L3_struct.data structure.

L3L4errINVALID_MSG_FOR_STATE Message sent while the protocol was in a state that
did not accept it.
L4L3mCALL_PROCEEDING_REQUEST is
only accepted when line is blocked by a previous
L4L3mCAS_CHAN_BLOCK.

L3L4errLAPDID_NOT_ESTABLISHED The application did not configure the line to run any
protocol (by sending L4L3mENABLE_CAS).

L3L4errLAPDID_OUT_OF_RANGE Trunk (span) number is greater than the maximum
number of trunks present on the module.

L4L3mCAS_CHAN_UNBLOCK

March 2017 879

See Also IISDN_BCHANNEL_ID

Example L4_to_L3_struct L4L3;

memset(&L4L3, 0, sizeof(L4_to_L3_struct));

L4L3.msgtype = L4L3mCAS_CHAN_UNBLOCK;
L4L3.data.cas_data.bchannel = 20;
L4L3.lapdid = 1;
BsmiControlWrite(fd, &L4L3);

L4L3mCLEAR_REQUEST

March 2017 880

L4L3mCLEAR_REQUEST

Description This message clears (tears down) a call or refuses an incoming call. If
an incoming call is refused, use L4L3mCLEAR_REQUEST after
notification by L3L4mSETUP_IND (instead of accepting the
message with L4L3mALERTING_REQUEST or
L4L3mCONNECT_REQUEST).

If using L4L3mCLEAR_REQUEST to clear an incoming call, then
the reason must be supplied in
L4L3.data.clr_data.r2_call_status.group_B.

The possible values are specified in iisdh.h include:

 IISDN_R2MFCP_LINE_BUSY
 IISDN_R2MFCP_LINE_OUT_OF_ORDER
 IISDN_R2MFCP_LINE_UNALLOCATED

Arguments The trunk must always be specified in L4_to_L3_struct.lapdid.

The B-channel is determined by setting
L4_to_L3_struct.call_ref to: ((Trunk <<8) | Bchannel).

Expected Response None.

Data Checking The channel and trunk as encoded in the call reference number is
checked.

L4L3mCLEAR_REQUEST

March 2017 881

Error Codes

See Also IISDN_CLR_DATA

Example L4_to_L3_struct L4L3;

memset(&L4L3, 0, sizeof(L4_to_L3_struct));
L4L3.msgtype = L4L3mCLEAR_REQUEST;

L4L3.call_ref = CRN; // from a prior event

L4L3.data.clr_data.r2_call_status.group_B =
(unsignedchar)IISDN_R2MFCP_LINE_BUSY;

L3L4errINVALID_B_CHANNEL B-channel value exceeded maximum number of
available B-channels (30 for E1, 24 for T1).

L3L4errINVALID_COMMAND_ARGS Invalid data in L4_to_L3_struct.data structure.

L3L4errINVALID_MSG_FOR_STATE Message sent while the protocol was in a state that
did not accept it. The application only accepts
L4L3mCLEAR_REQUEST when a call is in
progress (inbound or outbound). When
L3L4mSETUP_IND is sent to the host inbound
calls are cleared. Consequently, you cannot terminate
an inbound call that is still characterized (from the
moment the line is seized and L3L4mPRE_SEIZE
can be sent to the host, to the moment all necessary
data is available and the module sends
L3L4mSETUP_IND to the host).

L3L4errLAPDID_NOT_ESTABLISHED The application did not configure the line to run any
protocol (by sending L4L3mENABLE_CAS).

L3L4errLAPDID_OUT_OF_RANGE Trunk (span) number is greater than the maximum
number of trunks are present on the module.

L4L3mCOLLECT_DIGITS

March 2017 882

L4L3mCOLLECT_DIGITS

Description Notifies the module that the current R2 MF digit is acknowledged.
The module sends the address (called party) digits received thus far
through L3L4mINFO to the host and sends a tone to the network
indicating it needs to send the next address digit.

Arguments The trunk must always be specified in L4_to_L3_struct.lapdid.

The B-channel is determined by setting
L4_to_L3_struct.call_ref to: ((Trunk <<8) | Bchannel).

Expected Response L3L4mINFO returns none.

Data Checking The timeslot must be in the range 0 through 29.

The protocol must be initialized for that line (L4L3mENABLE_CAS
completed successfully).

The line must be in an inbound seized state (an incoming call is
detected, but not answered by the host), with call setup information
(R2 MF compelled signaling) still in progress.

L4_to_L3_struct.dial_data.num_digits must be greater than 0.

The protocol must be initialized (L4L3mENABLE_CAS) with
option R2_COLLECT_DIGITS in R2Options field of structure
IISDN_E1_CAS_R2_DATA set.

L4L3mCOLLECT_DIGITS

March 2017 883

Error Codes

See Also IISDN_E1_CAS_R2_DATA, IISDN_DIAL_DATA

Example L4_to_L3_struct L4L3;

memset(&L4L3, 0, sizeof(L4_to_L3_struct));

L4L3.msgtype = L4L3mCOLLECT_DIGITS;

//This example uses trunk 0, channel 20
L4L3m.lapdid = 0;
L4L3m.call_ref = ((L4L3m.lapdid << 8) | 20);
BsmiControlWrite (fd, &L4L3);

L3L4errCALL_REF_ERROR B-channel values obtained from
L4_to_L3_struct.data.dial_data.bchannel and from
L4_to_L3_struct.call_ref did not match.

L3L4errFEATURE_NOT_ACTIVE The channel is not configured to let the application
handle the R2 MF signaling (Configure the channel
with option R2_COLLECT_DIGITS set in:
L4_to_L3_struct.data.data.cas_data.
cas_params.e1_cas_r2_data.R2Options).

L3L4errINVALID_B_CHANNEL B-channel value exceeded maximum number of
available B-channels (30 for E1, 24 for T1).

L3L4errINVALID_COMMAND_ARGS Invalid data in structure
L4_to_L3_struct.data.dial_data.

L3L4errINVALID_MSG_FOR_STATE Message sent while the protocol was in a state that
did not accept it. L4L3mCOLLECT_DIGITS is only
accepted when:

 The incoming call is present
 R2 MF signaling is active
 The originating end is ready to sent the address

(called party) digits.

L3L4errLAPDID_NOT_ESTABLISHED The application did not configure the line to run any
protocol (by sending L4L3mENABLE_CAS).

L3L4errLAPDID_OUT_OF_RANGE Trunk (span) number is greater than the maximum
number of trunks are present on the module.

L4L3mCONNECT_REQUEST

March 2017 884

L4L3mCONNECT_REQUEST

Description This message is used to answer an incoming call.

Arguments The trunk and B-channel must always be specified in fields:

 L4_to_L3_struct.lapdid

 L4_to_L3_struct.data.al_con_data.bchannel

 Set L4_to_L3_struct.call_ref to:
((Trunk <<8) | Bchannel)

 L4_to_L3_struct.data.al_con_data must be set properly.

Expected Response After the connection completes, L3L4mCONN_ACK_IND is sent to
the host.

Data Checking The E1 trunk number and the channel are checked.

Error Codes
L3L4errCALL_REF_ERROR B-channel values obtained from

L4_to_L3_struct.data.al_con_data.bchannel and
from L4_to_L3_struct.call_ref did not match.

L3L4errINVALID_B_CHANNEL B-channel value exceeded maximum number of
available B-channels (30 for E1, 24 for T1).

L3L4errINVALID_COMMAND_ARGS Invalid data in the
L4_to_L3_struct.data.al_con_data structure.

L3L4errINVALID_MSG_FOR_STATE Message sent while the protocol was in a state that
did not accept it. L4L3mCONNECT_REQUEST is
only accepted when the inbound call is present and
fully characterized (the complete address (called
party number) is available). You can call
L4L3mCONNECT_REQUEST only once for a
particular inbound call.

L4L3mCONNECT_REQUEST

March 2017 885

See Also Alerting and Connecting Data Message
(IISDN_AL_CON_DATA)

Example L4_to_L3_struct L4L3;

memset(&L4L3, 0, sizeof(L4_to_L3_struct));
L4L3.msgtype = L4L3mCONNECT_REQUEST;

L4L3.lapdid = 0; // Trunk number
L4L3.data.al_con_data.channel = 20; // B-channel
L4L3.call_ref = CRN; // from prior L3L4mSETUP_IND event

// This answer signal is recommended.

L4L3.data.al_con_data.r2_call_status.group_B =
(unsigned c2.har)IISDN_R2MFCP_LINE_FREE_CHARGE;

// Number of ring cycles before answering.

L4L3.data.al_con_data.r2_call_status.NumberRings =
 (unsigned char)1;

BsmiControlWrite(fd, &L4L3);

L3L4errLAPDID_NOT_ESTABLISHED The application did not configure the line to run any
protocol (by sending L4L3mENABLE_CAS).

L3L4errLAPDID_OUT_OF_RANGE Trunk (span) number is greater than the maximum
number of trunks are present on the module.

L4L3mDISABLE_CAS

March 2017 886

L4L3mDISABLE_CAS

Description This message stops the protocol running on the specified line. Any
ongoing calls are automatically terminated.

Arguments The trunk and B-channel must always be specified in fields:

 L4_to_L3_struct.lapdid

 L4_to_L3_struct.data.cas_data.bchannel

 L4_to_L3_struct.call_ref set to:
((Trunk <<8) | Bchannel)

 L4_to_L3_struct.data.cas_data must be set properly.

Expected Response The module responds with L3L4mCAS_STATUS and
L3_to_L4_ struct.data.b_channel_status is set to
IISDNbcsOUT_OF_SERVICE.

Data Checking The value of the timeslot is checked along with whether or not the
protocol is active.

Error Codes

See Also IISDN_BCHANNEL_ID

L3L4errINVALID_B_CHANNEL B-channel value exceeded maximum number of
available B-channels (30 for E1, 24 for T1).

L3L4errLAPDID_NOT_ESTABLISHED The application did not configure the line to run any
protocol (by sending L4L3mENABLE_CAS).

L3L4errLAPDID_OUT_OF_RANGE Trunk (span) number is greater than the maximum
number of trunks are present on the module.

L4L3mDISABLE_CAS

March 2017 887

Example L4_to_L3_struct L4L3;

memset(&L4L3, 0, sizeof(L4_to_L3_struct));
L4L3.msgtype = L4L3mDISABLE_CAS;

L4L3.data.cas_data. = 15;//same channel as ENABLE example
L4L3.lapdid = 0; // same trunk as in ENABLE example
BsmiControlWrite(fd, &L4L3);

L4L3mENABLE_CAS

March 2017 888

L4L3mENABLE_CAS

Description This message specifies the programming of the R2 protocol and
provides the data that differentiates the R2 signaling of one country
from another.

The L4L3mENABLE_CAS message must pass the following
arguments:

 E1 trunk number

 B-channel

 Signaling type

The structure elements and corresponding values that specify these
arguments are shown below:

The R2 protocol has Include files that specify the programming of
the protocol. The fields within these data structures specify the
number of DNIS and ANI digits to expect.

If the line is already configured, the line resets to idle state (any
ongoing calls are terminated). An error indication is returned,
followed by an indication that the line is correctly initialized.

L4L3.data.cas_data.bchannel 0 to 29

L4L3.lapdid E1 trunk number (0 or 1)

L4L3mENABLE_CAS

March 2017 889

When using L4L3.data.cas_data.jate_redial_method, the following
definition applies:

Specifies redial restriction method when country code is JAPAN.
Any other value specified in jate_redial_method defaults to
IISDN_JATE_REDIAL_2IN3_MINS. Redial restrictions include:

Arguments The trunk and B-channel must always be specified in fields:

 L4_to_L3_struct.lapdid

 L4_to_L3_struct.data.cas_data.bchannel

 L4_to_L3_struct.call_ref set to:
((Trunk <<8) | Bchannel)

 L4L3.data.cas_data.signaling_type ---
IISDNsigtypeR2_MF

The data structure _IISDN_R2_INTERREGISTER_PARAMS specifies
these parameters and is defined in iisdn.h. See Table 14 for the
structure fields used with the L4L3mENABLE_CAS message.

Expected Response The module responds with L3L4mCAS_STATUS and
L3_to_L4_struct.data.b_channel_status set to
IISDNbcsIN_SERVICE.

Data Checking The L4L3mENABLE_CAS message checks the value of the E1
trunk and the B-channel whether the B-channel is checked. The
B-channel value must be between 0-29.

IISDN_JATE_REDIAL_3IN3_MINS

Redial restriction applies after 3 call attempts until
3-minute timer expires.

0

IISDN_JATE_REDIAL_15X

The redial restriction applies after 15 call attempts.

1

IISDN_JATE_REDIAL_NO_RESTRICT

No redial restriction applies.

2

Table 14. _IISDN_R2_INTERREGISTER_PARAMS Fields

 Fields Meaning

dnisMaxNumDigits Maximum number of DNIS digits to collect

aniMaxNumDigits Maximum number of ANI digits to collect

L4L3mENABLE_CAS

March 2017 890

Error Codes

See Also IISDN_BCHANNEL_ID, IISDN_E1_CAS_R2_DATA

Example
L4_to_L3_struct L4L3;
memset(&L4L3, 0, sizeof(L4_to_L3_struct)); // zero data structure
L4L3.msgtype = L4L3mENABLE_CAS;
L4L3.data.cas_data.bchannel = 15; // a B-channel number
L4L3.lapdid = 0; // a Trunk number

L4L3.data.cas_data.signaling_type = IISDNsigtypeR2_MF;

//Fill in the country specific information. Note: Illegal choice defaults //to
Argentina. r2_Argentina and r2_Brazil are defined in the include
//files r2Argentina.h and r2Brazil.h respectively.

if (Country == ARGENTINA)
 memcpy((unsigned char*)&L4L3.data.cas_data.cas_params.e1_cas_r2_data,
 (unsigned char*)&r2_Argentina, sizeof(IISDN_E1_CAS_R2_DATA));
else if (Country == BRAZIL)
 memcpy((unsigned char*)&L4L3.data.cas_data.cas_params.e1_cas_r2_data,
 (unsigned char*)&r2_Brazil, sizeof(IISDN_E1_CAS_R2_DATA));
else
 memcpy((unsigned char*)&L4L3.data.cas_data.cas_params.e1_cas_r2_data,
 (unsigned char*)&r2_Argentina, sizeof(IISDN_E1_CAS_R2_DATA));

BsmiControlWrite(fd, &L4L3); // send command to the board

L3L4errD_CHAN_NOT_DISABLED The specified B-channel was already running a
protocol. The line is reset and configured to run the
new protocol.

L3L4errINITIALIZATION_FAILED Protocol-specific initialization failed.

L3L4errINVALID_B_CHANNEL B-channel value exceeded the maximum number of
available B-channels (30 for E1, 24 for T1).

L3L4errINVALID_COMMAND_ARGS Invalid data in
L4_to_L3_struct.data.cas_data.signaling_type
structure.

L3L4errLAPDID_OUT_OF_RANGE Trunk (span) number is greater than the maximum
number of trunks are present on the module.

L3L4errNO_CRSTRUCT_AVAILABLE No BOSTON channel is available to perform digit
detection/generation for the B-channel.

L3L4errPROTOCOL_DISABLED Protocol specified in structure
L4_to_L3_struct.data.cas_data.signaling_type is
not supported.

L4L3mINFO_REQUEST

March 2017 891

L4L3mINFO_REQUEST

Description Sends a sequence of R2 MF tones. This message is used for test
purposes only.

Arguments The trunk must always be specified in L4_to_L3_struct.lapdid.

The B-channel is determined by setting
L4_to_L3_struct.call_ref to: ((Trunk <<8) | Bchannel).

Expected Response None.

Data Checking The timeslot must be in the range 0 through 29.

Initialize the protocol for that line (L4L3mENABLE_CAS
completed successfully).

The line must be in a connected state.

All R2 MF tones to be dialed are verified. Accepted tokens:

 0 - 9 (tones 10, 1-9)

 B - F (tones 11-15)

To dial tone 10, specify 0 (not A, invalid).

Error Codes
L3L4errINVALID_COMMAND_ARGS Invalid data in L4_to_L3_struct.data structure.

L3L4errINVALID_MSG_FOR_STATE Message sent while the protocol was in a state that
did not accept it.
L4L3mCALL_PROCEEDING_REQUEST is
only accepted when a call is in a connected (answer)
state.

L3L4errLAPDID_OUT_OF_RANGE Trunk (span) number is greater than the maximum
number of trunks are present on the module.

L4L3mINFO_REQUEST

March 2017 892

See Also IISDN_INFO_DATA, Called Party (IISDN_CALLED_PARTY)

Example
L4_to_L3_struct L4L3;

memset(&L4L3, 0, sizeof(L4_to_L3_struct));

L4L3.msgtype = L4L3mINFO_REQUEST;

//This example uses trunk 0, channel 20
L4L3m.lapdid = 0;
L4L3m.call_ref = ((L4L3m.lapdid << 8) | 20);
L4L3.data.info_data.called_party.num_digits = 5;
strncpy(L4L3.data.info_data.called_party.digits, “205Bc”, 5);
BsmiControlWrite (fd, &L4L3);

L4L3mREQ_ABCD_DATA

March 2017 893

L4L3mREQ_ABCD_DATA

Description Requests the module to return all signaling bits (received and
transmitted) from all B-channels in module to the host.

Arguments The trunk must always be specified in L4_to_L3_struct.lapdid.

Expected Response The module responds with L3L4mABCD_SIGNAL_DATA. See
description of IISDN_ABCD_DATA and IISDN_ABCD_SIGNALS
for more details.

Data Checking The trunk number is verified, as well as the trunk type. Only
modules with digital trunks (T1 and E1) accept this message.

Error Codes

See Also IISDN_CONFIG_DATA, IISDN_ABCD_DATA,
IISDN_ABCD_SIGNALS

Example L4_to_L3_struct L4L3;
memset(&L4L3, 0, sizeof(L4_to_L3_struct));
L4L3.msgtype = L4L3mREQ_ABCD_DATA;

//This example uses trunk 0
L4L3m.lapdid = 0;
L4L3m.call_ref = 0;

BsmiControlWrite(fd, &L4L3);

L3L4errINVALID_INTERFACE Message not supported for this type of interface (for
example, CAS signaling bits cannot be set or
retrieved on analog lines).

L3L4errLAPDID_OUT_OF_RANGE Trunk (span) number is greater than the maximum
number of trunks are present on the module.

L4L3mSET_CAS_SIGNALING_BITS

March 2017 894

L4L3mSET_CAS_SIGNALING_BITS

Description Sets the signaling bit pattern on a particular B-channel.

Arguments The trunk must always be specified in L4_to_L3_struct.lapdid.

The B-channel is determined by setting
L4_to_L3_struct.call_ref to: ((Trunk <<8) | Bchannel).

Expected Response None.

Data Checking The timeslot must be in the range 0 through 29 for E1 or
0 through 23 for T1.

Initialize the protocol for that line (L4L3mENABLE_CAS
completed successfully).

This message can only be used if the port is configured to use
transparent signaling (field
L4_to_L3_struct.data.cas_data.signalling_type
set to IISDNsigtypeTRANSPARENT).

If the port is configured to use any other protocol (LEC or R2), this
message interferes with the correct behavior of the protocol stack.

L4L3mSET_CAS_SIGNALING_BITS

March 2017 895

Error Codes

Example L4_to_L3_struct L4L3;
memset(&L4L3, 0, sizeof(L4_to_L3_struct));
L4L3.msgtype = L4L3mSET_CAS_SIGNALING_BITS;

BsmiControlWrite(fd, &L4L3);

L3L4errLAPDID_OUT_OF_RANGE Trunk (span) number is greater than the maximum
number of trunks present on the module.

L3L4errINVALID_B_CHANNEL B-channel value exceeded the maximum number of
available B-channels (30 for E1, 24 for T1).

L3L4errINVALID_INTERFACE Message is not supported for this type of interface
(for example, CAS signaling bits cannot be set or
retrieved on analog lines).

L3L4errTOO_MANY_LINKS The number of entries specified in
L4_to_L3_struct.data.cas_signaling_bits.
n_entries is greater than the maximum allowed
(defined by constant
IISDN_MAX_CAS_SIGNALING_BIT_ENTRIES).

L3L4mFEATURE_NOT_ACTIVE Channel configuration does not support this option.
An attempt was made to allow the application to set
transmitted signal bits when the channel was
already configured, or the application did not enable
the option to set transmitted signaling bits when
CAS_SIGNALING_BIT mode was started.

Stack to Application (Module to Host) Messages

March 2017 896

Stack to Application (Module to Host) Messages
R2 Signaling Module to Host message summaries are shown in:

 Table 15, R2 Signaling L3L4 Management Messages

 Table 16, R2 Signaling L3L4 Call Control Messages

Table 15. R2 Signaling L3L4 Management Messages

Event Meaning

L3L4mCAS_SIGNALING_BIT_STATUS Notifies the host that signaling bits for a
B-channel have changed.

L3L4mCAS_STATUS

ID: 0x40

Enables and disables CAS messages.

L3L4mERROR

ID: 0x20

Indicates that a command sent to the module
with invalid data.

Table 16. R2 Signaling L3L4 Call Control Messages

Event Meaning

L3L4mALERTING

ID: 0x03

Notifies the outbound side that the call has
been accepted by the remote end and the phone
is ringing.

L3L4mCAS_CHAN_BLOCKED

ID: 0x4B

Responds to a block message or an
asynchronous event indicating that the line has
been blocked by the remote end.

L3L4mCAS_CHAN_UNBLOCKED

ID: 0x4C

Responds to an unblock message or an
asynchronous event, indicating that the line
was unblocked by the remote end.

L3L4mCLEAR_REQUEST

ID: 0x06

Responds to a CLEAR_REQUEST message.
This event is not received until the remote end
has gone to idle.

L3L4mCONN_ACK_IND

ID: 0x0C

Sent as an acknowledge to a
L4L3mCONNECT message.

L3L4mCONNECT

ID: 0x04

Indicates the outbound side when the call is
connected.

Stack to Application (Module to Host) Messages

March 2017 897

Arguments Data is passed from the R2 protocol to the host application using the
standard ISDN Layer 3 to Layer 4 (L3_to_L4_struct) data
structure.

The protocol passes the call reference number to the application in
the L3L4mSETUP_IND message for inbound calls and in both the
L3L4mALERTING and the L3L4mCONNECT messages for
outbound calls. The field that contains the call reference number is
L3L4.call_ref.

L3L4mDISCONNECT

ID: 0x05

Indicates that the remote end has disconnected.

L3L4mPRE_SEIZE

ID: 0x33

Indicates that the line was seized and that an
incoming call is in progress.

L3L4mSETUP_IND

ID: 0x01

Indicates that an incoming call is present. The
called and calling party numbers are contained
within the L3L4 data structure.

Table 16. R2 Signaling L3L4 Call Control Messages (Continued)

Event Meaning

Normal Event Sequence

March 2017 898

Normal Event Sequence
In the call flows given below:

 R2 -> App represents events generated by the R2 protocol and
sent to the host application.

 App -> R2 represents messages sent by the host application to
the R2 protocol stack.

Inbound Calls
R2 -> App: Trunk:B-channel = 1: 5
 Event = L3L4mPRE_SEIZE

R2 -> App: Trunk:B-channel = 1: 5
 Event = L3L4mSETUP_IND

App -> R2: Trunk:B-channel = 1: 5
 Message = L4L3mCONNECT_REQUEST

R2 -> App: Trunk:B-channel = 1: 5
 Event = L3L4mCONN_ACK_IND

Assume that the outbound side initiates disconnect.

R2 -> App: Trunk:B-channel = 1: 5
 Event = L3L4mDISCONNECT

App -> R2: Trunk:B-channel = 1: 5
 Message = L4L3mCLEAR_REQUEST

R2 -> App: Trunk:B-channel = 1: 5
 Event = L3L4mCLEAR_REQUEST

Normal Event Sequence

March 2017 899

Outbound Calls
App -> R2: Trunk:B-channel = 0: 5
 Message = L4L3mCALL_REQUEST

R2 -> App: Trunk:B-channel = 0: 5
 Event = L3L4mALERTING

R2 -> App: Trunk:B-channel = 0: 5
 Event = L3L4mCONNECT

Assume that the outbound side initiates disconnect.

App -> R2: Trunk:B-channel = 0: 5
Message = L4L3mCLEAR_REQUEST

R2 -> App: Trunk:B-channel = 0: 5
 Event = L3L4mCLEAR_REQUEST

R2 Signaling L3L4 Messages

March 2017 900

R2 Signaling L3L4 Messages
The following message subset is used in the R2 signaling protocol for
Module to Host messaging. Specific message details begin on:

 L3L4mALERTING on page 901

 L3L4mCAS_CHAN_BLOCKED on page 902

 L3L4mCAS_CHAN_UNBLOCKED on page 904

 L3L4mCAS_SIGNALING_BIT_STATUS on page 905

 L3L4mCAS_STATUS on page 907

 L3L4mCLEAR_REQUEST on page 909

 L3L4mCONN_ACK_IND on page 911

 L3L4mCONNECT on page 912

 L3L4mDISCONNECT on page 913

 L3L4mERROR on page 915

 L3L4mPRE_SEIZE on page 917

 L3L4mSETUP_IND on page 918

L3L4mALERTING

March 2017 901

L3L4mALERTING

Description This message notifies the application that:

 An outbound call is successfully initiated

 The called party is notified

 The module is monitoring the line to detect an answer condition

Note that some protocols do not provide an answer indication.

Arguments Data is specified in:

L3_to_L4_struct.data.al_con_data

See Also Alerting and Connecting Data Message
(IISDN_AL_CON_DATA), IISDN_ABCD_SIGNALS

Example
L3_to_L4_struct L3L4;

BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mALERTING)
{

printf("L3L4mALERTING B-channel %02d:%02d call_ref=%04X\n",
L3L4.lapdid, L3L4.bchannel, L3L4.call_ref);

}

L3L4mCAS_CHAN_BLOCKED

March 2017 902

L3L4mCAS_CHAN_BLOCKED

Description Notifies the host that the channel is blocked. The message is sent as
a result of either:

 The host blocking the line (L4L3mCAS_CHAN_BLOCK)

 Network explicitly blocking the line

 The module blocking the line because of an internal error

L3_to_L4_struct.data.b_channel_status indicates the reason.

If the channel is blocked:

 By the host: the host can unblock it an any time by sending
L4L3mCAS_CHAN_UNBLOCK

 By the network: Only the network can unblock it - sending
L4L3mCAS_CHAN_UNBLOCK is not allowed. It issues an
error message.

 By an internal error: report occurrence to Dialogic Technical
Services and Support. See Getting Technical Support on page 27.

The application cannot initiate or receive calls when the line is
blocked. Trying to initiate an outbound call results in an error.

Both the network and the host can block a line. When this happens,
the line remains unusable until both ends unblock it. Unblock the
line at the near end by sending L4L3mCAS_CHAN_UNBLOCK.
This indicates that the module is ready to initiate and receive calls.
However, no calls can actually happen until the network also
indicates that it is ready to initiate and receive calls.

The possible values for
L3_to_L4_struct.data.b_channel_status:

R2_BLOCKED_REMOTE_BLOCKING Network blocked line.

R2_BLOCKED_NEAR_END_BLOCKING Host blocked line.

R2_BLOCKED_IDLE_TIMEOUT Network did not idle
within a specified time.

L3L4mCAS_CHAN_BLOCKED

March 2017 903

Arguments Data is specified in: L3_to_L4_struct.data.b_channel_status.

Example
L3_to_L4_struct L3L4;

BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mCAS_CHAN_BLOCKED)
{

printf(“BChannel (%02d, %02d)”, L3L4.lapdid, L3L4.bchannel);
switch (l3L4.data.b_channel_status)
{
case R2_BLOCKED_REMOTE_BLOCKING:

printf(“Line blocked by network”);
break;

case R2_BLOCKED_NEAR_END_BLOCKING:
printf(“Line blocked by host”);
break;

case R2_BLOCKED_IDLE_TIMEOUT;
printf(“Line blocked by network - remained in clearback state”);
break;

case R2_BLOCKED_NO_RESOURCES;
printf(“Internal error”);
break;

case R2_BLOCKED_NO_RESPONSE;
printf(“Internal error in R2 MF signaling”);
break;

default:
printf(“Unknown reason”);
break;

}
printf(“\n”);

}

R2_BLOCKED_NO_RESOURCES Signaling bit monitoring
could not start.

R2_BLOCKED_NO_RESPONSE Error in R2 MF tone
detector.

L3L4mCAS_CHAN_UNBLOCKED

March 2017 904

L3L4mCAS_CHAN_UNBLOCKED

Description Notifies the host that the channel is unblocked. This results when
either:

 The host uses L4L3mCAS_CHAN_UNBLOCK

 The network unblocks their end of the line

Both the network and the host can block a line. When this happens,
the line remains unusable until both ends unblock it. Unblock the
line at the near end by sending L4L3mCAS_CHAN_UNBLOCK.
This indicates that the module is ready to initiate and receive calls.
However, no calls can actually happen until the network also
indicates that it is ready to initiate and receive calls.

Unblocking the line at the near end by sending
L4L3mCAS_CHAN_UNBLOCK indicates that the module is ready
to initiate and receive calls. However, no calls can actually happen
until the network also indicates that it is ready to initiate and
receive calls.

Arguments None.

Example
L3_to_L4_struct L3L4;

BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mCAS_CHAN_UNBLOCKED)
{

printf(“BChannel (%02d, %02d) Line Unblocked\n”, L3L4.lapdid,
L3L4.bchannel);

}

L3L4mCAS_SIGNALING_BIT_STATUS

March 2017 905

L3L4mCAS_SIGNALING_BIT_STATUS

Description Notifies the host that signaling bits for a B-channel have changed.

This message is generated by the module every time there is a
signaling bit change (either received or transmitted) for any channel.

 The network controls changes in the received bits.

 The module controls changes in the transmitted bits either as a
consequence of reception of an L4L3 message or in response to a
network signal.

One single L4L3mCAS_SIGNALING_BIT_STATUS can carry
information about signaling bit changes in several channels.

This message is only generated by a module with digital trunks
configured to run CAS protocols.

Arguments Data is specified in:

L3_to_L4_struct.data.cas_signaling_bits.

See Also IISDN_CAS_SIGNALING_BITS_DATA,
IISDN_CAS_SIGNALING_BITS

L3L4mCAS_SIGNALING_BIT_STATUS

March 2017 906

Example
L3_to_L4_struct L3L4;

BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mCAS_SIGNALING_BIT_STATUS)
{

printf("L3L4mCAS_SIGNALING_BIT_STATUS trunk=%02d\n",
L3L4.lapdid);

for (EntryIndex = 0; EntryIndex <
L3L4.data.cas.signaling_bits.n_entries; EntryIndex++)

{
switch (L3L4.data.cas_signaling_bits.entry[EntryIndex].command)
{
case CAS_EVENT_RX_CHANGE;

printf(" Change in received bits B-channel %02d Rx=%02X
Tx=%02X\n",
L3L4.data.cas_signaling_bits_entry[EntryIndex].bchannel,
L3L4.data.cas_signaling_bits_entry[EntryIndex].rx_bits,
L3L4.data.cas_signaling_bits_entry[EntryIndex].tx_bits);

break;
case CAS_EVENT_TX_CHANGE;

printf(" Change in received bits B-channel %02d Rx=%02X
Tx=%02X\n",
L3L4.data.cas_signaling_bits_entry[EntryIndex].bchannel,
L3L4.data.cas_signaling_bits_entry[EntryIndex].rx_bits,
L3L4.data.cas_signaling_bits_entry[EntryIndex].tx_bits);

break;
}

}
}

L3L4mCAS_STATUS

March 2017 907

L3L4mCAS_STATUS

Description This message is sent to indicate changes in the initialization state of
a line received. For example: as a result of a L4L3mENABLE_CAS.

Arguments Data is specified in:

L3_to_L4_struct.data.b_channel_status.

Values include:

See Also Basic type IISDNu8bit

IISDNbcsIN_SERVICE Indicates the channel is successfully
initialized.

IISDNbcsOUT_SERVICE Indicates the channel is taken out of
service.

L3L4mCAS_STATUS

March 2017 908

Example
L3_to_L4_struct L3L4;
BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mCAS_STATUS)
{

printf("L3L4mCAS_STATUS B-channel %02d:%02d call_ref=%04X,
L3L4.lapdid, L3L4.bchannel, L3L4.call_ref);

switch (L3L4.data.b_channel_status)
{

case IISDNbcsIN_SERVICE:
printf("IN_SERVICE");
break;

case IISDNbcsOUT_OF_SERVICE:
printf("OUT_OF_SERVICE");
break;

}
printf("\n");

}

L3L4mCLEAR_REQUEST

March 2017 909

L3L4mCLEAR_REQUEST

Description This message notifies the host that the line is idle and available for
another call (inbound or outbound). This normally requires that both
the module and the far end (network) take action to release the call.

If the network disconnects a call first, the module detects and
notifies the host through L3L4mDISCONNECT. It either releases
the line automatically or waits for the host to release the line
dependent on the following value set to TRUE when the line protocol
specified with L4L3mENABLE_CAS:

L4_to_L3_struct.
data.cas-data.cas_params.robbed_bit_data.delayed_onhook

If the host initiates the disconnect (by sending
L3L4mCLEAR_REQUEST), the module releases the line and
waits until the network releases its end of the line. (Until this
happens the line cannot be used for another call.)
L3L4mDISCONNECT is sent to the host to indicate the network
has released the line.

Once both ends of the line are released, the module waits for the
period specified by the following, and then sends
L3L4mCLEAR_REQUEST to the host indicating the line is idle:

L4_to_L3_struct.
data.cas_data.cas_params.robbed_bit_data.guard_interval_timer

Arguments Data is specified in: L3_to_L4_struct.data.clr_data.

See Also IISDN_CLR_DATA, Cause Data (IISDN_CAUSE)

L3L4mCLEAR_REQUEST

March 2017 910

Example
L3_to_L4_struct L3L4;

BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mCLEAR_REQUEST)
{

printf("L3L4mCLEAR_REQUEST B-channel %02d:%02d call_ref=%04X
cause=%d\n",

L3L4.lapdid, L3L4.bchannel, L3L4.call_ref,
L3L4.data.clr_data.cause.cause_val);

}

L3L4mCONN_ACK_IND

March 2017 911

L3L4mCONN_ACK_IND

Description Indicates to the host that it answered the current incoming call in
response to L4L3mCONNECT_REQUEST and the call is now in
connected (answer) state.

If the network must acknowledge the connection and complete the
path between calling and the called party (for example: remove ring
voltage from the line), the module waits for before sending
L3L4mCONN_ACK_IND to the host.

In analog lines, the host can specify whether and for how long the
module must wait for the presence of loop current before sending
L3L4mCONN_ACK_IND. This is controlled by the following, sent
with L4L3mENABLE_CAS:

L4_to_L3_struct.
data.cas_data.cas_params.robbed_bit_data.ignore_loop_current
L4_to_L3_struct.
data.cas_data.cas_params.robbed_bit_data.loop_current_timer

Arguments None.

Example
L3_to_L4_struct L3L4;

BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mCONN_ACK_IND)
{

printf("L3L4mCONN_ACT_IND B-channel %02d:%02d call_ref=%04X\n",
L3L4.lapdid, L3L4.bchannel, L3L4.call_ref);

}

L3L4mCONNECT

March 2017 912

L3L4mCONNECT

Description This message notifies the host that the ongoing outbound call is
answered. Not all protocols can detect an answer condition. If this is
the case, it is up to the application to use other methods (for
example: using Call Progress Monitoring) to detect when the call is
answered.

Arguments Data is specified in:

L3_to_L4_struct.data.al_con_data.

See Also Alerting and Connecting Data Message
(IISDN_AL_CON_DATA)

Example
L3_to_L4_struct L3L4;

BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mCONNECT)
{

printf("L3L4mCONNECT B-channel %02d:%02d call_ref=%04X\n",
L3L4.lapdid, L3L4.bchannel, L3L4.call_ref);

}

L3L4mDISCONNECT

March 2017 913

L3L4mDISCONNECT

Description Indicates to the host that the network released the line, either
initiating the call disconnection procedure or in response to a
disconnection initiated by the module.

A disconnect signal must be present on the line (for recognition) for a
duration of at least:

L4_to_L3_struct.
data.cas-data.cas_params.robbed_bit_data.hooktimer_onhook_rls

If the signal remains on the line for a shorter duration, it is
interpreted as a hookflash if the protocol supports it. Otherwise it is
ignored.

If the network disconnects a call first, the module detects and
notifies the host through L3L4mDISCONNECT. It either releases
the line automatically or waits for the host to release the line,
dependent on the following value set to TRUE when the line protocol
is specified with L4L3mENABLE_CAS:

L4_to_L3_struct.
data.cas-data.cas_params.robbed_bit_data.delayed_onhook

If the host initiates the disconnect (L4L3mCLEAR_REQUEST),
the module releases the line and waits until the network has
released its end of the line. (Until this happens the line cannot be
used for another call.) L3L4mDISCONNECT is sent to the host to
indicate the network has released the line.

Once both ends of the line are released, the module waits for the
period specified by the following, and then sends
L3L4mCLEAR_REQUEST to the host indicating the line is idle:

L4_to_L3_struct.
data.cas_data.cas_params.robbed_bit_data.guard_interval_timer

Arguments Data is specified in:

L3_to_L4_struct.data.clr_data.

L3L4mDISCONNECT

March 2017 914

See Also IISDN_CLR_DATA, Cause Data (IISDN_CAUSE)

Example
L3_to_L4_struct L3L4;

BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mDISCONNECT)
{

printf("L3L4mDISCONNECT B-channel %02d:%02d call_ref=%04X\n",
L3L4.lapdid, L3L4.bchannel, L3L4.call_ref);

}

L3L4mERROR

March 2017 915

L3L4mERROR

Description Indicates that the last message received from the host contained an
error. Table 17 provides a general explanation for the error message
meaning. You can find specific error details in the message that
caused the error.

Arguments Data is specified in: L3_to_L4_struct.data.R2_error.

Table 17. BSMI Error Codes

Error Code Meaning

L3L4errCALL_REF_ERROR B-channel values obtained from the data structure
associated to a message from
L4_to_L3_struct.call_ref did not match.

L3L4errD_CHAN_NOT_DISABLED The specified B-channel was already running a
protocol. The firmware resets the line, and
configures it to run the new protocol.

L3L4errFEATURE_NOT_ACTIVE Message not currently supported because the
current channel mode was started without
supporting this option.

L3L4errGLARE A signal indicating presence of an inbound call was
received when the module was trying to initiate an
outbound call.

L3L4errINITIALIZATION_FAILED Protocol-specific initialization failed.

L3L4errINVALID_B_CHANNEL B-channel value exceeded maximum number of
available B-channels (30 for E1, 24 for T1).

L3L4errINVALID_COMMAND_ARGS Data structure associated to a message has
incorrect values.

L3L4errINVALID_INTERFACE Message is not supported for this type of interface
(for example: analog line coefficients cannot be
downloaded to digital (T1/E1) lines).

L3L4mERROR

March 2017 916

See Also IISDN_R2_ERROR

Example
L3_to_L4_struct L3L4;

BsmiControlRead (fd, &L3L4);

//check error code here

if (L3L4.msgtype == L3L4mERROR)
{

printf(“BChannel (%02d,%02d) Error %d (command=%02X State=%04X)\n”,
L3L4.lapdid, L3L4.bchannel,
L3L4.data.r2_error.error_code,
L3L4.data.r2_error.CurrentCommand,
L3L4.data.r2_error.state);

}

L3L4errINVALID_MSG_FOR_STATE Message is not accepted in the current protocol
state (for example: send
L4L3mCONNECT_REQUEST to answer a call
when no incoming call is present).

L3L4errINVALID_SMI_MSGID Message is not recognized by the protocol (if
protocol is running, the message was sent to the
module in error). For example, any of the following
get an error:

L4_to_L3_struct.lapdid
L4_to_L3_struct.call_ref
L4_to_L3_struct.xxx.bchannel

L3L4errLAPDID_NOT_ESTABLISHED The application did not configure the line to run any
protocol (by sending L4L3mENABLE_CAS).

L3L4errLAPDID_OUT_OF_RANGE Trunk (span) number is greater than the maximum
number of trunks are present on the module.

L3L4errNO_CRSTRUCT_AVAILABLE No BOSTON channel is available to perform digit
detection/generation for the B-channel.

L3L4errPROTOCOL_DISABLED Protocol specified is not supported by the module.

L3L4errTOO_MANY_LINKS The number of specified entries is greater than the
maximum supported for the command.

Table 17. BSMI Error Codes (Continued)

Error Code Meaning

L3L4mPRE_SEIZE

March 2017 917

L3L4mPRE_SEIZE

Description This message is sent by the protocol to notify the host of the seizure
of the line by the network. At this point, the incoming call is not yet
fully established or characterized. Following transmission of this
message to the host, the protocol acknowledges the incoming call and
starts the R2 MFC signaling. Once the R2 MFC signaling ends, the
protocol sends L3L4mSETUP_IND to the host.

Arguments None.

Example
L3_to_L4_struct L3L4;

BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mPRE_SEIZE)
{

printf("L3L4mPRE_SEIZE B-channel %02d:%02d call_ref=%04X\n",
L3L4.lapdid, L3L4.bchannel, L3L4.call_ref);

}

L3L4mSETUP_IND

March 2017 918

L3L4mSETUP_IND

Description Notifies the host of an incoming call, and provides the Called Party
address. The host must indicate whether to accept or reject the call.

 Use L4L3mCONNECT_REQUEST to accept and answer the
call.

 Use L4L3mALERTING_REQUEST to accept the call but not
answer it (the module sends back a ringback tone to calling
party).

 Use L4L3mCLEAR_REQUEST to reject the call.

The notification of how to handle the call must be sent to the module
in a very short period of time since the module needs this
information to proceed with the R2 MF signaling.

Arguments Data is specified in: L3_to_L4_struct.data.setup_data.

See Also IISDN_SETUP_DATA, Calling Party
(IISDN_CALLING_PARTY), Called Party
(IISDN_CALLED_PARTY)

Example
L3_to_L4_struct L3L4;

BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mSETUP_IND)
{

printf("L3L4mSETUP_IND B-channel %02d:%02d call_ref=%04X"
"call_type=%d calling_party=%s called party=%s\n",
L3L4.lapdid, L3L4.bchannel, L3L4.call_ref,
L3L4.data.setup_data.call_type,
L3L4.data.setup_data.calling_party_digits,
L3L4.data.setup_data.called_party_digits);

}

March 2017 919

25 - LEC Protocols with BSMI

This chapter explains the control messages provided when using a
Local Exchange Carriers (LEC) protocol.

It has the following sections:

 Application to Stack (Host to Module) Messages
 LEC Signaling L4L3 Messages
 Stack to Application (Module to Host) Messages
 LEC Signaling L3L4 Messages

The Local Exchange Carriers (LEC) protocols within Local Access
and Transport Area (LATA) networks are commonly run over T1
trunks using Robbed-Bit Signaling (RBS).

Most protocols are defined in terms of call states and events, not by
line type (E1, T1 or analog). Protocols can also be on various line
types. This BSMI implementation does not tie a protocol to a
particular line interface, but verifies that the line interface can
support the selected signaling type. For example, determining
whether Loop Start protocol can run on T1, E1, or Analog loop start
lines. The LEC protocols include:

 Wink Start
 Immediate Start
 Delay Dial
 Loop Start (Station and Office)
 Ground Start (Station and Office)

Application to Stack (Host to Module) Messages

March 2017 920

Application to Stack (Host to Module) Messages
For Host to Module message summaries for LEC protocols, see:

 Table 18, LEC Protocol L4L3 Management Messages

 Table 19, LEC Protocol L4L3 Call Control Messages

Table 18. LEC Protocol L4L3 Management Messages

Message Meaning

L4L3mDISABLE_CAS

ID: 0xC7

Stops the LEC protocol. This message is issued
for each logical channel available on the
module.

L4L3mENABLE_CAS

ID: 0xC6

Starts the LEC protocol. This message is issued
for each logical channel available on the
module.

L4L3mREQ_ABCD_DATA

ID: 0xBC

Requests the received and transmitted
signaling bits for each B-channel on the module.

L4L3mREQ_CONFIGURATION

ID: 0xEA

Retrieves parameters on a B-channel or line
interface.

Table 19. LEC Protocol L4L3 Call Control Messages

Message Meaning

L4L3mCALL_REQUEST

ID: 0x81

Places an outbound call. The host can specify
whether the module or the application dials the
digits.

L4L3mCLEAR_REQUEST

ID: 0x85

Disconnects a connected call or rejects an
incoming one.

L4L3mCOLLECT_DIGITS

ID: 0xC9

Instructs the module to start detecting digits.

L4L3mCONNECT_REQUEST

ID: 0x84

Answers an inbound call.

Application to Stack (Host to Module) Messages

March 2017 921

Numbering Conventions
The LEC protocols use the standard CAS numbering convention.
T1 and E1 trunks are numbered starting from 0, and B-channels are
logically numbered starting at 0. A logical circuit (or line interface) is
identified by a trunk and a B-channel.

L4L3mDIAL

ID: 0xCA

Specifies digits dialed by the module, and the
dialing method (DTMF, MF, or Analog Pulse).

L4L3mEND_DIAL

ID: 0xBE

Notifies the module the host has finished
dialing digits.

L4L3mFORCE_CONNECTION_REQUEST

ID: 0xEB

Notifies the module that an answer condition is
detected for the current outbound call. Used
when the protocol does not already provide that
information.

L4L3mSET_CONFIGURATION

ID: 0xE9

Sets parameters on a B-channel or line
interface.

L4L3mTX_HOOKFLASH

ID: 0xC0

Transmits a hookflash if the line is currently
offhook. Not all protocols support sending a
hookflash.

L4L3mTX_WINK

ID: 0xBD

Transmits a wink if the line is currently onhook.
Not all protocols support sending a wink.

Table 19. LEC Protocol L4L3 Call Control Messages (Continued)

Message Meaning

Application to Stack (Host to Module) Messages

March 2017 922

Arguments
Arguments are passed to the LEC protocols using the standard
ISDN Layer 4 to Layer 3 (L4_to_L3_struct) data structure.

Since the LEC protocols are Channel-Associated Signaling (CAS)
protocols (as opposed to Common-Channel Signaling - CCS - as
ISDN), each call is directly related to a logical channel. As a result,
Call Reference numbers lose much of their importance when
compared to ISDN. The LEC and R2 protocols require that the Call
Reference number for a certain call/channel always be equal to the
following for all call-associated message types:

call_ref = (trunk << 8) | (bchannel);

Specify the B-channel when messages contain bchannel in the data
structure.

LEC Signaling L4L3 Messages

March 2017 923

LEC Signaling L4L3 Messages
Use the following message subset for Host to Module messaging with
the LEC protocols. Specific message details begin on page 924:

 L4L3mCALL_REQUEST on page 924

 L4L3mCLEAR_REQUEST on page 927

 L4L3mCOLLECT_DIGITS on page 929

 L4L3mCONNECT_REQUEST on page 931

 L4L3mDIAL on page 933

 L4L3mDISABLE_CAS on page 936

 L4L3mENABLE_CAS on page 938

 L4L3mEND_DIAL on page 941

 L4L3mFORCE_CONNECTION_REQUEST on page 943

 L4L3mREQ_ABCD_DATA on page 945

 L4L3mREQ_CONFIGURATION on page 946

 L4L3mSET_CONFIGURATION on page 948

 L4L3mSET_CONFIGURATION on page 948

 L4L3mTX_HOOKFLASH on page 950

 L4L3mTX_WINK on page 952

L4L3mCALL_REQUEST

March 2017 924

L4L3mCALL_REQUEST

Description Starts an outgoing call.

The Called Party number and the Calling Party number are supplied
in Called Party (IISDN_CALLED_PARTY) and Calling Party
(IISDN_CALLING_PARTY) respectively.

If the application supplies the Called Party number, the module
seizes the line, dials the specified number and starts monitoring for
answer.

If the application does not specific the Called Party number, the
module seizes the line and then waits to control the dialing process.
The host can communicate directly with the Tone Generation facility
if it chooses. In that case, it must notify that the module it has
finished dialing by issuing an L4L3mEND_DIAL. Alternatively, the
host can notify the module to effect the dialing by issuing
L4L3mDIAL (no L4L3mEND_DIAL is necessary). The module
starts monitoring the line for an answer condition once the dialing is
complete.

It is possible for the host to specify only part of the digits in
L4L3mCALL_REQUEST, then follow up with one or more
L4L3mDIAL messages to complete dialing.

Arguments The trunk and B-channel must always be specified in fields:

 L4_to_L3_struct.lapdid

 L4_to_L3_struct.data.call_req_data.bchannel

 L4_to_L3_struct.call_ref set to:
((Trunk << 8) | Bchannel)

 L4_to_L3_struct.data.call_req_data must be set properly.

Expected Response If a call is properly initiated, sends L3L4mPROGRESS to the host.

L4L3mCALL_REQUEST

March 2017 925

Data Checking Verifies the trunk and B-channel numbers. The range of valid
B-channel depends on the hardware being utilized:

 T1/ISDN trunks have 23 B-channels

 E1/ISDN trunks have 30 B-channels

 Analog Loop Start modules have a variable number of trunks

Initialize the protocol for that line (L4L3mENABLE_CAS
completed successfully).

The line must be in an idle state.

Digits specified as Called Party number and Calling Party number
are checked for validity.

Error Codes

See Also Called Party (IISDN_CALLED_PARTY), Calling Party
(IISDN_CALLING_PARTY), IISDN_CALL_REQ_DATA

L3L4errGLARE A signal indicating presence of an inbound call
received when the module was trying to initiate an
outbound call.

L3L4errINVALID_B_CHANNEL B-channel value exceeded the maximum number of
available B-channels (30 for E1, 23 for T1).

L3L4errINVALID_CALLED_NUMBER Invalid data in L4_to_L3_struct.data.call_req_data
structure. called_party.digits must contain valid
tokens (each dialing mode supports different tokens:

 IISDNdigtypeDTMF
 IISDNdigtypeMF
 IISDNdigtypePULSE

L3L4errINVALID_COMMAND_ARGS Invalid data in L4_to_L3_struct.data.call_req_data.
call_party_num_digits must have a positive value.

L3L4errINVALID_MSG_FOR_STATE Message sent when the protocol state did not accept
it. L4L3mCALL_REQUEST is only accepted when
the line is idle.

L3L4errLAPDID_NOT_ESTABLISHED The application did not configure the line to run any
protocol (by sending L4L3mENABLE_CAS).

L3L4errLAPDID_OUT_OF_RANGE Trunk (span) number is greater than the maximum
number of trunks present on the module.

L4L3mCALL_REQUEST

March 2017 926

Example
L4_to_L3_struct L4L3;

memset(&L4L3, 0, sizeof(L4_to_L3_struct));

L4L3.msgtype = L4L3mCALL_REQUEST;

//This example uses trunk 0, channel 20
L4L3.lapdid = 0;
L4L3.data.call_req_data.bchannel = 20;
L4L3.call_ref = ((L4L3.lapdid << 8) | L4L3.data.call_req_data.bchannel;

//Called party number.
L4L3.data.call_req_data.called_party.num_digits = 10;
L4L3.data.call_req_data.called_party.num_type = IISDNnumtUNKNOWN;
L4L3.data.call_req_data.called_party.num_plan = IISDNnumpUNKNOWN;
strncpy(&L4L3.data.call_req_data.called_party.digits[0]),

"1234567890", 10);

//Calling party number (this is not required by the protocol)
L4L3.data.call_req_data.calling_party.num_digits = 10;
L4L3.data.call_req_data.calling_party.num_type = IISDNnumtUNKNOWN;
L4L3.data.call_req_data.calling_party.num_plan = IISDNnumpUNKNOWN;
strncpy(&L4L3.data.call_req_data.calling_party.digits[0]),

"0987654321", 10);

BsmiControlWrite(fd, &L4L3);

L4L3mCLEAR_REQUEST

March 2017 927

L4L3mCLEAR_REQUEST

Description Clears a call.

The exact behavior of the module once this message is received
depends on the protocol used and the line state.

Calls L4L3mCLEAR_REQUEST to initiate a call teardown from a
connected state in response to a disconnect signal received from the
network or to abandon an inbound or outbound call that has not yet
been answered.

The module always waits for the line to return to an idle state before
reporting to the host that L4L3mCLEAR_REQUEST completed. In
some protocols this requires action from the other party, so it can
take several seconds. After detecting the idle state (before sending
L3L4mCLEAR_REQUEST to the host) the module waits for a
duration specified in:
IISDN_ROBBED_BIT_DATA.guard_interval_timer

Arguments The trunk must always be specified in L4_to_L3_struct.lapdid.

The B-channel is determined by setting L4_to_L3_struct.call_ref to:
((Trunk << 8) | Bchannel).

Expected Response Once the call is terminated and the line is ready for use with another
call, L3L4mCLEAR_REQUEST is sent to the host.

Data Checking Verify the trunk and B-channel numbers. The range of valid
B-channels depends on the hardware being utilized:

 T1/ISDN trunks have 23 B-channels

 E1/ISDN trunks have 30 B-channels

 Analog Loop Start modules have variable number of trunks

Initialize the protocol for that line (L4L3mENABLE_CAS
completed successfully).

There must be a call (inbound or outbound) currently on the line.

L4L3mCLEAR_REQUEST

March 2017 928

Error Codes

See Also IISDN_CLR_DATA

Example L4_to_L3_struct L4L3;

memset(&L4L3, 0, sizeof(L4_to_L3_struct));

L4L3.msgtype = L4L3mCLEAR_REQUEST;

//This example uses trunk 0, channel 20
L4L3m.lapdid = 0;
L4L3m.call_ref = ((L4L3m.lapdid << 8) | 20);
BsmiControlWrite (fd, &L4L3);

L3L4errINVALID_B_CHANNEL B-channel value exceeded the maximum number of
available B-channels (30 for E1, 23 for T1).

L3L4errINVALID_COMMAND_ARGS Invalid data in L4_to_L3_struct.data.

L3L4errINVALID_MSG_FOR_STATE Message sent when the protocol state did not accept
it. The firmware only accepts
L4L3mCLEAR_REQUEST when a call is in
progress (inbound or outbound). Inbound calls can
only be cleared once L3L4mSETUP_IND is sent to
the host. Consequently, you cannot terminate an
inbound call that is still characterized (from the
moment the line is seized and L3L4mPRE_SEIZE
can be sent to the host to the moment all necessary
data is available and the module sends
L3L4mSETUP_IND to the host).

L3L4errLAPDID_NOT_ESTABLISHED The application did not configure the line to run any
protocol (by sending L4L3mENABLE_CAS).

L3L4errLAPDID_OUT_OF_RANGE Trunk (span) number is greater than the maximum
number of trunks present on the module.

L4L3mCOLLECT_DIGITS

March 2017 929

L4L3mCOLLECT_DIGITS

Description Collects incoming digits in addition to those already received during
incoming call setup (specified in L4L3mENABLE_CAS):

L4_to_L3_struct.
cas_data.cas_params.robbed_bit_data.max_incoming_digit_count

Arguments The trunk and B-channel must always be specified in fields:

 L4_to_L3_struct.lapdid

 L4_to_L3_struct.data.dial_data.bchannel

 L4_to_L3_struct.call_ref set to:
((Trunk << 8) | Bchannel)

 L4_to_L3_struct.data.dial_data must be set properly.

Expected Response Digits returned to the host through L3L4mINFO_REQUEST.

Data Checking Verifies the trunk and B-channel numbers. The range of valid
B-channels depends on the hardware being utilized:

 T1/ISDN trunks have 23 B-channels

 E1/ISDN trunks have 30 B-channels

 Analog Loop Start modules have variable number of trunks

Initialize the protocol for that line (L4L3mENABLE_CAS
completed successfully).

The line must be in an inbound seized state (an incoming call is
detected), but not answered by the host.

L4L3mCOLLECT_DIGITS

March 2017 930

Error Codes

Example L4_to_L3_struct L4L3;

memset(&L4L3, 0, sizeof(L4_to_L3_struct));

L4L3.msgtype = L4L3mCOLLECT_DIGITS;

//This example uses trunk 0, channel 20
L4L3m.lapdid = 0;
L4L3m.data.dial_data.bchannel = 20;
L4L3m.data.dial_data.num_digits = 4; //wait for 4 digits
L4L3m.call_ref = ((L4L3m.lapdid << 8) |

L4L3m.data.dial_data.bchannel);
BsmiControlWrite (fd, &L4L3);

L3L4errCALL_REF_ERROR B-channel values obtained from
L4_to_L3_struct.data.dial_data.bchannel and from
L4_to_L3_struct.call_ref did not match.

L3L4errINVALID_B_CHANNEL B-channel value exceeded the maximum number of
available B-channels (30 for E1, 23 for T1).

L3L4errINVALID_COMMAND_ARGS Invalid data in L4_to_L3_struct.data.dial_data.

L3L4errINVALID_MSG_FOR_STATE Message sent when the protocol state did not accept
it. L4L3mCOLLECT_DIGITS is only accepted
when the incoming call is present, and the
originating end is ready to send the address (called
party) digits.

L3L4errLAPDID_NOT_ESTABLISHED The application did not configure the line to run any
protocol (by sending L4L3mENABLE_CAS).

L3L4errLAPDID_OUT_OF_RANGE Trunk (span) number is greater than the maximum
number of trunks present on the module.

L4L3mCONNECT_REQUEST

March 2017 931

L4L3mCONNECT_REQUEST

Description Answers an incoming call.

Arguments The trunk and B-channel must always be specified in fields:

 L4_to_L3_struct.lapdid

 L4_to_L3_struct.data.al_con_data.bchannel

 L4_to_L3_struct.call_ref set to:
((Trunk << 8) | Bchannel)

 L4_to_L3_struct.data.al_con_data must be set properly.

Expected Response After the connection completes, L3L4mCONN_ACK_IND is sent to
the host.

Data Checking Verifies the trunk and B-channel numbers. The range of valid
B-channels depends on the hardware being utilized:

 T1/ISDN trunks have 23 B-channels

 E1/ISDN trunks have 30 B-channels

 Analog Loop Start modules have variable number of trunks

Unitize the protocol for that line (L4L3mENABLE_CAS completed
successfully).

The line must be in an inbound seized state (an incoming call is
detected, but not answered by the host).

See Also Alerting and Connecting Data Message
(IISDN_AL_CON_DATA)

L4L3mCONNECT_REQUEST

March 2017 932

Error Codes

Example
L4_to_L3_struct L4L3;

memset(&L4L3, 0, sizeof(L4_to_L3_struct));

L4L3.msgtype = L4L3mCONNECT_REQUEST;

//This example uses trunk 0, channel 20
L4L3m.lapdid = 0;
L4L3m.data.al_con_data.bchannel = 20;
L4L3m.call_ref = ((L4L3m.lapdid << 8) | L4L3m.data.al_con_data.bchannel);

BsmiControlWrite (fd, &L4L3);

L3L4errCALL_REF_ERROR B-channel values from
L4_to_L3_struct.data.al_con_data.bchannel and
L4_to_L3_struct.call_ref did not match.

L3L4errINVALID_B_CHANNEL B-channel value exceeded the maximum number of
available B-channels (30 for E1, 23 for T1).

L3L4errINVALID_COMMAND_ARGS Invalid data in L4_to_L3_struct.data.al_con_data.

L3L4errINVALID_MSG_FOR_STATE Message sent when the protocol state did not accept
it. L4L3mCONNECT_REQUEST is only accepted
when the inbound call is present and fully
characterized (the complete address (called party
number) is available). You can call
L4L3mCONNECT_REQUEST only once for a
particular inbound call.

L3L4errLAPDID_NOT_ESTABLISHED The application did not configure the line to run any
protocol (by sending L4L3mENABLE_CAS).

L3L4errLAPDID_OUT_OF_RANGE Trunk (span) number is greater than the maximum
number of trunks present on the module.

L4L3mDIAL

March 2017 933

L4L3mDIAL

Description Instructs the protocol to dial digits. The dialing method as specified:

 Pulse Dialing

 DTMF

 MF

Arguments The trunk and B-channel must always be specified in fields:

 L4_to_L3_struct.lapdid

 L4_to_L3_struct.data.al_con_data.bchannel

 L4_to_L3_struct.call_ref set to:
((Trunk << 8) | Bchannel)

 L4_to_L3_struct.data.dial_data must be set properly.

Expected Response Once the dialing is completed, L3L4mEND_DIAL is sent to the host
if IISDN_DIAL_DATA.report_dial_completion is set to TRUE.

Data Checking Verifies the trunk and B-channel numbers. The range of valid
B-channels depends on the hardware being utilized:

 T1/ISDN trunks have 23 B-channels

 E1/ISDN trunks have 30 B-channels

 Analog Loop Start modules have variable number of trunks

Initialize the protocol for that line (L4L3mENABLE_CAS
completed successfully).

The line must be in an outbound seized state (an outgoing call is
started, but not answered by the network) or connected state.

Verifies all tokens to be dialing. If the protocol finds any invalid
token, an error message is returned to the host and no digits are
dialed.

L4L3mDIAL

March 2017 934

Error Codes

See Also IISDN_DIAL_DATA

L3L4errINVALID_CALLED_NUMBER Invalid data. L4_to_L3_struct.data.dial_data.
digits must contain valid tokens. Each dialing mode
supports different tokens:

 IISDNdigtypeDTMF
 IISDNdigtypeMF
 IISDNdigtypePULSE

L3L4errINVALID_B_CHANNEL B-channel value exceeded the maximum number of
available B-channels (30 for E1, 23 for T1).

L3L4errINVALID_COMMAND_ARGS Invalid data. L4_to_L3_struct.data.dial_data.
num_digits must have a positive value.
default_digit_type must contain a valid dialing type:

 IISDNdigtypeDTMF
 IISDNdigtypeMF
 IISDNdigtypePULSE

L3L4errINVALID_MSG_FOR_STATE Message sent when the protocol state did not accept
it. The protocol only accepts L4L3mDIAL when the
outbound call is present and the protocol is dialing
any digits specified by previous calls to L4L3mDIAL
or L4L3mCALL_REQUEST. When the call is in
connected state (answered), call L4L3mDIAL.

L3L4errLAPDID_NOT_ESTABLISHED The application did not configure the line to run any
protocol (by sending L4L3mENABLE_CAS).

L3L4errLAPDID_OUT_OF_RANGE Trunk (span) number is greater than the maximum
number of trunks present on the module.

L3L4errSERVICE_NOT_OFFERED The protocol does not support this particular feature.
For example, lines configured with
FXO_LOOP_START cannot dial digits.

L4L3mDIAL

March 2017 935

Example
L4_to_L3_struct L4L3;

memset(&L4L3, 0, sizeof(L4_to_L3_struct));

L4L3.msgtype = L4L3mDIAL;

//This example uses trunk 0, channel 20
L4L3m.lapdid = 0;
L4L3m.data.dial_data.bchannel = 20;
L4L3m.call_ref = ((L4L3m.lapdid << 8) | L4L3m.data.dial_data.bchannel);
L4L3m.data.dial_data.num_digits = strlen(DialString);
memcpy(L4L3m.data.dial_data.digits, DialString,

L4L3m.data.dial_data.num_digits);
L4L3m.data.dial_data.default_digit_type = IISDNdigtypeDTMF;
L4L3m.data.dial_data.report_dial_completion = TRUE;

// only for WINK_START protocol with feature group
// B and D enabled
L4L3m.data.dial_data.wait_for_ack_wink = FALSE;

BsmiControlWrite (fd, &L4L3);

L4L3mDISABLE_CAS

March 2017 936

L4L3mDISABLE_CAS

Description Stops the protocol running on the specified line. Any ongoing calls
are automatically terminated.

Arguments The trunk and B-channel must always be specified in fields:

 L4_to_L3_struct.lapdid

 L4_to_L3_struct.data.cas_data.bchannel

 L4_to_L3_struct.call_ref set to:
((Trunk << 8) | Bchannel)

 L4_to_L3_struct.data.cas_data must be set properly.

Expected Response The module responds with L3L4mCAS_STATUS and
L3_to_L4_ struct.data.b_channel_status is set to
IISDNbcsOUT_OF_SERVICE.

Data Checking Verifies the trunk and B-channel numbers. The range of valid
B-channels depends on the hardware being utilized:

 T1/ISDN trunks have 23 B-channels

 E1/ISDN trunks have 30 B-channels

 Analog Loop Start modules have variable number of trunks

Initialize the protocol for that line (L4L3mENABLE_CAS
completed successfully).

L4L3mDISABLE_CAS

March 2017 937

Error Codes

Example
L4_to_L3_struct L4L3;
memset(&L4L3, 0, sizeof(L4_to_L3_struct));
L4L3.msgtype = L4L3mDISABLE_CAS;

//This example uses trunk 0, channel 20
L4L3m.lapdid = 0;
L4L3m.data.data.cas_data.bchannel = 20;
L4L3m.call_ref = ((L4L3m.lapdid << 8) | L4L3m.data.cas_data.bchannel);

BsmiControlWrite (fd, &L4L3);

L3L4errCALL_REF_ERROR B-channel values obtained from
L4_to_L3_struct.data.cas_data.bchannel and from
L4_to_L3_struct.call_ref did not match.

L3L4errINVALID_B_CHANNEL B-channel value exceeded the maximum number of
available B-channels (30 for E1, 23 for T1).

L3L4errLAPDID_NOT_ESTABLISHED The application did not configure the line to run any
protocol (by sending L4L3mENABLE_CAS).

L3L4errLAPDID_OUT_OF_RANGE Trunk (span) number is greater than the maximum
number of trunks present on the module.

L4L3mENABLE_CAS

March 2017 938

L4L3mENABLE_CAS

Description Configures the line to run the specified protocol.

If the protocol has already configured the line, the line resets to an
idle state (any ongoing calls are terminated). An error indication is
returned, followed by an indication that the line is correctly
initialized.

Arguments The trunk and B-channel must always be specified in fields:

 L4_to_L3_struct.lapdid

 L4_to_L3_struct.data.cas_data.bchannel

 L4_to_L3_struct.call_ref set to:
((Trunk << 8) | Bchannel)

 L4_to_L3_struct.data.cas_data.signaling_type
specifies the protocol family:

 IISDNsigtypeR2_MF
For protocols based on ITU’s R2 implementation running on
E1 trunks.

 IISDNsigtypeLEC_NETWORK
For various protocols normally used in the US and Canada
(Local Exchange Carriers, or LEC) running on digital (E1 or
T1) trunks.

 IISDNsigtypeANALOG
For protocols running on analog lines.

 L4_to_L3_struct.data.cas_data.cas_params.
e1_cas_r2_data contains all parameters for R2 protocols.

 L4_to_L3_struct.data.cas_data.cas_params.
robbed_bit_data contains parameters for LEC protocols
(running either digital or analog trunks). Dialogic provides files
containing a binary image of these data structures.

L4L3mENABLE_CAS

March 2017 939

Using the application, copy these protocol files into the appropriate
data structure and pass it directly to the module using
L4L3mENABLE_CAS. Do not modify most of the fields from their
default values. See IISDN_ROBBED_BIT_DATA and
IISDN_E1_CAS_R2_DATA for the field list.

Expected Response The module responds with L3L4mCAS_STATUS and
L3_to_L4_struct.data.b_channel_status set to
IISDNbcsIN_SERVICE.

Data Checking Verifies the trunk and B-channel numbers. The range of valid
B-channels depends on the hardware being utilized:

 T1/ISDN trunks have 23 B-channels

 E1/ISDN trunks have 30 B-channels

 Analog Loop Start modules have variable number of trunks

The module must have enough DSP resources to match the number
of B-channels being initialized.

The trunk interface must support the selected signaling type.

Error Codes
L3L4errCALL_REF_ERROR B-channel values obtained from

L4_to_L3_struct.data.cas_data.bchannel and from
L4_to_L3_struct.call_ref did not match.

L3L4errD_CHAN_NOT_DISABLED The specified B-channel was already running a
protocol. The line is reset, and configured to run the
new protocol.

L3L4errINITIALIZATION_FAILED Protocol-specific initialization failed.

L3L4errINVALID_B_CHANNEL B-channel value exceeded the maximum number of
available B-channels (30 for E1, 23 for T1).

L3L4errINVALID_COMMAND_ARGS Invalid data in
L4_to_L3_struct.data.cas_data.signaling_type.

L3L4errLAPDID_OUT_OF_RANGE Trunk (span) number is greater than the maximum
number of trunks present on the module.

L3L4errNO_CRSTRUCT_AVAILABLE No BOSTON channel available to perform digit
detection/generation for the B-channel.

L3L4errPROTOCOL_DISABLED Protocol specified in
L4_to_L3_struct.data.cas_data.siganling_type is
not supported.

L4L3mENABLE_CAS

March 2017 940

See Also IISDN_BCHANNEL_ID, IISDN_ROBBED_BIT_DATA

Example
L4_to_L3_struct L4L3;

memset(&L4L3, 0, sizeof(L4_to_L3_struct));

L4L3.msgtype = L4L3mENABLE_CAS;

//This example uses trunk 0, channel 20
L4L3m.lapdid = 0;
L4L3m.data.data.cas_data.bchannel = 20;
L4L3m.call_ref = ((L4L3m.lapdid << 8) | L4L3m.data.cas_data.bchannel);

L4L3m.data.data.cas_data.signaling_type = IISDNsigtypeLEC_NETWORK;

If (protocol_type == IISDNttWINK_START
{

PROTOCOL_HEADER_S ProtocolHeader;
FILE* fh = fopen("WinkStart.lec", "rb");

// check value of fh
if (fread(&ProtocolHeader, sizeof(ProtocolHeader), 1, fh) == 1
{

//validate protocol header
if (fread(L4L3m.data.cas_data.cas_params.robbed_bit_data,

ProtocolHeader.ProtocolSize, 1 fh) == 1)
{

//adjust necessary parameters
L4L3m.cas_data.cas_params.

robbed_bit_data.max_incoming_digit_count = IISDN_MAX_DIGITS;
//send message
BsmiControlWrite (fd, &L4L3);

}
else
{

//handle error
}

 }
 else
 {

//handle error
 }
}

L4L3mEND_DIAL

March 2017 941

L4L3mEND_DIAL

Description This message notifies the module that the host has finished dialing
digits, and the module can start monitoring the line for an answer
signal.

When no called party digits are specified in
L4L3mCALL_REQUEST, the module assumes the host either
requests the digits to be dialed later (using L4L3mDIAL) or dials
them by directly interacting with the Signal Generation facility. If
the latter approach is chosen, the only way for the protocol to know
when the host has finished dialing digits is to receive this message
from the host.

Arguments The trunk and B-channel must always be specified in fields:

 L4_to_L3_struct.lapdid

 L4_to_L3_struct.data.dial_data.bchannel

 L4_to_L3_struct.call_ref set to:
((Trunk << 8) | Bchannel)

Data Checking Verifies the trunk and B-channel numbers. The range of valid
B-channels depends on the hardware being utilized:

 T1/ISDN trunks have 23 B-channels

 E1/ISDN trunks have 30 B-channels

 Analog Loop Start modules have variable number of trunks

Initialize the protocol for that line (L4L3mENABLE_CAS)
completed successfully.

The line is successfully seized for outgoing call (in host dialout state)
but not digits have been dialed out because
L4L3mCALL_REQUEST specified no digits.

L4L3mEND_DIAL

March 2017 942

Error Codes

Example
L4_to_L3_struct L4L3;
memset(&L4L3, 0, sizeof(L4_to_L3_struct));
L4L3.msgtype = L4L3mEND_DIAL;

//This example uses trunk 0, channel 20
L4L3m.lapdid = 0;
L4L3m.data.dial_data.bchannel = 20;
L4L3m.call_ref = ((L4L3m.lapdid << 8) | L4L3m.data.dial_data.bchannel);

BsmiControlWrite (fd, &L4L3);

L3L4errINVALID_B_CHANNEL B-channel value exceeded the maximum number of
available B-channels (30 for E1, 23 for T1).

L3L4errINVALID_MSG_FOR_STATE Message sent when the protocol state did not accept
it. The protocol accepts L4L3mEND_DIAL only
when an outbound call where the host specified no
digits to be dialed in L4L3mCALL_REQUEST is
present (no Called Party
(IISDN_CALLED_PARTY) specified).

L3L4errLAPDID_NOT_ESTABLISHED The application did not configure the line to run any
protocol (by sending L4L3mENABLE_CAS).

L3L4errLAPDID_OUT_OF_RANGE Trunk (span) number is greater than the maximum
number of trunks present on the module.

L4L3mFORCE_CONNECTION_REQUEST

March 2017 943

L4L3mFORCE_CONNECTION_REQUEST

Description Notifies the module that an answer condition is detected. Most
protocols support some sort of answer notification, except for
5ESS_LOOP_START and 5ESS_GROUND_START. With these
exceptions, the application must use Call Progress (CP) or some
other mechanism to detect answer and notify the protocol (send
L4L3mFORCE_CONNECTION_REQUEST) of the change in call
state.

Arguments The trunk and B-channel must always be specified in fields:

 L4_to_L3_struct.lapdid

 L4_to_L3_struct.data.al_con_data.bchannel

 L4_to_L3_struct.call_ref set to:
((Trunk << 8) | Bchannel)

 L4_to_L3_struct.data.al_con_data must be set properly.

Expected Response The module responds with L3L4mCONNECT.

Data Checking Verifies the trunk and B-channel numbers. The range of valid
B-channels depends on the hardware being utilized:

 T1/ISDN trunks have 23 B-channels

 E1/ISDN trunks have 30 B-channels

 Analog Loop Start modules have variable number of trunks

Initialize the protocol for that line (L4L3mENABLE_CAS
completed successfully).

The line must be in an outbound seized state (an outbound call is
detected), but not answered by the host.

L4L3mFORCE_CONNECTION_REQUEST

March 2017 944

Error Codes

See Also Alerting and Connecting Data Message
(IISDN_AL_CON_DATA)

Example
L4_to_L3_struct L4L3;

memset(&L4L3, 0, sizeof(L4_to_L3_struct));

L4L3.msgtype = L4L3mFORCE_CONNECTION_REQUEST;

//This example uses trunk 0, channel 20
L4L3m.lapdid = 0;
L4L3m.data.al_con_data.bchannel = 20;

L4L3m.call_ref = ((L4L3m.lapdid << 8) | L4L3m.data.al_con_data.bchannel);

BsmiControlWrite (fd, &L4L3);

L3L4errCALL_REF_ERROR B-channel values obtained from
L4_to_L3_struct.data.cas_data.bchannel and
from L4_to_L3_struct.call_ref did not match.

L3L4errINVALID_B_CHANNEL B-channel value exceeded the maximum number
of available B-channels (30 for E1, 23 for T1).

L3L4errINVALID_MSG_FOR_STATE Message sent when the protocol state did not
accept it.
L4L3mFORCE_CONNECTION_REQUEST is
only accepted in outbound calls when the module
is monitoring the line to detect an answer
condition after dialing all digits.

L3L4errLAPDID_NOT_ESTABLISHED The application did not configure the line to run
any protocol (by sending
L4L3mENABLE_CAS).

L3L4errLAPDID_OUT_OF_RANGE Trunk (span) number is greater than the
maximum number of trunks present on the
module.

L4L3mREQ_ABCD_DATA

March 2017 945

L4L3mREQ_ABCD_DATA

Description Requests the module to return to the host all signaling bits (received
and transmitted) from all B-channels in the module.

Arguments The trunk must always be specified in field
L4_to_L3_struct.lapdid.

Expected Response The module responds with L3L4mABCD_SIGNAL_DATA. See
description of IISDN_ABCD_DATA and IISDN_ABCD_SIGNALS
for more details.

Data Checking Verifies the trunk number and the trunk type. Only modules with
digital trunks (T1 and E1) accept this message.

Error Codes

See Also IISDN_CONFIG_DATA, IISDN_ABCD_DATA,
IISDN_ABCD_SIGNALS

Example L4_to_L3_struct L4L3;
memset(&L4L3, 0, sizeof(L4_to_L3_struct));
L4L3.msgtype = L4L3mREQ_ABCD_DATA;

//This example uses trunk 0
L4L3m.lapdid = 0;
L4L3m.call_ref = 0;

BsmiControlWrite(fd, &L4L3);

L3L4errINVALID_INTERFACE Message not supported for this type of interface (for
example, analog line coefficients cannot be
downloaded to digital (T1/E1) lines).

L3L4errLAPDID_OUT_OF_RANGE Trunk (span) number is greater than the maximum
number of trunks present on the module.

L4L3mREQ_CONFIGURATION

March 2017 946

L4L3mREQ_CONFIGURATION

Description Requests the value of a line-associated parameter stored by the
module. The list of supported parameters is hardware dependent.

Arguments The trunk and B-channel must always be specified in fields:

 L4_to_L3_struct.lapdid

 L4_to_L3_struct.data.config_data.line_index

 Set L4_to_L3_struct.call_ref to:
((Trunk << 8) | Bchannel)

 L4_to_L3_struct.data.config_data must be set properly.

Expected Response The module responds with L3L4mCONFIGURATION_STATUS.

Data Checking Verifies the trunk and B-channel numbers. The range of valid
B-channels depends on the hardware being utilized:

 T1/ISDN trunks have 23 B-channels

 E1/ISDN trunks have 30 B-channels

 Analog Loop Start modules have a variable number of trunks

Initialize the protocol for that line (L4L3mENABLE_CAS
completed successfully).

The parameter type and value must be valid for the particular
hardware platform used.

L4L3mREQ_CONFIGURATION

March 2017 947

Error Codes

See Also IISDN_CONFIG_DATA

Example
L4_to_L3_struct L4L3;

memset(&L4L3, 0, sizeof(L4_to_L3_struct));

L4L3.msgtype = L4L3mREQ_CONFIGURATION;

//This example uses trunk 0, channel 20
L4L3m.lapdid = 0;
L4L3m.data.config_data.line_index = 20;

L4L3m.call_ref =((L4L3m.lapdid << 8) | L4L3m.data.config_data.line_index);

L3L3m.data.config_data.type = IISDNcfgtypeLINE_INPUT_GAIN;

BsmiControlWrite (fd, &L4L3);

L3L4errCALL_REF_ERROR B-channel values obtained from
L4_to_L3_struct.data.cas_data.config_data.line_in
dex and from L4_to_L3_struct.call_ref did not
match.

L3L4errINVALID_B_CHANNEL B-channel value exceeded the maximum number of
available B-channels (30 for E1, 23 for T1).

L3L4errLAPDID_NOT_ESTABLISHED The application did not configure the line to run any
protocol (by sending L4L3mENABLE_CAS).

L3L4errLAPDID_OUT_OF_RANGE Trunk (span) number is greater than the maximum
number of trunks present on the module.

L3L4errPARAMETER_NOT_SUPPORTED Parameter is not supported by the hardware or
protocol. For example, audio gain cannot be set in
digital (T1/E1) interfaces.

L4L3mSET_CONFIGURATION

March 2017 948

L4L3mSET_CONFIGURATION

Description Sets the value of a line-associated parameter. The list of supported
parameters and valid ranges is hardware-dependent.

Arguments The trunk and B-channel must always be specified in fields:

 L4_to_L3_struct.lapdid

 L4_to_L3_struct.data.config_data.line_index

 L4_to_L3_struct.call_ref set to:
((Trunk << 8) | Bchannel)

 L4_to_L3_struct.data.config_data must be set properly.

Data Checking Verifies the trunk and B-channel numbers. The range of valid
B-channels depends on the hardware being utilized:

 T1/ISDN trunks have 23 B-channels

 E1/ISDN trunks have 30 B-channels

 Analog Loop Start modules have a variable number of trunks

Initialize the protocol for that line (L4L3mENABLE_CAS
completed successfully).

The parameter type and value must be valid for the particular
hardware platform used.

L4L3mSET_CONFIGURATION

March 2017 949

Error Codes

See Also IISDN_CONFIG_DATA

Example L4_to_L3_struct L4L3;

memset(&L4L3, 0, sizeof(L4_to_L3_struct));
L4L3.msgtype = L4L3mSET_CONFIGURATION;

//This example uses trunk 0, channel 20
L4L3m.lapdid = 0;
L4L3m.data.config_data.line_index = 20;

L4L3m.call_ref = ((L4L3m.lapdid << 8) |
L4L3m.data.config_data.line_index);

L3L3m.data.config_data.type =
IISDNcfgtypeLINE_INPUT_GAIN;

L4L3m.data.config_data.par.gain = 5;

BsmiControlWrite (fd, &L4L3);

L3L4errCALL_REF_ERROR B-channel values obtained from
L4_to_L3_struct.data.cas_data.config_data.line_in
dex and from L4_to_L3_struct.call_ref did not
match.

L3L4errINVALID_B_CHANNEL B-channel value exceeded the maximum number of
available B-channels (30 for E1, 23 for T1).

L3L4errLAPDID_NOT_ESTABLISHED The application did not configure the line to run any
protocol (by sending L4L3mENABLE_CAS).

L3L4errLAPDID_OUT_OF_RANGE Trunk (span) number is greater than the maximum
number of trunks present on the module.

L3L4errPARAMETER_OUT_OF_RANGE Invalid parameter value. The valid range of values
depends on the specific parameter.

L3L4errPARAMETER_NOT_SUPPORTED Parameter not supported by the hardware or
protocol. For example, audio gain cannot be set in
digital (T1/E1) interfaces.

L4L3mTX_HOOKFLASH

March 2017 950

L4L3mTX_HOOKFLASH

Description Notifies the module to send a hookflash signal (disconnect signal
followed by a connect signal) on the line. Not all protocols support
transmission of hookflash signals.

The duration of the hookflash signal is specified in
L4_to_L3_struct.data.signal_duration_data.duration. If
set to 0, then the default duration specified when enabling the
protocol is used:

L4_to_L3_struct.
data.cas_data.cas_params.robbed_bit_data.hookflash_timer

Arguments The trunk must always be specified in L4_to_L3_struct.lapdid.

 To determine B-channel, set L4_to_L3_struct.call_ref set to:
((Trunk << 8) | Bchannel)

 L4_to_L3_struct.data.signal_duration_data must be set
properly.

Expected Response The module sends L3L4mTX_HOOKFLASH_END to the host once
the hookflash is sent.

Data Checking Verifies the trunk and B-channel numbers. The range of valid
B-channels depends on the hardware being utilized:

 T1/ISDN trunks have 23 B-channels

 E1/ISDN trunks have 30 B-channels

 Analog Loop Start modules have a variable number of trunks

Initialize the protocol for that line (L4L3mENABLE_CAS
completed successfully).

L4L3mTX_HOOKFLASH

March 2017 951

The line must be in a connected state and the protocol must support
hookflash signals. Protocols supported defined below:

Error Codes

See Also IISDN_SIGNAL_DURATION_DATA

Example L4_to_L3_struct L4L3;

memset(&L4L3, 0, sizeof(L4_to_L3_struct));
L4L3.msgtype = L4L3mTX_HOOKFLASH;

//This example uses trunk 0, channel 20
L4L3m.lapdid = 0;
L4L3m.data.config_data.line_index = 20;

L4L3m.call_ref = ((L4L3m.lapdid << 8) | 20;

L3L3m.data.signal_duration_data.duration = 30
 //300ms signal

BsmiControlWrite (fd, &L4L3);

Support for Hookflash No Support for Hookflash
WINK_START FX_LOOP_START

DELAY_DIAL FXO_GROUND_START

IMMEDIATE_START

FIXED_PAUSE

5ESS_LOOP_START

5ESS_GROUND_START

L3L4errINVALID_B_CHANNEL B-channel value exceeded maximum number of
available B-channels (30 for E1, 23 for T1).

L3L4errINVALID_MSG_FOR_STATE Message sent when the protocol state did not accept
it. L4L3mTX_HOOKFLASH is only accepted when
the call is connected.

L3L4errLAPDID_NOT_ESTABLISHED The application did not configure the line to run any
protocol (by sending L4L3mENABLE_CAS).

L3L4errLAPDID_OUT_OF_RANGE Trunk (span) number is greater than the maximum
number of trunks present on the module.

L4L3mTX_WINK

March 2017 952

L4L3mTX_WINK

Description Notifies the module to send a wink signal (connect signal followed by
a disconnect signal) on the line. Not all protocols support
transmission of wink signals.

L4_to_L3_struct.data.signal_duration_data.duration
specifies the duration of the wink signal. If set to 0, then the default
duration specified when the enabling protocol is used:

L4_to_L3_struct.
data.cas_data.cas_params.robbed_bit_data.dptimer_wink

Arguments The trunk must always be specified in L4_to_L3_struct.lapdid.

 To determine B-channel set L4_to_L3_struct.call_ref set to:
((Trunk << 8) | Bchannel)

 L4_to_L3_struct.data.signal_duration_data must be set
properly.

Expected Response The module sends L3L4mTXWINK_END to the host once the wink
is sent.

Data Checking Verifies the trunk and B-channel numbers. The range of valid
B-channels depends on the hardware being utilized:

 T1/ISDN trunks have 23 B-channels

 E1/ISDN trunks have 30 B-channels

 Analog Loop Start modules have a variable number of trunks

Initialize the protocol for that line (L4L3mENABLE_CAS
completed successfully).

The line must be in an inbound seized state (an incoming call is
detected, but not answered by the host) and the protocol must
support wink signals. How protocols support transmission of wink
signals is indicated on the following page.

L4L3mTX_WINK

March 2017 953

Error Codes

See Also IISDN_SIGNAL_DURATION_DATA

Example L4_to_L3_struct L4L3;

memset(&L4L3, 0, sizeof(L4_to_L3_struct));
L4L3.msgtype = L4L3mTX_WINK;

//This example uses trunk 0, channel 20
L4L3m.lapdid = 0;
L4L3m.data.config_data.line_index = 20;

L4L3m.call_ref = ((L4L3m.lapdid << 8) | 20;

L3L3m.data.signal_duration_data.duration = 20
 //200ms wink

BsmiControlWrite (fd, &L4L3);

Support for Wink No Support for Wink
WINK_START FX_LOOP_START

DELAY_DIAL FXO_GROUND_START

IMMEDIATE_START

FIXED_PAUSE

5ESS_LOOP_START

5ESS_GROUND_START

L3L4errCOMMAND_DISABLED Protocol does not support winking.

L3L4errINVALID_B_CHANNEL B-channel value exceeded the maximum number of
available B-channels (30 for E1, 23 for T1).

L3L4errINVALID_MSG_FOR_STATE Message sent when the protocol state did not accept
it. L4L3mTX_WINK is only accepted when an
incoming call is reported to the application but not
yet answered.

L3L4errLAPDID_NOT_ESTABLISHED The application did not configure the line to run any
protocol (by sending L4L3mENABLE_CAS).

L3L4errLAPDID_OUT_OF_RANGE Trunk (span) number is greater than the maximum
number of trunks present on the module.

Stack to Application (Module to Host) Messages

March 2017 954

Stack to Application (Module to Host) Messages
For Module to Host message summaries for LEC protocols, see:

 Table 20, LEC Protocol L3L4 Management Messages

 Table 21, LEC Protocol L3L4 Call Control Messages, on page 955

Table 20. LEC Protocol L3L4 Management Messages

Message Meaning

L3L4mABCD_SIGNAL_DATA

ID: 0x35

Returns both the received and transmitted
signaling bits for each B-channel on the module.

L3L4mACK_DOWNLOAD

ID: 0x44

Indicates downloading of trunk-specific
coefficients is successfully completed (currently
applicable to analog modules only).

L3L4mACK_UPLOAD

ID: 0x47

Returns the trunk-specific coefficients
requested through L4L3mUPLOAD. Currently
applicable to analog modules only.

L3L4mCAS_SIGNALING_BIT_STATUS

ID: 0x4F

Notifies host that signaling bits for a B-channel
have changed.

L3L4mCAS_STATUS

ID: 0x40

Indicates the status of a line in regards to its
readiness for use.

L3L4mCONFIGURATION_STATUS

ID: 0x55

Returns to the host the value of a requested line
parameter.

L3L4mERROR

ID: 0x20

Indicates an error condition.

Stack to Application (Module to Host) Messages

March 2017 955

Table 21. LEC Protocol L3L4 Call Control Messages

Message Meaning

L3L4mALERTING

ID: 0x03

Indicates the outbound call is accepted and the
called party is notified (telephone ringing).

L3L4mCALLER_ID_DETECTED

ID: 0x59

Notifies host that called ID information is
detected on the line.

L3L4mCLEAR_REQUEST

ID: 0x66

Notifies the host that line is idle and ready for
another call (inbound or outbound).

L3L4mCONN_ACK_IND

ID: 0x0C

Notifies the host that the ongoing outbound call
is answered.

L3L4mCONNECT

ID: 0x04

Notifies host that the request to answer an
incoming call is completed successfully.

L3L4mDISCONNECT

ID: 0x05

Indicates the far end has disconnected the
existing call.

L3L4mEND_DIAL

ID: 0x42

Notifies host that the dial request
(L4L3mDIAL) is successfully completed.

L3L4mHOOKFLASH

ID: 0x3E

Notifies host that a hookflash signal is detected
on the line.

L3L4mLOOP_ON

ID: 0x56

Notifies the host that loop current is detected on
the line.

L3L4mLOOP_REVERSAL

ID: 0x57

Notifies host that the loop current reversal is
detected on the line.

L3L4mPRE_SEIZE

ID: 0x33

Notifies host that the line is seized for an
incoming call, and the handshaking necessary
to proceed with the call is taking place.

L3L4mPROGRESS

ID: 0x02

Notifies host that an outbound call is initiated,
and the handshaking necessary to proceed with
the call is taking place.

L3L4mRING_STATUS

ID: 0x58

Notifies host about a change in the status of the
ring signal.

Stack to Application (Module to Host) Messages

March 2017 956

Arguments Data is passed from the LEC protocol to the host application using
the standard ISDN Layer 3 to Layer 4 (L3_to_L4_struct) data
structure.

The following fields are common to all LEC protocol messages:

lapdid

Contains the trunk number (stream number).

bchannel

Contains the timeslot number. If not applicable to a particular
message, it is set to zero.

call_ref

Contains trunk/timeslot information, in the format:
((lapdid << 8) | (bchannel))

L3L4mRX_WINK

ID: 0x36

Notifies host that a wink is detected on the line.

L3L4mSEIZE_COMP

ID: 0x34

Notifies the host that the process for initiating
an outbound call successfully completed.

L3L4mSETUP_IND

ID: 0x01

Indicates an incoming call is present.

L3L4mSTATUS_IND

ID: 0x07

Not currently used.

L3L4mTX_HOOKFLASH_END

ID: 0x38

Notifies host that a hookflash is successfully
transmitted.

L3L4mTXWINK_END

ID: 0x37

Notifies host that a wink is successfully
transmitted.

Table 21. LEC Protocol L3L4 Call Control Messages (Continued)

Message Meaning

LEC Signaling L3L4 Messages

March 2017 957

LEC Signaling L3L4 Messages
Use the following message subset for Module to Host messaging with
LEC protocols. Specific message details begin on page 958:

 L3L4mABCD_SIGNAL_DATA on page 958

 L3L4mACK_DOWNLOAD on page 959

 L3L4mACK_UPLOAD on page 960

 L3L4mALERTING on page 961

 L3L4mCALLER_ID_DETECTED on page 962

 L3L4mCAS_SIGNALING_BIT_STATUS on page 965

 L3L4mCAS_STATUS on page 967

 L3L4mCLEAR_REQUEST on page 968

 L3L4mCONFIGURATION_STATUS on page 970

 L3L4mCONNECT on page 972

 L3L4mCONN_ACK_IND on page 971

 L3L4mDISCONNECT on page 973

 L3L4mEND_DIAL on page 975

 L3L4mERROR on page 976

 L3L4mHOOKFLASH on page 979

 L3L4mLOOP_ON on page 980

 L3L4mLOOP_REVERSAL on page 982

 L3L4mPRE_SEIZE on page 983

 L3L4mPROGRESS on page 984

 L3L4mRING_STATUS on page 985

 L3L4mRX_WINK on page 987

 L3L4mSEIZE_COMP on page 988

 L3L4mSETUP_IND on page 989

 L3L4mSTATUS_IND on page 990

 L3L4mTX_HOOKFLASH_END on page 991

 L3L4mTXWINK_END on page 992

L3L4mABCD_SIGNAL_DATA

March 2017 958

L3L4mABCD_SIGNAL_DATA

Description Responds to L4L3mREQ_ABCD_DATA and returns the value of
the transmitted and received signaling bits in all CAS spans of the
system.

Arguments Data is specified in:

L3_to_L4_struct.data.abcd_data

See Also IISDN_ABCD_DATA, IISDN_ABCD_SIGNALS

Example
L3_to_L4_struct L3L4;

BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mABCD_SIGNAL_DATA)
{

int trunk, bchannel;
printf("L3L4mABCD_SIGNAL_DATA B-channel %02d:%02d call_ref=%04X\n",

L3L4.lapdid, L3L4.bchannel, L3L4.call_ref);
for trunk = 0; trunk < MAX_IISDN_LINES; trunk++)
{

for (bchannel = 0; bchannel <30; bchannel++)
{

printf("B-channel %02d:%02d Rx=%02X Tx=%02X\n",
L3L4.lapdid, L3L4.bchannel,
GET_RX_BITS(L3L4.data.abcd_data.line[trunk].abcd[bchannel]),
GET_TX_BITS(L3L4.data.abcd_data.line[trunk].abcd[bchannel]),

}
}

}

L3L4mACK_DOWNLOAD

March 2017 959

L3L4mACK_DOWNLOAD

Description Indicate downloading of module coefficients (L4L3mDOWNLOAD)
is completed successfully. Currently the only download accepted by
the protocol stack is that of line coefficients for analog modules, and
it must be made on a per-trunk basis.

Arguments Data is specified in:

L3_to_L4_struct.data.ack_download_data

See Also IISDN_DOWNLOAD_DATA

Example
L3_to_L4_struct L3L4;

BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mACK_DOWNLOAD)
{

printf("L3L4mACK_DOWNLOAD Trunk= %2d\n", L3L4.lapdid);
}

L3L4mACK_UPLOAD

March 2017 960

L3L4mACK_UPLOAD

Description Returns to the host the module coefficients requested through a call
to L4L3mUPLOAD. Currently the only uploads accepted by the
protocol stack are line coefficients for analog modules. The call must
be made on a per-trunk basis.

Arguments Data is specified in:

L3_to_L4_struct.data.ack_upload_data

See Also IISDN_UPLOAD_DATA

Example
L3_to_L4_struct L3L4;

BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mACK_UPLOAD)
{

int i;

printf("L3L4mACK_UPLOAD Trunk= %2d\n", L3L4.lapdid);

printf("module_id=%d total length=%d\n",
L3L4.data.ack_download_data.module_id,
L3L4.data.ack_download_data.length,
L3L4.data.ack_download_ata.total_length);

For (I=0; i<L3L4.data.ack_download_data.length; i++)
{

printf("%02X", L3L4.data.ack_download_data.buffer[i]);
}

printf("\n");}
}

L3L4mALERTING

March 2017 961

L3L4mALERTING

Description Notifies the application that an outbound call is successfully
initiated, the called party is notified, and the module is monitoring
the line to detect an answer condition.

Some protocols do not provide an answer indication.

Arguments Data is specified in:

L3_to_L4_struct.data.al_con_data

See Also Alerting and Connecting Data Message
(IISDN_AL_CON_DATA), IISDN_ABCD_SIGNALS

Example
L3_to_L4_struct L3L4;

BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mALERTING)
{

printf("L3L4mALERTING B-channel %02d:%02d call_ref=%04X\n",
L3L4.lapdid, L3L4.bchannel, L3L4.call_ref);

}

L3L4mCALLER_ID_DETECTED

March 2017 962

L3L4mCALLER_ID_DETECTED

Description Notifies the application that call setup information (callID) is
detected (optional message).

