The Dialogic® I-Gate® 4000 Mobile Backhaul Session Bandwidth Optimizers consist of the I-Gate 4000 SBO MB and the I-Gate 4000 SBO MBX (collectively, I-Gate 4000 MB and MBX SBOs), which are standalone systems that can optimize bandwidth and increase bandwidth capacity significantly in the backhaul segments of both 2G and 3G mobile networks. Because they optimize Abis and Iub data streams, including both ATM and IP-based Iub streams, the I-Gate 4000 MB or MBX SBO can provide a cost-effective and efficient strategy for increasing backhaul capacity, translating to significantly reduced capital and operational expenses. The I-Gate 4000 MB and MBX SBOs both offer several configurations and interface types, each of which has the same technical features.

The I-Gate 4000 MB and MBX SBOs can accept native IP and VoIP streams and transmit the combined optimized stream over TDM and/or IP. Along with Abis and Iub optimization, the I-Gate 4000 MB and MBX SBOs leverage statistical multiplexing and grooming techniques developed by Dialogic that have been shown in field trials to typically double the capacity of backhaul links while preserving the quality and integrity of the original data traffic through Quality of Service (QoS) protection techniques. The table below highlights features and benefits of the I-Gate Mobile Backhaul Session Bandwidth Optimizers.

<table>
<thead>
<tr>
<th>Features</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leverage special bandwidth and IP packet rate optimization technologies developed by Dialogic, while preserving the quality and integrity of the original data traffic</td>
<td>Enables cost-effective optimization and increased capacity for mobile backhaul segments in 2G and 3G mobile networks</td>
</tr>
<tr>
<td>Each uses unparalleled bandwidth optimization algorithms and techniques to optimize mobile backhaul data sessions</td>
<td>Reduces backhaul bandwidth usage by up to 50% without degrading original data sessions as shown in field trials</td>
</tr>
<tr>
<td>Both combine high-quality payload optimization and QoS protection techniques</td>
<td>Can deliver substantial CAPEX and OPEX savings in 2G and 3G mobile backhaul segments</td>
</tr>
<tr>
<td>Each supports multiple topologies, such as point to point, point to multi-point, drop and continue, data offload, and ring</td>
<td>Works with a wide range of mobile backhaul designs and topologies for effective optimization</td>
</tr>
<tr>
<td>GUI-based management system with runtime reports showing traffic mix, comparative bandwidth, and QoS behavior</td>
<td>Enables ease of operation and supplies a snapshot of important statistics on demand</td>
</tr>
<tr>
<td>99.9995% (“five-nines”) availability through a fully redundant 1 RU platform</td>
<td>Provides high reliability in a small footprint at the hardware, software, and network levels</td>
</tr>
<tr>
<td>Supporting a wide range of transmission infrastructures</td>
<td>Can be used in terrestrial, satellite, and radio link installations, and over TDM or Ethernet links</td>
</tr>
</tbody>
</table>
Efficient Mobile Backhaul Optimization

Both the I-Gate 4000 SBO MB and I-Gate 4000 SBO MBX can optimize bandwidth in the backhaul segments of both 2G (Abis) and 3G (Iub) streams (ATM and IP-based). In addition to Abis and Iub optimization, either one can also be used to simultaneously take in VoIP and IP streams, to optimize these streams, and to transmit the optimized stream over Ethernet and/or TDM. See Figure 1 for an example of a sample configuration. Because units are placed within the current physical backhaul segment, optimizing with an I-Gate 4000 MB or MBX SBO is not as disruptive or costly as other alternatives for increasing bandwidth capacity, such as adding expensive leased lines, deploying fiber, adding microwave spectrum, or moving to Ethernet ring. I-Gate 4000 MB and MBX SBOs can also be used in addition to other options for increasing bandwidth capacity, and can coexist with such other options.

Key Performance Indicators

The I-Gate 4000 MB and MBX SBOs monitor and maintain Key Performance Indicators (KPI) by which mobile backhaul infrastructure performance is measured. These include delay, jitter, bit error rate, and availability. Adherence to prescribed KPIs is considered critical to maintaining high subscriber Quality of Experience (QoE) and to meeting Service Level Agreements (SLAs) for voice and data services.

Application Topologies

Both the I-Gate 4000 SBO MB and the I-Gate 4000 SBO MBX support a wide range of deployment strategies, including these topologies:

- Point to Point (PTP)
- Point to Multi-Point (PTMP)
- Drop and Continue
- Ring
- Data Offload
Deployments may consist of the I-Gate 4000 SBO MB, the I-Gate 4000 SBO MBX or a mixture of both depending on needs.

For more information about these application topologies, see the "Dialogic® I-Gate® 4000 Session Bandwidth Optimizer Mobile Backhaul – Application Topologies" Technology Brief.