The characteristics of the call setup information are defined through
the fields in:

L4_to_l3_struct.
data.cas_data.cas_params.robbed_bit_data:

The protocol normally sends the CallerID between the first and
second rings or before the first ring. The application must allow
enough time for the network to send the information before
answering the call.

 Wait a certain time (country-specific) after receiving the
indication of incoming call (L3L4mSETUP_IND) before
answering.

 Delay the transmission of L3L4mSETUP_IND by the module
until after CallerID information is available.

IISDNcfgtypeSETUP_IND_RING_COUNT (see
L4L3mSET_CONFIGURATION) allows the application to
determine the number of ring cycles before reporting
L3L4mSETUP_IND. Setting this value to 2 gives the network
enough time to send CallerID.

send_caller_id_event Controls transmission

call_setup_message_mode Sends call setup information: DFSK,
DTMF, MF

caller_id_standard Standards defining the call setup
information

caller_id_alerting_signal Alerts sent by the network prior to
transmission of call setup information

L3L4mCALLER_ID_DETECTED

March 2017 963

The protocol also sends the most significant parts of the CallID
information (if available) within L3L4mSETUP_IND. The complete
information, however, is only available through
L3L4mCALLER_ID_DETECTED.

CallerID information is normally available in protocols used between
the network and user terminals; 5ESS_LOOP_START and
5ESS_GROUND_START, as opposed to between switches.

Arguments Data is specified in:

L3_to_L4_struct.data.call_id_data

See Also IISDN_CALLER_ID_DATA

L3L4mCALLER_ID_DETECTED

March 2017 964

Example
L3_to_L4_struct L3L4;

BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mCALLER_ID_DETECTED)
{

IISDN_CALLER_ID_DATA* pCalleridData;

printf("L3L4mCALLER_ID_DETECTED B-channel %02d:
%02d call_ref=%04X\n",
L3L4.lapdid, L3L4.bchannel, L3L4.call_ref);

pCalleridData = &(L3L4.data.caller_id_data);

printf(" Message Type 0x%02X\n",
 pCallerIdData->MessageType);

printf(" Message Length %02X\n",
 pCallerIdData->MessageLength);

printf(" Date %.2s/%.2s\n",
&(pCalleridData->CidRawData[pCallerIdData->CidDataOffset]),
&(pCalleridData->CidRawData[pCallerIdData->CidDataOffset + 2]));

printf(" Time %.2s/%.2s\n",
&(pCalleridData->CidRawData[pCallerIdData->CidDataOffset]),
&(pCalleridData->CidRawData[pCallerIdData->CidDataOffset + 2]));

printf(" Calling Number %.*s\n",
pCallerIdData->CidNameSize,,
&(pCallerIdData->CidRawData[pCallerIdData->CidDataOffset]));

printf(" Name %.*s\n",
pCallerIdData->CidNameSize,,
&(pCallerIdData->CidRawData[pCallerIdData->CidDataOffset]));

printf(" RawData:");
For (i=0; i<pCallerIdData->MessageLength + 2; i++)
{

printf("%02X", pCallerIdDat6a->CidRawData[i]);
}
printf("\n");

}

L3L4mCAS_SIGNALING_BIT_STATUS

March 2017 965

L3L4mCAS_SIGNALING_BIT_STATUS

Description The module generates this message every time there is a signaling
bit change (either received or transmitted) for any channel.

 Changes in the received bits are controlled by the network.

 Changes in the transmitted bits are controlled by the module
and are initiated either as a consequence of reception of an L4L3
message or in response to a network signal.

One single L4L3mCAS_SIGNALING_BIT_STATUS can carry
information about signaling bit changes in several channels.

The module generates this message only with digital trunks
configured to run CAS protocols.

Arguments Data is specified in:

L3_to_L4_struct.data.cas_signaling_bits

See Also IISDN_CAS_SIGNALING_BITS_DATA,
IISDN_CAS_SIGNALING_BITS

L3L4mCAS_SIGNALING_BIT_STATUS

March 2017 966

Example
L3_to_L4_struct L3L4;

BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mCAS_SIGNALING_BIT_STATUS)
{

printf("L3L4mCAS_SIGNALING_BIT_STATUS trunk=%02d\n",
L3L4.lapdid);

for (EntryIndex = 0; EntryIndex <
L3L4.data.cas.signaling_bits.n_entries; EntryIndex++)

{
switch (L3L4.data.cas_signaling_bits.entry[EntryIndex].command)
{
case CAS_EVENT_RX_CHANGE;

printf(" Change in received bits B-channel %02d Rx=%02X,
Tx=%02X\n",
L3L4.data.cas_signaling_bits_entry[EntryIndex].bchannel,
L3L4.data.cas_signaling_bits_entry[EntryIndex].rx_bits,
L3L4.data.cas_signaling_bits_entry[EntryIndex].tx_bits);

break;
case CAS_EVENT_TX_CHANGE;

printf(" Change in received bits B-channel %02d Rx=%02X,
Tx=%02X\n",
L3L4.data.cas_signaling_bits_entry[EntryIndex].bchannel,
L3L4.data.cas_signaling_bits_entry[EntryIndex].rx_bits,
L3L4.data.cas_signaling_bits_entry[EntryIndex].tx_bits);

break;
}

}
}

L3L4mCAS_STATUS

March 2017 967

L3L4mCAS_STATUS

Description Indicates changes received in the initialization state of a line. For
example: as a result of a L4L3mENABLE_CAS.

Arguments Data is specified in:

L3_to_L4_struct.data.b_channel_status

Values include:

See Also Basic type IISDNu8bit

Example
L3_to_L4_struct L3L4;
BsmiControlRead (fd, &L3L4);
//check error code here
if (L3L4.msgtype == L3L4mCAS_STATUS)
{

printf("L3L4mCAS_STATUS B-channel %02d:%02d call_ref=%04X,
L3L4.lapdid, L3L4.bchannel, L3L4.call_ref);

switch (L3L4.data.b_channel_status)
{

case IISDNbcsIN_SERVICE:
printf("IN_SERVICE");
break;

case IISDNbcsOUT_OF_SERVICE:
printf("OUT_OF_SERVICE");
break;

}
printf("\n");

}

IISDNbcsIN_SERVICE Indicates the channel is successfully
initialized.

IISDNbcsOUT_SERVICE Indicates the channel is taken out of
service.

L3L4mCLEAR_REQUEST

March 2017 968

L3L4mCLEAR_REQUEST

Description Notifies the host that the line is idle and available for another call
(inbound or outbound). This notification normally requires that both
the module and the far end (network) take action to release the call.

If the network disconnects a call first, the module detects and
notifies the host through L3L4mDISCONNECT. It either releases
the line automatically or waits for the host to release the line. It is
dependent on the following value set to TRUE when the line protocol
specified with L4L3mENABLE_CAS:

L4_to_L3_struct.
data.cas-data.cas_params.robbed_bit_data.delayed_onhook

If the host initiates the disconnect (by sending
L4L3mCLEAR_REQUEST), the module releases the line and
waits until the network releases its end of the line. (Until this
happens, the line cannot be used for another call.)
L3L4mDISCONNECT is sent to the host to indicate the network
has release the line.

Once both ends of the line are released, the module waits for the
period specified by the following, and then sends
L3L4mCLEAR_REQUEST to the host indicating the line is idle:

L4_to_L3_struct.
data.cas_data.cas_params.robbed_bit_data.guard_interval_timer

Arguments Data is specified in:

L3_to_L4_struct.data.clr_data

See Also IISDN_CLR_DATA, Cause Data (IISDN_CAUSE)

L3L4mCLEAR_REQUEST

March 2017 969

Example
L3_to_L4_struct L3L4;

BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mCLEAR_REQUEST)
{

printf("L3L4mCLEAR_REQUEST B-channel %02d:%02d call_ref=%04X,
cause=%d\n",

L3L4.lapdid, L3L4.bchannel, L3L4.call_ref,
L3L4.data.clr_data.cause.cause_val);

}

L3L4mCONFIGURATION_STATUS

March 2017 970

L3L4mCONFIGURATION_STATUS

Description Returns to the host the value of a channel parameter requested
through a call to L4L3mREQ_CONFIGURATION.

The protocol returns the value in the appropriate field of union
IISDN_CONFIG_DATA.par. The application must verify the type of
parameter (specified in IISDN_CONFIG_DATA.type) and then access
the correct field. For the complete list of parameter types and their
associated fields, see the description of IISDN_CONFIG_DATA.

Arguments Data is specified in:

L3_to_L4_struct.data.config_data

See Also IISDN_CONFIG_DATA

Example
L3_to_L4_struct L3L4;
BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mCONFIGURATION_STATUS)
{

printf("L3L4mCONFIGURATION_STATUS B-channel %02d:%02d
call_ref=%04X\n",L3L4.lapdid, L3L4.bchannel, L3L4.call_ref);

switch(L3L4.data.config_data.type);
{

case IISDNcfgtypeLINE_INPUT_GAIN;
printf("LINE INPUT GAIN=%02d\n",

L3L4.data.config_data.par.gain);
break;

case IISDNcfgtypeSETUP_IND_RING_COUNT;
printf("NUMBER OF RINGS BEFORE ANSWER=%02d\n",

L3L4.data.config_data.par.setup_ind_ring_count);
break;

// other parameter types here
}

}

L3L4mCONN_ACK_IND

March 2017 971

L3L4mCONN_ACK_IND

Description Notifies the host that it answered the current incoming call in
response to L4L3mCONNECT_REQUEST and the call is now in
connected (answer) state.

If the network must acknowledge the connection and complete the
path between calling and the called party (for example: remove ring
voltage from the line), the module waits before sending
L3L4mCONN_ACK_IND to the host.

In analog lines, the host can specify whether and for how long the
module must wait for the presence of loop current before sending
L3L4mCONN_ACK_IND. This is controlled by the following, sent
with L4L3mENABLE_CAS:

L4_to_L3_struct.
data.cas_data.cas_params.robbed_bit_data.ignore_loop_current
L4_to_L3_struct.
data.cas_data.cas_params.robbed_bit_data.loop_current_timer

Arguments None.

Example
L3_to_L4_struct L3L4;

BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mCONN_ACK_IND)
{

printf("L3L4mCONN_ACT_IND B-channel %02d:%02d call_ref=%04X\n",
L3L4.lapdid, L3L4.bchannel, L3L4.call_ref);

}

L3L4mCONNECT

March 2017 972

L3L4mCONNECT

Description Notifies the host that the ongoing outbound call is answered. Not all
protocols are capable of detecting an answer condition. If this is the
case, it is up to the application to use other methods (for example:
using Call Progress Monitoring) to detect when the call is answered.

Arguments Data is specified in:

L3_to_L4_struct.data.al_con_data

See Also Alerting and Connecting Data Message
(IISDN_AL_CON_DATA)

Example
L3_to_L4_struct L3L4;

BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mCONNECT)
{

printf("L3L4mCONNECT B-channel %02d:%02d call_ref=%04X\n",
L3L4.lapdid, L3L4.bchannel, L3L4.call_ref);

}

L3L4mDISCONNECT

March 2017 973

L3L4mDISCONNECT

Description Notifies the host that the network released the line, either initiating
the call disconnection procedure or in response to a disconnection
initiated by the module.

A disconnect signal must be present on the line (for recognition) for a
duration of at least:

L4_to_L3_struct.
data.cas-data.cas_params.robbed_bit_data.hooktimer_onhook_rls

If the signal remains on the line for a shorter duration, it is
interpreted as a hookflash if the protocol supports it. Otherwise it is
ignored.

If the network disconnects a call first, the module detects and
notifies the host through L3L4mDISCONNECT. It either releases
the line automatically or waits for the host to release the line. It is
dependent on the following value set to TRUE when the line protocol
specified with L4L3mENABLE_CAS:

L4_to_L3_struct.
data.cas-data.cas_params.robbed_bit_data.delayed_onhook

If the host initiates the disconnect (L4L3mCLEAR_REQUEST),
the module releases the line and waits until the network releases its
end of the line. (Until this happens the line cannot be used for
another call.) L3L4mDISCONNECT is sent to the host to indicate
the network has released the line.

Once both ends of the line are released, the module waits for the
period specified by the following, and then sends
L3L4mCLEAR_REQUEST to the host indicating the line is idle:

L4_to_L3_struct.
data.cas_data.cas_params.robbed_bit_data.guard_inteval_timer

Arguments Data is specified in:

L3_to_L4_struct.data.clr_data

L3L4mDISCONNECT

March 2017 974

See Also IISDN_CLR_DATA, Cause Data (IISDN_CAUSE)

Example
L3_to_L4_struct L3L4;

BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mDISCONNECT)
{

printf("L3L4mDISCONNECT B-channel %02d:%02d call_ref=%04X\n",
L3L4.lapdid, L3L4.bchannel, L3L4.call_ref);

}

L3L4mEND_DIAL

March 2017 975

L3L4mEND_DIAL

Description Notifies the host that the module finished dialing all digits specified
by L4L3mDIAL (optional message). The host can use this
information to proceed with the flow of the application (for example:
waiting for a notification of call answered, performing call progress
monitoring, or dialing more digits).

Transmission of L4L3mEND_DIAL is controlled by
L4_to_L3_struct.data.dial_data.report_dial_completion,
sent as part of L4L3mDIAL.

L3L4mSEIZE_COMP indicates that the digit dialing specified in
L4L3mCALL_REQUEST is complete.

Arguments None.

Example
L3_to_L4_struct L3L4;

BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mEND_DIAL)
{

printf("L3L4mEND_DIAL B-channel %02d:%02d call_ref=%04X\n",
L3L4.lapdid, L3L4.bchannel, L3L4.call_ref);

}

L3L4mERROR

March 2017 976

L3L4mERROR

Description Notifies the host of an error condition detected by the protocol stack.

There are several possible causes for errors (see Table 22):

 Invalid L4L3m messages (not recognized by the protocol)

 Non-decodable L4L3m messages (containing
incorrect/inconsistent data fields)

 L4L3m messages not allowed in a particular protocol state

 Hardware events unexpected at the current protocol state

 Internal protocol errors

Arguments Data is specified in:

L3_to_L4_struct.data.error_code

Error Codes
Table 22. BSMI Error Codes

Error Code Meaning

L3L4errCALL_REF_ERROR B-channel values obtained from the data structure
associated to a message from
L4_to_L3_struct.call_ref did not match.

L3L4errD_CHAN_NOT_DISABLED The specified B-channel was already running a
protocol. The line resets, and is configured to run
the new protocol.

L3L4errFEATURE_NOT_ACTIVE Message is not currently supported because the
current channel mode was started without
supporting this option.

L3L4errGLARE A signal indicating presence of an inbound call was
received when the module was trying to initiate an
outbound call.

L3L4errINITIALIZATION_FAILED Protocol-specific initialization failed.

L3L4mERROR

March 2017 977

See Also Basic data type: IISDNu8bit

L3L4errINVALID_B_CHANNEL B-channel value exceeded the maximum number of
available B-channels (30 for E1, 23 for T1).

L3L4errINVALID_COMMAND_ARGS Data structure associated to a message has
incorrect values.

L3L4errINVALID_INTERFACE Message is not supported for this type of interface
(for example: analog line coefficients cannot be
downloaded to digital (T1/E1) lines).

L3L4errINVALID_MSG_FOR_STATE Message is not accepted in current protocol state
(for example: send
L4L3mCONNECT_REQUEST to answer a call
when no incoming call is present).

L3L4errINVALID_SMI_MSGID Message is not recognized by the protocol (if protocol
is running, the message sent to the module in error).
For example, any of the following set incorrectly:

 L4_to_L3_struct.lapdid

 L4_to_L3_struct.call_ref

 L4_to_L3_struct.xxx.bchannel

L3L4errLAPDID_NOT_ESTABLISHED The application did not configure the line to run any
protocol (by sending L4L3mENABLE_CAS).

L3L4errLAPDID_OUT_OF_RANGE Trunk (span) number is greater than the maximum
number of trunks present on the module.

L3L4errNO_CRSTRUCT_AVAILABLE No BOSTON channel is available to perform digit
detection/generation for the B-channel.

L3L4errPROTOCOL_DISABLED Protocol specified is not supported by the module.

L3L4errTOO_MANY_LINKS The number of specified entries is greater than the
maximum supported for the command.

Table 22. BSMI Error Codes (Continued)

Error Code Meaning

L3L4mERROR

March 2017 978

Example
L3_to_L4_struct L3L4;

BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mERROR)
{

printf("L3L4mERROR B-channel %02d:%02d call_ref=%04X\n",
L3L4.lapdid, L3L4.bchannel, L3L4.call_ref);

}

L3L4mHOOKFLASH

March 2017 979

L3L4mHOOKFLASH

Description Notifies the host that a hookflash signal is detected on the line
(optional message). A hookflash is characterized as a disconnect
signal received when the call is in connected state with duration less
than:

L4_to_L3_struct.
data.cas_data.cas_params.robbed_bit_data.hooktimer_onhook_rls

If the duration exceeds this threshold, it is interpreted as a
disconnection, and the protocol sends L3L4mDISCONNECT.

Transmission of L4L3mHOOKFLASH is controlled by (part of
L4L3mENABLE_CAS):

L4_to_L3_struct.
data.cas_data.cas_params.robbed_bit_data.send_hookflash_event

Before setting the maximum duration for hookflash duration, check
with your carrier to verify whether hookflash signals are supported
on the particular installation. In general, if the installation does not
support hookflash, it responds to a shorter duration disconnect
signal (100-200ms) before acted upon. If hookflash signals are
allowed, the threshold is usually 800 ms to 1000 ms.

Arguments None.

Example
L3_to_L4_struct L3L4;

BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mHOOKFLASH)
{

printf("L3L4mHOOKFLASH B-channel %02d:%02d call_ref=%04X\n",
L3L4.lapdid, L3L4.bchannel, L3L4.call_ref);

}

L3L4mLOOP_ON

March 2017 980

L3L4mLOOP_ON

Description Notifies the host about the presence of loop current (optional
message). The host can configure the protocol to send information
about the presence of loop current. When going offhook, configure
the module to wait until loop current is present for a certain
duration before proceeding. This wait ensures that the line interface
is properly connected and capable of carrying audio signals.

All loop current-related parameters are set when the protocol is
loaded. For example:

L4L3mENABLE_CAS,
L4_to_L3_struct.data.cas_data.cas_params.robbed_bit_data

Arguments None.

send_loop_on_event Controls the transmission of
L3L4mLOOP_ON

ignore_loop_current Determines whether the module waits
for loop current before proceeding with
the call

hooktimer_offhook_inseize Specifies loop current must be present
for the duration defined when
initiating a call as a result of
L4L3mCALL_REQUEST.

hooktimer_offhook_answer Specifies loop current must be present
for the duration defined when
answering the call as a result of
L4L3mCONNECT_REQUEST.

L3L4mLOOP_ON

March 2017 981

Example
L3_to_L4_struct L3L4;

BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mLOOP_ON)
{

printf("L3L4mLOOP_ON B-channel %02d:%02d call_ref=%04X\n",
L3L4.lapdid, L3L4.bchannel, L3L4.call_ref);

}

L3L4mLOOP_REVERSAL

March 2017 982

L3L4mLOOP_REVERSAL

Description Notifies the host that a loop current reversal is detected on the line
(optional message).

Sent as part of L4L3mENABLE_CAS, transmission of
L4L3mLOOP_REVERSAL is controlled by:

L4_to_L3_struct.
data.cas_data.cas_params.robbed_bit_data.send_loop_reversal_event

Deglitching of loop current reversal, sent as part of
L4L3mENABLE_CAS, is controlled by:

L4_to_L3_struct.
data.cas_data.cas_params.robbed_bit_data.hooktimer_offhook_inseize

Arguments None.

Example
L3_to_L4_struct L3L4;

BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mLOOP_REVERSAL)
{

printf("L3L4mLOOP_REVERSAL B-channel %02d:%02d call_ref=%04X\n",
L3L4.lapdid, L3L4.bchannel, L3L4.call_ref);

}

L3L4mPRE_SEIZE

March 2017 983

L3L4mPRE_SEIZE

Description Notifies the host (sent by the protocol) that the network seized the
line (optional message). At this point, the incoming call is not yet
fully established nor characterized. Following transmission of this
message to the host, the protocol sends any necessary
acknowledgement signals to the network, then starts monitoring the
line for call setup information (DID digits, CallerID and others).
Once all the steps necessary to identify the incoming call are taken,
the protocol sends L4L3mSETUP_IND to the host.

As part of L4L3mENABLE_CAS, transmission of
L4L3mPRE_SEIZE is controlled by:

L4_to_L3_struct.
data.cas_data.cas_params.robbed_bit_data.send_preseize_event

If this field is set to FALSE, the host is not notified of the incoming
call until all the call setup information is available, although the line
is considered to be in a non-idle state, therefore preventing the host
from initiating any outbound calls. Regardless of whether
L4L3mPRE_SEIZE is sent, the host cannot reject the message (by
sending L4L3mCLEAR_REQUEST) until L4L3mSETUP_IND is
received.

Arguments None.

Example
L3_to_L4_struct L3L4;

BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mPRE_SEIZE)
{

printf("L3L4mPRE_SEIZE B-channel %02d:%02d call_ref=%04X\n",
L3L4.lapdid, L3L4.bchannel, L3L4.call_ref);

}

L3L4mPROGRESS

March 2017 984

L3L4mPROGRESS

Description Notifies the application that the procedure for establishing an
outbound call (initiated by L4L3mCALL_REQUEST) is in
progress. This message is sent after the module has successfully
seized the line, but before any necessary acknowledgement from the
network is received, and before any digits are dialed. The completion
of the call setup procedure is signaled by transmission of
L3L4mSEIZE_COMP.

Currently, L3L4mPROGRESS returns no data, and all fields in
progress_data are set to 0.

Arguments Data is specified in:

L3_to_L4_struct.data.progress_data

See Also Progress Indication (IISDN_PROGRESS)

Example
L3_to_L4_struct L3L4;

BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mPROGRESS)
{

printf("L3L4mPROGRESS B-channel %02d:%02d call_ref=%04X\n",
L3L4.lapdid, L3L4.bchannel, L3L4.call_ref);

}

L3L4mRING_STATUS

March 2017 985

L3L4mRING_STATUS

Description Notifies the host about the ring cadence (optional message).

The host can configure the protocol to send information about the
raw or deglitched ring cadence.

 For the raw cadence, the module notifies the host every time
there is a change in the status of the ring voltage detected on the
line.

 For deglitched cadence, the module waits until ring voltage is
present for the duration defined by:

L4_to_L3_struct.
data.cas_data.cas_params.robbed_bit_data.hooktimer_min_ring_on

Or is absent for the duration defined by:

L4_to_L3_struct.
data.cas_data.cas_params.robbed_bit_data.hooktimer_min_ring_off

Protocols that use ring voltage (or its digital equivalent) to signal an
incoming call generate this message, for example:

 5ESS_LOOP_START

 5ESS_GROUND_START

Arguments Data is specified in:

L3_to_L4_struct.data.ring_status_data

See Also IISDN_RING_STATUS_DATA

L3L4mRING_STATUS

March 2017 986

Example
L3_to_L4_struct L3L4;

BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mRING_STATUS)
{

printf("L3L4mRING_STATUS B-channel %02d:%02d call_ref=%04X\n",
L3L4.lapdid, L3L4.bchannel, L3L4.call_ref);

printf(" %s RING %s; %d cycles\n",
(L3L4.data.ring_status_data. Event == IISDNringflgRAW_CADENCE) ?

"RAW" : "DEGLITCHED",
(L3L4.data.ring_status_data. RingStatus == IISDNringstatRING_ON) ?

"ON" : "OFF";
L3L4.data.ring_status_data, RingCount);

}

L3L4mRX_WINK

March 2017 987

L3L4mRX_WINK

Description Notifies the host that a wink signal is received.

Currently, this message is only sent when Feature Group B/Feature
Group D is enabled. This is done when the protocol is loaded using
L4L3mENABLE_CAS:

L4_to_L3_struct.
data.cas_data.cas_params.robbed_bit_data.fgb_fgd_mode

Arguments None.

Example
L3_to_L4_struct L3L4;

BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mRX_WINK)
{

printf("L3L4mRX_WINK B-channel %02d:%02d call_ref=%04X\n",
L3L4.lapdid, L3L4.bchannel, L3L4.call_ref);

}

L3L4mSEIZE_COMP

March 2017 988

L3L4mSEIZE_COMP

Description Notifies the application that the procedure for establishing an
outbound call initiated due to an L4L3mCALL_REQUEST has
finished, and the module starts monitoring the line for an answer
condition.

Arguments None.

Example
L3_to_L4_struct L3L4;

BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mSEIZE_COMP)
{

printf("L3L4mSEIZE_COMP B-channel %02d:%02d call_ref=%04X\n",
L3L4.lapdid, L3L4.bchannel, L3L4.call_ref);

}

L3L4mSETUP_IND

March 2017 989

L3L4mSETUP_IND

Description Notifies the host of an incoming call. Any call setup information
available (DID digits, CallerID and so forth) is returned in this
message.

The host can then decide to answer the call
(L4L3mCONNECT_REQUEST) or reject it
(L4L3mCLEAR_REQUEST).

Arguments Data is specified in:

L3_to_L4_struct.data.setup_data

See Also IISDN_SETUP_DATA, Calling Party
(IISDN_CALLING_PARTY), Called Party
(IISDN_CALLED_PARTY)

Example
L3_to_L4_struct L3L4;

BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mSETUP_IND)
{

printf("L3L4mSETUP_IND B-channel %02d:%02d call_ref=%04X"
"call_type=%d calling_party=%s called party=%s\n",
L3L4.lapdid, L3L4.bchannel, L3L4.call_ref,
L3L4.data.setup_data.call_type,
L3L4.data.setup_data.calling_party_digits,
L3L4.data.setup_data.called_party_digits);

}

L3L4mSTATUS_IND

March 2017 990

L3L4mSTATUS_IND

Description Not currently used. Indicates an internal error in the protocol stack
or a signaling fault (occurrence of a line state considered invalid by
the protocol).

Arguments Data is specified in:

L3_to_L4_struct.data.r2_call_status

See Also IISDN_R2_CALL_STATUS

Example
L3_to_L4_struct L3L4;

BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mSTATUS_IND)
{

printf("L3L4mSTATUS_IND B-channel %02d:%02d call_ref=%04X\n",
L3L4.lapdid, L3L4.bchannel, L3L4.call_ref);

}

L3L4mTX_HOOKFLASH_END

March 2017 991

L3L4mTX_HOOKFLASH_END

Description Notify the host that a hookflash is sent.

The duration of the hookflash is set when the protocol is loaded
(L4L3mENABLE_CAS):

L4_to_L3_struct.
data.cas_data.cas_params.robbed_bit_data.hookflash_timer

This can be overridden by using L4L3mTX_HOOKFLASH.

Arguments None.

Example
L3_to_L4_struct L3L4;

BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mTX_HOOKFLASH_END)
{

printf("L3L4mTX_HOOKFLASH_END B-channel %02d:%02d call_ref=%04X\n",
L3L4.lapdid, L3L4.bchannel, L3L4.call_ref);

}

L3L4mTXWINK_END

March 2017 992

L3L4mTXWINK_END

Description Notifies the host that a wink is sent in acknowledgement to an
incoming call. This notification is necessary in WINK_START and
DELAY_DIAL protocols.

All parameters related to the duration of the wink are set when the
protocol is loaded (L4L3mENABLE_CAS):

L4_to_L3_struct.
data.cas_data.cas_params.robbed_bit_data

Arguments None.

Example
L3_to_L4_struct L3L4;

BsmiControlRead (fd, &L3L4);
//check error code here

if (L3L4.msgtype == L3L4mTXWINK_END)
{

printf("L3L4mTXWINK_END B-channel %02d:%02d call_ref=%04X\n",
L3L4.lapdid, L3L4.bchannel, L3L4.call_ref);

}

dptimer_pre_wink Delay before transmitting the wink

dptimer_wink Duration of the wink proper

dptimer_post_wink Guard time after sending the wink

March 2017 993

26 - Host to Module (L4L3m) Messages

This chapter explains each BSMI L4L3 message a host sends to a
Dialogic® Brooktrout® module to provide information about the call.

The L4L3 messages are described in alphabetical order beginning on
page 994.

L4L3 messages provide the host processor with a concise, consistent
interface for the full range of Dialogic® Brooktrout® modules. The C
language structures that make up this interface are contained in the
iisdn.h files included in the Dialogic® Brooktrout® firmware release.

Note: In the case of discrepancies between the descriptions in the
iisdn.h file and this document, follow the structures in iisdn.h.
Changes in the software since the release of this document are
found in the Release Notes that accompany the product.

L4L3mALERTING_REQUEST

March 2017 994

L4L3mALERTING_REQUEST

Purpose Sends an ALERTING message to the network, indicating that the
local terminal (host end) is ringing.

Message IISDN_AL_CON_DATA al_con_data

Message ID 0x83

Input Fields IISDN_AL_CON_DATA al_con_data;

Input al_con_data

Alerting and Connecting Data Message. See Alerting and
Connecting Data Message (IISDN_AL_CON_DATA) on page 839.

Output Return values.

After the module successfully processes this message, it sends an
ALERTING message to the network. If this is the first response to a
received L3L4mSTATUS_IND and the B-channel negotiation
feature is enabled, the B-channel to be used for this call is included
in the message. Additional IEs are appended if they were included in
the IISDN_IE_STRUCT.

Error Returns If the module is unable to process the message, the protocol might
return the following error codes in an L3L4mERROR message:

L3L4errLAPDID_OUT_OF_RANGE

An invalid lapdid value has been used. The only lapdid values
allowed are 0 (span 1), 2 (span 2), 4 (span 3) or 6 (span 4).

01

L3L4errLAPDID_NOT_ESTABLISHED

ISDN D-channel identified by the LAP-D ID has not been
established.

02

L3L4errCALL_REF_ERROR

Invalid call reference value specified.

06

L4L3mALERTING_REQUEST

March 2017 995

See message details in L3L4mERROR on page 1094.

Details In a standard ISDN call scenario, the host issues this message after
receiving L3L4mSETUP_IND. Because of this, the host specifies
the L4 reference value for the call in this message.

If the interface system is using the AT&T 4ESS Fast Connect
Feature, no PROGRESS or ALERTING messages are required for
call connection.

bchannel and iface can be used in support of ISDN B-channel
negotiation. If the L4L3mALERTING_REQUEST message is the
first response to an L3L4mSETUP_IND and B-channel negotiation
is enabled, bchannel and iface must be used. In all other cases, these
fields are ignored by the module; value of 0x00 is recommended for
both.

Use the IE structure in this message to send custom Information
Elements as part of the ALERTING message. See Information
Element (IISDN_IE_STRUCT) on page 853 for more information.

L3L4errINVALID_COMMAND_ARGS

Syntax error; invalid message arguments.

15

L3L4errINVALID_MSG_FOR_STATE

Indicates either the Dialogic® Brooktrout® firmware cannot
generate a CALL PROCEEDING message for this call because of
its current state (CALL PROCEEDING not a valid message for
the call state) or the network is clearing the call. In the latter case,
this error message is immediately preceded by an
L3L4mCLEAR_REQUEST or an
L3L4mCLEAR_WITH_RESTART message.

16

L3L4errDCHAN_TEMP_UNAVAIL

D-channel switchover in progress; applies to NFAS
configurations only.

30

L4L3mCALL_PROCEEDING_REQUEST

March 2017 996

L4L3mCALL_PROCEEDING_REQUEST

Purpose Used only if the host application is performing the B-channel
negotiation.

Message IISDN_CALL_PROC_DATA proc_data

Message ID 0x89

Input Fields IISDN_Q922_DLCI fr_dlci;
unsigned long bchannel_mask;
unsigned char bchannel;
unsigned char iface;
unsigned char ie_count;
IISDN_PROGRESS_IND progress_ind;

Input fr_dlci

Q.933 DLCI Negotiation Structure. Refer to Q.933 DLCI
Negotiation (IISDN_Q922_DLCI) on page 858.

bchannel_mask

B-channel Bit Mask. Valid only for multi-rate ISDN calls.
Specifies the individual IISDN channels used for a multi-rate
call. Channels are numbered 1 to 24 (ISDN service in US only)
with channel 1 as the least significant bit. First multi-rate
channel must also be specified in bchannel.

L4L3mCALL_PROCEEDING_REQUEST

March 2017 997

bchannel

B-channel. Identifies the channel to be used for the call. In this
message, bchannel is used only when B-channel negotiation is
enabled by setting b_chan_negot in the IISDN_LEVEL3_CNFG
structure of the L4L3mENABLE_PROTOCOL message. If the
feature is not enabled, set bchannel to 0x00. Channels are
numbered as listed below:

ISDN 23B+DChannels numbered 1 – 23.

ISDN NFASChannels numbered 1 – 24. The iface value indicates
the span where the channel resides.

ISDN 384KFirst of six channels used for 384K (H0) call. Possible
values are 1, 7, 13 for standard ISDN, or 1,
7, 13, and 19 for ISDN NFAS service.

ISDN 1536KMust be channel 1 for 1536K (H11) call.

multi-rate ISDNFirst channel of multi-rate call (set of channels
specified in bchannel_mask).

iface

Non-Facilities Associated Signaling (NFAS) Interface. Indicates
the span where the channel specified in bchannel field resides.
The host application must maintain the mapping of span (line) to
interface. In this message, iface is used only when, in the
IISDN_LEVEL3_CNFG structure of the
L4L3mENABLE_PROTOCOL message, the protocol has done
both of the following:

 Enabled B-channel negotiation using b_chan_negot

 Enabled NFAS using nfas
If either of these features are not enabled, iface is ignored and set
to 0x00. If B-channel negotiation is enabled and NFAS is not in
use, set iface to 0xFF.

ie_count

Specifies the number of Information Elements (IEs) included in
the IE Structure in this message.

progress_ind

Progress Indication Structure. See Progress Indication
(IISDN_PROGRESS) on page 855.

ie

L4L3mCALL_PROCEEDING_REQUEST

March 2017 998

IE Structure. See Information Element (IISDN_IE_STRUCT) on
page 853.

Output Return values.

After this message has been successfully processed, the module
sends a CALL PROCEEDING message to the network. If this is the
first response to a received L3L4mSETUP_IND and the B-channel
negotiation feature is enabled, the B-channel used for this call is
included in the message. Additional IEs are appended if included in
the IISDN_IE_STRUCT.

Error Returns If the module is unable to process the message, the protocol might
return the following error codes in an L3L4mERROR message:

See message detail in L3L4mERROR on page 1094.

L3L4errLAPDID_OUT_OF_RANGE

An invalid lapdid value has been used. The only lapdid
values allowed are 0 (span 1), 2 (span 2), 4 (span 3) or 6 (span 4).

01

L3L4errLAPDID_NOT_ESTABLISHED

ISDN D-channel identified by the LAP-D ID has not been
established.

02

L3L4errCALL_REF_ERROR

Invalid call reference value specified.

06

L3L4errINVALID_COMMAND_ARGS

Syntax error; invalid message arguments.

15

L3L4errINVALID_MSG_FOR_STATE

Indicates the Dialogic® Brooktrout® firmware cannot
generate a CALL PROCEEDING message for this call because
of its current state (CALL PROCEEDING is not a valid message
for the call state).

16

L3L4errDCHAN_TEMP_UNAVAIL

D-channel switchover in progress; applies to NFAS
configurations only.

30

L4L3mCALL_PROCEEDING_REQUEST

March 2017 999

Details Enable B-channel negotiation by setting b_chan_negot in the
IISDN_LEVEL3_CNFG structure of the
L4L3mENABLE_PROTOCOL message for this D-channel. When
this feature is enabled, the Dialogic® Brooktrout® firmware does not
automatically send a CALL PROCEEDING message to the network
in response to an incoming SETUP. Instead, the host must use the
L4L3mCALL_PROCEEDING_REQUEST to instruct the module
to generate this message, if the call is to be accepted. Alternately, the
host can reject the call at this stage using the
L4L3mCLEAR_REQUEST.

Use the IE structure in this message to send custom Information
Elements as part of the CALL PROCEEDING message. See
Information Element (IISDN_IE_STRUCT) on page 853.

L4L3mCALL_REQUEST

March 2017 1000

L4L3mCALL_REQUEST

Purpose Starts an outgoing call. When the interface type is ISDN, the module
sends a SETUP message to the network.

Message IISDN_CALL_REQ_DATA call_req_data

Message ID 0x81

Input Fields unsigned long bchannel_mask;
unsigned char preferred;
unsigned char net_spfc;
unsigned char iface;
unsigned long call_type;
IISDN_CALLING_PARTY calling_party;
IISDN_CALLED_PARTY called_party;
IISDN_REDIRECT_NUM redirect_num;
unsigned short override_bc_len;
unsigned char bearer_cap [IISDN_MAX_BC];
IISDN_USER_INFO user_info;
IISDN_Q922_DLCI fr_dlci;
unsigned char rlt_service;
unsigned char ie_count;
IISDN_ORIG_CALLED_NUM orig_called_num;
IISDN_IE_STRUCT ie;
unsigned char reserved;

Input bchannel_mask

B-channel Bit Mask. Valid only for multi-rate ISDN calls.
Specifies the individual IISDN channels used for a multi-rate
call. Channels are numbered 1 to 24 (ISDN service in US only)
with channel 1 as the least significant bit. First multi-rate
channel must also be specified in bchannel.

L4L3mCALL_REQUEST

March 2017 1001

bchannel

B-channel. Identifies the channel to be used for the call. In this
message, bchannel is used only when B-channel negotiation is
enabled by setting b_chan_negot in the IISDN_LEVEL3_CNFG
structure of the L4L3mENABLE_PROTOCOL message. If the
feature is not enabled, set bchannel to 0x00. Channels are
numbered as listed below:

ISDN 23B+DChannels numbered 1 – 23.

ISDN NFASChannels numbered 1 – 24. The iface value indicates
the span where the channel resides.

ISDN 384KFirst of six channels used for 384K (H0) call. Possible
values are 1, 7, 13 for standard ISDN, or 1,
7, 13, and 19 for ISDN NFAS service.

ISDN 1536KMust be channel 1 for 1536K (H11) call.

multi-rate ISDNFirst channel of multi-rate call (set of channels
specified in bchannel_mask).

preferred

Preferred channel. Indicates whether the B-channels specified
must be used for this call. If the feature is not enabled, set to 0x00.
Possible values include:

Specified channel must be used (exclusive). 0x00

Network can use another channel (preferred); B-channel
negotiation.

0x01

L4L3mCALL_REQUEST

March 2017 1002

net_spfc

Call-by-Call Feature. Specifies the network-specific facility used.
Generally, the non-specific default value is used. If another value
is specified, the PRI line purchased from the service provider
must have been configured to support that call type. Possible
values include:

IISDNnsNULL

Default value; no network-specific facility Information
Element (IE) is encoded.

0x00

IISDNnsATT_SDN or IISDNnsNTI_PRIVATE

AT&T Software Defined Network or Nortel Private
Network.

0x01

IISDNnsATT_MEGACOM or IISDNnsNTI_OUTWATS

AT&T Megacom or Nortel OutWATS.

0x02

IISDNnsNTI_FX

Nortel Foreign Exchange.

0x03

IISDNnsNTI_FX

Northern Telecom Foreign Exchange.

0x04

IISDNnsNTI_TIE_TRUNK

Northern Telecom Tie Trunk.

0x05

IISDNnsATT_ACCUNET

AT&T Accunet.

0x06

IISDNnsATT_I800

AT&T International 800 Service.

0x08

IISDNnsATT_MULTIQUEST or IISDNnsNTI_TRO

Northern Telecom TRO Call.

0x10

L4L3mCALL_REQUEST

March 2017 1003

iface

Non-Facilities Associated Signaling (NFAS) Interface. Indicates
the span where the channel specified in bchannel field resides.
The host application must maintain the mapping of span (line) to
interface. In this message, iface is used only when, in the
IISDN_LEVEL3_CNFG structure of the
L4L3mENABLE_PROTOCOL message, the protocol has done
both of the following:

 Enabled B-channel negotiation using b_chan_negot

 Enabled NFAS using nfas
If either of these features are not enabled, iface is ignored and set
to 0x00. If B-channel negotiation is enabled and NFAS is not in
use, set iface to 0xFF.

call_type

Call Type. Bit mask identifying what type of call to establish. Call
types are constructed using the following values:

IISDNcalltypVOICE

Normal voice call in North America (μ-law); most
common value.

0x00000001

IISDNcalltypMODEM

3.1kHz audio in North America (μ-law).

0x00000002

IISDNcalltyp56K

56K data call, unknown type.

0x00000004

IISDNcalltyp64K

64K data call, unknown type.

0x00000008

IISDNcalltyp64K_REST

Restricted 64K data call.

0x00000010

IISDNcalltyp384K

384K (H0) data call, unknown type.

0x00000020

IISDNcalltyp384K_REST

Restricted 384K (H0) data call.

0x00000040

IISDNcalltyp64K_V110

64K V.110 data call.

0x00002000

IISDNcalltypmulti-rate_DATA

ISDN multi-rate service call of n x 64K channels,
unrestricted.

0x00004000

L4L3mCALL_REQUEST

March 2017 1004

calling_party

Calling Party Structure. See Calling Party
(IISDN_CALLING_PARTY) on page 845.

called_party

Called Party Structure. See Called Party
(IISDN_CALLED_PARTY) on page 843.

redirect_num

Redirecting Number Structure. See Redirecting Number
(IISDN_REDIRECT_NUM) on page 859.

override_bc_len

Override B-bearer Capability. Specifies the length of the
bearer_cap array below. Recommended setting is 0x00 (no array
included).

bearer_cap [IISDN_MAX_BC]

Bearer Capability Data. An array used to create a custom
call_type. The length of the array is specified in override_bc_len.
Because the call_type settings specified previously in the
message include most call types possible, use of this capability is
not recommended.

user_info

User Info Structure. See User Info (IISDN_USER_INFO) on
page 863.

IISDNcalltyp1536K

1536K (H11) data call, unrestricted.

0x00008000

IISDNcalltyp56K_UNREST

56K data call, unrestricted.

0x00010000

IISDNcalltypALAW_VOICE

Voice call outside of North America (A-law).

0x00020000

IISDNcalltypALAW_MODEM

3.1kHz audio call outside of North America
(A-law).

0x00400000

IISDNcalltypULAW_7KHZ

7 kHz call in North America (μ-law).

0x00800000

IISDNcalltypALAW_7KHZ

7 kHz call outside of North America (A-law).

0x00100000

L4L3mCALL_REQUEST

March 2017 1005

fr_dlci

Q.933 DLCI Negotiation Structure. See Q.933 DLCI Negotiation
(IISDN_Q922_DLCI) on page 858.

rlt_service

Release Trunk Service. This feature is used for interfacing with
DMS-250. The On function sends a facility IE in the setup
message.

0x00= off

0x01= on

ie_count

IE Count. Specifies the number of IEs included in the IE
Structure in this message.

orig_called_num

Specifies the appropriate number of digits. A value of 0
designates the feature is unavailable.

ie

IE Structure. See Information Element (IISDN_IE_STRUCT) on
page 853.

reserved

1 Allows this call to be made on a channel that already has
a call in the auxiliary HOLD state.

L4L3mCALL_REQUEST

March 2017 1006

Output Return values.

ISDN Q.931 Calls After the module successfully processes this message, it initiates an
outgoing call by sending a SETUP message to the network. An
L3L4mPROGRESS, L3L4mALERTING, or L3L4mCONNECT
message is returned to the host to indicate the network is processing
the call. If the call is rejected by the network, the host receives either
an L3L4mCLEAR_REQUEST or
L3L4mCLEAR_WITH_RESTART_REQUEST message.

Error Returns If the module is unable to process the message, the protocol might
return the following error codes in an L3L4mERROR message:

L3L4errLAPDID_OUT_OF_RANGE

An invalid lapdid value has been used. The only lapdid
values allowed are 0 (span 1), 2 (span 2), 4 (span 3) or 6 (span 4).

01

L3L4errLAPDID_NOT_ESTABLISHED

ISDN D-channel identified by the LAP-D ID has not been
established.

02

L3L4errINVALID_CALLED_NUMBER

For ISDN calls, Called Party number is either invalid (not
ASCII digits 0 thru 9) or longer than 24 digits.

03

L3L4errNO_CRSTRUCT_AVAILABLE

No call record structures are available to start an outgoing
call.

05

L3L4errINVALID_B_CHANNEL

B-channel specified is invalid.

07

L3L4errB_CHANNEL_RESTARTING

For ISDN calls, the B-channel is in the progress of
restarting.

08

L3L4errINVALID_CALL_TYPE

The value specified for the call_type field is invalid.

10

L3L4errINVALID_COMMAND_ARGS

Syntax error; invalid message arguments.

15

L3L4errINVALID_INTERFACE

Interface number specified is not between 0 an 19 (NFAS
configurations).

19

L3L4errDCHAN_TEMP_UNAVAIL

D-channel switchover in progress; applies to NFAS
configurations only.

20

L4L3mCALL_REQUEST

March 2017 1007

See message details in L3L4mERROR on page 1094.

Details The IE structure can be used in this message to send custom
Information Elements as part of the SETUP message. See
Information Element (IISDN_IE_STRUCT) on page 853 for more
information.

L3L4errB_CHANNEL_INUSE

B-channel specified is already involved in a call or an
incoming SETUP message has been received specifying this
B-channel and its preferred bit is cleared.

30

L3L4errDLCI_MANDATORY

Indicates the message was rejected because the L3L4
common header did not specify a DLCI. A DLCI is required for
LAP-D data connections.

48

L4L3mCLEAR_REQUEST

March 2017 1008

L4L3mCLEAR_REQUEST

Purpose Clears (tears down) a call or refuses an incoming call.

Message IISDN_CLR_DATA clr_data

Message ID 0x85

Input Fields IISDN_CAUSE cause;
IISDN_USER_INFO user_info;
IISDN_PROGRESS_IND progress_ind;
unsigned char ie_count;
IISDN_IE_STRUCT ie;

Input cause

Cause Data Structure. See Cause Data (IISDN_CAUSE) on
page 848.

user_info

User Info Structure. See User Info (IISDN_USER_INFO) on
page 863.

progress_ind

Progress Indication Structure. See Progress Indication
(IISDN_PROGRESS) on page 855.

ie_count

IE Count. Specifies the number of Information Elements (IEs)
included in the IE Structure in this message.

ie

IE Structure. See Information Element (IISDN_IE_STRUCT) on
page 853.

L4L3mCLEAR_REQUEST

March 2017 1009

Output After the module successfully processes this message, it sends the
appropriate message (DISCONNECT, RELEASE, or RELEASE
COMPLETE) to the network and an L3L4mCLEAR_REQUEST to
the host. Upon receipt of the
L3L4mCLEAR_WITH_RESTART_REQUEST,
L3L4mCLEAR_REQUEST, or an L3L4mDISCONNECT message
indicating all_calls_dropped, the B-channel is available for a new
call.

Error Returns If the module is unable to process the message, the protocol might
return the following error codes in an L3L4mERROR message:

See message details in L3L4mERROR on page 1094.

L3L4errLAPDID_OUT_OF_RANGE

An invalid lapdid value has been used. The only lapdid
values allowed are 0 (span 1), 2 (span 2), 4 (span 3) or 6 (span 4).

01

L3L4errLAPDID_NOT_ESTABLISHED

ISDN D-channel identified by the LAP-D ID has not been
established.

02

L3L4errCALL_REF_ERROR

Invalid call reference value specified or module has already
cleared the call. In the latter case, this message is immediately
preceded by an L4L3mCLEAR_REQUEST message.

06

L3L4errINVALID_COMMAND_ARGS

Syntax error; invalid message arguments.

15

L3L4errB_CHANNEL_INUSE

B-channel specified is already involved in a call, or an
incoming SETUP message has been received specifying this
B-channel and its preferred bit is cleared.

30

L4L3mCLEAR_REQUEST

March 2017 1010

Details This message applies to all ISDN calls and the structure is identical
to that of the following messages:

 L3L4mDISCONNECT

 L3L4mCLEAR_REQUEST

The module always generates either an L3L4mCLEAR_REQUEST
or L3L4mCLEAR_WITH_RESTART_REQUEST when a call is
cleared. The B-channel cannot be used for a new call until this L3L4
message is acknowledged/received by the host.

Note: The only exception to the above is in the ISDN case where a
D-channel is restarted and all calls associated with it are
dropped. In this case, the setting of all_calls_dropped in the
L3L4mDISCONNECT message indicates if the protocol
restarts the B-channels associated with the specified D-
channel and drops the calls.

You can also use the L4L3mCLEAR_REQUEST message to clear a
call initiated by the host before a response is received from the
network. In this case, generate this message with the L4 reference
value used in the L4L3mCALL_REQUEST and a call reference
value of zero. The module then begins the call clearing processes
required by the network.

Use the IE structure in this message to send custom Information
Elements as part of the ISDN message. See the structure and its use
described in Information Element (IISDN_IE_STRUCT) on
page 853.

L4L3mCONNECT_REQUEST

March 2017 1011

L4L3mCONNECT_REQUEST

Purpose Sends a CONNECT message to the network to inform it that an
incoming call was answered.

Message IISDN_AL_CON_DATA al_con_data

Message ID 0x84

Input Fields IISDN_AL_CON_DATA al_con_data;

Input al_con_data

Alerting and Connecting Data Message. See Alerting and
Connecting Data Message (IISDN_AL_CON_DATA) on page 839.

Output Return values.

After the module successfully processes this message, it sends a
CONNECT message to the network.

Error Returns If the module is unable to process the message, the protocol might
return the following error codes in an L3L4mERROR message:

L3L4errLAPDID_OUT_OF_RANGE

An invalid lapdid value has been used. The only lapdid
values allowed are 0 (span 1), 2 (span 2), 4 (span 3) or 6 (span 4).

01

L3L4errLAPDID_NOT_ESTABLISHED

ISDN D-channel identified by the LAP-D ID has not been
established.

02

L3L4errCALL_REF_ERROR

Invalid call reference value specified.

06

L3L4errINVALID_COMMAND_ARGS

Syntax error; invalid message arguments.

15

L4L3mCONNECT_REQUEST

March 2017 1012

See message details in L3L4mERROR on page 1094.

Details You can send the L4L3mCONNECT_REQUEST message in
response to an L3L4mSETUP_IND when connected to a service
using the AT&T 4ESS Fast Connect Feature. When used in this
manner and if the B-channel negotiation feature is enabled, use
bchannel and iface. In all other cases, these fields are ignored by the
module; value of 0x00 is recommended for both.

L3L4errINVALID_MSG_FOR_STATE

Indicates the Dialogic® Brooktrout® firmware cannot
generate a CALL PROCEEDING message for this call because
of its current state (CALL PROCEEDING not a valid message
for the call state).

16

L3L4errDCHAN_TEMP_UNAVAIL

D-channel switchover in progress; applies to NFAS
configurations only.

30

L3L4errDLCI_MANDATORY

Indicates the message was rejected because the L3L4
common header did not specify a DLCI. A DLCI is required for
LAP-D data connections.

48

L4L3mDISABLE_B_CHANNEL

March 2017 1013

L4L3mDISABLE_B_CHANNEL

Purpose Generates ISDN SERVICE messages (North American PRI only) for
ATT B Channel Maintenance protocol only.

Message IISDN_BCHANNEL_ID channel

Message ID 0xA3

Input Fields unsigned long bchannel_mask;
unsigned char bchannel;
unsigned char iface;
unsigned char busy_out_chan;
unsigned char use_bit_mask;
unsigned long n_bchannel;

Input bchannel_mask

B-channel Bit Mask. Valid only for multi-rate ISDN calls.
Specifies the individual PRI channels used for a multi-rate call.
Channels are numbered 1 to 24 (ISDN service in US only) with
channel 1 as the least significant bit. First multi-rate channel
must also be specified in bchannel.
0 = not used
1 = multi-rate call

L4L3mDISABLE_B_CHANNEL

March 2017 1014

bchannel

B-channel. Identifies the channel unless use_bit_mask is nonzero
and NFAS is used. Channels are numbered as listed below:

ISDN 23B+DChannels numbered 1 – 23.

ISDN NFASChannels numbered 1 – 24. The iface value indicates
the span where the channel resides.

ISDN 384KFirst of six channels used for 384K (H0) call. Possible
values are 1, 7, 13 for standard ISDN, or 1,
7, 13, and 19 for ISDN NFAS service.

ISDN 1536KMust be channel 1 for 1536K (H11) call.

multi-rate ISDNFirst channel of multi-rate call (set of channels
specified in bchannel_mask).

iface

Non-Facilities Associated Signaling (NFAS) Interface. Indicates
the span where the channel specified in bchannel field resides.
The host application must maintain the mapping of span (line) to
interface. In this message, iface is used only when, in the
IISDN_LEVEL3_CNFG structure of the
L4L3mENABLE_PROTOCOL message, the protocol has done
both of the following:

 Enabled B-channel negotiation using b_chan_negot

 Enabled NFAS using nfas
If either of these features are not enabled, iface is ignored and set
to 0x00. If B-channel negotiation is enabled and NFAS is not in
use, set iface to 0xFF.

busy_out_chan

Not used.

use_bit_mask

Use Bit Mask. Specifies use of n_bchannel to indicate the
B-channels for the generated message; allowed for NFAS
configurations only.
0x00 = use bchannel
0x01 = use n_bchannel

L4L3mDISABLE_B_CHANNEL

March 2017 1015

n_bchannel

NFAS B-channel. This field is ignored if cnfg.q931.nfas is not set
in a previous L4L3mENABLE_PROTOCOL. Bit mask
identifying which B-channels to activate on this interface. T1
B-channels are numbered 1 - 24 (24 is usually reserved for the
D-channel). Typical setting is 0x00FFFFFE.
1 = enable B-channel
0 = disable B-channel

Output Return values.

ISDN Q.931
Protocol

After the module successfully processes this message, it places the
B-channels into near-end out-of-service state and sends a SERVICE
(OOS) message to the network. When the network responds with a
SERVICE ACK message, the module generates an
L3L4mB_CHANNEL_STATUS with a b_channel_data set to 0x00
IISDNbcsOUT_OF_SERVICE report indicating the change of state.
The B-channel cannot be used for calls until it is brought back into
service using the L4L3mENABLE_B_CHANNEL message.

Error Returns If the module is unable to process the message, the protocol might
return the following error codes in an L3L4mERROR message:

See message details in L3L4mERROR on page 1094.

L3L4errLAPDID_NOT ESTABLISHED

Q931 is not currently established on the lapdid.

02

L3L4errINVALID_B_CHANNEL

IISDN_BCHANNEL_ID.bchannel is not in the range 1-24.

07

L3L4errINVALID_COMMAND_ARGS

Syntax error; invalid message arguments.

15

L3L4errINVALID_INTERFACE

NFAS iface value is not recognized.

19

L4L3mDISABLE_B_CHANNEL

March 2017 1016

Details When the Q.931 protocol stack has been enabled, this message
causes the module to send a SERVICE message to the connected
network equipment with a status of out of service. The B-channel
affected is specified in the structure IISDN_BCHANNEL_ID. This
message is not meant to reserve channels; frequent SERVICE
messages for a B-channel might be interpreted as a fault condition
by the connected switching equipment.

When NFAS has been enabled, the B-channels can be specified using
n_bchannel. This bit mask indicates the state (in service or out-of-
service) of each channel on the interface. This bit mask can be used
to specify either a single or an entire interface of B-channels.

L4L3mDISABLE_PROTOCOL

March 2017 1017

L4L3mDISABLE_PROTOCOL

Purpose Disables the protocol stack running on the HDLC channel specified
in the common header. Specifies the HDLC channel using the
LAP-D ID and LLI common header bytes.

Message None.

Message ID 0xA1

Input Supplies all data for this message in the L4L3 common header.

Output Return values.

After successfully processing this message, the module disables the
protocol stack and clears all calls associated with the LAP-D ID and
LLI specified in the L4L3 common header. When the protocol is
disabled, the module generates an L3L4mDISCONNECT report
with a status of Not Established.

Error Returns If the module is unable to process the message, the protocol might
return the following error codes in an L3L4mERROR message:

See message details in L3L4mERROR on page 1094.

L3L4errLAPDID_OUT_OF_RANGE

An invalid lapdid value has been used. The only lapdid
values allowed are 0 (span 1), 2 (span 2), 4 (span 3) or 6 (span 4).

01

L3L4errLAPDID_NOT_ESTABLISHED

The LAP-D ID for the message signifies that the LAPD is
not currently up.

02

L3L4errINVALID_B_CHANNEL

The LAP-D ID message signifies that the B-channel in the
CALL REQ is bad.

07

L3L4errINVALID_LLI

The LAP-D ID for which the message was issued is not
currently established.

21

L4L3mENABLE_B_CHANNEL

March 2017 1018

L4L3mENABLE_B_CHANNEL

Purpose Generates an ISDN SERVICE message for ATT B-channel
Maintenance protocol only.

Message IISDN_BCHANNEL_ID channel

Message ID 0xA2

Input Fields unsigned long bchannel_mask;
unsigned char bchannel;
unsigned char iface;
unsigned char busy_out_chan;
unsigned char use_bit_mask;
unsigned long n_bchannel;

Input bchannel_mask

B-channel Bit Mask. Valid for multi-rate ISDN calls only.
Specifies the individual PRI channels used for a multi-rate call.
Channels are numbered 1 to 24 (ISDN service in US only) with
channel 1 as the least significant bit and 24 as the most
significant bit. bchannel must specify the first multi-rate channel.
0 = not used
1 = multi-rate call

bchannel

B-channel. Identifies the channel unless use_bit_mask is a
nonzero value and NFAS is used. Channels are numbered as
listed below:

ISDN 23B+DChannels numbered 1 – 24.

ISDN NFASChannels numbered 1 – 24. The iface value indicates
the span where the channel resides.

L4L3mENABLE_B_CHANNEL

March 2017 1019

iface

Non-Facilities Associated Signaling (NFAS) Interface. Indicates
the span where the channel specified in bchannel field resides.
The host application must maintain the mapping of span (line) to
interface. In this message, iface is used only when, in the
IISDN_LEVEL3_CNFG structure of the
L4L3mENABLE_PROTOCOL message, the protocol has done
both of the following:

 Enabled B-channel negotiation using b_chan_negot

 Enabled NFAS using nfas
If either of these features are not enabled, iface is ignored and set
to 0x00. If B-channel negotiation is enabled and NFAS is not in
use, set iface to 0xFF.

busy_out_chan

Not used.

use_bit_mask

Use Bit Mask. Specifies use of n_bchannel to indicate the
B-channels for which the message is to be generated; allowed for
NFAS configurations only.
0x00 = use bchannel
0x01 = use n_bchannel

n_bchannel

NFAS B-channel. The n_bchannel field is ignored if
cnfg.q931.nfas is not set in a previous
L4L3mENABLE_PROTOCOL. The Bit Mask identifies which
B-channels to activate on this interface. The T1 B-channels are
numbered 1 - 24 (24 is usually reserved for the D-channel).
Typical setting is 0x00FFFFFE.
1 = enable B-channel
0 = disable B-channel

L4L3mENABLE_B_CHANNEL

March 2017 1020

Output Return values.

ISDN Q.931
Protocol

After successfully processing this message, the Dialogic®
Brooktrout® module sends one or more SERVICE messages to the
network with a status of in service for each B-channel represented in
the message.

When the network responds with a SERVICE ACK message, the
module generates an L3L4mB_CHANNEL_STATUS report with
the appropriate b_channel_data value, indicating the receipt of the
message from the network.

Error Returns If the module is unable to process the message, the protocol might
return the following error codes in an L3L4mERROR message:

See message details in L3L4mERROR on page 1094.

Details When the application enables the Q.931 protocol stack, this message
causes the module to send a SERVICE message to the connected
network equipment with a status of in service. The IISDN B-channel
structure specifies the affected IISDN_BCHANNEL_ID.

Specify the B-channel using n_bchannel when NFAS is enabled. This
bit mask indicates the state (in service or out-of-service) of each
channel on the interface. This bit mask can be used to specify either
a single or an entire interface of B-channels.

L3L4errLAPDID_NOT_ESTABLISHED

The LAP-D ID for the message signifies that the LAPD is
not currently up.

02

L3L4errINVALID_B_CHANNEL

The LAP-D ID message signifies that the B-channel in the
CALL REQ is bad.

07

L3L4errINVALID_INTERFACE

NFAS.iface value is not recognized.

09

L3L4errINVALID_COMMAND_ARGS

Syntax error; invalid message arguments.

15

L4L3mENABLE_PROTOCOL

March 2017 1021

L4L3mENABLE_PROTOCOL

Purpose Specifies and enables Layer 1, Layer 2, and Layer 3 processing for a
specific LAP-D ID.

Message IISDN_ENA_PROTO_DATA enable_protocol

Message ID 0xB6

Input Fields unsigned long command; /* command mode*/

unsigned char l1_mode; /* IISDN_LEVEL1_CNFG*/
rate_adapt

unsigned char enable;
unsigned char rate_adapt_value;
short pad;

unsigned char l2_mode; /* IISDN_LEVEL2_CNFG*/
unsigned char dce_dte;
unsigned char no_sabme;
unsigned char L2_detail;
unsigned char priority;
unsigned char no_reestab;
unsigned char mode_TEI_1;
unsigned char no_piggyback;
unsigned char l2_const;
unsigned char TEI_mode;

unsigned char l3_mode; /* IISDN_LEVEL3_CNFG*/
unsigned char pad;
unsigned short pad1;
IISDN_Q931_CNFG q931_cnfg;
unsigned short switch_type;
unsigned short variant;
unsigned long call_filtering;
unsigned short jate_redial_method;
IISDN_Q931_TIMERS q931_timers;
unsigned long

bchannel_service_state[IISDN_NUM_DS1_INTERFACES];
unsigned char nfas;
unsigned char net_side_emul;
unsigned char b_chan_negot;
unsigned char proc_on_exclusv;
unsigned char chanid_slot_map;

L4L3mENABLE_PROTOCOL

March 2017 1022

unsigned char sprs_chanid_callproc;
unsigned char no_chanid_callproc;
unsigned char append_raw_qmsg;
unsigned char ccitt_mode;
unsigned char raw_qmsg;
unsigned char no_ie_errcheck;
unsigned char user_ie_encode;
unsigned char send_I3I4_callproc;
unsigned char sending_cmplt;
unsigned char report_incoming_callproc;
unsigned char no_tx_conn_act;
unsigned char no_rx_conn_act;
unsigned char sprs_chanid_setupack;
unsigned char no_chanid_setupack;
unsigned char no_canned_spid_rej;
unsigned char call_reject_notify;
unsigned char primary_lapdid;
unsigned char primary_ifnum;
unsigned char subscribe_connack;
unsigned char basic_rate;
unsigned char suppress_auto_spid;
unsigned char spid_len;
unsigned char spid_1_len;
unsigned char dn_len;
unsigned char dn_1_len;
char spid[IISDN_MAX_SPID_LEN];
char spid_1[IISDN_MAX_SPID_LEN];
char dn[IISDN_MAX_DN_LEN];
char dn_1[IISDN_MAX_DN_LEN];

L4L3mENABLE_PROTOCOL

March 2017 1023

Input command

Enable Protocol Command Mode. Specifies how Dialogic®
Brooktrout® firmware processes this message. This mode
provides a mechanism to delivering commands to a previously
configured protocol. Values require that a previous
L4L3mENABLE_PROTOCOL message establishing a
Q.921/LAP-D DLCI was already successfully processed. Possible
values include:

l1_mode

Level 1 Mode. Specifies the Layer 1 mode of operation for this
channel.

IISDNepcmdNO_COMMAND

Normal processing; Dialogic® Brooktrout®
firmware interprets all structures in this message and
configures the protocol stack accordingly. Default value.

0x00000000

IISDNepcmdDL_ESTABLISH

Used with Layer 2 protocols only. Specifies sending
a Layer 2 SABME (DL-ESTABLISH) message. No other
structures are processed by the module when this
command is sent.

0x00000001

IISDNepcmdDL_RELEASE

Used with Layer 2 protocols only. Specifies sending
a Layer 2 DISC (DL-RELEASE) message. No other
structures are processed by the module when this
command is sent.

0x00000002

IISDNl1modHDLC

HDLC packetization mode; default value.

0x00

L4L3mENABLE_PROTOCOL

March 2017 1024

rate_adapt

Rate Adaption Structure. Specifies if rate adaption is used on this
channel and the bandwidth of the channel.

l2_mode

Level 2 mode. Specifies the Layer 2 mode of operation for this
channel.

dce_dte

DCE/DTE. Specifies the signaling used by the channel based on
the module location (customer premise or network).

enable

Enable Rate Adaption. Specifies if rate adaption is
enabled on this channel.

0x00 = rate adaption disabled
0x01 = rate adaption enabled

rate_adapt_value

Rate Adaption Value. Specifies type of rate adaption
used. Default value is 0x7F (for standard 56 K rate
adaption).

pad

Pad to preserve longword alignment; set to 0x0000.

IISDNl2modLAP_D

Enable Q.921 data link layer protocols; default value.

0x00

IISDNl2modLAP_D_EFA

Q.921 data link layer w/Envelope Function Address
(4 bytes).

0x06

IISDNdirUSER_SIDE

Configures the channel for user side signaling
(customer premise equipment) for Q.931

0x00

IISDNdirNETWORK_SIDE

Configures the channel for network side signaling for
Q.931.

0x01

L4L3mENABLE_PROTOCOL

March 2017 1025

no_sabme

No SABME Feature. Establishes Layer 2 processing without
transmitting a SABME message until a SABME is received.
Generally used when connecting two modules back-to-back to
establish the link. The link can be better transitioned from
TEI-assigned to multiframe-established state by issuing an
IISDNepcmdDL_ESTABLISH.
0x00 = feature disabled
0x01 = feature enabled

L2_detail

Layer 2 Detail Mode. Reports all L2 errors to the control interface
via the L3L4mDISCONNECT message.
0x00 = detail mode disabled
0x01 = detail mode enabled

priority

Transmission Priority. Assigns a transmission priority to the
channel; priorities range from 0 (lowest) to 255 (highest). If two
LLIs on a single physical HDLC stream have the same priority
setting, the channel enabled first has the higher priority.

no_reestab

No Re-establishment. Prevents channel reestablishment when
the channel receives or transmits a SABME message once the
Layer 2 connection has been established.
0x00 = reestablish channel
0x01 = do not reestablish channel

mode_TEI_1

Custom TEI (Terminal Endpoint Indicator) Mode. Enables
asymmetrical TEI assignment when passing Layer 2 and Layer 3
messages over FDL channels.
0x00 = standard LAP-D TEI assignment
0x01 = asymmetrical TEI assignment

no_piggyback

Acknowledge All Messages. Causes the module to acknowledge
all messages with an RR (receiver ready). This mode introduces
additional traffic overhead and is typically used only when
performing protocol conformance testing.

L4L3mENABLE_PROTOCOL

March 2017 1026

l2_const

Level 2 Configuration. Configures Layer 2 protocol timers.

TEI_mode

TEI negotiated (auto TEI assignment). Value = 1 (see
mode_TEI_1 above). Usually used with BRI in a point-to-
multipoint connection.

l3_mode

Level 3 mode. Specifies the Layer 3 mode of operation for this
channel. Possible values are:

pad

Pad to preserve longword alignment; set to 0x00.

pad1

Pad to preserve longword alignment; set to 0x0000.

q931_cnfg

IISDN_Q931_CNFG structure. Valid only when l3_mode is set to
IISDNl3modQ931. Defines the operating characteristics for
Q.931 applications. This structure is described below:

switch_type

Switch Type. Specifies the type of equipment connected to this
span. This setting works in combination with variant; refer to
Table 23 on page 1039 for the supported combinations of these
fields. Possible switch-type values include:

IISDNl3modDISABLED

LAP D Disabled message notice.

0x00

IISDNl3modQ931

ITU-T Q.931 call control protocol.

0x01

IISDNstATT_4ESS

AT&T 4ESS switch; default value.

0x0000

IISDNstATT_5ESS

AT&T 5ESS switch.

0x0001

IISDNstNTI_DMS100

Nortel DMS-100 switch.

0x0002

L4L3mENABLE_PROTOCOL

March 2017 1027

variant

Q.931 Variant. Indicates the variation of Q.931 used on this span.
This setting works in combination with switch_type. Refer to
Table 23 on page 1039, for the supported combinations of these
fields. Possible values include:

IISDNstNTI_DMS250

Nortel DMS-250 switch.

0x0003

IISDNstMD110_T1

Ericsson MD-110 switch (U.S.).

0x0004

IISDNstMD110_E1

Ericsson MD-110 switch (international).

0x0005

IISDNstSIEMENS

Siemens EWSD switch (North American).

0x0006

IISDNstUNKNOWN

Unknown switch that conforms to ITU-T standards.

0x0008

IISDNvarATT_CUSTOM

AT&T as defined in AT&T PUB 41449; default value.

0x0000

IISDNvarNTI_CUSTOM

Northern Telecom as defined in NIS A211-1.

0x0001

IISDNvarNET3

IISDNvarCTR3

For BRI connections throughout Europe. Choosing
this variant changes the Layer 2 protocol parameters to
their appropriate NET-3 defaults.

0x0005

IISDNvarNET5

IISDNvarCTR4

NET-5 standard for PRI connections throughout
Europe (also referred to as Euro-ISDN). Choosing this
variant changes the Layer 2 protocol timers to their
appropriate NET-5 defaults.

0x0006

IISDNvar1TR6_IISDN

1TR6 standard for PRI connections in Germany.

0x0008

IISDNvarVN3

VN3 standard for France.

0x0009

L4L3mENABLE_PROTOCOL

March 2017 1028

call_filtering

Call Filtering Bit Mask. Reject incoming call if it does not match
the bit settings for accepted call types. Call requests received for
this span that do not match the bit setting are denied due to
incompatible destination. Set this bit mask to 0x00000000 if no
call filtering is performed. Accepted call types are constructed
using the following values:

IISDNvarCCITT

General ITU-T Q.931 conformance.

0x000A

IISDNvarTS014

AUSTEL Technical Standard 014 for
PRI connections in Australia.

0x000D

IISDNcalltypVOICE

Normal voice call in North America (μ-law).

0x00000001

IISDNcalltypMODEM

3.1kHz audio in North America (μ-law).

0x00000002

IISDNcalltyp56K

56K data call, unknown type.

0x00000004

IISDNcalltyp64K

64K data call, unknown type.

0x00000008

IISDNcalltyp64K_REST

Restricted 64K data call.

0x00000010

IISDNcalltyp56K_UNREST

56K data call, unrestricted.

0x00010000

IISDNcalltypALAW_VOICE

Voice call outside of North America (A-law).

0x00020000

IISDNcalltypALAW_MODEM

3.1kHz audio call outside of North America
(A-law).

0x00040000

IISDNcalltypULAW_7KHZ

7 kHz call in North America (μ-law).

0x00080000

IISDNcalltypALAW_7KHZ

7 kHz call outside of North America (A-law).

0x00100000

L4L3mENABLE_PROTOCOL

March 2017 1029

jate_redial_method

Specifies the redial restriction method when the country code is
JAPAN. Any other value specified in jate_redial_method default
to IISDN_JATE_REDIAL_2IN3_MINS. Redial restrictions
include:

q931_timers

Q.931 timers. IISDN_Q931_TIMERS structure. Configure Q.931
Layer 3 protocol timers; timers are specified in 100 ms ticks.

b_channel_service_state [IISDN_NUM_DS1_INTERFACES]

Q.931 Bit Mask. Bit mask identifies which B-channels to activate
on each interface.
NFAS based application

 T1 B-channels numbered 1-24
 Interfaces numbered from 0-19
You can bring all the B-channels into service as soon as Layer 3
is initialized by filling in all the desired channels using
b_channel_service_state and specifically leaving the LSB of that
parameter set to 0 (this is default behavior). Setting the LSB to 1
causes only the loading of b_chan_req bits (as seen via
L3L4mDISCONNECT) and not the service state of each
B-channel, allowing the host program to bring each individual
B-channel into service at a later time.
Q.931 based application
Used for B-channel maintenance in Q.931 applications only; bit
mask identifies which B-channels to activate (initialize state as
IN SERVICE) on each interface.

 To enable a B-channel, set the corresponding bit in the
proper array position to 1.

 To disable a B-channel, set the bit in the proper array
position to 0.

IISDN_JATE_REDIAL_3IN3_MINS

Redial restriction applies after 3 call attempts until
3-minute timer expires.

0

IISDN_JATE_REDIAL_15X

The redial restriction applies after 15 call attempts.

1

IISDN_JATE_REDIAL_NO_RESTRICT

No redial restriction applies.

2

L4L3mENABLE_PROTOCOL

March 2017 1030

T1 B-channels are numbered 1 - 23 (24 is typically reserved for
D-channel signaling);
To enable all 23 B-channels set the corresponding interface bit
mask to: 0xFFFFFE (bit 0 and high bits are ignored). If using
Australian or 1TR6, the variant is 0x7FFFFFFE and the
channels are numbered 1 - 30.
If in L4L3ENABLE_PROTOCOL, switch_type is set to
IISDNstATT_5ESS or IISDNstNTI_DMS250 and variant is set to
IISDNvarNATL_ISDN_1 or IISDNvarNATL_ISDN_2, then the
module only loads b_chan_req bits and the service state of each
B-channel is set to OOS (Out Of Service).

nfas

NFAS. Configure for Non-Facility Associated Signaling (NFAS)
operation.
0x00 = NFAS disabled
0x01 = NFAS enabled

net_side_emul

Network side emulation. Emulate network side signaling on the
channel.
0x00 = emulation disabled
0x01 = emulation enabled

b_chan_negot

B-channel negotiation. Configure for B-channel negotiation on
outgoing calls. CALL PROCEEDING message is not
automatically generated to the network following an incoming
SETUP message unless the proc_on_exclusv bit is also set.

proc_on_exclusv

Proceed on exclusive. Used in conjunction with B-channel
negotiation, specifies answering an incoming SETUP message
from the network with a CALL PROCEEDING (typical operation)
when the network indicates the B-channel specified must be used
(exclusive).

chanid_slot_map

Channel ID slot map. Encode Channel ID IE using slot map
instead of the channel number.
0x00 = use channel numbers
0x01 = use slot map number

L4L3mENABLE_PROTOCOL

March 2017 1031

sprs_chanid_callproc

Suppress Channel ID in CALL PROCEEDING. Ignore Channel
ID IEs received in incoming CALL PROCEEDING messages.
0x00 = use Channel ID IEs
0x01 = ignore Channel ID IEs

no_chanid_callproc

No Channel ID in CALL PROCEEDING. Allows channel to
process a received CALL PROCEEDING message even if the
message does not contain a Channel ID IE.
0x00 reject CALL PROCEEDING message without

Channel ID IE.
0x01 accept CALL PROCEEDING message without

Channel ID IE.

append_raw_qmsg

Append Raw Q.931 Message. Specifies to follow all L3L4 Q.931
messages (such as an L3L4mSETUP_IND message) with an
L3L4mRAW_QDATA message containing the undecoded Q.931
packet. Refer to L3L4mRAW_QDATA on page 1114, for more
information.
0x00 = feature disabled
0x01 = append L3L4mRAW_QDATA message

ccitt_mode

ITU-T Mode. Applies only when variant = IISDNvarCCITT,
IISDNvarNET3, or IISDNvarNET5.
Specifies that the connections must strictly adhere to ITU-T
Q.931 recommendations (as opposed to Q.931 variations specific
to AT&T, Nortel Telecom, and so forth).
0x00 = mode disabled
0x01 = mode enabled

raw_qmsg

Pass Raw Q.931 Message Only. Specifies replacing the standard
contents of L3L4 Q.931 call control messages with a
data.raw_q931_data structure containing the undecoded Q.931
packet.
0x00 = feature disabled
0x01 = replace message contents with undecoded Q.931 packet

L4L3mENABLE_PROTOCOL

March 2017 1032

no_ie_errcheck

No IE Error Checking. Specifies disabling error checking on IEs
received from the network.
0x00 = perform error checking
0x01 = no error checking

user_ie_encode

User IE Encoding. Specifies that IE strings supplied by the host
contain all IEs to be transmitted. When this feature is enabled,
ISDN does not automatically include mandatory IEs when
transmitting Q.931 messages.
0x00 = feature disabled
0x01 = host must supply all IEs to transmit

send_I3I4_callproc

Sends an L3L4mCALL_PROC_SENT message after
transmitting of a call proceeding.

sending_cmplt

Inserts a sending-complete information element in all outgoing
call setup messages, indicating that the called party information
is complete, and sends no further called party information.

report_incoming_callproc

This reports the receipt of a call proceeding as an
L3L4mCALL_PROCEEDING.

no_tx_conn_act

Do not send Connect Acknowledge statement.

no_rx_conn_act

Do not wait for Connect Acknowledge statement.

sprs_chanid_setupack

Suppresses Channel ID info element in the SETUP_ACK
message.

no_chanid_setupack

Accepts missing Channel ID info element in the SETUP_ACK
message.

L4L3mENABLE_PROTOCOL

March 2017 1033

no_canned_spid_rej

Passes all 5ESS Custom spid MGMT.INF messages as
L3L4mUNIVERSAL message. Then sends a canned reject
message to the net.

call_reject_notify

Sends L3L4mCALL_REJECT messages for incoming calls on
OOS channels.

primary_lapdid

NFAS Primary Lap-D ID. Specifies using the HDLC controller
channel as the D-channel in an NFAS configuration. Current
software supports a value of 0x00 in this field. primary_lapdid is
ignored. If you do not set the NFAS bit the current software does
not support backup D-channels. Therefore, as a configuration
value, set backup_lapdid and backup_ifnum to 0xFF.

primary_ifnum

Primary Interface Number. Specifies the interface on which the
primary D-channel resides. Interfaces are numbered from 0 to 19.
If you do not set the NFAS bit the primary_ifnum is ignored.

subscribe_connack

Indicates that the L3L4mCONN_ACK_IND message is
received.

basic_rate

1 = Set this line to the BRI protocol

suppress_auto_spid

1 = Suppress sending the SPID for BRI

spid_len

Basic Rate National ISDN-1 SPID. Value: 3 - 20.

spid_1_len

DMS-100 for second phone call.

dn_len

Length of directory number.

dn_1_len

Length of directory number.

L4L3mENABLE_PROTOCOL

March 2017 1034

spid[IISDN_MAX_SPID_LEN]

Service Profile ID (ASCII).

spid_1[IISDN_MAX_SPID_LEN]

DMA-100 for second phone call.

dn[IISDN_MAX_DN_LEN]

ASCII directory number for spid.

dn_1[IISDN_MAX_DN_LEN]

ASCII directory number for spid_1.

Output Return values.

After successfully processing this message, the module brings the
D-channel into service as specified. When the D-channel is
established, the module generates an L3L4mDISCONNECT with
the status set to Established. In raw T1 and raw HDLC modes, the
Established message is generated immediately.

By default, the module attempts to establish the D-channel
indefinitely until it is successful. The module generates an
L3L4mDISCONNECT message with a status of Establishing every
4 seconds until the D-channel is established. If the host continues to
receive these messages, the application can log the events and cancel
the request using an L4L3mDISABLE_PROTOCOL message.

In North American Q.931 applications, an
L3L4mB_CHANNEL_STATUS message might also be received for
each B-channel (this is a Central Office or CO option).

Error Returns If the module is unable to process the message, the protocol might
return the following error codes in an L3L4mERROR message:

L3L4errLAPDID_OUT_OF_RANGE

An invalid lapdid value has been used. The only lapdid
values allowed are 0 (span 1), 2 (span 2), 4 (span 3) or 6 (span 4).

01

L3L4errINVALID_CONN_TYPE

Invalid PRI Connection specified.

11

L4L3mENABLE_PROTOCOL

March 2017 1035

L3L4errD_CHAN_NOT_DISABLED

Indicates the D-channel on the module is already enabled or
an attempt was made to mix modes between Raw T1, Raw
HDLC, link layer, and so forth. Also issued in response to a
IISDNepcmdNEW_HDLC_FLAG_FILL command if the HDLC
flag fill feature has not been enabled.

12

L3L4errINVALID_HDLC_MAPPING

Invalid HDLC Bit Mask; channels specified are already in
use.

13

L3L4errINVALID_COMMAND_ARGS

Syntax error; invalid message arguments.

15

L3L4errINVALID_INTERFACE

For NFAS configurations, indicates value specified is not 0
through 19 or 0xFF.

19

L3L4errINVALID_LLI

For Q.931, indicates the LLI value in the common header is
a nonzero value. For all other cases, indicates the LLI value in
the common header is an invalid number. Refer to iisdn.h for
additional information.

21

L3L4errVC_TABLE_FULL

Indicates the maximum number of LLIs has been
established for this LAP-D ID stream. The default value is one
LLI per physical HDLC data stream.

22

L3L4errLLI_NOT_FOUND

Indicates the LLI was not included in the data structures,
or the message contained a
IISDNepcmdNEW_HDLC_FLAG_FILL command for a channel
that has not been enabled.

23

L3L4errBLOCKED

If overriding the default mezzanine buffer configuration,
indicates insufficient memory to allocate internal buffers.

24

L3L4errNON_NFAS

An NFAS function (D-channel switchover) was specified for
a non-NFAS configuration.

27

L3L4errINVALID_STATE

A D-channel switchover was requested and the
D-channels involved are not in the proper states.

28

L3L4errDCHAN_TEMP_UNAVAIL

A D-channel switchover in progress; applies to NFAS
configurations only.

30

L4L3mENABLE_PROTOCOL

March 2017 1036

See message details in L3L4mERROR on page 1094.

L3L4errTOO_MANY_Q931_STACKS

Indicates the maximum number of Q.931 D-channels
allowed by the software configuration are already established.

31

L3L4errDATA_INTERFACE_REQUIRED

Indicates that the Layer 2 protocol enabled (such as raw T1
or raw HDLC) requires a Data Interface connection.

33

L3L4errDATA_INTERFACE_INVALID

Indicates the protocol enabled (such as Q.931) does not
allow a Data Interface connection.

34

L3L4errINVALID_BUFFSZ

Indicates that the HDLC controller buffer size specified for
a channel running raw T1 mode was not evenly divisible by 4.

36

L3L4errDCHAN_ODD_POINTER_ERROR

Host-provided pointers must point to “even” addresses.

42

L3L4errDCHAN_TOO_FEW_BUFFERS

Indicates the message was rejected because it specified less
than 3 transmit and receive buffers.

43

L3L4errDCHAN_TOO_MANY_BUFFERS

Indicates that the host attempted to configure more than
255 transmit or receive buffers, the maximum allowed.

44

L3L4errDCHAN_GIVE_TAKE_NONZERO

Indicates the host must set the Give/Take indexes to 0
during module initialization.

45

L3L4errDCHAN_ZERO_RXBUF_LEN

The receive buffers cannot have a length of 0 bytes.

48

L4L3mENABLE_PROTOCOL

March 2017 1037

Details The L4L3mENABLE_PROTOCOL message
IISDN_ENA_PROTO_DATA structure consists of three structures:

 IISDN_LEVEL1_CNFG
Level 1 configuration parameter: 56K rate adaption.

 IISDN_LEVEL2_CNFG
Level 2 configuration parameters, including Q.921 (LAP-D).

 IISDN_LEVEL3_CNFG
Level 3 configuration parameters, including Q.931 ISDN,
connected switch type and variant, and additional features.

This message supports all Dialogic® Brooktrout® modules, including
those equipped with an optional mezzanine.

The message maps the specified LAP-D ID to an HDLC channel or
engine. The HDLC controller circuitry presents up to 64 of these
engines (depending on module type and option), with each engine
identified by LAP-D ID. Each engine (or LAP-D ID) can be
configured to perform packet processing for one or more 64K
channels, up to every channel in a 24-channel T1 span. The bit mask
hdlc_channels specifies the 64K channel or group of 64K channels to
be processed by a specific LAP-D ID.

Note: LAPD-IDs 0 through 31 are always associated with the HDLC
circuitry on the Dialogic® Brooktrout® module; LAPD-IDs 32
through 63 are always associated with the HDLC circuitry on
the mezzanine.

Dialogic® Brooktrout® firmware supports running the Q.931 + LAP-
D protocol, which is ISDN Layer 3 call control (D-channel
messaging), using an HDLC engine.

Simple ISDN Processing

A simple ISDN scenario, a single L4L3mENABLE_PROTOCOL
message is used to begin ISDN D-channel message processing. In the
case of data calls over ISDN, calls are made in the normal way using
the L4L3mCALL_REQUEST message. Once the distant end has
answered and a talk path has been established, the protocol sends
L4L3mENABLE_PROTOCOL message for the bearer channel
established for the call (indicated by LAP-D ID) to enable the data
protocol over the path. To disconnect the call an
L4L3mDISABLE_PROTOCOL disables the data protocol on the
bearer channel. The call is disconnected in the normal way using the
L4L3mCLEAR_REQUEST.

L4L3mENABLE_PROTOCOL

March 2017 1038

Using Command Mode

When configured for any Layer 2 protocol, use command to perform
the following functions on a per-DLCI basis:

 Enable/create a DLCI (default value).

 Establish the data link (send a SABME message).

 Release the data link (send a DISC message).

 Change the number of HDLC flags inserted between frames.

When command value specifies either establishing or releasing the
data link, all Layer 1, 2, and 3 settings are ignored.

Features that can be configured using this message include:

 Non-Facility Associated Signaling (NFAS)
Enabled by setting the nfas bit to 1.

 B-channel negotiation
Set the b_chan_negot bit to 1 to enable (additionally,
proc_on_exclusv alters module processing on incoming calls
marked “exclusive”).

 Channel ID IE processing
You can change ISDN Channel ID IE processing by setting
chanid_slot_map, sprs_chanid_callproc, and no_chanid_callproc.

Note: NFAS operation is supported for T1 interfaces only.

Determining switch_type and variant settings

Table 23 indicates the combinations of switch-type and variant
settings supported in the current release of Dialogic® Brooktrout®
firmware.

 Yes - Dialogic® Brooktrout® modules using the protocol variant
have been tested while connected to the specified switch.

 Yes, not verified - ISDN is designed to support the combination
although testing has not yet been performed.

 No - the combination is not currently supported but may be in
some later release.

 Shaded - the switch does not support the protocol variant.

L4L3mENABLE_PROTOCOL

March 2017 1039

Table 23. Switch Type & Variant Matrix

Variant
Switch Type

AT&T
4ESS

AT&T
5ESS

NT
DMS-
100

NT
DMS-
250

MD-110
(T1)

MD-110
(E1)

Siemens
EWSD

NTT Unknown

AT&T
Custom

Yes Yes

NT Custom Yes Yes

NET-3 NET-5 Yes, not
verified

Yes Yes

1TR6 (PRI)

1TR6 (BRI)

No No No

VN3 No No No

General
ITU-T

No No No No Yes Yes Yes, not
verified

Yes

TS014
(PRI)

No Yes Yes

JATE

(INS-1500)

Yes No

National ISDN-1 Yes Yes Yes, not
verified

No

National ISDN-2 Yes, not
verified

Yes Yes Yes, not
verified

Yes, not
verified

No

L4L3mFACILITY_REQUEST

March 2017 1040

L4L3mFACILITY_REQUEST

Purpose Causes the Dialogic® Brooktrout® module to transmit a FACILITY
message to the network when the module uses Release Link Trunk
(RLT) signaling.

Message IISDN_FACILITY_DATA facility_data

Message ID 0x86

Input Fields IISDN_CALL_ID call_id;
unsigned char ie_count;
IISDN_IE_STRUCT ie;

Input call_id

Call ID Structure. See Call ID (IISDN_CALL_ID) on page 842.

ie_count

IE Count. Specifies the number of Information Elements (IEs)
included in the IE Structure in this message.

ie

IE Structure. See Information Element (IISDN_IE_STRUCT) on
page 853.

Output Return values.

After the module successfully processes this message, it sends a
FACILITY message to the network requesting removal of the third
party from the call.

L4L3mFACILITY_REQUEST

March 2017 1041

Error Returns If the module is unable to process the message, the protocol might
return the following error codes in an L3L4mERROR message:

See message details in L3L4mERROR on page 1094.

Details This message is specifically designed to support Release Link Trunk
(RLT) signaling on PRI spans connected to DMS-100 and DMS-250
switches. RLT signaling supports call deflection, a method for
forwarding an incoming call to another destination without
allocating any B-channels to the call.

Use L4L3mUNIVERSAL for general FACILITY messages.

Note: The Release Link Trunk feature works for DMS-250 switches
only, as described in NIS A211-4; no other switch types are
currently supported.

The L4L3mFACILITY_REQUEST message contains two key
structures, call_id and the IISDN_IE_STRUCT common structure.
When the host determines that an incoming call should be deflected,
it must initiate a second call by issuing an
L4L3mCALL_REQUEST message with rlt_service set to 1. This
causes the module to send a SETUP message to the network over the
D-channel. The network acknowledges this message with either an
ALERTING or PROGRESS message containing a Facility IE with a
RETURN RESULT component, including the Call ID for the second
call (link). An L3L4mALERTING message provides this IE to the
host, specifically in the IISDN_CALL_ID at the end of the
IISDN_AL_CON_DATA structure.

L3L4errLAPDID_OUT_OF_RANGE

An invalid lapdid value has been used. The only lapdid
values allowed are 0 (span 1), 2 (span 2), 4 (span 3) or 6 (span 4).

01

L3L4errCALL_REF_ERROR

Invalid call reference value specified.

06

L3L4errINVALID_COMMAND_ARGS

Syntax error; invalid message arguments.

15

L4L3mFACILITY_REQUEST

March 2017 1042

The host must read call_id from this structure and use the value to
populate the IISDN_CALL_ID structure in an
L4L3mFACILITY_REQUEST message sent over the first link
(using call_ref and L4_ref of the initial call). The
IISDN_IE_STRUCT structure must contain a Facility IE with an
INVOKE component indicating that the third party should be
removed.

Once the network establishes a direct connection between the
originator of the first call and the final destination of the second call,
it sends a DISCONNECT message over both links to the module.
The host receives an L3L4mDISCONNECT message and an
L3L4mUNIVERSAL message containing the message ID and IE for
a FACILITY message which indicates that the RLT operation is
complete.

L4L3mFEATURE_REQUEST

March 2017 1043

L4L3mFEATURE_REQUEST

Purpose Supports ANI on Demand and AT&T Variabill ISDN service
features.

Message IISDN_FEATURE_REQUEST feature_req

Message ID 0xB3

Input Fields unsigned char feature_type;
struct feature;

IISDN_BILLING_FEATURE feature;
unsigned char billing_change_type;
unsigned char hundreds_of_dollars;
unsigned char tens_of_dollars;
unsigned char dollars;
unsigned char tenths_of_dollars;
unsigned char hundredths_of_dollars;

Input feature_type

Feature Type. Specifies the feature requested by this message.

IISDNftANI_ON_DEMAND

ANI on Demand being requested for this call.

0x01

IISDNftBILLING_CHANGE

AT&T Variabill billing change being requested for this
call.

0x02

L4L3mFEATURE_REQUEST

March 2017 1044

feature

Feature Data. Contains the information required for the network
to process the requested feature. For feature_type:

 IISDNftANI_ON_DEMAND, set to 0.

 IISDNftBILLING_CHANGE, use the
IISDN_BILLING_FEATURE structure (below).

IISDN_BILLING_FEATURE feature

Billing Structure. Contains billing change and the amount of the
change.

feature.billing_change_type

Billing Change Type. Specifies the type of change requested.
Possible values include:

feature.hundreds_of_dollars

ASCII character for hundreds of dollars. Possible values are 0 to
9 inclusive; specify 0x30 (zero) for billing_change_type of
IISDNvbfFREE_CALL.

feature.tens_of_dollars

ASCII character for tens of dollars. Possible values are 0 to 9
inclusive; specify 0x30 (zero) for billing_change_type of
IISDNvbfFREE_CALL.

IISDNvbfNEW_RATE

Apply a new rate to this call; rate indicated in the fields
that follow.

0x10

IISDNvbfFLAT_RATE

Apply the flat rate charge to this call; rate indicated in
the fields that follow.

0x11

IISDNvbfPREMIUM_CHARGE

Apply the premium charge rate to this call; rate
indicated in the fields that follow.

0x12

IISDNvbfPREMIUM_CREDIT

Apply the premium credit rate to this call; rate
indicated in the fields that follow.

0x13

IISDNvbfFREE_CALL

Apply no billing to this call (free call); populate the
fields that follow with ASCII value for zero (0x30).

0x18

L4L3mFEATURE_REQUEST

March 2017 1045

feature.dollars

ASCII character for dollars. Possible values are 0 to 9 inclusive;
specify 0x30 (zero) for billing_change_type of
IISDNvbfFREE_CALL.

feature.tenths_of_dollars

ASCII character for tenths of dollars. Possible values are 0 to 9
inclusive; specify 0x30 (zero) for billing_change_type of
IISDNvbfFREE_CALL.

feature.hundredths_of_dollars

ASCII character for hundredths of dollars. Possible values are 0
to 9 inclusive; specify 0x30 (zero) for billing_change_type of
IISDNvbfFREE_CALL.

Output Return values.

After the module successfully processes this message, it generates a
FACILITY message to the network, requesting the feature change.

 ANI on Demand feature request - an L3L4mANI message is
returned to the host with the status of the request.

 Variabill feature request - the L3L4mBILLING_STATUS
message is used to inform the host of the billing change status.

Error Returns If the module is unable to process the message, the protocol might
return the following error codes in an L3L4mERROR message:

L3L4errLAPDID_OUT_OF_RANGE

An invalid lapdid value has been used. The only lapdid
values allowed are 0 (span 1), 2 (span 2), 4 (span 3) or 6 (span 4).

01

L3L4errCALL_REF_ERROR

Invalid call reference value specified.

06

L3L4errINVALID_COMMAND_ARGS

Syntax error; invalid message arguments.

15

L4L3mFEATURE_REQUEST

March 2017 1046

See message details in L3L4mERROR on page 1094.

Details This message supports the following ISDN service features:

 ANI on Demand – this feature allows the host application to
request the ANI (originating number) for an incoming call. The
L3L4mANI message returns ANI to the host. The Dialogic®
Brooktrout® firmware implementation supports ANI on
Demand as defined by AT&T.

 AT&T Variabill – this feature allows the receiver of inbound
calls to change the billing rate for a call after it has been
answered. This feature must be provisioned by the service
provider, and its availability for a call is indicated in the
incoming SETUP message. This is in turn indicated by the
module to the host in L3L4mSETUP_IND with the value of
feature_availability; a value of IISDNfaFLEXIBLE_BILLING
means the Variabill feature is available for this call. Billing is
changed by the host using L4L3mFEATURE_REQUEST. The
ASCII characters specify the amount of the change. The status of
the billing change request is sent to the application in the
L3L4mBILLING_STATUS message.

Note: Both features must be ordered and provisioned by the service
provider; not all features are available from all service
providers.

The IISDN_BILLING_FEATURE structure specifies the type of
billing change and the amount of the change.

The ASCII characters zero through nine, inclusive, specify billing
rates or hundreds, tens, ones, tenths, and hundredths of dollars. You
must populate all dollar fields, even if the value is zero. The meaning
of billing_change_type is determined by the service provider; contact
your carrier for feature availability and specific information.

L3L4errINVALID_MSG_FOR_STATE

Indicates either the Dialogic® Brooktrout® firmware
cannot generate a CALL PROCEEDING message for this call
because of its current state (CALL PROCEEDING not a valid
message for the call state) or the call is in the process of being
cleared by the network. In the latter case, this error message is
immediately preceded by an L3L4mCLEAR_REQUEST or
L3L4mCLEAR_WITH_RESTART_REQUEST message.

16

L3L4errSERVICE_NOT_OFFERED

Flexible billing is not offered for this call.

29

L4L3mINFO_REQUEST

March 2017 1047

L4L3mINFO_REQUEST

Purpose Sends an INFORMATION message in Q.931 applications and/or
keypad digits in voice applications.

Message IISDN_INFO_DATA info_data

Message ID 0x8B

Input Fields unsigned char sending_complete;
unsigned char ie_count;
IISDN_CALLED_PARTY called_party;
IISDN_KEYPAD keypad;
unsigned short num_digits;
unsigned char digits[IISDN_MAX_DIGITS+3];
IISDN_CAUSE cause;
IISDN_IE_STRUCT ie;

Input sending_complete

Sending Complete. Specifies inclusion of Sending Complete,
indicating that all keypad digits have been sent.
0x00 = not complete
0x01 = Sending Complete

ie_count

IE Count. Specifies the number of Information Elements (IEs)
included in the IE Structure in this message.

called_party

Called Party Structure. See Called Party
(IISDN_CALLED_PARTY) on page 843.

keypad

Keypad Structure.

num_digits

Number of Digits. Specifies the number of digits to pass.

L4L3mINFO_REQUEST

March 2017 1048

digits

Digits. Digit string in ASCII. Number of digits in this string must
equal the number specified in num_digits. Eight-bit values in this
field must be between 0x30 and 0x39 (ASCII 0 through 9).

cause

Cause Data Structure. See Cause Data (IISDN_CAUSE) on
page 848.

ie

IE Structure. See Information Element (IISDN_IE_STRUCT) on
page 853.

Output Return values.

After the module successfully processes this message, it generates an
INFORMATION message to the network, containing the keypad
digits to pass to the network. If the message included a Sending
Complete indication, the network should respond with a CALL
PROCEEDING.

Error Returns If the module is unable to process the message, the protocol might
return the following error codes in an L3L4mERROR message:

See message details in L3L4mERROR on page 1094.

Details This message usually follows an L4L3mCALL_REQUEST that did
not contain sufficient called party number information. Typically,
this message should be issued in response to a SETUP
ACKNOWLEDGE message received from the network (reported in
an L3L4mSETUP_ACK). The L4L3mINFO_REQUEST should
contain either a Called Party structure (called party IE) or Keypad
structure (keypad facility IE) containing either individual digits or a
string of digits.

L3L4errLAPDID_OUT_OF_RANGE

An invalid lapdid value has been used. The only lapdid
values allowed are 0 (span 1), 2 (span 2), 4 (span 3) or 6 (span 4).

01

L3L4errCALL_REF_ERROR

Invalid call reference value specified.

06

L3L4errINVALID_COMMAND_ARGS

Syntax error; invalid message arguments.

15

L4L3mJATE_REDIAL

March 2017 1049

L4L3mJATE_REDIAL

Purpose Use L4L3mJATE_REDIAL for the following purposes:

 Remove the Redial Restriction on a B-channel when active
restriction method is
IISDN_JATE_REDIAL_RESTRICTION_15X.

 Specify the maximum number of dialed numbers to be tracked
per B-channel form redial restrictions.

 Specify the Japan emergency numbers that are not applied the
Jate Redial Restriction.

Message IISDN_JATE_REDIAL jate_redial

Message ID 0xEC

Input Fields IISDNu8bit mode;
IISDNu8bit lapdid;
IISDNu8bit bchannel;
IISDNu8bit max_numbers_tracked;
IISDN_EMERG_DIGITS emergNums[IISDN_MAX_EMERG_NUMS];

Input mode

Values include:

lapdid

Used only when mode is IISDN_JATE_CLEAR_RESTRICTION.
For ISDN protocols: Specifies the D-channel where redial
restrictions apply.
For CAS protocols: Specifies the trunk/DS1 number where redial
restrictions apply.

IISDN_JATE_CLEAR_RESTRICTION 1

IISDN_JATE_LOAD_EMERG_NUMS 2

IISDN_JATE_NUMBERS_TRACKED 3

L4L3mJATE_REDIAL

March 2017 1050

bchannel

Specifies the B-channel number that has active redial restriction.
Used only when mode is IISDN_JATE_CLEAR_RESTRICTION.
bchannel values include:
0 = CAS protocols
1 = ISDN protocols

max_numbers_tracked

Specifies maximum number of dialed numbers per B-channel
tracked for redial restrictions. Used with mode set to
IISDN_JATE_NUMBERS_TRACKED.

emergNums

Array that holds up to 10 emergency numbers for Japan that are
not applied redial restrictions.

Output None

Error Returns If the module is unable to process the message, the protocol might
return the following error codes in an L3L4mERROR message:

L3L4errINVALID_COMMAND_ARGS

When mode is IISDN_JATE_CLEAR_RESTRICTION and
active redial restriction method is not
IISDN_JATE_REDIAL_15X, or invalid bchannel value is
specified. This error is also returned when mode value is
invalid.

L3L4errINVALID_MEM_SIZE

Invalid value for max_numbers_tracked: less than 30 or
greater than 200.

L3L4errINVALID_MSG_FOR_STATE

When mode is IISDN_JATE_NUMBERS_TRACKED and
max_numbers_tracked has already been specified by a previous
L4L3mJATE_REDIAL. This error is also returned when mode
value is invalid.

L4L3mPROGRESS_REQUEST

March 2017 1051

L4L3mPROGRESS_REQUEST

Purpose Sends a PROGRESS message to the network, although not required
by most ISDN applications.

Message IISDN_PROGRESS progress_data

Message ID 0x82

Input Fields unsigned char coding_standard;
unsigned char location;
unsigned char progress_dscr;
IISDN_CAUSE cause;
IISDN_USER_INFO user_info;
unsigned char ie_count;
IISDN_CALL_ID call_id;
IISDN_IE_STRUCT ie;

Input coding_standard

Coding Standard. Indicates the coding standard used to
construct this message. Use the default value of IISDNcodCCITT
(0x00), in most cases.

IISDNcodCCITT

ITU-T coding standard used for this message. Use this
value unless the progress indication cannot be represented
using standard ITU-T coding.

0x00

IISDNcodINTERNATIONAL_STD

This value is reserved for other International coding
standards.

0x01

IISDNcodNATIONAL_STD

National standard coding values not supported by
ITU-T coding values used for this message. Recipient of this
message should be capable of interpreting this meaning.

0x02

IISDNcodSTD_SPF_2_LOC

Coding standard used is specific to the location
receiving the message.

0x03

L4L3mPROGRESS_REQUEST

March 2017 1052

location

Location. Indicates the location of the user for which this message
is generated. Possible values include:

IISDNlocUSER

User.

0x00

IISDNlocPVT_LOCAL

Private network serving the local user.

0x01

IISDNlocPUB_LOCAL

Public network serving the local user.

0x02

IISDNlocTRANSIT_NET

Transit network.

0x03

IISDNlocPUB_REMOTE

Public network serving the remote user.

0x04

IISDNlocPVT_REMOTE

Private network serving the remote user.

0x05

IISDNlocINTERNATIONAL

International network.

0x07

IISDNlocBEY_INTERWORK

Network beyond the interworking point.

0x10

L4L3mPROGRESS_REQUEST

March 2017 1053

progress_dscr

Progress description.

cause

Cause Data Structure. See Cause Data (IISDN_CAUSE) on
page 848.

user_info

User Info Structure. See User Info (IISDN_USER_INFO) on
page 863.

ie_count

IE Count. Specifies the number of Information Elements (IEs)
included in the IE Structure in this message.

call_id

Call ID Structure. See Call ID (IISDN_CALL_ID) on page 842.

ie

IE Structure. See Information Element (IISDN_IE_STRUCT) on
page 853.

IISDNprogUNKNOWN

Information not available; default value.

0x00

IISDNprogNOT_ISDN_INBAND

Call is not end-to-end ISDN; additional information for
this call may be available in-band. This selection indicates
to the destination processor the presence of digits or other
in-band signaling to monitor.

0x01

IISDNprogDEST_NOT ISDN

Call destination (called party) is not ISDN.

0x02

IISDNprogORIG_NOT_ISDN

Call origination (calling party) is not ISDN.

0x03

IISDNprogRETURNED_ISDN

Call has been returned to the ISDN.

0x04

IISDNprogINBAND_INFO_AVL

Additional in-band information for this call is available
in-band. This selection indicates to the destination
processor the presence of digits or other in-band signaling to
monitor.

0x08

L4L3mPROGRESS_REQUEST

March 2017 1054

Output Return values.

After the module successfully processes this message, it sends a
PROGRESS message to the network.

Error Returns If the module is unable to process the message, the protocol might
return the following error codes in an L3L4mERROR message:

See message details in L3L4mERROR on page 1094.

L3L4errLAPDID_OUT_OF_RANGE

An invalid lapdid value has been used. The only lapdid
values allowed are 0 (span 1), 2 (span 2), 4 (span 3) or 6 (span 4).

01

L3L4errLAPDID_NOT_ESTABLISHED

ISDN D-channel identified by the LAP-D ID has not been
established.

02

L3L4errCALL_REF_ERROR

Invalid call reference value specified.

06

L3L4errINVALID_B_CHANNEL

The LAP-D ID message signifies that the B-channel in the
CALL REQ is bad.

07

L3L4errINVALID_COMMAND_ARGS

Syntax error; invalid message arguments.

15

L3L4errINVALID_MSG_FOR_STATE

Call state is invalid for processing this message.

16

L3L4errDCHAN_TEMP_UNAVAIL

D-channel switchover in progress; applies to NFAS
configurations only.

30

L4L3mPROGRESS_REQUEST

March 2017 1055

Details PROGRESS is sent after a SETUP message to provide additional
information on the call, including:

 Coding standard used to construct the message.

 Location of the user described by the message.

 Network information, relative to the ISDN.

 User-user information, if required.

This message usually indicates that one of the users involved in the
call is not an ISDN user and that additional information might be
available in the form of in-band signaling.

If the system where the interface is connected uses the AT&T 4ESS
Fast Connect Feature, no PROGRESS or ALERTING messages are
required for call connection.

This message supports inclusion of custom Information Elements
(IEs) using the IE structure. See Information Element
(IISDN_IE_STRUCT) on page 853 for more information.

L4L3mREQ_BOARD_ID

March 2017 1056

L4L3mREQ_BOARD_ID

Purpose Requests the board identification from the module.

Message IISDN_BOARD_ID board_id

Message ID 0xC1

L4L3mREQ_LINE_STATUS

March 2017 1057

L4L3mREQ_LINE_STATUS

Purpose Requests the current line status (Layer 1) for the target lapdid.
Currently this is implemented for the BRI module only.

Message None.

Message ID 0xA6

Input The L4L3 common header supplies all data for the message.

Output After the module successfully processes this message, it issues an
L3L4mLINE_STATUS message.

L4L3mREQ_L2_STATS

March 2017 1058

L4L3mREQ_L2_STATS

Purpose Requests the Level 2 statistics for the channel specified by the LID
in the L4L3 common header.

Message None.

Message ID 0xAB

Input The L4L3common header supplies all data for the message.

Output Return values.

After the module successfully processes this message, it issues an
L3L4mL2_STATS message.

Error Returns If the module is unable to process the message, the following error
codes might return in an L3L4mERROR message:

The L3L4mERROR message is detailed in L3L4mERROR on
page 1094.

L3L4errINVALID_COMMAND_ARGS

Syntax error; invalid message arguments.

15

L4L3mREQ_L2_STATS

March 2017 1059

Details The system maintains a set of peg counts for each LID. If more than
one virtual circuit is run on a channel, the counts represent an
aggregate for all virtual circuits. Following the response to this
message each peg count is set to zero.

Peg counts are maintained for the following events:

 IFRAME, RR, RNR, REJ, SABM, SABME, and DISC commands
sent or received

 RR, RNR, REJ, DM, UA, and FRMR responses sent or received

 CRC errors received

 Received Queue overruns

 Retransmitted I frames

 Polls where there is no response from the module

L4L3mREQ_PROTOCOL_STATUS

March 2017 1060

L4L3mREQ_PROTOCOL_STATUS

Purpose Requests the current Layer 2 status for the target D-channel.

Message None.

Message ID 0xA5

Input The L4L3common header supplies all data for the message.

Output Return values.

After the module successfully processes this message, it issues an
L3L4mPROTOCOL_STATUS message.

Error Returns If the module is unable to process the message, the protocol might
return the following error codes in an L3L4mERROR message:

See message details in L3L4mERROR in page 1094.

L3L4errLAPDID_OUT_OF_RANGE

An invalid lapdid value has been used. The only lapdid
values allowed are 0 (span 1), 2 (span 2), 4 (span 3) or 6 (span 4).

01

L4L3mRESTART

March 2017 1061

L4L3mRESTART

Purpose Requests that the connected equipment put a specific channel in an
idle state.

Message IISDN_BCHANNEL_ID channel

Message ID 0xA4

Input Fields unsigned long bchannel_mask;
unsigned char bchannel;
unsigned char iface;
unsigned char busy_bit_mask;
unsigned char use_bit_mask;
unsigned long n_bchannel;
IISDN_ROBBED_BIT_DATA robbed_bit_data;

Input bchannel_mask

B-channel Bit Mask. Valid only for multi-rate ISDN calls.
Specifies the individual PRI channels used for a multi-rate call.
Channels are numbered 1 to 24 (ISDN service in US only) with
channel 1 as the least significant bit. First multi-rate channel
must also be specified in bchannel.
0 = not used
1 = multi-rate call

L4L3mRESTART

March 2017 1062

bchannel

B-channel. Identifies the channel unless use_bit_mask is nonzero
and NFAS is used. Channels are numbered as listed below:

ISDN 23B+DChannels numbered 1 – 23.

ISDN NFASChannels numbered 1 – 24. The iface value indicates
the span where the channel resides.

ISDN 384KFirst of six channels used for 384K (H0) call. Possible
values are 1, 7, 13 for standard ISDN, or 1,
7, 13, and 19 for ISDN NFAS service.

ISDN 1536KMust be channel 1 for 1536K (H11) call.

multi-rate ISDNFirst channel of multi-rate call (set of channels
specified in bchannel_mask).

iface

Non-Facilities Associated Signaling (NFAS) Interface. Indicates
the span where the channel specified in bchannel field resides.
The host application must maintain the mapping of span (line) to
interface. In this message, iface is used only when, in the
IISDN_LEVEL3_CNFG structure of the
L4L3mENABLE_PROTOCOL message, the protocol has done
both of the following:

 Enabled B-channel negotiation using b_chan_negot

 Enabled NFAS using nfas
If either of these features are not enabled, iface is ignored and set
to 0x00. If B-channel negotiation is enabled and NFAS is not in
use, set iface to 0xFF.

busy_bit_mask

A value of 1 signifies for the message to go offhook when disabling
the B-channel (SW56 only).

use_bit_mask

Use Bit Mask. Specifies n_bchannel used to indicate the
B-channels for the generated message; allowed for NFAS
configurations only.
0x00 = use bchannel
0x01 = use n_bchannel

L4L3mRESTART

March 2017 1063

n_bchannel

NFAS B-channel. This field is ignored if cnfg.q931.nfas is not set
in a previous L4L3mENABLE_PROTOCOL. Bit mask
identifies which B-channels to activate on this interface. T1
B-channels are numbered 1 - 24 (24 is usually reserved for the
D-channel). Typical setting is 0x00FFFFFE.
1 = enable a B-channel
0 = disable a B-channel

robbed_bit_data

Unused in this message.

Output Return values.

ISDN Q.931
Protocol

After the module successfully processes this message, it issues a
RESTART message to the network and idles the B-channel. If a call
was in progress on this channel, the module generates an
L3L4mCLEAR_WITH_RESTART_REQUEST message to the
host. This is followed by an L3L4mB_CHANNEL_STATUS
message with b_channel_status set to IISDNbcsRESTARTING.

If no call was in progress, the module generates an
L3L4mB_CHANNEL_STATUS message with b_channel_status set
to IISDNbcsRESTARTING. When the restart sequence completes,
the module generates an L3L4mB_CHANNEL_STATUS
indicating the channel is in service.

On completion of the restart sequence when variant is one of the
following, the module sets the service state of the specified
B-channel to IS (In Service). An L3L4mB_CHANNEL_STATUS
message is generated indicating the B-channel is in service:

 IISDNvarNATL_ISDN_1

 IISDNvarNATL_ISDN_2

 ISSDNvarNET5

L4L3mRESTART

March 2017 1064

Error Returns If the module is unable to process the message, the protocol might
return the following error codes in an L3L4mERROR message:

See message details in L3L4mERROR on page 1094.

Details Idling a channel tears down any call associated with that channel.
The channel to be idled is specified in the structure
IISDN_BCHANNEL_ID.

If in Q.931 ISDN protocol, variant equals one of the following, then
L4L3RESTART also brings the specified B-channel to
In Service (IS):

 IISDNvarNATL_ISDN_1

 IISDNvarNATL_ISDN_2

 ISSDNvarNET5

L3L4errLAPDID_NOT_ESTABLISHED

The ISDN D-channel identified by the LAP-D ID is not
established.

02

L3L4errINVALID_B_CHANNEL

The LAP-D ID message signifies that the B-channel in the
CALL REQ is bad.

07

L3L4errINVALID_COMMAND_ARGS

Syntax error; invalid message arguments.

15

L4L3mSET_HARDWARE

March 2017 1065

L4L3mSET_HARDWARE

Purpose Sets the BRI module-level parameters. Only line_data[0] is used.

Message IISDN_HARDWARE_DATA hardware_data

Message ID 0xA7

Input Fields unsigned char bri_l1mode;
unsigned char briL1_cmd;
unsigned char swap_bri_chann;

Input bri_l1mode

BRI Layer 1 Mode. BRI modules only. Specifies the Layer 1
signaling used by the line based on the BRI modules location
(customer premise or network). Possible values include:

briL1_cmd

BRI Layer1 Command. BRI modules only. Controls the BRI
module’s Layer 1 interaction with the network. Possible values
include:

swap_bri_chann

Swap the B1 and B2 channel on the S/T interface. Set to 1.

IISDN_l1mode_Terminal

Place the BRI into TE mode.
IISDN_l1mode_Network

Place the BRI into NT mode. Currently for basic call
control test purposes only.

IISDNcmdL1_NULL

Leave Layer 1 parameters as they are. Use when setting
swap_bri_chann.
IISDNcmdL1_ACTIVATE

Used to set the BRI mode and start Layer 1.

L4L3mSETUP_ACK_REQUEST

March 2017 1066

L4L3mSETUP_ACK_REQUEST

Purpose Sends a SETUP ACKNOWLEDGE Q.931 message to the network.

Message IISDN_SETUP_ACK setup_ack_data

Message ID 0x8A

Input Fields unsigned long bchannel_mask;
IISDN_PROGRESS_IND progress_ind;
unsigned char bchannel;
unsigned char iface;
unsigned char ie_count;
IISDN_IE_STRUCT ie;

Input bchannel_mask

B-channel Bit Mask. Valid only for multi-rate ISDN calls.
Specifies the individual PRI channels used for a multi-rate call.
Channels are numbered 1 to 24 (ISDN service in US only) with
channel 1 as the least significant bit. First multi-rate channel
must also be specified in bchannel.
0 = not used
1 = multi-rate call

progress_ind

Progress Indication Structure. See Progress Indication
(IISDN_PROGRESS) on page 855.

L4L3mSETUP_ACK_REQUEST

March 2017 1067

bchannel

B-channel. Identifies the channel to be used for the call. In this
message, bchannel is used only when B-channel negotiation is
enabled by setting b_chan_negot in the IISDN_LEVEL3_CNFG
structure of the L4L3mENABLE_PROTOCOL message.
If this feature is not enabled or an
L4L3mCALL_PROCEEDING_REQUEST message has
already been issued for this call, bchannel is ignored and set to
0x00. Channels are numbered as listed below:

ISDN 23B+DChannels numbered 1 – 23.

ISDN NFASChannels numbered 1 – 24. The iface value indicates
the span where the channel resides.

ISDN 384KFirst of six channels used for 384K (H0) call. Possible
values are 1, 7, 13 for standard ISDN, or 1,
7, 13, and 19 for ISDN NFAS service.

ISDN 1536KMust be channel 1 for 1536K (H11) call.

multi-rate ISDNFirst channel of multi-rate call (set of channels
specified in bchannel_mask).

iface

Non-Facilities Associated Signaling (NFAS) Interface. Indicates
the span where the channel specified in bchannel field resides.
The host application must maintain the mapping of span (line) to
interface. In this message, iface is used only when, in the
IISDN_LEVEL3_CNFG structure of the
L4L3mENABLE_PROTOCOL message, the protocol has done
both of the following:

 Enabled B-channel negotiation using b_chan_negot

 Enabled NFAS using nfas
If either of these features are not enabled, iface is ignored and set
to 0x00. If B-channel negotiation is enabled and NFAS is not in
use, set iface to 0xFF.

ie_count

IE Count. Specifies the number of Information Elements (IEs)
included in the IE Structure in this message.

L4L3mSETUP_ACK_REQUEST

March 2017 1068

ie

IE Structure. See Information Element (IISDN_IE_STRUCT) on
page 853.

Output Return values.

After the module successfully processes this message, it constructs
the SETUP ACKNOWLEDGE message with the specified IEs and
sends it to the network.

Error Returns If the module is unable to process the message, the protocol might
return the following error codes in an L3L4mERROR message:

See message details in L3L4mERROR on page 1094.

Details This message is typically issued in response to a SETUP message
that did not contain sufficient called party information. The SETUP
ACKNOWLEDGE indicates to the network that the Dialogic®
Brooktrout® module is ready to receive an INFORMATION message
that contains a Called Party IE or Keypad facility IE containing
either individual digits or a string of digits (this information is
reported to the host in an L3L4mINFO_REQUEST message).

L3L4errINVALID_COMMAND_ARGS

Syntax error; invalid message arguments.

15

L4L3mUNIVERSAL

March 2017 1069

L4L3mUNIVERSAL

Purpose Constructs proprietary or other ISDN Q.931/932 messages not
supported by Dialogic® Brooktrout® firmware.

Message IISDN_UNIVERSAL universal

Message ID 0x88

Input Fields unsigned char msg_id;
unsigned char ie_count;
unsigned char null_call_ref;
unsigned char q931_escape;
unsigned char aoc[16];
IISDN_IE_STRUCT ie;

Input msg_id

Q.931/932 Message ID. Specifies the type of message being sent.
The receiving end should be able to interpret this value.

ie_count

IE Count. Specifies the number of Information Elements (IEs)
included in the IE Structure in this message.

null_call_ref

Allows the application to indicate that the call reference field in a
generated message must have a NULL value.

q931_escape

To use the Q931 escape message, set msg_id to 0 and q931_escape
to the Q931 escape function code.

aoc

Parsed advice of charge information.

ie

IE Structure. See Information Element (IISDN_IE_STRUCT) on
page 853.

L4L3mUNIVERSAL

March 2017 1070

Output Return values.

Error Returns If the module is unable to process the message, the protocol might
return the following error codes in an L3L4mERROR message:

See message details in L3L4mERROR on page 1094.

Details This message allows developers to use proprietary or site-specific
messages in an application. In using this message, the following
rules apply:

 This message has no effect on call state; do not use for actions
that require a change in the call’s state machine. Additionally,
the application is responsible for ensuring the actions required
by this message are consistent with the call’s current state.

 Dialogic® Brooktrout® firmware does not check the message ID
or message content; this is the responsibility of the application
designer. Information Element ordering is also the responsibility
of the application designer.

 Messages must observe the longword boundary rules that apply
to all BSMI messages; pads have been provided in the message
for this purpose.

This message is useful for applications requiring non-call associated
signaling. For example, the host can issue L4L3mUNIVERSAL
with call_ref set to 0 (no actual call), a unique L4_ref (used by the
host to track the message transaction), the msg_id for a REGISTER
message, and any required IEs to provide information to the
network. While call records and call references are designated to this
transaction, no B-channels are allocated. The network acknowledges
the information with a RELEASE COMPLETE, which is reported to
the host in L3L4mUNIVERSAL. The host can use L4_ref of the
L3L4mUNIVERSAL to identify the transaction, and delete the call
records and references.

The q931_escape, in the IISDN_UNIVERSAL structure, is set to 1,
the Message ID is prefixed with a 0x00 (a two-byte message).

L3L4errNO_CRSTRUCT_AVAILABLE
No call record structures are available for this call;

maximum number of calls supported by the module already
exist.

05

L3L4errCALL_REF_ERROR
Invalid call_ref specified in the common header.

06

L3L4errINVALID_MSG_FOR_STATE
Message issued for a call in an idle state.

16

L4L3mUNIVERSAL

March 2017 1071

For example, a HOLD message is 0x00 0x9B (0x00 is the escape).
There are supplementary messages for the ATT #5 custom switch.
Code the Universal message filling msg_id with the message type.
Dialogic® Brooktrout® firmware then fills out the escape if value is
set to 1. A sample HOLD message follows:

L4L3cntlp->data.universal.msg_id = 0x9b; /*HOLD*/
L4L3cntlp->data.universal.q931_escape = 1;
L4L3cntlp->data.universal.ie_count=0;

In the L3 to L4 direction, the user knows if the escape message is in
the value from the L4L3cntlp-data.universal.q931_escape
structure. This value equals 1 if escape is contained in this message.
The rest of the L3L4mUNIVERSAL message remains the same.

Call Hold (ITU-T Q.932, ETSI EN 300 196-1 and ETSI EN 300
141-1) is implemented on the module firmware and accessed through
the L4L3mUNIVERSAL and L3L4mUNIVERSAL messages.
Modify the HOLD call state by setting the universal.msg_id as
follows:

Add any IE by using the IISDN_IE_STRUCT. If an error occurs
when trying to send a HOLD message. The module returns an
L3L4mUNIVERSAL message with a univeral.msg_id of 0x7D
(STATUS message) with a CAUSE and CALL STATE IE added. The
CAUSE IE is parsed to determine the reason for the rejected
message.

The HOLD state machine accepts HOLD requests and passes the
request to the host (as a L3L4mUNIVERSAL message). The host
application can either:

 Accept this message with L4L3mUNIVERSAL
(universal.msg_id = 0x28)

 Reject this message with L4L3mUNIVERSAL
(universal.msg_id = 0x30) and a CAUSE ID added.

0x24 Request a call be placed on HOLD

0x28 Acknowledge a HOLD request

0x30 Reject a HOLD request (requires addition of a CAUSE IE)

0x31 Request a Call be received

0x33 Acknowledge a RETRIEVE request

0x37 Reject a RETRIEVE request (requires addition of a CAUSE IE)

L4L3mUNIVERSAL

March 2017 1072

The auxiliary HOLD state interacts with the normal call state to
determine if a call is disconnected and if so, returns the HOLD state
to idle.

L4L3mUSER_INFO

March 2017 1073

L4L3mUSER_INFO

Purpose Passes up to 130 bytes of information over the network.

Message IISDN_USER_INFO user_data

Message ID 0x87

Input Fields IISDN_USER_INFO user_data;

Input user_data

User Info Structure. See User Info (IISDN_USER_INFO) on
page 863.

Output None.

Details The message consists of the User Info structure documented in User
Info (IISDN_USER_INFO) on page 863.

As a proprietary feature, the user can specify a call reference value
of 0x00 rather than the call reference of a valid call. The Dialogic®
Brooktrout® module then passes this message to the network using
the global call reference.

This message is ignored in call clearing states.

March 2017 1074

27 - Module to Host (L3L4m) Messages

This chapter explains each of the BSMI L3L4 messages a module
sends to the host to provide information about the call.

L3L4 messages are described in alphabetical order beginning on
page 1075.

L3L4 messages provide the host processor with information on the
status of the Dialogic® Brooktrout® module, including module
configuration, call status, and events on the network. This interface
is supported for the full range of Dialogic® Brooktrout® modules.
The C language structures that make up this interface are contained
in the iisdn.h include file included in the Dialogic® Brooktrout®
firmware release.

Note: In the case of discrepancies between the descriptions in the
iisdn.h file and this document, follow the structures in iisdn.h.
Changes in the software since the release of this document are
contained in the Release Notes that accompany the product.

L3L4mALERTING

March 2017 1075

L3L4mALERTING

Purpose Indicates the network received an ALERTING message (the far end
is ringing).

Message IISDN_AL_CON_DATA al_con_data

Message ID 0x03

Input Fields IISDN_AL_CON_DATA al_con_data;

Input al_con_data

Alerting and Connecting Data Message. See Alerting and
Connecting Data Message (IISDN_AL_CON_DATA) on page 839.

Output None.

Details This message is received only if the call is end-to-end ISDN. The
structure of this message is identical to that of the following
messages:

 L4L3mALERTING_REQUEST

 L4L3mCONNECT_REQUEST

 L3L4mCONNECT

If the system connected to the interface uses the AT&T 4ESS Fast
Connect Feature, no PROGRESS or ALERTING messages are
required for call connection.

For the first message received by the host in response to an
L4L3mCALL_REQUEST message, the application must store the
call reference value assigned by the Dialogic® Brooktrout® module.
The host requires this value and the L4 reference value for further
call control actions by the host.

The IE structure included in this message is unused and therefore,
set to zero.

L3L4mANI

March 2017 1076

L3L4mANI

Purpose Provides the ANI (originating number) in response to an
L4L3mFEATURE_REQUEST message, supporting the ANI on
Demand feature.

Message IISDN_ANI_DATA ani_data

Message ID 0x31

Input Fields unsigned char status;
unsigned char filler;
IISDN_CALLING_INFO calling_party;

Input status

ANI Status. Indicates the status of the ANI request. Possible
values include:

filler

Filler byte reserved for future use; set to 0x00.

IISDNaniREJECTED

ANI request was rejected because ANI was not available,
the feature requested is not provisioned (subscribed), or the
feature has not been implemented. All other fields in this
message are zeroed out.

0x01

IISDNaniACCEPTED

ANI request was accepted. ANI is contained in the
Calling Party structure at the end of the message.

0x02

IISDNaniERROR

ANI request contained an error. Application checks
original L4L3mFEATURE_REQUEST message and
resends. All other fields in this message are zeroed out.

0x03

L3L4mANI

March 2017 1077

calling_party

Calling Party Structure. See Calling Party
(IISDN_CALLING_PARTY) on page 845.

Output None.

Details This ANI on Demand feature allows the host application to request
the ANI (originating number) for an incoming call. ANI is supplied
using Calling Party (IISDN_CALLING_PARTY) on page 845. This
implementation supports ANI on Demand as defined by AT&T.

L3L4mB_CHANNEL_STATUS

March 2017 1078

L3L4mB_CHANNEL_STATUS

Purpose Informs the host of the status of the B-channel, issued in response to
a change of status in the B-channel.

Message None.

Message ID 0x22

Input Fields unsigned char b_channel_status;

Input b_channel_status

B-channel Status. Indicates the status at the time of the message.
Possible values include:

Output No response is expected for out of service or in service messages.
Dialogic® Brooktrout® firmware supports a far-end maintenance
mode only.

When the module sends this message with a value of
IISDNbcsMAINTENANCE, the network (Central Office) expects to
accept test calls on this B-channel. It also sets the B-channel to
loopback using the appropriate switching facility function call define
in the Bfv API. When the module completes network testing, the

IISDNbcsOUT_OF_SERVICE

B-channel is out of service.

0x00

IISDNbcsRESTARTING

B-channel is restarting.

0x01

IISDNbcsMAINTENANCE

B-channel is in maintenance mode.

0x02

IISDNbcsIN_SERVICE

B-channel is in service.

0x03

L3L4mB_CHANNEL_STATUS

March 2017 1079

B-channel is returned to service and the host receives this message
with a value of IISDNbcsIN_SERVICE. At this point, remove any
loopback connection.

L3L4mB_CHANNEL_STATUS

March 2017 1080

Details For ISDN, the module sends this message after receiving of a
SERVICE or SERVICE ACK message from the network.

This message also indicates a B-channel restart condition. If the
module restarts the channel, a value of IISDNbcsRESTARTING
indicates the change of state. When the module restores the
B-channel to service, it sends a second
L3L4mB_CHANNEL_STATUS message with a value of
IISDNbcsIN_SERVICE. You cannot use the B-channel in a call until
the in-service indication is received.

L3L4mBILLING_STATUS

March 2017 1081

L3L4mBILLING_STATUS

Purpose Provides the status of the billing change request in response to an
L4L3mFEATURE_REQUEST message, supporting the Variabill
feature.

Message None.

Message ID 0x30

Input Fields unsigned short billing_change_status;

Input billing_change_status

Billing Change Status. Indicates the status of the Variabill
feature billing change request. Possible values include:

Output None.

Details This feature allows the host application to request a change in the
billing rate for an incoming call. This implementation supports
Variabill as defined by AT&T for the 4ESS switch.

IISDNvbsBCHG_ACCEPTED

Billing change request was accepted and change
made.

0x01

IISDNvbsBCHG_DENIED

Billing change request was denied either because the
call is using a service that does not support flexible billing
or the change was denied by the network. No change to
billing made.

0x02

IISDNvbsBCHG_REJECTED

Billing change request was rejected due to a badly
formatted message or some type of protocol error. A timer
is started by the network to wait for a correct message.

0x03

L3L4mBOARD_ID

March 2017 1082

L3L4mBOARD_ID

Purpose Sends the board identification to the host.

Message IISDN_BOARD_ID board_id

Message ID 0x3B

Input Fields char iisdn_ver[32];
char banner[32];
char date[16];
char model[16];
char rev;
unsigned char board_type;
unsigned char num_hdlc_chan;
unsigned char num_modem_chan;
unsigned char num_lines;
unsigned char line_type[IISDN_MAX_LINES];
unsigned char kernal_ram_size;
unsigned char num_bfio_devices;
unsigned char devType;
unsigned char firstLapdid;
unsigned char numLapdids;

Input iisdn_ver[32]

The current version of the ISDN stack.

banner[32]

Software copyright information.

date[16]

Date in format: Mm dd yyyy

model[16]

Model name of the module.

rev

Current revision of the module.

L3L4mBOARD_ID

March 2017 1083

board_type

FF

num_hdlc_chan

Number of HDLC channels supported by the module.

num_modem_chan

Number of modem channels supported by the module.

num_lines

Number of trunks or ports the module supports. Identifies the
configuration (T1, E1 or BRI) for each line on the module. Possible
values include:
IISDNline_typeUNKNOWN

Could not identify hardware configuration.
IISDNline_type PRI_T1

PRI T1 trunk, no on-board CSU present.
IISDNline_type PRI_T1CSU

PRI T1 trunk, optional on-board CSU.
IISDNline_typePRI_E1

PRI E1 trunk.

line_type[IISDN_MAX_LINES]

1 = T1
3 = E1
5 = BRI

kernel_ram_size

Ram size of the kernel.

num_bfio_devices

Number of buffered I/O devices. These currently include HDLC
controllers associated with framer chips.

devType

Device type.

firstLapdid

Default ID for the first channel.

numLapdids

Number of channels.

L3L4mCALL_PROCEEDING

March 2017 1084

L3L4mCALL_PROCEEDING

Purpose Indicates receipt of a call proceeding message. Use
L4L3mENABLE_PROTOCOL to enable
L3L4mCALL_PROCEEDING.

Message IISDN_CALL_PROC_DATA report_incoming_callproc

Message ID 0x3A

Input Fields IISDN_PROGRESS_IND progress_ind;

Input progress_ind

Progress Indication Structure. See Progress Indication
(IISDN_PROGRESS) on page 855.

L3L4mCALL_PROC_SENT

March 2017 1085

L3L4mCALL_PROC_SENT

Purpose Indicates that the protocol sent a call message through the network.

Message None.

Message ID 0x39

Details To enable this feature, the user must set send_l3l4_callproc in the
L4L3mENABLE_PROTOCOL message that configured the
specific lapdid.

L3L4mCLEAR_REQUEST

March 2017 1086

L3L4mCLEAR_REQUEST

Purpose Acknowledges receipt of an L4L3mCLEAR_REQUEST message or
an unsolicited notification indicates that a call has cleared.

Message IISDN_CLR_DATA clr_data

Message ID 0x06

Input Fields IISDN_CAUSE Boston;
IISDN_USER_INFO user_info;
IISDN_PROGRESS_IND progress_ind;
unsigned char ie_count;
IISDN_CONNECTED_ADDRESS connected_address;
IISDN_IE_STRUCT ie;

Input cause

Cause Data Structure. See Cause Data (IISDN_CAUSE) on
page 848.

user_info

User Info Structure. See User Info (IISDN_USER_INFO) on
page 863.

progress_ind

Progress Indication Structure. See Progress Indication
(IISDN_PROGRESS) on page 855.

ie_count

IE Count. Number of Information Elements (IEs) included in the
IE Structure in this message.

connected_address

Connected Address Structure. See Cause Data (IISDN_CAUSE)
on page 848.

ie

IE Structure. Unused in this message.

L3L4mCLEAR_REQUEST

March 2017 1087

Output None.

Details The network sent a RELEASE or RELEASE COMPLETE message.
The protocol cleared the call and the B-channel is idle. The structure
of this message is identical to that of the following messages:

 L4L3mCLEAR_REQUEST

 L3L4mDISCONNECT

The Dialogic® Brooktrout® module always generates either an
L4L3mCLEAR_REQUEST or
L3L4mCLEAR_WITH_RESTART_REQUEST when call clearing
is completed as directed by an L4L3mCLEAR_REQUEST. An
L3L4mDISCONNECT indicating all_calls_dropped also indicates a
call is cleared. The B-channel cannot be used for a new call until one
of these messages is received by the host.

Although included in this message, the IE structure is unused in
messages from the module to the host and it is set to zero.

L3L4mCLEAR_WITH_RESTART_REQUEST

March 2017 1088

L3L4mCLEAR_WITH_RESTART_REQUEST

Purpose Indicates that the protocol cleared the call due to a network detected
error.

Message IISDN_CLR_DATA clr_data

Message ID 0x08

Input Fields IISDN_CAUSE cause;
IISDN_USER_INFO user_info;
IISDN_PROGRESS_IND progress_ind;
unsigned char ie_count;
IISDN_CONNECTED_ADDRESS connected_address;
IISDN_IE_STRUCT ie;

Input cause

Cause Data Structure. See Cause Data (IISDN_CAUSE) on
page 848.

user_info

User Info Structure. See User Info (IISDN_USER_INFO) on
page 863.

progress_ind

Progress Indication Structure. See Progress Indication
(IISDN_PROGRESS) on page 855.

ie_count

IE Count. Number of Information Elements (IEs) included in the
IE Structure in this message.

connected_address

Connected Address Structure. See Cause Data (IISDN_CAUSE)
on page 848.

ie

IE Structure. Unused in this message.

L3L4mCLEAR_WITH_RESTART_REQUEST

March 2017 1089

Output None.

Details The Dialogic® Brooktrout® module always generates either an
L3L4mCLEAR_REQUEST or
L3L4mCLEAR_WITH_RESTART_REQUEST message when the
protocol clears a call as directed by an L4L3mCLEAR_REQUEST
message. A call is also cleared when an L3L4mDISCONNECT
message contains all_calls_dropped. You cannot use the B-channel
for a new call until the host receives one of these messages.

When the protocol restarts a B-channel, the host issues an
L3L4mDISCONNECT message with b_channel_status equal to
IISDNbcsRESTARTING. A subsequent L3L4mDISCONNECT
message indicates that the restarted B-channel is back in service.

If the network sent the RESTART, the protocol restarts the
B-channel but does not generate an L3L4mDISCONNECT
message. The module responds to the network with a RESTART
ACK message and clears the call, if any. After the restart process
competes, the host generates an
L3L4mCLEAR_WITH_RESTART_REQUEST message.

L3L4mCONNECT

March 2017 1090

L3L4mCONNECT

Purpose Indicates a CONNECT message received from the network. The far
end answered and a stable call is established.

Message IISDN_AL_CON_DATA al_con_data

Message ID 0x04

Input Fields IISDN_AL_CON_DATA al_con_data;

Input al_con_data

Alerting and Connecting Data Message. See Alerting and
Connecting Data Message (IISDN_AL_CON_DATA) on page 839.

Output None.

Details This message structure is identical to that of the following messages:

 L4L3mALERTING_REQUEST

 L4L3mCONNECT_REQUEST

 L3L4mALERTING

If the system connected to the interface uses the AT&T 4ESS Fast
Connect Feature, no PROGRESS or ALERTING messages are
required for call connection. In this case, this is the first message
from the Dialogic® Brooktrout® module in response to an
L4L3mCALL_REQUEST. Therefore, the application must store
the call reference value assigned by the module. The host requires
this value and the L4 reference value for further call control actions.

Although included in this message, the IE structure is unused in
messages from the module to the host and it is set to zero.

L3L4mCONN_ACK_IND

March 2017 1091

L3L4mCONN_ACK_IND

Purpose Indicates that a connect_ack message is received by the controller.

Message IISDN_Q931_CNFG q931

Message ID 0x0C

Details This is an optional message, and only received if enabled by
subscribe_connack in the L4L3mENABLE_PROTOCOL message.

L3L4mDISCONNECT

March 2017 1092

L3L4mDISCONNECT

Purpose Indicates receipt of a DISCONNECT message from the network.

Message IISDN_CLR_DATA clr_data

Message ID 0x05

Input Fields IISDN_CAUSE cause;
IISDN_USER_INFO user_info;
IISDN_PROGRESS_IND progress_ind;
unsigned char ie_count;
IISDN_CONNECTED_ADDRESS connected_address;
IISDN_IE_STRUCT ie;

Input cause

Cause Data Structure. See Cause Data (IISDN_CAUSE) on
page 848.

user_info

User Info Structure. See User Info (IISDN_USER_INFO) on
page 863.

progress_ind

Progress Indication Structure. See Progress Indication
(IISDN_PROGRESS) on page 855.

ie_count

IE Count. Number of Information Elements (IEs) included in the
IE Structure in this message.

connected_address

Connected Address Structure. See Cause Data (IISDN_CAUSE)
on page 848.

ie

IE Structure. Unused in this message.

L3L4mDISCONNECT

March 2017 1093

Output The host must clear the call by issuing an
L4L3mCLEAR_REQUEST message.

The module must receive an L3L4mCLEAR_REQUEST message
before you can use the B-channel for another call.

Details The far end has disconnected and clears the call. The structure of
this message is identical to the following messages:

 L4L3mCLEAR_REQUEST
 L3L4mCLEAR_REQUEST

Although included in this message, the IE structure is unused in
messages from the Dialogic® Brooktrout® module to the host and it
is set to zero.

L3L4mERROR

March 2017 1094

L3L4mERROR

Purpose Indicates either the host specified invalid information in an L4L3
message or an error condition occurred for the specified interface.

Message None.

Message ID 0x20

Input Fields unsigned char error_code;

Input error_code

Error Code. Specifies the cause of the L3L4mERROR message.
Possible values are:

Error and Meaning Value
L3L4errNO_ERROR

No error; internal use only.

00

L3L4errLAPDID_OUT_OF_RANGE

An invalid lapdid value has been used. The only lapdid values allowed are 0 (span 1), 2
(span 2), 4 (span 3) or 6 (span 4).

01

L3L4errLAPDID_NOT_ESTABLISHED

LAPD ID processing is not established or the link layer protocol did not establish or was
dropped. Use the L4L3mENABLE_PROTOCOL message to establish LAPD processing, then
resend the message.

02

L3L4errINVALID_CALLED_NUMBER

Invalid Called Number specified in an ISDN Call Control message. Called Number was
longer than 24 digits for all calls. Resends the message with the correct Called Number.

03

L3L4errNO_CRV_AVAILABLE

No more call reference numbers are available.

04

L3L4errNO_CRSTRUCT_AVAILABLE

No call record structures are available for allocation. Indicates the call cannot be processed
at this time because the module exhausted all internal resources.

05

L3L4mERROR

March 2017 1095

L3L4errCALL_REF_ERROR

Invalid call reference specified; Dialogic® Brooktrout® firmware could not locate the call
record by either call_ref or L4_ref values. This error might indicate the race condition that
occurs when both the Dialogic® Brooktrout® module and host send Clear Request messages. No
further action is required.

06

L3L4errINVALID_B_CHANNEL

Invalid B-channel specified in L4L3mCALL_REQUEST. Resend the message with a
valid B-channel port number specified.

07

L3L4errB_CHANNEL_RESTARTING

The module restarts the B-channel specified in response to a network error. The module
clears the call on that B-channel. The B-channel is available for another call once an
L3L4mB_CHANNEL_STATUS message indicates the channel is in service received.

08

L3L4errB_CHANNEL_OOS

B-channel specified is out of service. Resend the message with a different B-channel
specified.

09

L3L4errINVALID_CALL_TYPE

An outgoing call cannot be placed on this interface; call_type is most likely invalid.

10

L3L4errINVALID_CONN_TYPE

L4L3mENABLE_PROTOCOL message specified a connection type as invalid. Resend
the message with a valid connection type.

11

L3L4errD_CHAN_NOT_DISABLED

The module received an L4L3mENABLE_PROTOCOL message for a D-channel that
was already enabled.

12

L3L4errINVALID_HDLC_MAPPING

L4L3mENABLE_PROTOCOL message specifies the HDLC bit mask as invalid; some of
the specified channels are in use. Resend the message with a valid HDLC bit mask.

13

L3L4errINVALID_DATA_QUEUE

The host setup invalid data queue buffers for communication with the module. Give/Take ≠0
or the number of TX/RX buffers defined is less than two.

14

L3L4errINVALID_COMMAND_ARGS

Syntax error in the received message. Correct and resend the message.

15

L3L4errINVALID_MSG_FOR_STATE

Control message received is invalid for the current state of the specified call.

16

L3L4errDATA_PACKET_LOST

Data packets lost because the TX buffer length is too big to fit into the internal buffer.

17

L3L4errPM_NOT_ESF

Performance monitoring cannot be enabled on a non-ESF link.

18

Error and Meaning Value

L3L4mERROR

March 2017 1096

L3L4errINVALID_INTERFACE

NFAS. Invalid interface specified.

19

L3L4errB_CHANNEL_INUSE

Rejected Call Request.

20

L3L4errINVALID_LLI

Invalid LLI number. Refer to the description of LLI in Logical Link ID or DLCI on
page 837.

21

L3L4errVC_TABLE_FULL

Maximum of eight LLIs per physical channel.

22

L3L4errLLI_NOT_FOUND

LLI was not in the data structures.

23

L3L4errNO_HARDWARE

The hardware required for the request is not present on this module type.

25

L3L4errNON_NFAS

Indicates the message was rejected because the channel specified is not part of an NFAS
group.

27

L3L4merrINVALID_STATE

The channel or call specified in the message is not in the correct state to process this
message.

28

L3L4merrSERVICE_NOT_OFFERED

Indicates the network rejected the message because the network does not support the
feature (ANI on Demand, Variabill) requested.

29

L3L4errTOO_MANY_Q931_STACKS

Indicates the module rejected the message because the maximum number of Q.931
D-channels allowed are already established.

31

L3L4errDATA_INTERFACE_REQUIRED

The Layer 2 protocol enabled (such as raw T1 or raw HDLC) requires a Data Interface
connection.

33

L3L4errDATA_INTERFACE_INVALID

The protocol enabled (such as Q.931) does not allow a Data Interface connection.

34

L3L4errINVALID_BUFFSZ

The HDLC controller buffer size specified for a channel running raw T1 mode was not
evenly divisible by 4.

36

L3L4errDCHAN_ODD_POINTER_ERROR

Indicates host-provided pointers must point to “even” addresses.

42

Error and Meaning Value

L3L4mERROR

March 2017 1097

L3L4errDCHAN_TOO_FEW_BUFFERS

Indicates the module rejected the message because it specified less than 3 transmit and
receive buffers.

43

L3L4errDCHAN_TOO_MANY_BUFFERS

Indicates that the host attempted to configure more than 255 transmit or receive buffers.

44

L3L4errDCHAN_GIVE_TAKE_NONZERO

Indicates the host must set the Give/Take indexes to 0 during module initialization.

45

L3L4errDCHAN_ZERO_RXBUF_LEN

Indicates that the receive buffers cannot have a length of 0 bytes.

46

L3L4errDLCI_MANDITORY

Indicates the module rejected the message because the L3L4 common header did not specify
a DLCI. A DLCI is required for LAP-D data connections.

48

L3L4errCHAN_KBIT_RATE_BAD

Indicates the Level 1 parameter channel kilobit rate specified in the
L4L3mENABLE_PROTOCOL message is outside the valid range of 0 to 4096 kilobits.

49

L3L4errTX_BUFFER_MISALIGNED

Indicates that transmit buffers on the host side of the data interface must be aligned on
256 K boundaries.

52

L3L4errRX_BUFFER_MISALIGNED

Indicates that receive buffers on the host side of the data interface must be aligned on 256 K
boundaries.

53

L3L4errTOO_MANY_DLCIS

Indicates the number of DLCIs specified for a particular channel exceeded the maximum
(set by IISDN_MAX_VC_PER_CHAN).

54

L3L4errINVALID_SMI_MSGID

BSMI message type is invalid.

59

L3L4errINVALID_CLOCK_MODE

Invalid clocking type.

60

L3L4errNO_OVERFLOW_QUEUE

Indicates initialization of the overflow queue failed. The queue must be initialized for the
overflow queue to function.

61

L3L4errSTATUS_IGNORED

Ignored a status message from AT&T Maintenance processing. L4_ref set to 0xFFFF.

100

L3L4errBAD_CALL_REF

The network sends the call reference number because of an invalid maintenance message.
L4_ref set to 0xFFFF.

101

Error and Meaning Value

L3L4mERROR

March 2017 1098

Output None.

Details When the protocol generates the message in response to a host
message, use the L4 Reference value assigned by the host. If the
protocol generates the message due to an autonomous event in the
network, the L4 Reference value is set to 0xFFFF.

L3L4mINFO_REQUEST

March 2017 1099

L3L4mINFO_REQUEST

Purpose The network sends an INFORMATION message (in Q.931
applications) or a keypad digit string.

Message IISDN_INFO_DATA info_data

Message ID 0x8B

Input Fields unsigned char sending_complete;
unsigned char ie_count;
IISDN_CALLED_PARTY called_party;
IISDN_KEYPAD keypad;
unsigned short num_digits;
unsigned char digits[IISDN_MAX_DIGITS];
IISDN_CAUSE cause;
IISDN_IE_STRUCT ie;

Input sending_complete

Sending Complete. Indicates that the network transmitted all
information, including all keypad digits.

ie_count

IE Count. Number of Information Elements (IEs) included in the
IE Structure in this message.

called_party

Called Party Structure. See Called Party
(IISDN_CALLED_PARTY) on page 843.

keypad

Keypad Structure. See num_digits, digits.

num_digits

Number of Digits. Specifies the number of digits received.

L3L4mINFO_REQUEST

March 2017 1100

digits[IISDN_MAX_DIGITS]

Digits. Digit string in ASCII. Number of digits in this string
should equal the number specified in num_digits. Eight-bit
values in this field must be between 0x30 and 0x39 (ASCII
0 through 9).

cause

Cause Data Structure. See Cause Data (IISDN_CAUSE) on
page 848.

ie

IE Structure. Unused in this message.

Output The host issues an L4L3mCALL_PROCEEDING_REQUEST to
continue the call.

Details This message usually appears in incoming call scenarios when the
network sends a SETUP message that did not contain sufficient
called party information. Typically, this message is in response to an
L4L3mSETUP_ACK_REQUEST. This message contains either a
Called Party structure (called party IE) or Keypad structure
(Keypad facility IE) containing either individual digits or a string of
digits.

L3L4mL2_STATS

March 2017 1101

L3L4mL2_STATS

Purpose Provides Level 2 statistics for the HDLC channel indicated in the
L4L3mREQ_L2_STATS where it is generated.

Message IISDN_L2_STATS stat_data

Message ID 0x25

Input frame_tx

Count of IFRAME commands sent and successfully
acknowledged.

rr_cmd_tx

Count of RR commands sent.

rnr_cmd_tx

Count of RNR commands sent.

rej_cmd_tx

Count of REJ commands sent.

sabm_tx

Count of SABM commands sent.

sabme_tx

Count of SABME commands sent.

disc_tx

Count of DISC commands sent.

rr_rsp_tx

Count of RR responses sent.

rnr_rsp_tx

Count of RNR responses sent.

L3L4mL2_STATS

March 2017 1102

rej_rsp_tx

Count of REJ responses sent.

dm_tx

Count of DM responses sent.

ua_tx

Count of US responses sent.

frmr_tx

Count of FRMR responses sent.

iframe_rx

Count of IFRAME commands received.

rr_cmd_rx

Count of RR commands received.

rnr_cmd_rx

Count of RNR commands received.

rej_cmd_rx

Count of REJ commands received.

sabm_rx

Count of SABM commands received.

sabme_rx

Count of SABME commands received.

disc_rx

Count of DISC commands received.

rr_rsp_rx

Count of RR responses sent.

rnr_rsp_rx

Count of RNR responses sent.

rej_rsp_rx

Count of REJ responses received.

dm_rx

Count of DM responses received.

L3L4mL2_STATS

March 2017 1103

ua_rx

Count of REJ responses received.

frmr_rx

Count of FRMR responses received.

crc_errors

Count of CRC errors received.

rcv_errors

Received. Queue over runs.

retrans_cnt

Count of retransmitted Information Frames.

poll_errors

Count of polls without a response.

ui_tx

Count of UI frames transmitted.

ui_rx

Count of UI frames received.

Details The system maintains a set of peg counts for each Logical ID (LID).
If more than one virtual circuit is run on a channel, the counts
represent an aggregate for all virtual circuits. Counts are reset to
zero following generation of this message.

L3L4mLINE_STATUS

March 2017 1104

L3L4mLINE_STATUS

Purpose Indicates the InstantISDN generated response to the
L4L3mREQ_LINE_STATUS message.

Message IISDN_LINE_STATUS line_status

Message ID 0x23

Input Fields IISDN_LINE_STATUS IISDN_ALARM_STATUS.rcv_red;
IISDN_LINE_STATUS l1_state[IISDN_MAX_LINES];
IISDN_LINE_STATUS line_type[IISDN_MAX_LINES];

Input IISDN_ALARM_STATUS.rcv_red

Set to 1, if line is synchronized.

l1_state[IISDN_MAX_LINES]

Layer 1 states are defined in the ITU I.430 standard for BRI.

Value TE Interface NT Interface
1 Inactive Deactivated

2 Sensing Pending activation

3 Deactivated Activated

4 Awaiting signal Pending deactivation

5 Identifying signal

6 Synchronized

7 Activated

8 Lost Framing

L3L4mLINE_STATUS

March 2017 1105

line_type[IISDN_MAX_LINES]

This field reports the current type of line associated with each
index in the array. Normally all lines on a Dialogic® Brooktrout®
module are the same type.

Details Only the BRI interface supports this message. The protocol reports
only one lapdid at a time (the one associated with the
L4L3mREQ_LINE_STATUS message).

The Input paragraph for this message only describes the fields
applicable to L3L4mLINE_STATUS. Any field present in the
L3_to_L4_struct but not described cannot contain useful
information.

IISDNline_typeUNKNOWN Unpopulated network interface

IISDNline_typePRI_T1 North American DSX-1 interface

IISDNline_typePRI_T1CSU North American DS-1 “long haul”
interface

IISDNline_typePRI_E1 2.048 CEPT DS1 interface

IISDNline_typeBRI_U North American 2-wire Basic Rate
ISDN Interface

IISDNline_typeBRI_ST 4-wire Basic Rate ISDN interface

L3L4mPROGRESS

March 2017 1106

L3L4mPROGRESS

Purpose Indicates a PROGRESS message received from the network (an
outgoing call is in process).

Message IISDN_PROGRESS progress_data

Message ID 0x02

Input Fields IISDN_PROGRESS progress_data;

Input progress_data

Progress Indication Structure. See Progress Indication
(IISDN_PROGRESS) on page 855.

Output None.

Details Indicates the call is not end-to-end ISDN. If the system connected to
the interface uses the AT&T 4ESS Fast Connect Feature, no
PROGRESS or ALERTING messages are required for call
connection.

When this is the first message received by the host in response to an
L4L3mCALL_REQUEST message, the application must store the
call_ref assigned by the Dialogic® Brooktrout® module. The host
requires call_ref and the L4_ref for further call control actions.

Although included in this message, the IE structure is unused in
messages from the module to the host and it is set to zero.

L3L4mPROTOCOL_STATUS

March 2017 1107

L3L4mPROTOCOL_STATUS

Purpose Informs the host of the status of the D-channel.

Message IISDN_D_CHAN_STAT d_chan_data

Message ID 0x21

Input Fields unsigned char status;
unsigned char l2_state;
unsigned char l2_error;
unsigned char l2_errpt;
unsigned long b_channels;
unsigned long b_chan_req;
unsigned long txcount;
unsigned long rxcount;
unsigned short l2_detail;
unsigned char all_calls_dropped;
unsigned long n_b_channels[IISDN_NUM_DS1_INTERFACES];
unsigned long n_b_chan_req[IISDN_NUM_DS1_INTERFACES];
unsigned char nfas_primary_dchan_status;

Input status

Current D-Channel Status. Indicates the status at the time of the
message. Possible values include:

IISDNdsNOT_ESTABLISHED

D-channel is not established.

0x00

IISDNdsESTABLISHING

D-channel is being established.

0x01

IISDNdsESTABLISHED

D-channel is established.

0x02

L3L4mPROTOCOL_STATUS

March 2017 1108

l2_state

Layer 2 State. Indicates the Layer 2 status of the D-channel.
Possible values include:

l2_error

Layer 2 MDL Error Code. Indicates the MDL-ERROR message
type reported by the network. Possible values include:

IISDNlpdsTEI_UNASSIGNED

Dialogic® Brooktrout® module is waiting for the
network to assign a Terminal Endpoint Identifier (TEI).

0x00

IISDNlpdsTEI_ASSIGNED

Link in TEI-assigned state.

0x04

IISDNlpdsAWAITING_ESTABLISHMENT

Link in awaiting-establish state.

0x05

IISDNlpdsAWAITING_RELEASE

Link in awaiting-release state; DISC command received
and channel release process started.

0x06

IISDNlpdsMULTIFRAME_ESTABLISHED

Link in multiple-frame-established state.

0x07

IISDNlpdsTIMER_RECOVERY

Link in timer recovery state; T200 timer expired and
retransmission counter reset.

0x08

IISDNl2errNO_ERROR

No MDL-ERROR reported.

0x00

IISDNl2errA

Error Code A. The network received an unsolicited
supervisory message; F = 1.

0x01

IISDNl2errB

Error Code B. The network received an unsolicited DM
message; F = 1.

0x02

IISDNl2errC

Error Code C. The network received an unsolicited UA
message; F = 1.

0x03

IISDNl2errD

Error Code D. The network received an unsolicited UA
message; F = 0.

0x04

L3L4mPROTOCOL_STATUS

March 2017 1109

l2_errpt

Layer 2 Error Pointer.

IISDNl2errE

Error Code E. The network received an unsolicited DM
message; F = 0.

0x05

IISDNl2errF

Error Code F. The network received a SABME message
to re-establish the connection.

0x06

IISDNl2errG

Error Code G. Unsuccessful retransmission of a
SABME message (N200 counter exceeded).

0x07

IISDNl2errH

Error Code H. Unsuccessful retransmission of a DISC
message (N200 counter exceeded).

0x08

IISDNl2errI

Error Code I. Unsuccessful retransmission of a
STATUS ENQUIRY (N200 counter exceeded).

0x09

IISDNl2errJ

Error Code J. N (R) error occurred.

0x0A

IISDNl2errK

Error Code K. The network received a FRMR response.

0x0B

IISDNl2errL

Error Code L. The network received a non-implemented
frame.

0x0C

IISDNl2errM

Error Code M. The network received an I frame that is
not permitted.

0x0D

IISDNl2errN

Error Code N. The network received an I frame of the
wrong size.

0x0E

IISDNl2errO

Error Code O. The network received an I frame with too
many octets (N201 exceeded).

0x0F

L3L4mPROTOCOL_STATUS

March 2017 1110

b_channels

In-Service B-channels. Bit mask that unidentified B-channels
currently in service on this interface. B-channels are numbered
1 - 24. When configured for NFAS, value is 0x00000000. Possible
values for each bit position include:

b_chan_req

Request for Active B-channels. Bit mask that identifies
B-channels the host requested in service using the
L4L3mENABLE_PROTOCOL or
L4L3mENABLE_B_CHANNEL. B-channels are numbered
1 - 23; 24 is reserved for the D-channel. When configured for
NFAS, value is 0x00000000. Possible values for each bit position
include:

txcount

TX Count. Number of Level 2 packets transmitted by the
Dialogic® Brooktrout® module.

rxcount

RX Count. Number of Level 2 packets received by the Dialogic®
Brooktrout® module.

l2_detail

Level 2 Detail. Link Layer 2 information for this interface. The
protocol enables Level 2 detail including the connection type
IISDNctL2_DETAIL.
Values marked with an asterisk (*) can be received regardless of
whether L2_DETAIL has been set. Possible values include:

B-channel is not active. 0x00000000

B-channel is in service. 0x00000001

B-channel is not active. 0x00000000

B-channel is active. 0x00000001

IISDNdsmskDM_RCVD

DM received with F bit set.

0x0001

IISDNdsmskSABME_RCVD*

SABME/SABM received.

0x0002

L3L4mPROTOCOL_STATUS

March 2017 1111

all_calls_dropped

All Calls Dropped. Used with NFAS configurations. Indicates
either the network sent a RESTART message specifying to drop
all calls associated with this D-channel, or a D-channel
switchover failed. This message replaces the
L3L4mCLEAR_WITH_RESTART_REQUEST message in the
RESTART scenario only. Possible values include:

IISDNdsmskSABME_SENT

SABME/SABM sent.

0x0004

IISDNdsmskFRAME_MOD_8

Received frame with non-integral octets.

0x0008

IISDNdsmskBAD_CRC

Received frame with bad CRC.

0x0010

IISDNdsmskBAD_LEN

Received frame with bad length.

0x0020

IISDNdsmskUNKN_CTRL

Received frame with unknown control field.

0x0040

IISDNdsmskUNKN_DLCI

Received frame with unknown address.

0x0080

IISDNdsmskUNEXPECTED

Received valid message type in bad state.

0x0100

IISDNdsmskDISC_RCVD*

Received disconnect message.

0x0200

IISDNdsmskT200*

T200/N200 timeout occurred.

0x0400

IISDNdsmskUA_RCVD

UA received.

0x1000

IISDNacdNO_CHANGE

No calls were dropped.

0x01

IISDNacdRESTART

Restart message received; all calls dropped.

0x02

L3L4mPROTOCOL_STATUS

March 2017 1112

n_b_channels[IISDN_NUM_DS1_INTERFACES]

In-Service B-channels. For NFAS configurations only, an array of
[IISDN_NUM_DS1_INTERFACES] bit masks that identifies the
B-channels currently in service on this interface. B-channels are
numbered 1 - 24. For non-NFAS configurations, this value is set
to 0x00000000. Possible values for each bit position include:

n_b_chan_req[IISDN_NUM_DS1_INTERFACES]

Request for Active B-channels. For NFAS configurations only, an
array of [IISDN_NUM_DS1_INTERFACES] bit masks that
identifies the B-channels the host requested in service using the
L4L3mENABLE_PROTOCOL or
L4L3mENABLE_B_CHANNEL message. B-channels are
numbered 1 - 23; 24 is reserved for the D-channel. For non-NFAS
configurations, set to 0x00000000. Possible values for each bit
position include:

nfas_primary_dchan_status

NFAS Primary D-channel Status. Indicates the current status of
the primary D-channel. If NFAS is not configured, set to 0x00.
Possible values include:

IISDNacdDCHAN_SWITCHING

D-channels switch over is in progress; all non-stable
calls dropped (NFAS configurations with D-channel backup
only).

0x03

IISDNacdDCHAN_FAULT

Backup D-channel did not come into service; all calls
dropped (NFAS configurations with D-channel backup
only).

0x04

B-channel is not active. 0x00000000

B-channel is active. 0x00000001

B-channel is not active. 0x00000000

B-channel is active. 0x00000001

IISDNdcsIS

IISDN primary D-channel is in service.

0x02

IISDNdcsOOS

Primary D-channel is out-of-service.

0x03

L3L4mPROTOCOL_STATUS

March 2017 1113

Output None.

Details Use L3L4mPROTOCOL_STATUS instead of
L3L4mD_CHANNEL_STATUS (a deprecated function in Volume
6, Appendix H).

The L3L4mPROTOCOL_STATUS message is in response to any of
the following conditions:

 Receipt of an L4L3mENABLE_PROTOCOL message.

 Receipt of an L4L3mREQ_PROTOCOL_STATUS.

 Change in link status; the L4_ref in this instance is 0xFFFF.

 Layer 2 error reported in l2_detail; l2_detail bit set in the
IISDN_LEVEL2_CNFG structure for this D-channel.

 Receipt of an ISDN RESTART message specifying to drop all
calls associated with this D-channel.

The remainder of these details pertain to ISDN applications only.

In NFAS configurations, the protocol reports status for the primary
D-channel. Additional status indicators represent D-channel states
unique to NFAS configurations. The primary D-channel has a status
of either in service or out of service.

The message also reports D-channel restart conditions in NFAS. In
this case, calls associated with a D-channel might be lost according
to the following general rule:

 RESTART condition – all calls on associated B-channels are lost

In addition to D-channel status, the message contains the current
status (in service or not active) and the host requested status for all
B-channels associated with the D-channel. In NFAS configurations,
the message generates this D-channel status as two arrays, each
containing a number of bit masks equal to the number of interfaces.

IISDNdcsMOOS

Maintenance out-of-service state not currently
supported.

0x04

IISDNdcsMB

Primary D-channel is in maintenance busy state.

0x05

L3L4mRAW_QDATA

March 2017 1114

L3L4mRAW_QDATA

Purpose Passes undecoded Q.931 packets from the network to the host.

Message IISDN_RAW_QDATA raw_q931_data

Message ID 0x16

Input Fields unsigned short len;
unsigned char qdata[IISDN_NMAX_RAWQ];

Input len

Length. Number of bytes in the data string that follows this short
integer. Possible values are up to that defined in
IISDN_MAX_RAWQ.

qdata

Raw Q.931 Data. String of up to IISDN_MAX_RAWQ bytes
containing raw Q.931 data as received over the D-channel. The
number of bytes in this string must match the value specified in
len.

Output None.

Details The protocol generates this message only if
L4L3mENABLE_PROTOCOL specifies the
IISDN_LEVEL3_CNFG structure append_raw_qmsg field that set
up ISDN D-channel processing.

In raw Q.931 message mode, either one or two messages are sent to
the host for every Q.931 message received from the network over the
D-channel. If the Q.931 message is one that the Dialogic®
Brooktrout® firmware can process, the first is the standard decoded
message (such as L3L4mSETUP_IND). This message is
immediately followed by the L3L4mRAW_QDATA message
containing the undecoded Q.931 packet. Note that these messages
generate only one interrupt.

L3L4mRAW_QDATA

March 2017 1115

If the message is standard by not one normally processed by the
Dialogic® Brooktrout® firmware, the undecoded information is
passed to the host in a single L3L4mRAW_QDATA. This allows
applications to make use of proprietary or site-specific messages.
The host is then responsible for any processing required.

Note: Messages received in this way have no effect on ISDN call
state.

L3L4mRESTART

March 2017 1116

L3L4mRESTART

Purpose Signifies receipt of a Q.931 RESTART message from the network.

Message None.

Message ID 0x0D

Output The host checks any data it keeps on active calls. If there were active
calls on any channel that restarted, the host updates its data to
indicate the calls no longer exist.

L3L4mSETUP_IND

March 2017 1117

L3L4mSETUP_IND

Purpose Indicates an incoming call request received by the Dialogic®
Brooktrout® module.

Message IISDN_SETUP_DATA setup_data

Message ID 0x01

Input Fields unsigned long call_type;
IISDN_CALLING_INFO calling_party;
IISDN_CALLED_PARTY called_party;
IISDN_REDIREC_NUM redirect_num;
unsigned char net_spfc;
unsigned short bc_len;
unsigned char bearer_cap[IISDN_MAX_BC];
IISDN_USER_INFO user_info;
IISDN_Q922_DLCI fr_dlci;
unsigned char feature_availability;
unsigned char bearer_selection;
unsigned char sending_complete;
IISDN_PROGRESS_IND progress_ind;
IISDN_ORIG_CALLED_NUM orig_called_num;

Input call_type

Call Type. Bit mask identifying what type of call should be
established. Most common value is 0x00000001 (normal voice
call). Possible values include:

IISDNcalltypVOICE

Normal voice call.

0x00000001

IISDNcalltypMODEM

3.1kHz audio.

0x00000002

IISDNcalltyp56K

56K data call, unknown type.

0x00000004

IISDNcalltyp64K

64K data call, unknown type.

0x00000008

L3L4mSETUP_IND

March 2017 1118

calling_party

Calling Party Structure. See Calling Party
(IISDN_CALLING_PARTY) on page 845.

called_party

Called Party Structure. See Called Party
(IISDN_CALLED_PARTY) on page 843.

redirect_num

Redirecting Number Structure. See Redirecting Number
(IISDN_REDIRECT_NUM) on page 859.

net_spfc

Call-by-Call Feature. Indicates the network-specific call type.
Generally, the non-specific default value is used. If another value
is specified, the PRI line purchased from the service provider
must be configured to support that call type.

IISDNcalltyp64K_REST

Restricted 64K data call.

0x00000010

IISDNcalltyp384K

384K data call, unknown type.

0x00000020

IISDNnsNULL

Default value; type not specified.

0x00

IISDNnsATT_SDN or IISDNnsNTI_PRIVATE

AT&T Software Defined Network or Nortel Private
Network.

0x01

IISDNnsATT_MEGACOM 800 or IISDNnsNTI_INWATS

AT&T Megacom 800 Service or Nortel InWATS.

0x02

IISDNnsATT_MEGACOM or IISDNnsNTI_OUTWATS

AT&T Megacom 800 Service or Nortel OutWATS.

0x03

IISDNnsNTI_FX

Nortel Foreign Exchange.

0x04

IISDNnsNTI_TIE_TRUNK

Nortel Tie Trunk.

0x05

IISDNnsATT_ACCUNET

AT&T Accunet.

0x06

L3L4mSETUP_IND

March 2017 1119

bc_len

Length of Bearer Capability Information Element (IE). When
value is not zero, indicates an undecoded Bearer Capability IE is
included in this message. For more information on Bearer
Capability and IEs, refer to the specification appropriate to your
ISDN service.

bearer_cap[IISDN_MAX_BC]

Bearer Capability Information Element (IE). If the previous field
is a value other than zero, this array contains an undecoded
Q.931 Bearer Capability IE. For more information on Bearer
Capability and IEs, refer to the specification appropriate to your
ISDN service.

user_info

User Info Structure. See User Info (IISDN_USER_INFO) on
page 863.

fr_dlci

Q.933 DLCI Negotiation Structure. See Q.933 DLCI Negotiation
(IISDN_Q922_DLCI) on page 858.

feature_availability

Feature Availability. Indicates what special features are
available for this call.

IISDNnsATT_I800

AT&T International 800 Service.

0x08

IISDNnsATT_MULTIQUEST or IISDNnsNTI_TRO

Nortel TRO Call.

0x10

Packet size is 128 bytes. 0x80

Packet size is 256 bytes. 0xFF

IISDNfaNONE

No special features available for this call.

0x00

IISDNfaFLEXIBLE_BILLING

AT&T Variabill (flexible billing) feature available for
this call.

0x01

L3L4mSETUP_IND

March 2017 1120

bearer_selection

Bearer Channel Selection. Used for B-channel negotiation
feature. Indicates if B-channel negotiation is enabled by setting
the IISDNctB_CHAN_NEGOT bit in the
L4L3mENABLE_PROTOCOL conn_type field.

sending_complete

This is a flag to indicate that sending is complete on the Info
Element message. If a 0 appeared, this indicates that no sending
completed. A non-zero indicates the message sending completed.

progress_ind

Progress Indication Structure. See Progress Indication
(IISDN_PROGRESS) on page 855.

orig_called_num

Specifies the appropriate number of digits. A value of 0
designates the feature is unavailable.

Output To reject a call, the host sends an L4L3mCLEAR_REQUEST.
Otherwise, messages are sent as follows:

ISDN Calls

L4L3mPROGRESS_REQUEST or L3L4mALERTING
followed by L3L4mCONNECT

ISDN with Fast Connect Calls

L4L3mCONNECT_REQUEST

IISDNbsNONE

B-channel negotiation is not configured.

0x00

IISDNbsPREFERRED

B-channel is preferred; host must respond with
B-channel and interface number (if NFAS) in its next
message to the Dialogic® Brooktrout® module.

0x01

IISDNbsEXCLUSIVE

B-channel is exclusive; host must respond with
B-channel and interface number (if NFAS) in its next
message to the Dialogic® Brooktrout® module.

0x02

L3L4mSETUP_IND

March 2017 1121

ISDN with B-Channel Negotiation

The host must assign the L4_ref in the responding message.

The module automatically generates a CALL PROCEEDING
message to the network after receiving of an incoming SETUP
message in the following cases:

 B-channel negotiation is not enabled.

 To enable B-channel negotiation use both the b_chan_negot and
proc_on_exclusv in the IISDN_LEVEL3_CNFG structure of an
L4L3mENABLE_PROTOCOL message and the requested
channel is exclusive.

If just b_chan_negot is set, no CALL PROCEEDING message is
generated; the host must send the
L4L3mCALL_PROCEEDING_REQUEST message.

Host response to an L3L4mSETUP_IND with an
L4L3mCONNECT_REQUEST message is restricted to
applications where the service is provided by an AT&T 4ESS Fast
Connect Feature.

Details The following information is supplied:

 Type of call (voice or data and protocol being used).

 Calling Party number, if available, up to a maximum of 17 digits.

 Called Party number up to a maximum of 17 digits.

 Redirecting number, if call is forwarded.

 Feature availability (such as AT&T Variabill).

 Feature type for the call.

 Bearer selection information (B-channel negotiation).

Calling Party and Called Party, if used, are specified in calling_party
and called_party.

The host application must save call_ref specified in the common
header of this message. This value is used for future message
processing for this call.

If the system connected to the interface uses the AT&T 4ESS Fast
Connect Feature, no PROGRESS or ALERTING messages are
required for call connection.

L3L4mSTATUS_IND

March 2017 1122

L3L4mSTATUS_IND

Purpose Indicates that the network generated a STATUS message due to a
Q.931 protocol error.

Message None.

Message ID 0x07

Input The L3L4 common header contains all data for the message.

Output None. This message is generally logged and ignored, since
unrecoverable errors result in the clearing of the call.

L3L4mUNIVERSAL

March 2017 1123

L3L4mUNIVERSAL

Purpose Passes proprietary or other ISDN Q.931/932 messages not supported
by Dialogic® Brooktrout® firmware to the host.

Message IISDN_UNIVERSAL universal

Message ID 0x17

Input Fields unsigned char msg_id;
unsigned char ie_count;
unsigned char null_call_ref;
unsigned char q931_escape;
IISDN_IE_STRUCT ie;

Input msg_id

Q.931/932 Message ID. Indicates the type of message being sent.
The receiving end should be capable of interpreting this value.

ie_count

IE Count. Indicates the total number of IEs contained in this
message.

null_call_ref

Indicates that the received message contained a call reference
value of NULL.

q931_escape

Generates a q931 escape message.

ie

IE Structure. Unused in this message.

Output None.

L3L4mUNIVERSAL

March 2017 1124

Details This feature allows developers to use proprietary or site-specific
messages in an application. In using this message, the following
rules apply:

 This message has no effect on call state. Additionally, the
application must ensure that the actions required by this
message are consistent with the current state of the call.

 Dialogic® Brooktrout® firmware does not check the message ID
or message content; this is the responsibility of the application
designer.

See L4L3mUNIVERSAL for information on the HOLD auxiliary
state.

L3L4mUSER_INFO

Purpose Passes up to 130 bytes of information for a call over the network.

Message IISDN_USER_INFO user_info

Message ID 0x09

Input Fields unsigned short len;
unsigned char info{IISDN_MAX_USER_INFO];
IISDN_USER_INFO user_info;

Input len

A value of 0 determines that no information is passed.

info{IISDN_MAX_USER_INFO]

The user information.

user_info

User Information Structure. See User Info (IISDN_USER_INFO)
on page 863.

Output None.

Details The message consists of the structure documented in User Info
(IISDN_USER_INFO) on page 863.

Normally the L3L4mUSER_INFO message pertains to a call
identified by the call_ref and L4_ref values. L3L4mUSER_INFO to
call_ref 0x00 is a proprietary feature. If the network sends an ISDN
message with a call reference value of zero, it sends the call_ref to
the host using this message.

March 2017 1126

28 - B-Channel and D-
Channel Maintenance

This chapter describes a Dialogic® Brooktrout® module’s ISDN
B-channel (Bearer) and D-channel (Data) maintenance procedures.

It has the following sections:

 B-Channel Maintenance

 D-Channel Maintenance

B-Channel Maintenance

March 2017 1127

B-Channel Maintenance
The Dialogic® Brooktrout® module’s ISDN Bearer Channel
maintenance procedures are initiated by the host application
through BSMI (BOSTON Simple Message Interface) messages. The
host application maintains the state of individual B-channels on the
Dialogic® Brooktrout® firmware. The Dialogic® Brooktrout®
firmware updates the host application of any B-channel state
changes and B-channel maintenance actions initiated by the far end.
The Dialogic® Brooktrout® firmware also maintains an internal
table of the state that the host requested the B-channels be set to.

B-Channel Maintenance

March 2017 1128

ISDN Messages for B-Channel Maintenance
SERVICE and SERVICE_ACKNOWLEDGE maintenance messages
are sent to and received from the far end for ATT, NTI, and ISDN
variants only. The Dialogic® Brooktrout® module’s ISDN uses the
following maintenance messages:

 SERVICE

Used to bring B-channels IS (In Service) or OOS (Out Of Service).

 SERVICE ACKNOWLEDGE

Used with SERVICE to bring B-channels IS or OOS.

 RESTART

Used to restart B-channels. Calls on the B-channels are cleared.
For National ISDN1/National ISDN2/NET5 variants, the
RESTART message also brings B-channels into service.

 RESTART ACKNOWLEDGE

Used with RESTART to restart a B-channel. For National
ISDN1/National ISDN2/NET5 variants, the RESTART
ACKNOWLEDGE message also brings B-channels into service.

BSMI Messages For B-Channel Maintenance
SERVICE and SERVICE_ACKNOWLEDGE maintenance messages
are sent to and received from the far end for ATT, NTI, and ISDN
variants only.

Refer to Chapter , Host to Module (L4L3m) Messages, on page 993
and Chapter , Module to Host (L3L4m) Messages, on page 1074 for
more detail on these BSMI messages:

 L4L3mENABLE_B_CHANNEL

The host sends L4L3mENABLE_B_CHANNEL to the
Dialogic® Brooktrout® module to bring B-channels into service.
The bchannel in the message specifies the B-channel.
For NFAS (Non Facility Associated Signaling) configuration, the
message specifies the DS1 interface where the B-channel resides.
Use iface and n_bchannel to specify multiple B-channels.
When the firmware receives L4L3mENABLE_B_CHANNEL, it
sets the B-channel state to IS in its internal table. It sends out
SERVICE messages to the far end for the requested B-channels
with Change Status IE set to IS and starts timer T3M1.

B-Channel Maintenance

March 2017 1129

 L4L3mDISABLE_B_CHANNEL

The host sends L4L3mDISABLE_B_CHANNEL to the
firmware to put B-channels OOS. B-channel is specified using
bchannel in the message.
For NFAS configuration, the message specifying DS1 where the
B-channel resides uses iface and specifies multiple B-channels
using n_bchannel.
When the firmware receives L4L3mDISABLE_B_CHANNEL,
it sets the B-channel state to OOS in its internal table. It sends
out a SERVICE message to the far end for the requested
B-channel with Change Status IE set to OOS and starts timer
T3M1.

 L4L3mRESTART

The host sends L4L3mRESTART to the module to restart a
specified B-channel or interface. The message specifies the
B-channel using bchannel.
For NFAS configuration, the message specifying DS1 where the
B-channel resides uses iface and specifies multiple B-channels
using n_bchannel.
When the firmware receives an L4L3mRESTART that does not
specify B-channel in bchannel or n_bchannel fields, it sends an
interface RESTART to the far end for the specified interface iface.
If L4L3mRESTART specifies B-channel in bchannel or
n_bchannel, it sends a B-channel RESTART to the far end. The
firmware starts timer T316 after sending the RESTART message.
The message clears all the calls on the specified B-channel. For
each cleared call the host receives an
L3L4mCLEAR_WITH_RESTART_REQUEST.
For all B-channels restarted by sending B-channel RESTART to
the far end, the host receives a L3L4mB_CHANNEL_STATUS
with b_channel_status set to IISDNbcsRESTARTING.
When the far end sends an interface RESTART message, the hose
receives a single L3L4mB_CHANNEL_STATUS with
b_channel_status set to IISDNbcsRESTARTING. The message
sets iface and bchannel to a particular interface value received in
L4L3mRESTART.

 L3L4mB_CHANNEL_STATUS

Using L3L4mB_CHANNEL_STATUS, the firmware informs
the host application of B-channel status or when sending an
interface restart.

B-Channel Maintenance

March 2017 1130

When informing the host about interface restarts, the message
sets the bchannel field to 0.
The L3L4mB_CHANNEL_STATUS message to the host
indicates the B-channel state in the following cases:

 A valid SERVICE, SERVICE ACKNOWLEDGE is received
from the far end.

 For National ISDN1/National ISDN2/ NET5 variant type, a
valid B-channel RESTART ACKNOWLEDGE is received.

 For ATT_5ESS/NT_DMS250 switch type & National
ISDN1/National ISDN2 variant or for NET5 variant type, a
valid B-channel RESTART is received.

 The host sends an L4L3mRESTART for restarting
B-channels.

 Timer T316 expires.

 For CCITT Layer 3 connection, timer T308 expires.
The firmware also sends L3L4mB_CHANNEL_STATUS to the
host indicating an interface restart condition when:

 The host sends an L4L3mRESTART for initiating interface
restart.

 L3L4mRESTART

The firmware sends an L3L4mRESTART to the host when it
receives a B-channel or interface RESTART from the far end.
When the far end sends an interface RESTART message,
L3L4mRESTART sets the bchannel and bchannel_mask to 0.
The message sets iface to the particular interface RESTART
value received from the far end. After receiving the B-channel
RESTART message, the L3L4mRESTART message sets the
bchannel or bchannel_mask values.‘

Maintenance Procedures
The far end sends and receives SERVICE and
SERVICE_ACKNOWLEDGE maintenance messages for the
following variants:

 IISDNvarATT_CUSTOM

 IISDNvarNTI_CUSTOM

 IISDNvarNATL_ISDN

B-Channel Maintenance

March 2017 1131

Sending SERVICE Message to the Far-End
The firmware sends a SERVICE message to the far end for each
B-channel when it receives an L4L3mENABLE_B_CHANNEL or
L4L3mDISABLE_B_CHANNEL from the host for the specified
B-channel. There is only one outstanding SERVICE message at a
time (a SERVICE message is outstanding when timer T3M1 is
running and waiting for SERVICE ACKNOWLEDGE from the far
end). The host requests to set the Change Status IE in the SERVICE
message to the IS or OOS state. The firmware starts timer T3M1
after sending the SERVICE message to the far end for a B-channel.

When message sends a SERVICE ACKNOWLEDGE for a B-channel,
the firmware checks its internal table to determine the state
(host-requested) of the B-channel. If the internal table shows the
state:

 OOS for the B-channel, the firmware sets the B-channel state to
OOS.

 A state other than OOS for the B-channel, the B-channel takes
the value received from the far end in the Change Status IE in
SERVICE ACKNOWLEGE message.

The firmware then sends an L3L4mB_CHANNEL_STATUS
message to the host indicating the latest B-channel state.

If the service timer T3M1 expires before receiving the SERVICE
ACKNOWLEDGE, the SERVICE message for the B-channel is again
sent to the far end value and starts the timer T3M1.

SERVICE Message Received from the Far-End
When a SERVICE message is received for a B-channel, the firmware
checks its internal table to determine the state (host-requested) of
the B-channel. If the internal table shows:

 OOS for the B-channel, the firmware sets the B-channel state to
OOS.

 A state other than OOS for the B-channel, the B-channel takes
the value received from the far end in the Change Status IE in
the SERVICE message.

The firmware sends a SERVICE ACKNOWLEDGE message for the
B-channel to the far end with Change Status IE value set to the
latest B-channel state.

B-Channel Maintenance

March 2017 1132

If the host requested to send a SERVICE message for this B-channel
through L4L3mENABLE_B_CHANNEL or
L4L3mDISABLE_B_CHANNEL, the host request is ignored.

Then the firmware sends an L3L4mB_CHANNEL_STATUS
message to the host indicating the latest B-channel state.

Sending RESTART Message to the Far-End
The firmware sends a RESTART (for an interface or B-channel)
message to the far end when it receives an L4L3mRESTART
message from the host. After receiving the RESTART message from
the far end, the restart timer T316 starts.

If the firmware receives a RESTART ACKNOWLEDGE (for
interface or B-channel) message from the far end before timer T316
expires, it sends L3L4mB_CHANNEL_STATUS to the host for
interface/B-channel.

For a National ISDN1/National ISDN2/NET5 switch variant, the
host can use RESTART messages to bring up B-channel.

When the firmware receives a B-channel RESTART
ACKNOWLEDGE message from the far end a National
ISDN1/National ISDN2/NET5 switch variant, it updates the
B-channel state to IS. When the firmware receives interface
RESTART ACKNOWLEDGE, it sets all the B-channels states on the
interface to IS. The firmware also changes the B-channel state to IS
in the internal table that maintains the host requested B-channel
service states.

B-Channel Maintenance

March 2017 1133

When the firmware receives a RESTART ACKNOWLEDGE:

 For the B-channel, it sends the host the latest B-channel state
using L3L4mB_CHANNEL_STATUS.

 For an interface, the firmware sends to the host an
L3L4mPROTOCOL_STATUS message with
b_channel_service_state bitmask for the interface set to state of
B-channels on the interface.

If the restart timer T316 expires before the firmware receives any
RESTART ACKNOWLEDGE message from the far end for the
B-channel or interface and Layer 3 connection type is not CCITT
(ccitt_mode = 0 in L4L3mENABLE_PROTOCOL), a RESTART
message is again sent to the far end and starts the timer T316.

RESTART Message Received from the Far-End
When the firmware receives a RESTART message (for
B-channel/Interface/Group Restart) from the far end, it sends an
L3L4mRESTART (for B-channel/Interface restarts only) to the
host.

The firmware sends
L3L4mCLEAR_WITH_RESTART_REQUEST to the host for all
calls in the affected B-channel (for B-channel /Interface/Group
Restart).

The firmware then sends a RESTART ACKNOWLEDGE
(B-channel/Interface/Group Restart Acknowledge) message to the far
end.

When firmware receives B-channel RESTART message from the far
end for National ISDN1/National ISDN2 variants or for NET5
variant, it takes the following action:

 The firmware updates its internal table that maintains the host
requested B-channel state to show the host requested the
B-channel be In Service (IS). The host is responsible for taking
any B-channel out of service that it wanted OOS.

 The firmware sets the B-channel state to IS and sends an
L3L4mB_CHANNEL_STATUS message to the host with latest
B-channel status. It then sends an L3L4mRESTART message
to the host and a B-channel RESTART ACKNOWLEDGE
message to the far end.

B-Channel Maintenance

March 2017 1134

When the firmware receives Interface RESTART message from the
far end for National ISDN1/National ISDN2 or NET5 variant, it
takes the following action:

 The firmware updates its internal table that maintains the host
requested B-channel state to reflect as if host requested all the
B-channels on the interface be In Service (IS). The host is
responsible for taking any B-channel out of service that it
wanted OOS.

 Firmware sends an L3L4mPROTOCOL_STATUS message to
the host with updated b_channel_service_state for the interface.
It then sends an L3L4mRESTART message to the host and a
RESTART ACKNOWLEDGE message to the far end.

When the firmware receives Group RESTART message from the far
end for National ISDN1/National ISDN2 variants, it takes the
following action:

 The firmware updates its internal table that maintains the host
requested B-channel state to show the host requested all the
B-channels on all 20 interfaces in the NFAS group be In Service
(IS). The host is responsible for taking any B-channel Out Of
Service that it wanted OOS.

 Firmware sends an L3L4mPROTOCOL_STATUS message to
the host with b_channel_service_state updated for all 20
interfaces on the NFAS group. It then sends a RESTART
ACKNOWLEDGE message to the far end.

D-Channel Maintenance

March 2017 1135

D-Channel Maintenance
This section describes the role of the host application when
establishing and releasing the Dialogic® Brooktrout® module’s
ISDN D-channel and when interacting with B-channel maintenance
procedures.

BSMI Messages for D-Channel
For more detail on these BSMI messages, please refer to:

Chapter , Host to Module (L4L3m) Messages, on page 993
Chapter , Module to Host (L3L4m) Messages, on page 1074

 L4L3mENABLE_PROTOCOL

The host application sends L4L3mENABLE_PROTOCOL to
firmware to establish the D-channel.
The field b_channel_service_state in
L4L3mENABLE_PROTOCOL is set to the bitmap that
specifies which B-channels on a specific interface are brought into
service.
The firmware uses the specific b_channel_service_state value to
update its host-requested B-channel service state internal table.
When the host wants to reestablish or release a D-channel LAP-D
connection, it sends L4L3mENABLE_PROTOCOL with epcmd
set to IISDNepcmdDL_ESTABLISHED or
IISDNepcmdDL_RELEASE. The state of B-channels is not
affected when firmware receives the epcmd value.

 L4L3mDISABLE_PROTOCOL

The host sends L4L3mDISABLE_PROTOCOL to the firmware
to close a D-channel.

 L4L3mREQ_PROTOCOL_STATUS

The host application sends
L4L3mREQ_PROTOCOL_STATUS to the firmware to request
information about the state of D-channels or B-channels.

D-Channel Maintenance

March 2017 1136

 L3L4mPROTOCOL_STATUS

The firmware sends L3L4mPROTOCOL_STATUS to the host
application with information about the state of D-channels or
B-channels.
For non-NFAS configurations, status and channels show the state
of D-channel and B-channels respectively. For NFAS
configuration, the n_b_chan_req field shows which B-channels
the host application requested set to IS.
The n_b_channels field shows the B-channels that are actually IS
in the firmware.
The nfas_primary_dchan_status field shows the status of the
primary D-channel in the firmware.
The firmware sends L3L4mPROTOCOL_STATUS to the host
for the following conditions:

 In response to L4L3mENABLE_PROTOCOL from the
host.

 When the state of the D-channel changes in the firmware.

 In response to L4L3mREQ_PROTOCOL_STATUS from
the host.

 For an ATT_5ESS or NT_DMS250 switch and National
ISDN1 or National ISDN2 variant, in response to an
Interface/Group RESTART from the far end.

 For a NET5 variant, in response to an Interface RESTART
from the far end.

 For a Switch Variant of National ISDN1, National ISDN2, or
NET5, in response to an interface RESTART
ACKNOWLEDGE from the far end.

March 2017 1137

Volume 6 - Appendices
About this Volume

Volume 6, Appendices, is a grouping of appendices that relate to the
reference material in Volumes 1 through 5, including:

 Configuration Files
 Bfv API Structures
 Hangup Codes, Cause Codes, Infopkt Parameters
 Call Progress Notes
 Country-specific Parameter Files
 Deprecated and Unsupported Functionality

March 2017 1138

A - Configuration Files

This appendix describes configuration files, defining their structure
and providing instructions for creating each of them.

It has the following sections:

 User-Defined Configuration File

The user-defined configuration file (btcall.cfg) contains
configuration parameters for the Bfv API and driver. See
page 1140.

 Call Control Configuration File

The call control configuration file (callctrl.cfg) contains
configuration parameters that define how the user wants the
Bfv API to configure the modules for call control. See page 1158.
The callctrl.cfg file replaces the teleph.cfg and ecc.cfg files
previously used to define the call control configuration. See
page 1454 if your application uses the teleph.cfg and ecc.cfg
configuration files. The Dialogic® Brooktrout® Bfv API no longer
supports the teleph.cfg and ecc.cfg files so the developer must
convert the application to use the new call control configuration
parameters.

 Routing Table Configuration File

The routing table configuration file contains configuration
parameters that define one or more routing rules which specify
how the user wants to route inbound calls to specific SR140
channels based on information associated with the calls. See
page 1306.

Note: Inbound call routing is only supported on the SR140.

March 2017 1139

 Parameters for Technical Support Purposes

These parameters might be specified for the user-defined
configuration file when seeking assistance from Dialogic
Technical Services and Support. See page 1315.

User-Defined Configuration File

March 2017 1140

User-Defined Configuration File

The user-defined configuration file contains parameters that set
values such as specific fax formatting. The Bfv API supplies a
default configuration file named btcall.cfg in the app.src directory.
The programs in app.src use btcall.cfg.

You can edit the btcall.cfg file with a standard text editor, or
Windows users can edit this file using the Dialogic® Brooktrout®
graphical configuration tool.

For users who have a btcall.cfg file created for a release of the
Bfv API prior to Brooktrout SDK 3.1, delete the following
parameters from the file. These parameters have been removed or
moved to another configuration file as indicated:

Parameter Description

did_digits This DID digit detection parameter has been
modified and moved to the callctrl.cfg file.

did_variable This DID digit detection parameter has been
modified and moved to the callctrl.cfg file.

digital The call control configuration file
(callctrl.cfg) replaces the configuration file
defined by the digital parameter.

isdn The call control configuration file
(callctrl.cfg) replaces the configuration file
defined by the isdn parameter.

line_encoding The call control configuration file
(callctrl.cfg) that replaces the teleph.cfg file

nrings This parameter has been renamed
num_rings and moved to the callctrl.cfg file.

switch_hook This parameter has been renamed
flash_hook_duration and moved to the
callctrl.cfg file.

teleph The call control configuration file
(callctrl.cfg) replaces the configuration file
defined by the teleph parameter.

User-Defined Configuration File

March 2017 1141

The application passes the btcall.cfg file to the BfvLineReset
function which uses the information to reset and initialize the
system. The Bfv API assumes that the btcall.cfg file resides in the
current directory unless you specify a path with the filename.
Different user configuration files can be stored and passed to the
BfvLineReset function as needed. The BfvLineConfig function
can also be used for configuration.

Parameters can be listed in any order and typed in either uppercase
or lowercase or both. Only one parameter per line is permitted.
Parameters must be separated from their values – a decimal integer,
a hexadecimal integer, or a character string – by one or more spaces.
Commas, colons, and dashes are not valid parameter separators. The
default value is automatically supplied for each missing parameter;
and parameters that do not match any of the valid keywords are
ignored. If a parameter appears more than once, the last occurrence
is the one that takes effect.

A parameter applies to all product types unless its description lists a
specific product type. For convenience only, the list of parameters on
the following pages groups the parameters for answer machine
detection at the beginning.