Dialogic® XMS Management System

The Dialogic® xMS Management System provides the network operator with an enhanced Fault, Configuration, Performance and Security management tool to manage a network of I-Gate 4000 MB and/or MBX SBO terminals. The xMS provides an easy to use web-based interface with a logical step-by-step approach to provisioning and event handling.

The xMS provides a rich set of reports for the operator, depicting the traffic and operational information of I-Gate 4000 MB and/or MBX SBO terminals. It also provides alarm and event handling mechanisms to help the operator troubleshoot the network and isolate faults. Runtime configuration provides the ability to change the working parameters of I-Gate 4000 MB and/or MBX SBOs without the need to reset the terminal and disrupt traffic. Figure 2 shows a snapshot of the configuration and bandwidth usage.

![Figure 2. Dialogic® XMS Management System Showing a Snapshot of the Configuration and Bandwidth Usage for a Dialogic® I-Gate® 4000 Mobile Backhaul Session Bandwidth Optimizer](image-url)
Technical Specifications

Except where indicated, all technical specifications apply to the I-Gate 4000 SBO MB as well as the I-Gate 4000 SBO MBX.

Traffic Handling

Abis-over-TDM Traffic Optimization
- Idle Channel Suppression
- Silence Removal
- HDLC flag removal
- TRAU frame optimization
- VAD enhancing optimization
- Extended GPRS/EDGE optimization
- Supported TRAU frames:
 - FR (13 kbps), EFR (12.2 kbps), HR (5.6 kbps), AMR (4.75/12.2 kbps) codecs
 - FR data, HR data, Extended data
 - O&M frames

Iub-over-ATM Traffic Optimization
- ATM layer header optimization
- Idle cell removal
- AAL header optimization (AAL2 and AAL5)

Iub-over-IP Traffic Optimization
- Iub Header optimization and aggregation for all protocol layers from Layer 2 up to and including RLC
- Supported transport bearers
 - Iub DCH
 - Iub HS-DCH
 - Iub E-DCH
 - Iub FACH
 - Iub RACH
 - Iub PCH

Abis-over-IP (Packetized Abis), Native IP and VoIP Optimization
- Headers optimization and Packets aggregation
- Statistical multiplexing

Auto Detection
- Automatic TRX allocation detection for Abis traffic and AAL for the ATM-based Iub traffic

Payload Aggregation
- Static RTP Multiplexing
- Statistical Multiplexing between all types of traffic

Traffic Congestion Control
- Payload Priority Selection mechanism (PPS) for Abis
- Tail Drop
- DCAM

Embedded Cross-Connect
- Any-to-Any trunk DS0 channel For all configured DS0s

Pseudowire Emulation Edge-to-Edge (PWE3)
- SAToP (Structure-agnostic TDM over packet) - RFC 4553
- CESoPSN (Circuit Emulation Service over Packet-Switched Network) - RFC5086

QoS Management
- Multiple queues management
- IP packet classification and marking
- Multiple congestion avoidance
- Scheduling and Shaping
- Policing
- H-QoS
Jitter Buffer
- Adaptive
- Up to 120 msec network jitter (for Abis traffic)

Silence Suppression (for Abis traffic)
- GSM-AMR, GSM 06.94

Traffic Links
- Supports: terrestrial links, microwave links, satellite links

Tunneling
- Over GRE (Generic Routing Encapsulation)
- Up to 16 GRE tunnels

QoS Protection
- Tail Drop mechanism
- Payload Priority Selection mechanisms

Mobile Network Interfaces Protocols
Abis Interface
- GSM R99, 3GPP 08 Series specifications
- Codec: FR, EFR, HR, AMR all rates
- Data services: EDGE, GPRS, HSCSD

Iub interface (ATM and IP based)
- 3GPP specifications
- Data services: HSPA, DCH-R99

Network Interfaces
Gigabit Ethernet Ports
- Compliance with IEEE 802.3z (optical)
- Compliance with IEEE 802.3ab (electrical)

Connector
- SFP -- Optical SM (1310 nm) or MM (850 nm) (LC connector)
- RJ45 (electrical)

VLAN Tag
- IEEE 802.1q
- IEEE 802.1p (VLAN priority bits)
- Up to 32 VLANs

BVI Support
- Supports BVI (Bridge Group Virtual Interface)

E1 Interface
- Compliance with ITU-T Recommendation G.703
- 120Ω balanced
- Complies with ITU-T Recommendation G.704
- HDB3
- Configurable
- Supported for PWE3 (SAToP)
- Complies with ITU-T Recommendation G.703 paragraph 6.3.3 and with ETSI ETS 300166

STM-1 Interface -- Optical
- ITU G.703, G.813, G.825, G.783, G.957 and Telcordia GR-253
- ITU G.707
- NRZ
- 63 E1 (AUA) or 3x21 E1 (AU3)
- Single Mode (1310 nm)
Dialogic® I-Gate® 4000 Mobile Backhaul Session Bandwidth Optimizers