Note: The parameters for answer machine detection only apply to
applications for the Microsoft Speech Server. These
parameters are not supported by the Bfv API in this release.

Normally, whitespace characters (spaces and tabs) should not be
included. To include whitespace, the character string can begin and
end with double quotes (").

The Bfv API treats any line that begins with the # character as a
comment and ignores that line. All character strings that represent
filenames must consist of printable ASCII characters.

User-Defined Configuration File

March 2017 1142

Parameter Purpose
Standard btcall.cfg Parameters
agc Specifies the automatic gain control (AGC) method to use during speech

recording. Does not apply to full duplex recording or for use with ASR.

0 None.

>0 Dynamic AGC; levels adjusted during recording.

Value Type: decimal

Default: 1

badline_behavior Specifies the behavior during non-ECM when a bad line is detected in
received MH or MR data.

Set this parameter to:

0 Replace with last good line.

1 Drop the line.

2 Attempt to repair the line (not available on TruFax®).

Value Type: decimal

Default: 0

bt_cparm Specifies the path and name of the country telephony parameter file to
use.

Value Type: character string

Default: BT_CPARM.CFG
busy_dt_ct Specifies the number of consecutive BUSY1, BUSY2, ROBUSY, or DIALTON

call progress values that must occur before BfvLineOriginateCall
terminates with that result.

Value Type: decimal

Default: 1

call_control Specifies the name of the call control configuration file to use (see
page 1158).

Note: The callctrl.cfg file replaces the teleph.cfg and ecc.cfg files.

Value Type: character string

Default: callctrl.cfg
ced_timeout Specifies the length of time, in 10 ms units, to wait for a fax answer tone

(CED tone) from a remote fax machine. This parameter can only be set if
the host country permits changing the wait_for_ced_high and
wait_for_ced_low (see page 1415) timeout values. The ced_timeout
parameter also controls the amount of time CNG plays.

Maximum value is 65535 (655 seconds).

Value Type: decimal

Default: Country dependent; 4000 (40 secs) in the USA

User-Defined Configuration File

March 2017 1143

channel Specifies a channel number value that allows the user to apply a
user-defined configuration file keyword only to this specific channel. Any
other channel encountering the specified keyword ignores it. Set as
follows:

channel chan_num keyword [keyword_params]

chan_num Specifies the ordinal channel that applies the
keyword.

keyword Specifies the keyword to apply.

[keyword_params] Specifies optional parameters to the keyword.

Example:

channel 8 id_string +1-408-370-1171

This example configures channel 8 with the number of a fax machine.

Restricted Keywords:

The following keywords in this user-defined configuration file (btcall.cfg)
cannot be selected:

call_control
channel
font_file
pcpm_table
tone/pulse (see Note)

Note: When using the btcall.cfg file on a per channel basis, the dialing
type specified for the first channel to execute dictates how the other
channels dial no matter how they are configured. This situation only
occurs when more than one channel executes concurrently. If channel
one dials dtmf digits first and channel two follows but is configured for
pulse dialing, channel two dials dtmf digits too. Use the P or T character
in the dial string of the call to override pulse or tone default dialing
modes.

Value Type: character string
country_code Specifies the international country code with modifiers. Initial digits (up

to 3) identify the host country; the last digit supplies a modifier for
properties such as the phone system attached to the board. The ccode.h
header file contains the available country codes.

Value Type: hexadecimal

Default: 0010 (USA)

Parameter Purpose

User-Defined Configuration File

March 2017 1144

debug Turns on debug mode. The presence of this parameter turns on Bfv API
debug mode using the BfvDebugModeSet(DEBUG_ALL) function call
after the first call to BfvLineReset. The Bfv API only uses this setting
if the application did not already enable debug mode.

You can also specify up to two optional filenames and a maximum file
size, if the application did not previously set a debug function. See
Volume 1, BfvDebugFuncSet, BfvDebugModeSet and
BfvDebugModeSetAdv functions for more detailed information.

The format for setting the parameter is:

debug [fname [fname2 max_size]]

Setting this parameter provides the following options:

 No filename — Turns on debug mode without naming a file, sending
the output to the standard output device.

 One filename — Turns on debug mode, sending the output to the
filename specified.

 Two filenames — Turns on debug mode, sending the output to the
first filename (fname) until the output exceeds the size in bytes
specified by max_size. At this point, the output goes to the second
filename (fname2) until it exceeds the maximum size. Then the
process repeats, going back to writing the output to the first filename.

Different processes using the same filename at the same time might
result in overwriting the file and creating an incomplete debug output. If
you include "%p" in the filename, the Bfv API inserts the process ID at
that point in the name to provide unique file creation.

Value Type: character string

Default: disabled, stdout
debug_options Specifies a bit-mapped value that allows the user to define a set of debug

options. The format for setting the parameter is:

debug_options <option_value>

Defines a bit-mapped value specifying the selected debug options.

Set bit values as follows:

Bit 0 Causes the Bfv API to trace each function entry and exit
point in the Bfv API.

Bit 1 When set in conjunction with bit 0, causes the Bfv API to
trace each function entry and exit point in the Bfv API
and list the arguments and return values for each
function.

Default: 0 (no debug options)

Parameter Purpose

User-Defined Configuration File

March 2017 1145

dtmf_hi_to_lo_twist_idle Specifies the maximum amplitude allowed for a digit’s high frequency to
be louder than its low frequency when detecting DTMF digits while not
playing speech. Set this parameter to:

0 No limit

1 4.2 dB

2 5.2 dB

3 6.7 dB

4 8.2 dB

5 10.2 dB

6 13.2 dB

7 18.2 dB

Range: 0 – 7
Value Type: decimal
Default: 2 (5.2 dB)

dtmf_hi_to_lo_twist_play Specifies the maximum amplitude allowed for a digit’s high frequency to
be louder than its low frequency when detecting DTMF digits during
speech playback. Set this parameter to:

0 No limit

1 4.2 dB

2 5.2 dB

3 6.7 dB

4 8.2 dB

5 10.2 dB

6 13.2 dB

7 18.2 dB

Range: 0 – 7

Value Type: decimal

Default: 4 (8.2 dB)
dtmf_in_to_in_ratio_idle Specifies the minimum difference required between the digit’s highest

signal energy and its next highest signal energy when detecting DTMF
digits while not playing speech.

Unit: 0.5 dB

Range: 2 – 20 (1 – 10 dB)

Value Type: decimal

Default: 16 (8 dB)

Parameter Purpose

User-Defined Configuration File

March 2017 1146

dtmf_in_to_in_ratio_play Specifies the minimum difference required between the digit’s highest
signal energy and its next highest signal energy when detecting DTMF
digits during speech playback.

Unit: 0.5 dB

Range: 2 – 20 (1 – 10 dB)

Value Type: decimal

Default: 6 (3 dB)
dtmf_in_to_out_ratio_idle Specifies the minimum difference required between the digit’s signal

energy and noise energy when detecting DTMF digits while not playing
speech.

Unit: 0.5 dB

Range: 1 – 10 (0.5 – 5 dB)

Value Type: decimal

Default: 8 (4 dB)
dtmf_in_to_out_ratio_play Specifies the minimum difference required between the digit’s signal

energy and noise energy when detecting DTMF digits during speech
playback.

Unit: 0.5 dB

Range: 1 – 10 (0.5 – 5 dB)

Value Type: decimal

Default: 2 (1 dB)
dtmf_lo_to_hi_twist_idle Specifies the maximum amplitude allowed for a digit’s low frequency to

be louder than its high frequency when detecting DTMF digits while not
playing speech. Valid values are:

0 No limit

1 6.7 dB

2 8.2 dB

3 9.2 dB

4 10.7 dB

5 12.7 dB

6 15.2 dB

7 18.2 dB

Range: 0 – 7

Value Type: decimal

Default: 2 (8.2 dB)

Parameter Purpose

User-Defined Configuration File

March 2017 1147

dtmf_lo_to_hi_twist_play Specifies the maximum amplitude allowed for a digit’s low frequency to
be louder than its high frequency when detecting DTMF digits during
speech playback. Valid values are:

0 No limit

1 6.7 dB

2 8.2 dB

3 9.2 dB

4 10.7 dB

5 12.7 dB

6 15.2 dB

7 18.2 dB

Range: 0 – 7

Value Type: decimal

Default: 3 (9.2 dB)
dtmf_min_off_idle Specifies the minimum silence required to determine that a digit has

ended when detecting like DTMF digits while not playing speech.

Specify values for this parameter in 15-ms increments as shown in the
supported values list. If you specify a value that is not included in the
supported values list, the Bfv API rounds the value down to the lowest
supported value. For example, specifying a value of 44 results in an
actual value of 30.

Unit: ms
Legal Values: 30, 45

Value Type: decimal

Default: 45

dtmf_min_off_play Specifies the minimum silence required to determine that a digit has
ended when detecting like DTMF digits during speech playback.

Specify values for this parameter in 15-ms increments as shown in the
supported values list. If you specify a value that is not included in the
supported values list, the Bfv API rounds the value down to the lowest
supported value. For example, specifying a value of 44 results in an
actual value of 30.

Unit: ms
Legal Values: 30, 45

Value Type: decimal

Default: 45

Parameter Purpose

User-Defined Configuration File

March 2017 1148

dtmf_min_on_idle Specifies the minimum duration that a digit must be present in order to
be detected while not playing speech.

Specify values for this parameter in 15-ms increments as shown in the
supported values list. If you specify a value that is not included in the
supported values list, the Bfv API rounds the value down to the lowest
supported value. For example, specifying a value of 44 results in an
actual value of 30.

Unit: ms
Legal Values: 30, 45, 60, 75, 90

Value Type: decimal

Default: 30

dtmf_min_on_play Specifies the minimum duration that a digit must be present in order to
be detected during speech playback.

Specify values for this parameter in 15-ms increments as shown in the
supported values list. If you specify a value that is not included in the
supported values list, the Bfv API rounds the value down to the lowest
supported value. For example, specifying a value of 44 results in an
actual value of 30.

Unit: ms
Legal Values: 30, 45, 60, 75, 90

Value Type: decimal

Default: 45

ecm_enable Turns ECM (error correction mode) on or off. If disabled, MMR fax
compression on the line is unavailable.

The normal ECM frame size is 256 bytes. You can enable a frame size of
64 bytes, but the channel uses that frame size on transmit only. On
receive, it always uses the frame size the transmitter selects.

TruFax® BRI boards do not support ECM. Disabling ECM applies to all
other board types.

T.38 Internet Aware Fax (IAF) modulation requires ECM to be enabled.

0 Turns ECM off.

1 Turns on ECM, 256-byte frames.

2 Turns on ECM, 64-byte frames.

Value Type: decimal

Default: 1

Parameter Purpose

User-Defined Configuration File

March 2017 1149

eff_pt_caps Specifies the enhanced fax format page types that the channel is
permitted to receive.

Values are formed by logically ORing together the base values:

0 Enhanced fax format reception disabled.

1 JPEG.

2 Full color mode (JPEG).

4 Reserved for Huffman tables, do not use.

8 12 bits/pel, otherwise 8 bits/pel (JPEG).

10 No subsampling (JPEG).

20 Custom illuminant (JPEG).

40 Custom Gamut (JPEG).

100 JBIG.

200 L0 Mode (JBIG).

If EFF page reception is enabled, then ECM is automatically enabled for
receive faxes regardless of the setting of ecm_enable.

Not available on TruFax®.

Value Type: hexadecimal

Default: 0

error_mult Specifies an error multiplication value used to determine if the error
percentage on a received page is too high. The number of errors per page
is multiplied by this number and the product is divided by 2. If this
result exceeds the number of lines on the page, the error percentage per
page is too high and an RTN signal is returned to the transmitting
station.

The value set for this parameter should normally be less than that of the
error_mult_rtp parameter (corresponding to a larger percentage). The
RTN threshold takes precedence over the RTP threshold.

Value Type: decimal

Default: 40 (for a 5% error rate)

Parameter Purpose

User-Defined Configuration File

March 2017 1150

error_mult_rtp Specifies an error multiplication value used to determine if the error
percentage on a received page is too high. The number of errors per page
is multiplied by this number and the product is divided by 2. If this
result exceeds the number of lines on the page, the error percentage per
page is too high and an RTP signal is returned to the transmitting
station.

The value set for this parameter should normally be greater than that of
the error_mult parameter (corresponding to a smaller percentage). The
RTN threshold takes precedence over the RTP threshold.

Value Type: decimal

Default: 200 (for a 1% error rate)
error_thresh Specifies an error threshold value of n (2n for fine resolution) number of

consecutive bad G3 lines on a received page. A page with errors in this
number of consecutive lines is considered bad, regardless of the results
from error_mult. An RTN is returned when a “bad” page occurs.

Value Type: decimal

Default: 3

fax_rtp_enable Controls whether an RTP FSK signal can be sent during fax receive.

Set this parameter to:

0 Disabled

1 Enabled

Value Type: decimal

Default: 1 (enabled)
flag_timer Specifies the maximum time to wait for a HDLC frame after detecting

flags for V.21 data.

Unit: ms
Range: maximum value is 65535

Value Type: decimal

Default: 3000

Parameter Purpose

User-Defined Configuration File

March 2017 1151

font_file Specifies the name of the file that contains the transmit/convert font for
ASCII. An optional font number, indicating the downloadable font to
use, can be specified (if no font number is specified, 0 is assumed). The
font file must be located in the current directory, or the correct path
must be included with its name. The file is opened, and the contents
downloaded to the module when BfvLineReset is called using the
mill_load_fonts option. Multiple occurrences of font file parameters with
different font numbers are permitted in the configuration file.

When a font number that is specified for ASCII conversion has not been
downloaded, a default font is used. This is font 255. Font 255 may be
specified using the font_file keyword. If not, it defaults to ibmpcps.fz8
(no path). When font downloads are done as described above, font 255 is
always downloaded regardless of whether other font numbers are listed
using this keyword.

Some font numbers may be reserved for preloaded fonts.

Range for font number: 0 – 6,255

Value Type: character string; decimal can be included and is optional

Default: ibmpcps.fz8 (no path) and 0
iaf_enable Enable (1) or disable (0) T.38 Internet Aware Fax (IAF) modulation.

Error Correction Mode (ECM) must be enabled for IAF. In addition to
this, the T.38 version (t38_fax_version) specified in the Call Control
configuration file must be set to 1 or higher for IAF. The IAF Maximum
Bit Rate parameter (iaf_max_bit_rate) should be used to specify the
maximum bit rate when IAF is enabled.

This parameter applies to the SR140 only. The SR140 must have an IAF
license.

Value Type: decimal

Default: 0 (disabled)
iaf_max_bit_rate Specifies the T.38 Internet Aware Fax (IAF) Maximum Bit Rate. A value

of 0 will choose the default value. The IAF capability parameter
(iaf_enable) should be set to enable. Error Correction Mode (ECM) must
be enabled for IAF. Additionally, the T.38 version (t38_fax_version)
specified in the Call Control configuration file must be set to 1 or higher
for IAF.

This parameter applies to the SR140 only. The SR140 must have an IAF
license.

Unit: bits per second

Range: 14400 to 2400000

Value Type: decimal

Default: 0 (Unlimited up to the IAF license value)

Parameter Purpose

User-Defined Configuration File

March 2017 1152

id_string Sets the default ID string (up to 20 characters long) for fax machines.
The parameter can be overridden by the BfvFaxSetLocalId function if
the host country permits changing the ID string.

Value Type: character string

Default: 20 spaces
line_compression Specifies the permitted compression types for fax transmission or

reception on the phone line. This specification is independent of the file
format specified for transmission or reception. If ECM is disabled, then
MMR fax compression on the line is unavailable.

Valid values are:

0 MH only

1 MR or MH

5 MMR, MR, or MH

The TruFax® board only supports option 0 (MH only) and
option 1 (MR or MH). Default = 1.

Value Type: decimal

Default: 5

max_pagelist Specifies the maximum number of pages allowed for storing results
during a call. The last max_pagelist PAGE_RES structures are accessible
via the FAX_RES structure if this feature has been enabled. See the
LINE_FAX_RES macro.

Value Type: decimal

Default: 30

max_timeout Specifies the maximum time for the Bfv API to delay waiting for activity
to occur on a channel. If any Bfv API function allows specification of a
timeout value, that value takes precedence.

Unit: seconds for values <1000
milliseconds for values 1000 and greater

Range: 0 to 2000000000, 0 = disabled

Value Type: decimal

Default: 0 (disabled)
max_width Sets the maximum page width permitted for fax reception.

Valid values are:

0 215 mm A4 1728 Normal resolution pixels.

1 255 mm B4 2048 Normal resolution pixels.

2 303 mm A3 2432 Normal resolution pixels.

Value Type: decimal

Default: 0

Parameter Purpose

User-Defined Configuration File

March 2017 1153

min_length Specifies the minimum number of lines required for a fax page received
in non-ECM mode. The firmware considers any fax page with fewer lines
invalid and responds with an RTN signal.

Unit: 10 scan lines

Range: 0 – 255

Value Type: decimal

Default: 0

pcpm_table Specifies the path and name of the PCPM (Programmable Call Progress
Monitoring) file that contains the tone table for the channel to use. If the
user does not set this parameter, the Bfv API does not use the
programmable call progress monitoring feature.

Only available on modules with analog or BRI interfaces.

Value Type: character string

Default: None
record_beep_dur Specifies the length of time to play the beep tone before starting to

record speech.

Unit: ms

Range: 10 – 10000

Value Type: decimal

Default: 500

record_beep_freq Specifies the frequency of the beep tone that plays before starting to
record speech.

Unit: Hz

Range: 300 – 2500

Value Type: decimal

Default: 500

reorder_busy_min_dur Allows you to adjust the lower detection threshold for reorder busy tone.

If the duration of the high and low of the tone cadence is less than this
value, the cadence will not be reported as reorder busy tone. Use a
smaller value than the default to detect a shorter cadence as reorder
busy tone.

Unit: ms

Value Type: decimal

Default: 220

Note: Large adjustments to the default value are not recommended.

Parameter Purpose

User-Defined Configuration File

March 2017 1154

restrict_res Specifies allowable resolutions for fax reception.

Values are formed by ORing together the following values:

0 200H x 100V (normal) and 100H x 100V (for JPEG only)

1 200H x 200V (fine)

2 200H x 400V

4 300H x 300V

8 400H x 400V

10 300H x 600V

20 400H x 800V

40 600H x 600V

80 600H x 1200V

100 1200H x 1200V

Regardless of the value chosen, 200H x 100V (normal) and 100H x 100V
(for JPEG only) is always allowed.

The TruFax® board only supports option 0 (200H x 100V only) and
option 1 (200H x 200V). No JPEG for option 0.

Value Type: hexadecimal

Default: 1

silcompr_start Compresses silence at the start of recording to the time specified in
milliseconds when silence compression is enabled.

Unit: ms

Value Type: decimal

Default: 500

silcompr_middle Compresses silence in the middle of the recording to the time specified
in milliseconds when silence compression is enabled.

Unit: ms
Value Type: decimal
Default: 1000

Parameter Purpose

User-Defined Configuration File

March 2017 1155

subpwdsep Enables reception of the SUB, PWD, and SEP FSK signals. Applications
typically use these signals to direct or validate incoming calls.

To form values, OR together the following base values:

0 SUB, PWD, and SEP reception disabled.
1 SEP reception enabled.
2 PWD reception enabled.
4 SUB reception enabled.

Not available on TruFax®.

Value Type: decimal
Default: 0

tone/pulse Specifies the default dialing mode when using either the T1 Robbed Bit
Signaling (RBS) protocol or an analog interface. Valid values are:

pulse Channel uses pulse dialing mode as the default mode.

tone Channel uses DTMF tone dialing as the default mode.

Note: Although the default value for the tone/pulse keyword applies to
all calls, you can override this value on a per call basis by including
either the P or T character in the dial string of the call.

Value Type: character string

Default: tone

t38_v21preamble_repeat Controls whether T.38 will send additional copies of the V21preamble
flag. Sending additional copies increases robustness and is the default
behavior but can cause difficulties for some devices.

0 Do not repeat V21preamble.
1 Repeat V21preamble

Value Type: decimal

Default: 0

v_play_gain Specifies the initial gain value for speech playback.

A positive value indicates a step up; a negative value indicates a step
down. The gain steps are the same as those controlled by
BfvSpeechModify.

Unit: A factor of 2 for each step up or down

Range: –3 to +3

Value Type: decimal

Default: 0

Parameter Purpose

User-Defined Configuration File

March 2017 1156

v_timeout Specifies the maximum time (in seconds) to wait after the last dialed
digit for a final call progress result. Use only when you select
CALL_PROTOCOL_VOICE mode.

This parameter only applies to the use of BfvLineOriginateCall and
BfvLineOrigCallDB.

Unit: second
Value Type: decimal
Default: 60

v34_2400_baud_ctrl Turns the use of high speed control signaling on (1) or off (0) for V.34.

Value Type: decimal

Default: 1 (enabled)
v34_ci_enable Turns the ability to detect and send the Call Indicator (CI) signal on (1)

or off (0) in order to enter V.8 mode and V.34 mode after missing the
initial CED tone.

Value Type: decimal

Default: 1 (enabled)
v34_enable Turns V.34 fax modulation capability on (1) or off (0) if the hardware

and firmware support it. When V.34 actually occurs and V.34 fax is
enabled, ECM is used regardless of the setting of ecm_enable (see
page 1148). Set only for the TR1034 and SR140.

Value Type: decimal

Default: 1 (enabled)

Parameter Purpose

User-Defined Configuration File

March 2017 1157

The following sample file does not include all configuration options.
See the supplied btcall.cfg file, located in the config directory.

country_code 0010
id_string First_Fax
v_timeout 10
font_file ibmpcps.fz8
max_pagelist 25

v34_max_bit_rate Maximum bit rate the V.34 modem can negotiate. Except for the value
0xFF, this parameter overrides the btcparm.cfg max_bitrate parameter.

0 2400 bps

2 4800 bps

1 7200 bps

3 9600 bps

4 12000 bps

5 14400 bps

6 16800 bps

7 19200 bps

8 21600 bps

9 24000 bps

10 26400 bps

11 28800 bps

12 31200 bps

13 33600 bps

255 Generic; maximum supported by board/firmware

Value Type: decimal

Default: 0xFF

width_res_behavior Specifies the action taken as a result of page width or resolution
mismatches on fax transmission. Does not affect fax reception. Scaling
the fax is not available for all combinations of resolution mismatches.

0 Terminates the call

1 Scales the fax horizontally and vertically

Value Type: decimal

Default: 1

Parameter Purpose

Call Control Configuration File

March 2017 1158

Call Control Configuration File

The call control configuration file is an ASCII file that contains
general PCM configuration parameters for all telephony hardware
units and static telephony connections to be formed for all modules.
Users of Windows operating systems can use the graphical
configuration tool to edit the callctrl.cfg file that Dialogic supplies
with the Brooktrout SDK (see the Dialogic® Brooktrout® Fax
Products SDK Installation and Configuration Guide for instructions
on how to use this tool).

The call_control parameter in the user-defined configuration file (see
page 1142) specifies the path and filename of the call control
configuration file (the Bfv API uses callctrl.cfg as the default value).
The application uses the BfvLineReset function to pass the
btcall.cfg file that contains all the telephony configuration
information (callctrl.cfg) for the Dialogic® Brooktrout® modules to
the Bfv API. This function uses the information to reset and
initialize the system. The callctrl.cfg file contains configurations for
ISDN layer 1 and layer 2 regardless of the selected protocol.

A sample callctrl.cfg file is located in the config directory. Separate
examples of analog, BRI, E1 ISDN (PRI), and T1 ISDN configuration
files start on page 1280, and additional sample telephony
configuration files are also located in the config directory.

This section describes the content of the call control configuration
file as follows:

 Call Control Configuration File Format

 Global Options

 Global Module Parameters

 Clock Configuration Parameters

 Port Configuration Parameters

 Specific Parameters for Port Configuration

 Internet Protocol (IP) Call Control Configuration Parameters

 Examples of PSTN Call Control (callctrl.cfg) Files

Call Control Configuration File

March 2017 1159

Call Control Configuration File Format
The general format of the file is:

Global options Parameters that select trace options.

l3l4_trace=XXXX
l4l3_trace=XXXX
api_trace=XXXX
internal_trace=XXXX
host_module_trace=XXXX
ip_stack_trace=XXXX
trace_file=XXXX
max_trace_file_size=XXXX
max_trace_files=XXXX

Global module
parameters

Parameters that set configuration values for the whole module.

[module.#]
set_api=XXXX
auto_connect=XXXX
connections=XXXX
pcm_law=XXXX
jate_redial_restriction=XXXX
jate_emergency_numberN=XXXX
channels=XXXX
vb_firm=XXXX (only set if application uses a virtual module)
enable_static_ring_detection=XXXX

Generic clock
configuration
parameters

Parameters that set the clock configuration for the whole module.

[module.#/clock_config]
clock_mode=XXXX
clock_source=XXXX
clock_compatibility=XXXX
Advanced H.100 and H.110 options can follow here

Port configuration
parameters

Parameters that identify the port to configure for the selected
signaling protocol. Port-specific configuration parameters allow the
user to set protocol or interface options depending on the value set in
the port_config parameter.

[module.#/port.#]
port_config=XXXX
Port-specific configuration options can follow here

Call Control Configuration File

March 2017 1160

IP call control stack
parameters for Bfv API

This section includes parameters that identify the internet protocol
(IP) call control stack for the Bfv API to use. Dialogic provides an IP
call control stack with the Brooktrout SDK or users can provide a
third party stack of their own choosing.

The section also includes parameters to define the T.38 fax transport
for the Bfv API and a means for the IP call control stack to read
custom key-value pairs from the call control configuration file.

[host_module.#]
enabled=XXXX
module_library=XXXX

[host_module.#/t38parameters]
The specific T.38 fax transport parameters can go here

[host_module.#/rtp]
Specific RTP parameters can go here

[host_module.#/parameters]
Custom key-value pairs can go here

Ethernet interface
parameters

Parameters that define the module’s Ethernet interface.

[module.#/ethernet.#]
dhcp=XXXX
ethernet_speed=XXXX
ip_address=XXXX
ip_addressV6=XXXX
ip_arp_timeout=XXXX
ip_broadcast=XXXX
ip_gateway=XXXX
ip_interface=XXXX
ip_interfaceV6=XXXX
ip_netmask=XXXX
media_port_min=XXXX
media_port_max=XXXX

Call Control Configuration File

March 2017 1161

IP call control stack
parameters for module

Parameters that identify the internet protocol (IP) call control stack
for the module to use.

[module.#/host_cc.#]
host_module=XXXX
number_of_channels=XXXX

The format of this call control configuration file allows you to set the
port configuration options for multiple ports in a single module and
configure multiple modules in a single file. The example formatting
of the file uses nesting only to improve the readability of the code —
the file does not require use of this technique.

Note: Do not add multiple host module sections using the same
Dynamic Link Library (DLL) or Shared Object (SO) file. The
DLL and SO will attempt to use the same resources and will
conflict with one another.

Specify one host module and set the sip_max_session or
h323_max_session to the maximum number of simultaneous
calls needed by the application. The host module section
defines a pool of SIP or H.323 sessions that are distributed
among both TRxStream and SR140 devices.

Call Control Configuration File

March 2017 1162

Global options The global options set parameters that affect operation of the entire
call control component of the Bfv API. These parameters select the
type of tracing and indicate where to store the traced data.

module.# The module number refers to the BOSTON module number.
Parameter values set for module.# configure the whole board or
virtual module. Refer to the Dialogic® Brooktrout® Fax Products
SDK Installation and Configuration Guide, Chapter 1 for more
details.

module.#/
clock_config

The module.#/clock_config section of the configuration file
contains both generic clocking parameters and specific clocking
parameters depending on the interface connection.

Note: For users porting from a teleph.cfg configuration file, the
clock_config section replaces the configuration information
previously provided for Port 0. The callctrl.cfg file does not
configure Port 0 as the CT bus.

module.#/port.# The port.# of module.#/port.# refers to the number of the
hardware unit on the module, and the port_config parameter
beneath (see page 1159) refers to the signaling protocol the port uses.

host_module.# The host_module.# section provides parameters to define an
internet protocol (IP) call control stack for the Bfv API to use.

This configuration section also allows you to configure:

 T.38 fax transport parameters for the Bfv API.

 RTP parameters for the Bfv API.

 Custom key-value pairs for the IP call control stack to read from
the configuration file.

module.#/ethernet.# The module.#/ethernet.# section provides parameters to define
an Ethernet interface for a module, allowing support for modules
with multiple interfaces.

module.#/host_cc.# The module.#/host_cc.# section provides parameters to define an
IP call control stack for the module to use.

All module and port numbers are in hexadecimal. Text strings are
not case sensitive and only use ASCII format.

Comment lines in the file should start with a ‘;’ (semicolon) or a ‘#’
(pound or number) symbol.

Call Control Configuration File

March 2017 1163

If you configure module 0, the settings apply to all modules in the
system. If you configure module 0 and also configure settings for a
specific module, the settings for the specific module apply to its
configuration.

Each parameter has a default value that the system uses if you do
not specify a value in the configuration file. The Bfv API defined the
default values so that the result provides a working configuration if
you do not specify values.

Four sections of parameters define the configuration of a module. If
your application uses an IP call control stack, the remaining three
sections of parameters apply.

The parameter sections include:

 Global options (see page 1164)

 Global module parameters (see page 1166)

 Clock configuration parameters (see page 1174) including
parameters that configure the specific clocking parameters
depending on the interface connection (see page 1176)

 Port configuration parameters (see page 1178)

 IP call control stack parameters for Bfv API (see page 1234)

 Module’s Ethernet interface parameters (see page 1272)

 IP call control stack parameters for a module (see page 1277)

The following paragraphs define the parameters for these sections.

Call Control Configuration File

March 2017 1164

Global Options
The following parameters affect operation of the entire call control
component of the Bfv API. Specify these parameters at the beginning
of your call control configuration file (see page 1282 for an example
of a file containing settings for these parameters).

Parameter Value
l3l4_trace Selects the type of tracing as follows:

l3l4_trace Traces BSMI messages between layers 3
and 4.

l4l3_trace Traces BSMI messages between layers 4
and 3.

api_trace Traces call control activity to and from the
Bfv API functions.

internal_trace Traces call control activity in areas not
otherwise covered. Dialogic’s engineering
personnel use this tracing — application
developers are not advised to select this type
of tracing.

host_module_trace Traces call control activity to and from all
host modules defined in your call control
configuration file (see host_module on
page 1277).

ip_stack_trace Traces call control activity to and from all
IP stack module libraries defined in your call
control configuration file (see
module_library on page 1234).

Note: Selecting more than one type of tracing at a time results in
duplication.

Set any of these six parameters to one of the following values:

none Does not perform a trace operation (default value).

error Detects errors and stores them in the specified
trace_file.

warning Detects warnings and stores them in the specified
trace_file.

basic Stores a simplified trace in the specified trace_file.

verbose Stores a complete trace of operations in the specified
trace_file.

Default: none (no trace performed)

l4l3_trace
api_trace
internal_trace
host_module_trace
ip_stack_trace

Call Control Configuration File

March 2017 1165

trace_file Turns on tracing and reports results to the filename specified for this
parameter.

To turn off tracing, comment this parameter out.
max_trace_file_size Specifies the maximum size, in megabytes, allowed for the trace file. If

the trace of operations reaches this size, tracing loops back to the start of
the file and the continued trace starts overwriting the older trace.

0 Sets the trace file to an unlimited size.

Unit: Megabytes

Default: 10

max_trace_files Specifies the maximum number of trace files for the Bfv API to retain on
the system’s file system.

When set to a value greater than 1, the Bfv API appends a sequence
number extension to the file name, starting at 1. If the number of
created trace files exceeds the value set for this parameter, the Bfv API
starts deleting files from the lowest numbered trace log until it frees
sufficient disk space to store the last created file. To prevent deleting
older files, set the maximum number of trace files to a large number.

Range: 1 through 999

Default: 1

Parameter Value

Call Control Configuration File

March 2017 1166

Global Module Parameters
Set the following parameters to define configuration information
that applies to the whole module (module.#). Set values for these
parameters when you begin to define the configuration of a module
(see page 1282).

Parameter Value
set_api Selects the ISDN layer that the Bfv API uses to configure layer

configuration parameters that apply to all protocols supported by the
module.

Use set_api=bfv for all non-ISDN telephony protocols. When the
module uses an ISDN protocol, set this parameter to either value.

BFV Causes the Bfv API to configure parameters for layer 2 and
layer 3 in addition to configuring layer 1 parameters.

BSMI Causes the Bfv API to configure parameters only for layer 1.

When you specify BSMI as the value for set_api, your
application must configure the parameters for layer 2 and
layer 3; otherwise, the Bfv API ignores these parameters.

Default: BFV

auto_connect Specifies a Boolean value that determines whether the call control
system automatically connects the logical channels and the B-channels
on the trunks. Set this parameter to:

FALSE Does not make connections. When you specify this value, the
application must make the connections for those Dialogic®
Brooktrout® modules where you can make connections using
software.

TRUE Automatically connects DSP channels and ports.

Default: TRUE

Call Control Configuration File

March 2017 1167

connections Specifies a filename that contains a list of connections defining the
relationship between the source and destination ports. This feature is
not supported on analog and BRI boards, except those which also
support H.100 (mezzanine board required).

If you specify a filename as the value for this parameter, create the file
using the following format:

[
connect conn_mode src_port_class src_unit src_stream
src_slot dest_port_class ...
connect conn_mode src_port_class src_unit src_stream
src_slot dest_port_class ...
...
]

Each of these lines begins with the keyword connect, and is followed in
order by the connection mode, source port class, unit, stream, and slot,
and the destination port class, unit, stream, and slot. The meanings of
these values follow.

If you use this parameter to specify connections, the call control ignores
any value set in the auto_connect parameter.

conn_mode

Specifies the relationship between the source (S) and destination (D)
ports with one of the following values. The value 7 is normally used.
1 Transmit only
2 Receive only
3 Full duplex
7 Full duplex with signaling
9 Transmit only, SD inverted
A Receive only, SD inverted
B Full duplex, SD inverted
F Full duplex with signaling, SD inverted

src_port_class

Specifies the source telephony resource port class. Specify the value
in hexadecimal.
0 Channel
E Bus (for example, H.100)
F Network (T1 or E1)

Parameter Value

Call Control Configuration File

March 2017 1168

connections
(continued)

src_port_unit

Specifies the source resource port unit number for the source port
class. If the class is 0 (channel), then the port unit value indicates
the logical channel number. (When using Bfv Line Attach, the Bfv
API sets the ordinal channel value to n – 2 where n is the logical
channel number.)

src_stream

Specifies the source resource stream number.

src_slot

Specifies the source resource time slot number.

dest_port_class

Specifies the destination telephony resource port class. Specify this
value in hexadecimal.
0 Channel
E Bus (for example, H.100)
F Network (T1 or E1)

dest_port_unit

Specifies the destination resource port unit number for the
destination port class. If the class is 0 (channel), then the port unit
value indicates the logical channel number. (When using
BfvLineAttach, the Bfv API sets the ordinal channel value to n – 2
where n is the logical channel number.)

dest_stream

Specifies the destination resource stream number.

dest_slot

Specifies the destination resource time slot number.

Default: No filename specified; the Bfv API does not make any
connections.

Parameter Value

Call Control Configuration File

March 2017 1169

pcm_law Selects the PCM coding of the port. Call control also uses the value set
for this parameter when establishing calls on protocols such as ISDN
that provide layer 3 signaling using the pcm law.

ALAW Configures the module to use A-law PCM on the ports and
CTbus.

MULAW Configures the module to use Mu-law PCM on the ports
and CTbus.

Default: Depends on the configuration of the first port on the
module.

ALAW if the port configuration is E1 or BRI.

MULAW if the port configuration is T1 or Analog or
Inactive.

jate_redial_
restriction

Specifies a value to configure for Japan’s JATE redial restriction that
prevents too many redials to the same called number.

The Bfv API automatically activates this parameter for calls when the
user sets the parameter country_code to JAPAN in the btcall.cfg
user-defined configuration file (see page 1143).

The Bfv API defines an unsuccessful attempt as a call that does not
receive a CONNECT within 50 seconds or receives a DISCONNECT
with a cause code indicating that the called party is busy.

none Specifies that the number can be redialed any number of
times.

15times Specifies that the B-channel cannot make more than 15
consecutive unsuccessful calls to the same called party.

3in3mins Specifies that the B-channel only allow 3 rejected calls to
occur within 3 minutes.

The 3-minute timer starts after the first unsuccessful
attempt to connect to a called party number. After the
timer expires, the application can redial the same called
party with the restriction applied again.

Default: 3in3mins

Parameter Value

Call Control Configuration File

March 2017 1170

jate_emergency_
numberN

Specifies a value that allows the application to supply one of a series of
emergency numbers that can be redialed without restriction when the
application applies the JATE redial restriction. The parameter allows
you to specify up to 10 (ECC_MAX_EMERG_NUMS) different
emergency numbers as:

jate_emergency_numberN = XXXX

where N indicates the series value from 0 through 9 and
XXXX supplies the emergency telephone number to associate with the
N value.

When the module includes a redial restriction and the called party
matches one of the numbered values, the module does not restrict the
call. If you do not specify a called party number, the module redials all
calls according to the specified restriction. If you define less than 10
numbers, use the lower numbers first (for example:
jate_emergency_number0, jate_emergency_number1,
jate_emergency_number2, and so on).

Set this parameter as follows:

Range: 1 through 255 character string (ECC_MAX_DIGIT_STR - 1) to
specify the associated called party number.

Specifies the called party number assigned to the
jate_emergency_numberN series number where N is a value
from 0 through 9. Use the lower numbers first for the series.

Default: Blank

Parameter Value

Call Control Configuration File

March 2017 1171

channels Specifies the number of channels on either a hardware or virtual module
configured to receive a firmware download.

Note: This parameter only applies when using the Boston Host Service
(bostservice). If you use the service, you must start it before you
start any applications (see your installation and configuration
guide for instructions).

When the firmware is downloaded to a module for the first time, the
assigned ordinal channel numbers start wherever the assignment left
off on the previous module. As the system initializes the modules, this
numbering process creates a continuous ordering of the channel
assignments across all the modules in the system. On later downloads,
each module’s ordinals begin at the same location, regardless of any
decrease or increase in the channel count of a lower-numbered module.
Therefore, if you decrease the channel count for a lower numbered
module, the process creates gaps in the channel numbering
assignments, possibly affecting your application. If you attempt to
increase the channel count above any module’s initial channel count, the
system ignores the added channels.

For the following situations, restart the driver whenever you want to:

1. Get a continuous assignment of channel numbers after decreasing
the channel count on any module.

2. Increase the number of channels above a module’s initial channel
count.

Note: If you installed the Boston driver as a Plug and Play driver,
you must reboot the system to restart the driver.

Set this parameter as follows:

0 Specifies downloading the firmware to the default value of
the number of channels on the module.

1 – 1024 Specifies a value defining the number of channels on the
module configured to receive a firmware download.

Range: 1 – 1024 (not to exceed the maximum number of available
channels on the module).

Value Type: decimal

Default: 0

Parameter Value

Call Control Configuration File

March 2017 1172

vb_firm Indicates that the module is a virtual module and specifies the filename
of the shared library that contains the loadable firmware for the virtual
module.

Note: This parameter only applies when using the Boston Host Service
(bostservice). If you use the service, you must start it before you
start any applications (see your installation and configuration
guide for instructions).

Default: No default. Absence of the parameter indicates that the
module is not a virtual module.

static_ring_detect_enable Specifies whether to turn static ring detection mode on or off for a
module’s inbound calls.

When you turn on static ring detection mode on a module’s
configuration, your application must explicitly turn on the ring detection
behavior on each call control channel that your application uses to
receive inbound calls (see Volume 2, BfvCallRingDetect function).

Set this parameter to:

FALSE Turns static ring detection mode off for the module’s inbound
calls.

TRUE Turns static ring detection mode on for the module’s inbound
calls.

Default: TRUE

Parameter Value

Call Control Configuration File

March 2017 1173

Unchangeable Internal Parameters
This section lists parameters that the user might find in the
configuration file when manually editing the file.

Do not modify or delete any of these parameters when manually editing
the call control configuration file.

The configuration tool adds these parameters to the configuration
file. The presence or absence of any of these parameters only affects
the configuration tool.

Parameter Value
model Indicates a value that identifies the name of a module. The

configuration tool uses the value in this parameter as the cached
information that identifies the module when in offline mode.

Example:

TR1034+P4V4FH-E1-N

exists Indicates the state of a module. Set this parameter to:

0 Module does not exist

1 Module exists
cc_type Indicates the type of call control the module is configured to use. Set this

parameter to:

0 PSTN call control

1 IP call control
virtual If present in the file, this parameter indicates that the module is a

virtual module.

When the parameter is absent, configuration applies to a hardware
module.

Call Control Configuration File

March 2017 1174

Clock Configuration Parameters
In the module.#/clock_config section of the call control
configuration file, set one or both of the following parameters to
configure the clock for the module.

Parameter Value
clock_mode Specifies a value that determines whether the module drives the clock

on the CT bus or receives its clocking from the CT bus. Set this
parameter to:

MASTER Configures the module to drive the clock on the
CT bus.

SLAVE Configures the module to receive clocking from the
CT bus.

Default: MASTER

clock_source Specifies the source of the clock used to drive the CT bus. Set this
parameter only if you set the value for clock_mode to master. The
module derives its clock from:

Internal The internal oscillator.

TrunkA The network trunk, port A.

TrunkB The network trunk, port B.

TrunkC The network trunk, port C.

TrunkD The network trunk, port D.

TrunkE The network trunk, port E.

TrunkF The network trunk, port F.

TrunkG The network trunk, port G.

TrunkH The network trunk, port H.

Netref1 The H.100/H.110 network reference (1) clock.

Netref2 The H.100/H.110 network reference (2) clock.

clock_a The H.100/H.110 A clock.

clock_b The H.100/H.110 B clock.

Default: TrunkA

Note: If you configure a port as inactive and inadvertently select it as
the clock_source, the system cannot operate.

Call Control Configuration File

March 2017 1175

clock_compatibility Specifies a value that determines how the module controls the
MVIP-compatible clock signal. Set this parameter to:

NONE Does not configure the module to control compatible clocking.

MVIP For a module configured as the primary clocking source,
setting this value configures the module to generate an MVIP
clock signal.

For a module configured as the secondary clocking source,
setting this value configures the module to receive its clock
signal from the MVIP bus.

Default: NONE

Call Control Configuration File

March 2017 1176

Advanced H.100 and H.110 Parameters
Set the following parameters for a module configured to use an
H.100 or H.110 bus connection.

Parameter Value
bus_speed Defines the speed of the H.100 bus when set to one of the following

values:

2 Sets the bus speed to 2 MHz.

4 Sets the bus speed to 4 MHz.

8 Sets the bus speed to 8 MHz.

Default: 2 (2 MHz)
master_drive Specifies the H.100 clock that the primary module drives. Set this

parameter to one of the following values only if you set the value in the
clock_mode parameter to MASTER.

Clock_A Configures the primary module to drive the A clock on
the H.100 bus.

Clock_B Configures the primary module to drive the B clock on
the H.100 bus.

Default: Clock_A

slave_source Specifies the H.100 clocks that the secondary module uses. Set this
parameter to one of the following values only if you set the value in the
clock_mode parameter to SLAVE.

Clock_A Configures the secondary module to source its clocking
from clock A on the H.100 bus and enables clock B for
auto-fallback if clock A fails.

Clock_B Configures the secondary module to source its clocking
from clock B on the H.100 bus and enables clock A for
auto-fallback if clock B fails.

Clock_A_ Configures the secondary module to source its
Nofallback clocking from clock A on the H.100 bus without

enabling auto-fallback if clock A fails.

Clock_B_ Configures the secondary module to source its clocking
nofallback from clock B on the H.100 bus without enabling

auto-fallback if clock B fails.

Default: Clock_A

Call Control Configuration File

March 2017 1177

master_ref_fallback Specifies the source of the fallback clock used to drive the CT bus if the
value specified for the clock_source parameter should fail. Set this
parameter only if you set the value for clock_mode to master.

Internal The module derives its fallback clock from the internal
oscillator.

TrunkA The module derives its fallback clock from network trunk,
port A.

TrunkB The module derives its fallback clock from network trunk,
port B.

TrunkC The module derives its fallback clock from network trunk,
port C.

TrunkD The module derives its fallback clock from network trunk,
port D.

TrunkE The module derives its fallback clock from network trunk,
port E.

TrunkF The module derives its fallback clock from network trunk,
port F.

TrunkG The module derives its fallback clock from network trunk,
port G.

TrunkH The module derives its fallback clock from network trunk,
port H.

Netref1 The module derives its fallback clock from the
H.100/H.110 network reference (1) clock.

Netref2 The module derives its fallback clock from the
H.100/H.110 network reference (2) clock.

clock_a The module derives its fallback clock from the
H.100/H.110 A clock.

clock_b The module derives its fallback clock from the
H.100/H.110 B clock.

Disabled The module does not have a fallback clock defined. Using
this value prevents a fallback from occurring.

Default: Disabled

Note: If you configure a port as inactive and inadvertently select it as
the clock_source, the system cannot operate.

The Bfv API automatically sets the fallback clock to Disabled if
the system does not have a Trunk B.

Parameter Value

Call Control Configuration File

March 2017 1178

Port Configuration Parameters
Set the following parameters when you begin to define the
configuration of a port.

The Bfv API supports specific configuration parameters for the
following protocols and line interfaces that the port might use:

 Analog Direct Inward Dialing (DID) (see page 1182)

 Analog Loop Start (see page 1185)

 ISDN Basic Rate Interface (BRI) (see page 1189)

 E1 ISDN Primary Rate Interface (PRI) (see page 1197)

 E1 CAS (see page 1205)

 E1 CAS R2 (see page 1209)

 E1 and T1 QSIG (see page 1211)

 T1 ISDN Primary Rate Interface (PRI) (see page 1220)

 T1 Robbed Bit Signaling (RBS) (see page 1228)

 To define the configuration of a port:

1. Set a value for the port_config parameter.

2. Set values for the remaining port configuration parameters as
applicable.

3. Set the configuration-specific parameters for the port depending
on the value specified for the port_config parameter.

Call Control Configuration File

March 2017 1179

Parameter Value
port_config Specifies one of the following values that defines the CT bus or line type

to configure for the port.

INACTIVE Disabled port

ANALOG Analog Loop Start line

ANALOG_DID Analog Direct Inward Dialing (DID) line

BRI Basic Rate Interface

E1_ISDN E1 ISDN

E1_CAS E1 CAS

E1_R2_CAS E1 CAS R2

E1_DPNSS E1 DPNSS (not supported in this release)

E1_QSIG E1 QSIG

T1_QSIG T1 QSIG

T1_ISDN T1 ISDN

T1_ROBBED_BIT T1 RBS

Default: INACTIVE

Note: Any port defined as INACTIVE completes configuration
requirements for the port. The configuration-specific parameters
that start on page 1181 do not apply to inactive or disabled ports.

fractional_
start_channel

Specifies the zero-based index value of the first channel available on the
port.

If you do not specify this parameter, the Bfv API assumes that the full
port is available.

When you configure a fractional port, the auto_connect (see page 1166)
feature only connects the channels in use.

The valid values are:

0 – 29 E1 (all types)

0 – 22 T1 ISDN

0 – 23 T1 RBS

Range: 0 – 29

Default: 0

Call Control Configuration File

March 2017 1180

fractional_
channel_count

Specifies a value that indicates the number of channels available on the
fractional port. Use this parameter in conjunction with the
fractional_start_channel parameter.

Note: Set this parameter to –1 when not using fractional channels.
Setting this parameter to 0 makes zero B-channels available.

Valid values are:

–1 Indicates that a fractional port is not in use.

0 – 29 Indicates the number of available E1 channels on the
fractional port.

0 – 22 Indicates the number of available T1 ISDN channels on the
fractional port.

0 – 23 Indicates the number of available T1 RBS channels on the
fractional port.

Range: –1, 0 – 29

Default: –1

wait_for_service_
timeout

Specifies a value that indicates the amount of time to wait for a trunk to
come into service before returning an error when placing an outbound
call. If this timeout expires, the outbound call fails. If the trunk comes
into service before this timeout expires, the system places the call
normally.

Unit: second

Range: 0 – 10,000

Default: 10

Parameter Value

Call Control Configuration File

March 2017 1181

Specific Parameters for Port Configuration
After setting one or more parameters to configure the port, proceed
to one of the following pages to set the protocol variant or interface
parameters for the port. For each value you set for the port_config
parameter, you must continue to configure the port by setting the
configuration parameters that specifically relate to the selected
port_config as follows:

 Analog Direct Inward Dialing (DID) — see page 1182
 Analog Loop Start — see page 1185
 ISDN BRI — see page 1189
 E1 ISDN — see page 1197
 E1 CAS — see page 1205
 E1 CAS R2 — see page 1209
 E1 and T1 QSIG — see page 1211
 T1 ISDN — see page 1220
 T1 RBS — see page 1228

Call Control Configuration File

March 2017 1182

Configuration Parameters for Analog
Direct Inward Dialing (DID) Ports
Set one or more of the following parameters to configure a port that
uses an analog DID protocol (see page 1290 for an example
configuration file).

Parameter Value
did_offset Specifies a value that defines the number of digits to remove from the

beginning of the string of DID digits (see max_did_digits on page 1230)
received from the network. If max_did_digits is set to 0, or if the number
of DID digits received is less than the number specified by
max_did_digits, this parameter has no effect. Set this parameter to:

0 Does not remove any DID digits.

1 – 255 Specifies the number of digits to remove.

Range: 0 through 255

Default: 0

did_timeout Specifies a value that defines the maximum timeout allowed before
processing the call after assuming receipt of the last DID digit. Set this
parameter to:

0 Indicates no waiting time.

1 – 20 Specifies the number of seconds to allow after receiving the
last DID digit before processing the call.

Unit: second

Range: 0 through 20

Default: 5 (used when the Bfv API does not find another value for this
parameter).

input_gain Specifies a value that defines the number of decibels (dB) to increase or
decrease the power of the incoming audio signal on the phone line. Set
this parameter to:

+6 Increases the amount of gain by +6 dB.

0 Does not increase or decrease the amount of gain.

–6 Decreases the amount of gain by –6 dB.

Unit: 1 dB

Range: +6 through –6

Default: 0

Call Control Configuration File

March 2017 1183

line_coef Specifies one of the following values that defines the impedance and
other electrical characteristics of the line:

0 Specifies an impedance of 600 ohms (Ω).

1 Specifies an impedance of 900 Ω.

2 Specifies impedance and electrical characteristics conforming
to the CTR21 standard (270 Ω + 750 Ω || 150 nF).

3 Specifies impedance and electrical characteristics conforming
to standards for Australia and New Zealand
(220 Ω + 820 Ω || 120 nF).

4 Specifies impedance and electrical characteristics conforming
to standards for Slovakia, Slovenia, and South Africa
(220 Ω + 820 Ω || 115 nF).

5 Specifies impedance and electrical characteristics conforming
to standards for China (200 Ω + 600 Ω || 100 nF).

Default: 0 (600 ohms)
max_did_digits Specifies a value that defines the maximum number of DID digits to

expect before accepting an incoming call. Set this parameter to:

0 Turns off waiting for DID digits.

1 – 255 Specifies the number of digits.

Range: 0 through 255

Default: 0

Note: The system only reports the expected number of DID digits (the
value specified for max_did_digits) to the application even if the
number of DID digits it received from the network exceeds the
number specified for max_did_digits.

output_gain Specifies a value that defines the number of decibels (dB) to increase or
decrease the power of the outgoing audio signal on the phone line. Set
this parameter to:

+6 Increases the amount of gain by +6 dB.

0 Does not increase or decrease the amount of gain.

–6 Decreases the amount of gain by –6 dB.

Unit: 1 dB

Range: +6 through –6

Default: 0

Parameter Value

Call Control Configuration File

March 2017 1184

Other Parameters In addition to the configuration-specific parameters for an analog
DID port, the Bfv API also uses parameters from the
BT_CPARM.CFG file to configure lines. See BT_CPARM.CFG
Parameter File on page 1417 for descriptions and values for the
following parameters.

 loopcur_debounce
 loopcur_len
 min_on_hook
 pre_wink
 post_wink

protocol_file Specifies the name of the analog DID protocol file to load for the port.
This parameter dictates the protocol that runs on the port. Set this
parameter to:

immediatedial.lec

winkstart.lec

Default: winkstart.lec

reject_incomplete_did Specifies the action to take when the number of DID digits received from
the incoming call is less than the number of digits specified for the
max_did_digits parameter. Set this parameter to:

FALSE Reports the call to the application even if the number of
received DID digits is less than the max_did_digits value.
The system takes this action when the number of digits
collected remains incomplete after the did_timeout period.

TRUE Automatically sends the network a reject message that
causes the network to drop the call. The application does not
receive any notification of the call, but the system plays a fast
busy tone to the caller.

Default: FALSE

Parameter Value

Call Control Configuration File

March 2017 1185

Configuration Parameters for Analog
Loop Start Ports
Set one or more of the following parameters to configure an analog
loop start port (see page 1282 for an example configuration file).

Parameter Value
caller_id Specifies a value that indicates whether detection of V.23-based caller

ID has been enabled. Set the parameter as follows:

DISABLED Turns off detection of V.23-based caller ID.

ENABLED Turns on detection of V.23-based caller ID.

Note: In North America and some other locations, the system sends the
caller ID signal between the first and second rings. To detect the
caller ID correctly, you must set the num_rings (page 1187)
parameter to a value of 2 or greater to prevent the system from
reporting the call to the application before the caller ID has been
sent by the Central Office.

Default: ENABLED

country Specifies the name of the file that matches a binary file containing the
country coefficients to use for the port.

Range: Maximum of 256 characters (_MAX_PATH)

Default: None
did_offset Specifies a value that defines the number of digits to remove from the

beginning of the string of DID digits (see max_did_digits on page 1230)
received from the network. If max_did_digits is set to 0, or if the number
of DID digits received is less than the number specified by
max_did_digits, this parameter has no effect. Set this parameter to:

0 Does not remove any DID digits.

1 – 255 Specifies the number of digits to remove.

Range: 0 through 255

Default: 0

flash_hook_
duration

Specifies a value that defines the duration of a flash hook signal. This
parameter defines the amount of time to place the line on hook during a
flash hook.

Unit: 10 ms

Range: 1 – 500

Default: 50

Call Control Configuration File

March 2017 1186

input_gain Specifies a value that defines the number of decibels (dB) to increase or
decrease the power of the incoming audio signal on the phone line. Set
this parameter to:

+6 Increases the amount of gain by +6 dB.

0 Does not increase or decrease the amount of gain.

–6 Decreases the amount of gain by –6 dB.

Unit: 1 dB

Range: +6 through –6

Default: 0

loop_reversal_
for_connect

Specifies how to interpret a loop reversal signal as an audio path
connection indication. Set this parameter to:

DISABLED Ignores loop reversal as an indication of audio path
connection.

ENABLED Interprets loop reversal as an indication of audio path
connection.

Default: DISABLED

loop_reversal_
for_disconnect

Specifies how to interpret a loop reversal signal as a call disconnect
indication. Set this parameter to:

DISABLED Ignores loop reversal as a call disconnect signal.

ENABLED Interprets loop reversal as a call disconnect signal.

Default: DISABLED

max_did_digits Specifies a value that defines the maximum number of DID digits to
expect before accepting an incoming call. This parameter is only valid
when you set the country_code parameter to JAPAN in the user-defined
configuration file (see page 1143). Set this parameter to:

0 Disables waiting for DID digits.

1 – 4 Specifies the number of digits to expect before accepting an
incoming call.

Range: 0 through 4

Default: 0

Parameter Value

Call Control Configuration File

March 2017 1187

missing_wait Specifies a value that defines the amount of time that the system must
pause before dialing after it detects a missing dial initiation character.
(In the GUI tool for Windows users, this parameter is called Dial
Initiation Character Timeout.) Dial initiation characters are:

‘,’ (comma) Causes a one-second pause.

‘w’ Waits for dial tone.

‘;’ (semicolon) Causes a five-second pause.

‘i’ or ‘I’ Causes a five-second pause.

Unit: 10 ms

Range: 0 through 1000

Default: 100 (1 second)
num_rings Specifies a value that defines the number of rings the system must

detect before the system reports a new incoming call to the application.

Range: 1 to 255

Default: 2

output_gain Specifies a value that defines the number of decibels (dB) to increase or
decrease the power of the outgoing audio signal on the phone line. Set
this parameter to:

+6 Increases the amount of gain by +6 dB.

0 Does not increase or decrease the amount of gain.

–6 Decreases the amount of gain by –6 dB.

Unit: 1 dB

Range: +6 through –6

Default: 0

protocol_file Specifies the full path and name of the protocol file to load for the analog
port. Most of the time a path should be used for this file name. Values
include:

analog_loopstart_europe.lec

analog_loopstart_us.lec

Makes calls using the specified loop start protocol.

Default: analog_loopstart_us.lec

Parameter Value

Call Control Configuration File

March 2017 1188

Other Parameters In addition to the configuration-specific parameters for an analog
port, the Bfv API also uses parameters from the BT_CPARM.CFG
file to configure analog lines. See BT_CPARM.CFG Parameter File
on page 1417 for descriptions and values for the following
parameters.

 dial_tone_min dtone_len
 dtone_timeout_highbyte dtone_timeout_lowbyte
 loopcur_timeout loop_seizure
 loop_max_break max_interdigit
 min_on_hook pulse_break
 pulse_inter_time pulse_make
 pulse_max_break pulse_min_break
 ring_blank ring_len
 tone_inter_time tone_len

transfer_variant Specifies the transfer method that the network (refer to the vendor
specifications for your switch) runs for call transfers or disables call
transfer. Set this parameter to:

NONE Disables call transfer.

HOOKFLASH Specifies a hook flash transfer.

Default: HOOKFLASH

The SR140 does not support call transfer.

Parameter Value

Call Control Configuration File

March 2017 1189

Configuration Parameters for BRI Ports
Set one or more of the following parameters to configure a BRI port
(see page 1284 for an example configuration file).

Note: The CO emulation (emulation) is only used during a test
environment. The BRI emulation, in particular, is only used on
Port A of the BRI board.

Parameter Value
call_type Specifies the call type to use when making the outbound call. Use one of

the following values for this parameter:

AUTO Makes a call using the modem type and then automatically
retries the call using the voice type if the other end cannot
accept modem calls.

MODEM Makes a modem (3.1 kHz audio) call. This setting provides
higher quality audio for the call.

SPEECH Makes a voice call.

Default: AUTO

datalink Defines whether to configure the port’s call switch for a point-to-point or
point-to-multipoint circuit. Set this parameter to:

AUTO Automatically detects the datalink setting.

POINT2POINT Configures for a point-to-point circuit.

POINT2MULTIPOINT Configures for a point-to-multipoint circuit.

Default: AUTO

default_caller_id_
channel_0

Specifies a string of up to 15 characters that provides the caller ID to use
when placing outbound calls on channel 0. If the user application
provides a caller ID when placing a call, the system ignores this
parameter.

Unit: character string

Range: 1 – 15 (_ECC_MAX_ANI_LENGTH)

Default: <blank>
default_caller_id_
channel_1

Specifies a string of up to 15 characters that provides the caller ID to use
when placing outbound calls on channel 1. If the user application
provides a caller ID when placing a call, the system ignores this
parameter.

Unit: character string

Range: 1 – 15 (_ECC_MAX_ANI_LENGTH)

Default: <blank>

Call Control Configuration File

March 2017 1190

did_offset Specifies a value that defines the number of digits to remove from the
beginning of the string of DID digits (see max_did_digits on page 1191)
received from the network. If max_did_digits is set to 0, or if the number
of DID digits received is less than the number specified by
max_did_digits, this parameter has no effect. Set this parameter to:

0 Does not remove any DID digits.

1 – 255 Specifies the number of digits to remove.

Range: 0 through 255

Default: 0

did_timeout Specifies a value that defines the maximum timeout allowed before
processing the call after assuming receipt of the last DID digit. Set this
parameter to:

0 Indicates no waiting time.

1 – 20 Specifies the number of seconds to allow after receiving the
last DID digit before processing the call.

Unit: second

Range: 0 through 20

Default: 10 (used when the Bfv API does not find another value for
this parameter)

disable_call_proceed Specifies a value that determines whether the system sends a CALL
PROCEEDING indication after receiving a SETUP message from the
network. Set this parameter to:

FALSE Indicates that the system sends a CALL PROCEEDING
message after receiving a SETUP message from the network.

TRUE Indicates that the system does not send a CALL
PROCEEDING message after receiving a SETUP message
from the network.

Default: FALSE

disable_conn_ack Specifies whether the system sends a connection acknowledgment after
receiving a connect message from the network. Set this parameter to:

FALSE The system sends a connection acknowledgment message
after receiving a connect message from the network.

TRUE The system does not send a connection acknowledgment
message after receiving a connect message from the network.

Default: FALSE

Parameter Value

Call Control Configuration File

March 2017 1191

emulation Specifies whether to configure the trunk for Central Office (CO) or
Customer Premise Equipment (CPE) protocol emulation. Set this
parameter for testing purposes only.

CO Emulates the CO protocol.

CPE Emulates the CPE protocol.

Default: CPE

max_did_digits Specifies a value that defines the maximum number of DID digits to
expect before accepting an incoming call. Set this parameter to:

0 Disables waiting for DID digits.

1 – 255 Specifies the number of digits to expect before accepting an
incoming call.

Range: 0 through 255

Default: 0

Note: The system can report all of the DID digits it received from the
network to the application even if the number of received DID
digits exceeds the number specified for max_did_digits. To remove
the excess digits, set the did_offset parameter (see page 1190) so
that the system only passes the expected number of digits to the
application.

max_overlapped_digits Specifies the maximum number of digits to send when the application
supports overlapped dialing for longer phone numbers. Set this
parameter to:

0 Disables support for overlapped dialing.

Range: 1 – 24 (IISDN_MAX_DIGITS)

Default: 20

Parameter Value

Call Control Configuration File

March 2017 1192

msn_x Specifies a value that allows the application to supply one of a series of
multiple subscriber numbers (MSN) to acknowledge. The parameter
allows you to specify up to 10 different MSN numbers as:

msn_x = XXXX

where x indicates the series value from 0 through 9 and XXXX supplies
the multiple subscriber telephone number to associate with the x value.

When you set one or more of the ten numbers and the port operates in
point-to-multipoint mode, the port only acknowledges incoming calls to a
called party that matches one of the numbered values. If you do not
specify a value for this parameter, the port answers all calls presented to
it. If you define less than 10 numbers, use the lower numbers first (for
example: msn_0, msn_1, msn_2, and so on). Valid values are:

Unit: character string

Range: 1 through 15 (_ECC_MAX_ANI_LENGTH) to specify the
associated called party number.

Specifies the called party number assigned to the msn_x series number
where x is a value from 0 through 9. Use the lower numbers first for the
msn_x series.

Default: <blank>
numbering_plan Specifies a value that identifies the type of numbering plan used for

outbound calls (called party number). Set this parameter to:

ISDN Indicates that the port uses an ISDN numbering plan.

PRIVATE Indicates that the port uses a private numbering plan.

TELEPHONY Indicates that the port uses a telephony numbering
plan.

UNKNOWN Indicates that the port uses an unknown numbering
plan.

Default: UNKNOWN

Parameter Value

Call Control Configuration File

March 2017 1193

numbering_type Specifies a value that identifies the type of telephone number used for
outbound calls (called party number). Set this parameter to:

ABBREVIATED Indicates that the port uses an abbreviated
numbering type.

INTERNATIONAL Indicates that the port uses an international
numbering type.

NATIONAL Indicates that the port uses a national (North
American) numbering type.

SUBSCRIBER Indicates that the port uses a subscriber
numbering type.

UNKNOWN Indicates that the port uses an unknown
numbering type.

Default: UNKNOWN

preferred Specifies a value that causes outbound calls to set a use preference for
the B channel when the port uses a point-to-multipoint circuit.

Set this parameter only if the port uses a point-to-multipoint circuit. If
other devices share the BRI line with the Dialogic® Brooktrout®
hardware, you must set this parameter to TRUE to make the B channel
setting preferred on outbound calls. If you set the parameter to FALSE,
making the B channel setting exclusive for an outbound call, the port’s
point-to-multipoint circuit cannot operate. Set this parameter to:

FALSE Sets the B channel to exclusive on outbound calls.

TRUE Sets the B channel to preferred on outbound calls.

Default: TRUE

presentation Specifies a value that indicates the type of presentation of the calling
party number the port uses when placing an outbound call. Set this
parameter to:

ALLOWED Indicates that the port allows presentation of the
calling party number to the called party.

NUM_NOT_AVAIL Indicates that the port does not have a calling
party number specified to present to the called
party.

RESTRICTED Indicates that the port restricts presentation of the
calling party number to specific called party
numbers.

APP_DEFINED Indicates that the application passes in the value
for this parameter.

Note: You should set the parameter to NUM_NOT_AVAIL when connected
to a public network.

Default: ALLOWED

Parameter Value

Call Control Configuration File

March 2017 1194

redirect_as_calling_party Specifies a value that selects an option to use the redirect number as the
calling party number reported to the application. Set this parameter to:

FALSE Causes the system to use the original calling party number as
the number reported to the application.

TRUE Causes the system to use the redirect number as the calling
party number reported to the application. Selecting this
option removes any association between the original calling
party number and the call.

Default: FALSE

reject_incomplete_did Specifies the action to take when the number of DID digits received from
the incoming call is less than the number of digits specified for the
max_did_digits parameter. Set this parameter to:

FALSE Sends an alerting or proceeding message to the network and
reports the call to the application even if the number of
received DID digits is less than the max_did_digits value.
The system takes this action when the number of digits
collected remains incomplete after the did_timeout period or
when it receives a sending complete informational
element (IE).

TRUE Sends the network a reject message that causes the network
to drop the call. The application does not receive any
notification of the call.

Default: FALSE

Parameter Value

Call Control Configuration File

March 2017 1195

screening Specifies a value that indicates whether the port provides and validates
the calling party number passed to the called party. Set this parameter
to:

NETWORK_PROVIDED

Indicates that the network validates the calling party number.

USER_NOT_SCREENED

Indicates that the port provides the calling party number without
validating it.

USER_VERIFICATION_FAILED

Indicates that the port failed to validate the calling party number.

USER_VERIFICATION_PASSED

Indicates that the port provided the calling party number and
passed a successfully validated number to the called party.

APP_DEFINED

Indicates that the application passes in the value for this
parameter.

Note: Set the parameter to USER_NOT_SCREENED when connected to a
public network.

Default: USER_NOT_SCREENED

send_dialcomplete Specifies whether the system sends an informational element (IE) for
outbound calls that indicates the end of dialing. Set this parameter to:

FALSE Indicates that the port does not transmit a DIAL
COMPLETE message on outbound calls.

TRUE Requests the system to transmit a DIAL COMPLETE
message on outbound calls.

Default: TRUE

spid Specifies a value that indicates a number assigned as a service profile
identifier (SPID). The USA sometimes uses this identifier but European
nations do not. Leave the parameter blank unless the service requires
an identifier.

Unit: character

Range: 1 – 15 (_ECC_MAX_ANI_LENGTH)

Default: <blank>

Parameter Value

Call Control Configuration File

March 2017 1196

transfer_variant Specifies the transfer method that the network (refer to the vendor
specifications for your switch) runs for call transfers, or disables call
transfer.

The SR140 does not support call transfer.

Set this parameter to:

NONE Disables call transfer.

ETSI_EXP_LINK Specifies an ETSI transfer with explicit linkage.

ETSI_IMP_LINK Specifies an ETSI transfer with implicit linkage.

If the Bfv API cannot perform implicit linkage
because there are more than two calls on the
D-channel, the Bfv API performs explicit linkage.

NTT Specifies a JATE active redirecting transfer.

NTT_MP Specifies a JATE active redirecting transfer for
a point to multipoint configuration.

Default: ETSI_IMP_LINK

Note: NTT is the default value when the user sets the parameter
country_code to JAPAN in the btcall.cfg user-defined
configuration file (see page 1143).

NTT_MP is the default value when the user sets the
country_code value to JAPAN and the datalink parameter
value to POINT2MULTIPOINT (see page 1189).

wait_for_conn_ack Specifies whether the system waits for the network to acknowledge a
connect request before notifying the application that a call has been
answered. Set this parameter to:

FALSE Specifies that the system does not wait for the network to
acknowledge a connect request before advancing an incoming
call to the connected state.

TRUE Requests the system to wait for the network to acknowledge a
connect request before advancing an incoming call to the
connected state.

Default: FALSE

Parameter Value

Call Control Configuration File

March 2017 1197

Configuration Parameters for E1 ISDN
Ports
Set one or more of the following parameters to configure an E1 ISDN
port (see page 1285 for an example configuration file).

Parameter Value
call_type Specifies the call type to use when making the outbound call. Use one of

the following values for this parameter:

AUTO Makes a call using the modem type and then automatically
retries the call using the voice type if the other end cannot
accept modem calls.

MODEM Makes a modem (3.1 kHz audio) call. This setting provides
higher quality audio for the call.

SPEECH Makes a voice call.

Default: AUTO

crc Specifies a value that indicates whether the port has cyclical
redundancy checking (CRC) turned on. Set this parameter to:

DISABLED Turns off CRC for the port.

ENABLED Turns on CRC for the port.

Default: ENABLED

default_caller_id Specifies a string of up to 15 characters that provides the caller ID to use
when placing outbound calls. If the user application provides a caller ID
when placing a call, the system ignores this parameter.

Unit: character string

Range: 1 – 15 (_ECC_MAX_ANI_LENGTH)

Default: Blank
did_offset Specifies a value that defines the number of digits to remove from the

beginning of the string of DID digits (see max_did_digits on page 1199)
received from the network. If max_did_digits is set to 0, or if the number
of DID digits received is less than the number specified by
max_did_digits, this parameter has no effect. Set this parameter to:

0 Does not remove any DID digits.

1 – 255 Specifies the number of digits to remove.

Range: 0 through 255

Default: 0

Call Control Configuration File

March 2017 1198

did_timeout Specifies a value that defines the maximum timeout allowed before
processing the call after assuming receipt of the last DID digit. Set this
parameter to:

0 Indicates no waiting time.

1 – 20 Specifies the number of seconds to allow after receiving the
last DID digit before processing the call.

Unit: second

Range: 0 through 20

Default: 10 (used when the Bfv API does not find another value for
this

parameter)
disable_call_proceed Specifies a value that determines whether the system sends a CALL

PROCEEDING indication after receiving a SETUP message from the
network. Set this parameter to:

FALSE Indicates that the system sends a CALL PROCEEDING
message after receiving a SETUP message from the network.

TRUE Indicates that the system does not send a CALL
PROCEEDING message after receiving a SETUP message
from the network.

Default: FALSE

disable_conn_ack Specifies whether the system sends a connection acknowledgment after
receiving a connect message from the network. Set this parameter to:

FALSE The system sends a connection acknowledgment message
after receiving a connect message from the network.

TRUE The system does not send a connection acknowledgment
message after receiving a connect message from the network.

Default: FALSE

emulation Specifies whether to configure the trunk for Central Office (CO) or
Customer Premise Equipment (CPE) protocol emulation. Use this
parameter for testing purposes only.

Valid values include:

CO Emulates the CO protocol.

CPE Emulates the CPE protocol.

Default: CPE

line_coding Specifies a value defining the type of line encoding to use for the port.
Set this parameter to:

AMI Selects Alternate Mark Inversion.

HDB3 Selects High Density Bipolar Order 3.

Default: HDB3

Parameter Value

Call Control Configuration File

March 2017 1199

line_impedance Specifies a value that defines the line impedance the port uses. Set this
parameter to:

75 Specifies that the port uses an impedance value of 75 ohms.

120 Specifies that the port uses an impedance value of 120 ohms.

Default: 120

max_did_digits Specifies a value that defines the maximum number of DID digits to
expect before accepting an incoming call. Set this parameter to:

0 Disables waiting for DID digits.

1 – 255 Specifies the number of digits to expect before accepting an
incoming call.

Range: 0 through 255

Default: 0

Note: The system can report all of the DID digits it received from the
network to the application even if the number of received DID
digits exceeds the number specified for max_did_digits. To remove
the excess digits, set the did_offset parameter (see page 1197) so
that the system only passes the expected number of digits to the
application.

max_overlapped_digits Specifies the maximum number of digits to send when the application
supports overlapped dialing for long phone numbers. Set this parameter
to:

0 Disables support for overlapped dialing.

Range: 1 – 24 (IISDN_MAX_DIGITS)

Default: 20

numbering_plan Specifies a value that identifies the type of numbering plan used for
outbound calls (called party number). Set this parameter to:

ISDN

Indicates that the port uses an ISDN numbering plan.

PRIVATE

Indicates that the port uses a private numbering plan.

TELEPHONY

Indicates that the port uses a telephony numbering plan.

UNKNOWN

Indicates that the port uses an unknown numbering plan.

Default: UNKNOWN

Parameter Value

Call Control Configuration File

March 2017 1200

numbering_type Specifies a value that identifies the type of telephone number used for
outbound calls (called party number). Set this parameter to:

ABBREVIATED

Indicates that the port uses an abbreviated numbering type.

INTERNATIONAL

Indicates that the port uses an international numbering type.

NATIONAL

Indicates that the port uses a national (North American) numbering
type.

SUBSCRIBER

Indicates that the port uses a subscriber numbering type.

UNKNOWN

Indicates that the port uses an unknown numbering type.

Default: UNKNOWN

presentation Specifies a value that indicates the type of presentation of the calling
party number the port uses when placing an outbound call. Set this
parameter to:

ALLOWED

Indicates that the port allows presentation of the calling party
number to the called party.

NUM_NOT_AVAIL

Indicates that the port does not have a calling party number
specified to present to the called party.

RESTRICTED

Indicates that the port restricts presentation of the calling party
number to specific called party numbers.

Note: You should set the parameter to NUM_NOT_AVAIL when connected
to a public network.

Default: ALLOWED

Parameter Value

Call Control Configuration File

March 2017 1201

protocol Specifies the type of protocol variant to use for the port. Set this
parameter to:

EURO

NET-5 standard for PRI connections throughout Europe (also
referred to as Euro-ISDN). Choosing this variant changes the
layer 2 protocol timers to their appropriate NET-5 defaults.

1TR6

1TR6 standard for PRI connections in Germany.

VN3

VN3 standard for France.

Q931

General ITU-T Q.931 conformance.
Jate

INS-1500 for Japan.

Default: EURO

reject_incomplete_did Specifies the action to take when the number of DID digits received from
the incoming call is less than the number of digits specified for the
max_did_digits parameter. Set this parameter to:

FALSE Sends an alerting or proceeding message to the network and
reports the call to the application even if the number of
received DID digits is less than the max_did_digits value.
The system takes this action when the number of digits
collected remains incomplete after the did_timeout period or
when it receives a sending complete informational element
(IE).

TRUE Sends the network a reject message that causes the network
to drop the call. The application does not receive any
notification of the call.

Default: FALSE

sabme Specifies whether the port sends layer 2 Set Asynchronous Balanced
Mode Extended (SABME) messages. Set this parameter to:

FALSE Indicates that the port does not send SABME messages.

TRUE Indicates that the port sends layer 2 SABME messages.

Default: TRUE (default when emulation = CPE)

FALSE (default when emulation = CO)

Parameter Value

Call Control Configuration File

March 2017 1202

screening Specifies a value that indicates whether the port provides and validates
the calling party number passed to the called party. Set this parameter
to:

NETWORK_PROVIDED

Indicates that the network validates the calling party number.

NONE

Indicates that the port does not provide a calling party number to
the called party.

USER_NOT_SCREENED

Indicates that the port provides the calling party number without
validating it.

USER_VERIFICATION_FAILED

Indicates that the port failed to validate the calling party number.

USER_VERIFICATION_PASSED

Indicates that the port provides the calling party number and
passes a successfully validated number to the called party.

Note: You should set the parameter to USER_NOT_SCREENED when
connected to a public network.

Default: USER_NOT_SCREENED

send_dialcomplete Specifies whether the system sends an informational element (IE) for
outbound calls that indicates the end of dialing. Set this parameter to:

FALSE Indicates that the port does not transmit a DIAL
COMPLETE message on outbound calls.

TRUE Requests the system to transmit a DIAL COMPLETE
message on outbound calls.

Default: TRUE

send_restart Specifies a Boolean value that determines whether the system sends a
RESTART message after re-establishing layer 2. Set the field as follows:

FALSE Indicates that the system does not send a RESTART message
after re-establishing layer 2.

TRUE Indicates that the system sends a RESTART message after
re-establishing layer 2.

Default: FALSE

Parameter Value

Call Control Configuration File

March 2017 1203

switch_type Specifies a value indicating the type of switch used for the board
connection. Set this parameter to:

ATT_4ESS

AT&T #4 ESS.

ATT_5ESS

AT&T #5 ESS.

NTI_DMS100

Nortel DMS-100.

NTI_DMS250

Nortel DMS-250.

MD110_T1

Selects Ericsson MD-110 switch for North America.

MD110_E1

Selects Ericsson MD-110 switch (International).

SIEMENS

Siemens.

NTT

Japan.

UNKNOWN

Selects a switch type that complies with the ITU-T standards.

Default: UNKNOWN (ITU-T compliant)
transfer_variant Specifies the transfer method that the network (refer to the vendor

specifications for your switch) runs for call transfers or disables call
transfer.

The SR140 does not support call transfer.

Set this parameter to:

NONE Disables call transfer.

ETSI_EXP_LINK Specifies an ETSI transfer with explicit linkage.

NTT Specifies a JATE active redirecting transfer.

Default: ETSI_EXP_LINK

Note: NTT is the default value when the user sets the parameter
country_code to JAPAN in the btcall.cfg user-defined
configuration file (see page 1143).

Parameter Value

Call Control Configuration File

March 2017 1204

wait_for_conn_ack Specifies whether the system waits for the network to acknowledge a
connect request before notifying the application that a call has been
answered. Set this parameter to:

FALSE Specifies that the system does not wait for the network to
acknowledge a connect request before advancing an incoming
call to the connected state.

TRUE Requests the system to wait for the network to acknowledge a
connect request before advancing an incoming call to the
connected state.

Default: FALSE

Parameter Value

Call Control Configuration File

March 2017 1205

Configuration Parameters for E1 CAS
Ports
Set one or more of the following parameters to configure an E1 CAS
port (see page 1285 for an example configuration file).

Parameter Value
caller_id Specifies a value that indicates whether detection of V.23-based caller

ID has been enabled. Set this parameter to:

DISABLED Turns off detection of V.23-based caller ID.

ENABLED Turns on detection of V.23-based caller ID.

Note: In North America and some other locations, the system sends the
caller ID signal between the first and second rings. To detect the
caller ID correctly, you must set the num_rings (page 1187)
parameter to a value of 2 or greater to prevent the system from
reporting the call to the application before the caller ID has been
sent by the Central Office.

Default: ENABLED

crc Specifies a value that indicates whether the port has cyclical
redundancy checking (CRC) turned on. Set this parameter to:

DISABLED Turns off CRC for the port.

ENABLED Turns on CRC for the port.

Default: ENABLED

did_offset Specifies a value that defines the number of digits to remove from the
beginning of the string of DID digits (see max_did_digits on page 1207)
received from the network. If max_did_digits is set to 0, or if the number
of DID digits received is less than the number specified by
max_did_digits, this parameter has no effect. Set this parameter to:

0 Does not remove any DID digits.

1 – 255 Specifies the number of digits to remove.

Range: 0 through 255

Default: 0

Call Control Configuration File

March 2017 1206

did_timeout Specifies a value that defines the maximum timeout allowed before
processing the call after assuming receipt of the last DID digit. Set this
parameter to:

0 Indicates no waiting time.

1 – 20 Specifies the number of seconds to allow after receiving the
last DID digit before processing the call.

Unit: second

Range: 0 through 20

Default: 10 (used when the Bfv API does not find another value for
this

parameter).
flash_hook_
duration

Specifies a value for the duration of a flash hook signal. This parameter
defines the amount of time to place the line on hook (loop current
dropped) during a flash hook. Set the value in units of 10 ms.

Unit: 10 ms

Range: 1 – 500

Default: 50

line_coding Specifies a value defining the type of line encoding to use for the port.
Set this parameter to:

AMI Selects Alternate Mark Inversion.

HDB3 Selects High Density Bipolar Order 3.

Default: HDB3

line_impedance Specifies a value that defines the line impedance the port uses. Set this
parameter to:

75 Specifies that the port uses an impedance value of 75 ohms.

120 Specifies that the port uses an impedance value of 120 ohms.

Default: 120

loop_reversal_
for_connect

Specifies how to interpret a loop reversal signal as an audio path
connection indication. Set this parameter to:

DISABLED Ignores loop reversal as an indication of audio path
connection.

ENABLED Interprets loop reversal as an indication of audio path
connection.

Default: DISABLED

Parameter Value

Call Control Configuration File

March 2017 1207

loop_reversal_
for_disconnect

Specifies how to interpret a loop reversal signal as a call disconnect
indication. Set this parameter to:

DISABLED Ignores loop reversal as a call disconnect signal.

ENABLED Interprets loop reversal as a call disconnect signal.

Default: DISABLED

max_did_digits Specifies a value that defines the maximum number of DID digits to
expect before accepting an incoming call. Set this parameter to:

0 Disables waiting for DID digits.

1 – 255 Specifies the number of digits to expect before accepting an
incoming call.

Range: 0 through 255

Default: 0

Note: The system can report all of the DID digits it received from the
network to the application even if the number of received DID
digits exceeds the number specified for max_did_digits. To remove
the excess digits, set the did_offset parameter (see page 1205) so
that the system only passes the expected number of digits to the
application.

num_rings Specifies a value that defines the number of rings the system must
detect before the system reports a new incoming call to the application.
Set this parameter to:

Range: 1 to 255

Default: 2

Note: In North America and some other locations, the system sends the
caller ID signal between the first and second rings. To detect the
caller ID correctly, you must set the num_rings parameter to a
value of 2 or greater to prevent the system from reporting the call
to the application before the caller ID has been sent by the Central
Office.

protocol_file Specifies the full path and name of the protocol file to load for the E1
CAS port. Most of the time a path should be used for this file name. Set
this parameter to:

fxo_groundstart.lec

fxo_loopstart.lec

fxs_groundstart.lec

fxs_loopstart.lec

Default: fxs_loopstart.lec

Parameter Value

Call Control Configuration File

March 2017 1208

reject_incomplete_did Specifies the action to take when the number of DID digits received from
the incoming call is less than the number of digits specified for the
max_did_digits parameter. Set this parameter to:

FALSE Sends an alerting or proceeding message to the network and
reports the call to the application even if the number of
received DID digits is less than the max_did_digits value.
The system takes this action when the number of digits
collected remains incomplete after the did_timeout period or
when it receives a sending complete informational element
(IE).

TRUE Sends the network a reject message that causes the network
to drop the call. The application does not receive any
notification of the call.

Default: FALSE

require_answer_signal Specifies whether line signaling must be used to detect call answer. Set
this parameter to:

FALSE Specifies that either line signaling or call progress can detect
call answer.

TRUE Specifies that only line signaling can detect call answer (call
progress only detects failed calls — for example, reorder
busy).

Default: FALSE

transfer_variant Specifies the transfer method that the network (refer to the vendor
specifications for your switch) runs for call transfers or disables call
transfer.

The SR140 does not support call transfer.

Set this parameter to:

NONE Disables call transfer.

HOOKFLASH Specifies a hook flash transfer.

Default: HOOKFLASH

Parameter Value

Call Control Configuration File

March 2017 1209

Configuration Parameters for E1 CAS
R2 Ports
Set one or more of the following parameters to configure an E1 port
using an R2 variant of a channel associated signaling (CAS) protocol
(see page 1286 for an example configuration file).

Parameter Value
crc Specifies a value that indicates whether the port has cyclical

redundancy checking (CRC) enabled. Set this parameter to:

DISABLED Turns off CRC for the port.

ENABLED Turns on CRC for the port.

Default: ENABLED

default_caller_id Specifies a string of up to 15 characters that provides the caller ID to use
when placing outbound calls. If the user application provides a caller ID
when placing a call, the system ignores this parameter.

Unit: character string

Range: 1 – 15 (_ECC_MAX_ANI_LENGTH)

Default: Blank
line_coding Specifies a value defining the type of line encoding to use for the port.

Set this parameter to:

AMI Selects Alternate Mark Inversion (AMI).

HDB3 Selects High Density Bipolar Order 3 (HDB3).

Default: HDB3

line_impedance Specifies a value that defines the line impedance the port uses. Set this
parameter to:

75 Specifies that the port uses an impedance value of 75 ohms.

120 Specifies that the port uses an impedance value of 120 ohms.

Default: 120

max_did_digits Specifies a value that defines the maximum number of DID digits to
expect before accepting an incoming call. Set this parameter to:

0 Disables waiting for DID digits.

1 – 255 Specifies the number of digits to expect before accepting an
incoming call.

Range: 0 through 255

Default: 0

Note: The system can report all of the DID digits it received from the
network to the application even if the number of received DID
digits exceeds the number specified for max_did_digits.

Call Control Configuration File

March 2017 1210

protocol_file Specifies the full path and name of the file containing the configuration
for the R2 variant of a channel associated signaling (CAS) protocol. This
parameter dictates which R2 CAS protocol runs on the port. Set this
parameter to:

itu_argentina.r2 Selects the protocol file for Argentina.

itu_brazil.r2 Selects the protocol file for Brazil.

itu_china.r2 Selects the protocol file for China.

itu_egypt.r2 Selects the protocol file for Egypt.

itu_korea.r2 Selects the protocol file for Korea.

itu_mexico.r2 Selects the protocol file for Mexico.

Unit: character string

Range: 1 – 256 (_MAX_PATH)

Default: itu_china.r2

Parameter Value

Call Control Configuration File

March 2017 1211

Configuration Parameters for E1 and T1
QSIG Ports
Set one or more of the following parameters to configure an E1 or
T1 QSIG port (see page 1288 for an example of the configuration file
for a T1 QSIG port).

Parameter Value
crc Specifies a value that indicates whether the E1 port has cyclical

redundancy checking (CRC) enabled. Set this parameter to:

DISABLED Turns off CRC for the E1 port.

ENABLED Turns on CRC for the E1 port.

Default: ENABLED

default_caller_id Specifies a string of up to 15 characters that provides the caller ID to use
when placing outbound calls. If the user application provides a caller ID
when placing a call, the system ignores this parameter.

Unit: character string

Range: 1 – 15 (_ECC_MAX_ANI_LENGTH)

Default: Blank
did_offset Specifies a value that defines the number of digits to remove from the

beginning of the string of DID digits (see max_did_digits on page 1212)
received from the network. If max_did_digits is set to 0, or if the number
of DID digits received is less than the number specified by
max_did_digits, this parameter has no effect. Set this parameter to:

0 Does not remove any DID digits.

1 – 255 Specifies the number of digits to remove.

Range: 0 through 255

Default: 0

emulation Specifies whether the trunk acts as the primary or secondary trunk in
layer 2 communication. Set this parameter to:

MASTER Operates as the primary trunk.

SLAVE Operates as the secondary trunk.

Default: SLAVE

Call Control Configuration File

March 2017 1212

max_did_digits Specifies a value that defines the maximum number of DID digits to
expect before accepting an incoming call. Set this parameter to:

0 Turns off waiting for DID digits.

1 – 255 Specifies the number of digits to expect before accepting an
incoming call.

Range: 0 through 255

Default: 0

Note: The system can report all of the DID digits it received from the
network to the application even if the number of received DID
digits exceeds the number specified for max_did_digits. To remove
the excess digits, set the did_offset parameter (see page 1211) so
that the system only passes the expected number of digits to the
application.

Advanced Configuration Parameters for an E1 or T1 QSIG Port

Change values for the following parameters only when instructed to
do so by Dialogic Technical Services and Support personnel. Using
different values for this protocol might produce unpredictable
results.

call_diversion_completion_
timer

If call diversion is turned on, the call_diversion_completion_timer
parameter specifies the maximum duration in milliseconds that the port
waits for a response from the diverted-to side of the call. If the port does
not receive a response from the diverted-to side before this timer reaches
the value set for it, res.line_status indicates a DIVERT_TO_TIME error.
Set this parameter to:

0 Does not wait for a response from the diverted-to side.

1 – 20000 Specifies the maximum number of milliseconds the port
waits for a response from the diverted-to side of the call.

Unit: millisecond

Range: 0 through 20000

Default: 3000 (3 seconds)

Parameter Value

Call Control Configuration File

March 2017 1213

call_type Specifies the call type to use when making the outbound call. Set this
parameter to:

AUTO Makes an outbound call using the modem type and then
automatically retries the call using the voice type if the other
end cannot accept modem calls.

MODEM Makes an outbound modem (3.1 kHz audio) call. This setting
provides higher quality audio for the call. However, not all
numbers have this facility available. If the called party
cannot accept a modem call, set the parameter to SPEECH.

SPEECH Makes an outbound voice call.

Default: AUTO

collision_priority Specifies whether the local or remote end has priority in a call collision.
In symmetric arrangements, call collisions can occur when both sides
simultaneously transfer a SETUP message indicating the same channel
or one or more channels when the transfer involves multiple channels.
The local and remote ends are designated as Side A or Side B during the
provisioning of your network. The "A" value has priority over the "B"
value. Set this parameter to:

A Configures port with Side A priority.

B Configures port with Side B priority.

Default: B

did_timeout Specifies a value that defines the maximum timeout allowed before
processing the call after assuming receipt of the last DID digit. Set this
parameter to:

0 Indicates no waiting time.

1 – 20 Specifies the number of seconds to allow after receiving the
last DID digit before processing the call.

Unit: second

Range: 0 through 20

Default: 10 (used when the Bfv API does not find another value for
this

parameter).
disable_alerting Specifies whether the QSIG stack sends an alerting message on receipt

of an incoming call. Setting this parameter to TRUE turns call alerting
off and prevents the application from rejecting an incoming diverted
call. Set this parameter to:

FALSE Turns on call alerting.

TRUE Turns off call alerting.

Default: FALSE

Parameter Value

Call Control Configuration File

March 2017 1214

disable_call_proceed Specifies a value that determines whether the system sends a CALL
PROCEEDING indication after receiving a SETUP message from the
network. Set this parameter to:

FALSE Indicates that the system sends a CALL PROCEEDING
message after receiving a SETUP message from the network.

TRUE Indicates that the system does not send a CALL
PROCEEDING message after receiving a SETUP message
from the network.

Default: FALSE

disable_conn_ack Specifies whether the system sends a connection acknowledgment
message after receiving a connect message from the network. Set this
parameter to:

FALSE Allows the system to send a connection acknowledgment
message after receiving a connect message from the network.

TRUE Prevents the system from sending a connection
acknowledgment message after receiving a connect message
from the network.

Default: FALSE

enable_call_diversion Specifies whether the port has call diversion procedures set, allowing
the port to place a call that the far end can divert to a different
destination. Set this parameter to:

FALSE Indicates that the port has call diversion procedures turned
off to prevent the far end from diverting the call placed by the
application.

TRUE Indicates that the port has call diversion procedures turned
on to allow the far end to divert the call placed by the
application.

Default: TRUE

Parameter Value

Call Control Configuration File

March 2017 1215

line_build_out Specifies one of the following values that defines the length of the
telephony cable connection between the board and the T1 service (only
applies to T1 ports):

0_133 Specifies a length of 0 to 133 feet.

133_266 Specifies a length of 133 to 266 feet.

266_399 Specifies a length of 266 to 399 feet.

399_533 Specifies a length of 399 to 533 feet.

533_655 Specifies a length of 533 to 655 feet.

7_5_DB Specifies a length of negative 7.5 dB.

15_DB Specifies a length of negative 15.0 dB.

22_5_DB Specifies a length of negative 22.5 dB.

Default: 0_133

line_coding Specifies a value defining the type of line encoding to use for the port.
Set this parameter for E1 or T1 ports to:

AMI Selects Alternate Mark Inversion (E1 or T1 digital port).

B8ZS Selects Bipolar 8-Zero Suppression (T1 only).

HDB3 Selects High Density Bipolar Order 3 (E1 only).

Default: HDB3 for E1 digital ports

B8ZS for T1 digital ports
line_impedance Specifies a value that defines the line impedance that the port uses. Set

this parameter to:

75 Specifies that the port uses an impedance value of 75 ohms.

120 Specifies that the port uses an impedance value of 120 ohms.

Default: 120

max_overlapped_digits Specifies the maximum number of digits to send when the application
supports overlapped dialing for long phone numbers. Set this
parameter to:

0 Disables support for overlapped dialing.

Range: 1 – 24 (IISDN_MAX_DIGITS(24))

Default: 20

numbering_plan Specifies a value that identifies the type of numbering plan used for
outbound calls (called party number). Set this parameter to:

ISDN Indicates that the port uses an ISDN numbering plan.

PRIVATE Indicates that the port uses a private numbering plan.

UNKNOWN Indicates that the port uses an unknown numbering plan.

Default: UNKNOWN

Parameter Value

Call Control Configuration File

March 2017 1216

numbering_type Specifies a value that identifies the type of telephone number used for
outbound calls (called party number). Set this parameter to:

INTERNATIONAL

Indicates that the port uses an international numbering type (valid
if numbering_plan is set to ISDN).

NATIONAL

Indicates that the port uses a national (North American) numbering
type (valid if numbering_plan is set to ISDN).

SUBSCRIBER

Indicates that the port uses a subscriber numbering type (valid if
numbering_plan is set to ISDN).

LEVEL_2_REGION

Indicates that the port uses a level 2 regional numbering type (valid
if numbering_plan is set to PRIVATE).

LEVEL_1_REGION

Indicates that the port uses a level 1 regional numbering type (valid
if numbering_plan is set to PRIVATE).

LEVEL_0_REGION

Indicates that the port uses a level 0 regional numbering type (valid
if numbering_plan is set to PRIVATE).

PISN_SPECIFIC

Indicates that the port uses a Private Integrated Services Network
(PISN) numbering type (valid if numbering_plan is set to PRIVATE).

UNKNOWN

Indicates that the port uses an unknown numbering type.

Default: UNKNOWN

Parameter Value

Call Control Configuration File

March 2017 1217

presentation Specifies a value that indicates the type of presentation of the calling
party number the port uses when placing an outbound call. Set this
parameter to:

ALLOWED

Indicates that the port allows presentation of the calling party
number to the called party.

APP_DEFINED

Indicates that the application passes in the value for this
parameter.

NUM_NOT_AVAIL

Indicates that the port does not have a calling party number
specified to present to the called party.

RESTRICTED

Indicates that the port restricts presentation of the calling party
number to specific called party numbers.

Note: You should set the parameter to NUM_NOT_AVAIL when connected
to a public network.

Default: ALLOWED

qsig_support Specifies the standard to use for coding QSIG supplementary services
messages.

The ECMA standard for coding the different supplementary services has
evolved, changing some services (for example, call diversion, call
transfer, and name identification) from encoding the ASN.1 operational
value as an OBJECT IDENTIFIER to an INTEGER. Some PBXs
(Siemens) continue to use the old standard while others use the new
standard. Set this parameter to specify whether the system codes the
supplementary services messages according to the old or new standard.

OLD

Encodes operational value as an OBJECT IDENTIFIER according
to the old version of the ECMA standard.

NEW

Encodes operational value as an INTEGER according to the new
version of the ECMA standard.

Default: NEW

Parameter Value

Call Control Configuration File

March 2017 1218

reject_incomplete_did Specifies the action to take when the number of DID digits received from
the incoming call is less than the number of digits specified for the
max_did_digits parameter. Set this parameter to:

FALSE Sends an alerting or proceeding message to the network and
reports the call to the application even if the number of
received DID digits is less than the max_did_digits value.
The system takes this action when the number of digits
collected remains incomplete after the did_timeout period or
when it receives a sending complete informational element
(IE).

TRUE Sends the network a reject message that causes the network
to drop the call. The application does not receive any
notification of the call.

Default: FALSE

request_aoc Specifies a value that indicates whether the port follows the protocol’s
Advice of Charge (AOC) procedures. Set this parameter to:

FALSE Indicates that the port does not follow the protocol’s
AOC procedures.

TRUE Indicates that the port uses the protocol’s AOC procedures.

Default: FALSE

sabme Specifies whether the port sends layer 2 Set Asynchronous Balanced
Mode Extended (SABME) messages. Set this parameter to:

FALSE Indicates that the port does not send SABME messages.

TRUE Indicates that the port sends layer 2 SABME messages.

Default: TRUE

Parameter Value

Call Control Configuration File

March 2017 1219

screening Specifies a value that indicates whether the port provides and validates
the calling party number passed to the called party. Set this
parameter to:

APP_DEFINED

Indicates that the application passes in the value for this
parameter.

NETWORK_PROVIDED

Indicates that the network validates the calling party number.

USER_NOT_SCREENED

Indicates that the port provides the calling party number without
validating it.

USER_VERIFICATION_PASSED

Indicates that the port provides the calling party number and
passes a successfully validated number to the called party.

Note: You should set the parameter to USER_NOT_SCREENED when
connected to a public network.

Default: USER_NOT_SCREENED

send_dialcomplete Specifies whether the system sends an informational element (IE) for
outbound calls that indicates the end of dialing. Set this parameter to:

FALSE Indicates that the port does not transmit a DIAL
COMPLETE message on outbound calls.

TRUE Requests the system to transmit a DIAL COMPLETE
message on outbound calls.

Default: TRUE

transfer_variant Specifies the transfer method that the network runs for call transfers or
disables call transfer.

The SR140 does not support call transfer.

Set this parameter to:

NONE Disables call transfer.

QSIG Specifies QSIG transfer protocol.

Default: QSIG

Parameter Value

Call Control Configuration File

March 2017 1220

Configuration Parameters for T1 ISDN
Ports
Set one or more of the following parameters to configure a T1 ISDN
port (see page 1287 for an example configuration file).

Parameter Value
call_type Specifies the call type to use when making the outbound call. Use one of

the following values for this parameter:

AUTO Makes a call using the modem type and then automatically
retries the call using the voice type if the other end cannot
accept modem calls.

MODEM Makes a modem (3.1 kHz audio) call. This setting provides
higher quality audio for the call.

SPEECH Makes a voice call.

Default: AUTO

default_caller_id Specifies a string of up to 15 characters that provides the caller ID to use
when placing outbound calls. If the user application provides a caller ID
when placing a call, the system ignores this parameter.

Unit: character string

Range: 1 – 15 (_ECC_MAX_ANI_LENGTH)

Default: Blank
did_offset Specifies a value that defines the number of digits to remove from the

beginning of the string of DID digits (see max_did_digits on page 1221)
received from the network. If max_did_digits is set to 0, or if the number
of DID digits received is less than the number specified by
max_did_digits, this parameter has no effect. Set this parameter to:

0 Does not remove any DID digits.

1 – 255 Specifies the number of digits to remove.

Range: 0 through 255

Default: 0

disable_conn_ack Specifies whether the system sends a connection acknowledgment after
receiving a connect message from the network. Set this parameter to:

FALSE The system sends a connection acknowledgment message
after receiving a connect message from the network.

TRUE The system does not send a connection acknowledgment
message after receiving a connect message from the network.

Default: FALSE

Call Control Configuration File

March 2017 1221

emulation Specifies whether to configure the trunk for Central Office (CO) or
Customer Premise Equipment (CPE) protocol emulation. Use this
parameter for testing purposes only.

CO Emulates the CO protocol.

CPE Emulates the CPE protocol.

Default: CPE

line_build_out Specifies one of the following values that defines the length of the
telephony cable connection between the board and the T1 service:

0_133 Specifies a length of 0 to 133 feet.

133_266 Specifies a length of 133 to 266 feet.

266_399 Specifies a length of 266 to 399 feet.

399_533 Specifies a length of 399 to 533 feet.

533_655 Specifies a length of 533 to 655 feet.

7_5_DB Specifies a length of negative 7.5 dB.

15_DB Specifies a length of negative 15.0 dB.

22_5_DB Specifies a length of negative 22.5 dB.

Default: 0_133

line_coding Specifies a value defining the type of line encoding to use for the port.
Set this parameter to:

AMI Selects Alternate Mark Inversion (AMI).

B8ZS Selects Bipolar 8-Zero Suppression (B8ZS).

JBZS Selects Jammed Bit Zero Suppression.

ZBTSI Selects Zero Byte Time Slot Interchange.

Default: B8ZS

max_did_digits Specifies a value that defines the maximum number of DID digits to
expect before accepting an incoming call. Set this parameter to:

0 Disables waiting for DID digits.

1 – 255 Specifies the number of digits to expect before accepting an
incoming call.

Range: 0 through 255

Default: 0

Note: The system can report all of the DID digits it received from the
network to the application even if the number of received DID
digits exceeds the number specified for max_did_digits. To remove
the excess digits, set the did_offset parameter (see page 1220) so
that the system only passes the expected number of digits to the
application.

Parameter Value

Call Control Configuration File

March 2017 1222

NSF Specifies a value indicating that the user’s call setup message, if
defined, includes a network specific facility (NSF) message. Set the
value in this parameter to one of the following to indicate the type of
service used to send the NSF message in the outbound call setup:

0 Indicates that the call setup does not include an NSF
message.

1 Indicates use of an AT&T software-defined network or a
Northern Telecom private network.

2 Indicates use of the AT&T Megacom 800 service.

3 Indicates use of the AT&T Megacom or Northern Telecom
OutWATS service.

4 Indicates use of the Northern Telecom foreign exchange
service.

5 Indicates use of the Northern Telecom tie trunk service.

6 Indicates use of the AT&T Accunet service.

8 Indicates use of the AT&T international 800 service.

16 Indicates use of the Northern Telecom Trunk Optimization
(TRO) call service.

Default: 0

numbering_plan Specifies a value that identifies the type of numbering plan used for
outbound calls (called party number). Set this parameter to:

ISDN

Indicates that the port uses an ISDN numbering plan.

PRIVATE

Indicates that the port uses a private numbering plan.

TELEPHONY

Indicates that the port uses a telephony numbering plan.

UNKNOWN

Indicates that the port uses an unknown numbering plan.

Default: UNKNOWN

Parameter Value

Call Control Configuration File

March 2017 1223

numbering_type Specifies a value that identifies the type of telephone number used
for outbound calls (called party number). Set this parameter to:

ABBREVIATED

Indicates that the port uses an abbreviated numbering type.

INTERNATIONAL

Indicates that the port uses an international numbering type.

NATIONAL

Indicates that the port uses a national (North American) numbering
type.

SUBSCRIBER

Indicates that the port uses a subscriber numbering type.

UNKNOWN

Indicates that the port uses an unknown numbering type.

Default: UNKNOWN

presentation Specifies a value that indicates the type of presentation of the calling
party number the port uses when placing an outbound call. Set this
parameter to:

ALLOWED

Indicates that the port allows presentation of the calling party
number to the called party.

NUM_NOT_AVAIL

Indicates that the port does not have a calling party number
specified to present to the called party.

RESTRICTED

Indicates that the port restricts presentation of the calling party
number to specific called party numbers.

Note: You should set the parameter to NUM_NOT_AVAIL when connected
to a public network.

Default: ALLOWED

Parameter Value

Call Control Configuration File

March 2017 1224

protocol Specifies the type of protocol variant to use for the port. Set this
parameter to:

ATT

AT&T as defined in AT&T PUB 41449.

ISDN1

Bellcore National (North American) ISDN-1 Standard.

ISDN2

Bellcore National (North American) ISDN-2 Standard
(TR-NWT-001268).

Jate

Jate (Japan) INS-1500 standard.

Nortel

Northern Telecom as defined in NIS A211-1.

CTR4

NET-5 standard for PRI connections throughout Europe (also
referred to as Euro-ISDN). Choosing this variant changes the
Layer 2 protocol timers to their appropriate NET-5 defaults.

CCITT

General ITU-T Q.931 conformance.

Default: ATT

reject_incomplete_did Specifies the action to take when the number of DID digits received from
the incoming call is less than the number of digits specified for the
max_did_digits parameter. Set this parameter to:

FALSE Sends an alerting or proceeding message to the network and
reports the call to the application even if the number of
received DID digits is less than the max_did_digits value.
The system takes this action when the number of digits
collected remains incomplete after the did_timeout period or
when it receives a sending complete informational element
(IE).

TRUE Sends the network a reject message that causes the network
to drop the call. The application does not receive any
notification of the call.

Default: FALSE

Parameter Value

Call Control Configuration File

March 2017 1225

sabme Specifies whether the port sends layer 2 Set Asynchronous Balanced
Mode Extended (SABME) messages. Set this parameter to:

FALSE Indicates that the port does not send SABME messages.

TRUE Indicates that the port sends layer 2 SABME messages.

Default: TRUE (default when emulation = CPE)

FALSE (default when emulation = CO)
screening Specifies a value that indicates whether the port provides and validates

the calling party number passed to the called party. Set this parameter
to:

NETWORK_PROVIDED

Indicates that the network validates the calling party number.

USER_NOT_SCREENED

Indicates that the port provides the calling party number without
validating it.

USER_VERIFICATION_FAILED

Indicates that the port failed to validate the calling party number.

USER_VERIFICATION_PASSED

Indicates that the port provides the calling party number and
passes a successfully validated number to the called party.

Note: You should set the parameter to USER_NOT_SCREENED when
connected to a public network.

Default: USER_NOT_SCREENED

Parameter Value

Call Control Configuration File

March 2017 1226

switch_type Specifies a value indicating the type of switch used for the board
connection. Set this parameter to:

ATT_4ESS

AT&T #4 ESS.

ATT_5ESS

AT&T #5 ESS.

NTI_DMS100

Nortel DMS-100.

NTI_DMS250

Nortel DMS-250.

MD110_T1

Selects Ericsson MD-110 switch for North America.

MD110_E1

Selects Ericsson MD-110 switch (International).

SIEMENS

Siemens.

NTT

Japan.

UNKNOWN

Selects a switch type that complies with the ITU-T standards.

Default: ATT_4ESS

Parameter Value

Call Control Configuration File

March 2017 1227

transfer_variant Specifies the transfer method that the network (refer to the vendor
specifications for your switch) runs for call transfers or disables call
transfer. Set this parameter to:

The SR140 does not support call transfer.

NONE Disables call transfer.

TBCT Specifies a Bellcore National (North American) ISDN Two
B-Channel Transfer (TBCT) method.

RLT Specifies a Release Link Trunk transfer method.

NTT Specifies a JATE active redirecting transfer method.

NTT_MP Specifies a JATE active redirecting transfer for a point to
multipoint configuration.

Default: TBCT

Note: Set the value to NTT when you set country_code = JAPAN in the
btcall.cfg user-defined configuration file (see page 1143).

Set the value to RLT when you set the switch_type value to
NTI_DMS100 or NTI_DMS250 (see page 1226).

wait_for_bchannel_
status

Specifies a value that determines when the system puts the B-channels
in service. Set this parameter to:

FALSE Requests that the system puts all the B-channels in service as
soon as the D-channel is in service.

TRUE Requests that the system waits for the network to specifically
enable each B-channel on the trunk before allowing the
application to use a B-channel.

Default: Depends on the value set in the switch_type parameter.
wait_for_conn_ack Specifies whether the system waits for the network to acknowledge a

connect request before notifying the application that a call has been
answered. Set this parameter to:

FALSE Specifies that the system does not wait for the network to
acknowledge a connect request before advancing an incoming
call to the connected state.

TRUE Requests the system to wait for the network to acknowledge a
connect request before advancing an incoming call to the
connected state.

Default: FALSE

Parameter Value

Call Control Configuration File

March 2017 1228

Configuration Parameters for T1 RBS
Ports
Set one or more of the following parameters to configure a port that
uses a T1 robbed bit signaling (RBS) protocol (see page 1290 for an
example configuration file).

Parameter Value
caller_id Specifies whether detection of V.23-based caller ID has been turned on.

Set this parameter to:

FALSE Turns off detection of V.23-based caller ID for the port.

TRUE Turns on detection of V.23-based caller ID for the port.

Note: In North America and some other locations, the system sends the
caller ID signal between the first and second rings. To detect the
caller ID correctly, you must set the num_rings (page 1187)
parameter to a value of 2 or greater to prevent the system from
reporting the call to the application before the caller ID has been
sent by the Central Office.

Default: TRUE

did_offset Specifies a value that defines the number of digits to remove from the
beginning of the string of DID digits (see max_did_digits on page 1230)
received from the network. If max_did_digits is set to 0, or if the number
of DID digits received is less than the number specified by
max_did_digits, this parameter has no effect. Set this parameter to:

0 Does not remove any DID digits.

1 – 255 Specifies the number of digits to remove.

Range: 0 through 255

Default: 0

did_timeout Specifies a value that defines the maximum timeout allowed before
processing the call after assuming receipt of the last DID digit. Set this
parameter to:

0 Indicates no waiting time.

1 – 20 Specifies the number of seconds to allow after receiving the
last DID digit before processing the call.

Unit: second

Range: 0 through 20

Default: 10 (used when the Bfv API does not find another value for
this

parameter).

Call Control Configuration File

March 2017 1229

flash_hook_
duration

Specifies a value for the duration of a flash hook signal. This parameter
defines the amount of time to place the line on hook (loop current
dropped) during a flash hook. Set the value in units of 10 ms.

Unit: 10 ms

Range: 1 – 500

Default: 50

line_build_out Specifies one of the following values that defines the length of the
telephony cable connection between the board and the T1 service:

0_133 Specifies a length of 0 to 133 feet.

133_266 Specifies a length of 133 to 266 feet.

266_399 Specifies a length of 266 to 399 feet.

399_533 Specifies a length of 399 to 533 feet.

533_655 Specifies a length of 533 to 655 feet.

7_5_DB Specifies a length of negative 7.5 dB.

15_DB Specifies a length of negative 15.0 dB.

22_5_DB Specifies a length of negative 22.5 dB.

Default: 0_133

line_coding Specifies a value defining the type of line encoding to use for the port.
Set this parameter to:

AMI Selects Alternate Mark Inversion (AMI).

B8ZS Selects Bipolar 8-Zero Suppression (B8ZS).

JBZS Selects Jammed Bit Zero Suppression.

ZBTSI Selects Zero Byte Time Slot Interchange.

Default: B8ZS

line_type Specifies a value defining the type of framing to use for the port. Set this
parameter to:

D4 Selects AT&T D4 framing format.

ESF Selects Extended Super Frame (ESF).

Default: ESF

loop_reversal_
for_connect

Specifies how to interpret a loop reversal signal as an audio path
connection indication. Set this parameter to:

DISABLED Ignores loop reversal as an indication of audio path
connection.

ENABLED Interprets loop reversal as an indication of audio path
connection.

Default: DISABLED

Parameter Value

Call Control Configuration File

March 2017 1230

loop_reversal_
for_disconnect

Specifies how to interpret a loop reversal signal as a call disconnect
indication. Set this parameter to:

DISABLED Ignores loop reversal as a call disconnect signal.

ENABLED Interprets loop reversal as a call disconnect signal.

Default: DISABLED

max_did_digits Specifies a value that defines the maximum number of DID digits to
expect before accepting an incoming call. Set this parameter to:

0 Turns off waiting for DID digits.

1 – 255 Specifies the number of digits — use a number in this range
for all countries except Japan.

1 – 4 Specifies the number of digits for Japan only.

Range: 0 through 255 for all except Japan; 0 through 4 for Japan.

Default: 0

Note: The system only reports the expected number of DID digits (the
value specified for max_did_digits) to the application even if the
number of DID digits it received from the network exceeds the
number specified for max_did_digits.

num_rings Specifies a value that defines the number of rings the system must
detect before the system reports a new incoming call to the application.

Range: 1 to 255

Default: 2

protocol_file Specifies the name of the T1 robbed-bit signaling (RBS) protocol file to
load for the port. This parameter dictates the protocol that runs on the
port. Set this parameter to:

fxo_groundstart.lec

fxo_loopstart.lec

fxs_groundstart.lec

fxs_loopstart.lec

immediatedial.lec

winkstart.lec

Default: winkstart.lec

Parameter Value

Call Control Configuration File

March 2017 1231

reject_incomplete_did Specifies the action to take when the number of DID digits received from
the incoming call is less than the number of digits specified for the
max_did_digits parameter. Set this parameter to:

FALSE Reports the call to the application even if the number of
received DID digits is less than the max_did_digits value.
The system takes this action when the number of digits
collected remains incomplete after the did_timeout period.

TRUE Sends the network a reject message that causes the network
to drop the call. The application does not receive any
notification of the call.

Default: FALSE

require_answer_signal Specifies whether line signaling must be used to detect call answer. Set
this parameter to:

FALSE Specifies that either line signaling or call progress can detect
call answer.

TRUE Specifies that only line signaling can detect call answer (call
progress only detects failed calls — for example, reorder
busy).

Default: FALSE

transfer_variant Specifies the transfer method that the network (refer to the vendor
specifications for your switch) runs for call transfers or disables call
transfer. Set this parameter to:

The SR140 does not support call transfer.

NONE Disables call transfer.

HOOKFLASH Specifies a hook flash transfer.

Default: HOOKFLASH

Parameter Value

Call Control Configuration File

March 2017 1232

Other Parameters In addition to the configuration-specific parameters for a T1 RBS
port, the Bfv API also uses parameters from the BT_CPARM.CFG
file to configure lines. See BT_CPARM.CFG Parameter File on
page 1417 for descriptions and values for the following parameters.

 dial_tone_min
 dtone_len
 dtone_timeout_highbyte
 dtone_timeout_lowbyte
 loopcur_timeout
 loop_seizure
 loop_max_break
 max_interdigit
 min_on_hook
 pre_wink
 post_wink
 pulse_break
 pulse_inter_time
 pulse_make
 pulse_max_break
 pulse_min_break
 ring_blank
 ring_len
 tone_inter_time
 tone_len

Call Control Configuration File

March 2017 1233

Internet Protocol (IP) Call Control Configuration Parameters
The following paragraphs describe the sections of the call control
configuration file that configure your modules and the Bfv API to use
an internet protocol (IP) call control stack. See page 1291 for
example configuration files.

Note: Only the TR1034 and the SR140 support these configuration
parameters.

These sections of the configuration file include:

host_module.# Provides parameters to define an IP call control stack for the Bfv
API to use.

This configuration section also allows you to configure:

 T.38 fax transport parameters for a module.

 Custom key-value pairs for the IP call control stack to read from
the configuration file.

 RTP parameters for the Bfv API

module.#/ethernet.# Provides parameters to define an Ethernet interface.

module.#/host_cc.# Provides parameters to define an IP call control stack for the module
to use.

Call Control Configuration File

March 2017 1234

Configuring An IP Call Control Stack
For Bfv API
In the host_module.# section of the configuration file, identify each
IP call control stack that the Bfv API can use. Note the following:

1. You must create a host_module.# section for each IP call
control stack your application uses.

2. Number each IP call control stack uniquely, starting at 1.
3. You can add up to 9 host modules.

Set the following parameters for each host_module.# section of the
call control configuration file.

Parameter Value
enabled Specifies whether the Bfv API can use the IP call control stack. Setting

this parameter to:

FALSE Makes the named IP call control stack unavailable to the
Bfv API.

TRUE Makes the named IP call control stack available for the
Bfv API to use.

Value Type: Boolean
Default: TRUE

module_library Specifies the full path and filename of the IP call control stack. The Bfv
API attempts to load this library dynamically. Set this parameter to:

FULLPATH Contains the full path to the named library containing the
IP call control stack.

Value Type: character string
Default: None

media_use_
unique_port

Specifies whether the system reuses an IP port when switching from one
media type to another.

Note: You should contact Dialogic Technical Services and Support
before attempting to use this media switching parameter.

Set this parameter to:

FALSE Selects the same IP port when switching to a new media
type.

TRUE Selects a different IP port when switching to a new media
type.

Value Type: Boolean
Default: FALSE (reuse IP port).

Call Control Configuration File

March 2017 1235

routing_table Optional parameter to specify the full path and filename of the routing
table configuration file. This file contains one or more routing rules and
is used by the SIP IP call control protocol stack to route inbound calls.

FULLPATH Contains the full path to the routing table configuration
file.

Value Type: character string
Default: None

Parameter Value

Call Control Configuration File

March 2017 1236

Configuring T.38 Fax Transport Parameters
Specify values for the following T38-specific parameters in the
host_module.#/t38parameters section of the call control
configuration file.

Parameter Value
fax_transport_protocol Specifies the method for transporting fax media.

t38_never Fax will use G.711 pass-through only.

t38_only Fax will use T.38 only and the call will fail if T.38 cannot
be negotiated.

t38_first Fax will attempt T.38 and fall back to G.711 pass-through
if T.38 cannot be negotiated.

Value Type: Character string
Default: t38_only

media_renegotiate_
delay_inbound

Controls media renegotiation to image (T.38) on inbound calls. If the
gateway is responsible for media renegotiation, set this parameter to -1
to disable initiating the media renegotiation to image. If the UAC is
responsible for media renegotiation to image, set this parameter to a
value between 0 and 60000. Numbers greater than 0 indicate the
number of milliseconds to delay before attempting media renegotiation.
The time difference between inbound and outbound media renegotiate
delay should be at least 500 ms. A value of 0 will cause an immediate
renegotiation, while -1 will wait for a renegotiation to image.

Set this parameter to:

–1 Disables media renegotiation on inbound calls.
 0 Does not delay before attempting to renegotiate the

media.
>0 Waits this number of milliseconds before attempting to

renegotiate the media.
Note: Set at least 500 ms of time difference between inbound and

outbound media renegotiate delay parameters.
Unit: ms
Range: –1 and 0 to 60000
Value Type: decimal
Default: 1000 (1 second)

Call Control Configuration File

March 2017 1237

media_renegotiate_
delay_outbound

Controls media renegotiation to image (T.38) on outbound calls. If the
gateway is responsible for media renegotiation, set this parameter to -1
to disable initiating the media renegotiation to image. If the UAC is
responsible for media renegotiation to image, set this parameter to a
value between 0 and 60000. Numbers greater than 0 indicate the
number of milliseconds to delay before attempting media renegotiation.
The time difference between inbound and outbound media renegotiate
delay should be at least 500 ms. A value of 0 will cause an immediate
renegotiation, while - 1 will wait for a renegotiation to image.

Set this parameter to:

–1 Disables media renegotiation on outbound calls.

0 Does not delay before attempting to renegotiate the
media.

>0 Waits this number of milliseconds before attempting to
renegotiate the media.

Note: Set at least 500 ms of time difference between inbound and
outbound media renegotiate delay parameters.

Unit: ms

Range: –1 and 0 to 60000

Value Type: decimal

Default: –1
media_passthrough_timeout
_outbound

Sets the timer to fail over to fax passthrough when no T.38 is negotiated
on outbound calls. This timer is active only when
[media_renegotiate_delay_outbound] is set to -1,
[fax_transport_protocol] is set to t38_first, and the module supports fax
passthrough. Numbers greater than 0, indicate the number of
milliseconds to wait for T.38 negotiation before performing fax
passthrough. A value of 0 will cause an immediate renegotiation to
passthrough, while -1 will suppress renegotiation to fax passthrough.

Set this parameter to:

–1 Suppress renegotiation to fax passthrough.

0 Cause an immediate renegotiation to passthrough.

>0 Number of milliseconds to wait for T.38 negotiation before
performing fax passthrough.

Unit: ms

Range: –1 and 0 to 60000

Value Type: decimal

Default: 4000

Parameter Value

Call Control Configuration File

March 2017 1238

media_passthrough_timeout
_inbound

Sets whether media renegotiation will be attempted before doing fax
passthrough on inbound calls. Set [media_renegotiate_delay_inbound]
to -1 to disable initiating the media renegotiation to image and
[fax_transport_protocol] to t38_first. The module also must support fax
passthrough. Numbers greater than 0, indicate the number of
milliseconds to delay before attempting media renegotiation if the
module supports fax passthrough.

Set this parameter to:

–1 Suppress renegotiation to fax passthrough.

0 Use the default number of milliseconds to wait for T.38
negotiation before performing fax passthrough.

>0 Number of milliseconds to wait for T.38 negotiation before
performing fax passthrough.

Unit: ms

Range: –1 and 0 to 60000

Value Type: decimal

Default: 1000
t38_fax_fill_bit_removal Specifies whether the Bfv API can remove or insert fill bits to reduce the

bandwidth of the transport mechanism. Set this parameter to:

FALSE Indicates that the Bfv API does not support the
capability.

TRUE Indicates that the Bfv API can remove or insert fill bits.

Value Type: Boolean

Default: FALSE

Note: This parameter does not affect the normal T.30-level capability to
remove or insert fill bits.

t38_fax_rate_management Specifies a value that identifies the data rate management method of
the transport. Set this parameter to:

localTCF Indicates that the transport uses the local training
check frame (TCF) data rate management type (not
supported).

transferredTCF Indicates that the transport uses the transferred
training check frame (TCF) data rate management
type.

Value Type: character string

Default: transferredTCF

Parameter Value

Call Control Configuration File

March 2017 1239

t38_fax_transcoding_JBIG Specifies whether the Bfv API can convert to and from JBIG fax images
to reduce the bandwidth of the transport mechanism when using a
reliable transport (for example, TCP). Set this parameter to:

FALSE Indicates that the Bfv API does not support the
capability.

TRUE Indicates that the Bfv API can convert JBIG fax images.

Value Type: Boolean

Default: FALSE

t38_fax_transcoding_MMR Specifies whether the Bfv API can convert to and from MMR fax
compression to reduce the bandwidth of the transport mechanism when
using a reliable transport (for example, TCP). Set this parameter to:

FALSE Indicates that the Bfv API does not support the
capability.

TRUE Indicates that the Bfv API can convert MMR compression.

Value Type: Boolean

Default: FALSE

Note: This parameter does not affect the normal T.30-level capability to
use MMR if the two endpoints select MMR as a line compression
format.

t38_fax_udp_ec Specifies a value that identifies the error correction method of the
T.38 fax transport. Set this parameter to:

t38UDPFEC The transport uses the T.38 user datagram
protocol (UDP) forward error correction (FEC)
method (not supported).

t38UDPRedundancy The transport uses the T.38 UDP redundancy
error correction method.

Value Type: character string

Default: t38UDPRedundancy

t38_stream_renegotiation Specifies how the T.38 offer will be composed.

single The T.38 offer will be composed of only one
media stream.

replace The T.38 offer will replace the active stream.

append The T.38 offer will be appended to the end in a
new media stream.

Value Type: character string

Default: single

Parameter Value

Call Control Configuration File

March 2017 1240

rtp_ced_enable Specifies whether to play the CED/ANSam tone for inbound IP calls. If
set to true, channels will generate CED/ANSam tone using the RTP
protocol for SIP and H.323 fax calls which do not immediately start as a
T.38 fax call. If set to false, the CED/ANSam tone is not generated.

FALSE CED/ANSam tone is not generated

TRUE Channels generate CED/ANSam tone

Value Type: Boolean

Default: TRUE

Note: Setting this parameter to true can cause some gateways to
attempt an RTP fax rather than a T.38 fax.

t38_fax_version Controls the maximum T.38 ASN.1 version the IP Call Control offers or
accepts from a remote party. Versions 0, 1, 2 support a maximum bit
rate of 14,400 bps.

Version 3 supports V.34 and the following are the possible bit rates:
33,600 (default), 31,200, 28,800, 26,400, 24,000, 21,600, 16,800

Must be version 1 or higher in order to support T.38 Internet Aware Fax
(IAF) modulation.

Unit: not applicable

Range: 0,1,2,3

Value Type: decimal

Default: 0
t38_t30_fastnotify Specifies whether the transport signals the beginning of T.30 by means

of a zero-length data field or uses a T.30 indicator value. Set this
parameter to:

FALSE Indicates that the T.38 fax transport uses a zero-length
data field to signal the beginning of T.30.

TRUE Indicates that the transport uses a T30_INDICATOR value
to signal the beginning of T.30.

Value Type: Boolean

Default: FALSE

Parameter Value

Call Control Configuration File

March 2017 1241

t38_UDPTL_redundancy_
depth_control

Specifies a value that defines the number of prior messages to include as
redundancy messages in a transmitted UDPTL packet carrying signal
information (FSK signals). Set this parameter to:

0 – 5 Specifies a number value defining how many prior
messages to include as redundancy messages in a packet
carrying control data.

Unit: number

Range: 0 through 5

Value Type: decimal

Default: 5

t38_UDPTL_redundancy_
depth_image

Specifies a value that defines the number of prior messages to include as
redundancy messages in a transmitted UDPTL packet carrying image
data. Set this parameter to:

0 – 2 Specifies a number value defining how many prior
messages to include as redundancy messages in a packet
carrying image data.

Unit: number

Range: 0 through 2

Value Type: decimal

Default: 2

t38_type_of_service Determines how the first six bits of the ToS DCSP (Differentiated
Services Point Code) field in the IP header are set for T.38 packets.

This parameter is available for Linux and Solaris only. For Windows,
the value of the DSCP bits is set from a group policy.

Unit: none

Range: 0 - 63

Value Type: decimal

Default: 0

Parameter Value

Call Control Configuration File

March 2017 1242

Parameter Value
t38_max_bit_rate If a remote T.38 terminal specifies a maximum bit rate that differs from

the setting specified by this parameter, the actual maximum bit rate
selected for a call will be negotiated to the lower of the two values with
the following exceptions:

Remote T.38 Maximum
Bit Rate

Negotiated T.38 Maximum Bit Rate

0 Value specified by this parameter

<2400 2400

>33600 Value specified by this parameter

2400 < Bit Rate <33600
but not one of the values
listed in the Range
section below

If a T.38 Maximum Bit Rate value
specified by a remote T.38 terminal is
between 2400 and 33600 but is not one
of the values listed in the Range section
below, the negotiated maximum bit rate
value will be the next lowest supported
value.

For example, if a remote T.38 terminal
specifies a maximum bit rate value of
20000, the negotiated T.38 maximum
bit rate value will be the lower of either
19200 or the value specified by this
parameter.

Unit: bits per second
Range: 2400, 4800, 7200, 9600, 12000, 14400, 16800

19200, 21600, 24000, 26400, 28800, 31200, 33600
Value Type: decimal
Default: 14400 if T38 Fax Version is 0, 1.

33600 if T38 Fax Version is 2, 3.
(See t38_fax_version above.)

Call Control Configuration File

March 2017 1243

Parameter Value
t38_fax_max_buffer Specifies value for T38FaxMaxBuffer attribute of T.38 codec. This

parameter is used to specify the maximum number of octets that can be
stored before an overflow condition occurs.

Unit: octets

Range: 64 through 65535

Value Type: decimal

Default: 200

t38_fax_max_datagram_recv Specifies size of maximum datagram that can be received for T.38. This
parameter is used to specify the maximum size of a T.38 datagram
packet that can be received.

Unit: octets

Range: 1 through 65535

Value Type: decimal

Default: 72

t38_fax_max_datagram_send Specifies value for T38FaxMaxDatagram attribute of T.38 codec. This
parameter is used to specify the maximum size of a datagram packet
that can be transmitted for T.38.

Unit: octets

Range: 1 through 65535

Value Type: decimal

Default: 72

t38_fax_max_datagram_iaf Specifies size of maximum datagram packets that can be transmitted or
received for T.38 Internet Aware Fax (IAF) transfers. This parameter is
used to specify the maximum size of a datagram packet that can be
transmitted or received for T.38 in IAF mode.

Unit: octets

Range: 1 through 65535

Value Type: decimal

Default: 270

Call Control Configuration File

March 2017 1244

g711_fallback_rtp_reinvite Specifies whether or not a SIP RTP reINVITE should be transmitted for
G.711 fallback mode if a SIP T.38 reINVITE is rejected with either a 488
(Not Acceptable Here) or a 606 (Not Acceptable). Set this parameter to:

FALSE Do not transmit a SIP RTP reINVITE if a SIP T.38
reINVITE is rejected.

TRUE Transmit a SIP RTP reINVITE if a SIP T.38 reINVITE is
rejected.

Value Type: Boolean

Default:FALSE

Setting this field to a value of TRUE will result in transmission of a SIP
RTP reINVITE if a SIP T.38 reINVITE is rejected with either a 488 (Not
Acceptable Here) or a 606 (Not Acceptable) and the fax transport
protocol (fax_transport_protocol) parameter is set to t38_first. The
SDP settings in the SIP RTP reINVITE will be the same RTP codec
settings initially used to establish the call.

Note: This parameter only works for calls using the SIP internet
protocol and will be ignored for all calls using the H.323 internet
protocol or PSTN line types.

Parameter Value

Call Control Configuration File

March 2017 1245

Configuring Customer Parameters for a Third Party
IP Call Control Stack

The Bfv API also provides a mechanism for third party IP call
control stacks to read custom key-value pairs from the call control
configuration file. The keys must be unique within the particular
stack. The Bfv API supports both numerical and character string
values.

Specify the value type when the third party IP call control stack
places a request to query the parameters in the call control
configuration file.

The Bfv API does not provide any validation of the key-value pairs,
although the stack can return an error during initialization if it
detects one or more invalid parameters.

Add the key-value pairs to the host_module.#/parameters
section of the call control configuration file as shown in the following
example:

[host_module.1]
 module_library=c:\vendor\vendors_sip_stack.dll
 enabled=true
[host_module.1/parameters]
 ModuleString1=value
 ModuleNumber1=23
 ModuleString2=value
 ModuleNumber2=24
 ModuleString3=value
 ModuleNumber3=25

The third party IP call control stack can read stack specific keys at
initialization time.

To make it easier to configure third party IP call control stacks, the
Bfv API has predefined a set of common parameters for several
IP protocols. Stack authors must review this list of parameters to see
if a needed parameter already exists before creating a new one. See:

 Table 24 on page 1246 for H.323 parameters.
 Table 26 on page 1255 for Basic SIP parameters
 Table 27 on page 1259 for Advanced SIP parameters

The maximum length of a key’s name is defined as
CIPI_MAX_KEY_NAME, and the maximum length of a character
string value is defined as CIPI_MAX_KEY_VALUE. These lengths
must allow for the NULL terminating character.

Call Control Configuration File

March 2017 1246

Table 24. Basic Predefined H.323 IP Call Control Stack Parameters

Key Name Description

h323_default_gateway Indicates the IP address of a default gateway to use for outbound calls.
If a user only specifies a phone number when making an H.323 call and
the application is not using an H.323 gatekeeper, the Bfv API forwards
the call to the gateway specified with this parameter. The Bfv API
forwards the specified phone number to the gateway for routing
purposes.

When set, this parameter must contain an IP address in the form:

xxx.xxx.xxx.xxx:PortNumber (Port number is optional)
Examples
10.128.22.6:1720 (port number specified)
10.128.22.6 (no port number specified)

Note: For the H.323 protocol, the port defaults to 1720 if not specified.

Range: 0 – 255 for each dotted decimal position of the
IP address.

1 – 65535 for the port number

Value Type: dotted decimal

Default: 0.0.0.0:0

Note: The Bfv API does not use this parameter if the configuration file
specifies a value of 1 for the h323_register parameter (see
page 1249).

h323_e164alias Specifies the E.164 alias of the H.323 terminal. The system uses this
alias during gatekeeper registration and call establishment. The alias
identifies the phone number of the H.323 terminal.

You can specify multiple aliases, each starting on a new line using the
same parameter name. For example:

h323_e164alias 123456

h323_e164alias 4084839648

h323_e164alias 5102987468

h323_e164alias 9627842899

When you specify multiple values, the system registers every value
with the gatekeeper.

Range: 1 – 128 characters (each)

Value Type: character string restricted to numbers 0 through 9 and
the star (*) and pound (#) symbols

Default: <blank>

Call Control Configuration File

March 2017 1247

h323_gatekeeper_id Specifies the ID of the H.323 gatekeeper that the H.323 terminal
expects to find during the gatekeeper discovery routine. If you do not
set this parameter, the H.323 terminal attempts to register with the
first gatekeeper it finds.

<blank> Uses the first gatekeeper the H.323 terminal locates.

Value Type: Unicode character string (up to 256 characters)

Default: <blank>

h323_gatekeeper_
ip_address

h323_gatekeeper_
ip_address2

h323_gatekeeper_
ip_address3

h323_gatekeeper_
ip_address4

h323_gatekeeper_
ip_address5

h323_gatekeeper_
ip_address6

Specifies the IP address of up to six H.323 gatekeepers that receive the
registration request from the H.323 terminal. When set to the default
value (0.0.0.0:0), the H.323 terminal performs a multicast gatekeeper
discovery routine to find the gatekeeper using port number 1719.

xxx.xxx.xxx.xxx Configures the system to use the specified
H.323 gatekeeper. Set the gatekeeper IP
address in the form:

xxx.xxx.xxx.xxx:PortNumber

0.0.0.0:0 Configures the system to use a multicast
process to discover the H.323 gatekeeper using
port number 1719.

Range: 0 – 255 for each dotted decimal position of the

IP address.

1 – 65535 for the port number

Value Type: dotted decimal

Default: 0.0.0.0:0 (uses multicast discovery process
and port number 1719)

h323_gatekeeper_ttl Specifies the number of seconds to allow between registration request
messages sent from the H.323 terminal to the gatekeeper. After
reaching this limit, the H.323 terminal generates another registration
request to the gatekeeper because the system now considers the
previous request invalid.

Unit: second

Range: 0 – 32,000,000 (0 means that gatekeeper registrations do
not expire; 32,000,000 seconds equals one calendar year)

Value Type: integer

Default: 0

Table 24. Basic Predefined H.323 IP Call Control Stack Parameters (Continued)

Key Name Description

Call Control Configuration File

March 2017 1248

h323_h323IDalias Specifies the H.323 ID of the H.323 terminal. The system uses this
alias during gatekeeper registration and call establishment. The alias
identifies the name of the H.323 terminal.

You can specify multiple aliases, each starting on a new line using the
same parameter name. For example:

h323_h323IDalias andrew

h323_h323IDalias bob

h323_h323IDalias charles

h323_h323IDalias david

When you specify multiple values, the system registers every value
with the gatekeeper.

Range: Up to 256 characters (each)

Value Type: Unicode character string

Default: <blank>

h323_local_ip_address Specifies the transport address of the H.323 terminal. The transport
address can be an IP address or a combination of the IP address and
the port number that the H.323 call control stack uses. When set to the
default value (0.0.0.0:0), the system uses the IP address of the first
Ethernet module in the system and port number 1720.

Valid values are:

xxx.xxx.xxx.xxx Configures the system to use the specified IP
address for H.323 calls. Set the transport
address in the form:

xxx.xxx.xxx.xxx:PortNumber

0.0.0.0:0 Configures the system to use the address of the
first Ethernet module and port number 1720.

Range: 0 – 255 for each dotted decimal position of the
IP address.

1 – 65535 for the port number

Value Type: dotted decimal

Default: 0.0.0.0:0 (uses first Ethernet module and
port number 1720)

Table 24. Basic Predefined H.323 IP Call Control Stack Parameters (Continued)

Key Name Description

Call Control Configuration File

March 2017 1249

h323_manufacturerCode Specifies a code that identifies the manufacturer of the H.323 terminal
making the call.

Range: 0 – 255

Value Type: decimal

Default: 48

Note: 48 is the H.323 manufacturer code for Dialogic.

h323_Manufacturer Specifies a string naming the H.323 terminal’s manufacturer.

Range: Up to 256 characters

Value Type: Unicode character string

Default: "Dialogic Corporation"

h323_max_sessions Indicates the maximum number of concurrent H.323 calls that the host
module can support at one time. Set this value to a number that at
least doubles the number of channels in the system because the system
can be tearing down a call while processing the next call.

Range: 1 through 65535 (inclusive)

Value Type: decimal

Default: 256

h323_register Specifies an integer value that determines whether to register with an
H.323 gatekeeper.

0 Does not register with an H.323 gatekeeper.

1 Registers with an H.323 gatekeeper.

Value Type: integer

Default: 0

Table 24. Basic Predefined H.323 IP Call Control Stack Parameters (Continued)

Key Name Description

Call Control Configuration File

March 2017 1250

h323_support_
alternate_gk

Specifies whether to support alternate gatekeepers. The gatekeeper
receiving the registration request from the H.323 terminal must also
support alternate gatekeepers.

When the H.323 terminal sends a registration request to its primary
gatekeeper, the primary gatekeeper sends the H.323 terminal a list of
alternate gatekeepers that it knows about. If, for some reason, the
H.323 terminal can no longer communicate with its primary
gatekeeper, it goes through this list of alternate gatekeepers and
attempts to register with one of them.

When the system does not support alternate gatekeepers and the
H.323 terminal can no longer communicate with its primary
gatekeeper, the H.323 terminal goes through the multicast gatekeeper
discovery routine to find an available gatekeeper.

0 Does not support alternate gatekeepers.

1 Supports alternate gatekeepers when necessary.

Value Type: integer

Default: 0

h323_t35CountryCode Specifies a code identifying the international country that
manufactured the H.323 terminal making the call. This code allows
other H.323 terminals to know the origin of the H.323 terminal.

The ITU-T Recommendation T35 Annex A lists the country codes used
for H.323 Non-Standard Facilities (NSF).

Range: 0 – 255

Value Type: decimal

Default: 181

Note: 181 is the country code for USA.

h323_t35Extension Specifies a modifier for the country code of the vendor’s H.323 terminal
making the call.

Range: 0 – 255

Value Type: decimal

Default: 0

Note: 0 is the extension for USA.

Table 24. Basic Predefined H.323 IP Call Control Stack Parameters (Continued)

Key Name Description

Call Control Configuration File

March 2017 1251

Table 25. Advanced Predefined H.323 IP Call Control Stack Parameters

Key Name Description

h323_CalledPartyOption Controls what fields in the H.225 SETUP message are returned
as part of the called party number. The fields in SETUP used for
called party number are: destination call signaling address,
destination address, called party subaddress, called party
extension (H.323 ID or E.164), called party number and
destination extra call information.

The following are the allowable parameter values:

0 Returns all H.225 SETUP fields described above
if present.

1 Same as 0 except destination call signaling
address is removed if present.

2 Only called party number is returned.

Value type: integer

Default: 1

h323_CallingPartyOption Controls what fields in the H.225 SETUP message are returned
as part of the calling party number. The following are the
allowable parameter values:

0 Returns all H.225 SETUP fields.

1 Removes the transport address if present.

2 Only calling party phone number is returned if
present.

Value type: integer

Default: 0

h323_h245Tunneling Defines if H.323 tunneling is enabled or not. H.245 tunneling
allows H.245 messages to be sent over the same IP address and
port as H.225 messages. If tunneling is disabled, a new IP
address and port specific for H.245 messages is established.

The following are the allowable parameter values:

0 Disabled

1 Enabled

Value type: integer

Default: 1

Call Control Configuration File

March 2017 1252

h323_FastStart Determines outbound H.323 fast start call setup.

The following are the allowable parameter values:

0 Outbound calls use H.323 slow start call setup.

1 Outbound calls use H.323 fast start call setup.

Value type: integer

Default: 1

h323_OlcRejectResponseTimeout Controls how a master endpoint handles OLC conflict from a
slave peer.

The following are the allowable parameter values:

-1 Causes master endpoint to send an OLC reject
and wait for a peer slave to send non-conflicting
OLC.

0 Causes the master endpoint to send RequestMode
to peer slave.

1-1000 Duration (in ms) to wait after sending an OLC
reject and before sending a RequestMode. If the
master endpoint receives a non-conflicting OLC
before the timeout period expires, RequestMode is
not sent.

Value type: integer

Default: -1

Table 25. Advanced Predefined H.323 IP Call Control Stack Parameters

Key Name Description

Call Control Configuration File

March 2017 1253

h323_h245Stage The stage at which the local endpoint is allowed to transfer the
H.245 address to the remote endpoint. This parameter is in
effect when H.245 tunneling is disabled. Refer to the
h323_h245Tunneling parameter.

The following are the allowable parameter values:

0 Earliest H.245 possible can send and act on
addresses in all messages.

1 Can send the address in the Call Proceeding
message.

2 Can send the address in only the Alerting
message.

3 Wait for the Connect message.

4 Early H.245 send addresses in Setup and Connect
messages only.

5 No automatic sending of the address.

6 No support for H.245 and the NoH245 Facility
message is sent.

Value type: integer

Default: 5

h323_OverrideNumberingPlan Manually overrides the numbering plan value in Q.931 called
party number.

The following are the allowable parameter values:

-1 Do not override.

0-15 Numbering plan value.

Value type: integer

Default: -1

Table 25. Advanced Predefined H.323 IP Call Control Stack Parameters

Key Name Description

Call Control Configuration File

March 2017 1254

h323_OverrideNumberingType Manually overrides the numbering type value in Q.931 called
party number.

The following are the allowable parameter values:

-1 Do not override.

0-7 Numbering type value.

Value type: integer

Default: -1

h323_RAS_Terminal_Type Defines the terminal type sent as part of the RAS RRQ request.

The following are the allowable parameter values:

0 Register as a terminal endpoint

1 Register as a gateway.

Value type: integer

Default: 0

h323_RAS_Voice_Supported_
Prefixes

Defines a list of E.164 prefixes by which other endpoints may
identify this endpoint. The parameter is used only when the
h323_RAS_Terminal_Type filed is set to 1 - gateway. You can
specify multiple values. The system registers each value with
the gatekeeper.

Range: 1 – 255 characters

Value Type: character string (up to 256 characters)

Default: <blank> (empty string)

h323_MediaWaitForConnect Indicates that the recipient of the Setup message should not
transmit media until sending the connect message. This setting
controls the value of the Setup message mediaWaitForConnect
flag.

The following are the allowable parameter values:

TRUE Recipients of the Setup message should not
transmit media until sending the connect
message.

FALSE Recipients of the Setup message may
transmit media without waiting to send
the connect message.

Default: FALSE

Table 25. Advanced Predefined H.323 IP Call Control Stack Parameters

Key Name Description

Call Control Configuration File

March 2017 1255

Table 26. Basic Predefined SIP IP Call Control Stack Parameters

Key Name Description

sip_contact Indicates the value provided in the SIP header for the Contact
parameter. The Contact parameter contains a SIP uniform resource
identifier (URI) or SIPS (secure SIP) URI that defines the address of
the sender.

When this parameter is set to its default value
(sip_Contact=0.0.0.0:0), the SIP stack automatically attempts to
find the IP address of the local host during initialization. If the host
has not registered its host name, the SIP initialization process will fail
and SIP calls will not be processed. To process SIP calls in this case,
the value in the sip_Contact parameter must be specifically set to an IP
address of one of the host network interface boards.

When set, this parameter must contain an IP address in the form:

xxx.xxx.xxx.xxx:PortNumber (port number is optional)
10.128.22.6:5060 (port number specified)
10.128.22.6 (no port number specified)

This parameter can also be specified with an optional name prefix as
shown in the following examples:

Name@xxx.xxx.xxx.xxx:PortNumber

username@10.128.22.6:5060

username@10.128.22.6

Note: For the SIP protocol, the port defaults to 5060 if not specified.

Range: 0 – 255 for each dotted decimal position of the
IP address.

1 – 65535 for the port number

Value Type: dotted decimal

Default: 0.0.0.0:0 (system uses the IP address of the local host
and port 5060)

sip_description_URI Indicates the value used for the u= line in the SIP SDP. The u= line
identifies the SIP uniform resource identifier (URI) of the session
description.

Range: 1 – 255 characters

Value Type: character string (up to 256 characters)

Default: <blank> (empty string)

Call Control Configuration File

March 2017 1256

sip_email Indicates the value used for the e= line in the SIP SDP. The e= line
identifies the email address of the person or entity responsible for the
session.

Range: 1 – 255 characters

Value Type: character string (up to 256 characters)

Default: <blank> (empty string)

sip_from Indicates the value provided in the SIP header for the From
parameter. The From parameter contains a display name and a SIP
uniform resource identifier (URI) or SIPS (secure SIP) URI that
identifies the originator of the session request.

Range: 1 – 255 characters

Value Type: character string (up to 256 characters)

Default: "Anonymous <sip:no_from_info@
anonymous.invalid>"

sip_max_sessions Indicates the maximum number of concurrent session initiation
protocol (SIP) call control sessions. Set this value to a number that at
least doubles the number of channels in the system because the system
can be tearing down a call while processing the next call.

Range: 1 through 1000

Value Type: decimal

Default: 256

sip_phone Indicates the value used for the p= line in the SIP SDP. The p= line
identifies the phone number to associate with the session.

Phone numbers use the conventional international format: the number
preceded by a + (plus symbol), the country code and a space or hyphen
character. For example:

+1 408-370-0881

Range: 1 – 255 characters

Value Type: character string (up to 256 characters)

Default: <blank> (empty string)

Table 26. Basic Predefined SIP IP Call Control Stack Parameters (Continued)

Key Name Description

Call Control Configuration File

March 2017 1257

sip_proxy_server1

sip_proxy_server2

sip_proxy_server3

sip_proxy_server4

Indicates the address (IPv4 or IPv6) of the specified SIP proxy server.
The user can define a maximum of 4 proxy servers.

DHCP Causes the system to use the SIP DNS server locator
capability to discover the domain name of the SIP
proxy server.

Domain name Indicates the name or IP address of the proxy server.

Range: 1 – 4 proxy servers specifying any valid domain name
(for example, www.my_sip_server.com,
192.168.1.45, or [2000::201:1ef])

Value Type: character string (up to 256 characters)

Default: <blank> (empty string indicating no proxy server
defined)

Note: Do not use the DHCP value. It is reserved for future use.

sip_registration_server1

sip_registration_server2

sip_registration_server3

sip_registration_server4

Indicates the address (IPv4 or IPv6) of the specified SIP registration
server. The user can define a maximum of 4 registration servers.

DHCP Causes the system to use the SIP DNS server locator
capability to discover the domain name of the SIP
registration server.

Domain name Indicates the name or IP address of the registration
server (up to 256 characters).

Range: 1 – 4 registration servers specifying any valid domain
name (for example, www.my_sip_server.com,
192.168.1.45, or [2000::201:1ef])

Value Type: character string (up to 256 characters)

Default: <blank> (empty string indicating no registration
server defined)

Note: Do not use the DHCP value. It is reserved for future use.

sip_session_description Indicates the value used for the i= line in the SIP SDP. The i= line
provides a textual string that describes the session’s purpose or
provides information about the session.

Range: 1 – 255 characters

Value Type: character string (up to 256 characters)

Default: <blank> (empty string)

Table 26. Basic Predefined SIP IP Call Control Stack Parameters (Continued)

Key Name Description

Call Control Configuration File

March 2017 1258

sip_session_name Indicates the value used for the s= line in the SIP SDP. The s= line
provides a textual string that gives a name to the session.

Range: 1 – 255 characters

Value Type: character string (up to 256 characters)

Default: no_session_name

sip_username Indicates the name inserted into the o= line in the SIP session
description protocol (SDP). The o= line defines the owner or creator of
the session and the session identifier. This value must not contain
spaces.

Do not leave this field blank. Leaving it blank will cause calls to fail.

– (dash) A dash or hyphen character indicates the absence of an
owner name or session ID.

Range: 1 – 255 characters

Value Type: character string (up to 256 characters)

Default: – (dash or hyphen character)

user-agent Specifies a text description of the software/hardware/product provided
in the User-Agent header. The syntax is specified in RFC 3261.

Default: Brksip/(sdk version> (Dialogic)

Table 26. Basic Predefined SIP IP Call Control Stack Parameters (Continued)

Key Name Description

Call Control Configuration File

March 2017 1259

Table 27. Advanced SIP IP Call Control Stack Parameters

Key Name Description

sip_ContactV6 Indicates the IPv6 IP address value provided in the SIP header for
the Contact parameter. The Contact parameter contains a SIP
uniform resource identifier (URI) or SIPS (secure SIP) URI that
defines the address of the sender.

If a value is specified for the sip_ip_interfaceV6 key name, this
parameter is ignored. If the value of this parameter and the
sip_ip_interfaceV6 parameter are blank, this is an invalid and
unsupported configuration.

When set, this parameter must contain an IPv6 address in the form:

[<IPv6 Address>%<Scope ID>]:PortNumber

Where:

 IPv6 addresses must be enclosed in brackets
 Link-Local IPv6 addresses must have their Scope ID specified after

the IPv6 address and be separated by a % character
 Port number is optional
[2000::2ef3:1dff:ea3]:5060

(Global IPv6 address, no Scope ID or port number specified)

[fe80::1f4:189c:74da:69f7%3]

(Link-Local IPv6 address with Scope ID, no port number specified)

Note: For the SIP protocol, the port defaults to 5060 if not
specified.

This parameter can also be specified with an optional name prefix as
shown in the following examples:

Name@[IPv6 Address]:PortNumber

username@[2000::2ef3:1dff:ea3]:5060

username@[fe80::1f4:189c:74da:69f7%3]

Range: 1 – 65535 for the port number

Value Type: character string (up to 256 characters)

Default: <blank>

Call Control Configuration File

March 2017 1260

sip_default_gateway

sip_gateway2

sip_gateway3

sip_gateway4

Indicates the IP address (IPv4 or IPv6) of a SIP gateway to use for
outbound calls. If a user only specifies a phone number when making
a SIP call and the application is not using a SIP proxy server, the Bfv
API forwards the call to one of the SIP gateways specified here. The
user can define a maximum of 4 SIP gateways. The Bfv API forwards
the specified phone number to the gateway for routing purposes.

When set, this parameter must contain an IP address in the form:

IPv4

xxx.xxx.xxx.xxx:PortNumber (port number is optional)
10.128.22.6:5060 (port number specified)
10.128.22.6 (no port number specified)

IPv6

[<IPv6 Address>]:PortNumber (port number is optional)
[2000::2ef3:1dff:ea3]:5060 (port number specified)
[2000::2ef3:1dff:ea3] (no port number specified)

IPv6 addresses must be enclosed within brackets.

Note: For the SIP protocol, the port defaults to 5060 if not specified.

Range: 0 – 255 for each dotted decimal position of the
IP address.

1 – 65535 for the port number

Value Type: dotted decimal

Default: 0.0.0.0:0 (no default gateway defined)

When multiple SIP gateways are configured, SIP OPTIONS requests
will be periodically transmitted to each of the gateways in order to
determine their operational status. SIP gateways that fail to respond
to a SIP OPTIONS request or respond with either a 503 (Service
Unavailable) or 505 (SIP Version Not Supported) will be determined
to be DOWN and unavailable to process SIP calls. All other SIP
responses will result in a SIP gateway to be considered to be UP and
available to process SIP calls.

Outbound SIP gateway calls will always be routed to the highest
priority SIP gateway whose status is UP with sip_default_gateway
being the highest priority SIP gateway and sip_gateway4 being the
lowest priority SIP gateway.

Note: The Bfv API does not use these parameters if the configuration
file specifies a sip_registration_server or sip_proxy_server (see
page 1257).

Table 27. Advanced SIP IP Call Control Stack Parameters (Continued)

Key Name Description

Call Control Configuration File

March 2017 1261

sip_options_up_interval Specifies the interval that SIP OPTIONS requests should be
transmitted to SIP gateways whose status is currently UP. By
periodically transmitting SIP OPTIONS requests to a SIP gateway
and keeping track of whether or not responses are received and the
type of responses, the operational status of SIP gateways can be
determined.

Range: 60 – 3600 seconds

Value Type: Unsigned integer

Default: 120

sip_options_down_interval Specifies the interval that SIP OPTIONS requests should be
transmitted to SIP gateways whose status is currently DOWN. By
periodically transmitting SIP OPTIONS requests to a SIP gateway
and keeping track of whether or not responses are received and the
type of responses, the operational status of a SIP gateways can be
determined.

Range: 30 – 3600 seconds

Value Type: Unsigned integer

Default: 60

Table 27. Advanced SIP IP Call Control Stack Parameters (Continued)

Key Name Description

Call Control Configuration File

March 2017 1262

sip_ip_interface Specifies the identity of the device on the PC with the IP interface
that the SIP Call Control stack can use for sending/receiving SIP
messages to/from from an IPv4 IP address.

Set the value of this parameter to the name of any device in the PC
with an IP interface. If you do not provide a value (blank string), the
virtual module chooses the first interface in the PC to send its
messages.

Note: The format for the value provided by this parameter is
operating system dependent.

The Windows format for the value provided in this parameter is:

 The name of the IP device (Global Unique IDentifier (GUID))
followed by

 A colon (:) character followed by
 The index number IPv4 IP address on the device

For example:

{4D36E96E-E325-11CE-BFC1-08002BE10318}:0

The Linux format is the ethernet device name.

For example:

sip_ip_interface=eth0

Value Type: character string (up to 256 characters)

Default: <blank> (the virtual module uses the first interface in
 the PC for sending SIP messages)

If the default (i.e. <blank>) value is specified for this parameter, the
SIP Call Control stack will use the value specified for the sip_contact
parameter.

sip_ip_interface_port Specifies the IPv4 port that should be used for SIP call control. This
parameter is used when the parameter IPv4 Interface For SIP
[sip_ip_interface] has been set.

Range: 1 – 65535 for the port number

Value Type: integer

Default: 5060

Table 27. Advanced SIP IP Call Control Stack Parameters (Continued)

Key Name Description

Call Control Configuration File

March 2017 1263

sip_ip_interfaceV6 Specifies the identity of the device on the PC with the IP interface
that the SIP Call Control stack can use for sending/receiving SIP
messages to/from an IPv6 IP address.

Set the value of this parameter to the name of any device in the PC
with an IP interface. If you do not provide a value (blank string), the
virtual module chooses the first interface in the PC to send its
messages.

Note: The format for the value provided by this parameter is
operating system dependent.

The Windows format for the value provided in this parameter is:

 The name of the IP device (Global Unique IDentifier (GUID))
followed by

 "A colon (:) character followed by
 "The index number of the IPv4 IP address on the device

For example: {4D36E96E-E325-11CE-BFC1-08002BE10318}:0

The Linux format is the ethernet device name.

For example:

sip_ip_interfaceV6=eth0

Value Type: character string (up to 256 characters)

Default: <blank>

If the default (i.e. <blank>) value is specified for this parameter, the
SIP Call Control stack will use the value specified for the
sip_contactV6 parameter.

Note: If the value of this parameter and the sip_contactV6
parameter are blank, this is an invalid and unsupported
configuration.

Table 27. Advanced SIP IP Call Control Stack Parameters (Continued)

Key Name Description

Call Control Configuration File

March 2017 1264

sip_ip_preference Specifies the IP family preference that should be used for SIP call
control.

The following are the allowable parameter values:

ipv4_only Only IPv4 supported for SIP calls

ipv6_only Only IPv6 supported for SIP calls

ipv4_preferred IPv4 and IPv6 supported for SIP calls. If both IPv4
 and IPv6 addresses resolved for destination of

outbound SIP call upon DNS lookup, IPv4 will
be selected.

ipv6_preferred IPv4 and IPv6 supported for SIP calls.
If both IPv4 and IPv6 addresses resolved for
destination of outbound SIP call upon DNS lookup,

 IPv6 will be selected.

Value Type: character string

Default: ipv4_only

sip_ip_interface_portV6 Specifies the IPv6 port that should be used for SIP call control. This
parameter is used when the parameter IPv6 Interface For SIP
[sip_ip_interfaceV6] has been set.

Range: 1 – 65535 for the port number

Value Type: integer

Default: 5060

sip_max-forwards Indicates the value provided in the SIP header for the Max-Forwards
parameter. The value in the Max-Forwards parameter serves to
prevent loops by limiting the number of hops a SIP request can make
on the way to its destination. The value consists of an integer that the
system decrements by one at each hop. When this value reaches 0,
the system discards the request.

Range: 1 – 200 inclusive

Value Type: decimal

Default: 70

Table 27. Advanced SIP IP Call Control Stack Parameters (Continued)

Key Name Description

Call Control Configuration File

March 2017 1265

sip_registration_interval Indicates the frequency for sending REGISTER requests to a
registration server.

0 Indicates that the system does not send REGISTER
requests to the registration server.

Unit: minutes

Range: 1 to 65535 inclusive

Value Type: decimal

Default: 60

sip_registration_
server<n>_aor

Indicates the address or record (aor) SIP uniform resource identifier
(URI) that is bound to the sip_Contact (see page 1255). Currently,
the SIP host module only allows one contact for each address of
record. The address of record is set in the To: and From: fields in the
SIP REGISTER message. Set the n value to the applicable number of
the registration server.

Range: 1 – 255 characters

Value Type: character string (up to 256 characters)

Default: <blank> (empty string indicating no username
defined)

sip_registration_
server<n>_expires

Indicates a value in seconds that defines how long the address of
record or contact remains valid in the registration server. Set the n
value to the applicable number of the registration server.

Unit: seconds

Range: 1 to 1,000,000 inclusive

Value Type: decimal

Default: 3600

sip_registration_
server<n>_password

Indicates the password used as part of the authentication process
when the registration servers require authentication. Authentication
is based on RFC2617. Set the n value to the applicable number of the
registration server.

Range: 1 – 255 characters

Value Type: character string (up to 256 characters)

Default: <blank> (empty string indicating that the password is
NULL)

Table 27. Advanced SIP IP Call Control Stack Parameters (Continued)

Key Name Description

Call Control Configuration File

March 2017 1266

sip_registration_
server<n>_username

Indicates the username used as part of the authentication process
when the registration servers require authentication. Authentication
is based on RFC2617. Set the n value to the applicable number of the
registration server.

Range: 1 – 255 characters

Value Type: character string (up to 256 characters)

Default: <blank> (empty string indicating no username
defined)

sip_registration_
proxied

This parameter selects if the SIP REGISTER will be sent to the
active SIP Proxy Server. The following are the allowable parameter
values:

True: Send all REGISTER mesages via the configuration SIP
Proxy Server

False: Send all REGISTER messages directly to the SIP
Register

sip_reject_call_not_answered This parameter specifies the SIP response code to transmit when an
inbound SIP call is received and a call is not answered by the
application. This can occur when all channels are busy, when a call is
completed but the application has not restarted ring detection, or
when the Boston Host Service has been started and a call arrives
before the application is started.

Range: 400 to 699

Value Type: Unsigned integer

Default: 486 (Busy Here)

sip_reject_unsupported_media This parameter specifies the SIP response code to transmit when an
inbound SIP INVITE is received and the SDP does not contain any
supported media types.

Range: 400 to 699

Value Type: Unsigned integer

Default: 488 (Not Acceptable)

Table 27. Advanced SIP IP Call Control Stack Parameters (Continued)

Key Name Description

Call Control Configuration File

March 2017 1267

sip_reject_t38_renegotiation This parameter specifies the SIP response code to transmit when an
inbound SIP INVITE is received that specifies a codec of T.38 in the
SDP and the Fax Transporting Protocol parameter
[fax_transport_protocol] is set to G.711 pass-through only (that is,
t38_never).

Range: 400 to 699

Value Type: Unsigned integer

Default: 488 (Not Acceptable)

sip_route Indicates the value provided in the SIP header for the Route
parameter. The Route parameter contains the address or multiple
addresses of proxy servers. The system uses the Route parameter to
force routing of a request through the listed set of proxies.

Range: 1 – 255 characters (multiple addresses separated by a
comma ",")

Value Type: character string (up to 256 characters)

Default: <blank> (empty string indicating no forced routing)

sip_session_timer_minse Establishes the lower bound for the session refresh interval in
seconds. The Min-SE header is not normally present in the sent
request (except all requests following a 422 response. Additionally, if
this parameter is set to any other value other than the default, the
Min-SE header will appear in all sent requests. To prevent the
exchange of an excessive number of session refresh messages, the
minimum non-zero value allowed for this parameter is 90.

Range: -1 to 65535 seconds. Values of 0 to 89 will use 90

Value Type: Signed integer

Default: -1 (do not send Min-SE header)

sip_session_timer_
refresh_method

Defines whether the refresh method uses the INVITE or UPDATE
transaction to refresh the session. The session must be identified as
the refresher side to send the refresh transaction; otherwise, the
remote session is responsible for session refresh.

Range: 0 - Use the INVITE method

1 - Use the UPDATE method

Value Type: Unsigned integer

Default: 0 - Use the INVITE method

Table 27. Advanced SIP IP Call Control Stack Parameters (Continued)

Key Name Description

Call Control Configuration File

March 2017 1268

sip_session_timer_
session_expires

Defines the maximum time in seconds before a session is considered
timed out without a successful INVITE or OPTIONS transaction.

Range: 0 – 65535

Value Type: Signed integer

Default: 0 - Session Timer Disabled

sip_redirect_as_calling_
party

Specifies whether or not to report the redirect number as the calling
party number to the application. Set the parameter as follows:

Range: 0 - Causes the system to use the original calling party
number as the number reported to the application.

1 - Causes the system to use the redirect number as
the calling party number reported to the
application. Selecting this option removes any

 association between the original calling party
 number and the call.

Value Type: Unsigned integer

Default: 0 for backward compatibility

sip_redirect_as_called_party Specifies whether or not to report the redirect number as the called
party number to the application. Set the parameter as follows:

Range: 0 - Causes the system to use the original called party
number as the number reported to the application.

1 - Causes the system to use the redirect number as
the called party number reported to the application.
Selecting this option removes any association

 between the original called party number and
 the call.

Value Type: Unsigned integer

Default: 0 for backward compatibility

Table 27. Advanced SIP IP Call Control Stack Parameters (Continued)

Key Name Description

Call Control Configuration File

March 2017 1269

sip_RFC3325_Identity Inserts an Identity header and Privacy header with the identity of
the call originator specified in the args_cc.calling_party. The value of
the Identity header will be authenticated by the application when
required.

Range: 0 - No RFC 3325 Identity or Privacy headers will be
inserted.

1 - Insert the header Privacy=noe and
P-Asserted-Identity with the calling_party for
outbound calls.

2 - Insert the header Privacy=none and
P-Preferred_Identity with the calling_party for
outbound calls.

Value Type: Unsigned integer

Default: 0 - No RFC 3325 Identity or Privacy headers will be
inserted.

sip_tcp_enable Indicates that support for the Transmission Control Protocol (TCP)
transport protocol should be enabled for SIP call processing. Note
that setting this parameter value to TRUE enables simultaneous
support for receiving SIP calls using either the TCP or User
Datagram Protocol (UDP) transport protocols.

For outbound SIP calls, when this parameter is set to TRUE, the
transport protocol used (either UDP or TCP) for the SIP call control
messages is determined by the value of the sip_ transport_protocol
call control configuration file parameter or can be specified at
runtime via the call_transport field in either the args_cc or
args_telephone structures, as appropriate to your application.

The following are the allowable parameter values:

TRUE Enable TCP transport protocol functionality for the
SIP stack

FALSE Disable TCP transport protocol functionality for the
SIP stack

Default: FALSE

Table 27. Advanced SIP IP Call Control Stack Parameters (Continued)

Key Name Description

Call Control Configuration File

March 2017 1270

sip_transport_protocol Indicates the transport protocol, either Transmission Control
Protocol (TCP) or User Datagram Protocol (UDP) to use for outbound
SIP calls.

The following are the allowable parameter values:

UPD Use UDP transport protocol for outbound SIP calls.

TCP Use TCP transport protocol for outbound SIP calls.

Default: UDP

NOTE: This parameter specifies the default transport protocol to use
for outbound SIP calls. However, if a value is specified at runtime via
the call_transport field in either the args_cc or args_telephone
structures, as appropriate to your application, that value will take
precedence over the value specified for this parameter.

sip_T1_timeout Specifies the SIP T1 timeout and is an estimate of the Round Trip
Time (RTT) of transactions between a client and server. For example,
a SIP Client will attempt to send a request to a SIP Server. The time
it takes between sending out the request to the point of getting a
response is the SIP T1 timer. If no response is received the timeout is
increased to (2*T1) and then (4*T1) doubling the previous timeout
each time the SIP request is retransmitted.

Unit: milliseconds

Range: 100 – 60000

Value Type: decimal

Default: 500

sip_max_invite_retransmissions Specifies the maximum number of SIP INVITE request
transmissions. A call will terminate after the INVITE has been
transmitted this many times. If no response is received after T1
Timeout (sip_T1_timeout), the INVITE will be retransmitted at an
interval of double the previous timeout.

Range: 1 – 255

Value Type: integer

Default: 7

Table 27. Advanced SIP IP Call Control Stack Parameters (Continued)

Key Name Description

Call Control Configuration File

March 2017 1271

sip_RFC6913_enable Indicates that support for RFC 6913 (Indicating Fax over IP
Capability in the Session Initiation Protocol (SIP)) should be enabled
for SIP call processing. When this parameter is set to TRUE,
outbound SIP REGISTER requests will include a "sip.fax" media
feature tag appended to the SIP Contact header. The value of the
"sip.fax" media feature tag transmitted in SIP REGISTER messages
will be determined by the value of the fax_transport_protocol
parameter in the t38parameters section of the callctrl.cfg file as
follows:

fax_transport_protocol value "sip.fax" value

t38_never passthrough

t38_only t38

t38_first t38

Not specified in callctrl.cfg file t38

In addition to this, when this parameter is set to TRUE, outbound
SIP INVITE requests will include a "sip.fax" media feature tag in an
Accept-Contact header. The value of the "sip.fax" media feature tag
in transmitted SIP INVITE requests is determined by the value of
the fax_transport_protocol call control configuration file
parameter as noted in the table above or can be specified at runtime
via the fax_media_feature_tag field in either the args_cc or
args_telephone structures, as appropriate to your application.

The following are the allowable parameter values:

TRUE Enable RFC 6913 functionality for the SIP stack.

FALSE Disable RFC 6913 functionality for the SIP stack.

Default: FALSE

Table 27. Advanced SIP IP Call Control Stack Parameters (Continued)

Key Name Description

Call Control Configuration File

March 2017 1272

Configuring Ethernet Interface
Parameters
In the module.#/ethernet.# section of the configuration file,
identify the module’s interface x using the 1-based index of the
Ethernet interface. This index allows an application to configure
modules with multiple interfaces. Set the following parameters for a
module configured to use an Ethernet interface.

Parameter Value
dhcp Specifies whether the Ethernet interface uses dynamic host

configuration protocol (DHCP) to request an IP address. Set this
parameter to:

DISABLED Indicates that the ip_address parameter provides the IP
address for the port.

ENABLED Configures the Ethernet interface to use DHCP to request
an IP address.

Value Type: character string

Default: DISABLED

Note: This parameter is ignored and reserved for future use.
ethernet_speed Specifies the speed of the module’s Ethernet interface. Set this

parameter to:

AUTO Configures the interface to automatically sense the speed
of the network.

10 Sets the speed of the interface to 10 Mbps.

100 Sets the speed of the interface to 100 Mbps.

Unit: Mbps

Range: 10, 100, or AUTO

Value Type: character string

Default: AUTO

Call Control Configuration File

March 2017 1273

ip_address Specifies the IPv4 IP address of the module’s Ethernet interface. Set this
parameter only if you set the value in the dhcp parameter to DISABLED.

xxx.xxx.xxx.xxx Configures the Ethernet interface to use the
specified IP address.

Value Type: dotted decimal

Default: None

Note: The Dialogic® Brooktrout® module does not support the domain
naming system (DNS) data base. Your application has the
responsibility of converting domain names into resolved dotted-
decimal notation IP addresses.

ip_addressV6 Specifies the IPv6 IP address of the module's Ethernet interface.

[<IPv6 Address>%<Scope ID>]

Where:

 IPv6 addresses must be enclosed in brackets.
 "Link-Local IPv6 addresses must have their Scope ID specified after

the IPv6 address separated by a % character

Value Type: character string (up to 256 characters)

Default: None

Note: The Dialogic® Brooktrout® module does not support the
domain naming system (DNS) data base. Your application has
the responsibility of converting domain names into resolved IP
addresses.

ip_arp_timeout Specifies the arp (address resolution protocol) timeout value that the
module’s Ethernet interface uses. Set this parameter to:

Unit: minutes
Range: 0 – 1,000,000 where 0 indicates that the timeout is

disabled.

Value Type: decimal
Default: 10

ip_broadcast Specifies the IP broadcast address of the module’s Ethernet interface.
Set this parameter to:

xxx.xxx.xxx.xxx Configures the Ethernet interface to use the
specified broadcast address.

Value Type: dotted decimal

Default: None

Parameter Value

Call Control Configuration File

March 2017 1274

ip_gateway Specifies the gateway address of the module’s Ethernet interface. Set
this parameter to:

xxx.xxx.xxx.xxx Configures the Ethernet interface to use the
specified gateway address.

Value Type: dotted decimal

Default: None
ip_interface Specifies the identity of the device on the PC with the IP interface that

the virtual module can use for sending/receiving IP messages to/from an
IPv4 IP address.

Note: This parameter only applies to host-based fax applications using a
virtual module.

Set the value of this parameter to the name of any device in the PC with
an IP interface. If you do not provide a value (blank string), the virtual
module will use the value specified for the ip_address keyword. If no
value is specified for either keyword, the first available IPv4 address on
the PC will be selected for the PC to send its messages.

Note: The format for the value provided by this parameter is operating
system dependent.

The Windows format for the value provided in this parameter is:

 The name of the IP device (Global Unique IDentifier (GUID)) followed
by

 A colon (:) character followed by
 The index number of the device’s IP address

For example:

{4D36E96E-E325-11CE-BFC1-08002BE10318}:0

The Linux format is the ethernet device name.

For example:

ip_interface=eth0

Value Type: character string (up to 256 characters)

Default: <blank> (the virtual module uses the first interface in
the PC for sending IP messages)

Parameter Value

Call Control Configuration File

March 2017 1275

ip_interfaceV6 Specifies the identity of the device on the PC with the IP interface that
the virtual module can use for sending/receiving IP messages to/from an
IPv6 IP address.

Set the value of this parameter to the name of any device in the PC with
an IP interface. If you do not provide a value (blank string), the virtual
module will use the value specified for the ip_addressV6 keyword. If no
value is specified for either keyword, the first available IPv6 address on
the PC will be selected for the PC to send its messages.

Note: The format for the value provided by this parameter is operating
system dependent.

The Windows format for the value provided in this parameter is:

 The name of the IP device (Global Unique IDentifier (GUID)) followed
by

 A colon (:) character followed by
 The index number of the IPv6 IP address on the device

For example: {4D36E96E-E325-11CE-BFC1-08002BE10318}:0

The Linux format is the ethernet device name.

For example:

ip_interfaceV6=eth0

Value Type: character string (up to 256 characters)

Default: <blank>

If the default (i.e. <blank>) value is specified for this parameter, the
virtual Module will use the value specified for the ip_addressV6
parameter.

ip_netmask Specifies the netmask address of the module’s Ethernet interface. Set
this parameter only if you set the value in the dhcp parameter to
DISABLED.

xxx.xxx.xxx.xxx Configures the Ethernet interface to use the
specified netmask address.

Value Type: dotted decimal

Default: 0.0.0.0

Parameter Value

Call Control Configuration File

March 2017 1276

ip_preference Specifies the IP family preference that should be used by the virtual
module for sending IP messages.

The following are the allowable parameter values:

ipv4_only Only IPv4 supported

ipv6_only Only IPv6 supported

ipv4_preferred IPv4 and IPv6 both supported. For outbound
SIP calls, the specific IP family type used for the
IP messages sent by the virtual module will be

 determined by the SIP Call Control stack.

ipv6_preferred IPv4 and IPv6 both supported. For outbound SIP
calls, the specific IP family type used for the
IP messages sent by the virtual module will
be determined by the SIP Call Control stack.

Value Type: character string

Default: ipv4_only
media_port_max Specifies the highest IP port number that the module can use. Set this

value to a value 1000 above the value specified for the media_port_min
parameter.

57000 Sets this value as the highest port number.

Range: 2024 – 65535

Value Type: decimal

Default: 57000

media_port_min Specifies the lowest IP port number that the module can use for media
transmissions. Set this value to a value 1000 below the value specified
for the media_port_max parameter.

56000 Sets this value as the lowest port number.

Range: 1024 – 64535

Value Type: decimal

Default: 56000

t38_offer_as_ced Specifies whether to generate a CED detected event when receiving a
T.38 offer. A T.38 offer is a SIP re-Invite or H.323 requestMode message
indicating an IP endpoint wishes to switch the IP call to T.38. This
allows applications performing call progress to detect the T.38 offer and
transition to fax.

 false - Don't send CED tone detected.

 true - Send CED tone detected.

Value Type: Boolean

Default: TRUE

Parameter Value

Call Control Configuration File

March 2017 1277

Configuring A Module To Use An IP Call
Control Stack
In the module.#/host_cc.# section of the configuration file,
identify each IP call control stack that a module can use. You can:

 Specify the same stack for more than one module.

 Configure each module to support a maximum of 9 different
stacks.

Add one module.#/host_cc.# section for each IP call control stack
the module can use, starting at 1 (host_cc.1 through host_cc.9).

Set the following parameters for each host_cc.# section of the call
control configuration file.

Parameter Value
host_module Specifies the number that identifies the IP call control stack that the

module can use.

Set this parameter to match the host_module number identifier (see
page 1234) associated with the IP call control stack the module can use.
Valid values are:

Range: 1 – 9

Value Type: decimal

Default: 1

number_of_channels Specifies the number of channels enabled to use the specified stack. This
number must not exceed the number of available channels on the
module.

The Bfv API allocates the first available channels on the module to this
stack. When the module can use multiple stacks, the Bfv API maps the
channels to the stacks in the order that the stacks appear in the
configuration file. If you configure a module to use telephony ports and
an IP call control stack, the Bfv API allocates channels to the telephony
interface first.

Range: 1 – 1024 (not to exceed the maximum number of available
channels on the module)

Value Type: decimal

Default: 1

Call Control Configuration File

March 2017 1278

Configuring A Module To Use An RTP
Stack

host_module.#/rtp The host_ module.#/rtp section provides parameters to configure
an RTP stack on the SR140 virtual modules and IP-enabled boards.
If a value provided for a parameter is out of range, the parameter's
default value will be used instead.

Parameter Value
rtp_frame_duration Specifies the duration of outbound RTP packets in multiple of 10ms.

SR140 virtual modules do not support outbound 10ms packets.

Unit: ms
Range: 10 - 30
Value Type: decimal
Default: 20

rtp_voice_frame_replacement Specifies how to treat missing inbound voice frames.

0 Missing frame is replaced with silence.
1 Missing frame is replaced with the previous frame.

Value Type: decimal
Default: 0 (Silence)

rtp_jitter_buffer_depth Specifies the depth of the RTP jitter buffer in multiples of 10ms.

The depth of the jitter buffer determines the playout delay imposed by
the RTP stack before passing data to the signal processing
algorithms. This delay should be considered when performing time
sensitive tone detection in IVR applications. A longer playout delay
also provides a better opportunity for recovering from RTP packets
received out of order.

Unit: ms
Range: 0 - 500
Value Type: decimal
Default: 100

rtp_silence_control Determines how silence, in an outbound RTP stream, is treated.

inband - RTP silence is not suppressed
suppress - RTP silence is suppressed

Value Type: character string
Default: inband

Call Control Configuration File

March 2017 1279

rtp_type_of_service Determines how the first six bits of the ToS DCSP (Differentiated
Services Point Code) field in the IP header are set for RTP packets.

This parameter is available for Linux and Solaris only. For Windows,
the value of the DSCP bits is set from a group policy.

Unit: none
Range: 0 - 63
Value Type: decimal
Default: 0

rtp_codec Defines the codecs supported and codec order offered to a remote
device during call negotiation. This parameter may be set to one or
two codecs. Codec names should be entered without quotes and
separated by a space. The first codec after the keyword is given the
highest order of priority. For example, rtp_codec=pcmu pcma will
offer both codecs, but pcmu will be the preferred one. Another option
is to set rtp_codec=pcmu followed by rtp_code=pcma on the next line.
This will offer both codecs, but pcmu will be the preferred one.

Unit: none
Range: pcmu (PCM Mu-law), pcma (PCM A-law)
Value Type: null-terminated case insensitive string
Default: pcmu

Parameter Value

Call Control Configuration File

March 2017 1280

Examples of PSTN Call Control (callctrl.cfg) Files
This section provides example settings in call control configuration
files for the following port-specific configurations:

 Analog DID ports — see page 1281

 Analog loop start ports — see page 1282

 ISDN BRI ports — see page 1284

 E1 ISDN ports — see page 1285

 E1 R2 CAS ports — see page 1286

 T1 ISDN ports — see page 1287

 T1 QSIG ports — see page 1288

 T1 Robbed Bit Signaling ports — see page 1290

To use one of the sample call control configuration files, select the
file that most closely matches the desired configuration of your
system.

Note: If a parameter specifies a file name, specify the full path to the
file.
For example, if the install location is C:Brooktrout/Boston
then specify the following parameter as:

protocol_file=C:/Brooktrout/Boston/config/
 analog_loopstart_us.lec

Refer to Sample Configuration Files on page 1302 for a listing of
sample configuration files included with the Brooktrout SDK that
provide a good starting point for your configuration. You might need
to customize them for your system.

Call Control Configuration File

March 2017 1281

Analog DID Port-Specific Configuration
File Example
The following code shows an example configuration file for ports
using analog DID interfaces. The code specifies values for module
number zero that automatically configure all the modules in the
system to the settings in the file.

l3l4_trace=none
l4l3_trace=none
api_trace=none
trace_file=ecc.log
[module.0]

pcm_law=mulaw
[module.0/port.1]

port_config=analog_did
line_coef=0
protocol_file=winkstart.lec
reject_incomplete_did=false
max_did_digits=0
did_offset=0
did_timeout=5

[module.0/port.2]
port_config=analog_did
line_coef=0
protocol_file=winkstart.lec
reject_incomplete_did=false
max_did_digits=0
did_offset=0
did_timeout=5

[module.0/port.3]
port_config=analog_did
line_coef=0
protocol_file=winkstart.lec
reject_incomplete_did=false
max_did_digits=0
did_offset=0
did_timeout=5

[module.0/port.4]
port_config=analog_did
line_coef=0
protocol_file=winkstart.lec
reject_incomplete_did=false
max_did_digits=0
did_offset=0
did_timeout=5

Call Control Configuration File

March 2017 1282

Analog Loop Start Port-Specific
Configuration File Example
The following code shows an example configuration file for ports
using analog loop start interfaces. The code specifies values for
module number zero that automatically configure all the modules in
the system to the settings in the file.

l3l4_trace=basic
l4l3_trace=basic
api_trace=verbose
internal_trace=verbose
trace_file=call_control_trace.txt
max_trace_file_size=10
[module.0]
 pcm_law=mulaw
[module.0/port.1]
 port_config=analog
 protocol_file=analog_loopstart_us.lec
 num_rings=2
 input_gain=0
 output_gain=0
 caller_id=enabled
 country=us600.qslac
[module.0/port.2]
 port_config=analog
 protocol_file=analog_loopstart_us.lec
 num_rings=2
 input_gain=0
 output_gain=0
 caller_id=enabled
 country=us600.qslac
[module.0/port.3]
 port_config=analog
 protocol_file=analog_loopstart_us.lec
 num_rings=2
 input_gain=0
 output_gain=0
 caller_id=enabled
 country=us600.qslac

Call Control Configuration File

March 2017 1283

[module.0/port.4]
 port_config=analog
 protocol_file=analog_loopstart_us.lec
 num_rings=2
 input_gain=0
 output_gain=0
 caller_id=enabled
 country=us600.qslac
[module.0/port.5]
 port_config=analog
 protocol_file=analog_loopstart_us.lec
 num_rings=2
 input_gain=0
 output_gain=0
 caller_id=enabled
 country=us600.qslac
[module.0/port.6]
 port_config=analog
 protocol_file=analog_loopstart_us.lec
 num_rings=2
 input_gain=0
 output_gain=0
 caller_id=enabled
 country=us600.qslac
[module.0/port.7]
 port_config=analog
 protocol_file=analog_loopstart_us.lec
 num_rings=2
 input_gain=0
 output_gain=0
 caller_id=enabled
 country=us600.qslac
[module.0/port.8]
 port_config=analog
 protocol_file=analog_loopstart_us.lec
 num_rings=2
 input_gain=0
 output_gain=0
 caller_id=enabled
 country=us600.qslac

Call Control Configuration File

March 2017 1284

BRI Port-Specific Configuration File
Example
The following code shows an example configuration file for ports
using ISDN BRI. The code specifies values for module number zero
that automatically configure all the modules in the system to the
settings in the file.

l3l4_trace=basic
l4l3_trace=basic
api_trace=verbose
internal_trace=basic
trace_file=call_control_trace.txt
max_trace_file_size=10

[module.0]
 pcm_law=alaw
[module.0/port.1]
 emulation=CPE
 port_config=BRI
 default_caller_id_channel_0=12344
 default_caller_id_channel_1=67890
 max_did_digits=0
 did_timeout=10
 reject_incomplete_did=false
[module.0/port.2]
 emulation=CPE
 port_config=BRI
 default_caller_id_channel_0=12344
 default_caller_id_channel_1=67890
 max_did_digits=0
 did_timeout=10
 reject_incomplete_did=false

Call Control Configuration File

March 2017 1285

E1 ISDN Port-Specific Configuration
File Example
The following code shows an example configuration file for ports
using E1 ISDN. The code specifies values for module number zero
that automatically configure all the modules in the system to the
settings in the file. This example also configures the trunks as
fractional E1 lines, and sets each trunk with 15 channels available.

l3l4_trace=basic
l4l3_trace=basic
api_trace=verbose
internal_trace=basic
trace_file=call_control_trace.txt
max_trace_file_size=10

[module.0]
 pcm_law=alaw
 auto_connect=true
[module.0/clock_config]
 clock_mode=master
 clock_source=TrunkA
[module.0/port.1]
 emulation=CPE
 port_config=E1_ISDN
 line_coding=HDB3
 crc=enabled
 protocol=EURO
 max_did_digits=5
 did_timeout=10
 reject_incomplete_did=false
 default_caller_id=12344
 fractional_channel_count=15
 fractional_start_channel=0
[module.0/port.2]
 emulation=CPE
 port_config=E1_ISDN
 line_coding=HDB3
 crc=enabled
 protocol=EURO
 max_did_digits=5
 did_timeout=10
 reject_incomplete_did=false
 default_caller_id=12344
 fractional_channel_count=15
 fractional_start_channel=0

Call Control Configuration File

March 2017 1286

E1 R2 CAS Port-Specific Configuration
File Example
The following code shows an example configuration file for ports
using an R2 variant of the E1 CAS protocol. The code specifies values
for module number zero that automatically configure all the modules
in the system to the settings in the file.

l3l4_trace=none
l4l3_trace=none
api_trace=none
internal_trace=none
Most of the time a path should be used for this file
name.
trace_file=ecc.log

[module.0]
 auto_connect=true
 pcm_law=alaw
[module.0/clock_config]
 clock_mode=master
 clock_source=TrunkA
[module.0/port.1]
 port_config=e1_r2_cas
Most of the time a path should be used for this file
name.
 protocol_file=itu_china.r2
 CRC=enabled
 line_coding=hdb3
 line_impedance=120
 max_did_digits=4
[module.0/port.2]
 port_config=e1_r2_cas
Most of the time a path should be used for this file
name.
 protocol_file=itu_china.r2
 CRC=enabled
 line_coding=hdb3
 line_impedance=120
 max_did_digits=4

Call Control Configuration File

March 2017 1287

T1 ISDN Port-Specific Configuration
File Example
The following code shows an example configuration file for ports
using T1 ISDN. The code specifies values for module number zero
that automatically configure all the modules in the system to the
settings in the file.

l3l4_trace=basic
l4l3_trace=basic
api_trace=verbose
internal_trace=basic
trace_file=call_control_trace.txt
max_trace_file_size=10

[module.0]
 pcm_law=mulaw
 auto_connect=true
[module.0/clock_config]
 clock_mode=master
 clock_source=TrunkA
[module.0/port.1]
 emulation=CPE
 port_config=T1_ISDN
 line_coding=B8ZS
 protocol=ATT
 max_did_digits=5
 did_timeout=10
 reject_incomplete_did=false
 default_caller_id=12344
[module.0/port.2]
 emulation=CPE
 port_config=T1_ISDN
 line_coding=B8ZS
 protocol=ATT
 max_did_digits=5
 did_timeout=10
 reject_incomplete_did=false
 default_caller_id=12344

Call Control Configuration File

March 2017 1288

T1 QSIG Port-Specific Configuration
File Example
The following code shows an example configuration file for ports
using T1 QSIG. The code specifies values for module number zero
that automatically configure all the modules in the system to the
settings in the file.

l3l4_trace=basic
l4l3_trace=basic
api_trace=verbose
internal_trace=basic
trace_file=call_control_trace.txt
max_trace_file_size=10

[module.0]
 channels=46
 set_api=bfv
 auto_connect=true
 pcm_law=mulaw
[module.0/clock_config]
 clock_mode=master
 clock_source=trunka
 clock_compatibility=none
 bus_speed=2
 master_ref_fallback=disabled
 master_drive=clock_a
[module.0/port.1]
 port_config=t1_qsig
 collision_priority=B
 call_diversion_completion_timer=3000
 default_caller_id=
 did_offset=0
 disable_alerting=true
 disable_call_proceed=false
 disable_conn_ack=false
 enable_call_diversion=false
 request_aoc=false
 fractional_channel_count=-1
 fractional_start_channel=0
 did_timeout=5
 max_overlapped_digits=20
 numbering_plan=unknown
 numbering_type=unknown
 call_type=auto
 presentation=allowed

Call Control Configuration File

March 2017 1289

 qsig_support=new
 sabme=true
 screening=user_not_screened
 send_dialcomplete=true
 transfer_variant=qsig
 wait_for_service_timeout=10
 emulation=slave
 line_coding=b8zs
 line_build_out=0_133
 max_did_digits=0
 reject_incomplete_did=false
[module.0/port.2]
 port_config=t1_qsig
 collision_priority=B
 call_diversion_completion_timer=3000
 default_caller_id=
 did_offset=0
 disable_alerting=true
 disable_call_proceed=false
 disable_conn_ack=false
 enable_call_diversion=false
 request_aoc=false
 fractional_channel_count=-1
 fractional_start_channel=0
 did_timeout=5
 max_overlapped_digits=20
 numbering_plan=unknown
 numbering_type=unknown
 call_type=auto
 presentation=allowed
 qsig_support=new
 sabme=true
 screening=user_not_screened
 send_dialcomplete=true
 transfer_variant=qsig
 wait_for_service_timeout=10
 emulation=slave
 line_coding=b8zs
 line_build_out=0_133
 max_did_digits=0
 reject_incomplete_did=false

Call Control Configuration File

March 2017 1290

T1 Robbed Bit Signaling Port-Specific
Configuration File Example
The following code shows an example configuration file for ports
using T1 with robbed bit signaling. The code specifies values for
module number zero that automatically configure all the modules in
the system to the settings in the file.

l3l4_trace=basic
l4l3_trace=basic
api_trace=verbose
internal_trace=basic
trace_file=call_control_trace.txt
max_trace_file_size=10

[module.0]
 pcm_law=mulaw
 auto_connect=true
[module.0/clock_config]
 clock_mode=master
 clock_source=TrunkA
[module.0/port.1]
 port_config=T1_ROBBED_BIT
 protocol_file=winkstart.lec
 line_coding=B8ZS
 line_type=ESF
 max_did_digits=4
 did_timeout=10
 reject_incomplete_did=false
[module.0/port.2]
 port_config=T1_ROBBED_BIT
 protocol_file=winkstart.lec
 line_coding=B8ZS
 line_type=ESF
 max_did_digits=4
 did_timeout=10
 reject_incomplete_did=

Call Control Configuration File

March 2017 1291

Examples of IP Call Control Configuration File
This section contains several coded examples of call control
configuration files set up to support use of an IP call control stack:

Note: Only the TR1034 and SR140 support use of an IP call control
stack.

 Single Module, Single SIP Stack — see page 1292

 Single Module, Single H.323 Stack — see page 1294

 Multiple Modules, Single Stack — see page 1296

 Multiple Modules, Multiple Stacks — see page 1298

 Single Virtual Module, Single Stack — see page 1301

Note: If a parameter specifies a file name, specify the full path to the
file.
For example, if the install location is C:Brooktrout/Boston
then specify the following parameter as:

protocol_file=C:/Brooktrout/Boston/config/
 analog_loopstart_us.lec

Refer to Sample Configuration Files on page 1302 for a listing of
sample configuration files included with the Brooktrout SDK that
provide a good starting point in your configuration. You might need
to customize them for your system.