Datasheet

Receiver Maximum Input Optical Power • -7dB
Receiver Sensitivity • -29dB
Connector type • LC SFP S1.1.1310 nm

STM-1 Interface -- Electrical
Characteristics • ITU G.703, G.813, G.825, G.783, G.957 and Telcordia GR-253
STM1 Frame • ITU G.707
Line code • CMI
STM1 Payload • 63 E1 (AU4) or 3x21 E1 (AU3)
Connector type • SFP DIN 1.0/2.3 75 ohm according to CECC 22230

Capacity

Abis-over-TDM Traffic

<table>
<thead>
<tr>
<th>Parameter</th>
<th>I Gate SBO MB E1 Links</th>
<th>I Gate SBO MB STM-1 Links</th>
<th>I Gate SBO MBX E1 Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. number of E1 links</td>
<td>16</td>
<td>24</td>
<td>36</td>
</tr>
<tr>
<td>Max. number of Abis groups</td>
<td>24</td>
<td>24</td>
<td>36</td>
</tr>
<tr>
<td>Max. number of Abis groups per E1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Iub-over-ATM Traffic

<table>
<thead>
<tr>
<th>Parameter</th>
<th>I Gate SBO MB E1 Links</th>
<th>STM-1</th>
<th>I Gate SBO MBX E1 Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM UNI links</td>
<td>16</td>
<td>63</td>
<td>40</td>
</tr>
<tr>
<td>ATM links per IMA group</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Number of IMA groups</td>
<td>8</td>
<td>32</td>
<td>20</td>
</tr>
</tbody>
</table>

Iub-over-IP or Abis-ver-IPTraffic • Up to 200 Mbit/sec.

Redundancy and High Availability

Main Module • 1:1 MPTM, MPTH, or MPTI redundancy
• 1:1 MPTS or HPTM redundancy
Power Supply • 1:1 DCPS redundancy
• Load sharing
Power Feed • 2 independent power feed connections through main and redundant DCPS
Fan Tray • 6 fans
• Support for Fan Turbo mode
Ethernet Link Protection • 1:1 (based on ELET/EHET/EOIE/ELS4/OPHT/OPS4 ports redundancy modes) (Ethernet Link redundancy (link protection) is handled at the BVI level for a BVI associated with more than one Ethernet link)
Availability • 99.9995 % (five 9’s)
Additional High Availability Features • Hitless Hot-module swapping -- Hot extractions/insertions of modules
• Hitless Hot Software Upgrade -- Non-traffic-affecting
• Runtime configuration
Temperature Control • Built-in temperature sensors
• Fan Turbo mode
• Alarms: High & Extreme High Temperature
System Synchronization

Clock standards
- IEEE1588v2
- SyncE

Clock Source
- Two clock sources can be standard TDM input bitstreams of any configured TDM interface.
- Two clock sources can be SyncE input of any configured Ethernet ports.
- PTP clock can be configured as clock source in addition to TDM and SyncE sources in terminal configured PTP Mode = Slave (PTP VLAN does not support BVI).
- In case of failure of all clock sources, Hold-Over on the last synchronized external clock source is performed (with an accuracy of ±1 PPB per 24 hours).
- Internal clock with accuracy of Stratum 3E

Internal Timing Module
- Operation modes: Complies with ITU-T recommendations G.812 and G.813
- Jitter/Wander tolerance/transfer complies with AT&T TR-62411 and Telcordia GR-1244 Stratum 3 specifications
- Jitter specifications comply with ITU-T G.823, G.824, and ANSI T1.101

Power

DC voltage input
- -48 VDC / -60 VDC (nominal)
- -40.5 VDC / -72 VDC (min/max)

Max DC current
- 7A

Max DC power consumption
- 284W

Physical Characteristics

Dimensions for I Gate SBO MB
- Width: 435 mm (17.1") - not incl. mounting brackets
- Height: 44.45 mm (1.75" - 1U)
- Depth: 448 mm (17.6")
- Weight: 5.7 kg (full redundant system)

Dimensions for I Gate SBO MBX
- Width: 435 mm (17.1") - not incl. mounting brackets
- Height: 44.45 mm (1.75" - 1U)
- Depth: 450 mm (17.7")
- Weight: 6.0 kg (full redundant system)

Installation
- Can be installed in 19" or 23" cabinets or relay racks, or on top of any rigid infrastructure (desktop)
- I Gate SBO MB can be installed as wall mount

Approvals, Compliance, and Warranty

Hazardous substances
RoHS compliance information at www.dialogic.com/rohs

Country-specific approvals
Call your local Dialogic sales representative

Warranty
Call your local Dialogic sales representative

For More Information

For more information about the product discussed in this datasheet, contact your local Dialogic representative. Worldwide contact information is available online at www.dialogic.com/contact.