Call Control Configuration File

March 2017 1292

Single Module, Single SIP Stack
[host_module.1]
 module_library=brktsip.dll
 enabled=true
[host_module.1/t38parameters]
 fax_transport_protocol=t38_only
 t38_fax_rate_management=transferredTCF
 t38_max_bit_rate=33600
 t38_fax_version=3

 t38_fax_udp_ec=t38UDPRedundancy
 rtp_ced_enable=true

 media_renegotiate_delay_inbound=4000
 media_renegotiate_delay_outbound=-1
 t38_fax_fill_bit_removal=false
 t38_fax_transcoding_jbig=false
 t38_fax_transcoding_mmr=false
 t38_t30_fastnotify=true
 t38_UDPTL_redundancy_depth_control=5
 t38_UDPTL_redundancy_depth_image=2
[host_module.1/parameters]
 sip_Contact=0.0.0.0:0
 sip_description_URI=http:www.brooktrout.com
 sip_default_gateway=0.0.0.0:0
 sip_email=default@brooktrout.com
 sip_From=from@brooktrout.com
 sip_Max-Forwards=20
 sip_max_sessions=30
 sip_phone=+1-4085551212
 sip_proxy_server1=
 sip_proxy_server2=
 sip_proxy_server3=
 sip_registration_interval=60
 sip_registration_server1=
 sip_registration_server2=
 sip_registration_server3=
 sip_session_description=description_brooktrout
 sip_session_name=session_brooktrout
 sip_username=brooktrout

[host_module.1/rtp]
rtp_frame_duration=20
rtp_jitter_buffer_depth=100
rtp_silence_control=inband
rtp_type_of_service=0
rtp_voice_frame_replacement=0
rtp_codec=pcmu
rtp_codec=pcma

Call Control Configuration File

March 2017 1293

[module.2]
[module.2/clock_config]
 clock_source=internal
 clock_mode=master
 clock_compatibility=none

[module.2/ethernet.1]
 dhcp=disabled
 ip_address=192.168.0.100
 ip_netmask=255.255.255.0
 ip_gateway=192.168.0.1
 ip_broadcast=192.168.0.255
 ip_arp_broadcast=10
 media_port_min=1000
 media_port_max=2000
 ethernet_speed=auto
[module.2/host_cc.1]
 host_module=1
 number_of_channels=24

Call Control Configuration File

March 2017 1294

Single Module, Single H.323 Stack
[host_module.1]
 module_library=brkth323.dll
 enabled=true
[host_module.1/t38parameters]
 t38_fax_rate_management=transferredTCF
 t38_max_bit_rate=14400
 t38_fax_udp_ec=t38UDPRedundancy

 rtp_ced_enable=true
 media_renegotiate_delay_inbound=4000
 media_renegotiate_delay_outbound=-1
 t38_fax_fill_bit_removal=false
 t38_fax_transcoding_jbig=false
 t38_fax_transcoding_mmr=false
 t38_t30_fastnotify=true
 t38_UDPTL_redundancy_depth_control=5
 t38_UDPTL_redundancy_depth_image=2
[host_module.1/parameters]
 h323_e164alias=5551212
 h323_e164alias=5553434
 h323_e164alias=5556767
 h323_default_gateway=208.242.16.158:1720
 h323_gatekeeper_id=
 h323_gatekeeper_ip_address=0.0.0.0:0
 h323_gatekeeper_ttl=10
 h323_h323IDalias=yourname
 h323_h323IDalias=companyname
 h323_local_ip_address=0.0.0.0:0
 h323_max_sessions=256
 h323_register=0
 h323_support_alternate_gk=0

[host_module.1/rtp]
rtp_frame_duration=20
rtp_jitter_buffer_depth=100
rtp_silence_control=inband
rtp_type_of_service=0
rtp_voice_frame_replacement=0
rtp_codec=pcmu
rtp_codec=pcma

[module.2]
[module.2/clock_config]
 clock_source=internal
 clock_mode=master
 clock_compatibility=none

Call Control Configuration File

March 2017 1295

[module.2/ethernet.1]
 ip_address=192.168.0.100
 ip_netmask=255.255.255.0
 ip_gateway=192.168.0.1
 ip_broadcast=192.168.0.255
 ip_arp_timeout=600
 media_port_min=56000
 media_port_max=57000
 ethernet_speed=auto
[module.2/host_cc.1]
 host_module=1
 number_of_channels=24

Call Control Configuration File

March 2017 1296

Multiple Modules, Single Stack
[host_module.1]
 module_library=brktsip.dll
 enabled=true
[host_module.1/t38parameters]
 t38_fax_rate_management=transferredTCF
 t38_max_bit_rate=14400
 t38_fax_udp_ec=t38UDPRedundancy
 rtp_ced_enable=true
 media_renegotiate_delay_inbound=4000
 media_renegotiate_delay_outbound=-1
 t38_fax_fill_bit_removal=false
 t38_fax_transcoding_jbig=false
 t38_fax_transcoding_mmr=false
 t38_t30_fastnotify=true
 t38_UDPTL_redundancy_depth_control=5
 t38_UDPTL_redundancy_depth_image=2

[host_module.1/rtp]
rtp_frame_duration=20
rtp_jitter_buffer_depth=100
rtp_silence_control=inband
rtp_type_of_service=0
rtp_voice_frame_replacement=0
rtp_codec=pcmu
rtp_codec=pcma

[host_module.1/parameters]
 sip_Contact=0.0.0.0:0
 sip_description_URI=http:www.brooktrout.com
 sip_default_gateway=0.0.0.0:0
 sip_email=default@brooktrout.com
 sip_From=from@brooktrout.com
 sip_Max-Forwards=20
 sip_max_sessions=30
 sip_phone=+1-4085551212
 sip_proxy_server1=
 sip_proxy_server2=
 sip_proxy_server3=
 sip_registration_interval=60
 sip_registration_server1=
 sip_registration_server2=
 sip_registration_server3=
 sip_session_description=description_brooktrout
 sip_session_name=session_brooktrout
 sip_username=brooktrout

Call Control Configuration File

March 2017 1297

[module.2]
[module.2/clock_config]
 clock_source=internal
 clock_mode=master
 clock_compatibility=none
[module.2/ethernet.1]
 ip_address=192.168.0.100
 ip_netmask=255.255.255.0
 ip_gateway=192.168.0.1
 ip_broadcast=192.168.0.255
 ip_arp_timeout=600
 media_port_min=56000
 media_port_max=57000
 ethernet_speed=auto
[module.2/host_cc.1]
 host_module=1
 number_of_channels=24

[module.3]
[module.3/clock_config]
 clock_source=internal
 clock_mode=master
 clock_compatibility=none
[module.3/ethernet.1]
 ip_address=192.168.0.100
 ip_netmask=255.255.255.0
 ip_gateway=192.168.0.1
 ip_broadcast=192.168.0.255
 ip_arp_timeout=600
 media_port_min=56000
 media_port_max=57000
 ethernet_speed=auto
[module.3/host_cc.1]
 host_module=1
 number_of_channels=24

Call Control Configuration File

March 2017 1298

Multiple Modules, Multiple Stacks
[host_module.1]
 module_library=brktsip.dll
 enabled=true

[host_module.1/t38parameters]
 t38_fax_rate_management=transferredTCF
 t38_max_bit_rate=14400
 t38_fax_udp_ec=t38UDPRedundancy

 rtp_ced_enable=true
 media_renegotiate_delay_inbound=4000
 media_renegotiate_delay_outbound=-1
 t38_fax_fill_bit_removal=false
 t38_fax_transcoding_jbig=false
 t38_fax_transcoding_mmr=false
 t38_t30_fastnotify=true
 t38_UDPTL_redundancy_depth_control=5
 t38_UDPTL_redundancy_depth_image=2

[host_module.1/rtp]
rtp_frame_duration=20
rtp_jitter_buffer_depth=100
rtp_silence_control=inband
rtp_type_of_service=0
rtp_voice_frame_replacement=0
rtp_codec=pcmu
rtp_codec=pcma

[host_module.1/parameters]
 sip_Contact=0.0.0.0:0
 sip_description_URI=http:www.brooktrout.com
 sip_default_gateway=0.0.0.0:0
 sip_email=default@brooktrout.com
 sip_From=from@brooktrout.com
 sip_Max-Forwards=20
 sip_max_sessions=30
 sip_phone=+1-4085551212
 sip_proxy_server1=
 sip_proxy_server2=
 sip_proxy_server3=
 sip_registration_interval=60
 sip_registration_server1=
 sip_registration_server2=
 sip_registration_server3=
 sip_session_description=description_brooktrout
 sip_session_name=session_brooktrout
 sip_username=brooktrout

Call Control Configuration File

March 2017 1299

[host_module.2]
 module_library=brkth323.dll
 enabled=true
[host_module.2/t38parameters]
 t38_fax_rate_management=transferredTCF
 t38_max_bit_rate=14400
 t38_fax_udp_ec=t38UDPRedundancy
 rtp_ced_enable=true
 media_renegotiate_delay_inbound=4000
 media_renegotiate_delay_outbound=-1
 t38_fax_fill_bit_removal=false
 t38_fax_transcoding_jbig=false
 t38_fax_transcoding_mmr=false
 t38_t30_fastnotify=true
 t38_UDPTL_redundancy_depth_control=5
 t38_UDPTL_redundancy_depth_image=2

[host_module.2/rtp]
rtp_frame_duration=20
rtp_jitter_buffer_depth=100
rtp_silence_control=inband
rtp_type_of_service=0
rtp_voice_frame_replacement=0
rtp_codec=pcmu
rtp_codec=pcma

[host_module.2/parameters]
 h323_e164alias=5551212
 h323_e164alias=5553434
 h323_e164alias=5556767
 h323_default_gateway=0.0.0.0:0
 h323_gatekeeper_id=
 h323_gatekeeper_ip_address=0.0.0.0:0
 h323_gatekeeper_ttl=10
 h323_h323IDalias=yourname
 h323_h323IDalias=companyname
 h323_local_ip_address=0.0.0.0:0
 h323_max_sessions=256
 h323_register=0
 h323_support_alternate_gk=0

[module.2]
[module.2/clock_config]
 clock_source=internal
 clock_mode=master
 clock_compatibility=none
[module.2/ethernet.1]
 dhcp=disabled

Call Control Configuration File

March 2017 1300

 ip_address=192.168.0.100
 ip_netmask=255.255.255.0
 ip_gateway=192.168.0.1
 ip_broadcast=192.168.0.255
 ip_arp_broadcast=10
 media_port_min=1000
 media_port_max=2000
 ethernet_speed=auto
[module.2/host_cc.1]
 host_module=1
 number_of_channels=24

[module.3]
[module.3/clock_config]
 clock_source=internal
 clock_mode=master
 clock_compatibility=none
[module.3/ethernet.1]
 dhcp=disabled
 ip_address=192.168.0.100
 ip_netmask=255.255.255.0
 ip_gateway=192.168.0.1
 ip_broadcast=192.168.0.255
 ip_arp_broadcast=10
 media_port_min=1000
 media_port_max=2000
 ethernet_speed=auto
[module.3/host_cc.2]
 host_module=2
 number_of_channels=24

Call Control Configuration File

March 2017 1301

Single Virtual Module, Single Stack
[module.41]
This parameter should be modified to point to the correct location of the
bostvb.dll

 vb_firm=C:\Brooktrout\Boston\fw\bostvb.dll

This parameter should be set to the number of channels licensed for the
SR140 product

 channels=4

[module.41/ethernet.1]
 ip_interface=
 media_port_min=56000
 media_port_max=57000
[module.41/host_cc.1]
 host_module=1
 number_of_channels=4
[host_module.1]
 module_library=brktsip.dll
 enabled=true
[host_module.1/t38parameters]
 t38_fax_rate_management=transferredTCF
 t38_max_bit_rate=14400
 t38_fax_udp_ec=t38UDPRedundancy
 rtp_ced_enable=true
 media_renegotiate_delay_inbound=1000
 media_renegotiate_delay_outbound=2000
 t38_fax_fill_bit_removal=false
 t38_fax_transcoding_jbig=false
 t38_fax_transcoding_mmr=false
 t38_t30_fastnotify=true
 t38_UDPTL_redundancy_depth_control=5
 t38_UDPTL_redundancy_depth_image=2

[host_module.1/rtp]
rtp_frame_duration=20
rtp_jitter_buffer_depth=100
rtp_silence_control=inband
rtp_type_of_service=0
rtp_voice_frame_replacement=0
rtp_codec=pcmu
rtp_codec=pcma

[host_module.1/parameters]
 sip_Contact=0.0.0.0:0
 sip_description_URI=http:www.brooktrout.com

Call Control Configuration File

March 2017 1302

 sip_default_gateway=0.0.0.0:0
 sip_email=default@brooktrout.com
 sip_From=from@brooktrout.com
 sip_Max-Forwards=20
 sip_max_sessions=30
 sip_phone=+1-4085551212
 sip_proxy_server1=
 sip_proxy_server2=
 sip_proxy_server3=
 sip_registration_interval=60
 sip_registration_server1=
 sip_registration_server2=
 sip_registration_server3=
 sip_session_description=description_brooktrout
 sip_session_name=session_brooktrout
 sip_username=brooktrout

Sample Configuration Files
The following are sample configuration files (with brief descriptions)
that provide a good starting point for your configuration. You might
need to customize them for your system.

Several call control configuration files, for example "callctrl.cfg", are
provided in the config directory for some of the most common
configurations.

The .lec, .qslac, and .r2 files may also be required for use for call
control configuration. They are referred to by name from within the
call control configuration files. For a quick start, copy all files to a
test directory and then choose the files to configure.

callctrl.cfg

This is an all-in-one file that contains examples for several different
types of boards. All of the configuration lines have been commented
out. You should uncomment the lines that are appropriate for your
configuration.

callctrl_analog.cfg

8 loop-start analog ports

Each port connected to a logical channel

Call Control Configuration File

March 2017 1303

callctrl_bri.cfg

BRI

All BRI channels are connected through to the logical channels.

callctrl_did.cfg

DID

4 winkstart analog DID ports

All DID channels are connected through to the logical channels.

callctrl_e1.cfg

E1

Robbed Bit Signaling

H.100 bus master

HDB3

120 Ohms

All E1 timeslots are connected through to the logical channels.

callctrl_e1_isdn.cfg

E1

ISDN

Bus master

HDB3

All E1 timeslots are connected through to the logical channels.

Call Control Configuration File

March 2017 1304

callctrl_e1_qsig.cfg

E1

QSIG

Bus master

HDB3

All QSIG timeslots are connected through to the logical channels.

callctrl_h323.cfg

 Board based with host based H.323 stack

 t.38

callctrl_h323_hbf.cfg

Host based H.323

t.38

callctrl_r2.cfg

R2 CAS

HDB3

CRC

120-Ohm

Bus master

All E1 timeslots are connected through to the logical channels.

callctrl_sip.cfg

Board based with host based SIP stack

t.38

Call Control Configuration File

March 2017 1305

callctrl_sip_hbf.cfg

Host based SIP

t.38

callctrl_t1.cfg

T1

Robbed Bit Signalling

E&M wink start

Bus master

Extended Superframe (ESF)

B8ZS

All T1 timeslots are connected through to the logical channels.

callctrl_t1_isdn.cfg

T1

ISDN

Bus master

Extended Superframe (ESF)

B8ZS

All T1 timeslots are connected through to the logical channels.

callctrl_t1_qsig.cfg

T1

QSIG

Bus master

HDB3

All QSIG timeslots are connected through to the logical channels.

Routing Table Configuration File

March 2017 1306

Routing Table Configuration File

The optional routing table configuration file is an ASCII file that
contains one or more routing rules which define how inbound calls
should be routed. The routing_table parameter in the call control
configuration file (see page 1158) specifies the path and filename of
the routing table configuration file.

This section describes the content of the routing table configuration
file as follows:

 Routing Table Configuration File Format

 Routing Rule Parameters

 Examples of Routing Table Configuration Files

Note: The Routing Table Configuration file only supports routing
rules for inbound calls using the SIP IP call control protocol
and can only route these calls to channels on SR140 modules.

Routing Table Configuration File

March 2017 1307

Routing Table Configuration File Format
The general format of the file is:

Routing Rule Parameters Parameters that specify routing rule settings.

[routing.#]
 channel=XXXX
 called_address=XXXX
 calling_address=XXXX

All routing rule indexes and channel numbers are specified as
decimal numbers. Text strings are not case sensitive and only use
ASCII format. Comment lines in the file should start with a ‘;’
(semicolon) or a ‘#’ (pound or number) symbol.

routing.# The routing keyword allows users to specify the start of a new
routing rule in the routing table configuration file.

Each routing rule has a 1-based index associated with it. Routing
rules also have a priority associated with them with
[routing_rule.1] being the highest priority, [routing_rule.2]
being the second highest priority, etc.

When an inbound SIP call is received and inbound call routing is
enabled, an attempt will be made to match the call to one of the
configured routing rules starting with the highest priority routing
rule and ending with the lowest priority routing rule. If a match is
found, the call will be routed to the SR140 channel that's been
waiting the longest for an inbound call and is assigned to the routing
rule.

Within the routing table configuration file, the routing rules do not
need to be specified in consecutive order.

Routing Table Configuration File

March 2017 1308

For example, the routing rules could be specified in a configuration
file in the following order: 1, 2, 99:

[routing_rule.1]
.
.
.
[routing_rule.2]
.
.
.
[routing_rule.99]
.
.
.

A maximum of 100 routing rules may be specified in a routing table
configuration file.

Routing Table Configuration File

March 2017 1309

Routing Rule Parameters
Set the following parameters to define configuration information
that applies to the routing rule (routing.#).

Parameter Value
channel The channel parameter is required for all valid routing rules and

allows users to specify an SR140 channel or range of SR140 channels
that a routing rule applies to. When a single channel is specified, the
format for the channel parameter is:

channel=<number>

When a range of channels is specified, the format is:

channel=<min> - <max>

A routing rule can have channel parameter values that overlap
channels specified for a different routing rule. For example,
[routing_rule.1] could specify channels 0 through 4 and
[routing_rule.2] could specify channels 3 through 4.

If a routing rule is encountered that doesn't have a channel
parameter specified, the routing rule will be considered invalid and
won't be used at runtime to route inbound calls. The Boston Host
Service will not treat this as a severe error and will successfully
initialize when one or more invalid routing rules are detected.

If, during initialization, all of the specified routing rules are
determined to be invalid, then the Boston Host Service will initialize
successfully with inbound call routing functionality disabled.

Range: 0 through 512

Default: N/A

Note: While the maximum supported channel number for routing
rules is 512, the maximum valid channel number for any
specific configuration is the highest ordinal number for an
SR140 channel. For example, if a system has two SR140
modules in a system with each module configured for 4
channels, then the valid range of channel parameter values
would be 0 to 7.

Routing Table Configuration File

March 2017 1310

called_address The called_address parameter allows users to specify a string
containing a pattern to use when matching inbound calls to routing
rules. The called address of an inbound SIP call is extracted from the
To SIP header. For example, if an inbound SIP call contains the
following To header:

To: <sip:1001@10.128.22.6:5060>

The called address of the call would be “1001” and this is what the
pattern specified by the called_address parameter of a routing rule
would be matched against.

The pattern specified for the called_address parameter value can
consist of any of the decimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) as well as
the special characters identified in the following table:

Dial Plan Character Character Description

 x or X Matches any digit from 0-9

 [Specify start of digit range

 - Specify range of digits

] Specify end of digit range

Match ranges are created using [min-max]. A left bracket, hyphen (-)
and a right bracket are required. Minimum and maximum values
may range from 0 through 9. Brackets may be repeated, but not
nested.

An empty called_address string (or a routing rule where the
called_address parameter isn't specified) indicates that the
called_address information associated with the inbound call should
not be checked against this parameter setting. If the inbound call
matches the calling_address pattern of a routing rule and the
called_address parameter value for the same routing rule is an
empty string, this would constitute a match and the call would be
routed to one of the SR140 channels associated with this routing
rule.

A routing rule that has both the called_address and calling_address
parameters set to empty strings is invalid and will not be used at
runtime for routing inbound calls.

Range: 1-255 characters

Value Type: character string (up to 256 characters)

Default: <blank> (empty string)

Parameter Value

Routing Table Configuration File

March 2017 1311

calling_address The calling_address parameter allows users to specify a string
containing a pattern to use when matching inbound calls to routing
rules. The calling address of an inbound SIP call is extracted from
the From SIP header. For example, if an inbound SIP call contains
the following From header:

From: <sip:7814499009@10.128.22.6:5060>;tag=XXXXXX

The calling address of the call would be “7814499009” and this is
what the pattern specified by the calling_address parameter of a
routing rule would be matched against.

The pattern specified for the calling_address parameter value can
consist of any of the decimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) as well as
the special characters identified in the following table:

Dial Plan Character Character Description

 x or X Matches any digit from 0-9

 [Specify start of digit range

 - Specify range of digits

] Specify end of digit range

Match ranges are created using [min-max]. A left bracket, hyphen (-)
and a right bracket are required. Minimum and maximum values
may range from 0 through 9. Brackets may be repeated, but not
nested.

An empty calling_address string (or a routing rule where the
calling_address parameter isn't specified) indicates that the
calling_address information associated with the inbound call should
not be checked against this parameter setting. If the inbound call
matches the called_address pattern of a routing rule and the
calling_address parameter value for the same routing rule is an
empty string, this would constitute a match and the call would be
routed to one of the SR140 channels associated with this routing
rule.

A routing rule that has both the called_address and calling_address
parameters set to empty strings is invalid and will not be used at
runtime for routing inbound calls.

Range: 1-255 characters

Value Type: character string (up to 256 characters)

Default: <blank> (empty string)

Parameter Value

Routing Table Configuration File

March 2017 1312

Examples of Routing Table Configuration Files
This section contains an example of a routing table configuration file
set up to specify inbound call routing rules:

 Routing Rules for Eight Channel Configuration

Routing Table Configuration File

March 2017 1313

Routing Rules for Eight Channel
Configuration
The following routing table configuration file example contains valid
routing rules for a system that has 8 SR140 channels configured:

Rule to match inbound calls that have a called
address of "1001" and calling address that's
10 digits long and starts with "781449".
Route matching calls to SR140 channel 0
[routing.1]
 channel 0
 called_address = "1001"
 calling_address= "781449XxXx"
Rule to match inbound calls that have a called
address that's 4 digits long and begins with '2'
and ends with '5'. Ignore the calling address
when checking if the inbound call matches this
routing rule. Route matching calls to SR140
channels 0 or 1.
[routing.2]
 channel 0-1
 called_address = "2xx5"
 calling_address =""
Rule to match inbound calls that have a called
address that's 4 digits long and begins with
either '2' or '3' and ends with "234" (i.e.
"2234" or "3234"). The calling address must also
be 10 digits long and start with "973". Route
matching calls to SR140 channels 2, 3, 4, or 5.
[routing.3]
 channel 2-5
 called_address = "[2-3]234"
 calling_address="973xxxXXXX"
Rule to match inbound calls that have a called
address that's 4 digits long and begins with
'4'. The second digit must be '0', '1', '2',
'3' or '4'. The third digit must be '8' or
'9' and the fourth digit must be '5', '6', '7',
'8' or '9'. The calling address must also be 11
digits long and set to "18007554444". Route
matching calls to SR140 channels 0 thru 7.
[routing.4]
 channel 0-7
 called_address="4[0-4][8-9][5-9]"
 calling_address="18007554444"

Routing Table Configuration File

March 2017 1314

Rule to match inbound calls that have a called
address that's 7 digits long. Since the
calling_address parameter isn't specified for
this routing rule, ignore the calling address
when checking if the inbound call matches this
routing rule. Route matching calls to SR140
channel 4. Note that routing rule indexes do
not have to be consecutive.
[routing.50]
 channel 4
 called_address="XXXXXXX"
Rule to match inbound calls that have a calling
address that's 11 digits long and begins with
"1781". Since the called_address parameter
isn't specified for this routing rule, ignore
the called address when checking if the inbound
call matches this routing rule. Route matching
calls to SR140 channels 3 thru 7.
[routing.60]
 channel 3-7
 calling_address="1781xxxxxxx"
Rule to match inbound calls that have a calling
address that's 7 digits long and begins with
'4' followed by '7', '8' or '9'followed by '1'
or '2' followed by 4 other digits. (e.g. 4712468
or 4821357). Since the called_address parameter
is set to an empty string, ignore the called
address when checking if the inbound call
matches this routing rule. Route matching calls
to SR140 channel 6.
[routing.100]
 channel 6
 called_address=""
 calling_address="4[7-9][1-2]XXXX"

Parameters for Technical Support Purposes

March 2017 1315

Parameters for Technical Support Purposes

The Bfv API provides the following parameters that might be used
when getting help from Dialogic Technical Services and Support.
These parameters should never be used unless explicitly directed to
do so by Dialogic Technical Services and Support. If directed to use
one of these parameters, enter the parameter and its value into the
user-defined configuration file (see page 1140).

Parameter Purpose
adpcm_exp Directs how the firmware handles certain distortions in the data during

playback of ADPCM (ADPCM expansion).

0 Bias removal.

1 High pass filter and bias removal.

2 "Leak" correction mode.

Range: 0, 1, 2

Value Type: decimal

Default: 1

cp_silence_duration Specifies the length of time in ms for a SILENCE call progress value to
be generated when using CALL_PROTOCOL_VOICE or
CALL_PROTOCOL_VOICE_NO_RAW.

Unit: ms

Value Type: decimal

Default: 8000
debug_control Turns on firmware debugging features. Supply two values – a facility

number and a debug value. The debug_control and debug_var_control
parameters may appear up to four times.

Value Type: hexadecimal

Default: none
debug_var_control Sets firmware debugging variables. Supply three values - a facility

number, a variable ID, and a debug value. The debug_var_control and
debug_control parameters may appear up to four times.

Value Type: hexadecimal

Default: none
dtmf_rdelta Defines allowed fluctuations of the DTMF level.

Range: 0 – 10

Value Type: decimal

Default: 0

Parameters for Technical Support Purposes

March 2017 1316

error_enable Turns error detection on (1) or off (0) during fax reception in non-ECM
mode.

Range: 0 to 1

Value Type: decimal

Default: 1 (enabled)
post_dialing_enable Enables or disables the feature for post-dialing of DTMF digits. See

BfvLineOriginateCall args.phonenum for a description of this feature.

0 Turns post-dialing off.

1 Turns post-dialing on.

Range: 0 or 1

Value Type: decimal

Default: 1

play_cdm Stops dynamic range control (DRC), gain, and preemphasis together if
set to 0.

Range: 0 or 1

Value Type: decimal

Default: 1

play_drc Specifies whether dynamic range control (DRC) is on during speech
playback.

0 DRC off.

1 DRC on.

Range: 0 or 1

Value Type: decimal

Default: 1

play_preemph Specifies the mode for high frequency preemphasis during speech
playback.

0 Preemphasis is off.

1 Preemphasis version 1 is used.

2 Preemphasis version 2 is used.

The Bfv API performs pre-emphasis during playback. A pre-emphasis
filter processes the outgoing signal, changing its frequency
characteristics. The filter amplifies high frequency components of the
outgoing signal, with the larger filter numbers indicating greater
amplification. Preemphasis compensates for the loss of high frequencies
that sometimes happens on analog lines. For T1, always select 0.

Range: 0, 1, 2

Value Type: decimal

Default: 0

Parameter Purpose

Parameters for Technical Support Purposes

March 2017 1317

T2_timer Specifies the length of the T2 timer. The ITU-T (previously CCITT) T.30
specification contains the definition for the T2 timer. If this keyword is
not in the user configuration file or has a value of 0 the T2 timer will use
a default value of 6 seconds for PSTN and G.711 RTP and a default
value of 6.95 seconds for T.38. If this keyword has a value from 3000 to
90000 ms the T2 timer will use this value for the T2 timeout.

Unit: ms

Range: 0 and 3000 - 90000

Value Type: decimal

Default: 0

t4_recv_timer Specifies the length of the T4 timer. It is used to set the T4 timer on the
answer side if it is set to a non-zero value in the user configuration file.
See the keyword t4_timer_mode for more information. The ITU-T
(previously CCITT) T.30 specification contains the definition for the T4
timer.

Unit: ms

Range: 0 and 3000 - 15000

Value Type: decimal

Default: 0

t4_xmit_timer Specifies the length of the T4 timer. It is used to set the T4 timer on the
originate side if it is set to a non-zero value in the user configuration file.
See the keyword t4_timer_mode for more information. The ITU-T
(previously CCITT) T.30 specification contains the definition for the T4
timer.

Unit: ms

Range: 0 and 3000 - 15000

Value Type: decimal

Default: 0

t4_increment Specifies the T4 timer increment value used for mode 1 (see
t4_timer_mode) for the T4 timer initialization.

Unit: ms

Range: 100 - 1000

Value Type: decimal

Default: 500

Parameter Purpose

Parameters for Technical Support Purposes

March 2017 1318

t4_timer_mode Specifies the mode for the T4 timer.

Mode 0 uses adaptation with a fixed 500 ms increment. If the value for
t4_recv_timer on the answer side or t4_xmit_timer on the originate side
is set to a non-zero value, adaptation is disabled.

Mode 1 uses a programmable increment for the T4 timer initialization.
The t4_increment value is used for initializing the second T4 timer
depending on the value of t4_recv_timer on the answer side,
t4_xmit_timer on the originate side, the media type, and automatic or
manual fax operation. Adaptation is always disabled for this mode.

Mode 2 allows the host application to adapt the T4 timer value via an
API function. In this mode, the firmware will send an event (see the
function BfvFaxT4TimerParams(lp, args)) to the host which informs
the host application of the attempt number which just took place, the
duration to receive the last response or the T4 timeout value if no
response is received, the current value of the T4 timer setting and the
T4 timeout flag indicating if a response was received or the T4 timer
expired. The host application can then set the T4 timer value (limited by
the firmware to 3,000 to 15,000 ms) with the BfvFaxT4TimerParams
API function for the next command response exchange.

Unit: unitless

Range: 0 - 2

Value Type: decimal

Default: 0

ud_reset_timer Specifies a value that determines whether the DSP watchdog is enabled
on digital TR1034 boards.

0 Off.

1 On.

Range: 0 or 1

Value Type: decimal

Default: 0

v34_transmit_only Specifies a value that determines whether the application transmits and
receives in V.34 mode or only transmits in V.34 mode (fax reception
occurs in V.17 mode). To use this parameter, you must set the
v34_enabled parameter (see page 1156) to a value of 1 (enabled) and
enable the V34Enab feature key value.

0 Allows reception and transmission in V.34 mode.

1 Only allows transmission in V.34 mode.

Range: 0 or 1

Value Type: decimal

Default: 0

Parameter Purpose

March 2017 1319

B - Bfv API Structures

This appendix provides details about data structures used within the
Bfv API.

It has the following sections:

 Address Structure
 Result Structures
 DCS and DIS/DTC Info Structures

Address Structure

March 2017 1320

Address Structure
Several functions and macros use the type MILL_ADDR, which is a
structure representing a Millennium (TR1000 Series board) address.
It contains the following fields:

typedef struct {
 unsigned char mm_bFacility;
 unsigned char mm_bChannel;
 unsigned char mm_bModule;
 unsigned char mm_bMachine;
} MILL_ADDR;

The facility, channel, module, and machine components of an address
are represented by the similarly named components of the structure.

Result Structures

March 2017 1321

Result Structures
The following result structures and their return values are used by
many functions:

typedef struct {

 int status;

 int line_status;

} RES;

typedef struct {

 int call_type;

 char dest_id[MAX_DID];

 /* The rest are ISDN only */

#define called_party_number dest_id

 char called_party_subaddress[MAX_DID];

 char calling_party_number[MAX_DID];

 char calling_party_subaddress[MAX_DID];

 char redir_number[MAX_DID];

 int redir_reason;

 char name_ident;

 int name_char_set;

 char connected_num[MAX_CONN_NUM];

} CALL_RES;

typedef struct {

 char remote_id[21];

 unsigned char nsf_nss_frame[MAX_NSF];

 char subaddress[21];

 char password[21];

 char selective_polling[21];

} INFO_RES;

Result Structures

March 2017 1322

typedef struct {

 int page_complete_type;

 int continue_breaks;

 unsigned ascii_bytes;

 unsigned bad_lines;

 unsigned total_lines;

 unsigned total_rcv;

 unsigned bit_rate;

 unsigned page_status;

 unsigned char pc_fifo[PC_FIFO_NBYTES];

 unsigned sig_level;

 unsigned line_noise;

 unsigned sig_quality;

 unsigned char lp_fifo[LP_FIFO_NBYTES];

 unsigned char confirm_value;

 int direction;

 int resolution;

 int width;

 unsigned long eff_page_type;

 struct page_res *next;

 unsigned bad_lines_NS;

 unsigned bad_lines_N23;

 unsigned bad_lines_N4;

 unsigned num_ECM_frames;

 unsigned num_PPR;

 unsigned num_PPR_NS;

 unsigned num_PPR_N23;

 unsigned num_PPR_N4;

 unsigned time_t4;

 unsigned time_training;

 unsigned iaf_initial_speed;

 unsigned iaf_final_speed;

} PAGE_RES;

typedef struct {

 int number_of_pages;

Result Structures

March 2017 1323

 int bad_pages;

 char remote_id[21];

 long duration;

 PAGE_RES *reslist_head;

 PAGE_RES *reslist_tail;

 unsigned initial_bit_rate;

 unsigned ffom;

 unsigned time_t1;

 unsigned time_t38;

 unsigned termination_phase;

 unsigned count_RTP;

 unsigned count_RTN;

 unsigned count_CRP;

 unsigned count_CTC;

 enum TRxMediaType media_type;

 unsigned RTPRcvrPackets;

 unsigned RTPSenderPackets;

 unsigned RTPRcvrLostPackets;

 unsigned RTPRcvrLostPackets_NS;

 unsigned RTPRcvrLostPackets_N23;

 unsigned RTPRcvrLostPackets_N4;

 unsigned RTPRcvrJitter;

 unsigned RTPRcvrOOSPackets;

 unsigned RTPRcvrRedundancyLevel;

 unsigned T38RcvrPackets;

 unsigned T38RcvrOctets;

 unsigned T38SenderPackets;

 unsigned T38SenderOctets;

 unsigned T38RcvrLostPackets;

 unsigned T38RcvrLostPackets_NS;

 unsigned T38RcvrLostPackets_N23;

 unsigned T38RcvrLostPackets_N4;

 unsigned T38RcvrOOSPackets;

 unsigned T38RcvrUsedRedundacy;

 unsigned T38RcvrImageRedundancyLevel;

Result Structures

March 2017 1324

 unsigned T38RcvrControlRedundancyLevel;

int RTPRcvrClockSkew;

} FAX_RES;

Result Structures

March 2017 1325

RES Structure Parameters
The RES structure is used by many functions to return status
information to the caller. In addition, the RES, INFO_RES, and
FAX_RES structures are embedded in the args_fax structure.

The possible res.status values are:

BT_STATUS_OK

In some cases the res.line_status value gives more information
about the results. When the status value is BT_STATUS_OK, no
associated line_status value exists for most functions. However,
where noted, certain functions (for example,
BfvLineOriginateCall) set the line_status value for
BT_STATUS_OK.

BT_STATUS_ERROR

When the status value is BT_STATUS_ERROR, line_status gives
more detailed information about the error that occurred. Possible
res.line_status values for BT_STATUS_ERROR are:

BT_STATUS_OK
Normal return.

0

BT_STATUS_ERROR
Error return.

2

BT_STATUS_ERROR_DIAL
Dialing error.

3

BT_STATUS_ERROR_HANGUP
Hangup error.

4

BT_STATUS_USER_TERMINATED
User function caused termination.

5

BT_STATUS_TIMEOUT
Timeout occurred.

6

BT_STATUS_ALERT
Alert occurred.

7

APIERR_UNCLASSIFIED
No further info provided.

0

APIERR_FILEIO
File I/O error occurred.

1

APIERR_FILEFORMAT
Bad file format.

2

Result Structures

March 2017 1326

APIERR_BOARDCAPABILITY
Hardware or firmware does not support capability.

3

APIERR_NOTCONNECTED
Channel not in proper state.

4

APIERR_BADPARAMETER
Bad parameter value used.

5

APIERR_MEMORY
Memory allocation error.

6

APIERR_BADSTATE
The channel is not in a required state.

7

APIERR_TOOSOON
Dialing was attempted too soon.

8

APIERR_BUSY
Resource busy.

9

APIERR_DRV_OPEN_ERROR
Driver open call failed, invalid channel or driver not
correctly installed.

10

APIERR_DRV_IOCTL_ERROR
Driver call failed.

11

APIERR_VERSION
Incompatible driver version.

12

APIERR_INVALID_PORT
Invalid port; faxinit probably not run correctly.

13

APIERR_RINGING
Ringing during dialing attempt.

14

APIERR_INFOPKT_NESTING
Indir infopkt nesting level too deep.

15

APIERR_MAX_TAGS
Maximum number of TIFF tags exceeded.

16

APIERR_LOCK_FAILED
An attempt to gain a lock failed.

17

APIERR_INSUFF_BUFFER
Buffer size too small to receive data.

18

APIERR_INVALID_DEST_ADDR
Destination address not found or invalid.

19

APIERR_PACKET_CREATION
Packet or command creation error.

20

APIERR_PACKET_PARSE
Packet or command parse error.

21

Result Structures

March 2017 1327

BT_STATUS_ERROR_DIAL

When the status value is BT_STATUS_ERROR_DIAL, line_status
gives more detailed information about the dialing error that occurred.
Possible res.line_status values for BT_STATUS_ERROR_DIAL
are:

APIERR_PACKET_SEND
Packet send error.

22

APIERR_PACKET_RECEIVE
Packet receive error.

23

APIERR_DATA
DATA encountered during command processing.

24

APIERR_INVAL_BOARD_PARAM
Invalid parameter values received from firmware.

25

APIERR_FIRMWARE_ERR_DETECTED
Firmware detected an error.

26

APIERR_MODULE_REMOVED
Module was removed.

27

APIERR_BOARD_NO_RESPONSE
Board not responding.

28

APIERR_ASYNC_LP_ERR
Async_lp value error.

29

APIERR_ASYNC_CONTEXT_ERR
Async context error.

30

APIERR_DRV_RESOURCES
Driver out of resources.

31

APIERR_MODULE_RESET_FAILURE
Module reset failure.

32

APIERR_MODULE_I20_FAILURE
Module I20 enable failure.

33

APIERR_MODULE_CONFIG_TIMEOUT
No valid response for module configuration.

34

DIAL_OK
Dialing completed successfully.

257

DIAL_NO_DIAL_TONE
No dial tone detected.

258

DIAL_NO_LOOP_CUR
No loop current detected.

259

Result Structures

March 2017 1328

Note: To determine the corresponding return value that the
BfvLineDialString function returns, subtract 257
DIAL_OK) from each of the above res.line_status values
for BT_STATUS_ERROR_DIAL. See BfvLineDialString, for
more detailed information.

BT_STATUS_ERROR_HANGUP

When the status value is BT_STATUS_ERROR_HANGUP, line_status
always contains a hangup code; see Appendix , Hangup Codes on
page 1348.

BT_STATUS_TIMEOUT

Possible res.line_status values for BT_STATUS_TIMEOUT are:

Anytime the application uses a BfvSpeechRecord... function, and
the function returns with a res.status value of
BT_STATUS_TIMEOUT, the res.line_status value will indicate the
type of timeout that occurred (total time or silence). Not all
res.status or res.line_status values are possible with all
functions.

Use the BfvErrorMessage function to get a textual description of
the error stored in a RES structure.

DIAL_LOCAL_IN_USE
Local phone in use successfully.

260

DIAL_TRUNK_BUSY
Busy trunk line detected.

261

DIAL_SLOT_BUSY
T1 time slot busy.

265

DIAL_CALL_COLLISION
Ringing detected during dialing.

266

DIAL_NO_WINK
2nd or later wink missing for Feature Group D.

267

API_TO_TIME
Timeout due to total time elapsed.

0

API_TO_SILENCE
Timeout due to silence timeout (speech record only).

1

Result Structures

March 2017 1329

CALL_RES Structure Parameters
The following functions use this structure to return status
information while waiting to detect an incoming call.

 BfvCallWaitForComplete
 BfvCallWaitForSetup

call_type

A value indicating the type of incoming call detected. This field
only returns the following value:

CALL_TYPE_ISDN

Note: Dialogic only maintains the call_type field for backward
compatibility and does not recommend its use for applications
developed with Brooktrout SDK 6.0 or later.

dest_id

A null-terminated ASCII string that identifies the captured DID
digits.

called_party_subaddress

A null-terminated ASCII string that identifies the received called
party subaddress. This value is only indicated for certain
protocols.

calling_party_number

A null-terminated ASCII string that identifies the received
calling party number (also known as caller ID).

calling_party_subaddress

A null-terminated ASCII string that identifies the received
calling party subaddress.
When the call control configuration file (callctrl.cfg) has the
caller_id parameter turned on for an analog port, the Bfv API
returns the name of the caller in this field of the CALL_RES
structure and also in the name_ident field (see page 1331).

Result Structures

March 2017 1330

redir_number

A null-terminated ASCII string that identifies the received
redirection number or the destination number when diverting the
call. The Bfv API only indicates this value for certain protocols
(for example, QSIG).

redir_reason

A value identifying the reason for sending or receiving a
destination number for a redirected or diverted call. This value is
only indicated for certain protocols (for example, QSIG). Values
are:

BT_REDIR_UNKNOWN
No redirection or unknown reason.

BT_REDIR_CALL_FWD_BUSY

Call forwarding busy or called Data Terminal Equipment
(DTE) busy.

BT_REDIR_CALL_FWD_NOANS
Call forwarding no reply.

BT_REDIR_OOS
Called DTE out of service.

BT_REDIR_CALL_FWD_DTE
Call forwarding by called DTE.

BT_REDIR_CALL_FWD_ALL
Call forwarding unconditional or systematic call
redirection.

DIVERT_NONE
Value used for call that does not divert.

DIVERT_BUSY
Call diverted for busy condition.

DIVERT_UNCONDITIONAL
Call diverted without conditions.

DIVERT_NO_RESPONSE
Call diverted for unresponsive line.

Result Structures

March 2017 1331

name_ident

A null-terminated ASCII string that identifies the name
associated with the received call (also known as caller ID name).
The field allows a maximum of 50 characters
(ECC_MAX_NAME_STR)
When the call control configuration file (callctrl.cfg) has the
caller_id parameter enabled for an analog port or an E1 or T1 port
using the QSIG protocol, the Bfv API returns the name of the
caller in this field of the CALL_RES structure.

name_char_set

Indicates the international standard specification (ISOxxx) of the
character set in use. Values are:

NAME_CHAR_SET_UNKNOWN –1

Unknown character set in use.
NAME_CHAR_SET_NOT_INCLUDED 0

Name does not identify a character set and the Bfv API does not
send one.

NAME_CHAR_SET_ISO8859_1 1

Indicates use of character set defined by ISO 8859-1 international
standard.

NAME_CHAR_SET_ISO8859_2 3

Indicates use of character set defined by ISO 8859-2 international
standard.

NAME_CHAR_SET_ISO8859_3 4

Indicates use of character set defined by ISO 8859-3 international
standard.

NAME_CHAR_SET_ISO8859_4 5

Indicates use of character set defined by ISO 8859-4 international
standard.

NAME_CHAR_SET_ISO8859_5 6

Indicates use of character set defined by ISO 8859-5 international
standard.

NAME_CHAR_SET_ISO8859_7 7

Indicates use of character set defined by ISO 8859-7 international
standard.

Result Structures

March 2017 1332

NAME_CHAR_SET_ISO10646_BMP 8

Indicates use of character set defined by ISO 10646-1 and ITU-T
Recommendation X.680 international standards.

NAME_CHAR_SET_ISO10646_UTF 9

Indicates use of character set defined by UTF-8-STRING Annex
R in ISO 10646-1 international standard.

connected_num

Indicates a null-terminated string of up to 31 characters
(MAX_CONN_NUM) that provides the telephone number of the
connected party.

referred_id

A null-terminated ASCII string that identifies the referrer.

Result Structures

March 2017 1333

INFO_RES Structure Parameters
The BFVFaxGetRemoteInfo function uses this structure to report
the remote ID and any NSF/NSS/NSC or SUB/PWD/SEP information
from the remote fax device.

remote_id

A null-terminated ASCII string indicating the ID (CSI, TSI, or
CIG) of the remote fax device. The remote fax provides its ID as a
means of identification.

nss_nsf_frame

A parameter used to report any non-standard facilities FSK
(NSF, NSS, or NSC) data received from the remote fax device. See
the BfvFaxGetRemoteInfo function in Volume 4 for the format
of this data.

subaddress

A null-terminated ASCII string that contains a subaddress FSK
(SUB) received from the remote fax device.

password

A null-terminated ASCII string that contains an FSK (PWD)
password received from the remote fax device.

selective_polling

A null-terminated ASCII string that provides the contents of a
selective polling FSK (SEP) received from the remote fax device.

Result Structures

March 2017 1334

PAGE_RES Structure Parameters
A linked list of PAGE_RES structures is generated by the Bfv API. One
structure is defined for each page-complete interrupt. These
structures are accessed through the reslist_head and
reslist_tail fields of the FAX_RES structure. The FAX_RES
structure is used by the BfvFaxSend, BfvFaxReceive, and
BfvFaxPoll functions but, in other cases, can be set with the
LINE_FAX_RES macro. For more information on the LINE_FAX_RES
macro, see Volume 4.

The PAGE_RES structures contain information that is useful to an
application, and the application must free this memory when it is no
longer needed. If you do not want to use the linked list, set the
max_pagelist field in the user-defined configuration file to 0.

page_complete_type

Defines the page break type. Two types are defined:

 Noncontinuing (2a) types are expected page breaks resulting
from an end-of-page command sent to the channel by the Bfv
API.

 Continuing (2b) types are unexpected page breaks generated
by the channel during its ASCII text to G3 conversion
process.

continue_breaks

Depends on the page_complete_type parameter.

 If the page_complete_type parameter is (2b), continue_breaks
is 0 and is ignored.

 If the page_complete_type parameter is (2a), continue_breaks
is the number of channel-generated page breaks (2b) since
the last application-generated page break (2a).

ascii_bytes

The number of bytes of ASCII data converted to G3 format for this
particular transmitted page. Currently returns 0.

bad_lines

The total number of error-containing G3 lines detected on this
particular page, (maximum of 255 errors reported).

Result Structures

March 2017 1335

total_lines

The total number of G3 lines that the channel has transmitted or
received for this particular page.

total_rcv

The total number of G3 lines that the host has received for this
particular page. This value may differ from total_lines.

bit_rate

The bit rate at which this particular page was transmitted or
received.

BITRATE_RSLT_2400_V27 0 2400 bps (V.27)

BITRATE_RSLT_4800_V27 1 4800 bps (V.27)

BITRATE_RSLT_7200_V29 2 7200 bps (V.29)

BITRATE_RSLT_9600_V29 3 9600 bps (V.29)

BITRATE_RSLT_7200_V17 4 7200 bps (V.17)

BITRATE_RSLT_9600_V17 5 9600 bps (V.17)

BITRATE_RSLT_12000_V17 6 12000 bps (V.17)

BITRATE_RSLT_14400_V17 7 14400 bps (V.17)

BITRATE_RSLT_12000_V33 8 12000 bps (V.33)

BITRATE_RSLT_14400_V33 9 14400 bps (V.33)

BITRATE_RSLT_2400_V34 10 2400 bps (V.34)

BITRATE_RSLT_4800_V34 11 4800 bps (V.34)

BITRATE_RSLT_7200_V34 12 7200 bps (V.34)

BITRATE_RSLT_9600_V34 13 9600 bps (V.34)

BITRATE_RSLT_12000_V34 14 12000 bps (V.34)

BITRATE_RSLT_14400_V34 15 14400 bps (V.34)

BITRATE_RSLT_16800_V34 16 16800 bps (V.34)

BITRATE_RSLT_19200_V34 17 19200 bps (V.34)

BITRATE_RSLT_21600_V34 18 21600 bps (V.34)

BITRATE_RSLT_24000_V34 19 24000 bps (V.34)

BITRATE_RSLT_26400_V34 20 26400 bps (V.34)

BITRATE_RSLT_28800_V34 21 28800 bps (V.34)

BITRATE_RSLT_31200_V34 22 31200 bps (V.34)

BITRATE_RSLT_33600_V34 23 33600 bps (V.34)

Result Structures

March 2017 1336

sig_level

The signal level at which this particular page was transmitted or
received. Computed at the time of last training. Not valid for T.38
or V.34.
Typical values are:
 -40 dBm marginal
 -35 dBm weak
 -30 dBm acceptable
 -25 dBm good
 -20 dBm strong
 -15 dBm very strong

line_noise

The ambient line noise present when this particular page was
transmitted or received. Computed at the time of last training.
Not valid for T.38 or V.34.
Typical values are:
 -65 dBm extremely quiet
 -60 dBm very quiet
 -55 dBm quiet
 -50 dBm acceptable
 -45 dBm noisy
 -40 dBm almost unusable

sig_quality

The signal quality present when this particular page was
received. Computed at the time of last training. Not valid for T.38
or V.34. Lower values (positive) are better. A value of 1 would
represent an extremely good signal quality.

confirm_value

The FSK command sent by the receiving fax machine to the
transmitting fax machine after a single-page transmission ends.
For example, MCF is a typical confirmation value for a page with
no errors, and RTN is a typical value for a page with many errors.
Many symbols defined for use with FSK data are defined in a
header file - boston/driver/inc/fsk.h.

direction

Contains 1 if this page was transmitted, or 0 if this page was
received.

Result Structures

March 2017 1337

resolution

Contains a value indicating the resolution of the transmitted
page. See the BfvFaxBeginSendRaw function for resolution
values.

width

Contains a value indicating the width of the transmitted page.
See BfvFaxBeginSendRaw in Volume 4 for width values.

eff_page_type

If nonzero, indicates that this page contained enhanced fax
format data. The value indicates the specific type.
See BfvFaxBeginSendRaw in Volume 4 for eff_page_type
values.

PAGE_RES *next

Pointer to the next page result structure.

bad_lines_NS

Number of single bad lines (scaled by resolution).

bad_lines_N23

Number of 2-3 consecutive bad lines (scaled by resolution).

bad_lines_N4

Number of 4 or more consecutive bad lines (scaled by resolution).

num_ECM_frames

Number of ECM frames.

num_PPR

Total number of PPRs.

num_PPR_NS

Number of single PPRs.

num_PPR_N23

Number of 2-3 consecutive PPRs.

num_PPR_N4

Number of 4 or more consecutive PPRs.

time_t4

Maximum time to receive responses to commands, in ms.

Result Structures

March 2017 1338

time_training

Duration of training zeroes, in ms.

iaf_initial_speed

The initial IAF speed for the current page in bits per second.

iaf_final_speed

The final IAF speed for the current page in bits per second.

sig_level

The signal level at which this particular page was transmitted or
received. Computed at the time of last training. Not valid for T.38
or V.34.
Typical values are:
 -40 dBm marginal
 -35 dBm weak
 -30 dBm acceptable
 -25 dBm good
 -20 dBm strong
 -15 dBm very strong

sig_quality

The signal quality present when this particular page was
received. Computed at the time of last training. Not valid for T.38
or V.34. Lower values (positive) are better. A value of 1 would
represent an extremely good signal quality.

line_noise

The ambient line noise present when this particular page was
transmitted or received. Computed at the time of last training.
Not valid for T.38 or V.34.
Typical values are:
 -65 dBm extremely quiet
 -60 dBm very quiet
 -55 dBm quiet
 -50 dBm acceptable
 -45 dBm noisy
 -40 dBm almost unusable

Result Structures

March 2017 1339

FAX_RES Structure Parameters
The Bfv API uses this structure to report information about the
completed fax session. The Bfv API automatically allocates and stores
PAGE_RES structures in a linked list within args.fax_res. The
application must free these structures after use to release the
memory.

number_of_pages

The total number of pages sent or received. These pages are the
total of both noncontinuing and continuing types that are
generated by the application, up to a maximum of max_pagelist
(see User-Defined Configuration File on page 1140).

bad_pages

The number of pages that had bad lines or a confirmation value
that indicated the page was received with bad lines.

remote_id

The identification of the remote fax machine. This field is used
only when the application calls the BfvFaxSend,
BfvFaxReceive, or BfvFaxPoll function.

PAGE_RES *reslist_head

Pointer to the beginning of the linked list of the PAGE_RES
structure. This memory is available for reading by the application
after fax transmission/reception is complete. The application
must free this memory.

PAGE_RES *reslist_tail

Pointer to the end of the linked list of the PAGE_RES structure.
This memory is available for reading by the application after fax
transmission/reception is complete. The application must free
this memory.

initial_bit_rate

Initial bit rate at which negotiation was first attempted. Same
format as the bit_rate field of PAGE_RES.

Result Structures

March 2017 1340

ffom

Facsimile figure of merit (integer 1-7), defined by E.458 standard.

 One of the FFOM_... definitions:

 FFOM_COMPLETE_MAXSP_ERROR_FREE 1
 FFOM_COMPLETE_MAXSP_ERRORED 2
 FFOM_COMPLETE_MAXSP_SEV_ERRORED 3
 FFOM_COMPLETE_NONMAXSP_ERROR_FREE 4
 FFOM_COMPLETE_NONMAXSP_ERRORED 5
 FFOM_COMPLETE_NONMAXSP_SEV_ERRORED 6
 FFOM_INCOMPLETE 7

time_t1

Time for both fax devices to identify each other, in seconds. Rcv
only.

time_t38

Time to switch into T.38, in ms.

termination_phase

The phase in which the call terminated.
One of the TERM_PHASE_... definitions:
TERM_PHASE_A 0
TERM_PHASE_B_PRE_MSG 1
TERM_PHASE_B_POST_MSG 2
TERM_PHASE_C 3
TERM_PHASE_D 4
TERM_PHASE_E 5

count_RTP

Count of RTPs (non-ECM).

count_RTN

Count of RTNs (non-ECM).

count_CRP

Count of CRPs.

count_CTC

Count of CTCs.

Result Structures

March 2017 1341

TRxMediaType media_type

The media type of the call. One of the MEDIA_TYPE_...
definitions:
MEDIA_TYPE_NONE 1
MEDIA_TYPE_T38 2
MEDIA_TYPE_RTP 3

RTPRcvrPackets

 Number of received RTP packets.

RTPSenderPackets;

 Number of sent RTP packets.

RTPRcvrLostPackets

Number of lost/late RTP packets.

RTPRcvrLostPackets_NS

Number of single lost packets.

RTPRcvrLostPackets_N23

Number of 2-3 consecutive lost packets.

RTPRcvrLostPackets_N4

Number of 4 or more consecutive lost packets.

RTPRcvrJitter

 Average jitter.

RTPRcvrOOSPackets

Out of Sequence Packets.

RTPRcvrRedundancyLevel

 Level of redundancy used for received packets.

T38RcvrPackets

 Number of T.38 packets received.

T38RcvrOctets

Number of T.38 octets received.

T38SenderPackets

 Number of T.38 packets sent.

T38SenderOctets

Result Structures

March 2017 1342

 Number of T.38 octets sent.

T38RcvrLostPackets

 Number of T.38 packets lost and not recovered on receive.

T38RcvrLostPackets_NS

 Number of single lost and not recovered packets.

T38RcvrLostPackets_N23

 Number of 2-3 consecutive lost and not recovered packets.

T38RcvrLostPackets_N4

Number of 4 or more consecutive lost and not recovered packets.

T38RcvrLostOctets

Number of T.38 octets lost on receive.

T38RcvrOOSPackets

Out of Sequence Packets.

T38RcvrUsedRedundacy

Number of times redundant packets were required.

T38RcvrImageRedundancyLevel

Level of redundancy used for received image packets. Rcv only.

T38RcvrControlRedundancyLevel

Level of redundancy used for received control packets.

int RTPRcvrClockSkew

RTP clock skew is calculated with the following equation, which
makes use of the least squares estimator with a single predictor
value. T_i is the local clock time when packet i arrives, S_i is the
RTP packet timestamp of packet i, "n " is the total number of RTP
packets received, and D is the duration of the RTP session.

Result Structures

March 2017 1343

The least squares estimator result is the slope equal to the correlation
between the local clock timestamps of the arriving RTP packets and
the corresponding RTP header timestamps. A slope value that is
greater than one indicates that the remote end's clock is faster than
the local clock. A slope value that is less than one indicates a slower
remote clock. Subtracting one from the calculated slope and
multiplying the result by the duration of the RTP session, yields the
total time contributed by the skew in microseconds.

DCS and DIS/DTC Info Structures

March 2017 1344

DCS and DIS/DTC Info Structures
These structures contain information decoded from the DCS, DIS,
and DTC FSK messages sent between the transmitter and receiver.
The structures are defined and fully documented in the dcs.h header
file. The application program can access them with the LINE_DCS and
LINE_DIS_DTC macros (see Macros in Volume 4 for more detailed
information on these macros).

struct dcs_info {

 unsigned char sent;

 unsigned char Receiver_t4;

 unsigned char Data_Signalling_Rate;

 unsigned char Resolution;

 unsigned char TwoD_Coding;

 unsigned char Recording_Width;

 unsigned char Max_Recording_Length;

 unsigned char Min_Scan_Line_Time;

 unsigned char Handshake_2400_bit;

 unsigned char Uncompressed_Mode;

 unsigned char Error_Correction_Mode;

 unsigned char Error_Limiting_Mode;

 unsigned char MMR;

 unsigned char Resolution_Unit;

 unsigned char Binary_File_Transfer;

 unsigned char Document_Transfer_Mode;

 unsigned char Edifact_Transfer;

 unsigned char Basic_Transfer_Mode;

 unsigned char Character_Mode;

 unsigned char Mixed_Mode;

 unsigned char Processable_Mode_26;

 unsigned char Store_And_Fwd_Internet_Fax;

 unsigned char Real_Time_Internet_Fax;

 unsigned char Lossless_Mode;

 unsigned char Plane_Interleave_Mode;

 unsigned char ADPCM;

DCS and DIS/DTC Info Structures

March 2017 1345

 unsigned char Digital_Network;

 unsigned char FullDuplex;

 unsigned char JPEG_Coding;

 unsigned char JPEG_FullColor;

 unsigned char JPEG_Default_Tables;

 unsigned char JPEG_12Bit;

 unsigned char JPEG_NoSubSampling;

 unsigned char JPEG_CustomIlluminant;

 unsigned char JPEG_CustomGamut;

 unsigned char NA_Letter;

 unsigned char NA_Legal;

 unsigned char JBIG_Coding;

 unsigned char JBIG_L0;

 unsigned char HKM_Key_Mgt;

 unsigned char RSA_Key_Mgt;

 unsigned char Override_Mode;

 unsigned char HFX40_Cipher;

 unsigned char HFX40_Hashing;

 unsigned char MRC_Mode;

 unsigned char MRC_Page_Length_Strips;

 unsigned char PhaseC_BFT_Negotiations;

 unsigned char IRA;

};

struct dis_dtc_info {

 unsigned char sent;

 unsigned char Transmitter_t4;

 unsigned char Receiver_t4;

 unsigned char Data_Signalling_Rate;

 unsigned char Resolution;

 unsigned char TwoD_Coding;

 unsigned char Recording_Width;

 unsigned char Max_Recording_Length;

 unsigned char Min_Scan_Line_Time;

 unsigned char Handshake_2400_bit;

DCS and DIS/DTC Info Structures

March 2017 1346

 unsigned char Uncompressed_Mode;

 unsigned char Error_Correction_Mode;

 unsigned char Error_Limiting_Mode;

 unsigned char MMR;

 unsigned char Resolution_200H_400V;

 unsigned char Resolution_300H_300V;

 unsigned char Resolution_400H_400V;

 unsigned char Resolution_Unit;

 unsigned char Min_Scan_Higher;

 unsigned char Selective_Polling;

 unsigned char Subaddressing_Capability;

 unsigned char Password_Capability;

 unsigned char Data_File_Capable;

 unsigned char Binary_File_Transfer;

 unsigned char Document_Transfer_Mode;

 unsigned char Edifact_Transfer;

 unsigned char Basic_Transfer_Mode;

 unsigned char Character_File_Capable;

 unsigned char Character_Mode;

 unsigned char Mixed_Mode;

 unsigned char Processable_Mode_26;

 unsigned char Store_And_Fwd_Internet_Fax;

 unsigned char Real_Time_Internet_Fax;

 unsigned char V8_Capability;

 unsigned char Num_Preferred_Octets;

 unsigned char Mult_Selective_Polling;

 unsigned char Polled_SubAddress;

 unsigned char Lossless_Mode;

 unsigned char Plane_Interleave_Mode;

 unsigned char ADPCM;

 unsigned char Digital_Network;

 unsigned char FullDuplex;

 unsigned char JPEG_Coding;

 unsigned char JPEG_FullColor;

 unsigned char JPEG_12Bit;

DCS and DIS/DTC Info Structures

March 2017 1347

 unsigned char JPEG_NoSubSampling;

 unsigned char JPEG_CustomIlluminant;

 unsigned char JPEG_CustomGamut;

 unsigned char NA_Letter;

 unsigned char NA_Legal;

 unsigned char JBIG_Coding;

 unsigned char JBIG_L0;

 unsigned char HKM_Key_Mgt;

 unsigned char RSA_Key_Mgt;

 unsigned char Override_Mode;

 unsigned char HFX40_Cipher;

 unsigned char HFX40_Hashing;

 unsigned char MRC_Mode;

 unsigned char MRC_Page_Length_Strips;

 unsigned char ColorRes_300x300_400x400;

 unsigned char ColorRes_100x100;

 unsigned char PhaseC_BFT_Negotiations;

 unsigned char ISP;

 unsigned char IRA;

 unsigned char Resolution_600H_600V;

 unsigned char Resolution_1200H_1200V;

 unsigned char Resolution_300H_600V;

 unsigned char Resolution_400H_800V;

 unsigned char Resolution_600H_1200V;

};

March 2017 1348

C - Hangup Codes

This appendix explains the codes returned when a disconnect occurs.

Hangup codes identify disconnections that have occurred and the
reasons for these. For example, these codes can be returned because
a loss of loop current or a serious error occurred that the Bfv API
needs to report to the application.

When:

res.status = BT_STATUS_ERROR_HANGUP

res.line_status contains a hangup code. The hangup codes are
grouped according to classification (usually by T.30 protocol phase).
The code values are in decimal format.

This appendix explains the code types as follows:

 Call Placement Codes on page 1350
 Transmit Phase A Codes on page 1350
 Transmit Phase B Codes on page 1351
 Transmit Phase D Codes on page 1353
 Receive Phase B Codes on page 1357
 Receive Phase D Codes on page 1359
 Phase C Codes on page 1360
 Miscellaneous Codes on page 1361
 Bfv API-Created Codes on page 1362

March 2017 1349

The fax protocol itself has a diverse set of precisely identified failure
reasons. The ITU-T (previously CCITT) T.30 specification describes
this fax protocol, and you should obtain a copy of it to gain a better
understanding of both the protocol and the failure conditions that
generate the hangup codes listed and described in this appendix. You
can obtain a copy of ITU-T T.30 fax protocol from:

http://www.itu.int

Call Placement Codes

March 2017 1350

Call Placement Codes

Transmit Phase A Codes

Value 0

Hangup Code HNG_NORMAL_XMIT

Description Normal and proper end of connection. While this
value is considered by the firmware to be a successful
fax transmit result, if it occurs in conjunction with
BT_STATUS_ERROR_HANGUP, it still indicates that an
error has occurred.

Value 1

Hangup Code HNG_RNG_DET

Description Ring detected without a successful handshake.

Value 2

Hangup Code HNG_ABORT

Description Call Aborted.

Value 3

Hangup Code HNG_NO_LOOP_CURRENT

Description No loop current or A/B signaling bits.

Value 4

Hangup Code HNG_ISDN_DISCONNECT

Description ISDN disconnection.

Value 11

Hangup Code HNG_T1_TIMEOUT

Description No answer, T.30 T1 timeout.

Transmit Phase B Codes

March 2017 1351

Transmit Phase B Codes
Value 5

Hangup Code HNG_INVAL_POLL_ATT

Description Invalid Polling Attempt

Value 20

Hangup Code HNG_XMITB_TIMEOUT

Description Unspecified transmit Phase B error.

Value 21

Hangup Code HNG_XMITB_NORM

Description Remote cannot receive or send.

Value 22

Hangup Code HNG_XMITB_MISC

Description COMREC error, Phase B transmit.

Value 23

Hangup Code HNG_XMITB_COMREC_VCNR

Description COMREC invalid command received.

Value 24

Hangup Code HNG_XMITB_SE

Description RSPREC error.

Value 25

Hangup Code HNG_XMITB_DCS_FTC

Description DCS sent three times without response.

Transmit Phase B Codes

March 2017 1352

Value 26

Hangup Code HNG_XMITB_DIS_FTC

Description DIS/DTC received three times; DCS not recognized.

Value 27

Hangup Code HNG_XMITB_TRAINFAIL

Description Failure to train.

Value 28

Hangup Code HNG_XMITB_RSPREC_VCNR

Description RSPREC invalid response received.

Value 29

Hangup Code HNG_XMITB_COMREC_DCN

Description DCN received in COMREC.

Value 30

Hangup Code HNG_XMITB_RSPREC_DCN

Description DCN received in RSPREC.

Value 33

Hangup Code HNG_PHASEB_INCOMPAT_FMT

Description Incompatible fax formats, for example, a page width
mismatch.

Value 34

Hangup Code HNG_XMITB_INVAL_DMACNT

Description Invalid DMA count specified for transmitter.

Value 35

Hangup Code HNG_XMITB_FTM_NOECM

Description Binary File Transfer specified, but ECM not enabled
on transmitter.

Transmit Phase D Codes

March 2017 1353

Transmit Phase D Codes

Value 36

Hangup Code HNG_XMITB_INCMP_FTM

Description Binary File Transfer mode specified, but not supported
by receiver.

Value 37

Hangup Code HNG_XMITB_INCMP_EFF

Description Remote does not support EFF page options required by
host.

Value 38

Hangup Code HNG_XMITB_NOEFF

Description Remote does not support EFF page coding.

Value 40

Hangup Code HNG_XMITD_RR_NORES

Description No response to RR after three tries.

Value 41

Hangup Code HNG_XMITD_CTC_NORES

Description No response to CTC, or response was not CTR.

Value 42

Hangup Code HNG_XMITD_T5TO_RR

Description T5 time out since receiving first RNR.

Value 43

Hangup Code HNG_XMITD_NOCONT_NSTMSG

Description Do not continue with next message after receiving
ERR.

Transmit Phase D Codes

March 2017 1354

Value 44

Hangup Code HNG_XMITD_ERRRES_EOREOP

Description ERR response to EOR-EOP or EOR-PRI-EOP.

Value 45

Hangup Code HNG_XMITD_RTN_DCN

Description Transmitted DCN after receiving RTN.

Value 46

Hangup Code HNG_XMITD_PPR_EOR

Description EOR-MPS, EOR-EOM, EOR-NULL, EOR-PRI-MPS,
or EOR-PRI-EOM sent after fourth PPR received.

Value 51

Hangup Code HNG_XMITD_SE

Description RSPREC error.

Value 52

Hangup Code HNG_XMITD_MPS_FTC

Description No response to MPS, repeated three times.

Value 53

Hangup Code HNG_XMITD_MPS_VCNR

Description Invalid response to MPS.

Value 54

Hangup Code HNG_XMITD_EOP_FTC

Description No response to EOP repeated three times.

Transmit Phase D Codes

March 2017 1355

Value 55

Hangup Code HNG_XMITD_EOP_VCNR

Description Invalid response to EOP.

Value 56

Hangup Code HNG_XMITD_EOM_FTC

Description No response to EOM, repeated three times.

Value 57

Hangup Code HNG_XMITD_EOM_VCNR

Description Invalid response to EOM.

Value 60

Hangup Code HNG_XMITD_RSPREC_DCN

Description DCN received in RSPREC.

Value 61

Hangup Code HNG_XMITD_PPSNULL_NORES

Description No response received after third try for PPS-NULL.

Value 62

Hangup Code HNG_XMITD_PPSMPS_NORES

Description No response received after third try for PPS-MPS.

Value 63

Hangup Code HNG_XMITD_PPSEOP_NORES

Description No response received after third try for PPS-EOP.

Value 64

Hangup Code HNG_XMITD_PPSEOM_NORES

Description No response received after third try for PPS-EOM.

Transmit Phase D Codes

March 2017 1356

Value 65

Hangup Code HNG_XMITD_EORNULL_NORES

Description No response received after third try for EOR-NULL.

Value 66

Hangup Code HNG_XMITD_EORMPS_NORES

Description No response received after third try for EOR-MPS.

Value 67

Hangup Code HNG_XMITD_EOREOP_NORES

Description No response received after third try for EOR-EOP.

Value 68

Hangup Code HNG_XMITD_EOREOM_NORES

Description No response received after third try for EOR-EOM.

Receive Phase B Codes

March 2017 1357

Receive Phase B Codes
Value 5

Hangup Code HNG_INVAL_POLL_ATT

Description Invalid Polling Attempt

Value 70

Hangup Code HNG_RCVB_TIMEOUT

Description Unspecified receive Phase B error.

Value 71

Hangup Code HNG_RCVB_SE

Description RSPREC error.

Value 72

Hangup Code HNG_RCVB_MISC

Description COMREC error.

Value 73

Hangup Code HNG_T2_PNOTREC

Description T.30 T2 timeout, expected page not received.

Value 74

Hangup Code HNG_RCVB_T1_TIMEOUT

Description T.30 T1 timeout after EOM received.

Value 75

Hangup Code HNG_NORMAL_RCV

Description DCN received in COMREC. While this value is
considered by the firmware to be a successful fax
receive result, if it occurs in conjunction with
BT_STATUS_ERROR_HANGUP, it still indicates that an
error has occurred.

Receive Phase B Codes

March 2017 1358

Value 76

Hangup Code HNG_RCVB_RSPREC_DCN

Description DCN received in RSPREC.

Value 77

Hangup Code HNG_T2_TIMEOUT

Description T.30 T2 timeout, expected page received.

Value 78

Hangup Code HNG_RCVB_INVAL_DMACNT

Description Invalid DMA count specified for receiver.

Value 79

Hangup Code HNG_RCVB_FTM_NOECM

Description Binary File Transfer specified, but ECM not
supported by receiver.

Receive Phase D Codes

March 2017 1359

Receive Phase D Codes
Value 101

Hangup Code HNG_RCVD_SE_VCNR

Description RSPREC invalid response received.

Value 102

Hangup Code HNG_RCVD_COMREC_VCNR

Description COMREC invalid response received.

Value 103

Hangup Code HNG_RCVD_T3TO_NORES

Description T3 timeout; no local response for remote voice
interrupt.

Value 104

Hangup Code HNG_RCVD_T2TO

Description T2 timeout; no command received after responding
RNR.

Value 105

Hangup Code HNG_RCVD_DCN_COMREC

Description DCN received for command received.

Value 106

Hangup Code HNG_RCVD_COMREC_ERR

Description Command receive error.

Value 107

Hangup Code HNG_RCVD_BLKCT_ERR

Description Receive block count error in ECM mode.

Phase C Codes

March 2017 1360

Phase C Codes

Value 108

Hangup Code HNG_RCVD_PGCT_ERR

Description Receive page count error in ECM mode.

Value 109

Hangup Code HNG_RCVD_EOR

Description EOR received in phase D.

Value 110

Hangup Code HNG_RCVD_RNRTO

Description Timeout while repeating RNR.

Value 150

Hangup Code HNG_RCVC_EOL_TIMEOUT

Description No EOL received in a 5-second period.

Value 151

Hangup Code HNG_RCVC_BAD_MMR

Description Bad MMR data received from remote.

Value 152

Hangup Code HNG_RCVC_ECM_ZERO_LINES

Description Zero lines received from remote in ECM mode.

Miscellaneous Codes

March 2017 1361

Miscellaneous Codes
Value 240

Hangup Code HNG_INTERRUPT_ACK

Description No interrupt acknowledge, timeout.

Value 241

Hangup Code HNG_COMM_FAULT

Description Loop current still present while playing recorder tone
after timeout.

Value 242

Hangup Code HNG_T30_HOLDUP

Description T.30 holdup timeout.

Value 243

Hangup Code HNG_HOLDUP_DCN

Description DCN received from host in receive holdup section for
FAX PAD mode.

Value 244

Hangup Code HNG_HOLDUP_DCN_NON_FPAD

Description DCN received from host in receive holdup section for
non-FAX PAD mode.

Bfv API-Created Codes

March 2017 1362

Bfv API-Created Codes
Value 500

Hangup Code HNG_ERROR_INTERRUPT

Description An error interrupt occurred, indicating a problem with
the channel too severe to continue. The value of the
error interrupt can be obtained with the
LINE_ERROR_INTR macro.

Value 501

Hangup Code HNG_INTERRUPT_OVERRUN

Description The application was unable to process incoming
interrupts/commands fast enough, and information
was lost. See LINE_INTR_OVERRUN in Macros
section of Volume 1, Chapter 6.

Value 502

Hangup Code HNG_UNEXPECTED_IRSDONE

Description The channel generated an unexpected 03 (reset done)
or 7F interrupt, indicating the existence of a firmware
or hardware problem.

Value 503

Hangup Code HNG_IOCTL_ERROR

Description An Bfv API command to the driver returned an error
value, indicating that the driver or the operating
system detected an error.

Value 504

Hangup Code HNG_OVERLAY_DLOAD_ERR

Description Error reported at termination of fax overlay download.

Value 505

Hangup Code HNG_MAX_TIMEOUT

Description Maximum timeout exceeded. This code occurs when
the user configuration file parameter max_timeout has
been enabled and the specified timeout has expired.

March 2017 1363

D - BSMI and ISDN Cause Codes

This appendix defines and lists the BSMI and ISDN cause codes.

It has the following sections:

 Defining BSMI Cause Codes
 Defining ISDN Cause Codes

Defining BSMI Cause Codes
The cause data structure defined in Volume 5, Chapter 2, provides
information relating to the source and reason for generation of a
certain ISDN message. The Cause IE consists of:

 Coding standard in use
 Location of the equipment generating the message
 Additional diagnostic information

Table 28 contains the listing of possible cause values encountered by
Dialogic during product testing and is provided here and in IISDN.h
to assist application developers.

The Cause Data structure is used in the following messages:

Call Control
 L4L3mCLEAR_REQUEST
 L3L4mCLEAR_REQUEST
 L3L4mDISCONNECT

Defining BSMI Cause Codes

March 2017 1364

Supplemental
 L4L3mSUSPEND_REJECT
 L4L3mRESUME_REJECT
 L3L4mSUSPEND_REJECT
 L3L4mRESUME_REJECT

Table 28. BSMI Cause Codes

Decimal
Value Mnemonic Message Generated Because

0 IISDNcausDEFAULT Default cause or value not available.

1 IISDNcausUNALOC_NUM The number was unallocated (unassigned).

2 IISDNcausNO_ROUTE No route was specified to the Transit network.

6 IISDNcausBAD_CHAN The channel specified was unacceptable.

16 IISDNcausNORML_CLR Part of normal call clearing procedures.

17 IISDNcausUSER_BUSY Called party was busy.

18 IISDNcausNO_USE_RSP Message generated because no user responded.

21 IISDNcausCALL_REJ Message generated because the call was rejected.

22 IISDNcausNUM_CHANGED The called party number changed.

27 IISDNcausDEST_OOO The destination was out of order.

28 IISDNcausINVALID_NUM The number was in an invalid format.

29 IISDNcausFACIL_REJ A facility reject.

30 IISDNcausSTAT_RESP A response to a STATUS enquiry.

31 IISDNcausNRML_UNSPEC Normal or unspecified reason.

34 IISDNcausNO_CHAN_AVL No circuit/channel was available.

38 IISDNcausNET_OOS The network was out of order.

41 IISDNcausTEMP_FAILURE A temporary failure.

42 IISDNcausSW_CONJEST Switching equipment congestion.

43 IISDNcausACCESS_DISC The access information was discarded.

44 IISDNcausCKT_NOT_AVAIL The requested circuit or channel was not available.

Defining BSMI Cause Codes

March 2017 1365

45 IISDNcausPREEMPT Preempted (AT&T special defined).

47 IISDNcausRES_UNAVAIL The resource was unavailable or unspecified.

50 IISDNcausFAC_NOT_SUSC The requested facility was not subscribed.

52 IISDNcausOUT_BARRED Outgoing calls are not permitted.

54 IISDNcausIN_BARRED Incoming calls are not permitted.

57 IISDNcausBR_CAP_AUTH The requested bearer capability is not authorized.

58 IISDNcausBR_CAP_NA The requested bearer capability is not available.

63 IISDNcausSRVC_NA The service or option is not available or unspecified.

65 IISDNcausBR_SVC_NIMP The bearer service is not implemented.

66 IISDNcausCHNTYP_NIMP The channel type is not implemented.

69 IISDNcausFAC_NIMP The requested facility is not implemented.

70 IISDNcausBR_REST_ONLY Only restricted digital data is available for the bearer
capability.

79 IISDNcausSVC_NIMP The requested service is not implemented or unspecified.

81 IISDNcausINV_CALL_REF An invalid call reference value was used.

82 IISDNcausCHAN_DNE The identified channel does not exist.

88 IISDNlcausINCOMPAT_DST An incompatible destination.

95 IISDNcausINVL_MSG The transmitted Q.931 message was invalid.

96 IISDNcausMAND_IE Mandatory Information Element missing.

97 IISDNcausMSGTYP_BAD The message type does not exist or is not implemented.

98 IISDNcausINCOMPAT_MSG The message was incompatible for the state of call.

99 IISDNcaus IE_NOT_EXIST The transmitted Q.931 message included an IE that does
not exist.

Table 28. BSMI Cause Codes (Continued)

Decimal
Value Mnemonic Message Generated Because

Defining BSMI Cause Codes

March 2017 1366

100 IISDNcausINVL_IE_CONT Invalid content in the Information Element.

101 IISDNcausMSG_COMPAT Q.931 message which was transmitted was not
compatible with the call state during which it was sent.

102 IISDNcausTIMER_EXPIR Recovery on timer expiration.

111 IISDNcausPROTO_ERR Protocol error.

127 IISDNcausINTERWORK Interworking or an unspecified reason.

Table 28. BSMI Cause Codes (Continued)

Decimal
Value Mnemonic Message Generated Because

Defining ISDN Cause Codes

March 2017 1367

Defining ISDN Cause Codes
ISDN cause codes can be used as input or output arguments
(args.cause or args.cause_code) when calling the following call control
functions:

Some cause codes are grouped by class number, see:

 Table 29 on page 1368
 Table 30 on page 1369
 Table 31 on page 1369
 Table 32 on page 1370
 Table 33 on page 1370
 Table 34 on page 1372
 Table 35 on page 1373
 Table 36 on page 1373
 Table 37 on page 1373

Tables 29 through 37 provide Hex and Value columns along with the
description and meaning of each of the ISDN cause codes. The Hex
column is the information contained in the Cause Information
Element (IE) used in the Q.931 messages. This number is generated
by logically ORing a 0x80 value with the hexadecimal conversion of
the Value column. The Value column indicates the decimal
representation of the ISDN cause code as defined in the ITU-T Q.850
specification.

Function1

1. Function details found in Volume 2.

Input Output

BfvCallDisconnect args.cause

BfvCallReject args.cause

BfvCallWaitForAccept args.cause

BfvCallWaitForComplete args.cause

BfvCallWaitForRelease args.cause

BfvLineAnswer args.cause_code

BfvLineTerminateCall args.cause_code

Defining ISDN Cause Codes

March 2017 1368

Table 29. Class 000 - Normal Events

Hex Value Description Meaning

81 1 Unallocated number Indicates that the requested destination, although
valid, cannot be reached.

82 2 No route to specified network Sending equipment (sending the cause) is requested to
route call through an unrecognized transit network.

83 3 No route to destination Called user cannot be reached because the network
does not serve the destination.

86 6 Channel unacceptable The last identified channel is not acceptable to the
sending entity.

87 7 Call awarded Incoming call is connected to a channel already
established for similar calls (for example: packet-mode
X.25 virtual calls).

90 16 Normal call clearing Call is cleared at the request of one of the users
involved.

91 17 User busy Called user cannot accept another call although
compatibility is established.

92 18 No user responding When a user does not respond to call establishment
messages with either an alerting or connect indication
within the allowed time.

93 19 User alerted, no answer User provided an alerting indication but has not
provided a connect indication within the allowed time.

95 21 Call rejected Equipment sending the cause does not want to accept
this call even though the equipment is not busy or
incompatible.

96 22 Number changed Indicates called party number is not assigned.

9A 26 Nonselected user clearing User not awarded the incoming call.

9B 27 Destination out of order Destination interface is not functioning correctly.

9C 28 Invalid number format Called party number is invalid or incomplete.

9D 29 Facility rejected Network cannot provide the facility requested.

9E 30 Response to STATus
ENQuiry

The reason for generating the STATUS message was
the prior receipt of a STATUS ENQUIRY message.

9F 31 Normal, unspecified Used to report normal events only when no other cause
in the normal class applies.

Defining ISDN Cause Codes

March 2017 1369

Table 30. Class 010 - Network Congestion

Hex Value Description Meaning

A2 34 No channel available An appropriate channel is not currently available to
handle the call.

A3 35 Call queued (AT&T) Network is not functioning. Immediate redial is
unlikely to succeed.

A6 38 Network out of order Network is not functioning. Immediate redial is
unlikely to succeed.

A9 41 Temporary failure Network is not functioning. Immediate redial is
unlikely to succeed.

AA 42 Switching equipment
congestion

Switching equipment generating this cause is
experiencing a period of high traffic. AB 42 user
information is discarded. The network cannot deliver
access information to the remote user as requested.
For example:

 User-to-user information
 Low-layer compatibility
 Sub-address as indicated in the diagnostic

The particular type of discarded access information is
optionally included in the diagnostic.

AC 44 Requested channel not
available

The channel indicated by the requesting entity cannot
be provided by the other side of the interface.

AF 47 Resource unavailable,
unspecified

A resource unavailable event only when no other cause
in the resource unavailable class applies.

Table 31. Class 011 - Service or Option Not Available

Hex Value Description Meaning

B1 49 Quality of service
unavailable

Throughput or transit delay cannot be supported. The
Quality of Service (as defined in Recommendation
X.213) cannot be provided.

B2 50 Requested facility not
subscribed

Requested supplementary service not provided by the
network because the user has not completed the
necessary administrative arrangements with its
supporting networks.

B4 52 Outgoing calls barred
(AT&T)

Outgoing calls are not permitted.

Defining ISDN Cause Codes

March 2017 1370

B6 54 Incoming calls barred Incoming calls are not permitted.

B9 57 Bearer capability not
authorized

User is trying to make unauthorized use of equipment
providing a bearer capability.

BA 58 Bearer capability not
presently available

User has requested a bearer capability that is
implemented by the equipment generating the cause,
but is not available at this time.

BF 63 Service or option not
available, unspecified

A service or option not available event only when no
other cause in the service or option not available class
applies.

Table 31. Class 011 - Service or Option Not Available (Continued)

Hex Value Description Meaning

Table 32. Class 100 - Service or Option Not Implemented

Hex Value Description Meaning

C1 65 Bearer capability not
implemented

Equipment sending this cause does not support the
requested bearer capability.

C2 66 Channel type not
implemented

Equipment sending this cause does not support the
requested channel type.

C5 69 Requested facility not
implemented

Equipment sending this cause does not support the
requested supplementary service.

C6 70 Only restricted digital bearer
capability available

Request for an unrestricted bearer service, but the
equipment sending this cause only supports the
restricted version.

CF 79 Service or option not
implemented, unspecified

A service or option not implemented event only when
no other cause in the service or option not
implemented class applies.

Table 33. Class 101 - Invalid Message

Hex Value Description Meaning

D1 81 Invalid call reference value A message with a call reference that is not currently in
use on the user network interface, received by the
equipment sending the cause.

D2 82 Channel does not exist Equipment sending this cause received a request to
use a channel not activated on the interface for a call.

Defining ISDN Cause Codes

March 2017 1371

D3 83 Suspended call exists, call
identity does not

A call resume attempted with a call identity that
differs from that in use for any currently suspended
call.

D4 84 Call identity in use Network received a call suspended request. The
request contained a call identity (including the null
call identity) that is already in use for a suspended call
within the domain of interfaces over which this call
can be resumed.

D5 85 Invalid digit value for
number

Network received a call resume request. The request
contained a call identity information element that does
not indicate any suspended call within the domain of
interfaces over which the call can be resumed.

D6 86 Call having the requested
call identity is cleared

The network has received a call resume request. This
request contained a call identity information element
that once indicated a suspended call; the suspended
call was cleared while suspended (either by network
timeout, or by a remote user).

D8 88 Incompatible destination Equipment sending this cause received a request to
establish a call that has low layer compatibility, high
layer compatibility attributes (for example, data rate)
that cannot be handled.

DB 91 Transit network does not
exist

Incorrect format received for transit network
identification (format defined in Annex C/Q.931).

DF 95 Invalid message, unspecified Invalid message event only when no other cause in the
invalid message call applies.

Table 33. Class 101 - Invalid Message (Continued)

Hex Value Description Meaning

Defining ISDN Cause Codes

March 2017 1372

Table 34. Class 110 - Protocol Error

Hex Value Description Meaning

E0 96 Mandatory information
element is missing

Equipment sending this cause received a message that
is missing an information element that must be
present in the message before that message can be
processed.1

E1 97 Message type nonexistent or
not implemented

Equipment sending this cause received a message with
a message type it does not recognize:

Undefined message.

Defined but not implemented by the equipment
sending the cause.

E2 98 Message not compatible with
call state or message type
nonexistent or not
implemented

Equipment sending this cause received a message that
it considers non-permissible while in the call state; or
a STATUS message received indicating an
incompatible call state.

E3 99 Information element
nonexistent or not
implemented

Equipment sending this cause received a message that
includes information elements not recognized because
the information element identifier is not defined, or is
defined but not implemented by the equipment
sending the cause. However, the information element
is not required to be present in the message to enable
the equipment sending the cause to process the
messages.1

E4 100 Invalid information element
contents

Equipment sending this cause received an information
element that it has implemented. However, the
sending equipment was not able to implement the code
because one or more of the fields were incorrectly
coded.1

E5 101 Message not compatible with
call state

The received message is incompatible with the call
state.

E6 102 Recovery on timer expiry A timer expired and an associated Q.931 error
handling procedure is initiated.

EF 111 Protocol error, unspecified An error event only when no cause in the protocol
error class applies.

1. The particular Information Element is identified in the diagnostic byte. For example 81 E0 04 means that
the bearer capability is not included by the PABX (Private Network) in the SETUP message. 0x04 is the
Bearer Capability Information Element Identifier as specified in the standards.

Defining ISDN Cause Codes

March 2017 1373

Table 35. Class 111 - Inter-networking

Hex Value Description Meaning
FF 127 Interworking unspecified Interworking with a network that does not provide

cause codes for its actions. Therefore, the precise cause
for transmitting a message is unknown.

Table 36. Dialogic (formerly Brooktrout) Proprietary ISDN Cause Codes
Returned by High-Level Call Control Functions

Hex Value Name Meaning

3E8 1000 CLEARcausNO_DIALTONE No dial tone detected when placing a call.

3E9 1001 CLEARcausINTERNAL_DIAL_ERROR An internal dialing error has occurred.

3EA 1002 CLEARcausNO_LOOPCURRENT No loop current detected.

3EB 1003 CLEARcausJATE_REJECT Call failed to connect within the limits
defined for the JATE standard’s redial
restriction.

Table 37. Diagnostic Byte

Hex Value Description

02 2 Transit network identity or network specific facility Information Element Identifier.

16 22 New destination number.

1D 29 Facility identification.

2B 43 Discarded Information Element Identifier.

2F 47 Information Element Identifier.

39 57 Attributes of bearer capability.

3A 58 Attributes of bearer capability.

41 65 Attributes of bearer capability.

42 66 Channel type.

58 88 Incompatible parameter.

5F 95 Message type.

60 96 Information Element Identifier.

Defining ISDN Cause Codes

March 2017 1374

61 97 Message type.

62 98 Message type.

63 99 Information Element Identifier.

64 100 Information Element Identifier.

65 101 Message type.

66 102 Timer number.

Table 37. Diagnostic Byte (Continued)

Hex Value Description

March 2017 1375

E - Infopkt Parameter Values

This appendix describes the voice and fax infopkt parameters.

It has the following sections:

 Voice Infopkt Parameters
 Fax Infopkt Parameters

March 2017 1376

All infopkts consist of a four-byte header that precedes some data.
The header defines the infopkt’s type and indicates its total length.

In each infopkt, define the header using struct infopkt hdr. It
has the following format and parameters:

struct infopkt hdr

{

 unsigned short type;

 unsigned short length;

};

The following describes each of these parameters:

Parameter type
Units None.
Range See the infopkt.h file for a complete list of infopkt

types.
Default None.

Parameter length
Units Bytes.
Range Total length of the infopkt, including header and

data. Maximum 30,000 bytes; recommend 1K limit.
Default None.

Voice Infopkt Parameters

March 2017 1377

Voice Infopkt Parameters
The voice infopkt parameters include the following:

 End-of-Speech Parameter Infopkt on page 1377
 Prompt Map Infopkt on page 1378
 Speech Parameters Infopkt on page 1379

End-of-Speech Parameter Infopkt
The end-of-speech parameter infopkt struct eospkt, used by
infopkt type INFOPKT_END_OF_SPEECH, contains the following
programmable parameter:

struct eospkt

{
struct infopkt hdr;
unsigned short mode;

};

The following describes this parameter:

Parameter mode

Units None.

Range 0 Stop accepting data from this file, and
terminate speech playback.

1 Stop accepting data from this file, but do not
terminate speech playback.

Default 0

Voice Infopkt Parameters

March 2017 1378

Prompt Map Infopkt
The prompt map infopkt struct promptpkt, used by infopkt type
INFOPKT_PROMPT_MAP, contains the following programmable
parameters:

struct promptpkt

{
struct infopkt hdr;
long num_phrases;

/* map data follows: num_phrases prompt_phrase structures
*/

};

struct prompt_phrase

{
long phrase_size;
long offset;

};

The following describes each of these parameters:

Parameter num_phrases

Units None.

Range 1 – MAX_PHRASES_PER_MAP.

Description Number of phrases in prompt file.

Default None.

Parameter phrase_size

Units Bytes.

Range 1 – unlimited.

Description The size of a particular phrase.

Default None.

Parameter offset

Units Bytes.

Range 1 – unlimited.

Description Offset of a particular phrase.

Default None.

Voice Infopkt Parameters

March 2017 1379

Speech Parameters Infopkt
The speech parameters infopkt struct SPI, used by infopkt type
INFOPKT_SPEECH_PARAMETERS, contains the following
programmable parameters:

struct SPI

{
struct infopkt hdr;
unsigned short sample_rate;
unsigned char coding_format;
unsigned char bits_per_sample;
unsigned char afe_rate;
unsigned char data_fmt;

};

The following describes each of these parameters:

Parameter sample_rate

Units Samples per second.

Range 0 = 6,000

1 = 8,000

6 = 16,000

2 = 20,000

3 = 24,000

4 = 28,000

5 = 32,000

9 = 5,300

10 = 6,300

11 = 13,000

Default 1

Voice Infopkt Parameters

March 2017 1380

Note: For a list of valid combinations of sample_rate and
coding_format, see BfvSpeechRecord.

Parameter coding_format

Units None.

Range 0 = CVSD

1 = ADPCM

2 = μ - law PCM

7 = G723_1

8 = G729_A

9 = SX7300

10 = SX9600

14 = GSM 610

15 = GSM 660

16 Raw data pass through

Default 1

Parameter bits_per_sample

Units Bits per sample.

Range 0 = 1 bit

2 = 4 bits

3 = 8 bits

Default 2

Parameter afe_rate

Units Samples per second.

Range 0 = 8,000

Default 0

Parameter data_fmt

Units None.

Range 0 = MSB

Default 0xff

Parameter agc (not used, for compatibility only)

None.

A module reported optimal AGC value for playback.

Units

Range

Fax Infopkt Parameters

March 2017 1381

Fax Infopkt Parameters
Fax infopkt parameters include the following:

 ASCII Strip Infopkt on page 1381
 Document Parameters Infopkt on page 1383
 Enhanced Fax Format Page Infopkt on page 1385
 Fax Header Parameters Infopkt on page 1386
 G3 Strip Infopkt on page 1387
 Page Parameters Infopkt on page 1389
 T.30 Parameters Infopkt on page 1391
 Beginning of Page Infopkt on page 1393

ASCII Strip Infopkt
The ASCII strip infopkt struct asciistrippkt, used by infopkt
type INFOPKT_ASCII_STRIP_PARAMETERS, contains the following
programmable parameters:

struct asciistrippkt {

 struct infopkt hdr;

 unsigned short resolution;

 unsigned short width;

 unsigned short eof_char;

 unsigned short font_no;

 unsigned short left_margin;

 unsigned short right_margin;

 unsigned short line_spacing;

};

The following pages describe each of these parameters.

Fax Infopkt Parameters

March 2017 1382

Parameter resolution

Units None

Range 0 200H x 100V (Normal)

1 200H x 200V (Fine)

2 200H x 400V

3 300H x 300V

4 400H x 400V

5 600H x 600V

6 1200H x 1200V

7 300H x 600V

8 400H x 800V

9 600H x 1200V

Default 0

Parameter width

Units Pixels

Range 0 A4, 215 mm, 1728 pixels, normal resolution

1 B4, 255 mm, 2048 pixels, normal resolution

2 A3, 303 mm, 2432 pixels, normal resolution

Default 0

Parameter eof_char

Units None

Range ASCII only

Default 1A

Parameter font_no

Units None

Range 0 – 6
If this specified font has not been downloaded, a default
font is used (see BfvFaxDownloadFont or the font_file
parameter on page 1151).

Default 0

Fax Infopkt Parameters

March 2017 1383

Document Parameters Infopkt
The document parameters infopkt struct docpkt, used by infopkt
type INFOPKT_DOCUMENT_PARAMETERS, contains the following
programmable parameters:

struct docpkt {

 struct infopkt hdr;

 unsigned char resolution;

 unsigned char hor_width;

 unsigned char vert_length;

};

The following page describes each of these parameters.

Parameter left_margin

Units 1/10 inch

Range 0 Minimum

12 Maximum

Default 5

Parameter right_margin

Units 1/10 inch

Range 0 Minimum

12 Maximum

Default 0

Parameter line_spacing

Units Number of G3 lines between text lines.

Range 0 – 255

Default 2

Fax Infopkt Parameters

March 2017 1384

Parameter resolution

Units None

Range 0 200H x 100V (Normal)

1 200H x 200V (Fine)

2 200H x 400V

3 300H x 300V

4 400H x 400V

5 600H x 600V

6 1200H x 1200V

7 300H x 600V

8 400H x 800V

9 600H x 1200V

10 100H x 100V (for JPEG only)

Default 0

Parameter hor_width

Units Pixels

Range 0 A4, 215 mm, 1728 pixels, normal resolution

1 B4, 255 mm, 2048 pixels, normal resolution

2 A3, 303 mm, 2432 pixels, normal resolution

Default 0

Parameter vert_length

Units None

Range Reserved, value must be 0

Default 0

Fax Infopkt Parameters

March 2017 1385

Enhanced Fax Format Page Infopkt
The enhanced fax format infopkt struct effpagepkt, used by
infopkt type INFOPKT_EFF_PAGE_PARAMETERS, contains the
following programmable parameter:

struct effpagepkt {

 struct infopkt hdr;

 unsigned long eff_page_type;

};

The following describes this parameter:

Parameter eff_page_type

Units None.

Range 0x1 JPEG

0x2 Full color (JPEG)

0x4 Default Huffman Tables (JPEG)

0x8 12 bits/pel, otherwise 8 (JPEG)

0x10 No subsampling (JPEG)

0x20 Custom Illuminant (JPEG)

0x40 Custom Gamut (JPEG)

0x0100 JBIG

0x0200 L0 Mode (JBIG)

Default 0x0

Fax Infopkt Parameters

March 2017 1386

Fax Header Parameters Infopkt
The fax header parameters infopkt struct faxhdrpkt, used by
infopkt type INFOPKT_FAX_HDR, contains the following
programmable parameters:

struct faxhdrpkt {

 struct infopkt hdr;

 unsigned char placement;

 unsigned char insert_mode;

};

The following describes each of these parameters:

Parameter placement

Units None

Range 0 Header

1 Footer

Default 0

Parameter insert_mode

Units None

Range 0x00 Disable

0x02 Replace

0x03 Insert

Default 0x03

ASCII data for the label format follows the fax header parameters
infopkt structure (see the BfvFaxHeader function).

Fax Infopkt Parameters

March 2017 1387

G3 Strip Infopkt
The G3 strip infopkt struct g3strippkt, used by infopkt type
INFOPKT_G3_STRIP_PARAMETERS, contains the following
programmable parameters:

struct g3strippkt {

 struct infopkt hdr;

 unsigned short resolution;

 unsigned short width;

 unsigned short data_fmt;

};

The following describes each of these parameters:

Parameter resolution

Units None

Range 0 200H x 100V (Normal)
1 200H x 200V (Fine)
2 200H x 400V
3 300H x 300V
4 400H x 400V

5 600H x 600V

6 1200H x 1200V

7 300H x 600V

8 400H x 800V

9 600H x 1200V

Default 0

Parameter width

Units Pixels.

Range 0 A4, 215 mm, 1728 pixels, normal resolution

1 B4, 255 mm, 2048 pixels, normal resolution

2 A3, 303 mm, 2432 pixels, normal resolution

Default 0

Fax Infopkt Parameters

March 2017 1388

Parameter data_fmt

Units None

Range *********** MH data format ************
0x0 EOLs not byte-aligned, MSB.
0x1 EOLs not byte-aligned, LSB.
0x2 EOLs byte-aligned, MSB.
0x3 EOLs byte-aligned, LSB.

*********** MR data format *************
0x4 EOLs not byte-aligned, MSB.
0x5 EOLs not byte-aligned, LSB.
0x6 EOLs byte-aligned, MSB.
0x7 EOLs byte-aligned, LSB.

*********** PCX format ***************
0x9 Intel Bi-Level PCX.

********** MMR data format ***********
0x10 EOLs not byte-aligned, MSB.
0x11 EOLs not byte-aligned, LSB.
0x12 EOLs byte-aligned, MSB.
0x13 EOLs byte-aligned, LSB.

Default 0x0 for transmission
0x2 for reception

Fax Infopkt Parameters

March 2017 1389

Page Parameters Infopkt
The page parameters infopkt struct pageparampkt, used by
infopkt type INFOPKT_PAGE_PARAMETERS, contains the following
programmable parameters:

struct pageparampkt {

 struct infopkt hdr;

 unsigned short top_margin;

 unsigned short bottom_margin;

 unsigned short length;

 unsigned short ascii_pad;

 unsigned short image_pad; // no longer used

 unsigned short image_break; // no longer used

 unsigned short image_margin; // no longer used

};

The following describes each of these parameters:

Parameter top_margin

Units 1/10 inch

Range 0 Minimum
25 Maximum

Default 3

Parameter bottom_margin

Units 1/10 inch

Range 0 Minimum
25 Maximum

Default 3

Parameter length (page length) For compatibility only; no longer
used.

Units Number of G3 lines per page in normal resolution (at
98 lines per inch)

Range 0 – 65,535

Default 1,143

Fax Infopkt Parameters

March 2017 1390

Parameter ascii_pad

Replaces the image_pad parameter and pads all kinds
of faxes (not limited only to ASCII images).

Units None.

Range 0 Do not pad short image pages.
1 Pad short image pages.

Default 1 (TR114); 0 (all other modules)

Parameter image_pad

For compatibility only; no longer used.

Units None.

Range 0 Do not pad short image pages.
1 Pad short image pages.

Default 0

Parameter image_break

For compatibility only; no longer used.

When image_break is enabled and the
BfvFaxHeader function is used, the firmware does
not put the fax header data on the second page.

Units None.

Range 0 Do not break long image pages.
1 Break long image pages.

Default 0

Parameter image_margin

For compatibility only; no longer used.

Units None.

Range 0 Do not use margins for image pages.
1 Use margins for image pages.

Default 0

Fax Infopkt Parameters

March 2017 1391

T.30 Parameters Infopkt
The T.30 parameters infopkt struct t30parampkt, used by infopkt
type INFOPKT_T30_PARAMETERS, contains the following
programmable parameters:

struct t30parampkt {

 struct infopkt hdr;

 unsigned char bit_rate;

 unsigned char scan_time;

 unsigned char coding_type;

 unsigned char modulation_type;

 unsigned char line_compression;

};

The following describes each of these parameters:

Parameter bit_rate

Units Bits per second.

Range 0 2400 V.27, V.34.

1 7200 V.29, V.17, V.34.

2 4800 V.27, V.34.

3 9600 V.29, V.17, V.34.

4 12000 V.33, V.17, V.34.

5 14400 V.33, V.17, V.34.

6 16800, V.34.

7 19200, V.34.

8 21600, V.34.

9 24000, V.34.

10 26400, V.34.

11 28800, V.34.

12 31200, V.34.

13 33600, V.34.

0xFF Any, no restriction
Note: TruFax® does not support values 6 through 13.

Default 0xFF

Fax Infopkt Parameters

March 2017 1392

Parameter scan_time

Units Milliseconds.

Range 7 0 ms.

1 5 ms.

2 10 ms.

0 20 ms.

4 40 ms.

Default 7

Parameter coding_type

Units None.

Range Reserved, value must be 0.

Default 0

Parameter modulation_type

Units None.

Range 0 Any, no restriction.

1 V.27 only.

2 V.29 only.

3 V.33 only.

4 V.17 only.

5 V.34 only. TruFax® does not support this
value.

Default 0

Parameter line_compression

Units None.

Range 0 No restriction.

1 MH only.

2 MR or MH.

3 MMR, MR, or MH.

Default 0

Note: This parameter overrides the user configuration file
line_compression parameter.

Fax Infopkt Parameters

March 2017 1393

Beginning of Page Infopkt
The beginning of page infopkt struct boppkt, used by infopkt type
INFOPKT_BEGINNING_OF_PAGE, contains no programmable
parameters.

struct boppkt {
struct infopkt hdr;

};

This infopkt signals the end of a fax page and the beginning of a new
one.

March 2017 1394

F - Call Progress Notes

This appendix explains the Bfv API’s call progress capabilities.

It has the following sections:

 Processing Call Progress Signals
 Adapting to International Specs
 Reporting Call Progress Results
 Initiating Call Progress
 Setting the Call Progress Mode
 Special Call Progress Features
 Call Progress Signals
 Special Information Tones
 Custom Call Progress Results
 Final Call Progress Results

Central Offices (COs), telephone carriers, and Private Branch
Exchanges (PBXs) generate call progress signals before, during, and
after dialing. Dialogic® Brooktrout® boards receive these signals
over the telephone lines, and the board’s call progress analysis
process interprets them.

During call progress analysis, boards can report dial tone detection,
ring-back, busy signals, remote fax tone detection, and other
important information. Applications can use this information to
determine their next course of action, to display the status of a call,
or to track billing information. Applications can use postdialing
results, such as HUMAN and BUSY, to decide what redialing strategy to
use.

Processing Call Progress Signals

March 2017 1395

Processing Call Progress Signals
All Dialogic® Brooktrout® boards process call progress signals
similarly. Because the frequency characteristics of many of the
signals the boards receive are between 300 and 640 Hz, the boards
use a bandpass filter to detect energy within that range. The boards
use discrete filters to detect other signals with frequency
characteristics that fall outside the bandpass filter’s range, such as
fax answer tone (CED) and Special Information Tones (S.I.T.).

The boards use the bandpass filter and a cadence detection algorithm
to detect normal call progress signals (such as, ring-back, busies, and
dial tone). When the bandpass filter detects energy in the 300 to 640
Hz range, it generates an ON output. When the bandpass filter fails
to detect energy in that range, it generates an OFF output. Over time,
the received signals produce a cadence, or pattern of ON/OFF states.
The cadence detection algorithm, executing in software and on-board,
translates these patterns of ON/OFF states and their duration into
call progress results. Because of the cadence algorithm, valuable
processing resources on the host computer (PC) remain available for
other uses.

The boards use several discrete filters to detect fax answer tone
(CED), fax calling tone (CNG), Special Information Tones (S.I.T.), and
G2 fax tones. Since some answering fax machines do not transmit the
CED tone, the boards also detect fax V.21 signals. V.21 is the
modulation that fax machines use to communicate protocol
information to each other. So, to ensure that the boards properly
detect all G3 fax machines when they dial out, the call progress
analysis process must be able to detect V.21.

Although Dialogic® Brooktrout® boards support G3 facsimile only, if,
during call progress analysis, the discrete filters detect a fax machine
that supports G2 only, call progress analysis reports G2DETCT.
However, when the boards dial out to fax machines that support both
G2 and G3, call progress analysis reports ANSWER_TONE_DETECT.

Adapting to International Specs

March 2017 1396

Adapting to International Specs
Brooktrout’s call progress analysis process, detects a wide range of
call progress signals, both inside and outside the United States.

The call progress analysis process automatically adapts to different
signal characteristics that other countries may generate and
recognizes them as call progress signals. For applications that run on
boards operating outside the United States, this feature eliminates
the need to download special parameters to those boards. When
dialing to fax machines in other countries, this feature enables call
progress analysis to automatically adapt to the proper call progress
conditions at the remote end.

Reporting Call Progress Results

March 2017 1397

Reporting Call Progress Results
Call progress analysis reports two types of call progress results:
intermediate and final. Custom call progress values are treated as
intermediate call progress results by BfvLineOriginateCall or
BfvLineOrigCallDB.

Intermediate Results
Intermediate call progress results, such as ring-back and
remote-off-hook, indicate that a call is progressing. Applications often
use intermediate results to display the status of a call or to track
billing information. The intermediate call progress results include:
ANSWER, RING1, RMTOFFHK, and SILENCE.

RING1 indicates detection of the type of ring-back signal used in the
U.S.A.

In digital environments, the boards report RMTOFFHK
(remote-off-hook) when the A signaling bit goes active. Japanese
boards with Polarity Reversal Detection report RMTOFFHK when the
reverse side answers the call. Applications can use RMTOFFHK to
determine exactly when the remote end answered the call. Many
applications require tracking such information for billing purposes.

Final Results
Final call progress results, such as busy or fax tone detected, indicate
that a call has reached a critical point and requires intervention. At
that point, applications must stop call progress and initiate the next
step, such as terminate the call or send a fax. The final call progress
results are listed in Final Call Progress Results on page 1414. HUMAN
is a special final result, and detecting it is a complex process (see
Detecting Human below).

For a complete description of the call progress signals and the S.I.T.
tones that the boards report, see Call Progress Signals on page 1403
and Special Information Tones on page 1410.

Reporting Call Progress Results

March 2017 1398

DISS - Limited Call Progress Mode
Detection of Incoming Signals during Speech (DISS) is a limited call
progress mode. DISS is in effect when call progress is performed
during speech record or play, or if explicitly requested by the
diss_only option of BfvLineCallProgressEnable.

The final call progress results that are available include:

 CS_BUSY1
 CS_ROBUSY
 CS_DIALTON
 CS_CNG
 CS_CED
 CS_CUSTOM_DIS_FREQ0
 CS_CUSTOM_DIS_CAD0
 No raw call progress data are available

Detecting Human
HUMAN is a final call progress result and means that a human
probably answered the call. Because of the complexities involved,
detecting HUMAN is not 100% accurate. Call progress analysis reports
HUMAN when the results of the analysis do not match any other
pattern. Typically, call progress analysis reports HUMAN after the
board detects ring-back for a while and then detects a break in the
energy pattern.

When call progress is enabled in fax mode and call progress analysis
detects HUMAN, to compensate for intermediary intervention at the
remote end, such as shared telephone lines and intelligent switching
devices, the board does not report HUMAN immediately. For example,
because many fax machines share the same phone line with a
telephone, a person will often answer the call, realize the call is for
the fax machine, and switch the fax machine on.

In fax mode, the board waits until a timeout period expires before
reporting HUMAN (assuming it fails to detect another signal after
HUMAN). The timeout period is the ced_timeout timeout, and it is
programmable through the user configuration file (e.g., btcall.cfg).
The default for ced_timeout is 40 seconds, but many applications
increase this value to as high as 80 seconds.

Initiating Call Progress

March 2017 1399

Initiating Call Progress
The Bfv API provides a high-level function, BfvLineOriginateCall,
and a low-level function, BfvLineCallProgressEnable, to enable
call progress analysis. In addition to enabling call progress analysis,
the high-level function dials the telephone number. The low-level
function simply enables call progress analysis for a particular calling
mode.

BfvLineCallProgressEnable
Some applications use the BfvLineCallProgressEnable function to
enable call progress. This function accepts several input parameters,
including the call protocol code and the calling mode (ORIGINATE or
ANSWER) to use.

After calling this function, applications access the call progress
buffer, a 128-byte structure that contains up to sixty-four call
progress samples. Each 2-byte sample consists of a code and its
associated data.

The call protocol code sets the call progress mode, and the calling
mode defines which call progress signals the board expects to receive.

Applications enable the ANSWER call mode when responding to an
incoming call. For this purpose, applications check the contents of the
call progress buffer in a loop, looking for CS_CNGDTCT to determine if
the call is from a fax machine. When it is in ANSWER call mode, the
board is also in voice protocol mode and does not transmit CNG tone.

Applications enable the ORIGINATE call mode when out dialing. For
this purpose, applications check the contents of the call progress
buffer in a loop, looking for call progress results to determine what
action to take next. When it is in ORIGINATE call mode and in fax call
protocol mode, the board transmits CNG tone.

The returned data values for call progress results that the board
determined, corresponds to the names of the call progress signals
described in Call Progress Signals on page 1403 and in Special
Information Tones on page 1410, but with CS_ appended to the front
of the name (for example, CS_BUSY1). The BfvDataCP function
returns these values, and they are defined in the btlib.h file.

Initiating Call Progress

March 2017 1400

BfvLineOriginateCall
Most applications use the high-level function
BfvLineOriginateCall to initiate call progress. This function
accepts several input parameters, including the phone number to
dial, the call protocol code to use, and a user-defined function.

The BfvLineOriginateCall function commands the channel to dial
the specified telephone number. Besides the dialing digits, the
telephone number may include control parameters, such as “w” (wait
for dial tone for the analog boards) and “p” (pulse dial). After dialing
the dial string, the function commands the board to perform call
progress analysis.

Applications often pass a user-defined function to
BfvLineOriginateCall to interpret intermediate call progress
results (such as, RING1 and RMTOFFHK).

The BfvLineOriginateCall function returns when one of the
following occurs:

 An error occurs during dialing.
 The channel reports a final call progress result.
 The user-defined function aborts the call.

When BfvLineOriginateCall returns, the application can query the
call_result structure to determine what happened.

Setting the Call Progress Mode

March 2017 1401

Setting the Call Progress Mode
In general, the call_protocol_code sets three call progress
modes – VOICE, FAX, and RAW – that affect how the boards perform
call progress analysis and report the call progress results.
Applications use each of these modes for specific purposes.

Voice Mode
Applications enable this mode when dialing to a human for voice
applications, such as voice notification or automated soliciting. For
this purpose, we recommend that applications pass
BfvLineOriginateCall the CALL_PROTOCOL_VOICE_NO_RAW
protocol code. In this mode, the board reports HUMAN and other
answer results immediately.

Fax Mode
Applications enable this mode when dialing to a fax machine. For this
purpose, You should ensure that applications pass
BfvLineOriginateCall, the CALL_PROTOCOL_FAX protocol code. In
this mode, the module suppresses HUMAN and QUIET results until the
ced_timeout timeout expires.

Note: CALL_PROTOCOL_FAX_NO_RAW (fax mode) and
CALL_PROTOCOL_VOICE_NO_RAW (voice mode) report only the
results of the module’s call progress analysis, not the raw call
progress data.

Raw Mode
Applications enable this mode to receive the raw energy levels that
the call progress filters detect directly from the board. Applications
pass BfvLineOriginateCall, the CALL_PROTOCOL_FAX_NO_RAW
protocols code and use this information to construct their own call
progress algorithm. However, since the vast majority of applications
are not interested in this information, we recommend that they
enable one of the other modes to perform the required operation.

Applications can enable raw mode and voice mode or fax mode at the
same time, but fax mode and voice mode are mutually exclusive.

Special Call Progress Features

March 2017 1402

Special Call Progress Features
Dialogic® Brooktrout® boards can perform very useful tasks during
call progress analysis.

Sending CNG
In fax mode, Dialogic® Brooktrout® boards transmit CNG tone (fax
calling tone) while performing call progress analysis. Because this
feature guarantees that the remote end will detect a CNG tone when
it answers the call, this feature eliminates incompatibility problems
with intelligent switching devices. When these devices go off-hook,
they listen for CNG tone before deciding whether to connect the call
to a fax machine or to a human.

Call Progress Analysis During Dialing
Using call progress analysis when dialing is very useful when the dial
string includes the “W” control character.

The “W” control character directs the channel to wait for a dial tone
before dialing the next digit in the dial string. Since dial tone is a
continuous signal in many countries, to qualify a dial tone, call
progress analysis simply looks for continuous energy output from the
board’s bandpass filter.

Call Progress Signals

March 2017 1403

Call Progress Signals
FCP_ANSWER Remote end answered call; can occur immediately after a break in the

ring-back cycle; like HUMAN, does not match any other call progress
signal patterns, but is marked by silence.

Mode VOICE, ORIGINATE

Result Type Intermediate or final

Detection Cadence algorithm

Freq. (Hz) NA

On/Off secs NA

Action Voice applications only; stop call progress immediately and play
speech or wait until HUMAN (and possibly SILENCE) detected and play
speech.

FCP_ANSWER_TONE_DETECT

Fax machine detected; usually a fax CED tone, but also fax V.21
signals when the remote machine does not send a CED tone before it
sends the fax protocol information.

Mode FAX, VOICE, ORIGINATE, ANSWER

Result Type Final

Detection Discrete filters

Freq. (Hz) 2100 or V.21 (1650, 1850)

On/Off secs Continuous for >2.6 and <4 or V.21 (NIA)

Action Send a fax.

FCP_BUSY1 Normal busy; remote end busy (off-hook).

Mode FAX, VOICE, ORIGINATE

Result Type Final

Detection Cadence algorithm

Freq (Hz) Country-specific (480+620 U.S.A.)

On/Off secs Country-specific (0.5/0.5 U.S.A.)

Action Terminate the call with BfvLineTerminateCall or BfvLineReset.
Employ suitable redial strategy; for example, redial every 10 minutes
for several hours.

Call Progress Signals

March 2017 1404

FCP_BUSY2 Normal busy; remote end busy (off-hook). Used instead of BUSY1 in
certain countries.

Mode FAX, VOICE, ORIGINATE

Result Type Final

Detection Cadence algorithm

Freq (Hz) Country-specific

On/Off secs Country-specific

Action Terminate the call with BfvLineTerminateCall or BfvLineReset.
Employ suitable redial strategy; for example, redial every 10 minutes
for several hours.

FCP_CNGDETCT CNG fax calling tone detected.

Mode ANSWER; typically, applications answer inbound calls, go off-hook,
check for CNG, and depending on the results, determine whether to
receive a fax or play speech. (Assuming the remote end started
sending CNG when call progress was initiated, worst case detection
time is 5 secs.)

Result Type Final

Detection Discrete filters

Freq (Hz) 1100

On/Off secs 0.5/3.0

Action If detected, terminate call progress with the
BfvLineCallProgressDisable function or the user-defined function
passed to the BfvLineOriginateCall function, and start fax receive
mode.

FCP_CONFIRM Confirmation tone; automated equipment acknowledges successful
completion of caller requested feature (for example, call forwarding).
This is not G2 confirmation tone (CFR2).

Mode FAX, VOICE, ORIGINATE

Result Type Intermediate

Detection Cadence algorithm

Freq (Hz) 350+440

On/Off secs 2((0.1/0.1), 0.1/continuous

Action When the application receives this result, it should continue call
progress analysis and use the user-defined function passed to
BfvLineOriginateCall to check for CONFIRM and display the status
of the call.

Call Progress Signals

March 2017 1405

FCP_DIALTON Dial tone detected; usually indicates the dialing sequence did not
break dial tone.

Mode FAX, VOICE, ORIGINATE

Result Type Final

Detection Cadence algorithm

Freq (Hz) 350+440

On/Off secs Continuous

Action Terminate the connection with BfvLineTerminateCall or
BfvLineReset. Retry 10 minutes later. If still unsuccessful, have the
telephone company check the line, and then check the Dialogic®
Brooktrout® board (if the volume of the DTMF tones is too low, the
PBX or the telephone company will fail to detect them).

FCP_G2DETCT Group 2 fax machine detected; remote machine is capable of sending
and receiving G2 facsimiles only.

Mode FAX, VOICE, ORIGINATE

Result Type Final

Detection Discrete filters

Freq (Hz) 1850

On/Off secs 1.5/3.0

Action Since the Bfv API does not support G2, terminate the call with
BfvLineTerminateCall or BfvLineReset. Retry only once, 10 to 15
minutes later. If still unsuccessful, check the telephone number.

FCP_HUMAN Answer (probable human) detected; does not match any other
expected call progress signal patterns.

Mode FAX (suppressed until after ced_timeout timeout), VOICE,
ORIGINATE, ANSWER

Result Type Final

Detection Cadence algorithm

Freq (Hz) NA

On/Off secs NA

Action Application specific. Fax applications: terminate the call with
BfvLineTerminateCall or BfvLineReset. Employ a suitable retry
strategy; for example, redial once 30 to 60 minutes later. Voice
applications: play a speech file.

Call Progress Signals

March 2017 1406

FCP_ISDN_CALL_PROGRESS

By enabling call progress on an ISDN D channel, one of the following
values will be in the second byte of the FIFO buffer:

4: CALL_PROCEEDING: Call is proceeding normally.
5: CALL_ALERTING: Ringback detected; remote end is

ringing.
6: CALL_CONNECTED: Call is connected.
7: CALL_DISCONNECTED: Call was disconnected.

Mode ORIGINATE

Result Type Intermediate

Detection NA

Freq (Hz) NA

On/Off secs NA

Action Depending on the call progress value, proceed as in fax or voice
applications.

FCP_ISDN_CALL_COLLISION

Indicates that a call collision occurred on the ISDN line.

Mode Originate

Result Type Final

Detection NA

Freq (Hz) NA

On/Off secs NA

Action Terminate the call with BfvLineTerminateCall or BfvLineReset.

FCP_PULSE This result is reserved and should never occur.

Mode None.

Result Type NA

Detection NA

Freq (Hz) NA

On/Off secs NA

Action NA

Call Progress Signals

March 2017 1407

FCP_QUIET After dialing the number, no energy detected on the line for the
ced_timeout timeout period; possible dead line.

Mode FAX, ORIGINATE

Result Type Final

Detection Cadence algorithm and discrete filters

Freq (Hz) None

On/Off secs None

Action Terminate the call with BfvLineTerminateCall or BfvLineReset.
Redial every 10 minutes, up to 2 hours. This result is atypical, so
check the telephone number if redialing is unsuccessful. Check any
channel that reports this result excessively.

FCP_RECALL Recall dial tone detected; signal generated when calling another
party while already connected to one or more parties (for example,
conference calling, call waiting).

Mode FAX, VOICE, ORIGINATE

Result Type Final

Detection Cadence algorithm

Freq (Hz) 350+440

On/Off secs 3+(0.1/0.1), Continuous

Action Terminate the call with BfvLineTerminateCall or BfvLineReset.
This result is atypical, and unless specifically expected, it may be an
invalid result. If detected after dialing to a fax machine, redial the
number 10 minutes later.

FCP_RING1 Ringback detected; remote end is ringing. The Central Office
connected to the dialed number generates this signal.

Mode FAX, VOICE, ORIGINATE

Detection Cadence algorithm

Result Type Intermediate

Freq (Hz) 440+480

On/Off secs 2/4 or 1/3 (PBX extensions)

Action Continue call progress analysis. Can use the user-defined function
passed to BfvLineOriginateCall to check for ringback and display
the status of a call.

Call Progress Signals

March 2017 1408

FCP_RMTOFFHK Remote fax machine went off-hook (also known as Answer
Supervision). Depending on the configuration of the CO, T1 and E1
connections may not use or provide in-band signaling.

Mode FAX, VOICE, ORIGINATE

Result Type Intermediate

Detection MVIP A signaling bit

Action Continue call progress analysis. Can pass a user function to
BfvLineOriginateCall to check for this result and use it to track
call status and billing information.

FCP_RNGNOANS Indicates the remote end was ringing but did not answer. In fax mode,
this result occurs after the wait-for-ced timeout has expired and
the line continues to ring. In voice mode, this result occurs after the
v_timeout has expired and the line continues to ring. (You can
adjust the value of these timeout parameters in the user
configuration file, btcall.cfg.

Mode FAX, VOICE, ORIGINATE

Result Type Final

Detection Cadence algorithm

Freq (Hz) 440+480

On/Off secs See FCP_RING1 on page 1407 .

Action Terminate the call with BfvLineTerminateCall or BfvLineReset.
The retry strategy depends on the application. For example, redial
the number every 15 minutes for 2 hours. After that, redial only once
every hour or two.

FCP_ROBUSY Reorder or fast busy; indicates that telephone company trunk lines
are busy; on PBXs, indicates no available outside lines.

Mode FAX, VOICE, ORIGINATE

Result Type Final

Detection Cadence algorithm

Freq (Hz) Country-specific (480+620 U.S.A.)

On/Off secs Country-specific (0.25/0.25 U.S.A.)

Action Terminate the call with BfvLineTerminateCall or BfvLineReset.
Redial the number every 10 minutes for 2 hours. After that, check the
number.

Call Progress Signals

March 2017 1409

FCP_SILENCE In VOICE mode, after dialing, no signal detected during the silence
timeout. In ANSWER mode, no fax CNG tone detected after answering
a call.

Mode VOICE, ORIGINATE, ANSWER

Result Type Intermediate (usually)

Detection Bandpass filter (no energy detected)

Freq (Hz) None

On/Off secs None

Action Application specific. In ORIGINATE mode, use this result with the
user-defined function passed to BfvLineOriginateCall to
determine when a human on the remote end has stopped speaking;
then abort call progress and play a speech file. In ANSWER mode, use
this result to determine when the call is from a human; then stop call
progress analysis immediately and play a speech file.

FCP_SPECIALCP Special call progress tone detected.

Mode FAX, VOICE, ORIGINATE

Result Type Intermediate

Detection Discrete filters

Freq (Hz) 950/1400

On/Off secs Greater than 0.1

Action Continue call progress analysis.

Special Information Tones

March 2017 1410

Special Information Tones
Special Information Tones (S.I.T.) are useful in determining where
and why an attempted call failed. This special information includes
customer originating failures, intercept and vacant; end office
originating failures, no circuit-BOC and reorder-BOC; and carrier
failures, no circuit-CXR and reorder-CXR.

Note: Once it detects an S.I.T. tone, the board uses tone duration
patterns, not tone frequencies, to identify the particular S.I.T.
tone. So, the board does not distinguish between no circuit and
reorder failures originating from an end office and those
originating from the carrier.

FCP_SITINTC Intercept tone detected; remote end originating failure; invalid
telephone number or class of service restriction.

Mode FAX, VOICE, ORIGINATE

Result Type Final

Detection Discrete filters

Freq (Hz) 913.8/1370.6/1776.7

On/Off secs 0.274/, 0.274/, 0.380/

Action Terminate the call with BfvLineTerminateCall or BfvLineReset.
Redial 10 to 15 minutes later. If still unsuccessful, check the number.

FCP_SITNOCIR No circuit detected; end office or carrier originating failure, possible
dead line.

Mode FAX, VOICE, ORIGINATE

Result Type Final

Detection Discrete filters

Freq (Hz) 985.2(913.8)/1428.5(1370.6)/1776.7

On/Off secs 0.380/, 0.380/, 0.380/

Action Terminate the call with BfvLineTerminateCall or BfvLineReset.
Redial every 10 to 15 minutes for 2 hours. If still unsuccessful, check
the telephone number. If correct, report it to the telephone company.

Special Information Tones

March 2017 1411

FCP_SITREORD Reorder tone detected; end office (PBX) or carrier originating failure.

Mode FAX, VOICE, ORIGINATE

Result Type Final

Detection Discrete filters

Freq (Hz) 985.2(913.8)/1428.5(1370.6)/1776.7

On/Off secs 0.274/, 0.380/, 0.380/

Action Terminate the call with BfvLineTerminateCall or BfvLineReset.
Redial every 10 to 15 minutes for 2 hours. If still unsuccessful, check
the telephone number. If correct, report it to the telephone company.

FCP_SITVACODE Vacant tone detected; remote originating failure; invalid telephone
number.

Mode FAX, VOICE, ORIGINATE

Result Type Final

Detection Discrete filters

Freq (Hz) 985.2/1370.6/1776.7

On/Off secs 0.380/, 0.274/, 0.380/

Action Terminate the call with BfvLineTerminateCall or BfvLineReset.
Redial 10 to 15 minutes later. If still unsuccessful, check the
telephone number.

Custom Call Progress Results

March 2017 1412

Custom Call Progress Results
The Brooktrout fax boards support custom programmable call
progress detection. Call progress results may be programmed based
on either frequencies or cadence. See
BfvLineCallProgressProgram in Volume 3.

When programming a custom call progress value for standard call
progress mode, one of eight templates may be chosen for frequency
and one of three may be chosen for cadence. In limited call progress
mode (DISS), only one template may be chosen which may be either
frequency or cadence. The possible call progress results shown below
reflect the template value chosen.

CS_CUSTOM_FREQ0
CS_CUSTOM_FREQ1
CS_CUSTOM_FREQ2
CS_CUSTOM_FREQ3
CS_CUSTOM_FREQ4
CS_CUSTOM_FREQ5
CS_CUSTOM_FREQ6
CS_CUSTOM_FREQ7

Custom programmed call progress frequency template N
(where N= 0-7) was detected.

Mode All

Result Type Intermediate

Detection Cadence algorithm and discrete filters

Frequency 300 – 3200 Hz

Duration 10 ms units

Action Continue call progress analysis unless application terminates it.

Custom Call Progress Results

March 2017 1413

CS_CUSTOM_CAD0
CS_CUSTOM_CAD1
CS_CUSTOM_CAD2
CS_CUSTOM_CAD3
CS_CUSTOM_CAD4
CS_CUSTOM_CAD5
CS_CUSTOM_CAD6
CS_CUSTOM_CAD7

Custom programmed call progress cadence template N
(where N= 0-7) was detected.

Mode All

Result Type Intermediate

Detection Cadence algorithm and discrete filters — 300 – 600 Hz

On/Off secs 10 ms units

Action Continue call progress analysis unless application terminates it.

CS_CUSTOM_DIS_FREQ0
Custom programmed call progress frequency template 0 for limited
mode (DISS) was detected.

Mode All

Result Type Intermediate

Detection Cadence algorithm and discrete filters

Frequency 300 – 3200 Hz

Duration 10 ms units

Action Continue call progress analysis unless application terminates it.

CS_CUSTOM_DIS_CAD0
Custom programmed call progress cadence template 0 for limited
mode (DISS) was detected.

Mode All

Result Type Intermediate

Detection Cadence algorithm and discrete filters — 300 – 600 Hz

On/Off secs 10 ms secs

Action Continue call progress analysis unless application terminates it.

Final Call Progress Results

March 2017 1414

Final Call Progress Results
FCP_BUSY1 301

FCP_BUSY2 302

FCP_ROBUSY 303

FCP_RECALL 304

FCP_CONFIRM 305

FCP_PULSE 306

FCP_HUMAN 316

FCP_ANSWER 317

FCP_DIALTON 318

FCP_SILENCE 324

FCP_RNGNOANS 325

FCP_G2DETCT 326

FCP_SITINTC 327

FCP_QUIET 328

FCP_SITVACODE 329

FCP_SITREORD 330

FCP_SITNOCIR 331

FCP_CNGDETCT 332

FCP_ANSWER_TONE_DETECT 339

FCP_UNKNOWN 340

FCP_ISDN_CALL_PROGRESS 348

FCP_ISDN_CALL_COLLISION 349

March 2017 1415

G - Country-Specific Parameter Files

This appendix describes the country-specific parameter files and
dialing requirements.

It has the following sections:

 BT_CPARM.CFG Parameter File
 Using Dialing Database Functions and Dialing Parameters
 Country-Specific Dialing Requirements
 Examples of R2 Parameter Files

Many countries have dialing requirements that regulate how
telephony equipment must interface with the telephone network. If
an application dials a fax machine in one of these countries, it must
use the appropriate country_code keyword in the user-defined
configuration file and the dialing database functions. These tools,
used in conjunction with the dialing database configuration
parameters in the BT_CPARM.CFG configuration file, enable
applications to conform to the target country’s PTT regulations.

The following countries have approved one or more Dialogic®
Brooktrout® TR Series boards:

 Australia
 Canada
 EU (TBR 4)
 Japan
 United States

The section, Country-Specific Dialing Requirements on page 1426
describes the unique dialing requirements for individual countries.

March 2017 1416

For information about R2 parameter files for Argentina, Brazil,
China, Korea and Mexico, see the examples on page 1435.

The application is responsible for enforcing the dialing restrictions of
any country that requires it. For a description of the dialing
restriction parameters in the BT_CPARM.CFG file, see
BT_CPARM.CFG Parameter File. For specific details about the
dialing database functions, see Volume 2, Chapter 4, Dialing
Database Functions.

BT_CPARM.CFG Parameter File

March 2017 1417

BT_CPARM.CFG Parameter File
The Brooktrout SDK includes a read-only file called the
BT_CPARM.CFG parameter file. This file contains several sets of
parameters that primarily relate to telephony configuration (for
example: DTMF tone length, interdigit times). A set of parameters is
specific to a country or to a group of countries. Since some PTTs
require specific values for these parameters, Dialogic provides the
values in this file. Dialogic also guarantees that parameter files
created for subsequent Bfv API versions will be compatible with
previous versions.

The BT_CPARM.CFG file resides in the app.src and bapp.src
directories. You can create it with the mkparams program, included
in source form in the app.src/params subdirectory. Dialogic strongly
recommends that you use the supplied values.

The location of BT_CPARM.CFG must be specified in the
user-defined configuration file (see the bt_cparm parameter on
page 1140. The default value is BT_CPARM.CFG in the current
directory).

All parameters are declared as unsigned chars unless otherwise
noted, and are as follows:

Parameter Value
blind_dial Disables initial dial tone detection when any nonzero value is indicated.

Dialing begins after this amount of time has expired and after going
off-hook.

1 second units

data_level Indicates the data transmit level.

0.5 dBm units

dial_tone_min Indicates the minimum time to identify the presence of a dial tone as a
dial tone during the initial “w” wait for dial tone command.

10 ms units

dtmf_high_level Indicates the DTMF upper frequency transmit level.

0.5 dBm units

dtmf_low_level Indicates the DTMF lower frequency transmit level.

0.5 dBm units

BT_CPARM.CFG Parameter File

March 2017 1418

dtone_len Indicates the minimum time to identify the presence of a dial tone as a
dial tone during a wait for dial tone command. The time refers to the
2nd, 3rd, 4th, ... “w” in the dial string. To allow the call progress
algorithm to work properly, this parameter is set to a value that exceeds
the longest expected ring-back “ON” period.

50 ms units

dtone_timeout_
highbyte

Indicates the timeout period to wait for a dial tone (high byte).

100 ms units

dtone_timeout_
lowbyte

Indicates the timeout period to wait for a dial tone (low byte).

If the system fails to detect a dial tone within the time period specified
by these high and low byte parameters, the system considers the line
dead and returns the corresponding indication to the application.

100 ms units

enable_loop_cur Enables/disables loop current monitoring.

1 Enabled

0 Disabled

fixed_ced Defines a fixed or variable ced_timeout timeout. If variable, the
timeout can be changed via the ced_timeout (see page 1142) user
parameter.

1 Fixed

0 Variable

fixed_id Defines a fixed or variable local ID string. If fixed, the Bfv API uses the
value specified in the id_string (see page 1152) parameter in the
user-defined configuration file. If variable, the Bfv API still uses the
id_string parameter but this value can be overridden by a call to the
BfvFaxSetLocalId function.

1 Cannot change local ID for the CSI, TSI, and CIG CCITT
frames.

0 Permit variable local ID strings.

loopcur_debounce Indicates the time allowed for interruptions in loop current. The system
ignores any interruptions in loop current that occur for less than this
limit.

50 ms units

Maximum 1.250 seconds

Default 14 hex (1 second)

Parameter Value

BT_CPARM.CFG Parameter File

March 2017 1419

loopcur_len Indicates the minimum amount of time that loop current must be
present to indicate the presence of an incoming call.

50 ms units

Default 2 (100 ms)

loopcur_timeout Indicates the timeout period to wait for loop current.

If the system fails to detect loop current within the specified time period,
the system considers the line dead and returns the corresponding
indication to the application.

50 ms units

loop_max_break Indicates the maximum break time for loop curent.

If the Bfv API does not detect loop current for this period of time during
a call, it assumes the call disconnected.

5 ms units

loop_seizure Indicates the amount of loop seizure time required to indicate a valid
incoming call.

5 ms units

max_bitrate Indicates the maximum transmission bit rate.

Valid values are (bps units):

0 2400

2 4800

1 7200

3 9600

4 12000

5 14400

6 16800

7 19200

8 21600

9 24000

10 26400

11 28800

12 31200

13 33600

0xFF generic; maximum supported by hardware/firmware

Parameter Value

BT_CPARM.CFG Parameter File

March 2017 1420

max_interdigit Indicates the maximum time between incoming DID digits.

50 ms units

max_sil_timeout Indicates the maximum silence timeout when recording speech.

When this value is nonzero, the Bfv API uses the shorter silence timeout
period: either the value from this parameter or the value from the
recording function. The range is 0–255.

100 ms units

min_on_hook Indicates the minimum length of time to maintain an on-hook state.

50 ms units

Default 28 hex (2 seconds)

post_wink Indicates the minimum length of time that must elapse at the end of the
wink signal before the firmware generates a call detected interrupt,
even if the system has detected all the expected incoming digits.

In wink mode, the timer starts at the end of the wink (before the 40-ms
debounce begins). In immediate mode, the timer starts after detecting
the end of a valid loop seizure that indicates receipt of a valid incoming
call.

50 ms units

pre-wink Indicates the minimum length of time the system must wait (pause)
after detecting the end of a valid loop seizure (incoming call) before it
sends a wink signal.

5 ms units

pulse_break Indicates the break time for pulse dialing.

5 ms units

pulse_inter_time Indicates the time between digits during pulse dialing.

5 ms units

pulse_make Indicates the make time for pulse dialing.

5 ms units

pulse_max_break Indicates the maximum break time for pulse dialing.

When the system detects a break time between pulse-dialed digits that
exceeds the value in this parameter, the system considers the digit
invalid.

5 ms units

Parameter Value

BT_CPARM.CFG Parameter File

March 2017 1421

pulse_min_break Indicates the minimum break time for pulse dialing.

If the system fails to detect a pulse-dialed break time of this minimum
duration, the system considers the digit invalid. The system uses the
parameter for debouncing digits.

5 ms units

rec_level Data receive level.

0.5 dBm units

ring_blank Indicates ringing blank time. This parameter indicates the length of
time to wait after detecting a burst of ringing before looking for another
burst of ringing.

50 ms units

ring_len Indicates the minimum length of the ring signal. This parameter
indicates a value that the system uses to determine the frequency of the
ring signal.

5 ms units

scan_time Indicates the minimum scan time.

Valid values:

7 0 ms

1 5 ms

2 10 ms

0 20 ms

4 40 ms

tone_inter_time Indicates the amount of silence allowed between DTMF tones during
dialing.

5 ms units

tone_len Indicates the length of a DTMF tone. This parameter defines the basic
unit used when playing a DTMF tone.

5 ms units

wait_for_ced_high Indicates the length of time to wait for the called station’s ID signal
(high byte and low byte).

wait_for_ced_low 10 ms units

Parameter Value

BT_CPARM.CFG Parameter File

March 2017 1422

All of the remaining parameters provide control for the dialing
restrictions specific to each country the Bfv API supports.

Parameter Value
dl_configuration Contains bits that specify the properties of the redial strategy for the

country:

b0 (1) Restrict dialing based on the telephone number.

b1 (2) Restrict dialing based on the telephone line (channel).

If neither bit is set, the country has no dialing restrictions. If both bits
are set, the restrictions apply only to the telephone numbers, and only
minimum intercall delays will affect the telephone lines.

b2 (4): 1 The dl_uns_lmt_time or dl_wr_lmt_time applies after the
call that exceeded the limit. Otherwise, the time applies
after the first call.

b3 (8): 1 For phone line restrictions, do not treat wrong calls as
successful. Otherwise, for phone line restrictions, treat
wrong calls as successful.

dl_max_limit Indicates the maximum number of wrong and unsuccessful dial
attempts permitted for any telephone number. The Bfv API blacklists a
telephone number when this maximum is reached.

This value applies only when two maximum retry values, one on a per
time basis and one on a forever (blacklist) basis, exist. In this case, the
Bfv API assumes that only “sum limits” are in effect. The Bfv API uses
dl_max_limit to control the forever (blacklist) limit and the
dl_sum_limit with both the dl_wr_lmt_time and the dl_uns_lmt_time to
control the per time limit.

When only one maximum retry value exists, it is either dl_sum_limit,
dl_unsucc_limit, or dl_wrong_limit.

dl_min_unsucc Indicates the minimum time to delay redialing a telephone number after
an unsuccessful dial attempt. This delay applies to all redial attempts
after the first one.

1 second units

dl_min_unsucc_first Indicates the minimum time to delay redialing a telephone number after
an unsuccessful dial attempt. This delay only applies to the first redial
attempt.

1 second units

dl_min_wrong Indicates the minimum time to delay redialing a telephone number after
a wrong dial attempt. This delay applies to all redial attempts after the
first one.

1 second units

BT_CPARM.CFG Parameter File

March 2017 1423

dl_min_wrong_first Indicates the minimum time to delay redialing a telephone number after
a wrong dial attempt. This delay only applies to the first redial attempt.

1 second units

dl_sum_limit Indicates the maximum number of the sum of unsuccessful and wrong
dial attempts permitted. When this number is reached, the Bfv API
either blacklists the telephone number or delays redialing it until
dl_wr_lmt_time or dl_uns_lmt_time.

0 Disable.

dl_uns_lmt_time Indicates the time that applies to the _unsucc_ or _sum_ limit.

0 Forever (blacklisted).

Nonzero Reset the unsuccessful count to 0 after the time limit
elapses.

If both dl_wr_lmt_time and dl_uns_lmt_time are nonzero, they must be
equal.

Bit b2 of dl_configuration affects the application of this parameter.

1 second units

dl_unsucc_limit Indicates the maximum number of unsuccessful calls permitted. When
this number is reached, the Bfv API blacklists the telephone number or
delays redialing it until dl_uns_lmt_time.

0 Disable

dl_wr_lmt_time Indicates the time that applies to the _wrong_ or _sum_ limit.

0 Forever (blacklisted).

Nonzero Reset the wrong count to 0 after the time limit elapses.

If both dl_wr_lmt_time and dl_uns_lmt_time are nonzero, they must be
equal.

Bits b2 and b3 of dl_configuration affect the application of this
parameter.

1 second units

dl_wrong_limit Indicates the maximum number of wrong calls permitted. When this
number is reached, the Bfv API blacklists the telephone number or
delays redialing it until dl_wr_lmt_time.

0 Disable.

Parameter Value

Using Dialing Database Functions and Dialing Parameters

March 2017 1424

Using Dialing Database Functions and
Dialing Parameters

The dialing database functions are BfvDialDBCheck,
BfvDialDBUpdate, BfvLineOrigCallDB, and BfvDialDBList. To
properly enforce the restrictions, the application must use either the
BfvLineOrigCallDB function or the BfvDialDBCheck and
BfvDialDBUpdate functions. See Volume 2, Chapter 4, Dialing
Database Functions for specific details.

An application uses the dialing database functions only when sending
a fax, when it expects a fax machine to answer. An application must
not use the dialing database functions when it expects a human or a
voice answering machine to answer.

An application uses the dialing database locally on a single computer
only. It must not share the dialing database with multiple computers
over a network. The Bfv API does not provide for sharing or for format
differences in intercompiler time storage.

The dialing database functions use a lock file to ensure exclusive
access to the database. The name of this file is btdb.lck, and it resides
in the same directory as the dialing database. If execution of the
program stops prematurely (for example, the system crashes) the lock
file may remain. If this occurs, you must manually remove the lock
file, so the dialing database functions can proceed.

The Bfv API uses the C library time() function for timing purposes.
Some libraries implement this function slightly differently. Users
must make sure that all programs using the DialDB... functions on a
particular computer are linked with the same version of their
compiler library.

The Bfv API can add trunk access information to the database at the
same time as the telephone number or instead of the telephone
number. For viewing and removal purposes, the database stores a
trunk line under the telephone number xN, where N is the channel
number.

The Bfv API implements the per-time-period restrictions so that a
period normally starts with the first failed call. The next call after the
period has ended, begins a new period. (So, even with a restriction of
five calls per hour, it’s possible to have nine calls concentrated in a

Using Dialing Database Functions and Dialing Parameters

March 2017 1425

very small time span.) Bit b2 in dl_configuration permits the
period to start after the last call. No provision is made for a “sliding
window”, which records the last N call times.

When restrictions are based on the telephone line, wrong calls may or
may not cause delays, as determined by bit b3 in
dl_configuration.

If a country requires a minimum delay between calls that varies
depending on how many calls have been made, the Bfv API provides
one value for the delay that follows the first call and another value for
the delay that follows all subsequent calls. If a country requires a
different setup, the Bfv API uses the same method, but with more
conservative delay times. The Bfv API predefines a blacklist that
contains several telephone numbers that are restricted in certain
countries. The application must never dial these telephone numbers
within the specified country. These telephone numbers are not
specified through the BT_CPARM.CFG configuration file, but
instead, are hard-coded within the Bfv API source. They include:

Japan 110, 119
Hong Kong 999

Country-Specific Dialing Requirements

March 2017 1426

Country-Specific Dialing Requirements
There are dialing requirements specific to individual countries.
Country requirements which are defined, include the following:

Note: * Indicates countries not yet approved for Dialogic®
Brooktrout® boards.

 Australia on page 1426
 Canada on page 1427
 Czech Republic on page 1427*
 Denmark on page 1428
 European Community (Boards Approved to TBR 4) on page 1428
 France on page 1428
 Germany on page 1429
 Hong Kong on page 1429*
 Ireland on page 1429
 Israel on page 1430*
 Italy on page 1430
 Japan on page 1430
 Malaysia on page 1431*
 Netherlands on page 1431
 New Zealand on page 1431*
 Norway on page 1432*
 Singapore on page 1432*
 Spain on page 1432
 Switzerland on page 1433*
 Turkey on page 1433*
 United Kingdom on page 1433
 United States on page 1434

Australia
 Regulatory authorities recommend that the application delay

two seconds before answering an incoming call.

Country-Specific Dialing Requirements

March 2017 1427

 If the application does not wait for dial tone, it must wait at least
two seconds after seizing the line before dialing. Include
missing_wait 40 in your callctrl.cfg file to specify the
two-second wait.

Canada
Unsuccessful calls are either unanswered calls or wrong calls.
Unanswered calls occur when the called number fails to answer. In
this case, the Bfv API reports BUSY1, BUSY2, ROBUSY, RECALL,
DIALTON, SIT_, or RNGNOANS. Wrong calls occur when the called
number answers but fails to send fax CED tone or V.21 signal to
indicate a fax machine. In this case the Bfv API reports HUMAN,
QUIET, SILENCE, ANSWER, or G2DETCT.

For transmission of any one document to any one telephone number:

 For unanswered calls, the application must:

 Make no more than fifteen call attempts in one hour (unless
the retry detector is manually reset).

 Release the line within fifteen seconds after detection of one
of the above call progress signals.

 For wrong calls, the application must:

 Make no more than two call attempts in one hour (unless the
retry detector is manually reset).

 Release the line within fifteen seconds after detection of one
of the above call progress signals.

Czech Republic
For transmissions of any one document to any one telephone number,
the application must:

 Make no more than twelve call attempts.
 Delay five seconds between the first and second call attempts

and between the second and third call attempts.
 Delay one minute between each subsequent call attempt.

For calls to different telephone numbers over the same trunk, the
application must delay five seconds between releasing the line after
an unsuccessful call attempt and seizing it for the next call attempt.

Country-Specific Dialing Requirements

March 2017 1428

Denmark
For transmission of any one document to any one telephone number,
the application must:

 Make no more than fifteen call attempts.
 Delay five seconds between successive call attempts to the same

number.

European Community (Boards Approved to TBR 4)
Pulse dialing is not supported in the European Community (EC) for
TBR 4 boards.

For transmission of any one document to any one telephone number,
the application must:

 Make no more than fifteen call attempts.
 Delay five seconds between successive call attempts to the same

number.

France
In France, unsuccessful calls are categorized as one of two types:
inefficient calls or wrong calls. Inefficient calls occur when the called
number fails to answer. In this case, the Bfv API reports BUSY1,
BUSY2, ROBUSY, RECALL, DIALTON, SIT_, or RNGNOANS. Wrong calls
occur when the called number answers but fails to send fax CED tone
or V.21 signal to indicate a fax machine. In this case the Bfv API
reports HUMAN, QUIET, SILENCE, or ANSWER.

 For applications that differentiate between inefficient calls and
wrong calls, the application must:

 Make no more than six call attempts per hour.
 Delay from one to twelve minutes between each call attempt.
 Add the telephone number to the blacklist and make no more

attempts to send any document to that telephone number
when it detects a wrong call twice during the hour.

Country-Specific Dialing Requirements

March 2017 1429

 For applications that do not differentiate between inefficient
calls and wrong calls, the application must:

 Make no more than six call attempts per hour.
 Delay from one to twelve minutes between each call attempt.
 Add the telephone number to the blacklist and make no more

attempts to send any document to that telephone number
after six failed attempts to detect an answering fax machine.

 Only an operator issuing the command manually can remove a
telephone number from the blacklist.

Germany
For calls to the same or different telephone numbers over the same
trunk, the application must do either of the following:

 Delay thirty seconds between releasing the line after an
unsuccessful call attempt and seizing it for the next call attempt.

 Delay five seconds between each call attempt and two hours
after twelve successive unsuccessful call attempts.

Hong Kong
 For transmissions of any one document to any one telephone

number, the application must make no more than eleven call
attempts.
There are no restrictions on the interval between each call
attempt.

 The application must not attempt to transmit documents to 999
numbers.

Ireland
For calls to the same telephone number over the same trunk, the
application must:

 Delay five seconds between the first and second call attempt.
 Delay sixty seconds between each subsequent call attempt.
 Make no more than four call attempts in one hour.

Country-Specific Dialing Requirements

March 2017 1430

Israel
For transmissions of any one document to any one telephone number,
the application must:

 Make no more than fifteen call attempts.
 Delay 30 seconds between each call attempt.

Italy
For calls to the same telephone number over the same trunk, the
application must:

 Delay five seconds between the first and second call attempt.
 Delay sixty seconds between each subsequent call attempt.
 Make no more than four call attempts in one hour.

Japan
 For transmissions of any one document to any one telephone

number, the application must do either of the following:

 Make no more than three call attempts in a three minute
period. New three minute periods begin three minutes after
the beginning of the first attempt of the previous period.

 Delay one minute between each call attempt, with no other
restrictions.

 The application must not attempt to transmit documents to 119
or 110 numbers.

 If the application does not wait for dial tone, it must wait at least
three seconds after seizing the line before dialing. Include
missing_wait 60 in BT_CALL.CFG to specify the three-second
wait.

Country-Specific Dialing Requirements

March 2017 1431

Malaysia
Pulse dialing is not supported in Malaysia.

For an unsuccessful attempt to dial any telephone number, the
application must:

 Make no more than two additional call attempts.
 Delay a minimum of two minutes between each call attempt.

Netherlands
For transmissions of any one document to any one telephone number,
the application must:

 Make no more than fifteen call attempts in one hour.
 Delay five seconds between the first and second call attempts.
 Delay one minute between each subsequent call attempt.

New Zealand
 For all outgoing calls, the application must:

 Go on-hook for a minimum of five seconds between the end of
one call and the beginning of the next call.

 Clearly associate preprogrammed numbers with the names
of the called parties and enable operators to easily modify
the numbers.

 For transmissions of any one document to any one telephone
number, the application must:

 Make no more than five call attempts in one hour.
 Make no more than a total of ten call attempts.
 Delay sixty seconds between each call attempt.

 For calls to different telephone numbers over the same trunk,
the application must do either of the following:

 Delay sixty seconds between starting each call attempt.
 Delay thirty seconds between each call attempt if it delays

the next attempt three minutes after detecting the
congestion tone (ROBUSY).

Country-Specific Dialing Requirements

March 2017 1432

 For all incoming calls, the application must:

 Delay from three to fifteen seconds from the detection of
ringing before automatically answering a call.

 Remain on-hook if the system has insufficient memory or
disk space to perform its functions.

Norway
For calls to the same telephone number over the same trunk, the
application must:

 Delay five seconds between the first and second call attempt.
 Delay sixty seconds between each subsequent call attempt.

Singapore
For an unsuccessful attempt to dial any telephone number, the
application must:

 Make no more than ten additional call attempts.
 Delay a minimum of sixty seconds between each call attempt.

Spain
 For transmissions of any one document to any one telephone

number, the application must:

 Make no more than five call attempts in one hour.
 Delay five seconds between the first and second call

attempts.
 Delay one minute between each subsequent call attempt.

 For calls to different telephone numbers over the same trunk,
the application must delay two seconds between releasing the
line after an unsuccessful call attempt and seizing it for the next
call attempt.

Country-Specific Dialing Requirements

March 2017 1433

Switzerland
 For an unsuccessful attempt to dial any telephone number, the

application must:

 Make no more than four call attempts. Each transmission of
dialing information counts as one dial attempt.

 Delay a minimum of thirty seconds between each call
attempt.

 Release the line for a minimum of five seconds before dialing
a different telephone number.

 For a successful dialing to any telephone number, the
application must:

 Prevent automatic dial attempts to the same telephone
number.

 Release the line for a minimum of five seconds before dialing
a different telephone number.

Turkey
For transmissions of any one document to any one telephone number,
the application must:

 Make no more than fifteen call attempts.
 Delay one minute between each call attempt.

United Kingdom
For transmission of any one document to any one telephone number,
the application must:

 Make no more than sixteen call attempts
 Delay five seconds between each call attempt.

Country-Specific Dialing Requirements

March 2017 1434

United States
Unsuccessful calls are either unanswered calls or wrong calls.
Unanswered calls occur when the called number fails to answer. In
this case, the Bfv API reports BUSY1, BUSY2, ROBUSY, RECALL,
DIALTON, SIT_, or RNGNOANS. Wrong calls occur when the called
number answers but fails to send fax CED tone or V.21 signal to
indicate a fax machine. In this case the Bfv API reports HUMAN,
QUIET, SILENCE, ANSWER, or G2DETCT.

For transmission of any one document to any one telephone number:

 For unanswered calls, the application must:

 Make no more than fifteen call attempts in one hour (unless
the retry detector is manually reset).

 Release the line within fifteen seconds after detection of one
of the above call progress signals.

 For wrong calls, the application must:

 Make no more than two call attempts in one hour (unless the
retry detector is manually reset).

 Release the line within fifteen seconds after detection of one
of the above call progress signals.

Examples of R2 Parameter Files

March 2017 1435

Examples of R2 Parameter Files
The following R2 parameter file examples are country-specific. The
country parameters files include:

 Argentina R2 Parameter File on page 1435.

 Brazil R2 Parameter File on page 1438.

 China R2 Parameter File on page 1445.

 Korea R2 Parameter File on page 1448.

 Mexico R2 Parameter File on page 1451.

Argentina R2 Parameter File
The following R2 parameter file example is used to configure IISDN R2-MFC for operation in
Argentina.

/**
 * r2Argentina.h - Argentina R2 parameters
 * Description:
 *
 * This include file contains the parameters needed to configure IISDN’s
 * R2-MFC for operation in Brazil.
 *
 * Certain parameters are network specific and cannot be modified.
 *
 * (C)-Copyright Dialogic Corporation. 2000
 ** /
#define R2_MF_PARAM_NOT_USED(0)/* clarify params not currently implemented */

static IISDN_E1_CAS_R2_DATA r2_Argentina =
{
// IISDN_R2_DIGITAL_LINE_SIG_PARAMS:
200, /* (unsigned short) r2OutSeizeTimer */
90, /* (unsigned short) r2OutAnswerTimeOut (s) */
200, /* (unsigned short) inboundReleaseGuardTime */
0, /* (unsigned short) inboundLineQualTimerIdle */
0, /* (unsigned short) DebugBitMask */

1, /* (unsigned char) c_d_cas_bits ------> C=0 D=1 */
1, /* (unsigned char) clearbackControl --> release guard / forced release */

Examples of R2 Parameter Files

March 2017 1436

/*
 * IISDN_R2_INTERREGISTER_PARAMS:
 *
 * NOTE!: Only the R2 in-dial application parameters may be modified by the
 user. All others are network specific and modification would likely cause
 malfunction.
 */
7, /* (unsigned short)dnisMaxNumDigits: max # of DNIS digits required */
7, /* (unsigned short)aniMaxNumDigits: max # of ANI digits required */
1, /* (unsigned short)dnisNumDigitsBeforeANI */

/*
 * R2 Inbound Timers
 */
15, /* (short) interForwardToneTimeOut: units in s or DISABLED */
IISDN_INBOUND_PULSE_MIN_DELAY_ITU_MSEC, /* (short) prePulseToneDelay (s) */
IISDN_INBOUND_PULSE_DURATION_ITU_MSEC, /* (short) pulseToneDuration (s) */

/*
 * R2 Outbound Timers
 */
17, /* (short) forwardToneMaxOnTime: units in sec or DISABLED */
27, /* (short) forwardToneMaxOffTime: units in sec or DISABLED */
17, /* (short) forwardGroup2MaxOnTime: units in sec or DISABLED */

/*
 * R2 Backward Protocol Params
 */
IISDN_INDIAL_DNIS_TIME_OUT_PULSE_GROUPII_REQUEST, /* (unsigned short)
dnisTimeOutAction */

/*
 * Forward R2 Signals. Use IISDN_R2F_XX’s
 */
IISDN_R2F_INVALID, /* endOfDNIS */
IISDN_R2F_15, /* endOfANI_Available */
IISDN_R2F_INVALID, /* halfEchoSuppressorRequired */
IISDN_R2F_INVALID, /* noSatelliteLinkInCircuit */
IISDN_R2F_INVALID, /* satelliteLinkInCircuit */
IISDN_R2F_01, /* aniCategoryDefault */

/*
 * Backward R2 signals. Use IISDN_R2B_XX’s
 */
IISDN_R2B_01, /* sendNextDigitDNIS */
IISDN_R2B_02, /* sendLastButOneDigitDNIS */
IISDN_R2B_03, /* sendCallCategoryAndSwitchToGroupB_DNIS */
IISDN_R2B_04, /* congestion */
IISDN_R2B_05, /* sendCallingPartyCategory */
IISDN_R2B_06, /* callComplete_SetUpSpeechPath - Group A */
IISDN_R2B_07, /* sendLastButTwoDigitDNIS */
IISDN_R2B_08, /* sendLastButThreeDigitDNIS */
IISDN_R2B_13, /* requestNatureOfCircuit */
IISDN_R2B_14, /* requestIfHalfEchoSuppressorNeeded */

Examples of R2 Parameter Files

March 2017 1437

IISDN_R2B_10, /* sendFirstDigitDNIS */
IISDN_R2B_05, /* sendNextDigitANI */
IISDN_R2B_INVALID, /* changeFrom_ANI_To_DNIS_SendNextDigit */
IISDN_R2B_09, /* changeFrom_ANI_To_DNIS_SendLastDigit */

{ /* GroupB_LineConditions */
IISDN_R2B_06, /* called Line Free, Charge */
IISDN_R2B_07, /* called Line Free, No Charge */
IISDN_R2B_INVALID, /* alternate Line Free, Charge */
IISDN_R2B_03, /* called Line Busy */
IISDN_R2B_08, /* called Line Out Of Order */
IISDN_R2B_05, /* called Line Unallocated */
IISDN_R2B_INVALID, /* spare */
IISDN_R2B_INVALID, /* spare */
IISDN_R2B_INVALID, /* spare */
IISDN_R2B_INVALID, /* spare */

},

/*
 * Call Progress generation
 */
{ /* IISDN_CPGEN_MF_PARAMS */
{ /* IISDN_CPGEN_MF_PARAMS for RING (cpSignals[0]) */
425, /* (unsigned short)freqTone1 */
0, /* (short) powerTone1 */
0, /* (unsigned short)freqTone2, NONE */
0, /* (short) powerTone2 */
1, /* (unsigned short)numCadences */
1000, /* (short) makeTime1 */
4000, /* (short) breakTime1 */
0, /* (short) makeTime2 */
0, /* (short) breakTime2 */
0, /* (short) makeTime3 */
0, /* (short) breakTime3 */
2, /* (unsigned short)numCycles, finite duration */

},
{ /* IISDN_CPGEN_MF_PARAMS for BUSY (cpSignals[1]) */
425, /* (unsigned short)freqTone1 */
0, /* (short) powerTone1 */
0, /* (unsigned short)freqTone2, NONE */
0, /* (short) powerTone2 */
1, /* (unsigned short)numCadences */
300, /* (short) makeTime1 */
200, /* (short) breakTime1 */
0, /* (short) makeTime2 */
0, /* (short) breakTime2 */
0, /* (short) makeTime3 */
0, /* (short) breakTime3 */
0, /* (unsigned short)numCycles, repeat indefinitely */

},
},

};

Examples of R2 Parameter Files

March 2017 1438

Brazil R2 Parameter File
The following R2 parameter file example is used to configure IISDN
R2-MFC for operation in Brazil.

/**
 * r2Brazil.h - Brazil R2 parameters
 * Description:
 *
 * This include file contains the parameters needed to configure IISDN’s
 * R2-MFC for operation in Brazil.
 *
 * Certain parameters are network specific and cannot be modified.
 *
 * (C)-Copyright Dialogic Corporation. 2000
 ** /

#define R2_MF_PARAM_NOT_USED(0)/* clarify params not currently implemented */

static IISDN_E1_CAS_R2_DATA r2_Brazil =
{
// IISDN_R2_DIGITAL_LINE_SIG_PARAMS:
200,/* (unsigned short) r2OutSeizeTimer (ms) [100-200ms terrestrial,
 1-2 sec satellite */
60,/* (unsigned short) r2OutAnswerTimeOut (s) max time between Group B
 receipt and answer */

0, /* (unsigned short) reAnswerPulseDelay */
0, /* (unsigned short) reAnswerPulseLength */

0, /* (unsigned short) outboundClearbackQualTime */
200,/* (unsigned short) inboundReleaseGuardTime */

0, /* (unsigned short) outboundDelayBeforeCallRequest */
0, /* (unsigned short) pad1 */

0, /* (unsigned char) inboundLineQualTimerIdle */
0, /* (unsigned char) inboundLineQualTimerCompelled */
0, /* (unsigned char) inboundLineQualTimerConnected */
0, /* (unsigned char) outboundLineQualTimerIdle */

0, /* (unsigned char) outboundLineQualTimerCompelled */
0, /* (unsigned char) outboundLineQualTimerConnected */
0, /* (unsigned char) c_d_cas_bits */
0, /* (unsigned char) metering_flags */

0, /* (unsigned char) inboundClearbackControl */
0, /* (unsigned char) detectBitFaultsDuringRing */
0, /* (unsigned char) simultaneousBitTransitionWindow */
1, /* (unsigned char) sendPreSeizeEvent */

Examples of R2 Parameter Files

March 2017 1439

/*
 * IISDN_R2_INTERREGISTER_PARAMS:
 *
 * NOTE!: Only the R2 in-dial application parameters may be modified by the
 user. All others are network specific and modification would likely cause
 malfunction.
 */
7, /* (unsigned short)dnisMinNumDigits: min # of DNIS digits required */
7, /* (unsigned short)dnisMaxNumDigits: max # of DNIS digits required */
1, /* (unsigned short)aniMinNumDigits: min # of ANI digits required */
7, /* (unsigned short)aniMaxNumDigits: max # of ANI digits required */
IISDN_INDIAL_ADDR_COMPLETE_REQUEST_GROUP_B,/* (unsigned short)
addressCompleteMode */

IISDN_INDIAL_REPORT_ENSEMBLE_INFO,/* (unsigned short)infoReportMode */
TRUE, /* (unsigned short)enableVerificationDNIS: TRUE (1) or FALSE (0) */
TRUE, /* (unsigned short)enableVerificationANI: TRUE (1) or FALSE (0) */
1, /* (unsigned short)dnisNumDigitsBeforeANI */
FALSE, /* (unsigned short) aniRequestEnable */

/*
 * DSP power references: Zero values entered below will enable
 * internal IISDN defaults....
 */
1984, /* (unsigned short) power0dBmInput:A-law setting for 0dBm RMS
of a 1 kHz sine */

1984, /* (unsigned short) power0dBmOutput: A-law setting for 0dBm RMS
of a 1 kHz sine */

/*
 * R2 MF tone generation parameters.
 *
 * (1) tone1Power: low frequency tone power, relative to system 0dBm level
 * Units:0.5 dB
 * Range:[3...-25]
 * ITU (Q.454) Default:-16 (-8 dBm)
 *
 * (2) tone2Power:high frequency tone power, relative to system 0dBm level
 * Units:0.5 dB
 * Range:[3...-25]
 * ITU (Q.454) Default:-16 (-8 dBm)
 *
 */
-16,/* (short) tone1Power */
-16,/* (short) tone2Power */

/*
 * R2 MF tone detection parameters. The zero values enable internal IISDN
 * defaults.
 *
 */
0, /* (short) minTonePower:*/
0, /* (unsigned short) minToneDuration:*/
0, /* (unsigned short) minSilence:*/
0, /* (unsigned short) freqTolerance:*/

Examples of R2 Parameter Files

March 2017 1440

/*
 * R2 Inbound Timers
 */
15, /* (short) interForwardToneTimeOut: units in s or DISABLED */
IISDN_INBOUND_PULSE_MIN_DELAY_ITU_MSEC, /* (short) prePulseToneDelay (s) */
IISDN_INBOUND_PULSE_DURATION_ITU_MSEC, /* (short) pulseToneDuration (s) */
IISDN_INBOUND_PULSE_NO_RECOGNITION_ITU_MSEC, /* (short)
postPulseNoRecognitionDuration (s) */

/*
 * R2 Outbound Timers
 */
15, /* (short) forwardToneMaxOnTime: units in sec or DISABLED */
27, /* (short) forwardToneMaxOffTime: units in sec or DISABLED */
15, /* (short) forwardGroup2MaxOnTime: units in sec or DISABLED */

/*
 * R2 Backward Protocol Params
 */
IISDN_INDIAL_DNIS_TIME_OUT_PULSE_GROUPII_REQUEST, /* (unsigned short)
dnisTimeOutAction */

FALSE,/* (unsigned short)mustComplete_ANI_Flag: TRUE (1) or FALSE (0) */
R2_MF_PARAM_NOT_USED,/* (unsigned short) dnisNumberOfRepeats
(NOT IMPLEMENTED) */

/*
 * Forward state machine. Fill in with an appropriate action from
 * IISDN_R2MFC_FORWARD_ACTIONS for each received signal code.
 */
{ /* processDNISForward[IISDN_NUM_R2MF_SIGNAL_CODES] (Group A) */
IISDN_PROCESS_INVALID_BACKWARD_SIGNAL, /* action to R2B_INVALID */
IISDN_PROCESS_NEXT_DNIS_DIGIT_REQUEST, /* action to R2B_01 */
IISDN_PROCESS_RESTART_DNIS_REQUEST, /* action to R2B_02 */
IISDN_PROCESS_CALL_COMPLETE_CHANGE_TO_GROUP_B,/* action to R2B_03 */
IISDN_PROCESS_CONGESTION_SIGNAL, /* action to R2B_04 */
IISDN_PROCESS_CALLING_PARTY_CATEGORY_REQUEST, /* action to R2B_05 */
IISDN_PROCESS_INVALID_BACKWARD_SIGNAL, /* action to R2B_06 */
IISDN_PROCESS_LAST_BUT_2_DNIS_DIGIT_REQUEST, /* action to R2B_07 */
IISDN_PROCESS_LAST_BUT_3_DNIS_DIGIT_REQUEST, /* action to R2B_08 */
IISDN_PROCESS_LAST_BUT_1_DNIS_DIGIT_REQUEST, /* action to R2B_09 */
IISDN_PROCESS_INVALID_BACKWARD_SIGNAL, /* action to R2B_10 */
IISDN_PROCESS_INVALID_BACKWARD_SIGNAL, /* action to R2B_11 */
IISDN_PROCESS_INVALID_BACKWARD_SIGNAL, /* action to R2B_12 */
IISDN_PROCESS_NATURE_OF_CIRCUIT_QUERY, /* action to R2B_13 */
IISDN_PROCESS_ECHO_SUPPRESSOR_QUERY, /* action to R2B_14 */
IISDN_PROCESS_INVALID_BACKWARD_SIGNAL, /* action to R2B_15 */

},
{ /* processANIForward[IISDN_NUM_R2MF_SIGNAL_CODES] (Group A or C) */
IISDN_PROCESS_INVALID_BACKWARD_SIGNAL, /* action to R2B_INVALID */
IISDN_PROCESS_NEXT_DNIS_DIGIT_REQUEST, /* action to R2B_01 */
IISDN_PROCESS_INVALID_BACKWARD_SIGNAL, /* action to R2B_02 */
IISDN_PROCESS_CALL_COMPLETE_CHANGE_TO_GROUP_B,/* action to R2B_03 */
IISDN_PROCESS_CONGESTION_SIGNAL, /* action to R2B_04 */
IISDN_PROCESS_NEXT_ANI_DIGIT_REQUEST, /* action to R2B_05 */
IISDN_PROCESS_INVALID_BACKWARD_SIGNAL, /* action to R2B_06 */
IISDN_PROCESS_INVALID_BACKWARD_SIGNAL, /* action to R2B_07 */

Examples of R2 Parameter Files

March 2017 1441

IISDN_PROCESS_INVALID_BACKWARD_SIGNAL, /* action to R2B_08 */
IISDN_PROCESS_INVALID_BACKWARD_SIGNAL, /* action to R2B_09 */
IISDN_PROCESS_INVALID_BACKWARD_SIGNAL, /* action to R2B_10 */
IISDN_PROCESS_INVALID_BACKWARD_SIGNAL, /* action to R2B_11 */
IISDN_PROCESS_INVALID_BACKWARD_SIGNAL, /* action to R2B_12 */
IISDN_PROCESS_INVALID_BACKWARD_SIGNAL, /* action to R2B_13 */
IISDN_PROCESS_INVALID_BACKWARD_SIGNAL, /* action to R2B_14 */
IISDN_PROCESS_INVALID_BACKWARD_SIGNAL, /* action to R2B_15 */

},
{ /* processCalledLineConditionForward[IISDN_NUM_R2MF_SIGNAL_CODES]
(Group B) */
IISDN_PROCESS_INVALID_BACKWARD_SIGNAL, /* action to R2B_INVALID */
IISDN_PROCESS_GROUP_B_LINE_CONDITION, /* action to R2B_01 */
IISDN_PROCESS_GROUP_B_LINE_CONDITION, /* action to R2B_02 */
IISDN_PROCESS_INVALID_BACKWARD_SIGNAL, /* action to R2B_03 */
IISDN_PROCESS_GROUP_B_LINE_CONDITION, /* action to R2B_04 */
IISDN_PROCESS_GROUP_B_LINE_CONDITION, /* action to R2B_05 */
IISDN_PROCESS_INVALID_BACKWARD_SIGNAL, /* action to R2B_06 */
IISDN_PROCESS_GROUP_B_LINE_CONDITION, /* action to R2B_07 */
IISDN_PROCESS_INVALID_BACKWARD_SIGNAL, /* action to R2B_08 */
IISDN_PROCESS_INVALID_BACKWARD_SIGNAL, /* action to R2B_09 */
IISDN_PROCESS_INVALID_BACKWARD_SIGNAL, /* action to R2B_10 */
IISDN_PROCESS_INVALID_BACKWARD_SIGNAL, /* action to R2B_11 */
IISDN_PROCESS_INVALID_BACKWARD_SIGNAL, /* action to R2B_12 */
IISDN_PROCESS_INVALID_BACKWARD_SIGNAL, /* action to R2B_13 */
IISDN_PROCESS_INVALID_BACKWARD_SIGNAL, /* action to R2B_14 */
IISDN_PROCESS_INVALID_BACKWARD_SIGNAL, /* action to R2B_15 */

},

/*
 * Backward state machine. Fill in with an appropriate action from
 * IISDN_R2MFC_BACKWARD_ACTIONS for each received signal code.
 */
{ /* processDNISBackward[IISDN_NUM_R2MF_SIGNAL_CODES] (Group I) */
IISDN_PROCESS_INVALID_FORWARD_SIGNAL, /* action to R2F_INVALID */
IISDN_PROCESS_DNIS_DIGIT, /* action to R2F_01 */
IISDN_PROCESS_DNIS_DIGIT, /* action to R2F_02 */
IISDN_PROCESS_DNIS_DIGIT, /* action to R2F_03 */
IISDN_PROCESS_DNIS_DIGIT, /* action to R2F_04 */
IISDN_PROCESS_DNIS_DIGIT, /* action to R2F_05 */
IISDN_PROCESS_DNIS_DIGIT, /* action to R2F_06 */
IISDN_PROCESS_DNIS_DIGIT, /* action to R2F_07 */
IISDN_PROCESS_DNIS_DIGIT, /* action to R2F_08 */
IISDN_PROCESS_DNIS_DIGIT, /* action to R2F_09 */
IISDN_PROCESS_DNIS_DIGIT, /* action to R2F_10 */
IISDN_PROCESS_INVALID_FORWARD_SIGNAL, /* action to R2F_11 */
IISDN_PROCESS_INVALID_FORWARD_SIGNAL, /* action to R2F_12 */
IISDN_PROCESS_INVALID_FORWARD_SIGNAL, /* action to R2F_13 */
IISDN_PROCESS_INVALID_FORWARD_SIGNAL, /* action to R2F_14 */
IISDN_PROCESS_INVALID_FORWARD_SIGNAL, /* action to R2F_15 */

},
{ /* processCallCategoryBackward[IISDN_NUM_R2MF_SIGNAL_CODES] (Group IIa) */
IISDN_PROCESS_INVALID_FORWARD_SIGNAL, /* action to R2F_INVALID */
IISDN_PROCESS_CALL_CATEGORY_AND_SEND_LINE_STATE,/* action to R2F_01 */
IISDN_PROCESS_CALL_CATEGORY_AND_SEND_LINE_STATE,/* action to R2F_02 */
IISDN_PROCESS_CALL_CATEGORY_AND_SEND_LINE_STATE,/* action to R2F_03 */

Examples of R2 Parameter Files

March 2017 1442

IISDN_PROCESS_CALL_CATEGORY_AND_SEND_LINE_STATE,/* action to R2F_04 */
IISDN_PROCESS_CALL_CATEGORY_AND_SEND_LINE_STATE,/* action to R2F_05 */
IISDN_PROCESS_CALL_CATEGORY_AND_SEND_LINE_STATE,/* action to R2F_06 */
IISDN_PROCESS_CALL_CATEGORY_AND_SEND_LINE_STATE,/* action to R2F_07 */
IISDN_PROCESS_CALL_CATEGORY_AND_SEND_LINE_STATE,/* action to R2F_08 */
IISDN_PROCESS_INVALID_FORWARD_SIGNAL, /* action to R2F_09 */
IISDN_PROCESS_INVALID_FORWARD_SIGNAL, /* action to R2F_10 */
IISDN_PROCESS_CALL_CATEGORY_AND_SEND_LINE_STATE,/* action to R2F_11 */
IISDN_PROCESS_CALL_CATEGORY_AND_SEND_LINE_STATE,/* action to R2F_12 */
IISDN_PROCESS_INVALID_FORWARD_SIGNAL, /* action to R2F_13 */
IISDN_PROCESS_INVALID_FORWARD_SIGNAL, /* action to R2F_14 */
IISDN_PROCESS_INVALID_FORWARD_SIGNAL, /* action to R2F_15 */

},
{ /* processANIBackward[IISDN_NUM_R2MF_SIGNAL_CODES] (Group I or III) */
IISDN_PROCESS_INVALID_FORWARD_SIGNAL, /* action to R2F_INVALID */
IISDN_PROCESS_ANI_DIGIT, /* action to R2F_01 */
IISDN_PROCESS_ANI_DIGIT, /* action to R2F_02 */
IISDN_PROCESS_ANI_DIGIT, /* action to R2F_03 */
IISDN_PROCESS_ANI_DIGIT, /* action to R2F_04 */
IISDN_PROCESS_ANI_DIGIT, /* action to R2F_05 */
IISDN_PROCESS_ANI_DIGIT, /* action to R2F_06 */
IISDN_PROCESS_ANI_DIGIT, /* action to R2F_07 */
IISDN_PROCESS_ANI_DIGIT, /* action to R2F_08 */
IISDN_PROCESS_ANI_DIGIT, /* action to R2F_09 */
IISDN_PROCESS_ANI_DIGIT, /* action to R2F_10 */
IISDN_PROCESS_INVALID_FORWARD_SIGNAL, /* action to R2F_11 */
IISDN_PROCESS_ANI_NOT_AVAILABLE, /* action to R2F_12 */
IISDN_PROCESS_INVALID_FORWARD_SIGNAL, /* action to R2F_13 */
IISDN_PROCESS_INVALID_FORWARD_SIGNAL, /* action to R2F_14 */
IISDN_PROCESS_ANI_END_OF_ID, /* action to R2F_15 */

},
{ /* processCallingPartyCategoryBackward[IISDN_NUM_R2MF_SIGNAL_CODES]

 (Group IIb) */
IISDN_PROCESS_INVALID_FORWARD_SIGNAL, /* action to R2F_INVALID */
IISDN_PROCESS_CALLING_CATEGORY_AND_REQUEST_ANI, /* action to R2F_01 */
IISDN_PROCESS_CALLING_CATEGORY_AND_REQUEST_ANI, /* action to R2F_02 */
IISDN_PROCESS_CALLING_CATEGORY_AND_REQUEST_ANI, /* action to R2F_03 */
IISDN_PROCESS_CALLING_CATEGORY_AND_REQUEST_ANI, /* action to R2F_04 */
IISDN_PROCESS_CALLING_CATEGORY_AND_REQUEST_ANI, /* action to R2F_05 */
IISDN_PROCESS_CALLING_CATEGORY_AND_REQUEST_ANI, /* action to R2F_06 */
IISDN_PROCESS_CALLING_CATEGORY_AND_REQUEST_ANI, /* action to R2F_07 */
IISDN_PROCESS_CALLING_CATEGORY_AND_REQUEST_ANI, /* action to R2F_08 */
IISDN_PROCESS_INVALID_FORWARD_SIGNAL, /* action to R2F_09 */
IISDN_PROCESS_CALLING_CATEGORY_AND_REQUEST_ANI, /* action to R2F_10 */
IISDN_PROCESS_CALLING_CATEGORY_AND_REQUEST_ANI, /* action to R2F_11 */
IISDN_PROCESS_CALLING_CATEGORY_REQUEST_DENIED, /* action to R2F_12 */
IISDN_PROCESS_INVALID_FORWARD_SIGNAL, /* action to R2F_13 */
IISDN_PROCESS_INVALID_FORWARD_SIGNAL, /* action to R2F_14 */
IISDN_PROCESS_INVALID_FORWARD_SIGNAL, /* action to R2F_15 */

},

Examples of R2 Parameter Files

March 2017 1443

/*
 * Forward R2 Signals. Use IISDN_R2F_XX’s
 */
IISDN_R2F_INVALID, /* endOfDNIS */
IISDN_R2F_15, /* endOfANI_Available */
IISDN_R2F_INVALID, /* endOfANI_Restricted */
IISDN_R2F_12, /* callingPartyCategoryRequestNotAccepted */
IISDN_R2F_12, /* aniRequestNotAccepted */
IISDN_R2F_14, /* halfEchoSuppressorRequired */
IISDN_R2F_13, /* noSatelliteLinkInCircuit */
IISDN_R2F_14, /* satelliteLinkInCircuit */
IISDN_R2F_01, /* aniCategoryDefault */
IISDN_R2F_01, /* dnisCategoryDefault */

/*
 * Backward R2 signals. Use IISDN_R2B_XX’s
 */
IISDN_R2B_01, /* sendNextDigitDNIS */
IISDN_R2B_09, /* sendLastButOneDigitDNIS */
IISDN_R2B_03, /* sendCallCategoryAndSwitchToGroupB_DNIS */
IISDN_R2B_04, /* congestion_DNIS */
IISDN_R2B_05, /* sendCallingPartyCategory */
IISDN_R2B_INVALID, /* callComplete_SetUpSpeechPath_DNIS */
IISDN_R2B_07, /* sendLastButTwoDigitDNIS */
IISDN_R2B_08, /* sendLastButThreeDigitDNIS */
IISDN_R2B_13, /* requestNatureOfCircuit */
IISDN_R2B_14, /* requestIfHalfEchoSuppressorNeeded */
IISDN_R2B_02, /* sendFirstDigitDNIS */
IISDN_R2B_05, /* sendNextDigitANI */
IISDN_R2B_03, /* sendCallCategoryAndSwitchToGroupB_ANI */
IISDN_R2B_04, /* congestion_ANI */
IISDN_R2B_01, /* changeFrom_ANI_To_DNIS_SendNextDigit */
IISDN_R2B_INVALID, /* changeFrom_ANI_To_DNIS_SendLastDigit */
IISDN_R2B_INVALID, /* changeFrom_ANI_To_DNIS_SendFirstDigit */
IISDN_R2B_INVALID, /* callComplete_SetUpSpeechPath_ANI */
IISDN_R2B_01, /* groupB_CalledLineConditionDefault */
IISDN_R2B_INVALID, /* pad1 */

{ /* GroupB_LineConditions */
IISDN_R2B_01, /* called Line Free, Charge */
IISDN_R2B_05, /* called Line Free, No Charge */
IISDN_R2B_INVALID, /* user Defined Called Line Condition3 */
IISDN_R2B_02, /* called Line Busy */
IISDN_R2B_INVALID, /* called Line Out Of Order */
IISDN_R2B_07, /* called Line Unallocated */
IISDN_R2B_04, /* called Line Congested */
IISDN_R2B_INVALID, /* called Line Last Party Released */
IISDN_R2B_INVALID, /* user Defined Called Line Condition1 */
IISDN_R2B_INVALID, /* user Defined Called Line Condition2 */
IISDN_R2B_INVALID, /* user Defined Called Line Condition3 */
IISDN_R2B_INVALID, /* user Defined Called Line Condition4 */
IISDN_R2B_INVALID, /* user Defined Called Line Condition5 */
IISDN_R2B_INVALID, /* user Defined Called Line Condition6 */
IISDN_R2B_INVALID, /* user Defined Called Line Condition7 */
IISDN_R2B_INVALID, /* user Defined Called Line Condition8 */

},

Examples of R2 Parameter Files

March 2017 1444

0, /* halfEchoSuppressorFlag */
0, /* pad2 */

0xC,/* (unsigned short)r2mfcTraceEnable */

/*
 * Call Progress generation
 */
2,/* (unsigned short)numCallProgSignalsDefined; max number defined for

 R2 is 2! */
{ /* IISDN_CPGEN_MF_PARAMS */
{ /* IISDN_CPGEN_MF_PARAMS for RING (cpSignals[0]) */
425, /* (unsigned short)freqTone1 */
-20, /* (short) powerTone1, -10 dBm */
0, /* (unsigned short)freqTone2, NONE */
-20, /* (short) powerTone2 */
1, /* (unsigned short)numCadences */
1000, /* (short) makeTime1 */
4000, /* (short) breakTime1 */
0, /* (short) makeTime2 */
0, /* (short) breakTime2 */
0, /* (short) makeTime3 */
0, /* (short) breakTime3 */
2, /* (unsigned short)numCycles, finite duration */

},
{ /* IISDN_CPGEN_MF_PARAMS for BUSY (cpSignals[1]) */
425, /* (unsigned short)freqTone1 */
-20, /* (short) powerTone1, -10 dBm */
0, /* (unsigned short)freqTone2, NONE */
-20, /* (short) powerTone2 */
1, /* (unsigned short)numCadences */
250, /* (short) makeTime1 */
250, /* (short) breakTime1 */
0, /* (short) makeTime2 */
0, /* (short) breakTime2 */
0, /* (short) makeTime3 */
0, /* (short) breakTime3 */
0, /* (unsigned short)numCycles, repeat indefinitely */

},
},

};

Examples of R2 Parameter Files

March 2017 1445

China R2 Parameter File
The following R2 parameter file example is used to configure IISDN
R2-MFC for operation in China.

/**
 * r2China.h - China R2 parameters
 *
 * Description:
 *
 * This include file contains the parameters needed to configure IISDN’s
 * R2-MFC for operation in China.
 *
 * Certain parameters are network specific and cannot be modified.
 *
 * (C) - Copyright Dialogic Corporation. 2000
 ***/

#define R2_MF_PARAM_NOT_USED(0)/* clarify params not currently implemented */

static IISDN_E1_CAS_R2_DATA r2_China =
{
// IISDN_R2_DIGITAL_LINE_SIG_PARAMS:
200,/* (unsigned short) r2OutSeizeTimer */
90, /* (unsigned short) r2OutAnswerTimeOut (s) */
200,/* (unsigned short) inboundReleaseGuardTime */
0, /* (unsigned short) inboundLineQualTimerIdle */
0, /* (unsigned short) DebugBitMask */

3, /* (unsigned char) c_d_cas_bits */
0, /* (unsigned char) clearbackControl ----> release guard / forced release */

/*
 * IISDN_R2_INTERREGISTER_PARAMS:
 *
 * NOTE!: Only the R2 in-dial application parameters may be modified by the
 user. All others are network specific and modification would likely cause
 malfunction.
 */
7, /* (unsigned short)dnisMaxNumDigits: max # of DNIS digits required */
7, /* (unsigned short)aniMaxNumDigits: max # of ANI digits required */
1, /* (unsigned short)dnisNumDigitsBeforeANI */

/*
 * R2 Inbound Timers
 */
15, /* (short) interForwardToneTimeOut: units in s or DISABLED */
IISDN_INBOUND_PULSE_MIN_DELAY_ITU_MSEC, /* (short) prePulseToneDelay (s) */
IISDN_INBOUND_PULSE_DURATION_ITU_MSEC, /* (short) pulseToneDuration (s) */

Examples of R2 Parameter Files

March 2017 1446

/*
 * R2 Outbound Timers
 */
17, /* (short) forwardToneMaxOnTime: units in sec or DISABLED */
27, /* (short) forwardToneMaxOffTime: units in sec or DISABLED */
17, /* (short) forwardGroup2MaxOnTime: units in sec or DISABLED */

/*
 * R2 Backward Protocol Params
 */
IISDN_INDIAL_DNIS_TIME_OUT_PULSE_GROUPII_REQUEST, /* (unsigned short)
dnisTimeOutAction */

/*
 * Forward R2 Signals. Use IISDN_R2F_XX’s
 */
IISDN_R2F_INVALID, /* endOfDNIS */
IISDN_R2F_15, /* endOfANI_Available */
IISDN_R2F_INVALID, /* halfEchoSuppressorRequired */
IISDN_R2F_INVALID, /* noSatelliteLinkInCircuit */
IISDN_R2F_INVALID, /* satelliteLinkInCircuit */
IISDN_R2F_01, /* aniCategoryDefault */

/*
 * Backward R2 signals. Use IISDN_R2B_XX’s
 */
IISDN_R2B_01, /* sendNextDigitDNIS */
IISDN_R2B_INVALID, /* sendLastButOneDigitDNIS */
IISDN_R2B_03, /* sendCallCategoryAndSwitchToGroupB_DNIS */
IISDN_R2B_04, /* congestion */
IISDN_R2B_06, /* sendCallingPartyCategory */
IISDN_R2B_INVALID, /* callComplete_SetUpSpeechPath - Group A */
IISDN_R2B_INVALID, /* sendLastButTwoDigitDNIS */
IISDN_R2B_INVALID, /* sendLastButThreeDigitDNIS */
IISDN_R2B_INVALID, /* requestNatureOfCircuit */
IISDN_R2B_INVALID, /* requestIfHalfEchoSuppressorNeeded */
IISDN_R2B_02, /* sendFirstDigitDNIS */
IISDN_R2B_01, /* sendNextDigitANI */
IISDN_R2B_INVALID, /* changeFrom_ANI_To_DNIS_SendNextDigit */
IISDN_R2B_INVALID, /* changeFrom_ANI_To_DNIS_SendLastDigit */

{ /* GroupB_LineConditions */
IISDN_R2B_01, /* called Line Free, Charge */
IISDN_R2B_INVALID, /* called Line Free, No Charge */
IISDN_R2B_INVALID, /* alternate called Line Free, Charge */
IISDN_R2B_02, /* called Line Busy */
IISDN_R2B_INVALID, /* called Line Out Of Order */
IISDN_R2B_05, /* called Line Unallocated */
IISDN_R2B_INVALID, /* spare */
IISDN_R2B_INVALID, /* spare */
IISDN_R2B_INVALID, /* spare */
IISDN_R2B_INVALID, /* spare */

},

Examples of R2 Parameter Files

March 2017 1447

/*
 * Call Progress generation
 */
{ /* IISDN_CPGEN_MF_PARAMS */
{ /* IISDN_CPGEN_MF_PARAMS for RING (cpSignals[0]) */
450, /* (unsigned short)freqTone1 */
0, /* (short) powerTone1, -10 dBm */
0, /* (unsigned short)freqTone2, NONE */
0, /* (short) powerTone2 */
1, /* (unsigned short)numCadences */
1000, /* (short) makeTime1 */
4000, /* (short) breakTime1 */
0, /* (short) makeTime2 */
0, /* (short) breakTime2 */
0, /* (short) makeTime3 */
0, /* (short) breakTime3 */
2, /* (unsigned short)numCycles, finite duration */

},
{ /* IISDN_CPGEN_MF_PARAMS for BUSY (cpSignals[1]) */
450, /* (unsigned short)freqTone1 */
0, /* (short) powerTone1, -10 dBm */
0, /* (unsigned short)freqTone2, NONE */
0, /* (short) powerTone2 */
1, /* (unsigned short)numCadences */
350, /* (short) makeTime1 */
350, /* (short) breakTime1 */
0, /* (short) makeTime2 */
0, /* (short) breakTime2 */
0, /* (short) makeTime3 */
0, /* (short) breakTime3 */
0, /* (unsigned short)numCycles, repeat indefinitely */

},
},

};

Examples of R2 Parameter Files

March 2017 1448

Korea R2 Parameter File
The following R2 parameter file example is used to configure IISDN
R2-MFC for operation in Korea.

/**
 * r2Korea.h - Korea R2 parameters
 *
 * Description:
 *
 * This include file contains the parameters needed to configure IISDN’s
 * R2-MFC for operation in Korea.
 *
 * Certain parameters are network specific and cannot be modified.
 *
 * (C) - Copyright Dialogic Corporation 2000
 ***/

#define R2_MF_PARAM_NOT_USED(0)/* clarify params not currently implemented */

static IISDN_E1_CAS_R2_DATA r2_Korea =
{
// IISDN_R2_DIGITAL_LINE_SIG_PARAMS:
200,/* (unsigned short) r2OutSeizeTimer (ms) */
90, /* (unsigned short) r2OutAnswerTimeOut */
0, /* (unsigned short) inboundReleaseGuardTime */
100,/* (unsigned short) inboundLineQualTimerIdle */
0, /* (unsigned short) DebugBitMask */

1, /* (unsigned char) c_d_cas_bits ------> C=0 D=1 */
0, /* (unsigned char) clearbackControl --> release guard / forced release */

/*
 * IISDN_R2_INTERREGISTER_PARAMS:
 *
 * NOTE!: Only the R2 in-dial application parameters may be modified by the
 user. All others are network specific and modification would likely cause
 malfunction.
 */
7, /* (unsigned short)dnisMaxNumDigits: max # of DNIS digits required */
7, /* (unsigned short)aniMaxNumDigits: max # of ANI digits required */
1, /* (unsigned short)dnisNumDigitsBeforeANI */

/*
 * R2 Inbound Timers
 */
15, /* (short) interForwardToneTimeOut: units in s or DISABLED */
IISDN_INBOUND_PULSE_MIN_DELAY_ITU_MSEC, /* (short) prePulseToneDelay (s) */
IISDN_INBOUND_PULSE_DURATION_ITU_MSEC, /* (short) pulseToneDuration (s) */

Examples of R2 Parameter Files

March 2017 1449

/*
 * R2 Outbound Timers
 */
17, /* (short) forwardToneMaxOnTime: units in sec or DISABLED */
27, /* (short) forwardToneMaxOffTime: units in sec or DISABLED */
17, /* (short) forwardGroup2MaxOnTime: units in sec or DISABLED */

/*
 * R2 Backward Protocol Params
 */
IISDN_INDIAL_DNIS_TIME_OUT_PULSE_GROUPII_REQUEST, /* (unsigned short)
dnisTimeOutAction */

/*
 * Forward R2 Signals. Use IISDN_R2F_XX’s
 */
IISDN_R2F_15, /* endOfDNIS */
IISDN_R2F_15, /* endOfANI_Available */
IISDN_R2F_INVALID, /* halfEchoSuppressorRequired */
IISDN_R2F_INVALID, /* noSatelliteLinkInCircuit */
IISDN_R2F_INVALID, /* satelliteLinkInCircuit */
IISDN_R2F_01, /* aniCategoryDefault */

/*
 * Backward R2 signals. Use IISDN_R2B_XX’s
 */
IISDN_R2B_01, /* sendNextDigitDNIS */
IISDN_R2B_02, /* sendLastButOneDigitDNIS */
IISDN_R2B_03, /* sendCallCategoryAndSwitchToGroupB_DNIS */
IISDN_R2B_04, /* congestion */
IISDN_R2B_05, /* sendCallingPartyCategory */
IISDN_R2B_06, /* callComplete_SetUpSpeechPath - Group A*/
IISDN_R2B_07, /* sendLastButTwoDigitDNIS */
IISDN_R2B_08, /* sendLastButThreeDigitDNIS */
IISDN_R2B_13, /* requestNatureOfCircuit */
IISDN_R2B_14, /* requestIfHalfEchoSuppressorNeeded */
IISDN_R2B_09, /* sendFirstDigitDNIS */
IISDN_R2B_05, /* sendNextDigitANI */
IISDN_R2B_INVALID, /* changeFrom_ANI_To_DNIS_SendNextDigit */
IISDN_R2B_INVALID, /* changeFrom_ANI_To_DNIS_SendLastDigit */

{ /* GroupB_LineConditions */
IISDN_R2B_06, /* called Line Free, Charge */
IISDN_R2B_07, /* called Line Free, No Charge */
IISDN_R2B_01, /* alternate called Line Free, Charge */
IISDN_R2B_03, /* called Line Busy */
IISDN_R2B_08, /* called Line Out Of Order */
IISDN_R2B_05, /* called Line Unallocated */
IISDN_R2B_INVALID, /* spare */
IISDN_R2B_INVALID, /* spare */
IISDN_R2B_INVALID, /* spare */
IISDN_R2B_INVALID, /* spare */

},

Examples of R2 Parameter Files

March 2017 1450

/*
 * Call Progress generation
 */
{ /* IISDN_CPGEN_MF_PARAMS */
{ /* IISDN_CPGEN_MF_PARAMS for RING (cpSignals[0]) */
440, /* (unsigned short)freqTone1 */
0, /* (short) powerTone1 */
480, /* (unsigned short)freqTone2, NONE */
0, /* (short) powerTone2 */
1, /* (unsigned short)numCadences */
1000, /* (short) makeTime1 */
4000, /* (short) breakTime1 */
0, /* (short) makeTime2 */
0, /* (short) breakTime2 */
0, /* (short) makeTime3 */
0, /* (short) breakTime3 */
2, /* (unsigned short)numCycles, finite duration */

},
{ /* IISDN_CPGEN_MF_PARAMS for BUSY (cpSignals[1]) */
440, /* (unsigned short)freqTone1 */
0, /* (short) powerTone1 */
480, /* (unsigned short)freqTone2, NONE */
0, /* (short) powerTone2 */
1, /* (unsigned short)numCadences */
500, /* (short) makeTime1 */
500, /* (short) breakTime1 */
0, /* (short) makeTime2 */
0, /* (short) breakTime2 */
0, /* (short) makeTime3 */
0, /* (short) breakTime3 */
0, /* (unsigned short)numCycles, repeat indefinitely */

},
},

};

Examples of R2 Parameter Files

March 2017 1451

Mexico R2 Parameter File
The following R2 parameter file example is used to configure IISDN
R2-MFC for operation in Mexico.

/**
 * r2Mexico.h - Mexico R2 parameters
 *
 * Description:
 *
 * This include file contains the parameters needed to configure IISDN’s
 * R2-MFC for operation in Mexico.
 *
 * Certain parameters are network specific and cannot be modified.
 *
 * (C)-Copyright Dialogic Corporation 2000
 **/

#define R2_MF_PARAM_NOT_USED(0)/* clarify params not currently implemented */

static IISDN_E1_CAS_R2_DATA r2_Mexico =
{
// IISDN_R2_DIGITAL_LINE_SIG_PARAMS:
200,/* (unsigned short) r2OutSeizeTimer (ms) */
90, /* (unsigned short) r2OutAnswerTimeOut (s) */
200,/* (unsigned short) inboundReleaseGuardTime */
0, /* (unsigned short) inboundLineQualTimerIdle */
0, /* (unsigned short) DebugBitMask */

1, /* (unsigned char) c_d_cas_bits ------> C=0 D=1 */
0, /* (unsigned char) clearbackControl ----> release guard / forced release */

/*
 * IISDN_R2_INTERREGISTER_PARAMS:
 *
 * NOTE!: Only the R2 in-dial application parameters may be modified by the
 user. All others are network specific and modification would likely cause
 malfunction.
 */
7, /* (unsigned short)dnisMaxNumDigits: max # of DNIS digits required */
7, /* (unsigned short)aniMaxNumDigits: max # of ANI digits required */
1, /* (unsigned short)dnisNumDigitsBeforeANI */

/*
 * R2 Inbound Timers
 */
11, /* (short) interForwardToneTimeOut: units in s or DISABLED */
IISDN_INBOUND_PULSE_MIN_DELAY_ITU_MSEC, /* (short) prePulseToneDelay (s) */
IISDN_INBOUND_PULSE_DURATION_ITU_MSEC, /* (short) pulseToneDuration (s) */

Examples of R2 Parameter Files

March 2017 1452

/*
 * R2 Outbound Timers
 */
17, /* (short) forwardToneMaxOnTime: units in sec or DISABLED */
27, /* (short) forwardToneMaxOffTime: units in sec or DISABLED */
17, /* (short) forwardGroup2MaxOnTime: units in sec or DISABLED */

/*
 * R2 Backward Protocol Params
 */
IISDN_INDIAL_DNIS_TIME_OUT_PULSE_GROUPII_REQUEST, /* (unsigned short)
dnisTimeOutAction */

/*
 * Forward R2 Signals. Use IISDN_R2F_XX’s
 */
IISDN_R2F_INVALID, /* endOfDNIS */
IISDN_R2F_15, /* endOfANI_Available */
IISDN_R2F_INVALID, /* halfEchoSuppressorRequired */
IISDN_R2F_INVALID, /* noSatelliteLinkInCircuit */
IISDN_R2F_INVALID, /* satelliteLinkInCircuit */
IISDN_R2F_02, /* aniCategoryDefault */

/*
 * Backward R2 signals. Use IISDN_R2B_XX’s
 */
IISDN_R2B_01, /* sendNextDigitDNIS */
IISDN_R2B_INVALID, /* sendLastButOneDigitDNIS */
IISDN_R2B_03, /* sendCallCategoryAndSwitchToGroupB_DNIS */
IISDN_R2B_04, /* congestion */
IISDN_R2B_06, /* sendCallingPartyCategory */
IISDN_R2B_INVALID, /* callComplete_SetUpSpeechPath - Group A*/
IISDN_R2B_INVALID, /* sendLastButTwoDigitDNIS */
IISDN_R2B_INVALID, /* sendLastButThreeDigitDNIS */
IISDN_R2B_INVALID, /* requestNatureOfCircuit */
IISDN_R2B_INVALID, /* requestIfHalfEchoSuppressorNeeded */
IISDN_R2B_02, /* sendFirstDigitDNIS */
IISDN_R2B_01, /* sendNextDigitANI */
IISDN_R2B_05, /* changeFrom_ANI_To_DNIS_SendNextDigit */
IISDN_R2B_06, /* changeFrom_ANI_To_DNIS_SendLastDigit */

{ /* GroupB_LineConditions */
IISDN_R2B_01, /* called Line Free, Charge */
IISDN_R2B_05, /* called Line Free, No Charge */
IISDN_R2B_INVALID, /* alternate called Line Free, Charge */
IISDN_R2B_02, /* called Line Busy */
IISDN_R2B_INVALID, /* called Line Out Of Order */
IISDN_R2B_INVALID, /* called Line Unallocated */
IISDN_R2B_INVALID, /* spare */
IISDN_R2B_INVALID, /* spare */
IISDN_R2B_INVALID, /* spare */
IISDN_R2B_INVALID, /* spare */

},

Examples of R2 Parameter Files

March 2017 1453

/*
 * Call Progress generation
 */
{ /* IISDN_CPGEN_MF_PARAMS */
{ /* IISDN_CPGEN_MF_PARAMS for RING (cpSignals[0]) */
425, /* (unsigned short)freqTone1 */
0, /* (short) powerTone1 */
0, /* (unsigned short)freqTone2, NONE */
0, /* (short) powerTone2 */
1, /* (unsigned short)numCadences */
1000, /* (short) makeTime1 */
4000, /* (short) breakTime1 */
0, /* (short) makeTime2 */
0, /* (short) breakTime2 */
0, /* (short) makeTime3 */
0, /* (short) breakTime3 */
2, /* (unsigned short)numCycles, finite duration */

},
{ /* IISDN_CPGEN_MF_PARAMS for BUSY (cpSignals[1]) */
425, /* (unsigned short)freqTone1 */
0, /* (short) powerTone1 */
0, /* (unsigned short)freqTone2, NONE */
0, /* (short) powerTone2 */
1, /* (unsigned short)numCadences */
250, /* (short) makeTime1 */
250, /* (short) breakTime1 */
0, /* (short) makeTime2 */
0, /* (short) breakTime2 */
0, /* (short) makeTime3 */
0, /* (short) breakTime3 */
0, /* (unsigned short)numCycles, repeat indefinitely */

},
},

};

March 2017 1454

H - Deprecated and Unsupported
Functionality

The following is deprecated and unsupported functionality in the
SDK:

 Windows 2000
 Windows 2003
 Red Hat Linux AS/ES 3.0
 Red Hat Linux AS/ES 4.0
 Red Hat Linux AS/ES 5.0 (32- and 64-bit)
 TR1000 advanced speech related functionality

 Dialogic® Brooktrout® TR1000 media boards ("TR1000
boards")

 Conferencing functionality (BfvCallConferencexxxx)
 Full duplex speech functionality.
 Accucall

 QSIG Call Control protocol

 BfvCallDivert()
 BfvCallWaitForDivert()
 BfvLineDivert()

 OSI Library
 Input Fields for BfvCallSWConnectIP function

March 2017 1455

The following IPV4-only input fields for the BrvCallSWConnectIP
function are no longer supported and have been replaced with input
fields that support both IPV4 and IPV6.

short destOptions.RTPopts.localRTPAddr.sin_family;
unsigned short destOptions.RTPopts.localRTPAddr.sin_port;
unsigned destOptions.RTPopts.localRTPAddr.sin_addr.S_un.S_addr;
short destOptions.RTPopts.localRTCPAddr.sin_family;
unsigned short destOptions.RTPopts.localRTCPAddr.sin_port;
unsigned destOptions.RTPopts.localRTCPAddr.sin_addr.S_un.S_addr;
short destOptions.RTPopts.remoteRTPAddr.sin_family;
unsigned short destOptions.RTPopts.remoteRTPAddr.sin_port;
unsigned destOptions.RTPopts.remoteRTPAddr.sin_addr.S_un.S_addr;
short destOptions.RTPopts.remoteRTCPAddr.sin_family;
unsigned short destOptions.RTPopts.remoteRTCPAddr.sin_port;
unsigned destOptions.RTPopts.remoteRTCPAddr.sin_addr.S_un.S_addr;
short destOptions.UDPTLopts.localAddr.sin_family;
unsigned short destOptions.UDPTLopts.localAddr.sin_port;
unsigned destOptions.UDPTLopts.localAddr.sin_addr.S_un.S_addr;
short destOptions.UDPTLopts.remoteAddr.sin_family;
unsigned short destOptions.UDPTLopts.remoteAddr.sin_port;
unsigned destOptions.UDPTLopts.remoteAddr.sin_addr.S_un.S_addr;

args.destOptions.RTPopts.localRTPAddr.sin_family

This indicates the type of local RTP addressing.
Valid values are:
TELE_CTRL_AF_INET_DEF

args.destOptions.RTPopts.localRTPAddr.sin_port

This indicates the local RTP port number.

args.destOptions.RTPopts.localRTPAddr.sin_addr.S_un.
S_addr

This indicates the local RTP IP address as an integer
where

Class A is byte 4
Class B is byte 3
Class C is byte 2
Class D is byte 1

Example: 10.128.100.100 would be 0x0A806464

args.destOptions.RTPopts.localRTCPAddr.sin_family

This indicates the type of local RTCP addressing.
Valid values are:

TELE_CTRL_AF_INET_DEF

March 2017 1456

args.destOptions.RTPopts.localRTCPAddr.sin_port

This indicates the local RTCP port number.

args.destOptions.RTPopts.localRTCPAddr.sin_addr.S_un
.S_addr

This indicates the local RTCP IP address as an integer
where

Class A is byte 4
Class B is byte 3
Class C is byte 2
Class D is byte 1

Example: 10.128.100.100 would be 0x0A806464

args.destOptions.RTPopts.remoteRTPAddr.sin_family

This indicates the type of remote RTP addressing.
Valid values are:

TELE_CTRL_AF_INET_DEF

args.destOptions.RTPopts.remoteRTPAddr.sin_port

This indicates the remote RTP port number.

args.destOptions.RTPopts.remoteRTPAddr.sin_addr.S_un
.S_addr

This indicates the remote RTP IP address as an integer
where
Class A is byte 4
Class B is byte 3
Class C is byte 2
Class D is byte 1

Example: 10.128.100.100 would be 0x0A806464

args.destOptions.RTPopts.remoteRTCPAddr.sin_family

This indicates the type of remote RTCP addressing.
Valid values are:

TELE_CTRL_AF_INET_DEF

args.destOptions.RTPopts.remoteRTCPAddr.sin_port

This indicates the remote RTCP port number.

args.destOptions.RTPopts.remoteRTCPAddr.sin_addr.S_u
n.S_addr

March 2017 1457

This indicates the remote RTCP IP address as an integer
where

Class A is byte 4
Class B is byte 3
Class C is byte 2
Class D is byte 1

Example: 10.128.100.100 would be 0x0A806464

args.destOptions.UDPTLopts.localAddr.sin_family

This indicates the type of local UDPTL addressing.
Valid values are:

TELE_CTRL_AF_INET_DEF

args.destOptions.UDPTLopts.localAddr.sin_port

This indicates the local UDPTL port number.

args.destOptions.UDPTLopts.localAddr.sin_addr.S_un.S
_addr

This indicates the local UDPTL IP address as an integer
where

Class A is byte 4
Class B is byte 3
Class C is byte 2
Class D is byte 1

Example: 10.128.100.100 would be 0x0A806464

args.destOptions.UDPTLopts.remoteAddr.sin_family

This indicates the type of remote UDPTL addressing.
Valid values are:

TELE_CTRL_AF_INET_DEF

args.destOptions.UDPTLopts.remoteAddr.sin_port

This indicates the remote UDPTL port number.

args.destOptions.UDPTLopts.remoteAddr.sin_addr.S_un.
S_addr

This indicates the remote UDPTL IP address as an
integer where

Class A is byte 4

Class B is byte 3

March 2017 1458

Class C is byte 2

Class D is byte 1

Example: 10.128.100.100 would be 0x0A806464

March 2017 1459

Numerics
1536K calls

L4L3mDISABLE_B_CHANNEL 5: 997, 5: 1001,
5: 1014, 5: 1062, 5: 1067

1TR6 German variant 5: 1027, 6: 1201
384K calls

L4L3mDISABLE_B_CHANNEL 5: 997, 5: 1001,
5: 1014, 5: 1062, 5: 1067

4ESS switch
L4L3mENABLE_PROTOCOL 5: 1026, 5: 1039

5ESS switch
L4L3mENABLE_PROTOCOL 5: 1026, 5: 1039

A
Accepting incoming call 2: 280
Address structure 6: 1320
Address, checking for 1: 50
Alerting and Connecting Data Message common

structure 5: 839
ALERTING Q.931

L3L4mCONNECT 5: 1090
L4L3mALERTING_REQUEST 5: 994

Alerts
handling in Millennial 1: 92

Analog DID
line characteristics 6: 1183
port configuration 6: 1182

Analog Loop Start
port configuration 6: 1185

ANI on Demand 5: 1045, 5: 1046, 5: 1076
Answering Call function

BfvCallWaitForAccept 2: 329

Answering incoming call 2: 280, 2: 329
AOC structure information macro 1: 84
API debug mode 1: 261

directing output 1: 234
enabling 1: 237, 1: 239

API_V1 macro 1: 87
API_V2 macro 1: 87
API_V3 macro 1: 87
API_V4 macro 1: 87
API_VER_NUM macro 1: 86
API_VERSION macro 1: 87
Application behavior information macro 1: 84
Argentina R2 parameter file 6: 1435
args_cc structure 2: 430–2: 456
args_telephone structure 2: 458–2: 470
Arguments macro 1: 84
ASCII strip infopkt 6: 1381
AT&T

4ESS Fast Connect Feature
L3L4mALERTING 5: 1075
L3L4mCONNECT 5: 1090
L3L4mPROGRESS 5: 1106
L3L4mSETUP_IND 5: 1121
L4L3mALERTING_REQUEST 5: 995
L4L3mPROGRESS_REQUEST 5: 1055

4ESS switch
L4L3mENABLE_PROTOCOL 5: 1026, 5: 1039

5ESS switch
L4L3mENABLE_PROTOCOL 5: 1026, 5: 1039

Accunet service 5: 1002, 5: 1118
ANI on Demand feature 5: 1077
International 800 service 5: 1002, 5: 1119
Megacom service 5: 1118
Software Defined Network (SDN) 5: 1118
Variabill feature 5: 1046, 5: 1081

Master Index

March 2017 1460

AT&T Custom variant 5: 1039
Australia, dialing requirements 6: 1426
Automatic Gain Control (AGC) 6: 1142

enabling 3: 558, 3: 571, 3: 581, 3: 588

B
Basic Rate Interface (BRI) 6: 1189
B-channel

disabling 5: 1016
idling 5: 1061
overriding call type setting 5: 1004

B-channel maintenance
L3L4mRESTART 5: 1130
L4L3mDISABLE_B_CHANNEL 5: 1129
L4L3mRESTART 5: 1129
Q.931 messages 5: 1128

B-channel negotiation
L4L3mALERTING_REQUEST 5: 995
L4L3mCALL_PROCEEDING_REQUEST 5: 996,

5: 998
L4L3mENABLE_PROTOCOL 5: 840
L4L3mSETUP_ACK_REQUEST 5: 997, 5: 1003,

5: 1014, 5: 1019, 5: 1062, 5: 1067
Bearer capability data 5: 1004
Beginning of page infopkt 6: 1393
BFAX_V2 macro 1: 89
Bfv API libraries 1: 30
BfvBoardNotify 1: 171, 1: 190
BfvBoardStateGet 1: 178
BfvBoardStateSet 1: 180
BfvBoardTemperatureGet 1: 182
BfvBoardTemperatureThreshSet 1: 184
BfvBoardTest 1: 186, 1: 195, 1: 198, 1: 206
BfvCallAccept 2: 280
BfvCallCtrlClose 2: 283, 2: 291
BfvCallCtrlInit 2: 284
BfvCallDisconnect 2: 287
BfvCallHold 2: 289
BfvCallReconfigureHostModule 2: 291
BfvCallReject 2: 293
BfvCallRetrieve 2: 295
BfvCallRingDetect 2: 297
BfvCallSendAlerting 2: 301
BfvCallSetup 2: 303
BfvCallSignalingStateMonitor 2: 317
BfvCallSignalingStateSet 2: 321

BfvCallStatus 2: 324
BfvCallSWClearConns 1: 119
BfvCallSWConnect 1: 121, 1: 127
BfvCallSWGetConns 1: 142
BfvCallSWGetInfo 1: 146
BfvCallTransferComplete 2: 327
BfvCallWaitForAccept 2: 329
BfvCallWaitForAlerting 2: 332
BfvCallWaitForComplete 2: 335
BfvCallWaitForDivert 2: 340
BfvCallWaitForHold 2: 340
BfvCallWaitForRelease 2: 342
BfvCallWaitForRetrieve 2: 345
BfvCallWaitForSetup 2: 347
BfvCallWaitTransferComplete 2: 354
BfvCheckAddress 1: 50
BfvCheckFacility 1: 52
BfvCPGen 3: 482
BfvCPGenAdv 3: 484
BfvDataCP 3: 488
BfvDataFSK 4: 628
BfvDebugFuncSet 1: 234
BfvDebugInitData 1: 236
BfvDebugModeSet 1: 237
BfvDebugModeSetAdv 1: 239
BfvDialDBCheck 2: 414
BfvDialDBList 2: 416
BfvDialDBUpdate 2: 419
BfvErrorMessage 1: 244
BfvFaxAbort 4: 632
BfvFaxBegin 4: 634
BfvFaxBeginRaw 4: 639
BfvFaxBeginReceive 4: 644
BfvFaxBeginSend 4: 648
BfvFaxBeginSendRaw 4: 651
BfvFaxBeginSendTiff 4: 656
BfvFaxBeginTiff 4: 659
BfvFaxDownloadFont 4: 664
BfvFaxEndOfDocument 4: 671
BfvFaxEndReception 4: 673
BfvFaxGetRemoteInfo 4: 675
BfvFaxHeader 4: 677
BfvFaxNextPage 4: 681
BfvFaxNextPageDCX 4: 684
BfvFaxNextPageRaw 4: 687
BfvFaxNextPageTiff 4: 690
BfvFaxPageParams 4: 693
BfvFaxPoll 4: 695

March 2017 1461

BfvFaxRcvPageDCX 4: 700
BfvFaxRcvPageTiff 4: 702
BfvFaxReceive 4: 705
BfvFaxReceiveData 4: 709
BfvFaxReceiveFile 4: 713
BfvFaxReceivePage 4: 716
BfvFaxReceivePages 4: 718
BfvFaxSend 4: 720
BfvFaxSendData 4: 724
BfvFaxSendFile 4: 726
BfvFaxSendPage 4: 729
BfvFaxSendPageDCX 4: 732
BfvFaxSendPageTiff 4: 734
BfvFaxSetLocalId 4: 736
BfvFaxSetNSF 4: 738
BfvFaxSetReceiveFmt 4: 741
BfvFaxSetSubPwdSep 4: 744
BfvFaxStripParams 4: 747
BfvFaxT30Holdup 4: 751
BfvFaxT30Params 4: 757
BfvFaxWaitForTraining 4: 764
BfvFeatureSetDownload 1: 95
BfvFeatureSetDownloadData 1: 97
BfvFeatureSetQuery 1: 99
BfvFirmwareDownload 1: 101
BfvFirmwareDownloadData 1: 105
BfvGetVar 1: 212
BfvHistoryClear 1: 246
BfvHistoryClearModChan 1: 248
BfvHistoryClearUnit 1: 250
BfvHistoryDump 1: 252
BfvHistoryDumpModChan 1: 255
BfvHistoryDumpUnit 1: 258
BfvInfoPktClose 3: 595
BfvInfopktFseek 3: 597
BfvInfopktFtell 3: 599
BfvInfopktGet 3: 601
BfvInfopktOpen 3: 603
BfvInfopktOpenMem 3: 605
BfvInfopktPut 3: 609
BfvInfopktUnget 3: 611
BfvInfopktUser 3: 613
BfvLineAlert 1: 215
BfvLineAnswer 2: 357
BfvLineAttach 1: 54
BfvLineCallProgressDisable 3: 492
BfvLineCallProgressEnable 3: 494
BfvLineCallProgressProgram 3: 499

BfvLineCCProtocolGet 2: 360
BfvLineConfig 1: 57
BfvLineDetach 1: 60
BfvLineDialString 2: 363
BfvLineDumpStructure 1: 261
BfvLineInfo 1: 61
BfvLineOrigCallDB 2: 422
BfvLineOriginateCall 2: 369
BfvLineReset 1: 63
BfvLinesAvail 1: 67
BfvLineTerminateCall 2: 384
BfvLineTransfer 2: 388
BfvLineTransferCancel 2: 394
BfvLineTransferCapabilityQuery 2: 396
BfvLineTransferComplete 2: 398
BfvLineWaitForCall 2: 400
BfvLoopCurrentDetectDisable 2: 407
BfvLoopCurrentDetectEnable 2: 409
BfvMemAllocFuncsSet 1: 218
BfvModuleConfigSpecsGet 1: 109
BfvModuleDeactivate 1: 69
BfvModuleInfo 1: 71
BfvNetworkConfigGet 1: 149
BfvNetworkConfigSet 1: 153
BfvNetworkQuery 1: 158
BfvPromptClose 3: 616
BfvPromptOpen 3: 618
BfvPromptPlay 3: 521
BfvRcvProcessPkt 1: 221
BfvSessionAttach 1: 78
BfvSessionDetach 1: 81
BfvSetSingleVar 1: 224
BfvSpeechEchoCancelControl 3: 525, 3: 531
BfvSpeechModify 3: 528
BfvSpeechPlay 3: 531
BfvSpeechPlayData 3: 534
BfvSpeechPlayFile 3: 541
BfvSpeechPlayWave 3: 547
BfvSpeechQuerySummationGroup 3: 531
BfvSpeechRecord 3: 551
BfvSpeechRecordData 3: 564
BfvSpeechRecordFile 3: 574
BfvSpeechRecordWave 3: 583
BfvTelephGetInfo 1: 163
BfvTelephReset 1: 165
BfvTelephSave 1: 167
BfvTiffClose 4: 771
BfvTiffOpen 4: 773

March 2017 1462

BfvTiffReadIFD 4: 775
BfvTiffReadImage 4: 778
BfvTiffReadRes 4: 780
BfvTiffWriteIFD 4: 782
BfvTiffWriteImage 4: 785
BfvTiffWriteRes 4: 787
BfvToneDetectDisable 3: 503
BfvToneDetectEnable 3: 505
BfvToneFlush 3: 508
BfvToneGet 3: 509
BfvTonePeek 3: 511
BfvTonePlay 3: 513
BfvTonePlayBeep 3: 515
BfvToneUnget 3: 518
Billing rate 5: 1081
Blacklisted telephone numbers 2: 420
Board configuration 1: 57
Board notify functions 1: 171–1: 189, 1: 190–??
Board state monitoring functions 1: 69, 1: 178
Boot ROM firmware 1: 111
BOSTON Host Service 2: 286
BOSTON Simple Message Interface, see BMSI

5: 792
Brazil R2 parameter file 6: 1438
BRI protocol port configuration 6: 1189
BRI Protocol Stack, initializing 5: 818
BROOKTROUT_MILLENNIAL macro 1: 86
BSMI

call reference value 5: 835
common header structure 5: 820
directories and files 5: 794
error return values 5: 812
L4 reference value 5: 834
message sequence examples 5: 815
message structure 5: 819
message types 5: 821
R2 signaling messages 5: 865

BsmiCloseAdapter 5: 797
BsmiControlRead 5: 798
BsmiControlWrite 5: 800
BsmiLineAlert 5: 801
BsmiModuleList 5: 803
BsmiOpenAdapter 5: 805
BsmiResetAdapter 5: 807
BT_API_SET_VER macro 1: 86
BT_ARGS macro 1: 84
BT_BIG_ENDIAN macro 1: 85
BT_CBARGS macro 1: 85

BT_CPARM.CFG file 1: 117, 6: 1142, 6: 1415,
6: 1417

BT_LITTLE_ENDIAN macro 1: 85
BT_ZERO macro 1: 82
btcall.cfg file 1: 117, 2: 279, 6: 1140

user-defined configuration file 1: 65
user-defined parameters 6: 1140

BTLINE structure 1: 47
dumping 1: 261

Build number
macros 1: 87

Bus configuration
H.1xx clocking 6: 1176

BYTE_SWAP_LONG macro 1: 85
BYTE_SWAP_SHORT macro 1: 85

C
Call alerting

function 2: 301
Call clearing

reporting 5: 1087, 5: 1088
Call control

answering 2: 280
configuring environment 2: 284
disabling ISDN signaling 2: 283, 2: 291
initializing 2: 284
shutting library 2: 283, 2: 291

Call control configuration
analog DID port 6: 1182
analog loop start port 6: 1185
BRI port 6: 1189
E1 CAS port 6: 1205
E1 CAS R2 port 6: 1209
E1 ISDN port 6: 1197
E1 QSIG port 6: 1211
Ethernet interface 6: 1272–6: 1276
file examples 6: 1280–6: 1302
file format 6: 1159
global module 6: 1166
H.1xx clocking 6: 1176
Internet Protocol (IP) 6: 1233–6: 1277
JATE redial restriction 6: 1169
modifying file 6: 1158
parameters 6: 1159–6: 1277
T1 ISDN port 6: 1220
T1 RBS port 6: 1228

March 2017 1463

trace options 6: 1164
Call Control functions

high-level data structure 2: 458–2: 470
high-level summary 2: 273
ISDN services 2: 277
low-level data structure 2: 430–2: 456
low-level summary 2: 274
protocol-specific 2: 276

Call control messages summary, BSMI 5: 824
Call Control runtime library 2: 272
Call deflection 5: 1041
Call Disconnect function

BfvCallDisconnect 2: 287
BfvCallWaitForRelease 2: 342

Call flows
R2 signaling 5: 898

Call ID common structure 5: 842
Call placement codes 6: 1350
CALL PROCEEDING Q.931 message 5: 1030

L3L4mSETUP_IND 5: 1121
L4L3mCALL_PROCEEDING_REQUEST 5: 999
L4L3mENABLE_PROTOCOL 5: 1030

Call progress
adapting to international signal specifications

6: 1396
ANSWER call mode 6: 1399
bandpass filter 6: 1395
board-determined results 6: 1399
cadence detection algorithm 6: 1395
call progress buffer 6: 1399
call protocol code 6: 1401

fax mode 6: 1401
raw mode 6: 1401
voice mode 6: 1401

detecting human 6: 1398
disabling 3: 492
discrete filters 6: 1395
enabling 3: 494
initiating call progress 6: 1399

BfvLineCallProgressEnable 6: 1399
BfvLineOriginateCall 6: 1400

modes 3: 494
ORIGINATE call mode 6: 1399
processing signals 6: 1395
programs frequency 3: 499
reporting 2: 369, 2: 388
reporting results 6: 1397

final 6: 1397

HUMAN 6: 1398
intermediate 6: 1397

sending CNG 6: 1402
setting the call progress mode 6: 1401
signal interpretation 2: 380, 3: 498
special information tones (S.I.T.) 6: 1410
using special features 6: 1402
when dialing 6: 1402

Call progress results
board-determined 6: 1399
custom 6: 1412
custom templates 6: 1412
dialing 2: 369, 2: 388
final 6: 1414
transferring a call 2: 388

Call progress signals 6: 1403–6: 1409
ANSWER 6: 1403
ANSWER_TONE_DETECT 6: 1403
BUSY1 6: 1403
BUSY2 6: 1404
CNGDETCT 6: 1404
CONFIRM 6: 1404
DIALTON 6: 1405
G2DETCT 6: 1405
HUMAN 6: 1405
PULSE 6: 1406
QUIET 6: 1407
RECALL 6: 1407
RING1 6: 1407
RMTOFFHK 6: 1408
RNGNOANS 6: 1408
ROBUSY 6: 1408
SILENCE 6: 1409
SPECIALCP 6: 1409

Call reference value, BSMI 5: 835
Call state, retrieving 2: 324
Call status

diversion 6: 1330
redirection 6: 1330

Call switching functions 1: 119–1: 148
Call Tracer Utility 1: 231
Call transfer

completing 2: 327, 2: 398
disabling 6: 1188, 6: 1196, 6: 1203, 6: 1208,

6: 1219, 6: 1227, 6: 1231
function 2: 289, 2: 295, 2: 327, 2: 340, 2: 345,

2: 354, 2: 388–2: 399
setup 2: 303

March 2017 1464

transfer_variant values 6: 1188, 6: 1196, 6: 1203,
6: 1208, 6: 1219, 6: 1227, 6: 1231

CALL_RES parameters 6: 1329
callctrl.cfg file 2: 272, 2: 279, 6: 1158
Called Party

CCITT number types 5: 844
common structure 5: 843
Number IE 5: 843

Caller ID 6: 1329, 6: 1331
Caller name 6: 1329, 6: 1331
Calling Party

AT&T numbering plan 5: 860
CCITT number types 5: 846, 5: 860
CCITT numbering plan 5: 846
common structure 5: 845
Number IE 5: 845

Calls
accepting incoming 2: 280
canceling call transfer 2: 394
complete answering 2: 329
complete outgoing 2: 332, 2: 335
completing

call transfer connection 2: 398
completing call transfer 2: 354
completing transfer 2: 327
disconnecting 2: 384
divert incoming 2: 340
finish answering 2: 329
finish diverting 2: 340
finish outbound 2: 332, 2: 335
finish transition from hold state 2: 345
making enquiry 2: 303
monitoring signaling state 2: 317
outgoing 2: 303
placing in hold state 2: 289, 2: 340
rejecting incoming call 2: 293
sending alerting message 2: 301
setting signaling state 2: 321
starting enquiry 2: 303
transferring 2: 303
transition out of hold state 2: 295, 2: 345
turning off loop current detection 2: 407
turning on loop current detection 2: 409
waiting for incoming 2: 400
waiting to detect 2: 347
waiting to detect incoming 2: 400

Canada, dialing requirements 6: 1427
Cancel call transfer 2: 394

Capability, channel transfer 2: 396
CAS protocols 5: 922–5: 992

configuring port 6: 1205–6: 1210
Cause Data common structure 5: 848
Cause IE values 6: 1363
CED wait time 6: 1142
Channel statistics 5: 1059, 5: 1103
Channel-Associated Signaling (CAS) protocols

5: 922–5: 992
configuring port 6: 1205–6: 1210

Channels
available 1: 67
closing 1: 60, 1: 81
finish answering process 2: 329
finish diverting process 2: 340
finish outbound process 2: 332, 2: 335
initializing 1: 65
interrupting active 1: 215
opening 1: 54, 1: 78
resetting 1: 63
retrieving board type 1: 61
retrieving call state 2: 324
retrieving I/O port address 1: 61
transfer capability 2: 396

Checking for
address 1: 50
facility 1: 52

Checksum macro 1: 115
China R2 parameter file 6: 1445
Clear information macro 1: 82
Clearing connected call 2: 287, 2: 342
Clocking

H.1xx configuration 6: 1176
Closing call control library 2: 283, 2: 291
Codeset shifts for IEs 5: 853
Coding standards 5: 856, 5: 1051
Command lines

parsing options 1: 228
Comment

control processor firmware 1: 113
ROM firmware 1: 111

Common structures, BSMI
IISDN_AL_CON_DATA 5: 839
IISDN_CALL_ID 5: 842
IISDN_CALLED_PARTY 5: 843
IISDN_CALLING_PARTY 5: 845
IISDN_CAUSE 5: 848
IISDN_CONNECTED_ADDRESS 5: 851

March 2017 1465

IISDN_IE_STRUCT 5: 853
IISDN_PROGRESS_IND 5: 855
IISDN_Q922_DLCI 5: 858
IISDN_REDIRECT_NUM 5: 859
IISDN_USER_INFO 5: 863

Completing
call answer 2: 329
call diversion 2: 340
call transfer 2: 327, 2: 354
call transfer connection 2: 398
outbound call 2: 332, 2: 335

Compression types for fax transmission 6: 1152
Configuration files 1: 117

btcall.cfg 6: 1140
call control 2: 279, 6: 1158
call control examples 6: 1280–6: 1302
callctrl.cfg 2: 272, 6: 1158
ecc.cfg 2: 272, 6: 1138
teleph.cfg 2: 272, 6: 1138
user-defined 6: 1140

Configuring call control 2: 284, 6: 1158
Configuring Ethernet interface 6: 1272–6: 1276
Configuring IP call control 6: 1233–6: 1277
Configuring IP call control stack 6: 1277
Connected Address

CCITT number types 5: 852
CCITT numbering plan 5: 852
common structure 5: 851

Connecting call transfer 2: 398
Control processor firmware macro 1: 112
Country codes parameter 6: 1143
Country telephone parameter file

BT_CPARM.CFG file 6: 1142, 6: 1417
Country-specific parameters file 1: 117, 6: 1142,

6: 1417
CPU type macro 1: 83
Current, loop

turning off detection 2: 407
turning on detection 2: 409

Custom call progress results
CUSTOM_DIS_CAD0 6: 1413
CUSTOM_DIS_FREQ0 6: 1413
CUSTOM_FREQ0 6: 1412, 6: 1413

Customizing IP call control stack 6: 1245
Czech Republic, dialing requirements 6: 1427

D
Data Link Connection Identifier (DCLI) 5: 837
D-channel

determining Layer 2 status 5: 1060
Primary NFAS D-channel 5: 1112
reporting status 5: 1107

D-channel maintenance 5: 1135
L4L3mDIABLE_PROTOCOL 5: 1135
L4L3mENABLE_PROTOCOL 5: 1135

DCX files
receiving a page 4: 700
sending end-of-page 4: 684
transmitting PCX pages 4: 732

Debug functions 1: 234–1: 238
Debug mode 6: 1144
Debug output, enable 2: 278
Debugging tools 1: 261

API debug mode 1: 234, 1: 237, 1: 239
Call Tracer utility 1: 231

Decoded DCS, DIS, DTC info structures 6: 1344
Denmark, dialing requirements 6: 1428
Destination Millennial address macro 1: 90
Detecting

incoming call 2: 347
ring 2: 297

Detecting loop current 2: 407, 2: 409
Dialing database

blacklisting numbers 2: 420
checking 2: 414
country restrictions 2: 417
reading contents 2: 416
updating/reading 2: 419
using functions 6: 1424

Dialing mode 6: 1155
Dialing phone numbers 2: 369
Direct Inward Dialing (DID)

port configuration 6: 1182
DISCONNECT Q.931 message 5: 1092
Disconnecting call 2: 287, 2: 342, 2: 384
Diverting Call function

BfvCallWaitForDivert 2: 340
Diverting incoming call 2: 340
DLCI

defined 5: 837
format 5: 837
macro example 5: 837
negotiation 5: 858

March 2017 1466

DLL replacing
BT_API_SET_VER 1: 86

dll_... functions 1: 211
DMS-100 switch 5: 1039
DMS-250 switch 5: 1039, 5: 1041
Document parameters infopkt 6: 1383
Downloading firmware 1: 101, 1: 105
DTMF

configuration parameters 6: 1145–6: 1148
disabling detection 3: 503
enabling detection 3: 505
parameters, configuration 6: 1145–6: 1148
tone dialing mode 6: 1155

Dump History Utility 1: 252

E
E1 CAS port configuration 6: 1205
E1 CAS R2 port configuration 6: 1209
E1 QSIG port configuration 6: 1211
ecc.cfg file 2: 272, 6: 1138
Echo Cancellation 3: 525, 3: 531
ECM 6: 1148
Emergency number, JATE 6: 1170
Ending call 2: 287, 2: 342
End-of-page

sending 4: 681
sending for DCX files 4: 684
sending for noninfopkt files 4: 687
sending for TIFF-F files 4: 693

End-of-speech parameter infopkt 6: 1377
Enhanced fax format page infopkt 6: 1385
Enquiry call, placing 2: 303
Ericsson MD-110 switch

switch type 5: 1027
variants supported 5: 1039

Error
BSMI return values 5: 812
correction mode (ECM) 6: 1148, 6: 1149
detection 6: 1316
interrupt macro 1: 263, 1: 264
L3L4m messages defined 5: 1094
message strings 1: 244
multiplication value 6: 1149
reporting codes 5: 1094
threshold values 6: 1150

Error handling functions 1: 244–1: 262

Ethernet interface
configuration parameters 6: 1272–6: 1276

European Community (EC), dialing requirements
6: 1428

Event messages
debug output 2: 278

Examples
BSMI message sequence 5: 815
call control configuration files 6: 1280–6: 1302

F
Facilities Data Link (FDL)

passing LAP-D messages 5: 1025
Facility checking 1: 52
FACILITY Q.931

L4L3mFACILITY_REQUEST 5: 1040
L4L3mFEATURE_REQUEST 5: 1045

Fax
aborting transmission/reception 4: 632
completing reception 4: 673
dialing, sending, receiving, answering 4: 695
dumping history 1: 252, 1: 258
enabling T.30 holdup 4: 751, 4: 757
formatting headers/footers 4: 677
initiating 4: 634, 4: 644
preparing line data structure 4: 648
providing turnaround polling 4: 764
receive DIS, DTS, or DCS 4: 675
receiving a TIFF-F file 4: 702
receiving based on infopkt stream 4: 705
receiving multiple pages 4: 718
receiving remote ID 4: 675
reporting training_complete 4: 764
sending documents based on infopkt stream

4: 720
sending end-of-page 4: 681
sending end-of-page command 4: 671
setting format of received data 4: 741
setting FSK messages 4: 738, 4: 744
setting local IDs 4: 736
setting T.30 parameters 4: 757
switching to voice mode 4: 664
T.38 configuration 6: 1236
transferring G3 pages to infopkt stream 4: 716
transmitting entire page 4: 729

Fax header parameters infopkt 6: 1386

March 2017 1467

FAX_RES parameters 6: 1339
Feature set functions 1: 95–1: 100
Finish

answering call 2: 329
call disconnection 2: 342
diverting call 2: 340
outbound call 2: 332, 2: 335

Firmware
downloaded macro 1: 115
downloading 1: 101, 1: 105
ID macro 1: 115
information macros 4: 767
type macro 1: 115

Flexible billing 5: 1046
Font files

downloading parameters 6: 1151
Fonts

Dialogic supported 4: 666
downloading 4: 664
information macro 4: 767

Frame Relay
common structures 5: 996
DLCI negotiation 5: 858

France, dialing requirements 6: 1428
FSK

data 4: 628
information macros 4: 766
setting up messages 4: 738, 4: 744
signal definitions 4: 629

Function pointer arguments macro 1: 85
Functions

locator directory 1: 34–1: 45

G
Germany, dialing requirements 6: 1429
getopt 1: 228
Global Unique IDentifier (GUID) 6: 1274

H
H.1xx clocking configuration 6: 1176
H.323 IP call control parameters 6: 1246
H0 calls

L4L3mCALL_REQUEST 5: 1003
L4L3mDISABLE_B_CHANNEL 5: 997, 5: 1001,

5: 1014, 5: 1062, 5: 1067

H11 calls
L4L3mCALL_REQUEST 5: 1004
L4L3mDISABLE_B_CHANNEL 5: 997, 5: 1001,

5: 1014, 5: 1062, 5: 1067
Handling alerts

Millennial 1: 92
Hangup codes 6: 1349–6: 1362

API created codes 6: 1362
call placement codes 6: 1350
miscellaneous 6: 1361
phase C codes 6: 1360
receive phase B codes 6: 1357
receive phase D codes 6: 1359
transmit phase A codes 6: 1350
transmit phase B codes 6: 1351
transmit phase D codes 6: 1353

HDLC channels
disabling protocol stack 5: 1017

Headers/footers, setting up 4: 677
High-level call control function

BfvCallReject 2: 293
BfvLineAnswer 2: 357
BfvLineCCProtocolGet 2: 360
BfvLineDialString 2: 363
BfvLineOriginateCall 2: 369
BfvLineTerminateCall 2: 384
BfvLineTransfer 2: 388
BfvLineTransferCancel 2: 394
BfvLineTransferCapabilityQuery 2: 396
BfvLineTransferComplete 2: 398
BfvLineWaitForCall 2: 400
BfvLoopCurrentDetectDisable 2: 407
BfvLoopCurrentDetectEnable 2: 409

History
clearing 1: 246, 1: 248, 1: 250
dumping 1: 252, 1: 258
functions 1: 246–1: 260

Hold state 2: 289, 2: 295, 2: 340, 2: 345
Hong Kong, dialing requirements 6: 1429
Hookflash support, BSMI 5: 951
Host module

reconfiguring call control 2: 291

I
IFD entries

interpreting 4: 780

March 2017 1468

reading in TIFF-F files 4: 775
writing into TIFF-F files 4: 782

IISDN_ABCD_DATA
L3L4mABCD_SIGNAL_DATA 5: 958
L4L3mREQ_ABCD_DATA 5: 945

IISDN_ABCD_SIGNALS
L3L4mABCD_SIGNAL_DATA 5: 958
L3L4mALERTING 5: 901, 5: 961
L4L3mREQ_ABCD_DATA 5: 945

IISDN_AL_CON_DATA 5: 839
L3L4mALERTING 5: 901, 5: 961, 5: 1075
L3L4mCONNECT 5: 912, 5: 972, 5: 1090
L4L3mALERTING_REQUEST 5: 994
L4L3mCONNECT_REQUEST 5: 931, 5: 1011
L4L3mFORCE_CONNECTION_REQUEST

5: 943
IISDN_ANI_DATA

L3L4mANI 5: 1076
IISDN_BCHANNEL_ID

L4L3mDISABLE_B_CHANNEL 5: 1013
L4L3mENABLE_B_CHANNEL 5: 1018
L4L3mENABLE_CAS 5: 939
L4L3mRESTART 5: 1061

IISDN_BOARD_ID
L3L4mBOARD_ID 5: 1082

IISDN_CALL_ID 5: 842
IISDN_CALL_PROC_DATA

L3L4mCALL_PROCEEDING 5: 1084
L4L3mCALL_PROCEEDING_REQUEST 5: 996

IISDN_CALL_REQ_DATA
L4L3mCALL_REQUEST 5: 873, 5: 925, 5: 1000

IISDN_CALLED_PARTY 5: 843
L3L4mSETUP_IND 5: 918, 5: 989
L4L3mCALL_REQUEST 5: 924

IISDN_CALLER_ID_DATA
L3L4mCALLER_ID_DETECTED 5: 963

IISDN_CALLING_PARTY 5: 845
L3L4mSETUP_IND 5: 918, 5: 989
L4L3mCALL_REQUEST 5: 924

IISDN_CAS_SIGNALING_BITS
L3L4mCAS_SIGNALING_BIT_STATUS 5: 905,

5: 965
IISDN_CAS_SIGNALING_BITS_DATA

L3L4mCAS_SIGNALING_BIT_STATUS 5: 905,
5: 965

IISDN_CAUSE 5: 848
L3L4mCLEAR_REQUEST 5: 909, 5: 968
L3L4mDISCONNECT 5: 914, 5: 974

IISDN_CLR_DATA
L3L4mCLEAR_REQUEST 5: 909, 5: 968, 5: 1086
L3L4mCLEAR_WITH_RESTART_REQUEST

5: 1088
L3L4mDISCONNECT 5: 914, 5: 974, 5: 1092
L4L3mCLEAR_REQUEST 5: 1008

IISDN_CONFIG_DATA
L3L4mCONFIGURATION_STATUS 5: 970
L4L3mREQ_ABCD_DATA 5: 945
L4L3mREQ_CONFIGURATION 5: 946
L4L3mSET_CONFIGURATION 5: 948

IISDN_CONNECTED_ADDRESS 5: 851
IISDN_D_CHAN_STAT

L3L4mPROTOCOL_STATUS 5: 1107
IISDN_DIAL_DATA

L4L3mDIAL 5: 933
IISDN_DOWNLOAD_DATA

L3L4mACK_DOWNLOAD 5: 959
IISDN_E1_CAS_R2_DATA

L4L3mENABLE_CAS 5: 939
IISDN_ENA_PROTO_DATA

L4L3mENABLE_PROTOCOL 5: 1021
IISDN_FACILITY_DATA

L4L3mFACILITY_REQUEST 5: 1040
IISDN_HARDWARE_DATA

L4L3mSET_HARDWARE 5: 1065
IISDN_IE_STRUCT 5: 853
IISDN_INFO_DATA

L3L4mINFO_REQUEST 5: 1099
L4L3mINFO_REQUEST 5: 1047

IISDN_JATE_REDIAL
L4L3mJATE_REDIAL 5: 1049

IISDN_l1mode values 5: 1065
IISDN_L2_STATS

L3L4mL2_STATS 5: 1101
IISDN_LEVEL3_CNFG

L3L4mRAW_QDATA 5: 1114
IISDN_LINE_STATUS

L3L4mLINE_STATUS 5: 1104
IISDN_PROGRESS

L3L4mPROGRESS 5: 984, 5: 1106
L4L3mPROGRESS_REQUEST 5: 1051

IISDN_PROGRESS_IND 5: 855
IISDN_Q922_DLCI 5: 858
IISDN_Q931_CNFG

L3L4mCONN_ACT_IND 5: 1091
IISDN_R2_CALL_STATUS

L3L4mSTATUS_IND 5: 990

March 2017 1469

IISDN_R2_INTERREGISTER_PARAMS structure
5: 889

IISDN_RAW_QDATA
L3L4mRAW_DATA 5: 1114

IISDN_REDIRECT_NUM 5: 859
IISDN_RING_STATUS_DATA

L3L4mRING_STATUS 5: 985
IISDN_ROBBED_BIT_DATA

L4L3mCLEAR_REQUEST 5: 927
L4L3mENABLE_CAS 5: 939

IISDN_SETUP_ACK
L4L3mSETUP_ACK_REQUEST 5: 1066

IISDN_SETUP_DATA
L3L4mSETUP_IND 5: 918, 5: 989, 5: 1117

IISDN_SIGNAL_DURATION_DATA
L4L3mTX_HOOKFLASH 5: 951
L4L3mTX_WINK 5: 953

IISDN_UNIVERSAL
L3L4mUNIVERSAL 5: 1123
L4L3mUNIVERSAL 5: 1069

IISDN_UPLOAD_DATA
L3L4mACK_UPLOAD 5: 960

IISDN_USER_INFO 5: 863
L3L4mUSER_INFO 5: 1125
L4L3mUSER_INFO 5: 1073

IISDN1mod values 5: 1023
IISDNacd values 5: 1111
IISDNani values 5: 1076
IISDNbcs values 5: 886, 5: 889, 5: 907, 5: 936, 5: 939,

5: 967, 5: 1078, 5: 1080
IISDNbs values 5: 1120
IISDNcalltyp values 5: 1028, 5: 1117
IISDNcfgtype values 5: 962
IISDNcod values 5: 1051

 5: 849, 5: 856
IISDNdcs values 5: 1112
IISDNdir values 5: 1024
IISDNds values 5: 1107
IISDNdsmsk values 5: 1110
IISDNepcmd values 5: 1023
IISDNfa values 5: 1119
IISDNl1mod values 5: 1024
IISDNl2err values 5: 1108
IISDNl3mod values 5: 1026
IISDNline_type values 5: 1083, 5: 1105
IISDNloc values 5: 1052

 5: 849, 5: 856
IISDNlpds values 5: 1108

IISDNns values 5: 1002, 5: 1118
IISDNnump values

 5: 844, 5: 846, 5: 852, 5: 860
IISDNnumt values 5: 846

 5: 844, 5: 852, 5: 860
IISDNpres values 5: 861

 5: 847
IISDNprog values 5: 857, 5: 1053

 5: 857
IISDNrrsn values

 5: 862
IISDNscr values

 5: 847, 5: 861
IISDNsigtype values 5: 938
IISDNst values 5: 1026
IISDNvar values 5: 1027, 6: 1201, 6: 1224
IISDNvbf values 5: 1044
IISDNvbs values 5: 1081
Inbound call event sequence 5: 898
Incoming call

clearing or refusing 5: 1008
SETUP indication 5: 1117

Incoming call answering 2: 280
Incoming Call function

BfvCallHold 2: 289
BfvCallReject 2: 293
BfvCallRingDetect 2: 297
BfvCallWaitForHold 2: 340
BfvCallWaitForSetup 2: 347

Infopkt functions 3: 594–3: 619
closing current file 3: 595
closing prompt files 3: 616
giving pointer position 3: 599
handling user-defined infopkts 3: 613
opening prompt files 3: 618
opening stream disk files 3: 603
opening streams 3: 605
reading infopkt from stream 3: 601
replacing last infopkt in stream 3: 611
seeking to given offset 3: 597
writing to infopkt streams 3: 609

Infopkt header 6: 1376
Infopkt parameters

ASCII strip infopkt 6: 1381
beginning of page infopkt 6: 1393
document parameters infopkt 6: 1383
end-of-speech parameter infopkt 6: 1377
enhanced fax format page infopkt 6: 1385

March 2017 1470

fax header parameters infopkt 6: 1386
G3 strip infopkt 6: 1387
page parameters infopkt 6: 1389
prompt map infopkt 6: 1378
speech parameters infopkt 6: 1379
T.30 parameters infopkt 6: 1391

Information Elements (IEs)
appending to BSMI messages 5: 853
appending to SMI messages 5: 1070
common structure 5: 853
disabling error checking 5: 1032
locking codeset shifts 5: 853
user IE encoding 5: 1032

INFORMATION Q.931 message 5: 1048
Initialize channel 1: 65
Initializing call control 2: 284
Instant ISDN Software (IISDN) 5: 793
Interface, Ethernet parameters 6: 1272–6: 1276
Internet Aware Fax (IAF) 6: 1151
Internet protocol, see IP 6: 1233
Interrupt overrun status 1: 264
Interrupt processing, aborting 1: 215
IP

call control configuration 6: 1233–6: 1277
configuring 3rd party call control stack 6: 1277
customizing 3rd party call control stack 6: 1245
H.323 protocol parameters 6: 1246
SIP protocol parameters 6: 1245, 6: 1255

Ireland, dialing requirements 6: 1429
ISDN calls

billing change 5: 1081
billing rates 5: 1046
far end disconnect 5: 1093
far end ringing indication 5: 1075
receiving call establishment indication 5: 1090
using L4L3mCALL_REQUEST 5: 1006

ISDN services
call control functions 2: 277

ISDN supplemental messages summary, BSMI
5: 829

Israel, dialing requirements 6: 1430
Italy, dialing requirements 6: 1430
ITU-T switch type supported 5: 1039
ITU-T T.30 fax protocol specification 6: 1349

J
Japan, dialing requirements 6: 1430
JATE redial restriction

configuration 6: 1169, 6: 1170
JATE variant

switch type supported 5: 1039

K
Korea R2 parameter file 6: 1448

L
L3L4 common header 5: 820
L3L4 messages 5: 1075–5: 1125
L3L4mABCD_SIGNAL_DATA

LEC protocol 5: 958
L3L4mACK_DOWNLOAD

LEC protocol 5: 959
L3L4mACK_UPLOAD

LEC protocol 5: 960
L3L4mALERTING 5: 1075

LEC protocol 5: 961
R2 signaling 5: 901

L3L4mANI 5: 1076
L3L4mB_CHANNEL_STATUS 5: 1078
L3L4mBILLING STATUS 5: 1081
L3L4mBOARD_ID 5: 1082
L3L4mCALL 5: 1084
L3L4mCALL_PROC_SENT 5: 1085
L3L4mCALLER_ID_DETECTED

LEC protocol 5: 962
L3L4mCAS_CHAN_BLOCKED

R2 signaling 5: 902
L3L4mCAS_CHAN_UNBLOCKED

R2 signaling 5: 904
L3L4mCAS_SIGNALING_BIT_STATUS

LEC protocol 5: 965
R2 signaling 5: 905

L3L4mCAS_STATUS
R2 signaling 5: 907

L3L4mCLEAR_REQUEST 5: 1086
LEC protocol 5: 968
R2 signaling 5: 909

L3L4mCLEAR_WITH_RESTART_REQUEST
5: 1088

March 2017 1471

L3L4mCONFIGURATION_STATUS
LEC protocol 5: 970

L3L4mCONN_ACK_IND 5: 1091
LEC protocol 5: 971
R2 protocol 5: 911
R2 signaling 5: 911

L3L4mCONNECT 5: 1090
LEC protocol 5: 972
R2 signaling 5: 912

L3L4mD_CHANNEL_STATUS 5: 1092
L3L4mDISCONNECT 5: 1092

LEC protocol 5: 973
R2 signaling 5: 913

L3L4mERROR 5: 1094
message definitions 5: 1094
R2 signaling 5: 915

L3L4mINFO_REQUEST 5: 1099
L3L4mLINE_STATUS 5: 1104
L3L4mLOOP_ON

LEC protocol 5: 980
L3L4mLOOP_REVERSAL

LEC protocol 5: 982
L3L4mPRE_SEIZE

LEC protocol 5: 983
R2 signaling 5: 917

L3L4mPROGRESS 5: 1106
LEC protocol 5: 984

L3L4mPROTOCOL_STATUS 5: 1107
L3L4mRAW_QDATA 5: 1114
L3L4mRESTART 5: 1116

B-channel maintenance 5: 1130
L3L4mRING_STATUS

LEC protocol 5: 985
L3L4mRX_WINK

LEC protocol 5: 987
L3L4mSEIZE_COMP

LEC protocol 5: 988
L3L4mSETUP_IND 5: 1117

LEC protocol 5: 989
L3L4mSTATUS_IND 5: 1122

LEC protocol 5: 990
L3L4mTX_HOOKFLASH_END

LEC protocol 5: 991
L3L4mTXWINK_END

LEC protocol 5: 992
L3L4mUNIVERSAL 5: 1123
L3L4mUSER_INFO 5: 1125
L4 reference value 5: 834

L4L3 common header 5: 820
L4L3 messages 5: 994–5: 1073
L4L3mALERTING_REQUEST 5: 994
L4L3mCALL_PROCEEDING 5: 1084
L4L3mCALL_PROCEEDING_REQUEST 5: 996
L4L3mCALL_REQUEST 5: 1000

LEC protocol 5: 924
R2 signaling 5: 873

L4L3mCAS_CHAN_BLOCK
R2 signaling 5: 876

L4L3mCAS_CHAN_UNBLOCK
R2 signaling 5: 878

L4L3mCLEAR_REQUEST 5: 1008
LEC protocol 5: 927
R2 signaling 5: 880

L4L3mCOLLECT_DIGITS
LEC protocol 5: 929
R2 Signaling 5: 882

L4L3mCONNECT_REQUEST 5: 884
LEC protocol 5: 931

L4L3mDIAL
LEC protocol 5: 933

L4L3mDISABLE_B_CHANNEL 5: 1013
B-channel maintenance 5: 1129

L4L3mDISABLE_CAS
LEC protocol 5: 936
R2 signaling 5: 886

L4L3mDISABLE_D_CHANNEL 5: 1017
L4L3mDISABLE_PROTOCOL

D-channel maintenance 5: 1135
L4L3mENABLE_B_CHANNEL 5: 1018
L4L3mENABLE_CAS

LEC protocol 5: 938
R2 signaling 5: 888

L4L3mENABLE_PROTOCOL 5: 1021
command mode 5: 1023
D-channel maintenance 5: 1135

L4L3mEND_DIAL
LEC protocol 5: 941

L4L3mFACILITY_REQUEST 5: 1040
L4L3mFEATURE_REQUEST 5: 1043
L4L3mFORCE_CONNECTION_REQUEST

LEC protocol 5: 943
L4L3mINFO_REQUEST 5: 1047
L4L3mJATE_REDIAL 5: 1049
L4L3mPROGRESS_REQUEST 5: 1051
L4L3mREQ_ABCD_DATA

LEC protocol 5: 945

March 2017 1472

R2 signaling 5: 893
L4L3mREQ_CONFIGURATION

LEC protocol 5: 946
L4L3mREQ_L2_STATS 5: 1058
L4L3mREQ_LINE_STATUS 5: 1057
L4L3mREQ_PROTOCOL_STATUS 5: 1060
L4L3mRESTART 5: 1061

B_channel maintenance 5: 1129
L4L3mSET_CAS_SIGNALING_BITS

LEC protocol 5: 948
R2 signaling 5: 894

L4L3mSET_CONFIGURATION
LEC protocol 5: 948

L4L3mSET_HARDWARE 5: 1065
L4L3mSETUP_ACK_REQUEST 5: 1066
L4L3mTX_HOOKFLASH

LEC protocol 5: 950
L4L3mTX_WINK

LEC protocol 5: 952
L4L3mUNIVERSAL 5: 1069
L4L3mUSER_INFO 5: 1073
Layer 2 statistics 5: 1058, 5: 1101
LEC protocol

common fields 5: 956
LEC protocols 5: 922–5: 992

analog configuration 6: 1187
E1 CAS configuration 6: 1207
T1 RBS configuration 6: 1184, 6: 1230

Line administration and initialization functions
1: 50–1: 81

Line characteristics, analog DID 6: 1183
Line data structure

preparing for TIFF-F files 4: 656
preparing for transmission 4: 651

Line firmware macros 1: 113–1: 115
Line information macro 1: 82, 1: 83, 3: 592
Line pointer information macro 1: 84
Line state

BTLINE structure 1: 47
LINE_ALERT_CTL macro 1: 84
LINE_AOC_INFO macro 2: 477
LINE_API_VER_LOADED() macro 1: 88
LINE_APP_ADDR macro 1: 90
LINE_CONFIG_STRUCT macro 1: 86
LINE_CPU_TYPE macro 1: 83
LINE_DCS macro 4: 766
LINE_DEST_ADDR macro 1: 90
LINE_DIS_DTC macro 4: 766

LINE_DRIVER_VER_LOADED macro 1: 89
LINE_ERR_INTR_DATA macro 1: 263
LINE_ERR_INTR_DATA_SIZE macro 1: 264
LINE_ERR_INTR_INTR_MSG macro 1: 263
LINE_ERROR_INTR macro 1: 263
LINE_FAX_RES macro 4: 767
LINE_FAX_T30_RCV_MCF_FSK macro 4: 767
LINE_FIRM_BITRATE macro 4: 767
LINE_FIRM_BOOT_ROM_AUTO_NUM macro

1: 111
LINE_FIRM_BOOT_ROM_BUILD macro 1: 111
LINE_FIRM_BOOT_ROM_COMMENT macro

1: 111
LINE_FIRM_BOOT_ROM_DATE macro 1: 111
LINE_FIRM_BOOT_ROM_MAJOR macro 1: 111
LINE_FIRM_BOOT_ROM_MIDDLE macro 1: 111
LINE_FIRM_BOOT_ROM_MINOR macro 1: 111
LINE_FIRM_CHECKSUM macro 1: 114
LINE_FIRM_CHK_OK macro 1: 115
LINE_FIRM_CTRL_PROC_AUTO_NUM macro

1: 112
LINE_FIRM_CTRL_PROC_BUILD macro 1: 112
LINE_FIRM_CTRL_PROC_COMMENT macro

1: 113
LINE_FIRM_CTRL_PROC_DATE macro 1: 112
LINE_FIRM_CTRL_PROC_MAJOR macro 1: 112
LINE_FIRM_CTRL_PROC_MIDDLE macro 1: 112
LINE_FIRM_CTRL_PROC_MINOR macro 1: 112
LINE_FIRM_DATE macro 1: 114
LINE_FIRM_DOWNLOADED macro 1: 115
LINE_FIRM_DSP_AUTO_NUM macro 1: 114
LINE_FIRM_DSP_BUILD macro 1: 113
LINE_FIRM_DSP_COMMENT macro 1: 114
LINE_FIRM_DSP_DATE macro 1: 114
LINE_FIRM_DSP_MAJOR macro 1: 113
LINE_FIRM_DSP_MIDDLE macro 1: 113
LINE_FIRM_DSP_MINOR macro 1: 113
LINE_FIRM_ID macro 1: 115
LINE_FIRM_MAJOR macro 1: 114
LINE_FIRM_MIDDLE macro 1: 114
LINE_FIRM_MINOR macro 1: 114
LINE_FIRM_NUM_DSPS macro 1: 113
LINE_FIRM_TYPE macro 1: 115
LINE_FONT_DOWNLOADED macro 4: 767
LINE_HAS_CAP macro 1: 83, 3: 592
LINE_INCOMING_CMD_FUNC macro 1: 91
LINE_INTR_OVERRUN macro 1: 264
LINE_PAGE_COMPLETE_ARG macro 4: 768

March 2017 1473

LINE_PAGE_COMPLETE_FUNC macro 4: 768
LINE_PAGE_CT macro 4: 768
LINE_PHONE_STRUCT macro 1: 86
LINE_PRIVATE_USER_DATA macro 1: 84
LINE_SET_INCOMING_CMD FUNC macro 1: 92
LINE_SET_PAGE_COMPLETE_FUNC macro

4: 768
LINE_SRC_ADDR macro 1: 90
LINE_STATE macro 1: 82
LINE_TYPE macro 1: 83
LINE_UNIT_NUM macro 1: 83
LINE_VAD_BYTES_PROCESSED macro 3: 592
LINE_VAD_STATE macro 3: 592
Link Layer 2 information 5: 1110
Loaded driver version macro 1: 89
Local Access and Transport Area (LATA) 5: 919
Local Exchange Carriers (LEC) 5: 919
Local ID string parameters 6: 1151, 6: 1152
Locking codeset shifts for IEs 5: 853
Logical Link ID, defined 5: 837
Loop current

turning off detection 2: 407
turning on detection 2: 409

Loop start, analog
port configuration 6: 1185

Low-level call control function
BfvCallCtrlClose 2: 283
BfvCallCtrlInit 2: 284
BfvCallDisconnect 2: 287
BfvCallHold 2: 289
BfvCallReconfigureHostModule 2: 291
BfvCallReject 2: 293
BfvCallRetrieve 2: 295
BfvCallRingDetect 2: 297
BfvCallSendAlerting 2: 301
BfvCallSetup 2: 303
BfvCallStatus 2: 324
BfvCallTransferComplete 2: 327
BfvCallWaitForAccept 2: 329
BfvCallWaitForAlerting 2: 332
BfvCallWaitForComplete 2: 335
BfvCallWaitForHold 2: 340
BfvCallWaitForRelease 2: 342
BfvCallWaitForRetrieve 2: 345
BfvCallWaitForSetup 2: 347
BfvCallWaitTransferComplete 2: 354

Low-level packet sending function 1: 212
LP_BOARD_SLOT macro 1: 84

LP_CPU_NUM macro 1: 84

M
Macros

administration and initialization 1: 82, 2: 477
firmware 1: 111
Millennial low-level 1: 90
TIFF 4: 789
VAD 3: 592

Malaysia, dialing requirements 6: 1431
Management messages summary, BSMI 5: 821
MD-110 5: 1039
Memory allocation 1: 218
Mexico R2 parameter file 6: 1451
MF tones mapping 3: 506
MILL_API_BUILD_NUM macro 1: 87
MILL_BUILD_NUM macro 1: 88
MILL_DRIVER_VERSION macro 1: 88
MILL_V1 macro 1: 88
MILL_V3 macro 1: 89
MILL_V4 macro 1: 89
MILL_VER_NUM macro 1: 88
Millennial environment macro 1: 86
Millennium commands function macro 1: 91
Miscellaneous message summary, BSMI 5: 829
MOD_BOARD_SLOT macro 1: 83
MOD_CPU_NUM macro 1: 83
Modem calls 5: 1117
Module configuration 6: 1166
Module information 1: 71
Module number information macro 1: 83
Monitoring call signaling state 2: 317
Multibyte storage formats macros 1: 85

N
Name, caller 6: 1329, 6: 1331
National ISDN-1 variant, switch type supported

5: 1039
National ISDN-2 variant

switch type supported 5: 1039
NET-5 variant

standard 5: 1027, 6: 1201, 6: 1224
switch type supported 5: 1039

Netherlands, dialing requirements 6: 1431
Network side

March 2017 1474

emulation 5: 1030
signaling 5: 1024

New Zealand, dialing requirements 6: 1431
Non-Facilities Associated Signaling (NFAS)

 5: 997, 5: 1003, 5: 1014, 5: 1062
configuring a D-channel 5: 1030
D-channel backup 5: 1113

Noninfopkt raw files
initiating 4: 639
opening/reading/transferring specified files 4: 726
preparing line data structure 4: 651
receiving G3 pages 4: 709
receiving noninfopkt fax page to a file 4: 713
sending end-of-page 4: 687
sending strip parameters 4: 747
separating data strips 4: 747
setting page parameters 4: 693
transferring ASCII/G3 data 4: 724

Nortel
Custom variant 5: 1039
DMS-100 switch 5: 1039
DMS-250 switch 5: 1026, 5: 1039
services 5: 1002, 5: 1118

Norway, dialing requirements 6: 1432
NTT switch type 5: 1039
Number of DSPs macro 1: 113
Numbering conventions

LEC protocols 5: 921
R2 signaling 5: 866

O
On-hook state 2: 384
Originating number (ANI) 5: 1076
Outbound call event sequence 5: 899
Outgoing call

initiating using SETUP 5: 1000
progress indication 5: 1106
setting signaling state 2: 321
setting up 2: 303

Outgoing Call function
BfvCallSetup 2: 303
BfvCallWaitForComplete 2: 335

P
Packets

receiving and processing 1: 221
Page completion information macros 4: 768
Page number, resetting 4: 678
Page parameters

infopkt 6: 1389
maximum amount to store 6: 1152
maximum page width 6: 1152
minimum number of lines 6: 1153
recording in infopkt stream 4: 708
setting 4: 693
specifying results from mismatching 6: 1157

Page resolution
fax reception 6: 1154
in TIFF-F files 4: 787

Page Result structure parameters 6: 1334
PAGE_RES parameters 6: 1334
Parameters

analog DID call control 6: 1182
analog DID line characteristics 6: 1183
analog loop start call control 6: 1185
BRI call control 6: 1189
call control configuration 6: 1158–6: 1277
country-specific 6: 1417
customizing IP call control stack 6: 1245
E1 CAS call control 6: 1205
E1 CAS R2 call control 6: 1209
E1 ISDN call control 6: 1197
E1 QSIG call control 6: 1211
Ethernet interface 6: 1272–6: 1276
IP call control configuration 6: 1233–6: 1277
port configuration 6: 1178–6: 1184, ??–6: 1231
predefined H.323 IP protocol 6: 1246
predefined SIP IP protocol 6: 1245, 6: 1255
T.38 fax configuration 6: 1236
T1 ISDN call control 6: 1220
T1 RBS call control 6: 1228

Phase C codes 6: 1360
Placing

line on-hook 2: 384
outgoing call 2: 303

Polling variations 4: 695
Port configuration 6: 1178–6: 1184, ??–6: 1231
pragma pack, see Chapter 1
Predefined H.323 parameters 6: 1246
Predefined SIP parameters 6: 1245, 6: 1255
Primary Rate (PRI)

variants supported 5: 1038
Procedure interrupt macros 4: 768

March 2017 1475

Progress Indication common structure 5: 855
PROGRESS Q.931 5: 1106

L3L4mCONNECT 5: 1090
L4L3mPROGRESS_REQUEST 5: 1051

Prompt files
closing 3: 616
opening 3: 618
playing phrases 3: 521

Prompt map infopkt 6: 1378
Protocol variants 6: 1201, 6: 1224
Pulse dialing mode 6: 1155

Q
Q.931 Layer 3 protocol timers 5: 1029
Q.931 messages

ALERTING 5: 1075, 5: 1090
B-channel maintenance 5: 1128
CALL PROCEEDING 5: 999, 5: 1121
CONNECT 5: 1090
DISCONNECT 5: 1092
FACILITY 5: 1045
INFORMATION 5: 1048
PROGRESS 5: 1055, 5: 1090, 5: 1106
raw data 5: 1114
REGISTER 5: 1070
RELEASE 5: 1087
RELEASE COMPLETE 5: 1070, 5: 1087
RESTART 5: 1063, 5: 1089, 5: 1113, 5: 1116
RESTART ACK 5: 1089
SERVICE 5: 1020, 5: 1080

 5: 1020
SERVICE ACK 5: 1015, 5: 1020, 5: 1080
SETUP 5: 1000, 5: 1121
SETUP ACKNOWLEDGE 5: 1068
STATUS 5: 1122

Q.931 protocol errors 5: 1122
Q.933 DLCI Negotiation common structure 5: 858
Query, transfer capability 2: 396

R
R2 parameter file

Argentina 6: 1435
Brazil 6: 1438
China 6: 1445
configuring for port use 6: 1210

Korea 6: 1448
Mexico 6: 1451

R2 protocol
inbound call event sequence 5: 898
message summary 5: 865
module to host events 5: 896, 5: 954
numbering conventions 5: 866
outbound call event sequence 5: 899

Rate adaption value 5: 1024
Raw Q.931 message 5: 1031, 5: 1114
Receive phase B codes 6: 1357
Receive phase D codes 6: 1359
Receiving and processing packets 1: 221
Reconfiguring host module 2: 291
Redial restriction, JATE 6: 1169, 6: 1170
Redirecting Number common structure 5: 859
Rejecting incoming call 2: 293
Release Link Trunk (RLT) signaling 2: 327, 2: 391,

2: 395, 2: 399, 2: 438, 2: 469, 5: 1041,
6: 1227

Releasing a call 2: 342
RES structure parameters 6: 1325
RESTART ACK Q.931 message 5: 1089
Result structures 6: 1321–6: 1347

CALL_RES parameters 6: 1329
decoded DCS, DIS, DTC info structures 6: 1344
FAX_RES parameters 6: 1339
file location 6: 1321
Page result structure parameters 6: 1334
PAGE_RES parameters 6: 1334
RES structure parameters 6: 1325

Retrieving
calling party 2: 394
channel call state 2: 324

Return of error message strings 1: 244
Reverse

long byte order 1: 85
short byte order 1: 85

Ring detection 2: 297

S
SABME message 5: 1025, 5: 1110
Send Alerting message 2: 301
Service Access Point Identifier (SAPI) 5: 837
SERVICE Q.931 message 5: 1018
Session Millennial address macro 1: 90

March 2017 1476

Sessions, closing 1: 81
Setting call signaling state 2: 321
Setting ring detection 2: 297
Setting state to on-hook 2: 384
Setting variables 1: 224
Shutting down call control 2: 283, 2: 291
Siemens switch

switch type 5: 1027
variants supported 5: 1039

Signal detection and generation
function details 3: 482–3: 502
function summary 3: 481

Signaling state
monitoring inbound call 2: 317
setting for outbound call 2: 321

Singapore, dialing requirements 6: 1432
SIP IP call control parameters 6: 1245, 6: 1255
Software Defined Network (SDN) 5: 1118
Source Millennial address macro 1: 90
Spain, dialing requirements 6: 1432
Special information tones 6: 1410

SITINTC 6: 1410
SITNOCIR 6: 1410
SITREORD 6: 1411
SITVACODE 6: 1411

Speech
initial gain value for playback 6: 1155
modifying properties 3: 525
parameters infopkt 6: 1379
playing from infopkt stream 3: 531
playing from prompt files 3: 521
playing raw speech data 3: 534, 3: 541
playing speech from a wave file 3: 547
recording in infopkt format 3: 551
recording raw data 3: 574
recording raw speech data 3: 564
recording speech 3: 583
voice encoding settings 3: 549, 3: 557, 3: 561,

3: 570, 3: 580, 3: 588
Speed control 3: 529
Stack to application events 5: 896, 5: 954
Starting outgoing call 2: 303
Status function

BfvCallStatus 2: 324
Storage formats macros 1: 85
Strip parameters

sending 4: 747
Structure packing, see Chapter 1

Switch to voice mode 4: 671
Switch type 5: 1026

variant matrix 5: 1038
switch type supported 5: 1039
Switzerland, dialing requirements 6: 1433

T
T.30

enabling holdup 4: 751
infopkt 6: 1391
interrupt macro 4: 768
ITU-T fax specification 6: 1349
negotiation holdup 4: 753
setting bit rate/scan time 4: 757

T.38 Fax transport parameters 6: 1236
T1 ISDN

port configuration 6: 1220
T1 Robbed Bit

port configuration 6: 1228
TBR 4 standard

boards approved 6: 1428
teleph.cfg file 2: 272, 6: 1138
Telephony functions 1: 163–1: 168
Terminal Endpoint Identifier (TEI) 5: 837
Terminating call 2: 287, 2: 342
Third party IP call control stack

configuring custom parameters 6: 1245
configuring for module use 6: 1277
predefined H.323 parameters 6: 1246–6: 1250
predefined SIP parameters 6: 1255–6: 1267
rereading configuration file 2: 291

TIFF_FP macro 4: 789
TIFF-F files

file pointer macro 4: 789
initiating when polling is required 4: 659
interpreting IFD entries 4: 780
opening 4: 773
preparing line data structure 4: 656
reading IFD 4: 775
reading image data 4: 778
sending 4: 690
transferring G3 data 4: 702
transmitting pages from 4: 734
writing IFD of current page 4: 782
writing image data 4: 785
writing page resolution data 4: 787

March 2017 1477

Timeout values 6: 1152
Timers

Layer 2 timers 5: 1026, 5: 1027, 6: 1201, 6: 1224
Tone detection

function details 3: 503–??
function summary 3: 481

Tones
available for next call 3: 518
backing up more than one tone 3: 518
discarding 3: 508
DTMF dialing mode 6: 1155
generating/playing groups 3: 485
generating/playing patterns 3: 485
next in buffer 3: 511
playing for specified time 3: 513
playing single frequency 3: 515
removing tones from toner buffer 3: 509

Tool, Call Tracer 1: 231
TR series boards, approvals 6: 1415
Trace options, configuring call control 6: 1164
Tracer utility, Call 1: 231
Transfer

canceling call 2: 394
channel capability 2: 396
completing call connection 2: 398

Transfer call completion 2: 327
transfer_variant values 6: 1188, 6: 1196, 6: 1203,

6: 1208, 6: 1219, 6: 1227, 6: 1231
Transferring call 2: 303, 2: 388
Transition

out of hold state 2: 295, 2: 345
to hold state 2: 289, 2: 340

Transmission priority 5: 1025
Transmit codes

phase A 6: 1350
phase B 6: 1351
phase D 6: 1353

TS014 variant 5: 1039
Turkey, dialing requirements 6: 1433

U
Undecoded Q.931 packets 5: 1114
United Kingdom, dialing requirements 6: 1433
United States, dialing requirements 6: 1434
Unknown switch type 5: 1039
User Info common structure 5: 863

User-defined configuration file 1: 63, 1: 117, 2: 279,
6: 1140

file location 6: 1141
keywords 6: 1141
parameters 6: 1141

User-side ISDN signaling 5: 1024
User-user IE 5: 863
USES_FAT_FILESYSTEM macro 1: 85
Utility Function messages summary, BSMI 5: 830
Utility, Call Tracer 1: 231

V
V.110 calls 5: 1003
Variabill feature 5: 1081
Variables, setting 1: 224
Variants

call transfer 6: 1188, 6: 1196, 6: 1203, 6: 1208,
6: 1219, 6: 1227, 6: 1231

protocol 6: 1201, 6: 1224
Version information macros 1: 86, 1: 87, 1: 88
VN3 France variant 5: 1027, 6: 1201
VN3 variant, supported switch types 5: 1039
Voice Activity Detection (VAD) 3: 555, 3: 568, 3: 578,

3: 586
Voice encoding settings 3: 549, 3: 557, 3: 561, 3: 570,

3: 580, 3: 588
Voice mode, switching 4: 671
Voice play and record

function details 3: 521–3: 591
function summary 3: 520

Volume control 3: 529

W
Wait time 2: 422
Waiting

for answer to outbound call 2: 335
to clear call 2: 342
to complete call holding process 2: 340
to detect incoming call 2: 347, 2: 400
to finish answering call 2: 329
to finish establishing or dialing outbound 2: 332

Wink support, BSMI 5: 953

	Dialogic Brooktrout Bfv APIs Reference Manual
	Contents
	About this Publication
	Related Documents
	Terminology
	Updated Terminology

	Getting Technical Support

	Volume 1 - Administration, Management, and Configuration
	1 - Bfv API Overview
	Using Structure Packing
	Using Bfv API Function Argument Structures
	Supported Arguments
	Configuring Call Control
	Bfv API Function Locator

	2 - Administration and Initialization
	The BTLINE Structure
	Function Summary
	BfvCheckAddress
	BfvCheckFacility
	BfvLineAttach
	BfvLineConfig
	BfvLineDetach
	BfvLineInfo
	BfvLineReset
	BfvLinesAvail
	BfvModuleDeactivate
	BfvModuleInfo
	BfvSessionAttach
	BfvSessionDetach
	Macros
	Low-Level Macros

	Handling Alerts

	3 - Firmware
	Function Summary
	BfvFeatureSetDownload
	BfvFeatureSetDownloadData
	BfvFeatureSetQuery
	BfvFirmwareDownload
	BfvFirmwareDownloadData
	BfvModuleConfigSpecsGet
	Macros

	4 - Configuration
	Configuration Files
	Function Summary
	BfvCallSWClearConns
	BfvCallSWConnect
	BFVCallSWConnectIP
	BfvCallSWGetConns
	BfvCallSWGetInfo
	BfvNetworkConfigGet
	BfvNetworkConfigSet
	BfvNetworkQuery
	BfvTelephGetInfo
	BfvTelephReset
	BfvTelephSave

	5 - Status and Monitoring
	Function Summary
	BfvBoardNotify
	BfvBoardStateGet
	BfvBoardStateSet
	BfvBoardTemperatureGet
	BfvBoardTemperatureThreshSet
	BfvBoardTest
	BfvIPCallControlNotify
	BfvRtpEventControl
	BfvRtpEventGet
	BfvRtcpReportSend

	6 - Miscellaneous Functions
	Function Summary
	dll...
	BfvGetVar
	BfvLineAlert
	BfvMemAllocFuncsSet
	BfvRcvProcessPkt
	BfvSetSingleVar
	getopt

	7 - Debugging, Error Handling and Return Values
	Structures and Return Values
	Function Summary
	BfvDebugFuncSet
	BfvDebugInitData
	BfvDebugModeSet
	BfvDebugModeSetAdv
	BfvErrorMessage
	BfvHistoryClear
	BfvHistoryClearModChan
	BfvHistoryClearUnit
	BfvHistoryDump
	BfvHistoryDumpModChan
	BfvHistoryDumpUnit
	BfvLineDumpStructure
	Macros
	RES Structure Parameters

	Volume 2 - Bfv-Level Call Control and Call Switching
	9 - Call Control Overview
	Bfv-Level Call Control
	BSMI-Level Call Control

	10 - Bfv-Level Call Control
	About Bfv API-Level Call Control
	Bfv API High-Level Call Control Summary
	Bfv API Low-Level Call Control Summary
	Bfv API Protocol-Specific Call Control Function Summary
	ISDN Services Call Control Summary
	Call Control Configuration File
	BfvCallAccept
	BfvCallCtrlClose
	BfvCallCtrlInit
	BfvCallDisconnect
	BfvCallHold
	BfvCallReconfigureHostModule
	BfvCallReject
	BfvCallRetrieve
	BfvCallRingDetect
	BfvCallSendAlerting
	BfvCallSetup
	BfvCallSignalingStateMonitor
	BfvCallSignalingStateSet
	BfvCallStatus
	BfvCallTransferComplete
	BfvCallWaitForAccept
	BfvCallWaitForAlerting
	BfvCallWaitForComplete
	BfvCallWaitForHold
	BfvCallWaitForRelease
	BfvCallWaitForRetrieve
	BfvCallWaitForSetup
	BfvCallWaitTransferComplete
	BfvLineAnswer
	BfvLineCCProtocolGet
	BfvLineDialString
	BfvLineOriginateCall
	BfvLineTerminateCall
	BfvLineTransfer
	BfvLineTransferCancel
	BfvLineTransferCapabilityQuery
	BfvLineTransferComplete
	BfvLineWaitForCall
	BfvLoopCurrentDetectDisable
	BfvLoopCurrentDetectEnable

	11 - Dialing Database Functions
	Dialing Database Function Call Summary
	BfvDialDBCheck
	BfvDialDBList
	BfvDialDBUpdate
	BfvLineOrigCallDB

	12 - Data Structures
	Low-Level Call Control (args_cc)
	Fields in the args_cc Data Structure

	Functions Using the args_cc Structure
	High-Level Call Control (args_telephone)
	Macros

	Volume 3 - Media Processing
	14 - Signal Generation and Detection
	Signal Generation/Detection Function Summary
	BfvCPGen
	BfvCPGenAdv
	BfvDataCP
	BfvLineCallProgressDisable
	BfvLineCallProgressEnable
	BfvLineCallProgressProgram
	BfvToneDetectDisable
	BfvToneDetectEnable
	BfvToneFlush
	BfvToneGet
	BfvTonePeek
	BfvTonePlay
	BfvTonePlayBeep
	BfvToneUnget

	15 - Voice Play and Record
	Voice Play and Record Function Summary
	BfvPromptPlay
	BfvSpeechEchoCancelControl
	BfvSpeechModify
	BfvSpeechPlay
	BfvSpeechPlayData
	BfvSpeechPlayFile
	BfvSpeechPlayWave
	BfvSpeechRecord
	BfvSpeechRecordData
	BfvSpeechRecordFile
	BfvSpeechRecordWave
	Macros

	16 - Infopkt File Functions
	InfoPkt Function Summary
	BfvInfopktClose
	BfvInfopktFseek
	BfvInfopktFtell
	BfvInfopktGet
	BfvInfopktOpen
	BfvInfopktOpenMem
	BfvInfopktPut
	BfvInfopktUnget
	BfvInfopktUser
	BfvPromptClose
	BfvPromptOpen

	Volume 4 - Fax Processing
	18 - Fax Overview
	19 - Fax Functions
	Fax Function Summary
	BfvDataFSK
	BfvFaxAbort
	BfvFaxBegin
	BfvFaxBeginRaw
	BfvFaxBeginReceive
	BfvFaxBeginSend
	BfvFaxBeginSendRaw
	BfvFaxBeginSendTiff
	BfvFaxBeginTiff
	BfvFaxDownloadFont
	BfvFaxDownloadFontData
	BfvFaxEndOfDocument
	BfvFaxEndReception
	BfvFaxGetRemoteInfo
	BfvFaxHeader
	BfvFaxNextPage
	BfvFaxNextPageDCX
	BfvFaxNextPageRaw
	BfvFaxNextPageTiff
	BfvFaxPageParams
	BfvFaxPoll
	BfvFaxRcvPageDCX
	BfvFaxRcvPageTiff
	BfvFaxReceive
	BfvFaxReceiveData
	BfvFaxReceiveFile
	BfvFaxReceivePage
	BfvFaxReceivePages
	BfvFaxSend
	BfvFaxSendData
	BfvFaxSendFile
	BfvFaxSendPage
	BfvFaxSendPageDCX
	BfvFaxSendPageTiff
	BfvFaxSetLocalId
	BfvFaxSetNSF
	BfvFaxSetReceiveFmt
	BfvFaxSetSubPwdSep
	BfvFaxStripParams
	BfvFaxT30Holdup
	BfvFaxT30Params
	BfvFaxT4TimerParams
	BfvFaxWaitForTraining
	Macros

	20 - TIFF-F Files Functions
	TIFF-F Files Function Summary
	BfvTiffClose
	BfvTiffOpen
	BfvTiffReadIFD
	BfvTiffReadImage
	BfvTiffReadRes
	BfvTiffWriteIFD
	BfvTiffWriteImage
	BfvTiffWriteRes
	Macros

	Volume 5 - BSMI-Level Call Control and Call Switching
	22 - BOSTON Simple Message Interface (BSMI)
	BSMI Installation
	BSMI Function Summary
	BsmiClearVtty
	BsmiCloseAdapter
	BsmiControlRead
	BsmiControlWrite
	BsmiLineAlert
	BsmiModuleList
	BsmiOpenAdapter
	BsmiResetAdapter
	BsmiSetVtty
	BsmiVttyRead
	BsmiVttyWrite
	Error Return Values
	Firmware Download
	BSMI Use Examples
	Initialization and BSMI Message Sequence
	BRI Protocol Stack Initialization

	23 - BSMI General Message Structure
	BSMI Message Naming Convention
	BSMI Control Messages by Category
	Management Messages
	Call Control Messages
	ISDN Supplemental and Miscellaneous Messages

	L4L3 Message Common Header
	L3L4 Message Common Header
	L4 Reference and Call Reference
	L4 Reference Value
	Call Reference Value
	Relationship between L4 Reference and Call Reference
	Logical Link ID or DLCI

	Common Structures
	Alerting and Connecting Data Message (IISDN_AL_CON_DATA)
	Call ID (IISDN_CALL_ID)
	Called Party (IISDN_CALLED_PARTY)
	Calling Party (IISDN_CALLING_PARTY)
	Cause Data (IISDN_CAUSE)
	Connected Address (IISDN_CONNECTED_ADDRESS)
	Information Element (IISDN_IE_STRUCT)
	Progress Indication (IISDN_PROGRESS)
	Q.933 DLCI Negotiation (IISDN_Q922_DLCI)
	Redirecting Number (IISDN_REDIRECT_NUM)
	User Info (IISDN_USER_INFO)

	24 - R2 Signaling Protocol with BSMI
	Application to Stack (Host to Module) Messages
	Numbering Conventions
	Arguments

	R2 Signaling L4L3 Messages
	L4L3mALERTING_REQUEST
	L4L3mCALL_PROCEEDING_REQUEST
	L4L3mCALL_REQUEST
	L4L3mCAS_CHAN_BLOCK
	L4L3mCAS_CHAN_UNBLOCK
	L4L3mCLEAR_REQUEST
	L4L3mCOLLECT_DIGITS
	L4L3mCONNECT_REQUEST
	L4L3mDISABLE_CAS
	L4L3mENABLE_CAS
	L4L3mINFO_REQUEST
	L4L3mREQ_ABCD_DATA
	L4L3mSET_CAS_SIGNALING_BITS
	Stack to Application (Module to Host) Messages
	Normal Event Sequence
	Inbound Calls
	Outbound Calls

	R2 Signaling L3L4 Messages
	L3L4mALERTING
	L3L4mCAS_CHAN_BLOCKED
	L3L4mCAS_CHAN_UNBLOCKED
	L3L4mCAS_SIGNALING_BIT_STATUS
	L3L4mCAS_STATUS
	L3L4mCLEAR_REQUEST
	L3L4mCONN_ACK_IND
	L3L4mCONNECT
	L3L4mDISCONNECT
	L3L4mERROR
	L3L4mPRE_SEIZE
	L3L4mSETUP_IND

	25 - LEC Protocols with BSMI
	Application to Stack (Host to Module) Messages
	Numbering Conventions
	Arguments

	LEC Signaling L4L3 Messages
	L4L3mCALL_REQUEST
	L4L3mCLEAR_REQUEST
	L4L3mCOLLECT_DIGITS
	L4L3mCONNECT_REQUEST
	L4L3mDIAL
	L4L3mDISABLE_CAS
	L4L3mENABLE_CAS
	L4L3mEND_DIAL
	L4L3mFORCE_CONNECTION_REQUEST
	L4L3mREQ_ABCD_DATA
	L4L3mREQ_CONFIGURATION
	L4L3mSET_CONFIGURATION
	L4L3mTX_HOOKFLASH
	L4L3mTX_WINK
	Stack to Application (Module to Host) Messages
	LEC Signaling L3L4 Messages
	L3L4mABCD_SIGNAL_DATA
	L3L4mACK_DOWNLOAD
	L3L4mACK_UPLOAD
	L3L4mALERTING
	L3L4mCALLER_ID_DETECTED
	L3L4mCAS_SIGNALING_BIT_STATUS
	L3L4mCAS_STATUS
	L3L4mCLEAR_REQUEST
	L3L4mCONFIGURATION_STATUS
	L3L4mCONN_ACK_IND
	L3L4mCONNECT
	L3L4mDISCONNECT
	L3L4mEND_DIAL
	L3L4mERROR
	L3L4mHOOKFLASH
	L3L4mLOOP_ON
	L3L4mLOOP_REVERSAL
	L3L4mPRE_SEIZE
	L3L4mPROGRESS
	L3L4mRING_STATUS
	L3L4mRX_WINK
	L3L4mSEIZE_COMP
	L3L4mSETUP_IND
	L3L4mSTATUS_IND
	L3L4mTX_HOOKFLASH_END
	L3L4mTXWINK_END

	26 - Host to Module (L4L3m) Messages
	L4L3mALERTING_REQUEST
	L4L3mCALL_PROCEEDING_REQUEST
	L4L3mCALL_REQUEST
	L4L3mCLEAR_REQUEST
	L4L3mCONNECT_REQUEST
	L4L3mDISABLE_B_CHANNEL
	L4L3mDISABLE_PROTOCOL
	L4L3mENABLE_B_CHANNEL
	L4L3mENABLE_PROTOCOL
	L4L3mFACILITY_REQUEST
	L4L3mFEATURE_REQUEST
	L4L3mINFO_REQUEST
	L4L3mJATE_REDIAL
	L4L3mPROGRESS_REQUEST
	L4L3mREQ_BOARD_ID
	L4L3mREQ_LINE_STATUS
	L4L3mREQ_L2_STATS
	L4L3mREQ_PROTOCOL_STATUS
	L4L3mRESTART
	L4L3mSET_HARDWARE
	L4L3mSETUP_ACK_REQUEST
	L4L3mUNIVERSAL
	L4L3mUSER_INFO

	27 - Module to Host (L3L4m) Messages
	L3L4mALERTING
	L3L4mANI
	L3L4mB_CHANNEL_STATUS
	L3L4mBILLING_STATUS
	L3L4mBOARD_ID
	L3L4mCALL_PROCEEDING
	L3L4mCALL_PROC_SENT
	L3L4mCLEAR_REQUEST
	L3L4mCLEAR_WITH_RESTART_REQUEST
	L3L4mCONNECT
	L3L4mCONN_ACK_IND
	L3L4mDISCONNECT
	L3L4mERROR
	L3L4mINFO_REQUEST
	L3L4mL2_STATS
	L3L4mLINE_STATUS
	L3L4mPROGRESS
	L3L4mPROTOCOL_STATUS
	L3L4mRAW_QDATA
	L3L4mRESTART
	L3L4mSETUP_IND
	L3L4mSTATUS_IND
	L3L4mUNIVERSAL
	L3L4mUSER_INFO

	28 - B-Channel and D- Channel Maintenance
	B-Channel Maintenance
	ISDN Messages for B-Channel Maintenance
	BSMI Messages For B-Channel Maintenance
	Maintenance Procedures
	Sending SERVICE Message to the Far-End
	SERVICE Message Received from the Far-End
	Sending RESTART Message to the Far-End
	RESTART Message Received from the Far-End

	D-Channel Maintenance
	BSMI Messages for D-Channel

	Volume 6 - Appendices
	A - Configuration Files
	User-Defined Configuration File
	Call Control Configuration File
	Call Control Configuration File Format
	Global Options
	Global Module Parameters
	Unchangeable Internal Parameters
	Clock Configuration Parameters
	Advanced H.100 and H.110 Parameters
	Port Configuration Parameters
	Specific Parameters for Port Configuration
	Configuration Parameters for Analog Direct Inward Dialing (DID) Ports
	Configuration Parameters for Analog Loop Start Ports
	Configuration Parameters for BRI Ports
	Configuration Parameters for E1 ISDN Ports
	Configuration Parameters for E1 CAS Ports
	Configuration Parameters for E1 CAS R2 Ports
	Configuration Parameters for E1 and T1 QSIG Ports
	Configuration Parameters for T1 ISDN Ports
	Configuration Parameters for T1 RBS Ports
	Internet Protocol (IP) Call Control Configuration Parameters
	Configuring An IP Call Control Stack For Bfv API
	Configuring Ethernet Interface Parameters
	Configuring A Module To Use An IP Call Control Stack
	Configuring A Module To Use An RTP Stack
	Examples of PSTN Call Control (callctrl.cfg) Files
	Analog DID Port-Specific Configuration File Example
	Analog Loop Start Port-Specific Configuration File Example
	BRI Port-Specific Configuration File Example
	E1 ISDN Port-Specific Configuration File Example
	E1 R2 CAS Port-Specific Configuration File Example
	T1 ISDN Port-Specific Configuration File Example
	T1 QSIG Port-Specific Configuration File Example
	T1 Robbed Bit Signaling Port-Specific Configuration File Example
	Examples of IP Call Control Configuration File
	Single Module, Single SIP Stack
	Single Module, Single H.323 Stack
	Multiple Modules, Single Stack
	Multiple Modules, Multiple Stacks
	Single Virtual Module, Single Stack
	Sample Configuration Files

	Routing Table Configuration File
	Routing Table Configuration File Format
	Routing Rule Parameters
	Examples of Routing Table Configuration Files
	Routing Rules for Eight Channel Configuration

	Parameters for Technical Support Purposes

	B - Bfv API Structures
	Address Structure
	Result Structures
	RES Structure Parameters
	CALL_RES Structure Parameters
	INFO_RES Structure Parameters
	PAGE_RES Structure Parameters
	FAX_RES Structure Parameters

	DCS and DIS/DTC Info Structures

	C - Hangup Codes
	Call Placement Codes
	Transmit Phase A Codes
	Transmit Phase B Codes
	Transmit Phase D Codes
	Receive Phase B Codes
	Receive Phase D Codes
	Phase C Codes
	Miscellaneous Codes
	Bfv API-Created Codes

	D - BSMI and ISDN Cause Codes
	Defining BSMI Cause Codes
	Defining ISDN Cause Codes

	E - Infopkt Parameter Values
	Voice Infopkt Parameters
	End-of-Speech Parameter Infopkt
	Prompt Map Infopkt
	Speech Parameters Infopkt

	Fax Infopkt Parameters
	ASCII Strip Infopkt
	Document Parameters Infopkt
	Enhanced Fax Format Page Infopkt
	Fax Header Parameters Infopkt
	G3 Strip Infopkt
	Page Parameters Infopkt
	T.30 Parameters Infopkt
	Beginning of Page Infopkt

	F - Call Progress Notes
	Processing Call Progress Signals
	Adapting to International Specs
	Reporting Call Progress Results
	Intermediate Results
	Final Results
	DISS - Limited Call Progress Mode
	Detecting Human

	Initiating Call Progress
	BfvLineCallProgressEnable
	BfvLineOriginateCall

	Setting the Call Progress Mode
	Voice Mode
	Fax Mode
	Raw Mode

	Special Call Progress Features
	Sending CNG
	Call Progress Analysis During Dialing

	Call Progress Signals
	Special Information Tones
	Custom Call Progress Results
	Final Call Progress Results

	G - Country-Specific Parameter Files
	BT_CPARM.CFG Parameter File
	Using Dialing Database Functions and Dialing Parameters
	Country-Specific Dialing Requirements
	Australia
	Canada
	Czech Republic
	Denmark
	European Community (Boards Approved to TBR 4)
	France
	Germany
	Hong Kong
	Ireland
	Israel
	Italy
	Japan
	Malaysia
	Netherlands
	New Zealand
	Norway
	Singapore
	Spain
	Switzerland
	Turkey
	United Kingdom
	United States

	Examples of R2 Parameter Files
	Argentina R2 Parameter File
	Brazil R2 Parameter File
	China R2 Parameter File
	Korea R2 Parameter File
	Mexico R2 Parameter File

	H - Deprecated and Unsupported Functionality

	Master Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Updated TIPs settings to fix web compatibility issue. The PDF documents can be opened with Acrobat and Reader 4.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

